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Abstract

Algorithmic debugging is a semi-automatic debugging technique that abstracts the operational
details of computations, allowing the programmers to debug their code from an abstract point of
view. However, its use in practice is still marginal, and one of the reasons is the lack of precision
of this technique when reporting errors (current algorithmic debuggers do not point an expression
or line as buggy, but they point a whole procedure/function/method as containing the bug). In
this paper, we make a step forward to overcome this problem. We identify two specific causes
of that problem in the standard formulation and implementations of algorithmic debugging, and
we present a reformulation to solve both problems. We show that the novel ideas included in the
reformulation proposed cannot be supported by the standard internal data structures (such as the
Execution Tree) used in this technique and, hence, a generalisation of the standard definitions and
algorithms is needed. The reformulation has been done in a language-independent manner to make
it useful and reusable in different programming languages.

Keywords: Algorithmic Debugging, Transformation, Generalization

“Everything is vague to a degree you do not realize till you have tried to make it
precise”. Bertrand Russell

1. Introduction

Algorithmic Debugging (AD) [28, 6] is a semi-automatic debugging technique with a high
level of abstraction. It is composed of two independent phases: error diagnosis and error cor-
rection. This technique has experienced a significant advance in the last decade. Concretely,
new techniques have been proposed to improve performance [9, 15], to improve scalability [11],
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to improve interaction with the user [7], and to improve GUIs [12, 13]. The maturity of these
techniques has eventually led to the integration of algorithmic debuggers into sophisticated pro-
gramming environments. Two interesting cases are [12] and [11], which combine AD with the
standard debugging perspective of Eclipse [31]. Compared to other fault localization techniques
[2, 33], the main advantage of AD is its high level of abstraction.

Example 1.1. Let us assume the existence of a buggy Java code composed of three methods:
the boolean isPrime(int x) method determines whether its argument x is a prime number,
the boolean isDivisible(int x, int y) method returns true if x is divisible by y, or false
otherwise; and, the double inflectionPoint(int x) method returns the inflection point y such
that any divisor d1 of x greater than y is associated with another divisor d2 of x smaller than y (i.e.,
∀d1 | y < d1 . ∃d2 | d2 < y∧d1 ∗d2 = x). Therefore, with the following method invocation:

i s P r i m e ( 9 ) ;

the result should be false. Nevertheless, due to a bug in the code, the result is true.
Thanks to AD, with only this information (without knowing anything about the source code) we

can identify the buggy method. For instance, if we debug this program with the Hybrid Debugger
for Java (HDJ),1 we obtain the following debugging session (questions are generated by HDJ, and
answers are provided by the user):

Starting Debugging Session:

(1) isPrime(9) = true? No

(2) inflectionPoint(9) = 3.0? Yes

(3) isDivisible(9, 2) = false? Yes

Bug found in method "isPrime" with the call "isPrime(9)".

Therefore, an AD session is just a dialogue where the debugger asks questions and the user an-
swers them. The buggy Java code associated with this debugging session is depicted in Figure 1.

( 1 ) double i n f l e c t i o n P o i n t ( i n t n ) {
( 2 ) re turn Math . s q r t ( n ) ;
( 3 ) }
( 4 ) boolean i s D i v i s i b l e ( i n t n1 , i n t n2 ) {
( 5 ) re turn n1 % n2 == 0 ;
( 6 ) }

( 7 ) boolean i s P r i m e ( i n t number ) {
( 8 ) i f ( number <= 1)
( 9 ) re turn f a l s e ;
( 1 0 ) double l im = i n f l e c t i o n P o i n t ( number ) ;
( 1 1 ) f o r ( i n t i = 2 ; i < l im ; i ++)
( 1 2 ) i f ( i s D i v i s i b l e ( number , i ) )
( 1 3 ) re turn f a l s e ;
( 1 4 ) re turn true ;
( 1 5 ) }

Figure 1: Java program to check whether a number is prime

The debugger internally generates a data structure that represents the execution of the pro-
gram. This data structure, often called Execution Tree (ET), is depicted in Figure 2. The ET has

1http://www.dsic.upv.es/˜jsilva/HDJ/
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a node for each method invocation.2 Each node normally contains a reference to the method that
is being executed, the value of its arguments, the old and new values of the variables that may be
changed within the execution, and its returned value. The debugger just traverses the ET asking
the user about the validity of the nodes (i.e., nodes are marked as correct or wrong) until a buggy
node is found. A node is buggy when it is wrong, and all of its children (if any) are correct.

Figure 2: ET generated for the program in Figure 1

In this simple example, we can see one important weakness of the classical formulation of AD.
Note that the bug in Figure 1 is that i < lim should be i <= lim. However, the debugger reports
the whole isPrime method as buggy, which is very imprecise (it even includes non-executed code
such as lines 9 and 13). In this work, we overcome this problem with a reformulation of AD.

1.1. Contributions of this work
In this work, we improve the classical error diagnosis phase of AD. In particular, we propose

a new redefinition of this phase in such a way that: (i) It is language-independent, and thus it is
reusable by other researchers. (ii) It is a conservative generalization of the traditional formulation
of AD, in such a way that many previous AD techniques are a special case of this new formulation.
(iii) It is formulated in a way that definitions of the data structures, properties, strategies, and
algorithms are specified separately, so that they can be reused and/or concretized in a particular
case. (iv) It states that the output of an algorithmic debugger should not include non-executed
code. And, (v) it allows the debugger to ask questions about a code inside a method (and not only
about the whole method).

We do not claim that our definitions cannot be further generalized, but we do claim (and show)
that this generalization is appropriate and enough for the current state of the art (in contrast with the
classic formulation). We also provide some UML models to clarify and categorize different ideas
introduced in the recent bibliography, so that AD techniques can be classified with them. We also
identify and formally define properties that researchers should report about their AD techniques,
because these properties allow other researchers and developers to know whether a given technique
is useful for a particular application. Finally, we propose a taxonomy of AD techniques, and we
classify current techniques according to this taxonomy. For each technique and property, we prove
whether the property holds in that technique.

2In the ET, nodes represent computations. Hence, depending on the underlying paradigm, they can represent
methods, functions, procedures, clauses, etc. Our discussions in this paper can be applied to both the imperative and
the declarative paradigms, but, for the sake of concreteness, we will focus the discussion on the imperative paradigm
and our examples on Java.
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2. Some problems identified in current algorithmic debuggers

We have been actively working in the area of AD for the last 10 years. This paper summarizes
and criticizes our own work to make a step forward. We claim that almost all current algorithmic
debuggers—at least all that we know, including the most extended, which we compared in [8], and
including our own implementations—have fundamental problems that were somehow inherited
from the original formulation of AD [28].

In particular, the original formulation of AD and most of the later definitions and implemen-
tations are obsolete with respect to the recent advances on the practical side of AD. For instance,
two important problems of the standard definitions of AD are the granularity and the static nature
of the errors found. We can illustrate these problems observing again the debugging session of Ex-
ample 1.1: The whole method isPrime is pointed out as buggy. This is very imprecise especially
if isPrime were a method with a lot of code. However, AD researchers and developers are used
to this behaviour, and they would argue that this is the normal output of any algorithmic debugger.
However, from an engineering perspective, this is quite surprising because the analysis performed
by the debugger is by definition dynamic (in fact, the whole program is actually executed). Hence,
the debugger should know that lines 9 and 13 of Figure 1 are never executed, and thus they should
not be reported as buggy. This leads us to our first proposition: The information reported by an
algorithmic debugger should be dynamic instead of static. That is, the output of the algorithmic
debugger should be the part of the method that has been actually executed to produce the bug,
instead of the whole method.

We think that this problem comes from the first implementations of AD and it has been in-
herited in subsequent theoretical and practical developments. In fact, if we execute this program
with the debuggers: Buddha [26], DDT [4], Freja [21], Hat-Delta (and its predecessor Hat-Detect)
[9], B.i.O. [3], Mercury’s Algorithmic Debugger [19], Münster Curry Debugger [18], Nude [20],
DDJ [13], and HDJ [11], they all would output the whole isPrime as buggy together with a coun-
terexample that produces the bug (the buggy node found). Unfortunately, none of these debuggers
makes further use of the counterexample. An option would be that the debuggers use dynamic
program slicing (to be precise, dynamic chopping) [30] to minimize the code shown as buggy.

To reduce the granularity of the errors reported, new techniques have appeared that allow for
debugging inside a method (see, e.g., [16, 5]). Unfortunately, the standard definition of ET is not
prepared for that. In fact, some of the recent transformations defined for AD do not fit in the
traditional definition of the data structures used in this discipline. For instance, the Tree Balancing
technique presented in [15], or the zooming technique presented in [5] cannot be represented with
standard AD data structures such as the Evaluation Dependence Tree [24].

This lack of a common theoretical framework with standard data structures that are power-
ful enough as to represent recent developments makes researchers to reinvent the wheel once and
again. In particular, we have observed that researchers (including ourselves) have produced local
and partial formalizations to define their debuggers for a particular language and/or implementa-
tion (see, e.g., [7, 16, 15]). These theoretical developments are hardly reusable in other languages,
and thus, they only serve as a formal description of their system, or as a means to prove results.
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3. Related Work

Algorithmic debugging has been applied to many mature languages (e.g., Java, Haskell, Pro-
log, Erlang, etc.). Most implementations use a sort of ET to represent computations. Even in those
lazy implementations of AD where the execution of the front-end and the back-end is interleaved
(see, e.g., [22]), the construction of the ET is needed before the program can be debugged. Over
the years, different paradigms have adopted a well-defined and studied data structure to represent
the ET.

3.1. A Little Bit of History
Algorithmic debugging started in the seminal work by Shapiro with the notion of contradiction

backtracking using “crucial experiments” within Popper’s philosophical dictum of conjectures and
refutations [27]. Hence, the first notion of ET appeared in the context of the logic paradigm.
Shapiro used refutation trees as ETs. Later implementations of AD in the logic paradigm such as
NU-Prolog [1, 32] also used refutation trees.

