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Abstract

The Internet of Things vision proposes a tight integration between real-world
elements and Information Systems. Information Systems can be aware of phys-
ical objects thanks to Automatic Identification (Auto-ID) technologies such
as Radio Frequency Identification (RFID). When physical elements partici-
pate actively in business processes, the use of humans as information carriers
is avoided. Thus, errors are reduced and process efficiency is improved.

Although developing this kind of systems is feasible, the technological
heterogeneity in Auto-ID and the fast-changing requirements of business pro-
cesses hinders their construction, maintenance and evolution. Therefore, there
is a need to move from ad-hoc solutions to sound development methods in or-
der to assure the quality of the final product.

This thesis, based on Model Driven Engineering foundations, presents a
development process for the construction of this kind of systems. The main
goal of the present work is to systematize the development of business process-
supporting systems that integrate physical elements. The development process
defined covers from the system specification to its implementation and it is
focused on the particular requirements of the linkage between physical and
virtual worlds.

For the system specification, a Domain Specific Language is defined to
cope with the particular requirements of the Internet of Things domain. From
this specification, following a set of guidelines, a software solution is obtained.
This solution is supported by an architecture specifically designed to cope with
the Internet of Things requirements and to survive to technological evolution.
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Different case studies have been successfully developed to validate the
applicability of the proposal. Although the development process is not com-
pletely automated, the guidance offered and the formalization of the involved
concepts was proven helpful to raise the abstraction level of development
avoiding to deal with technological details.



Resumen

La visión de la “Internet de las Cosas”, hace énfasis en la integración entre ele-
mentos del mundo real y los Sistemas de Información. Gracias a tecnoloǵıas de
Identificación Automática (Auto-ID) cómo RFID, los sistemas pueden percibir
objetos del mundo f́ısico. Cuando éstos participan de manera activa en los pro-
cesos de negocio, se evita el uso de los seres humanos como transportadores
de información. Por tanto, el número de errores se reduce y la eficiencia de
los procesos aumenta.

Aunque actualmente ya es posible el desarrollo de estos sistemas, la hetero-
geneidad tecnológica en Auto-ID y los requisitos cambiantes de los procesos de
negocio dificultan su construcción, mantenimiento y evolución. Por lo tanto,
es necesaria la definición de soluciones que afronten la construcción de estos
sistemas mediante métodos sólidos de desarrollo para garantizar la calidad
final del producto.

Partiendo de las bases de la Ingenieŕıa Dirigida por Modelos (MDE), esta
tesis presenta un proceso de desarrollo para la construcción de este tipo de
sistemas. Este proceso cubre desde la especificación del sistema hasta su im-
plementación, centrándose en los requisitos particulares del enlace entre los
mundos f́ısico y virtual.

Para la especificación de los sistemas se ha definido un Lenguaje Espećıfico
de Dominio (DSL) adaptado a los requisitos de la “Internet de las Cosas”. A
partir de esta especificación se puede obtener una solución software siguiendo
una serie de directrices.
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Como validación de la propuesta, varios casos de estudio han sido desa-
rrollados con éxito. Pese a que el proceso de desarrollo no ofrece una au-
tomatización completa, las gúıas ofrecidas y la formalización de los conceptos
implicados ha demostrado ser útil a la hora de elevar el nivel de abstracción
en el desarrollo, evitando el esfuerzo de enfrentarse a detalles tecnológicos.



Resum

La visió de l’“Internet de les Coses”, emfatitza la integració entre els el-
ements del món real i els Sistemes d’Informació. Gràcies a les tecnolo-
gies d’Identificació Automàtica (Auto-ID) com l’RFID, els sistemes poden
percebre objectes del món f́ısic. Quan aquestos participen activament en els
processos de negoci, s’evita l’ús dels éssers humans com a transportadors
d’informació. Per tant, el nombre d’errors es redueix i l’eficiència dels proces-
sos augmenta.

Tot i que actualment ja és possible el desenvolupament d’aquestos sistemes,
l’heterogen̈ıtat tecnològica en Auto-ID i els requeriments canviants dels pro-
cessos de negoci dificulten la construcció, manteniment i evolució d’aquells.
Per tant, és necessaria la definició de solucions per abordar la construcció
d’aquestos sistemes mitjançant mètodes sòlids de desenvolupament que garan-
tisquen la qualitat final del producte.

Prenent com a base l’Enginyeria Dirigida per Models (MDE), aquesta tesi
presenta un procés de desenvolupament per a la construcció d’aquest tipus
de sistemes. El procés cobreix des de l’especificació del sistema fins la seua
implementació, centrant-se en els requeriments particulars de l’enllaç entre el
món f́ısic i virtual.

Per a l’especificació dels sistemes s’ha definit un Llenguatge Espećıfic de
Domini (DSL) adaptat als requeriments de l’“Internet de les Coses”. A partir
d’aquesta especificació és possible obtenir una solució de programari seguint
una sèrie de directrius.



XII

Com a validació de la proposta, diversos casos d’estudi s’han desenvolu-
pat amb èxit. Tot i que el procés de desenvolupament no proporciona una
automatització completa, les guies proporcionades i la formalització dels con-
ceptes implicats han mostrat la seua utilitat per a elevar el nivell d’abstracció
en el desenvolupament, evitant l’esforç d’enfrontar-se a detalls tecnològics.



