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Abstract 
 

The optimization of grating couplers is usually realized by multiple simulations using specific 

computational software for this task. Many grating parameters must be analyzed and designed to get 

the maximum coupling efficiency and the transmission spectrum centred at the wavelength of operation. 

However, these simulations may take a long time and consume high computational resources depending 

on the simulation resolution. This work is focused on finding a method to optimize the grating 

parameters with the lowest number of simulations. In this way, closed-form expressions are presented 

to get the optimal values for the period and fill-factor, which are the main parameters in the grating 

design. The usefulness of the proposed approach is shown for the design of silicon grating couplers 

operating at 1.31 µm and 1.55 µm and both TE and TM polarizations.  
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1. Introduction 
 

Silicon photonics is a technology that has experienced a great development in the last years due its 

compatibility with the CMOS fabrication process and the optical properties of the material. The 

compatibility with the microelectronic technology allows a mass fabrication process with a low cost 

using a material abundant in the nature as silicon [1]. Moreover, the high index contrast between the 

silicon and silica allows the confinement of light in optical waveguides with submicron sizes and the 

design of complex structures for diverse applications. However, most of these structures are quite 

sensitive to variations of their geometry [2]. 

 

The submicron size of optical waveguides makes challenging the coupling of light with other 

components of larger size such as the optical fiber. Therefore, several coupling mechanisms have been 

investigated for an efficient coupling. One of the most attractive mechanisms is the use of grating 

couplers for coupling light out of plane [3]. Many studies have been made about grating couplers, all 

of them focused on achieving the maximum coupling efficiency. Standard silicon grating couplers have 

been traditionally designed through an intensive optimization by simulations [4-7].  More recently, new 

methods of optimization have been shown to reduce the number of simulations and improve the 

coupling efficiency as gradient-based methods [8], optimization strategies based on simultaneous 

apodization of the principal design parameters [9], or inverse design technics where the user can define 

initially a set of performance metrics [10]. In all cases, some parameters of the grating coupler structure 

have been considered in the design and several simulations have been performed to maximize the 

coupling efficiency.  
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This paper proposes a method to calculate in a semi-analytical way the optimal values for the most 

important parameters of the grating coupler structure. To achieve this goal, the influence of the effective 

index of the propagating mode in the grating coupler on the optimum period has been analyzed and 

closed-form expressions have been formulated to get both the period and the fill-factor. Therefore, the 

optimal value for the effective index is obtained which ensures the maximum coupling efficiency and 

the spectrum centred at the operational wavelength. 

 

The method has been validated with some designs of silicon-on-insulator (SOI) grating couplers. High 

coupling efficiencies have been achieved with values comparable to the ones obtained through extensive 

2D-FDTD simulations. Therefore, a coupling efficiency of 57% at 1.55 μm and 59% at 1.31 μm has been 

achieved for TE polarization. Moreover, it has been shown that the optimum parameters for TM 

polarization may also be estimated from the parameters obtained for TE polarization. In such a way, a 

coupling efficiency of 50% at 1.55 μm and 60% at 1.31 μm has been achieved for TM polarization. 

2. Grating coupler performance  

Grating couplers are periodic structures that change their configuration or geometry usually with a 

variation of the refractive index or a surface corrugation. This perturbation affects to the phase of a 

wave impinging on the grating coupler so that it will acquire a periodic behaviour [11]. The resulting 

wave can be expanded into a Fourier series, where each harmonic is propagating at a different spatial 

direction and represents a diffracted wave. The number of allowed diffracted waves is determined by 

the Bragg condition [12]:  

 

                                                                  𝑘⃗⃗⃗  𝑚 = �⃗� 𝑖𝑛𝑐 + 𝑚�⃗⃗�                                                                  (1) 

 

where  𝑘⃗⃗⃗  𝑚 is the wavevector of the diffracted wave, �⃗� 𝑖𝑛𝑐 is the wavevector of the incident wave and �⃗⃗�  
is the grating vector, which is determined by the period, 𝛬, of the grating. The integer 𝑚 describes the 

diffracted order (𝑚 = 0,±1,±2…± ∞) as it can be observed in Fig. 1.  
 

 
Figure 1.- Incident wave on a surface with a periodic structure and resulting diffracted waves. 