In the context of the functional paradigm, the data structure used was proposed by Henrik
Nilsson and Jan Sparud: The Evaluation Dependence Tree (EDT). They first proposed this data
structure as a record of the execution [24], and then, as an appropriate ET for AD [25]. The EDT
is particularly useful to represent lazy computations by hiding non-computed terms. In fact, the
EDT itself can be computed lazily as in [22]. The most successful implementations of AD for the
functional paradigm are based on the EDT. Notable cases are the Freja [21], Hat-Delta [9], and
Buddha [26] debuggers.

In multi-paradigm languages such as Mercury, TOY, or Curry, the ET is also represented with
either a proof tree or an EDT. Examples of debuggers for these languages are the Mercury Debug-
ger [19], the Münster Curry Debugger [18], DDT [4], and B.i.O [3].

In the imperative paradigm, a redefinition of the EDT was used. It has been often called
Execution Tree [10, 13], but, conceptually, it is equivalent to the EDT, and it can be seen as a
dynamic version of the Call Graph where every single call generates a different node in the graph,
and thus no cycles are possible (i.e., it is a tree).

3.2. Modern Implementations
All the debuggers mentioned in the previous sections are somehow “standard” in the sense that

they are based on the standard definition of the ET (either the refutation trees or the EDT). How-
ever, in the last 5 years, there has been a new trend in AD tools: Researchers have implemented
new techniques that go beyond the standard definition of the ET. In contrast to the previously de-
scribed tools, modern algorithmic debuggers are not standalone tools. They are plugins that can be
integrated as part of an IDE. Examples of these debuggers are JHyde [12] and HDJ [11] (both are
Eclipse plugins). These tools use the presentation facilities of the development environment, and
they have direct access to dynamic information—they can even manipulate the JVM at runtime—
that can be used to enhance the debugging sessions. In particular, the following techniques go
beyond the standard ET:

Tree compression deletes nodes of the ET, breaking the standard parent-child relation in the ET.
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Tree balancing introduces new artificial nodes, breaking the standard definition of ET node.

Loop expansion and ET zooming decompose nodes, breaking the standard definition of ET node.

We are not aware of any definition of ET able to represent the previous four techniques. In Sec-
tion 4.4, we show that the above techniques are valid ET transformations for the new (more gen-
eral) notion of ET that we introduce in the next section, and we state the specific properties these
techniques preserve when transforming ETs. Formal proofs are included in Appendix A.

4. A Generalized Reformulation of Algorithmic Debugging

Some of the last developments for AD cannot be formalized with the standard AD formulation.
In a few cases, they just skipped the formalization of the technique and provided an implemen-
tation. In other cases, they wanted to prove some properties, and thus they formalized (for one
specific language, e.g., Java) the part of the system affected by those properties. Other develop-
ments were done for other paradigms, e.g., the functional paradigm, and they also formalized a
different part of the system with different data structures. We have observed this behaviour again
and again and, clearly, this is due to the lack of a standard solution.

We want to provide a definition of AD that solves the problems described in Section 2 and that
is general enough to be used in different languages. To the best of our knowledge, there does not
exist such a formal definition of AD. Hence, in this section we formulate AD in an abstract way.
The main generalization of our new formulation is to consider that ET nodes are not necessarily
routines as in previous definitions (see, e.g., [24]). In contrast, we allow ET nodes to contain any
piece of code. This permits AD to report any code as buggy, and not only routines, thus potentially
reducing the granularity of the errors reported to single expressions.

In the following, we only use Execution Tree to denote our new definition, and we use Routine
Tree (RT) to denote the traditional definition (that we also formalize in the following sections).
Because our new definition is a conservative generalization, the RT is a particular case of the ET
as it can be observed in the UML model of Figure 3.

Figure 3: UML model representing the structure of the execution tree

Observe that an execution node can be specialized depending on the piece of code it represents.
In particular, we specialize three kinds of execution nodes named Routine Node, Projection Node,
and Collapse Node. They correspond to definitions that already exist in the literature (see [10, 15]),
but other kinds of nodes could appear in the future.

Example 4.1 (Running example). From here on, we will use the following bug-free program that
calculates the square root of variable x:
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( 1 ) i f ( x < 0)
( 2 ) r e t u r n Double . NaN;
( 3 ) double b = x ;
( 4 ) w h i l e ( Math . abs ( b ∗ b − x ) > 1e−12)
( 5 ) b = ( ( x / b ) + b ) / 2 ;
( 6 ) r e t u r n b ;

4.1. The Execution Tree
In this section, we introduce some notation and formalize the notion of Execution Tree used

in the rest of the paper. We want to keep the discussion and definitions in this section language-
independent. Hence, we consider programs as state transition systems.

Definition 4.2 (Program). A program P = {W, I,R,C} consists of:

• W: A set of environments.

• I: A set of initial environments, such that I ⊆W.

• R: A transition relation, such that R⊆W ×W.

• C: A source code, composed of a set of expressions.

Definition 4.3 (Computation). A computation is a maximal sequence of environments e1,e2, . . .
such that:

• e1 is an initial environment, i.e., e1 ∈ I.

• (ei,ei+1) ∈ R for all i≥ 1 (and i≤ n−1, if the sequence is of the finite length n).

A finite segment ei,ei+1, . . . ,e j where 1≤ i < j ≤ n is called a subcomputation.

Example 4.4. The computation produced in the running example (Example 4.1) assuming that the
initial environment is (x=9) is shown below:

e1 (x = 9) e5 (x = 9,b = 5) e9 (x = 9,b = 3.0235) e13 (x = 9,b = 3.000000001)
e2 (x = 9) e6 (x = 9,b = 5) e10 (x = 9,b = 3.0235) e14 (x = 9,b = 3.000000001)

e3 (x = 9,b = 9) e7 (x = 9,b = 3.4) e11 (x = 9,b = 3.0001) e15 (x = 9,b = 3)
e4 (x = 9,b = 9) e8 (x = 9,b = 3.4) e12 (x = 9,b = 3.0001) e16 (x = 9,b = 3,r = 3)

In the final environment, we represent with r the result of return (to represent this r, debuggers
often use graphical notation or they use the routine call with completely evaluated arguments).

In the source code of a program, we consider expressions3 as the basic execution unit. Therefore, in
the following, the source code of a program P is a set of expressions ex1,ex2, . . . ,exn that produces
the computation e1,e2, . . . ,em for a given initial environment e1. We cannot provide a specific

3Note the careful use of the word “expression” to refer to either imperative instructions, declarative expressions,
statements, etc.
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model of computation if we want to be language-independent, thus we do not define the relation
between expressions and the transition relation R. This is possible (and convenient) thanks to the
abstract nature of algorithmic debugging. In particular, algorithmic debugging only needs an initial
environment, a code, and a final environment to identify bugs, no matter how the code makes the
transition from the initial environment to the final environment. The user will decide whether this
transition should have occurred in the execution.

We also left undefined the notion of environment. In the following, we will refer to environ-
ments in an abstract way, and they should not be only considered as a mapping from declared
variables to values (i.e., states, as in the imperative programming paradigm). Hence, the environ-
ments shown in Example 4.4 are just a particular case. In their general form, environments can
include all the information needed to identify a point in a computation. Each debugger imple-
mentor will decide what information in the environment should be shown to allow programmers
to answer the debugger questions. For instance, the environment before and after a function call
in the functional paradigm could be (x = 42) f x (R = 0) where R represents the result of the
function call f 42, and it could be shown to the programmer, e.g., with f 42⇒ 0. In the original
formulation by Shapiro (for the logic paradigm) [28], the environment was defined as “a vector
over some domain D... that should be interpreted as the input/output of a procedure”.

Because the considered execution unit is the expression, it is possible to identify a bug in a
single expression. This contrasts with traditional algorithmic debugging where routines are the
execution units, and thus a whole routine is always reported as buggy.

We also use the notion of code fragment of a program P, which refers to any subset of expres-
sions in the source code C of P that produces a subcomputation ei, . . . ,e j with 0≤ i < j≤m. Code
fragments often represent functions or loops in a program, but they can also represent blocks, sin-
gle statements, or even expressions such as function calls together with the whole called function.

Not all the expressions in a given code c that produces a computation C are actually executed.
Some parts of the code are not needed to produce the computation (e.g., because they are dead
code, because some condition does not hold, etc.). The projection of c modulo C is a subset of
c where the unneeded code in c to produce C has been removed. Projections are often computed
with dynamic slicing [30].

Definition 4.5 (Code Projection). Given a code fragment c and a computation Cc = e1, . . . ,en
produced by c from a given initial environment e1, a projection of c modulo Cc, written PCc(c), is
a code fragment that contains the minimum subset of c needed to produce the computation Cc.

The initial and final environments, ei and e j, describe the effects of a given code fragment c.
All three together form a code behaviour.

Definition 4.6 (Code Behaviour). Given a code fragment c and a computation Cc = e1, . . . ,en
produced by c from a given initial environment e1, the code behaviour of Cc is a triple 〈e1, p,en〉,
where p = PCc(c) is the projection of c modulo Cc.

Example 4.7. Considering from our running example the code fragment c that corresponds with
lines (1), (2), and (3); and the computation Cc = e1,e2,e3 produced by c from the initial environ-
ment (x=9) (see Example 4.4), the associated code behaviour is 〈e1,(1)(3),e3〉. Here, (1)(3) is
the projection of c modulo Cc because it is the only code actually executed.
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The code behaviour corresponds to the questions asked by the debugger. These questions are along
the lines of: At this point of the computation, the code p with the initial environment e1 produced
the final environment en. Is this what you intended? Many previous definitions of AD (see, e.g.,
[22, 5]) define the code behaviour as the triple 〈e1,c,en〉, which corresponds to the execution of a
routine c, and usually the debugger only needs to show the call to c instead of showing both the
call to c and the routine itself c. Definition 4.6, however, introduces two important novelties:

• It allows c to be any code fragment, and not only a routine.

• It substitutes c by a projection of c modulo Cc, thus the code associated with a code behaviour
only contains the code actually needed to produce that behaviour.