Preface

When I started writing Prosopagnosia, a humble short story around the ideas
of identity and change, I could never imagine that these concepts would be-
come such a central part of my research. From the time perspective, it is not
so strange; these universal concepts have occupied the mind of humans for
long. From times of the ancient Greeks, identity and change have been a sub-
ject of interest for philosophers, as reported by Plutarch in Lives of the Noble
Greeks and Romans:

“The ship wherein Theseus and the youth of Athens returned had
thirty oars, and was preserved by the Athenians down even to the time
of Demetrius Phalereus, for they took away the old planks as they
decayed, putting in new and stronger timber in their place, insomuch
that this ship became a standing example among the philosophers, for
the logical question as to things that grow; one side holding that the
ship remained the same, and the other contending that it was not the
same.”

We live in a changing world. Nowadays, Business Processes in organiza-
tions –like the Ship of Theseus– never stop changing. They involve different
real-world elements participating in this identification paradox. Technology
can alleviate the problem, but only from a conceptual level –where the prob-
lem has its roots– it can be addressed. Having the opportunity to face such a
transcendent issue with this work is quite challenging.

Valencia, September 2008 Pau Giner
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1

Introduction

Information Systems have existed for a long time. Humans have faced the
need for recording and transmitting information long before the invention of
the computer. The introduction of Information Technologies creates a digital
world where information can be automatically processed improving the In-
formation System efficiency. However, computers have a limited vision of the
real-world they are managing. So, there is still a challenge in automating
the linkage between digital and physical worlds.

Nowadays, Information Systems dealing with real-world objects –such as
baggage pieces in an airport or products in a supermarket– are normally
informed by humans. This use of humans as information carriers becomes
inefficient and error-prone. The gap between the physical and the digital world
commonly results in mishandled luggage or long queues at the supermarket.

The Internet of Things vision (Gershenfeld et al., 2004) is about reducing
this gap to make daily activities more fluent. By providing a digital identity
to real-world objects, Information Systems can handle them in an automatic
way. This enables physical objects to participate actively in business processes
reducing the gap between physical and virtual worlds (Strassner & Schoch,
2002).

The high heterogeneity in identification technologies and the fast-changing
nature of business processes makes hard to develop Information Systems for
the Internet of Things in a sound manner. This thesis provides a development
method for building this kind of systems from a model driven perspective.
The benefits of modeling technologies are quite interesting for the purpose of



2 1 Introduction

this work. Using models, the development process is faced from a higher ab-
straction level and the construction of the final product can be systematized.

The rest of this chapter is organized as follows: Section 1.1 explains the
purpose of this work. Section 1.2 details the problem this thesis resolves. The
goals defined for the present work are described in Section 1.3. In Section 1.4,
the approach followed in this thesis to fulfill the detected goals is introduced.
Section 1.5 explains the context in which the work of this thesis has been
performed. Finally, Section 1.6 gives an overview of the structure of this thesis.

1.1 Motivation

Business processes in organizations usually involve real-world objects. Infor-
mation Systems need mechanisms to connect those elements at the physical
space with the information about them at the digital space. Maintaining the
connection between both, real and virtual elements, in sync is thus essen-
tial. Baggage loss or medicine counterfeiting illustrate the consequences of
breaking this linkage.

In addition, a poor integration of physical elements usually produces pro-
cess bottlenecks. This lack of efficiency can be perceived at motorway tolls,
supermarket or library queues. Given several persons forming a queue, it is
easy to find that the queue is originated by a human transferring data to an
information system1.

When physical objects participate actively in business processes, the gap
between physical and virtual worlds is reduced. Information can be transferred
automatically between physical and digital spaces. Thus, people can focus on
their real world activities while the system, hidden in the background, controls
the business process in an unobtrusive way.

Integrating real-world objects in business process has been demonstrated
successful, reducing media breaks, human errors and delayed information
problems (Strassner & Schoch, 2002). Many benefits are obtained in eco-
nomic (Langheinrich et al., 2002) and process improvement terms (Fleisch,
2001; Sandner et al., 2005). A better integration of real and virtual worlds
not only improves business processes, but also enables new business mod-
els (Fano & Gershman, 2002; Fleisch & Tellkamp, 2003). When real-world
1 Being probably toilet queues the most common exception.
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objects are seamlessly integrated, business process-supporting tools become a
true invisible tool in the sense defined by Mark Weiser (Weiser, 1994):

“A good tool is an invisible tool. By invisible, I mean that the tool
does not intrude on your consciousness; you focus on the task, not
the tool. Eyeglasses are a good tool – you look at the world, not the
eyeglasses.”

Facing the development of this kind of tools, however, is not an easy task.
Business processes are constantly changing, demanding the corresponding evo-
lution in the supporting Information System. In addition, systems in the In-
ternet of Things context, involve a great diversity of technologies to bridge
physical and digital worlds. This heterogeneity forces the developer to know
the details of each technology involved in the system, making it difficult to
develop. From the methodological perspective, there is a need for a solid devel-
opment method that can free developers from technological details and allow
a fast propagation of requirement changes to technological solutions.

1.2 Problem Statement

The development of applications for the Internet of Things is an emerging
research topic. The above discussion indicates that some problems still need
to be considered. The work that has been done in this thesis is an attempt to
improve the development of business process-supporting applications in the
context of the Internet of Things by considering these problems, which can
be stated by the following three research questions:

Research question 1: How should real-world elements be integrated in
business processes?

Research question 2: How should business process specifications be de-
fined during the development?

Research question 3: How can business process specifications be system-
atically mapped to technological solutions that fulfill the requirements of
the Internet of Things?

These research questions are analyzed and answered in the following sec-
tion.
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1.3 Thesis Goals

The main goal of this thesis is to define a development process for the con-
struction of business process-supporting applications that integrate real-world
elements.

First of all, regarding research question 1, one of the main goals of
this work is the study of the linkage between the physical and the virtual
space from a wide perspective. In the present work, the integration of real-
world elements in business processes is faced from three different points of
view. When studying this integration, it is considered how real-world elements
influence (1) the information present at the digital space, (2) the evolution of
the business process and (3) the surrounding environment.