 

Grating couplers are designed for efficient coupling to a photonic waveguide from an optical fiber. Due 

to the reciprocity theorem, the same results can be considered for coupling from the waveguide to the 

fiber. The grating coupler is a three dimensional (3D) structure (Fig. 2(a)). However, a study in a bi-

dimensional (2D) plane can be made (Fig. 2(b)) because the waveguide width is much longer than the 

effective wavelength, so a waveguide with an infinite width can be considered [13]. The first-order of 

diffraction (𝑚 = 1) is used to excite the propagating mode of the grating coupler characterized by an 

effective index of neffg. Furthermore, the incident wave from the fiber is slightly detuned by a certain 



angle, θinc, from the vertical direction to avoid the second-order diffraction, as it can be seen in Fig. 

2(b).  Thereby, the Bragg condition can be reduced to:  

 

                                                             𝑛𝑒𝑓𝑓𝑔
2𝜋

𝜆
= 𝑛𝑆𝑖𝑂2

2𝜋

𝜆
sin 𝜃𝑖𝑛𝑐 +

2𝜋

𝛬
                                            (2) 

 

from which the grating period or pitch for a specific wavelength, 𝜆, is easily derived as 

 

                                                               𝛬 =
𝜆

𝑛𝑒𝑓𝑓𝑔− 𝑛𝑆𝑖𝑂2 sin𝜃𝑖𝑛𝑐
                                                           (3) 

 

where nSiO2 is the refractive index of the silica deposited above the grating coupler.  

 

 
Figure. 2 (a) Grating coupler 3D view and (b) cross section with design parameters. 

 

The effective index of the propagating mode in the grating coupler is the key design parameter to find 

the optimum grating period by using Eq. (3). However, this parameter cannot be directly calculated and 

will depend on the grating coupler structure. The usual approach is to calculate the effective index of 

both waveguides that form the grating in its etched, 𝑛𝑒𝑓𝑓𝑒𝑝, and non-etched, 𝑛𝑒𝑓𝑓𝑛𝑒𝑝, parts, as shown 

in Fig. 3, so that the effective index of the propagating mode as a function of fill-factor  𝐹𝑓 is obtained 

by: 
 

                                                        𝑛𝑒𝑓𝑓𝑔 = 𝑛𝑒𝑓𝑓𝑛𝑒𝑝 · 𝐹𝑓 + 𝑛𝑒𝑓𝑓𝑒𝑝 · (1 − 𝐹𝑓)                                                                       (4) 

 

 

 
Figure. 3. Decomposition of the grating coupler structure in two planar waveguides to calculate the 

effective index from the etched and non-etched parts. 

 

However, the coupling efficiency cannot be obtained from the Bragg equation defined by Eq. (2) [14]. 

For an efficient coupling, several parameters must be considered in the design. This is the case of the 

fill-factor, the etching depth of the grating and the waveguide thickness, all of them illustrated in Fig. 

3. On one hand, the fill-factor determines a proportional relation between the etched and non-etched 

parts. On the other hand, the etching depth establishes the perturbation grade of the light in the grating 

while the waveguide thickness affects to the effective index of the medium in which the light 

propagates. Therefore, all these parameters will have an influence on the effective index of the 

propagating mode in the grating. 



3. Proposed design method 

The proposed method is based on an alternative approach to find the optimum effective index of the 

propagating mode in the grating coupler structure. Therefore, the influence of the effective index has 

been firstly analyzed in the grating structure shown in Fig 2(b) by assuming an etching depth of 70 nm 

and a fill-factor of 50%. First, the optimum period has been achieved for a wavelength range between 

1.26 μm and 1.60 μm and TE polarization. The optimum period, shown in Fig. 4(a), has been obtained 

by means of 2D-FDTD simulations for having maximum coupling efficiency and the optical spectrum 

centred at the target wavelength. With the optimized values of the period for each wavelength, the 

optimum effective index of the propagating mode in the grating can be derived from Eq. (3). Figure 

4(b) shows the obtained optimum effective index values as a function of wavelength. The optimum 

values are compared in Fig. 4(b) with the effective index calculated by using Eq. (4). 

 
Figure. 4 (a) Optimized period and (b) optimum effective index extracted from the optimized period 

and effective index calculated by Eq. (4) as a function of wavelength. 

 

From the results shown in Fig. 4(b), it can be observed that the same value of effective index is achieved 

for different wavelengths. Therefore, the optimum effective index at the target wavelength of operation 

can be obtained by considering a shifted wavelength: 

 

𝝀′ = 𝝀 − ∆𝝀̅̅̅̅
𝑻𝑬       (5) 

 

where the factor  ∆𝜆̅̅ ̅̅ ̅
𝑇𝐸 can be approximated by an average value in the wavelength range of interest. 