This dynamic notion is much more precise than the usual static notion that considers (the complete
code of) a routine.

Definition 4.8 (Intended Model). Given a program P = {W, I,R,C}, an intended model M for P
is a set of tuples 〈ei,I C (P (c)),e j〉 where ei,e j ∈W, P (c) is a projection of a code fragment c⊆C
and I C (p) is the intended code that p should implement.

Each tuple of the form 〈ei, p,e j〉 specifies that the execution of code p from environment ei leads
to environment e j. Intuitively, an intended model of a program contains the set of code behaviours
that the programmer had in mind when they programmed these codes. It is used as a reference
point against which one can compare computations to determine whether they are the expected
ones or not. Note that I C (P (c)) uniquely identifies c (for instance, it may specify archive, start
line, start column, end line, end column), and thus it is possible that different codes c1,c2 that point
to different lines contain the same characters (e.g., x = y). Therefore, it is perfectly possible that
they have different intended codes that produce different final environments even with the same
initial environment (i.e., the first x = y is correct while the second x = y should be x = y+1).
We are now in a position to define the nodes of an execution tree.

Definition 4.9 (Execution Node). Let P = {W, I,R,C} be a program. Let Cc be a computation
produced by a code fragment c ⊆ C. Let M be an intended model for P. The execution node
induced by Cc is a pair 〈B,S〉 where:

1. B = 〈ei,PCc(c),e j〉 is the code behaviour of Cc, and
2. S is the state of the node, which can be either:

• undefined, or

• the correctness of B with respect to M :
{

correct if e j = e f ∧〈ei,I C (P (c)),e f 〉 ∈M
wrong if e j 6= e f ∧〈ei,I C (P (c)),e f 〉 ∈M

Observe that an execution node contains (inside B) the source code PCc(c) responsible for the
computation it represents. Hence, if this node is eventually declared as buggy, its associated code
is uniquely identified. This definition of execution node is general enough to represent previous
nodes that are used in different techniques. For instance, if the code of the node is a function, it
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can be represented as a routine node. Similarly, projection nodes and collapse nodes, introduced
in [15], are special nodes that agglutinate the code of several other nodes. Clearly, they are also
particular cases of our general definition.

In order to properly define execution trees, we need to define first a relation between execution
nodes that specifies the parent-child relation.

Definition 4.10 (Execution Nodes Dependency). Given an execution node nc ∈ N induced by a
computation Cc, and an execution node nc′ ∈N induced by a subcomputation Cc′ of Cc, we say that
nc directly depends on nc′ (expressed as nc

N→ nc′) if and only if there does not exist an execution
node nc′′ ∈ N induced by a subcomputation Cc′′ of Cc, such that Cc′ is a subcomputation of Cc′′ .

Observe that this dependency relation is intransitive, which is needed to define the parent-child
relation in a tree. Therefore, provided that we have three execution nodes, n1,n2,n3, if n1

N→ n2
N→

n3 then n1 6
N→ n3.

Example 4.11. Consider our running example with the computation obtained in Example 4.4. We
can generate the following execution nodes (among others):

( i n i t i a l e n v i r o n m e n t ) code ( end e n v i r o n m e n t )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

node 1: ( x =9) (1 ) (3 −6) ( x =9 ,b=3)
node 2: ( x =9) ( 1 ) ( x =9)
node 3: ( x =9 ,b=9) (4−5) ( x =9 ,b=3)
node 4: ( x =9 ,b=9) (4−5) ( x =9 ,b=5)
node 5: ( x =9 ,b=9) ( 5 ) ( x =9 ,b=5)
node 6: ( x =9 ,b =3 .4 ) (4−5) ( x =9 ,b =3.0235)
node 7: ( x =9 ,b=3) ( 6 ) ( x =9 ,b=3 , r =3)

with N={node 1, node 2, node 3, node 4, node 5, node 6, node 7}we have node 1 N→ node 2, node 1 N→
node 3, node 1 N→ node 7, node 3 N→ node 4, node 3 N→ node 6, node 4 N→ node 5 (see Figure 4).
In these execution nodes, node 1 refers to the execution of the whole code. Node 2 refers to the
execution of the if expression at the beginning. Node 3 refers to the execution of the whole loop.
Node 4 refers to the execution of the first iteration of the loop. Node 5 refers to the execution of
the body of the loop during the first iteration. Node 6 refers to the execution of the third iteration
of the loop. Finally, node 7 refers to the execution of the return statement. Note that during the
execution of the code, the loop performs 6 iterations. However, only two iterations are explicitly
represented, the other ones are contained in node 3.

Finally, we define an execution tree. It essentially represents the execution of a code in a structured
way where each node represents a sub-execution of its parent. Formally,

Definition 4.12 (Execution Tree). Let Cc be a computation produced by a code fragment c. An
Execution Tree (ET) of Cc is a tree T = (N,E) where:

• ∀n ∈ N, n is the execution node induced by a subcomputation of Cc,

• The root of the ET is the execution node induced by Cc,
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Figure 4: ET associated with the nodes in Example 4.11

• ∀(n1,n2) ∈ E . n1
N→ n2.

This definition is a generalization of the usual call tree (CT), which in turn comes from the refu-
tation trees initially defined for AD in [27, 28]. One important difference between them is that,
given a computation Cc produced by a code fragment c, the CT associated with Cc is unique be-
cause it is only formed of routine nodes. In contrast, there exist different valid ETs associated with
Cc due to the flexibility introduced by execution nodes (i.e., with routine nodes only one set N is
possible, whereas with execution nodes different sets N are possible). This flexibility of having
several possible valid ETs to represent one computation is interesting because it leaves room for
transforming the ET and still being an ET. In contrast, the CT cannot be transformed because it
would not be a CT anymore.

Once the ET is built, the debugger traverses the ET asking the oracle about the correctness of
the information stored in each node. Using the answers, the debugger identifies a buggy node that
is associated with a buggy code of the program. We can now formally define the notion of buggy
node.

Definition 4.13 (Buggy Node). Let T = (N,E) be an execution tree. A buggy node of T is an
execution node n = 〈B,S〉 ∈ N where:

(i) S = wrong, and
(ii) ∀n′ = 〈B ′,S ′〉 ∈ N, (n,n′) ∈ E . S ′ = correct.

Moreover, we say that a buggy node n is traceable if and only if:
(iii) ∀n′ = 〈B ′,S ′〉 ∈ N, (n′,n) ∈ E∗ . S ′ = wrong.

We use E∗ to refer to the symmetric and transitive closure of E. This is the usual definition of
buggy node (see, e.g., [23]): a wrong node with all its children correct. We also introduce the
notion of traceable. Roughly, traceable buggy nodes are those buggy nodes that may be directly
responsible for the wrong behaviour of the program (their effects are visible in the root of the
tree). This property makes them debuggable by all AD strategies that are variants of Top-Down
(see [29]).

Lemma 1 (Buggy Code). Let T be an ET with a buggy node 〈〈e,PCc(c),e
′〉,S〉 whose children

are 〈〈e1,PCc1
(c1),e′1〉,S1〉, 〈〈e2,PCc2

(c2),e′2〉,S2〉 . . . 〈〈en,PCcn
(cn),e′n〉,Sn〉, let B = {e}∪{ex | 1≤

11



x ≤ n}∪ {e′y | 1 ≤ y ≤ n}∪ {e′} be a set that contains the initial and final environments of the
(sub)computations, and let Z = {ei . . .e j | i< j∧ei,e j ∈ B∧@x,y . 1≤ x≤ n∧ i≤ y< j∧ey,ey+1 ∈
Ccx} be the set of subcomputations performed in the parent node but not performed in its children.
Then, the set of expressions EX =

⋃
Cz∈Z

PCz(c) contains a bug.

Proof. [Buggy Code] The proof is analogous to the proof by Lloyd [17] for Prolog. 2

Lemma 1 illustrates what buggy code should be shown to the user. When a buggy node is detected,
the buggy code shown to the user is the code that produces all the subcomputation of the buggy
node that are not produced in its children. This is illustrated in Example 4.14.

Example 4.14. Consider again the ET in Figure 4. The program in our running example is cor-
rect, but assume that line (3) contains a bug, e.g., the code should obtain the square root of the
integer value of the argument (i.e., double b = (int) x;). In order to obtain the buggy code
associated with the wrong node (i.e., n3), we need to have in mind the following information:

n1 = 〈〈e1,(1)(3−6),e16〉,wrong〉, where lines (1)(3-6) are the projection of e1 . . .e16
n2 = 〈〈e1,(1),e2〉,correct〉, where line (1) is the projection of e1e2
n3 = 〈〈e3,(4−5),e15〉,correct〉, where lines (4-5) are the projection of e3 . . .e15
n7 = 〈〈e15,(6),e16〉,correct〉, where line (6) is the projection of e15e16
B = {e1,e2,e3,e15,e16}, which is an auxiliary set for computing the Z set
Z = {e2e3}, which corresponds to the environments produced in n1 but not in n2, n3, or n7

Now, it is straightforward to obtain the code that contains the bug: The information stored in Z
shows that the bug corresponds to the statement that converted e2 into e3. Hence, it corresponds
with line (3). In this example, we have seen that the buggy code corresponds with a code that has
been executed by the buggy node but not by its children. However, it is also possible that a code
executed by a child does not manifest a bug but it is actually buggy. Let us see an example.

Assume now that we only have one bug that is manifested in the fourth iteration of the loop. In
such a case, node 3 (n3) would be wrong and nodes 4 (n4) and 6 (n6) correct. In order to obtain
the buggy code, we need to have in mind the following information:

n3 = 〈〈e3,(4−5),e15〉,wrong〉, where lines (4-5) are the projection of e3 . . .e15
n4 = 〈〈e3,(4−5),e5〉,correct〉, where lines (4-5) are the projection of e3e4e5
n6 = 〈〈e7,(4−5),e9〉,correct〉, where lines (4-5) are the projection of e7e8e9
B = {e3,e5,e7,e9,e15}, which is an auxiliary set for computing the Z set
Z = {e5e6e7,e9 . . .e15}, which corresponds to the environments produced in n3 but not in n4 or n6

Now, we can obtain the code that contains the bug. In this case, it corresponds to the statements
that converted e5 into e6, e6 into e7, e9 into e10, e10 into e11, . . . , or e14 into e15. Hence, the bug
must be in lines (4) and (5).