Regarding research question 2, another goal of this work is to avoid
dealing with technological details when capturing business process require-
ments for the Internet of Things. This work defines a method that captures
the requirements of this particular kind of applications by means of modeling
techniques. Modeling standards from the business process area such as Busi-
ness Process Modeling Notation are extended to cope with the integration of
real-world elements in business processes.

Regarding research question 3, one of the goals of the present work is
to reduce the error-proneness of this kind of developments. In order to do so,
a systematic method is defined to obtain a working system from specifications
by following a sequence of well-defined steps.

1.4 The Proposed Solution

Industrial revolution supposed a transition from the handcraft of products to
an automated production process. Software industry, conscious of the increase
of system complexity, demands systematic development methods that ensure
the quality of the final product. In order to improve the way applications
for the Internet of Things are developed, this work proposes a development
process to systematize the construction of such applications. The presented
development method is based on modeling to achieve these goals.

Model Driven Engineering (MDE) (Kent, 2002) proposes the use of models
as the basis for system development. A model is a simplification of a system,
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built with an intended goal in mind, that should be able to answer questions in
place of the actual system (Bézivin & Gerbé, 2001). The use of models –such as
model of planes in a wind tunnel or models of software systems– in engineering
has a twofold benefit. On the one hand, models guide the development of
a system. On the other hand, models allow to reason about the system
prior to its construction.

MDE can help to handle better system complexity. By using models, some
of the current problems in software development can be addressed. Schmidt
analyzed (Schmidt, 2006) the current problems in software development de-
rived from the growth of platform complexity and the inability of general-
purpose languages to mask complexity. The fast evolution of platforms and
the appearance of new ones is translated in a great effort to manually build
and port applications. When working with large-scale distributed systems, the
lack of an integrated view –coupled with the danger of unforeseen side effects–
often forces developers to implement suboptimal solutions that unnecessarily
duplicate code, violate key architectural principles, and complicate system
evolution and quality assurance. To face those problems Schmidt proposes
MDE as a solution to alleviate software complexity.

Both factors analyzed by Schmidt –heterogeneity in platforms and the
distribution of the system– apply in a great measure when the Internet of
Things is involved. It is easy to imagine that those problems would really
affect a system handling thousands of physical objects identified by means of
different technologies with diverse computing resources involved. Therefore,
MDE becomes a good candidate for the development of the Internet of Things.

This work proposes a MDE method for the production of business process-
supporting systems in the Internet of Things domain. This have been achieved
following these steps:

1. Architecture definition: a software architecture is defined to cope with
the particular requirements of the Internet of Things. Although it consti-
tutes a particular solution, architectonic concepts have been detected in
a technology-independent fashion.

2. Development automation: architectural concepts are formalized using
modeling techniques and the development for this architecture is auto-
mated as much as possible.
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3. Development process definition: Once defined the primitives that
capture the requirements for this kind of systems, a development process
is defined.

This constitutes an architectural-centric bottom-up approach. The result
is a model-based development process that systematizes the production of
business process-supporting systems for the Internet of Things.

1.5 Thesis Context

This Master’s Thesis was developed in the context of the research center Cen-
tro de Investigación en Métodos de Producción de Software of the Universitat
Politècnica de València. The work that has made the development of this
thesis possible is in the context of the following research government projects:

• DESTINO: Desarrollo de e-Servicios para la nueva sociedad digital. CYCIT
project referenced as TIN2004-03534.

• SESAMO: Construcción de Servicios Software a partir de Modelos. CYCIT
project referenced as TIN2007-62894.

• OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2
project referenced as TSI-020400-2008-114.

• Atenea: Arquitectura, Middleware y Herramientas. ProFIT project refer-
enced as FIT-340503-2006-5.

1.6 Thesis Structure

The approach followed in this work involves raising the abstraction level in
development. The work has been structured to reflect this abstraction pro-
cess. First, Chapter 2 gives an overview of some relevant concepts related to
Business Process Management and Automatic Identification technologies in
which this work relies. Chapter 3 defines a software architecture that fulfills
the requirements for the kind of applications faced in this work. Chapter 4
makes the architecture usable at modeling level. In order to do so, the archi-
tecture is formalized in a metamodel and model transformation techniques are
used to automate the development based on this architecture. A Domain Spe-
cific Language is defined to capture requirements for this kind of applications.
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Chapter 5 introduces a development process that covers from the specifica-
tion of the system to the implementation of the final solution by following
a sequence of systematic steps. Chapter 6 details how the proposal has been
validated. Finally, Chapter 7 summarizes the contributions and provides some
insights about further work.





2

Related Work

The present work is placed in the intersection of two disciplines. On the one
hand, the Internet of Things envisions a seamless integration of real and vir-
tual worlds. On the other hand, Business Process Management is promoting
an engineering approach for the analysis design and execution of business
processes in organizations. The present chapter provides an overview of the
state of the art in these areas reviewing trends at both, technological and
conceptual levels.

The rest of this chapter is organized as follows: Section 2.1 presents the
Internet of Things vision and the existing support in terms of technologies,
frameworks and languages. Section 2.2 provides an overview of the Business
Process Management initiative with special attention to business process mod-
eling. Finally, Section 2.3 concludes the chapter.

2.1 The Internet of Things

New trends in computation are emerging with the goal of integrating comput-
ing services seamlessly in the environment and offering a “natural interaction”
to users. Ubiquitous Computing (Ubicomp) (Weiser, 1991), Pervasive Com-
puting (PerCom) (Hansmann et al., 2001), Ambient Intelligence (AmI) (Aarts
et al., 2002) or Everyware (Greenfield, 2006) are some of the paradigms that
share this goal.