The initial, medium and final wavelengths are considered, as depicted in Fig. 4(b): 

 

                                                ∆𝝀̅̅̅̅
𝑻𝑬 = 

∆𝝀𝐢𝐧𝐢+ ∆𝝀𝐦𝐞𝐝+∆𝝀𝒆𝒏𝒅

𝟑
                                                        (6) 

 

which gives a value of ∆𝜆̅̅̅̅
𝑇𝐸 = 36 𝑛𝑚 for the considered grating coupler structure. Such average value 

will allow the calculation of the optimum effective index in the whole wavelength range between 1.26 

μm and 1.60 μm. Therefore, the design process will be very fast and efficient. The design process steps 

will be: 

1) Define the desired wavelength to have maximum coupling efficiency and the transmission 

response of the grating centred around that wavelength, for instance, 𝜆 =1310 nm.  

 

 

2) Simulate or calculate the effective indexes of the planar waveguides corresponding to the etched 

and non-etched parts of the grating, as depicted in Fig. 3, at the shifted wavelength defined by 



Eq. (5), i.e. 𝑛𝑒𝑓𝑓𝑒𝑝(𝜆 − ∆𝜆̅̅̅̅
𝑇𝐸) and 𝑛𝑒𝑓𝑓𝑛𝑒𝑝(𝜆 − ∆𝜆̅̅̅̅

𝑇𝐸) . In the example, 𝑛𝑒𝑓𝑓𝑒𝑝(𝜆
′ =

1274 nm) and 𝑛𝑒𝑓𝑓𝑛𝑒𝑝(𝜆
′ = 1274 nm). 

 

3) The optimum effective index of the propagating mode in the grating coupler structure will then 

be obtained with: 

 

 𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡 =
𝑛𝑒𝑓𝑓𝑒𝑝(𝜆−∆𝜆̅̅̅̅

𝑇𝐸)+𝑛𝑒𝑓𝑓𝑛𝑒𝑝(𝜆−∆𝜆̅̅̅̅
𝑇𝐸)

2
     (7) 

 

In the example,  𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡 = 2.8774. 

 

4) With the optimum effective index,  𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡, the optimum period will be calculated from the 

Bragg equation:  

 

𝛬𝑜𝑝𝑡 =
𝜆

 𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡− 𝑛𝑆𝑖𝑂2 sin𝜃𝑖𝑛𝑐
            (8) 

 

In the example, 𝜃𝑖𝑛𝑐 = 6.893º,   𝑛𝑆𝑖𝑂2 = 1.446 and so 𝛬𝑜𝑝𝑡 = 485 nm. 

 

5) Finally, the optimum filling factor is calculated by: 

 

𝐹𝑓𝑜𝑝𝑡 =
 𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡−𝑛𝑒𝑓𝑓𝑒𝑝(𝜆)

𝑛𝑒𝑓𝑓𝑛𝑒𝑝(𝜆)−𝑛𝑒𝑓𝑓𝑒𝑝(𝜆)
                 (9) 

 

In the example, we need to calculate first 𝑛𝑒𝑓𝑓𝑒𝑝(𝜆 = 1310 nm) and 𝑛𝑒𝑓𝑓𝑛𝑒𝑝(𝜆 = 1310 nm)  

which gives then 𝐹𝑓𝑜𝑝𝑡 = 58.5 %. 

 

In summary, once the factor  ∆𝜆̅̅ ̅̅ ̅
𝑇𝐸 has been determined for a certain wavelength range, the optimum 

period and filling-factor can be calculated in a fast and efficient way for any wavelength following the 

procedure previously described. The obtained values will ensure a coupling efficiency close to the 

maximum and an optical bandwidth centred around the target wavelength. Furthermore, a relationship 

between TE and TM polarizations can also be found by comparing the variation of the optimum period 

with wavelength for both polarizations, which is given by  

                                                                                                                                                               
∂Λ𝑇𝑀

∂λ
≈  2

∂Λ𝑇𝐸

∂λ
        (10) 

                                    

for the considered grating coupler. According to Eq. (10), the variation of the period with wavelength 

for TM polarization is two times higher than for TE polarization so that it can deduced that the factor 

used to obtain the shifted wavelength in Eq. (5) will also be affected by a factor of two:  

                       

                                                                        ∆𝜆̅̅̅̅
𝑇𝑀 =  2∆𝜆̅̅̅̅

𝑇𝐸                                                                  (11) 

 

which gives a value of ∆𝜆̅̅̅̅
𝑇𝑀 = 72 𝑛𝑚. 

 
 



 
Figure. 6. Simulated coupling efficiency for TE polarization as function of the period and fill-factor for 

(a) 1310 nm and (b) 1550 nm. The optimal values (𝛬𝑜𝑝𝑡 , 𝐹𝑓𝑜𝑝𝑡) obtained with the proposed design 

method are also shown. Transmission spectrum of the grating coupler for (c) 1310 nm and (d) 1550 nm 

for the optimum period and different fill-factor values. 