Therefore, we can observe that a code that does not manifest a bug can be buggy. For instance,
in the example, we can see that nodes n4 and n6, which contain the (buggy) code of the loop, are
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correct whereas their parent node n3, which contains exactly the same code, is buggy. Lemma 1
ensures that the code reported as buggy is the code of the parent, but not the one of the children,
because the bug is only observable in the code behaviour of node n3.

4.2. Routine Tree
In this section, we formalize the notion of RT used in most AD literature as a particular case

of the ET. We call routine tree to this specialization of the ET to make explicit its multi-paradigm
nature, because routines can refer to functions, procedures, methods, predicates, etc. We first
define a routine node, which is a specialization of an execution node.

Definition 4.15 (Routine Node). A routine node is an execution node 〈〈e1,PCc(c),en〉,S〉 where
code fragment c only contains:

• a routine call r, together with

• all the code of the routines directly or indirectly called from r.

Therefore, in a routine node, e1 and en are, respectively, the environments just before and after the
execution of the called routine. Almost all implementations reduce c to the routine call, and they
skip the code of the routine definition.

Definition 4.16 (Routine Tree). A routine tree is an execution tree where all nodes are routine
nodes.

4.3. Search Strategies for AD
Once the ET is built, AD uses a search strategy to select one node. During many years, the main

goal of most AD researchers has been the definition of better strategies to reduce the search space
after every answer, and to reduce the complexity of the questions. A survey of search strategies
for AD can be found in [29]. In our formalization, a search strategy is just a function that analyzes
the ET and returns an execution node (either the next node to ask about, or a buggy node).

Definition 4.17 (Strategy). A search strategy is a function whose input is an execution tree T =
(N,E) and whose output is an execution node n = 〈B,S〉 ∈ N such that:

1. S = undefined, or
2. n is a buggy node.

4.4. AD Transformations
Some of the last research developments in AD have focussed on the definition of transforma-

tions of the ET. The goal of these transformations is to improve the structure of the ET before the
debugging session starts, so that search strategies become more efficient. Some of these transfor-
mations cannot be applied to a routine tree. For this reason, we include this section to classify
the kinds of transformations that have been defined so far, and establish a hierarchy so that future
transformations can be also included in the classification.

There exist three essential elements in the back-end of an algorithmic debugger. The modi-
fication of any of them can lead to a different final output of the back-end (i.e., a different ET).
Therefore, we classify the transformations in three different levels:
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• Transformations of the source code: Transformations of the source code such as inlining are
used to reduce the size of the ET by hiding routines. In contrast, transformations such as
loops to recursion [16, 14] are used to augment the size of the ET to reduce the granularity of
the buggy code reported (a loop instead of a routine). In general, users should not be aware
of the internal transformations applied by the debugger, thus the code fragment shown to the
user should be the original code.

• Transformations of the execution: Transforming the way in which the source code is ex-
ecuted can change the generated ET. One example is changing eager evaluation by lazy
evaluation. Another example is passing arguments by value instead of passing them by ref-
erence. We are not aware of any implementation that includes this kind of transformations.

• Transformations of the ET: Transforming the ET can significantly reduce the number of
questions generated. In general, the ET is transformed with the aim of making search strate-
gies to behave as a dichotomical search. Hence, they try to produce balanced ETs [15], or
also deep trees that can be cut in the middle. Other transformations such as Tree compres-
sion [9] try to avoid the repetition of questions about the same routine, or try to improve the
understandability of questions. This is the case of the Node simplification transformation,
which reduces all terms to normal form [7].

Given a computation Cc of a code fragment c, with T = (N,E) being the execution tree of Cc,
we represent with T (T ) = (N′,E ′) either: (i) a transformation T ′ of T , (ii) the ET of a computation
C ′c transformed from Cc, or (iii) the ET of a computation Cc′ of a code fragment c′ transformed
from c. Hence, T (T ) is the ET produced after applying one or more of the previously described
transformations. Note that we use T to refer to the ET that would have been generated without
applying any transformation.

From here on, we assume the existence of two mappings MI and MS that can be directly
provided by or inferred from the transformations. MI : N′→ N is an identity mapping that relates
a node n′ ∈N′ with its equivalent n∈N (i.e., the transformation did not affect the generation of n).
MS : N′→{N} is a source mapping that relates a node n′ ∈ N′ with the set of nodes Z ⊆ N whose
information is used to generate it.

In this section, we also propose a set of interesting properties, so with a quick view we can
find out how a transformation behaves. We propose five different properties to see how buggy
nodes on a given ET are modified by a transformation: Buggy Node Completeness, Buggy Code
Completeness, Buggy Code Reduction, Buggy Code Semi-reduction, and Bug Existence. All of
them are formally presented below.

Property 1 (Buggy Node Completeness). Let T = (N,E) be an ET, T (T ) = (N′,E ′) its trans-
formed version, and MI the identity mapping of the transformation. ∀n ∈ N, if n is a buggy node
in T then n′ is a buggy node in T (T ) and (n′,n) ∈MI .

Because all buggy nodes belong to both ETs, then, by Definition 4.12, the same buggy code be-
haviours are detectable. Hence, all bugs that can be localized in the ET generated before applying
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the transformation are still detectable after applying the transformation. Preserving all buggy
nodes is often too restrictive. A relaxed version of this property is:

Property 2 (Buggy Code Completeness). Let T = (N,E) be an ET, and T (T ) = (N′,E ′) its
transformed version. ∀n= 〈〈e1, p,en〉,S〉 ∈N, n is a buggy node in T . ∃n′= 〈〈e′1, p′,e′n〉,S ′〉 ∈N′,
n′ is a buggy node in T (T ) and p = p′.

This property ensures that all the code that can be reported as buggy in the original ET, can also be
reported as buggy in the transformed ET. However, the specific context that produced the bug is
not necessarily the same in the original and in the transformed version. There exist transformations
that violate the last condition (p = p′). However, this is not a problem provided that p′ is a subset
of p, because this means that the code reported as buggy is smaller in the transformed code (i.e,
precision is increased by reducing the granularity of the bug found). This is captured by the next
property:

Property 3 (Buggy Code Reduction). Let T = (N,E) be an ET, T (T ) = (N′,E ′) its transformed
version, and MS the source mapping of the transformation. ∀n = 〈〈e1, p,en〉,S〉 ∈ N, n is a buggy
node in T . ∃n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′, n′ is a buggy node in T (T ), and either p = p′ or p ⊃
p′∧ (n′,Z) ∈MS∧n ∈ Z.

Roughly, Property Buggy Code Reduction characterizes those transformations where a buggy
node is either maintained or used to generate another buggy node where the associated code has
been reduced. Hence, precision is increased. Some transformations cannot satisfy Property Buggy
Code Reduction because they introduce new source code into the buggy node and thus p 6⊇ p′.
However, the new code introduced by the transformation is often correct by construction and thus,
precision is still augmented. This is formalized in the following property:

Property 4 (Buggy Code Semi-reduction). Let T = (N,E) be an ET, T (T ) = (N′,E ′) its trans-
formed version, and MS the source mapping of the transformation. ∀n = 〈〈e1, p,en〉,S〉 ∈ N, n is
a buggy node in T . ∃n′ = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉 ∈ N′, n′ is a buggy node in T (T ), p′′ is correct,
and either p = p′ or p⊃ p′∧ (n′,Z) ∈MS∧n ∈ Z.

Sometimes, these properties are further relaxed to just a bug existence property.

Property 5 (Bug Existence). Let T = (N,E) be an ET, and T (T ) = (N′,E ′) its transformed ver-
sion. ∀n ∈ N, n is a buggy node in T . ∃n′ ∈ N′, n′ is a buggy node in T (T ).

Property Bug Existence is the minimum exigible requirement to ensure that the transformation
cannot hide all bugs.

We also propose six additional properties to show how the ET is modified by the transforma-
tion: Keep Traceability, Zoom in Nodes, Zoom out Nodes, May Hide Bugs, May Reveal Bugs, ET
size. They are formally presented in the following properties.

Property 6 (Keep Traceability). Let T = (N,E) be an ET, T (T ) its transformed version, and MI
the identity mapping of the transformation. ∀n ∈ N, n is traceable in T . n′ is traceable in T (T )
and (n′,n) ∈MI .
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Keep Traceability determines whether all traceable nodes are still traceable after the transforma-
tion.

Property 7 (Zoom in Nodes). ∃T (T ) = (N′,E ′) that is the transformed ET obtained from an ET
T = (N,E) with the source mapping MS such that n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈N′∧ n = 〈〈e1, p,en〉,S〉 ∈
N∧ (n′,Z) ∈MS∧n ∈ Z where either p⊃ p′ or p′ = p′′∪ p′′′∧ p⊃ p′′∧ p′′′ is correct.

Zoom in Nodes determines whether a node can be decomposed in such a way that a new node is
created to represent a subcomputation of the original node.

Property 8 (Zoom out Nodes). ∃T (T )= (N′,E ′) that is the transformed ET obtained from an ET
T = (N,E) with the source mapping MS such that n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈N′∧ n = 〈〈e1, p,en〉,S〉 ∈
N∧ (n′,Z) ∈MS∧n ∈ Z where either p⊂ p′ or p′ = p′′∪ p′′′∧ p⊂ p′′∧ p′′′ is correct.

Zoom out Nodes determines whether a node can be created in such a way that an original node
represents a subcomputation of the new node.

Property 9 (May Hide Bugs). ∃T (T ) = (N′,E ′) that is the transformed ET obtained from an ET
T = (N,E) such that n = 〈〈e1, p,en〉,S〉 ∈ N is a buggy node in T with a bug b ∈ p and @n′ ∈ N′,
n′ = 〈〈e′1, p′,e′n〉,S ′〉 is a buggy node in T (T ) and b ∈ p′.