The scenarios envisioned by these initiatives often demand a combination
of advanced technologies such as sensor-networks, wearable computers, speech
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and gesture recognition or machine reasoning capabilities to make the envi-
ronment behave intelligently. Far from the idea of making objects competing
in intelligence with humans, the Internet of Things vision faces the integration
of real and virtual worlds following a more practical approach.

The Internet of Things approach proposes augmenting real-world el-
ements with a digital identity to achieve this integration. This is not
much demanding for physical elements. Real-world elements are not required
to be augmented with complex computing capabilities but just labelled with
a unique identifier to make them computer-aware. With a digital identity, the
services that Information Systems offer can reach the physical world. This idea
was well illustrated by Bruce Sterling in his talk at The Emerging Technology
Conference in 2006:

“We are not talking about a smart object that is ubiquitously com-
puting. But the everyday object, the dumbest, cheapest, most obvious
thing we can buy or use. Except it has a unique digital identity, so
it becomes trackable, sortable, rankable, and findable in space and
time.”

Advances in Automatic Identification (Auto-ID) technologies have helped
to start moving the Internet of Things vision into reality. Auto-ID enables
real-world objects to be taken automatically in consideration by a software
system, making objects not human-dependent anymore (Römer et al., 2004).
Thanks to Auto-ID, people, places and things can be identified in a myriad
of different ways. Radio Frequency Identifications (RFID), Smartcards, bar-
codes, magnetic strips, and contact memory buttons to name a few, are some
Auto-ID enabler technologies with a different degree of automation (Want
et al., 1999).

Automatically identifiable objects receive different names such as Spimes
(objects that are trackable in space and time), Blogjects (objects that blog),
UFOs (Ubiquitous Findable Objects) or EKOs (Evocative Knowledge Ob-
jects). This heterogeneity in terminology shows that the Internet of Things
is still under construction. Augmenting with new capabilities the real-world
objects that surround us implies a big change. Since the Internet of Things
supposes a social revolution, it is not clear that it could be fully defined while
being at the middle of the change. Therefore, discussions about what the
Internet of Things exactly is, are not finished yet.
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From the different emerging applications for the Internet of Things, the
present work is particularly interested in the integration of real-world ob-
jects in business processes. This is what Schmitt defines as Ambient Busi-
ness (Schmitt et al., 2006). The Internet of Things paradigm can provide
numerous benefits in this field, leading to interesting challenges and oppor-
tunities in different business areas (Römer et al., 2004) such as source verifi-
cation, counterfeit protection, one-to-one marketing, maintenance and repair,
theft and shrinkage, recall actions, safety and liability, disposal and recycling
as well as mass customizing.

There is an increasing interest in the Internet of Things technologies from
academia and industry. Some prototypes have been developed to experiment
its benefits in contexts as grocery retail (Roussos et al., 2002), aircraft mainte-
nance (Lampe et al., 2004) and vineyard control (Brooke & Burrell, 2003). Ex-
perimental developments are carried by different companies to improve their
processes (Strassner & Schoch, 2002). Auto-ID is used at Ford to speed up
replenishment of parts in its production process. The British retailer Sains-
bury uses Auto-ID technologies to track chilled food products from receiv-
ing, through distribution, to the store shelf. Infineon uses Auto-ID for Cool
Chain Management in order to control the temperature during the transport
of chemical products.

The increase in the maturity level of the Internet of Things can be shown
in the presence of Auto-ID in many real in-production systems (Federal Trade
Commission, 2005; Weinstein, 2005). Auto-Id is present in car keys, employee
cards and event tickets to control the access. SpeedPass for purchasing gas and
goods at Exxon Mobile shops or the transport cards for the London and Hong
Kong transport system are some examples based on Auto-ID technologies.
Some organizations such as US Department of Defense and Wal-Mart require
its suppliers the use of the most advanced Auto-ID technologies.

The current technological support for applications in the context of the
Internet of Things, and the available frameworks and languages that allow
the development for these technologies, are presented below.

2.1.1 Technological Support

Auto-ID is the core technology for the Internet of Things. Many existing
technologies permit to attach a digital identity to an object. However, there
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are six main forms of automatic identifications in use today (Jamali et al.,
2007):

Barcodes. Barcodes use an optical machine-readable representation for iden-
tifiers. Their use requires a direct line of sight between readers and tags,
demanding user intervention in many cases. Despite their limitations, this
is the dominant Auto-ID technology in the retailer industry. Traditional
barcodes –i.e., linear barcodes– use parallel lines and the width between
them to represent data. There are many different bar code languages. Each
language has its own rules for encoding characters –e.g., letter, number,
punctuation–, printing, decoding requirements, and error checking. Uni-
versal Product Code (UPC) and European Article Number (EAN) are
some of the numbering schemata used to express identifiers when linear
barcodes are used.
More recently, bi-dimensional barcodes appeared. These technologies en-
code information in a two-dimensional image. Images can be made from a
matrix of black and white squares –e.g.: DataMatrix, Aztec Code, QR
Code, etc.– or by any other symbology –such it is the case of fidu-
cials (Bencina & Kaltenbrunner, 2005). Bi-dimensional barcodes are a
practical solution for Auto-ID since they are cheap to produce and cam-
era phones can easily read them.

Contact memory buttons. This consists in a coin-shaped stainless steel
container that encapsulates a memory. This memory can be accessed when
it is in contact with a touch probe –that can act as a reader and writer
for the memory. Since this technology requires direct contact, it has been
applied in the access control field as a digital key. When disconnected
from a host controller the data stored can be retained for over 100 years.
Memory in these buttons is passive, containing no battery or internal
power source to retain data.