4. Results and comparison with simulations 

The performance of the grating coupler shown in Fig. 2(b) and designed with the proposed method for 

operation at a wavelength of  𝜆 = 1310 nm has been compared with simulations. Figure 6(a) shows a 

contour map of the coupling efficiency as function of period and fill-factor obtained by means of 2D-

FDTD simulations. The optimal values (𝛬𝑜𝑝𝑡 = 485 𝑛𝑚, 𝐹𝑓𝑜𝑝𝑡 = 58.5%) derived with the proposed 

design method are also shown and give rise to a coupling efficiency of 59%. It can be seen that the 

obtained values are very close to the maximum coupling efficiency derived from simulations. The 

design method has also been applied for a wavelength of  𝜆 = 1550 nm. In this case, the effective index 

of the propagating mode in the grating coupler is 𝑛𝑒𝑓𝑓𝑔−𝑜𝑝𝑡 = 2.7157 which yields to an optimum 

period of 𝛬𝑜𝑝𝑡 = 610 𝑛𝑚 and a fill-factor of 𝐹𝑓𝑜𝑝𝑡 = 57%. Figure 6(b) shows the comparison with the 

results obtained by simulations and confirm that the designed parameters are very close to the maximum 

coupling efficiency. The obtained coupling efficiency is in this case 57%. It should be noticed that in 

the simulation results shown in Fig. 6(a) and Fig. 6(b), the coupling efficiency has been simulated 

without taking into account if the transmission spectrum of the grating is really centred at the target 

wavelength. Figure 6(c) and Fig. 6(d) shows the transmission spectrum of the grating for the optimum 

period obtained by the proposed method and for different values of the filling factor. It can be seen that 

the filling factor is critical in the position of the spectrum and that the optimum value obtained by the 

proposed method ensures that the spectrum is centred around the target wavelength.  



 
Figure. 7. Simulated coupling efficiency for TM polarization as function of the period and fill-factor 

for (a) 1310 nm and (b) 1550 nm. The optimal values (𝛬𝑜𝑝𝑡 , 𝐹𝑓𝑜𝑝𝑡) obtained with the proposed design 

method are also shown. Transmission spectrum of the grating coupler for (c) 1310 nm and (d) 1550 nm 

for the optimum period and different fill-factor values. 

 

Finally, the proposed method has also been used to design the optimum grating coupler for TM 

polarization. In this case, the new factor described by Eq. (11) is taking into account to obtain the 

effective index of the propagating mode in the grating. Therefore, the optimum values for the period 

and fill-factor are respectively 𝛬𝑜𝑝𝑡 = 656 𝑛𝑚 and 𝐹𝑓𝑜𝑝𝑡 = 64.2% for 𝜆 = 1310 nm, which gives 

rise to a coupling efficiency of 60%, and 𝛬𝑜𝑝𝑡 = 900 𝑛𝑚  and 𝐹𝑓𝑜𝑝𝑡 = 64.1%  for 𝜆 = 1550 nm , 

which  yields to a coupling efficiency of 50%. Figure 7(a) and Fig. 7(b) show the simulated coupling 

efficiency as function of the period and fill-factor and the optimum values obtained with the proposed 

design method respectively for 1310 nm and 1550 nm. On the other hand, Figure 7(c) and Fig. 7(d) 

show the transmission spectrum of the grating for the optimum period and different fill-factor values 

for 1310 nm and 1550 nm, respectively. It is again confirmed that maximum coupling efficiency of the 

transmission spectrum is achieved at the considered wavelength by using the optimum period and fill-

factor. 

 

5. Conclusions 

A method has been proposed for designing high performance grating couplers by means of a semi-

analytic approach that avoids the optimization via extensive FDTD simulations. The key point is to 

calculate the optimum effective index of the propagating mode in the grating coupler by using a 

wavelength shifted from the target wavelength of operation. Thus, the optimum period and fill-factor 

are easily obtained with closed-form expressions that have been also formulated. The proposed method 

has been used for designing SOI grating couplers for both TE and TM polarizations with a high coupling 



efficiency above 50% and the transmission spectrum centered around 1.31µm and 1.55µm. 

Furthermore, it should be noticed that the proposed approach could also be applied to design uniform 

grating couplers in other waveguide geometries, such as rib or slot waveguides, or materials platforms 

by following the same methodology described here as the basis lies on the fundamental behavior of the 

grating coupler structure.  
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