May Hide Bugs determines whether a bug that could have been found before the transformation
cannot be found after the transformation.

Property 10 (May Reveal Bugs). ∃T (T ) = (N′,E ′) that is the transformed ET obtained from an
ET T = (N,E) such that n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′ is a buggy node in T (T ) with a bug b ∈ p′ and
@n ∈ N, n = 〈〈e1, p,en〉,S〉 is a buggy node in T and b ∈ p.

May Reveal Bugs determines whether a bug that could not have been found before the transforma-
tion can be found after the transformation.

Property 11 (ET size). Let T = (N,E) be an ET, and T (T ) = (N′,E ′) its transformed version
where T 6= T (T ). We say that the ET size is bigger (i.e., ↑) when |N|> |N′|, equal (i.e., =) when
|N|= |N′| and smaller (i.e., ↓) when |N|< |N′|.

ET size shows how the amount of nodes is modified due to the transformation.
In Figure 5, we classify four AD transformations already available in the state of the art.

Two of them, tree balancing and loop expansion produce ETs that are not routine trees. These
transformations are classified in Table 1 with respect to the properties they fulfil. In order to
present this table, we have proven for each ET transformation and for each property whether
the property holds or not for this technique. This amounts a total of 44 proofs, which we have
delegated to Appendix A.

In the table, we see that Properties Buggy Node Completeness, Buggy Code Completeness, and
Buggy Code Reduction do not hold in any of the four transformations, and only Loop Expansion
satisfies Property Buggy Code Semi-reduction. In fact, the main goal of Loop Expansion is to
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Figure 5: AD transformations hierarchy
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Loop Expansion × × × X X × X × X X ↑=
Node Simplification × × × × X × X X X X =

Tree Balancing × × × × × × × X X X ↑=↓
Tree Compression × × × × × × × × X X ↓

Table 1: Classification of the transformations

reduce the granularity of the bugs found. Moreover, only Loop Expansion and Node Simplification
can ensure the existence of a bug after the transformation (Property Bug Existence).

None of the transformations can ensure the traceability of the original buggy nodes (Prop-
erty Keep Traceability). Only two of the techniques use decomposition (Property Zoom in Nodes)
and composition (Property Zoom out Nodes) of nodes. But all the transformations can hide (Prop-
erty May Hide Bugs) and reveal (Property May Reveal Bugs) bugs. With respect to the size of
the transformed ET (Property ET size), Tree Compression is the only transformation that always
reduces the size. Node Simplification always maintains the same size. Loop Expansion can either
maintain or increase the size. And, finally, Tree Balancing can reduce, maintain, or increase the
size.
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4.5. An AD Scheme
Finally, we describe Algorithm 1, a general scheme of an algorithmic debugger that includes

all phases, from the generation of the ET to the bug reported. This algorithm gives an idea of how
and when, the ET, the transformations, the oracle, and the search strategies participate in the whole
debugging process.

Algorithm 1 Main algorithm of an Algorithmic Debugger
Input: A program P and its input i.
Output: A buggy code c in P, or ⊥ if no bug is detected in P.
Initializations: A = /0 // Set of answers provided by the oracle

begin
1) T = getExecutionTree(P, i)
2) n = debugTree(T )
3) if (n =⊥) then
4) return ⊥
5) return getCode(n,T )

end

function debugTree(T = (N,E))
begin
1) while (∃〈B ′,S ′〉 ∈ N,S ′ = undef ∨wrong)
2) 〈B,S〉= selectNode(T ) // Strategy
3) if (S = wrong) then
4) return 〈B,S〉
5) answer = askOracle(B)
6) A = A ∪〈B,answer〉
7) updateEnvironments(A ,N)
8) T = executionTreeTransformations(T )
9) return ⊥

end

function getExecutionTree(P, i)
begin
1) P′ = sourceCodeTransformations(P)
2) EP′ = executeProgram(P′, i)
3) E ′P′ = executionTransformations(EP′)
4) T = generateExecutionTree(E ′P′)
5) T ′ = executionTreeTransformations(T )
6) return T ′

end

function getCode(n = 〈B,S〉,T = (N,E))
begin
1) B = 〈s,PCc(c),s

′〉
2) I = {〈e1,Cz,en〉 | (n,n′) ∈ E∧

n′ = 〈〈e1,PCz(z),en〉,S〉}
3) B = {s}∪{e1 | 〈e1, , 〉 ∈ I}∪

{en | 〈 , ,en〉 ∈ I}∪{s′}
4) Z = {ei, . . . ,e j | i < j∧ ei,e j ∈ B∧@y . i≤ y

y < j∧ ey,ey+1 ∈ Cz∧〈 ,Cz, 〉 ∈ I}
5) return

⋃
Cz∈Z

PCz(c)

end

The main function performs the two phases of AD (Lines 1-2) and then returns a buggy code of
the program (Lines 3-5). In the first phase (getExecutionTree function), first, all possible transfor-
mations in the source code (Line 1) and in the execution (Line 3) are performed. Then, the ET is
created. Finally, all possible ET transformations are performed over the created ET (Line 5). Once
the ET is created, the second phase (debugTree function) starts. During this phase, the debugger
traverses the ET selecting nodes with a search strategy (Line 2). The selectNode function is an
implementation of one of the search strategies in the literature. There has been a lot of research
for more than a decade concerning which node should be asked about. A survey can be found in
[29]. No matter what strategy is used, selectNode returns a node to be asked about (the state of
the node is undefined), or a buggy node (the state of the node is wrong (Line 3)). Once a node has
been selected, the debugger asks the oracle about its correctness (Line 5). The oracle provides the
intended interpretation to the algorithm. With the answer of the oracle, the debugger updates the
state of the nodes of the ET (Lines 5-7). Note that the answer of the oracle can affect the state of
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several nodes. This effectively changes the information of the ET, and thus, at this moment, a new
ET transformation could be used to optimize the ET (Line 8). Then, the process is repeated select-
ing more nodes. When the strategy finds a buggy node (Lines 3-4) or it cannot select more nodes
(Line 1) the second phase finishes and the debugger returns (see getCode function) the buggy code
associated with the buggy node found (see Lemma 1). When the algorithm did not find any buggy
node, then it returns a message indicating that there does not exist a bug (it is indicated with ⊥ in
Line 4). The last case happens, e.g., when all nodes are reported as correct.

5. Conclusion

In this paper, we report about some of the problems identified in the current state of the art
of AD. One of the problems identified is that much of the recent work in the area does not fit
into the standard notions and definitions of AD. In particular, we show that practically all current
definitions of the ET are obsolete with respect to the new proposed techniques.

To solve this situation, we propose a generalization of AD able to represent different AD trans-
formations such as Loop Expansion, Node Simplification, Tree Balancing, and Tree Compression.
We make this abstraction considering theoretical developments done for a particular language or
technique that are generalized, but also considering novel implementations of AD that include
techniques that have not been formalized.

The main objectives of this work are two: First, putting together different ideas that have
appeared in many works of AD. Putting these ideas together provides a wide perspective that
allows us to make a step forward in the abstraction and generalization of the theoretical side of
AD. In addition, it allows for classifications and taxonomies to help understanding the state of
the art. Second, our new formulation of AD tries to save time. Many researchers have defined
once and again similar concepts used in different languages and tools. We provide a language-
independent definition that is general enough to represent all current techniques, and it can be
easily instantiated to any particular language.

The generalization presented has two main advantages over previous formalizations. First, a
node in the ET can contain any amount of code, and it is not limited to represent a routine call.
Second, the source code associated with a node in the ET only contains the code that has been
actually executed in the computation associated with this node.

We have also identified two dimensions to classify ET transformations. The first dimension
considers the target of the transformation (a source code, an execution or an ET). We have pre-
sented a taxonomy and classification of current ET transformations according to this dimension.
The second dimension is associated with the identification of eleven properties of ET transforma-
tions. These properties allow us to understand and predict the effects of an ET transformation. We
have also classified several current ET transformations, formally proving the properties they fulfil.
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Appendix A. Property proofs

In this appendix, we prove the results presented in Table 1. In particular, we prove for each
transformation in the table whether it holds each of the eleven properties presented.

The appendix has been organized with a different section for each transformation. First, we
include a section to prove that properties 1 to 5 are increasingly restrictive. That is:

Property 1 =⇒ Property 2 =⇒ Property 3 =⇒ Property 4 =⇒ Property 5

In the rest of the appendix, for the sake of clarity, we will use S to refer to the correctness of a
node n = 〈〈e1, p,en〉,S〉 (i.e., correct or wrong).

Appendix A.1. Property relations
Lemma 2. Property 1 [Buggy Node Completeness] implies Property 2 [Buggy Code Complete-
ness].

Proof. We prove it by showing that whenever Property 1 is satisfied then Property 2 is also
satisfied. If Property 1 holds then we have that, given an ET T = (N,E), its transformed version
T (T ) = (N′,E ′), and the identity mapping MI , ∀n = 〈〈e1, p,en〉,S〉 ∈ N, if n is a buggy node in T
then n′ is a buggy node in T (T ) and (n′,n) ∈MI . Because n′ ∈ N′ is buggy in T (T ) and (n′,n) ∈
MI→ n = n′ then we have that node n′ fulfils the condition of Property 2: ∃n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈
N′, n′ is a buggy node in T (T ) and p = p′. When Property 2 does not hold then by modus tollendo
tollens (i.e., ((P→ Q)∧¬Q) ` ¬P) Property 1 does not hold either. 2

Lemma 3. Property 2 [Buggy Code Completeness] implies Property 3 [Buggy Code Reduction].