Magnetic Strips. A band of magnetic material on a card is used to store
data. By modifying the magnetism of the iron-based magnetic particles
that form the band, data can be recorded. The most common use of this
technology is for financial cards.

Optical Strips. A panel of laser sensitive material is laminated in a card
and is used to store the information in a similar way as it is stored in
optical discs such as CD ROMs or DVDs. Since the material is altered
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by a laser when it is written, the media can be only written once and
the data is non volatile. ISO/IEC 11693 and 11694 standards cover the
encoding details.

Radio Frequency Identifications (RFID). RFID consists in the trans-
mission of the identity of an object wirelessly, using radio waves. An RFID
tag consists of a microchip and an antenna. Since there is no need for line
of sight or contact between tags and readers, this technology provides a
high level of automation.
RFID tags fall into two general categories, active and passive, depending
on their source of electrical power. Active RFID tags contain their own
power source, usually an on-board battery. Passive tags obtain power from
the signal of an external reader and they simply reflect the energy back. In
addition, RFID tags can incorporate read/write memory. Electronic Prod-
uct Code (EPC) is the numbering scheme defined for encoding identifiers
in RFID tags.
The reading distance for RFID varies from a maximum of few meters for
passive RFID and hundreds of meters for active RFID. In addition to
reaching long distances, there is also interest in short distance reading.
RFID based technologies such as Near Field Communication (NFC) pro-
vide a 10 centimetre distance communication to ensure the communication
is made explicit by the user.

Smartcards. These cards include embedded integrated circuits which can
process information. Several types exist. Memory cards contain only non-
volatile memory storage components, and perhaps some specific security
logic. Microprocessor cards contain volatile memory and microprocessor
components. Contactless smartcards rely on technologies such as NFC to
avoid the inconvenience of requiring direct contact between readers and
cards but restricting the communication to a certain distance for security
reasons.

Despite of the diffusion of the above technologies, text-based identifi-
cation is still common nowadays. This consists in writing –or printing– the
natural name or part number of an object as simple text. Human interven-
tion is required for reading tags resulting in an inefficient process. However,
this mechanism cannot be overlooked as a complementary technology for the
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above ones. In this way an alternative human-readable identifier is used as
backup in case the main Auto-ID technology fails.

2.1.2 Auto-ID Frameworks

Deploying an Auto-ID-enabled system involves a lot more than purchasing the
right tags and installing the right readers. To get business value from all of the
information collected, companies will need middleware to filter the data. They
may need to upgrade enterprise applications and integrate them with Auto-
ID middleware. However, the connections to existing software infrastructure
results in a mismatch of capabilities and requirements (Sarma, 2004).

The need for defining architectures that support Auto-ID has lead to the
development of frameworks and middleware to abstract from the filtering and
aggregation tasks needed when tags are processed.

Some middleware is technology-specific such as it is the case of RFID.
The EPC Network standard published by EPCglobal –the predominant RFID
standardization body– defines a number of functional roles that an RFID
middleware must provide as well as the interfaces that must be implemented
around these roles. This include the reader, the filtering and collecting middle-
ware, and the EPC information service (EPCIS). Accada (Floerkemeier et al.,
2007) –later renamed to Fosstrak– an open source implementation of the EPC
network standard was developed by the Auto-ID labs. Other RFID-specific so-
lutions such as SAP’s Auto-ID infrastructure (Bornhövd et al., 2004), Siemens
RFID Middleware Architecture (Wang & Liu, 2005) or Sun RFID also provide
solutions to integrate different RFID readers with Information Systems.

The present work however is interested in the integration of physical ele-
ments from a technological independent perspective. In order to achieve this,
several initiatives emerged to offer middleware to support Auto-ID in a tech-
nology independent fashion. A representation of these proposals are described
below.

Global Sensor Network. This work (Aberer et al., 2006) comes from the
sensor networks area. Global Sensor Network (GSN) is a middleware for
connecting different data sources providing zero-programming deployment
is defined. The main concept behind the GSN is the virtual sensor. A
virtual sensor is a data stream received either directly by a real sensor or
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provided by another virtual sensor. Virtual sensors can consume several
streams and produce only one.
Virtual sensors provide all the necessary information for their deployment
and use. This description is defined using XML and includes aspects such
as metadata for identification and discovery, data structure of streams,
a SQL-based specification of the stream processing and some functional
properties –related to persistency, error handling, life-cycle management
and physical deployment.
GSN acts as a container for several virtual sensors, and it is connected in
a decentralized fashion by following a peer-to-peer architecture.

Web presence. This work (Kindberg et al., 2002) is defined to provide web
presence for people, places, and things. The identifier resolution mecha-
nism presented is inspired in the Web not only as a technological founda-
tion but it also adapts metaphors from the Web to the physical world such
as the hyperlink concept. Identifier resolution is presented as a way to link
the physical world with virtual Web resources. In this paradigm, designed
to support nomadic users, the user employs a handheld, wirelessly con-
nected, sensor-equipped device to read identifiers associated with physical
entities. The identifiers are resolved into virtual resources or actions re-
lated to the physical entities –as though the user “clicked on a physical
hyperlink”.
Physical entities are divided in three categories: people, places and things.
Entities are bound to a resource that has an URL and it is accessible by
the standard HTTP protocol. Two modes of web presence are consid-
ered: (1) internal support –for devices whose internal state is readable
and/or settable via HTTP operations– and (2) external support –for non-
electronic entities that cannot have an embedded web server–. URLs for
elements can be discovered using broadcast, sensed directly, or provided
by another system.

Open lookup infrastructure. This work (Roduner & Langheinrich, 2007)
presents an architecture for the publication and discovery of resources –
information and services– associated with physical elements. It is based on
the idea of physical objects having a unique identity, and different users
extending them with associated services in an open manner. A lookup
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service to locate services that can scale to large networks such as Internet
is defined.
The architecture for the lookup service is based on the following concepts:
resources and their descriptions, resource repositories, a manufacturer re-
solver service, and search services. Resources offer information on, or ser-
vices for, a physical product. Resources can be provided by the original
product manufacturer or any other party.
Resource descriptions include a unique identifier, a list of the physical ele-
ments this resource is associated with –referenced by their tag identifiers–,
the profile they follow –an agreed syntax and semantics to which the re-
source adheres–, the URL to the actual resource, and some context –time,
location, status, etc.– and descriptive –title and description– information.
Resource descriptions are stored at the resource repositories. The man-
ufacturer resolver service –based on the Object Naming Service (ONS)
defined by the EPCglobal Network– is used to find the resource repository
that contains the information about an element given its tag identifier. A
search service is also provided to locate resources based on queries. Search
services crawl all registered resource repositories and create an index in a
similar way as search engines do with the Web.

Event-based framework for smart identification. An event-based archi-
tecture for Auto-ID applications is defined in this work (Römer et al.,
2004). Identification is based on enter and leave events. Physical ele-
ments are associated with a virtual counterpart –a representation of a
physical element in the digital world. Virtual counterparts are classified
according to which kind of element –objects or locations– are associated
to, and their cardinality –a single element or a set of elements–. The pre-
sented architecture stresses the relevance of locations –either geographic
or symbolic–, considering relationship of neighbourhood –elements that
are close to a location–, containment and hierarchical organization. Time
dimension is also considered and a query interface is defined to obtain
information about the history of detections.
A virtual counterpart repository is defined to make virtual counterparts
accessible. The architecture is defined in a technological-independent fash-
ion. Different implementations of the architecture have been developed,
using Jini and Web Services.
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A service oriented smart items infrastructure. An architecture to sup-
port real-world objects with computing capabilities is used to decentral-
ize business processes in this work (Spieß et al., 2007). This distributed
schema is intended to increase scalability, data accuracy and response
time.
The architecture is service based and it is structured in the following
layers: device layer, device level service layer, business process bridging
layer, system connectivity layer, and enterprise application layer.
The device layer comprises the actual smart item devices –sensors and
Auto-ID devices– and the communication between them. The device level
service layer manages the deployable services used by the device layer. It
contains a service repository that for each service stores a service descrip-
tion –service description provides metadata like name, identifier for the
service, version, vendor, etc.– and one or more service executables –since
a service may be deployable on different platforms, an atomic service may
have more than one service executable.
The business process bridging layer has two major functions: (1) to aggre-
gate and transform data from the devices to business-relevant information,
thereby reducing the amount of data being sent to the enterprise appli-
cation systems, and (2) to execute business logic for different enterprise
application systems. The system connectivity layer provides system and
data integration by routing messages and data to the correct back-end
systems. Finally, the enterprise application layer consists of traditional
enterprise IT systems responsible for controlling and managing enterprise
business applications.

Defining Auto-ID architectures that are independent from the used tech-
nology supposes a conceptualization effort. In this line is worth noting the
definition of data models for the data handled by Auto-ID infrastructures
–specially RFID systems. This is the case of Physical Markup Language
(PML) (Brock, 2001). PML is an XML-based language used for the description
of physical elements including its hierarchy, classification and categorization,
description and ascribed information –e.g., name, ownership or cost. Wang
proposed a data model (Wang & Liu, 2005) based on the Entity-Relationship
paradigm considering temporal aspects.
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2.1.3 Languages for Specification

The specification of systems can be improved by using a language based on
concepts that are close to their application domain. Different languages –
graphical and textual– have been defined to support several of the aspects
involved in the application domain this work deals with, such as the definition
of pervasive services, context information or policies. A representation of such
languages is provided below.

VRDK. The Visual Robot Development Kit (VRDK) (Heil et al., 2006) is
a graphical tool that enables users to script their AmI environment. The
user can create scripts either via drag&drop or by handwriting commands
directly on the screen. Its target audience are technical interested users
who do not necessarily master a general purpose programming language.
A VRDK script consists of a set of processes and a set of hardware. The
tool builds on the following concepts: components, events, commands,
mathematical expressions, workflows and context.
The code generator transforms the script into executable code –currently
C# and C are supported– and automatically deploys it on the partici-
pating devices: the application runs distributed in the environment of the
user.

PervML. Pervasive Modeling Language (PervML) (Muñoz & Pelechano,
2005) is a domain specific language for the development of pervasive sys-
tems. PervML provides a a set of conceptual primitives that allow the
description of the system independently of the technology. PervML covers
the full development process of a pervasive system by defining a develop-
ment method and providing the needed tools to support it.
PervML promotes the separation of roles where developers can be catego-
rized as system analysts and system architects. Systems analysts capture
system requirements and describe the pervasive system at a high level of
abstraction using the service metaphor as the main conceptual primitive.
Analysts build three graphical models: (1) The Services Model describes
the kinds of services –by means of their interfaces, their relationships, their
triggers and a State Transition Diagram for specifying the behaviour of
each service–; (2) The Structural Model describes the components that are
going to provide the defined services; (3) The Interaction Model describes
how these components interact to each other.
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System architects specify what devices and/or existing software systems
support system services. Binding Providers –elements that are responsible
of binding the software system with its physical and logical environment–
become the basic building blocks for PervML systems. Architects build
three models: (1) The Binding Provider Model specifies every kind of bind-
ing provider –their interfaces and their relationships–; (2) The Component
Structural Model specifies which binding providers are used by each sys-
tem component; (3) The Functional Model specifies which actions should
be executed when a component operation is invoked.
The use of precise models to capture the requirements of a Pervasive Sys-
tem, allows the automatic generation of code. PervGT is a tool to support
PervML method, enabling the definition of diagrams and supporting the
code generation. Generated systems rely on the OSGi platform.