Proof. We prove it by showing that whenever Property 2 is satisfied then Property 3 is also
satisfied. If Property 2 holds then we have that, given an ET T = (N,E), and its transformed
version T (T ) = (N′,E ′), ∀n= 〈〈e1, p,en〉,S〉 ∈N, n is a buggy node in T . ∃n′= 〈〈e′1, p′,e′n〉,S ′〉 ∈
N′, n′ is a buggy node in T (T ) and p = p′. Because n′ ∈ N′ is buggy in T (T ) and p = p′ then we
have that node n′ fulfils the condition of Property 3: ∃n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈N′, n′ is a buggy node
in T (T ) and p = p′ or p⊃ p′. When Property 3 does not hold then by modus tollendo tollens (i.e.,
((P→ Q)∧¬Q) ` ¬P) Property 2 does not hold either. 2

Lemma 4. Property 3 [Buggy Code Reduction] implies Property 4 [Buggy Code Semi-reduction].

Proof. We prove it by showing that whenever Property 3 is satisfied then Property 4 is also
satisfied. If Property 3 holds then we have that, given an ET T = (N,E), and its transformed
version T (T ) = (N′,E ′), ∀n= 〈〈e1, p,en〉,S〉 ∈N, n is a buggy node in T . ∃n′= 〈〈e′1, p′,e′n〉,S ′〉 ∈
N′, n′ is a buggy node in T (T ) and p = p′ or p ⊃ p′. Because n′ ∈ N′ is buggy in T (T ) then we
have that node n′ fulfils the condition of Property 4: ∃n′ = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉 ∈ N′, n′ is a buggy
node in T (T ), p′′ = /0 and thus p′′ is correct, and either p = p′ or p ⊃ p′. When Property 4 does
not hold then by modus tollendo tollens (i.e., ((P→ Q)∧¬Q) ` ¬P) Property 3 does not hold
either. 2
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Lemma 5. Property 4 [Buggy Code Semi-reduction] implies Property 5 [Bug Existence].

Proof. We prove it by showing that whenever Property 4 is satisfied then Property 5 is also satis-
fied. If Property 4 holds then we have that, given an ET T = (N,E), and its transformed version
T (T )= (N′,E ′), ∀n= 〈〈e1, p,en〉,S〉 ∈N, n is a buggy node in T . ∃n′= 〈〈e′1, p′∪ p′′,e′n〉,S ′〉 ∈N′,
n′ is a buggy node in T (T ), p′′ is correct and either p = p′ or p ⊃ p′. Because n′ ∈ N′ is buggy
in T (T ) then we have that node n′ fulfils the condition of Property 5: ∃n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′,
n′ is a buggy node in T (T ). When Property 5 does not hold then by modus tollendo tollens (i.e.,
((P→ Q)∧¬Q) ` ¬P) Property 4 does not hold either. 2
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Appendix A.2. Properties of Loop Expansion
In this section, we prove whether Loop Expansion [16] holds each property. To do so, we use

Figure A.6 in some proofs where the ET on the right has been obtained by applying Loop Expan-
sion to the code that obtains the ET on the left. In the ETs, all nodes labelled with n1,n2, . . . ,n7 are
nodes that are preserved in the transformation, whereas nodes n′0 and m0,m1, . . . ,m7 are obtained
from a modified version of the code that obtains n0. The number inside a node is the identifier of
the executed method. According to Loop Expansion [16], in the code that obtains the left ET of
Figure A.6, method 0 implements two nested loops where the outer loop iterates two times, the
inner loop iterates three times and method 2 is invoked during the execution of the inner loop (a
total of 6 times).

Figure A.6: Loop Expansion transformation

First of all, we need to define how Loop Expansion works according to our formalization.
Loop Expansion transforms an ET T = (N,E) into another ET T (T ) = (N′,E ′) with the identity
mapping MI and source mapping MS. Each node n = 〈〈e1, p,en〉,S〉 ∈ N is either preserved in
T (T ) (i.e., ∃(n′,n) ∈ MI . n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′ ∧ 〈〈e1, p,en〉,S〉 = 〈〈e′1, p′,e′n〉,S ′〉) or it is
transformed into a set of nodes Z′ (i.e., ∀n′ ∈ Z′ . (n′,Z) ∈MS∧Z = {n}) that forms a tree whose
root preserves the same correctness as n (i.e., n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ Z′∧n′′ ∈ Z′∧ (n′′,n′) 6∈ E ′∧
e1 = e′1∧ en = e′n∧S = S ′) and the correctness of the rest of nodes of Z′ can be either correct or
wrong. Moreover, ∀n′ ∈ Z′ . n′ = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉 where p⊃ p′ and p′′ is code inserted by the
transformation and it is correct by construction.

In the ET in Figure A.6, we have that MI = {(n1,n1), (n2,n2), (n3,n3), (n4,n4), (n5,n5),
(n6,n6), (n7,n7)}, MS = {(n′0,{n0}), (m0,{n0}), (m1,{n0}), (m2,{n0}), (m3,{n0}), (m4,{n0}),
(m5,{n0}), (m6,{n0}), (m7,{n0})}, and thus, the Z′ of n0 is {n′0, m0, m1, m2, m3, m4, m5, m6,
m7}.
Proof. [Property 1 - Buggy Node Completeness] Because Property 2 does not hold then Property 1
does not hold either as can be seen by using modus tollendo tollens on Lemma 2. 2
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Proof. [Property 2 - Buggy Code Completeness] Because Property 3 does not hold then Property 2
does not hold either as can be seen by using modus tollendo tollens on Lemma 3. 2

Proof. [Property 3 - Buggy Code Reduction] We prove that Property 3 is not satisfied by showing a
counterexample. Consider the left ET T = (N,E) of Figure A.6 with node n0 = 〈〈e1, p,en〉,S〉 ∈N
as wrong and the rest of nodes as correct. Node n0 is buggy in T , but in the right ET T (T ) =
(N′,E ′) with the source mapping MS, @n′ ∈ N′ . n′ = 〈〈e′1, p′,e′n〉,S ′〉 and either p = p′ or p ⊃ p′

because ∀n′ ∈ Z′ . (n′,Z) ∈ MS ∧ Z = {n0} we have that n′ = 〈〈e′1, p′ ∪ p′′,e′n〉,S ′〉 where p′′ is
additional code inserted by the transformation, therefore p 6= p′∪ p′′ and p 6⊃ p′∪ p′′. Hence, the
property does not hold. 2

Proof. [Property 4 - Buggy Code Semi-reduction] We prove that Property 4 is satisfied in all
possible transformations. We divide the proof into two possibilities: either node n= 〈〈e1, p,en〉,S〉
is preserved or it is transformed. When it is preserved (i.e., ∃(n′,n) ∈ MI . n′ ∈ N′) then it is
also buggy in T (T ) because the correctness of n′ and all its children are preserved (regardless of
whether they are preserved or transformed), hence it is still buggy in T (T ). When it is transformed
into Z′ (i.e., ∀n′ ∈ Z′ . (n′,Z) ∈MS∧Z = {n}) then ∃n′ = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉 ∈ Z′ such that n′ is
buggy in T (T ) because the surrounding nodes of Z′ preserve their correctness (i.e., all of them are
still correct regardless of whether they are preserved or transformed). But it does not matter which
of them is buggy because all of them satisfy the property (i.e., p′′ is correct, and either p = p′ or
p⊃ p′). 2

Proof. [Property 5 - Bug Existence] Because Property 4 holds then Property 5 also holds as can
be seen by using modus ponendo ponens on Lemma 5. 2

Proof. [Property 6 - Keep Traceability] We prove that Property 6 is not satisfied by showing a
counterexample. Consider the left ET T = (N,E) of Figure A.6 where Loop Expansion transforms
n0 into a set of nodes Z′. Consider also that nodes n0,n2 ∈ N are wrong and the rest of nodes in
N and all nodes in Z′ are correct except n′0 which is wrong. In such a case, node n2 is traceable in
the left ET, but not in the right ET. 2

Proof. [Property 7 - Zoom in Nodes] We prove that Property 7 is satisfied by showing an ex-
ample. Consider the left ET T = (N,E) of Figure A.6 where Loop Expansion transforms n0 =
〈〈e1, p,en〉,S〉 ∈ N into a set of nodes Z′ where n′0 = 〈〈e′1, p′ ∪ p′′,e′n〉,S ′〉 ∈ Z′. Hence, because
p⊃ p′ and p′′ is correct, the property holds. 2

Proof. [Property 8 - Zoom out Nodes] We prove that Property 8 is not satisfied in any possi-
ble transformation. We divide the proof into two possibilities: either node n = 〈〈e1, p,en〉,S〉
is preserved or it is transformed. When it is preserved (i.e., ∃(n′,n) ∈ MI . n′ ∈ N′) then n′ =
〈〈e′1, p′,e′n〉,S ′〉 and p = p′, hence the property does not hold. When it is transformed into Z′ (i.e.,
∀n′ ∈ Z′ . (n′,Z) ∈MS∧Z = {n}) then ∀n′ ∈ Z′ . n′ = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉∧ p⊃ p′∧ p′′ is correct,
hence the property does not hold either. 2

Proof. [Property 9 - May Hide Bugs] We prove that Property 9 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.6 where Loop Expansion transforms n0 into a set of
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nodes Z′. Consider also that node n0 ∈ N is wrong and the rest of nodes in N and all nodes in Z′

are correct except n′0 and m0 which are wrong. Now consider that n0 contains two bugs, one b1
outside of the loop and another one b2 inside the loop. In such a case, bug b1 is hidden by the
transformation because node n′0 is not buggy in T (T ). 2

Proof. [Property 10 - May Reveal Bugs] We prove that Property 10 is satisfied by showing an
example. Consider the left ET T = (N,E) of Figure A.6 where Loop Expansion transforms n0
into a set of nodes Z′. Consider also that nodes n0,n2 ∈ N are wrong and the rest of nodes in N
and all nodes in Z′ are correct except n′0 which is wrong. In such a case, n′0 = 〈〈e′1, p′∪ p′′,e′n〉,S ′〉
is buggy in T (T ) and there is a bug b ∈ p′ (p′′ is correct). n0 = 〈〈e1, p,en〉,S〉 is the only node
where b is contained in N because p⊃ p′, but this node is not buggy in T and thus p is not reported
as containing a bug. Hence, because there is not any other node whose code contains b in N, the
property holds. 2

Proof. [Property 11 - ET size] Loop Expansion either preserves each node n (i.e., ∃(n′,n) ∈
MI ∧ n′ ∈ N′) or transforms it into a set of nodes Z′ (i.e., ∀n′ ∈ Z′ . (n′,Z) ∈MS ∧Z = {n}) such
that |Z′| ≥ 1. Therefore, Loop Expansion removes one node and adds at least another node (i.e.,
|N| − |{n}|+ |Z′| such that |Z′| ≥ 1). Hence, when Loop Expansion is applied, the number of
nodes remains equal or greater in the transformed ET than in the original ET. 2
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Appendix A.3. Properties of Node Simplification
In this section, we prove whether Node Simplification [7] holds each property. To do so, we

use Figure A.7 in some proofs, where the ET on the right has been obtained by applying Node
Simplification to the ET on the left. In the ETs, nodes n0,n5,n6 are nodes that are preserved in
the transformation, whereas nodes n′1,n

′
2,n
′
3,n
′
4 are obtained from nodes n1,n2,n3,n4,n5. The ET

is inspired in the ET used by the authors in [7]. The technique obtains an equivalent ET where
eager evaluation is simulated. Function f/1 is evaluated in a lazy way in the left ET, whereas it
is evaluated in an eager way in the right ET. Moreover, those terms that have been reduced are
replaced with their reduced term (e.g., f(3) in nodes n3,n4 to 3 f(4) in nodes n′3,n

′
4 obtained from

node n5; and f(2) in nodes n1,n2 to 2 3 f(4) in nodes n′1,n
′
2 obtained from nodes n3 and n5).