Context Modeling Language. In order to assist designers with the task
of exploring and specifying the context requirements of a context-aware
application, the Context Modeling Language (CML) (Henricksen & Indul-
ska, 2005) is defined. CML provides a graphical notation for describing
types of information –in terms of fact types–, their classification –sensed,
static, profiled or derived–, relevant quality meta-data, and dependencies
between different types of information. CML also allows fact types to be
annotated to indicate whether ambiguous information is permitted –e.g.,
multiple alternative location readings–, and whether historical informa-
tion is retained. Finally, it supports a variety of constrains, both general
–such as cardinality relationships– and special purpose –such as snapshot
and lifetime constraints on historical fact types.
A software infrastructure is also proposed, which is organized in loosely
coupled layers. The context gathering layer acquires context information
from sensors and processes this information to bridge the gap between raw
sensor output and the level of abstraction required by the context manage-
ment system. The context reception layer provides a bi-directional map-
ping between the context gathering and management layers. The context
management layer is responsible for maintaining a set of context models
and their instantiations. The adaptation layer manages common reposi-
tories of situation, preference and trigger definitions and evaluates these
on behalf of applications.
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Finally, a software engineering methodology is briefly described. This
methodology is organized in the following tasks: analysis, design, imple-
mentation, infrastructure customization and testing.

Context-Oriented Programming. The goal of the Context-Oriented Pro-
gramming (COP) (Keays & Rakotonirainy, 2003) language is to support
AmI systems focused on alleviating the problems derived from the change
of context in applications of this kind –adaptability, portability and com-
plexity. Four programming constructs –goals, contexts, open terms and
stubs– are defined in COP. Goals describe the purpose of an activity.
Context, which refers to any information that may have impact in the
behaviour of the program, is used by open terms and stubs to limit or
describe their domain of validity.

Rei. Rei (Kagal et al., 2003) is a Policy Language for a pervasive computing
environment. Rei is based on deontic concepts and includes constructs for
rights, prohibitions, obligations and dispensations –deferred obligations.
The policy language is not tied to any specific application and permits do-
main specific information to be added without modification. Rei is based
on the believe that most policies can be expressed as what an entity
such as users agents or services, can/cannot and should/should not do in
terms of actions, services, conversations etc. Rei is implemented in Prolog,
a logic programming language. The Rei policy language includes certain
domain independent ontologies and accepts domain dependent ontolo-
gies. The former includes concepts for permissions, obligations, actions,
speech, acts, etc. The later is a set of ontologies, shared by the entities in
the system, which define domain classes –e.g., person, file, readBook– and
properties associated with the classes –e.g., age, num-pages, email. Rei
includes three types of constructs: (1) policy objects to represent rights,
obligations, prohibitions and dispensations; (2) meta-policy for conflict
resolution; and (3) speech acts to modify policies dynamically –delegate,
revoke, cancel and request. Associated with the policy language is the pol-
icy engine that interprets and reasons about user rights and obligations
from what is specified in policies.
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2.1.4 Analysis and Discussion

Several conclusions arise from the analysis of the Internet of Things carried
in terms of technologies, frameworks and languages.

Several technologies exist to support Auto-ID offering different proper-
ties. Depending on the targeted application, a particular technology should
be considered. There is not a one-size-fits-all solution in identification tech-
nologies. For industrial applications RFID provides an optimal degree of au-
tomation. However, for casual users bi-dimensional barcodes result attractive
because of the easy way in which they can be produced and processed.

Regarding frameworks, the strategy followed in the present work is to
combine an event-based approach with a service based one, without requir-
ing computing capabilities for the physical elements involved. The service
oriented smart items infrastructure considers the integration with busi-
ness processes –overlooked in the rest of analyzed proposals– but it requires
computational capabilities for the physical elements involved. In the present
work, the possibility of incorporating common real-world objects in business
processes is essential.

The retrieval of data and services from physical elements are addressed
by different proposals such as Global Sensor Network, Web presence
and Open lookup infrastructure by using reliable technologies –mostly web-
based– that are in use today. The current work is not facing this aspect since
it is considered well addressed and any of these proposals can be used.

Regarding languages, there is no specific language for modeling the par-
ticular requirements of the physical-virtual linkage in terms of identification
requirements. No integration with business process is provided by the consid-
ered languages. VRDK is the only language to consider a notion of workflow,
however, the notation used to define this is quite basic –since end-users are
the target audience– lacking the expressivity of a business process modeling
language. Context description languages such as Context modeling lan-
guage or Context-oriented programming have no specific constructs for
identification, being identifiers considered as sensed information. Rei offers
a powerful policy description language. In the present work, policies are also
based on the idea of describing what entities can/cannot and should/should
not do. However, since the present work deals with physical objects that can
cross the boundaries of many different organizations, a simplified policy sys-
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tem is considered. In this way, since it requires less effort, it can be easily
accepted by the involved partners.

The conclusion is that support for Auto-ID is mainly provided at tech-
nological level. Frameworks are starting to abstract the technological hetero-
geneity but still lacking business process integration. There is a completely
lack for specification languages that can cover the physical-virtual gap for
business processes.