Figure A.7: Node Simplification transformation

First of all, we need to define how Node Simplification works according to our formalization.
Node Simplification transforms an ET T = (N,E) into another ET T (T ) = (N′,E ′) with the iden-
tity mapping MI and source mapping MS. Each node n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′ is either preserved
from T (i.e., ∃(n′,n) ∈ MI . n = 〈〈e1, p,en〉,S〉 ∈ N ∧ 〈〈e1, p,en〉,S〉 = 〈〈e′1, p′,e′n〉,S ′〉) or it is
obtained from a set of nodes Z (i.e., ∃(n′,Z) ∈MS . Z ⊆ N), its correctness can be either correct or
wrong, ∃n = 〈〈e1, p,en〉,S〉 ∈ Z that is the main source of n′ (n = MSn′), e1 6= e′1∧ p⊃ p′∧en = e′n
or e1 = e′1 ∧ p ⊂ p′ ∧ en 6= e′n, and @n′′ ∈ N′ . (n′′,n) ∈ MI ∨ n = MSn′′ . Moreover, a node re-
moved from T is always the main source of a new node in T ′ (i.e., ∀n ∈ N∧ (n′,n) 6∈MI . n′,n′′ ∈
N′∧ (n′′,Z) ∈MS∧Z ⊆ N∧n ∈ Z∧n = MSn′′).

In the ET in Figure A.7, we have that MI = {(n0,n0), (n5,n5), (n6,n6)}, and MS = {(n′1,
{n1,n3,n5}), (n′3, {n3,n5}), (n′2, {n2,n3,n5}), (n′4, {n4,n5})}, where n1 = MSn′1

, n2 = MSn′2
, n3 =

MSn′3
, n4 = MSn′4

.
Proof. [Property 1 - Buggy Node Completeness] Because Property 2 does not hold then Property 1
does not hold either as can be seen by using modus tollendo tollens on Lemma 2. 2

Proof. [Property 2 - Buggy Code Completeness] Because Property 3 does not hold then Property 2
does not hold either as can be seen by using modus tollendo tollens on Lemma 3. 2

Proof. [Property 3 - Buggy Code Reduction] Because Property 4 does not hold then Property 3
does not hold either as can be seen by using modus tollendo tollens on Lemma 4. 2

Proof. [Property 4 - Buggy Code Semi-reduction] We prove that Property 4 is not satisfied by
showing a counterexample. Consider the left ET T = (N,E) of Figure A.7 with node n1 ∈ N as
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wrong and the rest of nodes as correct. Consider also that node n′1 ∈N′ is the only node that comes
from n1 (i.e., ∀(n′,Z) ∈MS∧n1 ∈ Z . n′ = n′1). Hence, because p⊂ p′, the property does not hold.
2

Proof. [Property 5 - Bug Existence] We prove that Property 5 is satisfied by contradiction. The
only case where there is a buggy node n = 〈〈e1, p,en〉,S〉 in T but there is not any buggy node in
T (T ) is when n is wrong in T but all nodes in T (T ) are correct. Node n can be either maintained
(i.e., (n,n) ∈ MI) or replaced with n′ = 〈〈e′1, p′,e′n〉,S ′〉 (i.e., n = MSn′). If it is maintained then
the state is maintained too, and therefore it is also wrong in T (T ). When it is replaced, then it is
possible that n is wrong and n′ is correct, but therefore (as the contradiction reveals) there must be
another wrong node in T (T ). In the replacing case, we know that either e1 6= e′1∧ p⊃ p′∧en = e′n
or e1 = e′1 ∧ p ⊂ p′ ∧ en 6= e′n. In the former (i.e., e1 6= e′1 ∧ p ⊃ p′ ∧ en = e′n), the remaining
code (i.e., p\p′) is the code that transforms e1 into e′1. If n′ is correct, then the only part in n
that can manifest a bug is the generation of e′1 (because the rest is proven correct as can be seen
in n′). But here, the node in T (T ) that transforms e1 into e′1 must be wrong. In the latter (i.e.,
e1 = e′1∧ p⊂ p′∧en 6= e′n), the surplus code (i.e., p′\p) is the code that transforms en into e′n. If n′

is correct, then the only part in n that can manifest a bug is the generation of e′n (because the rest
is proven correct as can be seen in n′). But here again, the node in T (T ) that transforms en into e′n
must be wrong. Therefore, it is impossible that all nodes in T (T ) are correct. Because at least one
node must be wrong in T (T ), then trivially there is at least one buggy node in T (T ). 2

Proof. [Property 6 - Keep Traceability] We prove that Property 6 is not satisfied by showing a
counterexample. Consider the left ET T = (N,E) of Figure A.7 with node n1 ∈ N as wrong and
the rest of nodes as correct. In such a case, node n1 is buggy in T , but @(n′,n1) ∈ MI . n′ ∈ N′.
Hence, the property does not hold. 2

Proof. [Property 7 - Zoom in Nodes] We prove that Property 7 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.7. Consider also that node n′2 ∈ N′ is the only node
that comes from n2 (i.e., ∀(n′,Z) ∈MS ∧ n2 ∈ Z . n′ = n′2). Hence, because p ⊃ p′, the property
holds. 2

Proof. [Property 8 - Zoom out Nodes] We prove that Property 8 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.7. Consider also that node n′1 ∈ N′ is the only node
that comes from n1 (i.e., ∀(n′,Z) ∈MS ∧ n1 ∈ Z . n′ = n′1). Hence, because p ⊂ p′, the property
holds. 2

Proof. [Property 9 - May Hide Bugs] We prove that Property 9 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.7. Consider also that n3 is the only node that executes
any part of its p and should have obtained 4 f(3), and that node n5 should have obtained 9 f(4) by
executing another code p′. Node n3 is buggy in T and thus there is a bug b ∈ p, whereas n5 is the
only buggy node in the right ET. Hence, because b 6∈ p′, the property holds. 2

Proof. [Property 10 - May Reveal Bugs] We prove that Property 10 is satisfied by showing an
example. Consider the left ET T = (N,E) of Figure A.7. Consider also that all nodes are correct
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except n4 and n5 that should have obtained 2 and 9 f(4), respectively. In such a case, node n′4 that
executes p′ should obtain 2 as well, and thus there exists a bug b ∈ p′ because n′4 is buggy in the
right ET. However, b is not detectable in T because n5 is the only buggy node in T . Hence, the
property holds. 2

Proof. [Property 11 - ET size] Node Simplification either preserves each node n′ (i.e., ∃(n′,n) ∈
MI ∧ n ∈ N) or it is obtained from a set of nodes Z (i.e., ∃(n′,Z) ∈ MS . Z ⊆ N) such that ∃n ∈
Z . n = MSn′ and @n′′ ∈ N′ . (n′′,n) ∈ MI ∨ n = MSn′′ . Therefore, either a node n′ is preserved
from T or it is created by removing n, which cannot be the main source of another node of N′ (i.e.,
@n′′ ∈ N′ . n = MSn′′). Hence, because each node in T ′ is either preserved from T or it is created
by removing a node from T , and a node from T cannot be removed without creating a node in T ′,
then the amount of nodes is always maintained. 2
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Appendix A.4. Properties of Tree Balancing
In this section, we prove whether Tree Balancing [15] holds each property. To do so, we use

Figures A.8 and A.9 in some proofs, where the ETs on the right have been obtained by applying
Tree Balancing to the ETs on the left. In the ETs, all nodes labelled with n0,n1, . . . ,n j are nodes
that are preserved in the transformation, whereas nodes labelled with m0 are new nodes added by
the technique from n1,n2,n4 in Figure A.8 and from n1,n2,n3 in Figure A.9. The number inside a
node is the identifier of the executed method.

Figure A.8: Tree Balancing - Projection transformation

Figure A.9: Tree Balancing - Collapse transformation

First of all, we need to define how Tree Balancing works according to our formalization. Tree
Balancing transforms an ET T = (N,E) into another ET T (T ) = (N′,E ′) with the identity map-
ping MI and source mapping MS. Each node n = 〈〈e1, p,en〉,S〉 ∈ N is either preserved in T (T )
(i.e., ∃(n′,n) ∈MI . n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′∧〈〈e1, p,en〉,S〉 = 〈〈e′1, p′,e′n〉,S ′〉), preserved and
projected into another node n′, or just collapsed into another node n′ (i.e., ∃(n′,Z) ∈ MS . Z ⊆
N ∧ n ∈ Z) where the correctness of n′ can be either wrong (when a bug in a projected/collapsed
node produces a wrong final context in the projection/collapse node) or correct otherwise.

In the ET in Figure A.8, we have that MI = {(n0,n0), (n1,n1), (n2,n2), (n3,n3), (n4,n4),
(n5,n5), (n6,n6), (n7,n7), (n8,n8)} and MS = {(m0,{n1,n2,n4})}. In the ET in Figure A.9 we
have that MI = {(n0,n0), (n4,n4), (n5,n5), (n6,n6), (n7,n7)} and MS = {(m0,{n1,n2,n3})}.
Proof. [Property 1 - Buggy Node Completeness] Because Property 2 does not hold then Property 1
does not hold either as can be seen by using modus tollendo tollens on Lemma 2. 2

Proof. [Property 2 - Buggy Code Completeness] Because Property 3 does not hold then Property 2
does not hold either as can be seen by using modus tollendo tollens on Lemma 3. 2
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Proof. [Property 3 - Buggy Code Reduction] Because Property 4 does not hold then Property 3
does not hold either as can be seen by using modus tollendo tollens on Lemma 4. 2

Proof. [Property 4 - Buggy Code Semi-reduction] Because Property 5 does not hold then Prop-
erty 4 does not hold either as can be seen by using modus tollendo tollens on Lemma 5. 2

Proof. [Property 5 - Bug Existence] We prove that Property 5 is not satisfied by showing a coun-
terexample. Consider the left ET T = (N,E) of Figure A.9 with node n1 ∈ N as wrong and the
rest of nodes as correct. Consider that n1 does not produce a wrong final context in the collapse
node m0. In such a case, node m0 is correct and therefore @n′ ∈ N′ such that n′ is buggy in T (T ).
Hence, the property does not hold. 2

Proof. [Property 6 - Keep Traceability] We prove that Property 6 is not satisfied by showing a
counterexample. Consider the left ET T = (N,E) of Figure A.9 with nodes n0,n1 ∈ N as wrong
and the rest of nodes as correct. Node n1 is traceable in the left ET, but @(n′,n1) ∈MI . n′ ∈ N′.
Hence, the property does not hold. 2

Proof. [Property 7 - Zoom in Nodes] We prove that Property 7 is not satisfied in any possible
transformation. We divide the proof into three possibilities: either node n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′

is preserved from T , it is a collapse node created from Z, or it is a projection node created from
Z. When it is preserved (i.e., ∃(n′,n) ∈ MI . n ∈ N) then n = 〈〈e1, p,en〉,S〉 and p = p′, hence
the property does not hold. When it is a collapse node (i.e., ∃(n′,Z) ∈ MS . Z ⊆ N) then ∀n =
〈〈e1, p,en〉,S〉 ∈ Z . p = p′, hence the property does not hold either. When it is a projection node
(i.e., ∃(n′,Z) ∈MS . Z ⊆ N) then p′ =

⋃
{p | n ∈ Z∧n = 〈〈e1, p,en〉,S〉}, and thus p ⊆ p′, hence

the property does not hold either. 2

Proof. [Property 8 - Zoom out Nodes] We prove that Property 8 is satisfied by showing an example.
Consider the left ET T =(N,E) of Figure A.8 where Tree Balancing creates the projection node m0
from n1,n2,n4 ∈N (i.e., (m0,Z)∈MS∧Z = {n1,n2,n4}). In such a case, n1 = 〈〈e1, p,en〉,S〉, n2 =
〈〈e′1, p′,e′n〉,S ′〉, n4 = 〈〈e′′1, p′′,e′′n〉,S ′′〉 and thus m0 = 〈〈e′′′1 , p′′′,e′′′n 〉,S ′′′〉 where p′′′ = p∪ p′∪ p′′.
Hence, because p⊂ p′′′, the property holds. 2

Proof. [Property 9 - May Hide Bugs] We prove that Property 9 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.9 with node n1 ∈ N as wrong and the rest of nodes
as correct. Consider also that the collapse node is correct. In such a case, n1 is buggy in T but
@n′ ∈ N′ such that n′ is buggy in T (T ). Hence, the property holds. 2

Proof. [Property 10 - May Reveal Bugs] We prove that Property 10 is satisfied by showing an
example. Consider the left ET T = (N,E) of Figure A.8 with nodes n0,n1 ∈ N as wrong and
the rest of nodes as correct. Consider also that the projection node is correct. In such a case,
n0 = 〈〈e1, p,en〉,S〉 ∈N′ is buggy in T (T ) and thus there is a bug b∈ p, but b cannot be detectable
in T because n0 is not buggy in T . Hence, because there is not any other node whose code contains
b, the property holds. 2
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Proof. [Property 11 - ET size] Tree Balancing either preserves each node n′ from T (i.e., ∃(n′,n)∈
MI . n ∈ N), or creates a collapse/projection node n′ from Z (i.e., ∃(n′,Z) ∈ MS . Z ⊆ N) by
removing or not Z, respectively. Therefore, Tree Balancing can either decrease the amount of
nodes (e.g., no projection nodes are inserted and two nodes are collapsed into a collapse node),
maintain the amount of nodes (e.g., one projection node is inserted and two nodes are collapsed
into a collapse node), or increase the amount of nodes (e.g., one projection node is inserted and no
collapse nodes are created). 2
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Appendix A.5. Properties of Tree Compression
In this section, we prove whether Tree Compression [9] holds each property. To do so, we

use Figure A.10 in some proofs, where the ET on the right has been obtained by applying Tree
Compression to the ET on the left. In the ETs, all nodes labelled with n0,n1, . . . ,n j are nodes that
are preserved in the transformation. The number inside a node is the identifier of the executed
method. In the code of Figure A.10 there are three recursive calls: one in method 1, another in
method 4 and a multiple recursion in method 6.

Figure A.10: Tree Compression transformation

First of all, we need to define how Tree Compression works according to our formaliza-
tion. Tree Compression transforms an ET T = (N,E) into another ET T (T ) = (N′,E ′) with
the identity mapping MI . Each node n = 〈〈e1, p,en〉,S〉 ∈ N is either preserved in T (T ) (i.e.,
∃(n′,n) ∈ MI . n′ = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′ ∧ 〈〈e1, p,en〉,S〉 = 〈〈e′1, p′,e′n〉,S ′〉) or removed (i.e.,
@(n′,n) ∈MI . n′ ∈ N′).

In the ET in Figure A.10, we have that MI = {(n0,n0), (n3,n3), (n4,n4), (n5,n5), (n6,n6),
(n7,n7), (n8,n8), (n9,n9), (n10,n10), (n13,n13), (n14,n14)}.
Proof. [Property 1 - Buggy Node Completeness] Because Property 2 does not hold then Property 1
does not hold either as can be seen by using modus tollendo tollens on Lemma 2. 2

Proof. [Property 2 - Buggy Code Completeness] Because Property 3 does not hold then Property 2
does not hold either as can be seen by using modus tollendo tollens on Lemma 3. 2

Proof. [Property 3 - Buggy Code Reduction] Because Property 4 does not hold then Property 3
does not hold either as can be seen by using modus tollendo tollens on Lemma 4. 2

Proof. [Property 4 - Buggy Code Semi-reduction] Because Property 5 does not hold then Prop-
erty 4 does not hold either as can be seen by using modus tollendo tollens on Lemma 5. 2

Proof. [Property 5 - Bug Existence] We prove that Property 5 is not satisfied by showing a coun-
terexample. Consider the left ET T = (N,E) of Figure A.10 with node n2 ∈ N as wrong and the
rest of nodes as correct. In such a case, node n2 is buggy in T , but in the right ET T (T ) = (N′,E ′),
@n′ ∈ N′ such that n′ is buggy in T (T ). Hence, the property does not hold. 2

Proof. [Property 6 - Keep Traceability] We prove that Property 6 is not satisfied by showing a
counterexample. Consider the left ET of Figure A.10 with nodes n0,n1 and n2 as wrong and the rest
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of nodes as correct. In such a case, node n2 is traceable in the left ET, but @(n′,n2) ∈MI . n′ ∈ N′.
Hence, the property does not hold. 2

Proof. [Property 7 - Zoom in Nodes] We prove that Property 7 is not satisfied in any possible
transformation. There is only one possibility where this can occur: node n = 〈〈e1, p,en〉,S〉 is
preserved. When it is preserved (i.e., ∃(n′,n) ∈MI . n′ ∈ N′) then n′ = 〈〈e′1, p′,e′n〉,S ′〉 and p = p′.
Hence, the property does not hold. 2

Proof. [Property 8 - Zoom out Nodes] We prove that Property 8 is not satisfied in any possible
transformation. There is only one possibility where this can occur: node n = 〈〈e1, p,en〉,S〉 is
preserved. When it is preserved (i.e., ∃(n′,n) ∈MI . n′ ∈ N′) then n′ = 〈〈e′1, p′,e′n〉,S ′〉 and p = p′.
Hence, the property does not hold. 2

Proof. [Property 9 - May Hide Bugs] We prove that Property 9 is satisfied by showing an example.
Consider the left ET T = (N,E) of Figure A.10 with node n2 ∈ N as wrong and the rest of nodes
as correct. In such a case, n2 ∈ N is buggy in T but @n′ ∈ N′ such that n′ is buggy in T (T ). Hence,
the property holds. 2

Proof. [Property 10 - May Reveal Bugs] We prove that Property 10 is satisfied by showing an
example. Consider the left ET T = (N,E) of Figure A.10 with nodes n0,n1 ∈ N as wrong and the
rest of nodes as correct. In such a case, n0 = 〈〈e′1, p′,e′n〉,S ′〉 ∈ N′ is buggy in T (T ) with a bug
b ∈ p′ and n1 = 〈〈e1, p,en〉,S〉 ∈ N is buggy in T with p′ ⊇ p. Hence, because it is possible that
b ∈ p′ \ p, the property holds. 2

Proof. [Property 11 - ET size] Tree Compression either preserves each node n (i.e., ∃(n′,n) ∈
MI . n′ ∈ N′) or removes it (i.e., @(n′,n) ∈ MI . n′ ∈ N′). Hence, when Tree Compression is
applied, the number of nodes is always reduced. 2
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