2.2 Business Processes Management

A business process is the flow or progression of activities –each of which repre-
sents the work of a person or a system– towards some business goal. Business
Process Management (BPM) is an initiative to promote the automation of
business processes in organizations. BPM is a set of technologies and stan-
dards for the design, execution, administration, and monitoring of business
processes.

For the present work, it is specially relevant the support for modeling and
execution of business process. The following subsections provide an overview
of these aspects.

2.2.1 Business Process Modeling

Different notations are used for the modeling of business processes such as
UML Activity diagrams (Dumas & ter Hofstede, 2001), IDEF (Mayer et al.,
1992), ebXML BPSS (Hofreiter et al., 2002) or Business Process Modeling No-
tation (BPMN) (OMG, 2006). The common characteristics of this notations
is their capability for modeling the sequence of activities, the participants
involved in the process and the data or messages interchanged between them.

The BPMN standard was developed by the BPMI (Business Process Man-
agement Initiative) to provide a notation that could be easily understood by
all business stakeholders. The specification was adopted by the Object Man-
agement Group (OMG) as the standard notation for the modeling of business
processes.

In order to provide an overview of the expressivity obtained by business
process modeling notations in general and BPMN in particular, the most
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relevant building blocks included in BPMN are described below. This set of
elements is organized in four categories which are Flow Objects, Connecting
Objects, Swimlanes and Artifacts:

Flow objects

These elements constitute the main graphical elements to define the behaviour
of a Business Process. These refer to:

Events. An event is something that “happens” during the course of a busi-
ness process. These events affect the flow of the process and usually have a
cause –trigger– or an impact –result. Events are circles with open centre to
allow internal markers to differentiate different triggers or results. There
are three types of events, based on when they affect the flow: Start, In-
termediate, and End. Figure 2.1 shows the complete set of events defined
by the notation.
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Fig. 2.1. Event types defined by BPMN

Activities. An activity is a generic term for work performed within a busi-
ness process. An activity can be atomic or non-atomic –compound. The
types of activities considered are: Process, Sub-Process, and Task. Only
Tasks and Sub-Processes define a specific graphical object –a rounded
rectangle. On the contrary, Processes are built as a set of activities and
the controls that sequence them. In addition, Tasks and Sub-Processes
include a set of attributes which determine if these activities are repeated
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or performed just once. This repetition can be performed either sequen-
tially –loop marker– or in parallel –parallel marker. Figure 2.2 depicts the
different types of activities and the markers available to specify when the
activity can be repeated and how.

Fig. 2.2. Activity types defined by BPMN

Gateways. A Gateway is used to control the divergence and convergence
of Sequence Flows. Thus, it will determine branching, forking, merging,
and joining of paths. Internal markers will indicate the type of behaviour
control. Figure 2.3 depicts the different types of gateways provided by the
notation.

Fig. 2.3. Gateway types defined by BPMN

Connecting Objects

This element allows connecting Flow objects or other information. The con-
necting objects defined by the notation are:

Sequence Flow. It is used to show the order in which activities will be
performed in a Process. This type of connecting object can in turn be
specialized in Normal, Conditional and Default Flow.

Message Flow. It is used to show the flow of messages between two partici-
pants that are prepared to send and receive between them. In BPMN, two
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separate Pools in the Diagram will represent the two participants –e.g.,
business entities or business roles.

Association. An Association is used to associate information with Flow Ob-
jects. Text and graphical non-Flow Objects –i.e. data objects– can be
associated with Flow Objects.

Figure 2.4 depicts the different connecting objects defined by the BPMN
notation.

Normal Flow Conditional Flow Default Flow Message Flow Association

Fig. 2.4. Connecting object types defined by BPMN

Swimlanes

This element allows grouping Flow objects based on a particular criterion.
This category includes two types of elements –see Fig 2.5– which are:

Pools: represent a Participant in a Process.
Lanes: are used to organize and categorize activities. This is achieved by

partitioning the Pool in different lanes.

Fig. 2.5. Gateway types defined by BPMN
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Artifacts

The elements included within this type are introduced into business process
models to improve their understanding –see Fig. 2.6. Within this category we
find:

Data Object. This element provides information about activity require-
ments and results.

Group. The grouping can be used for documentation or analysis purposes.
Groups can also be used to identify the activities of a distributed trans-
action that is shown across Pools.

Annotation: Text Annotations are the mechanism provided to modellers to
introduce additional information for the reader of a BPMN Diagram.

Fig. 2.6. Artifact types defined by BPMN

In addition to these four categories, the BPMN notation handles advanced
modelling concepts such as exception handling, transactions and compensa-
tion.

2.2.2 Business Process Execution

Business process modeling becomes quite useful for capturing requirements,
but in order to have a successful BPM, executable definitions of the process
are needed. Many Information Systems supporting business processes con-
tain the business process logic scattered through the system. This results in
monolithic applications that become difficult to maintain and evolve. With an
executable definition of the business process, the knowledge about the process
is centralized and the process can be updated easily resulting in the immediate
update of the corresponding Information System.
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Different languages appeared to allow the definition of executable business
processes such as XML Process Definition Language (XPDL), Yet Another
Workflow Language (YAWL) or Web Service Business Process Execution Lan-
guage (WS-BPEL) (Alves et al., 2007).

WS-BPEL is one of the most widespread languages in the business pro-
cess execution area. WS-BPEL is an XML-based language for Web Services
orchestration. It provides constructs for the coordinated invocation of differ-
ent Web Services. Many solutions exist, both commercial and open source, to
provide execution support for this standard. Microsoft BizTalk, Oracle BPEL,
Intalio BPMS, ActiveBPEL or Apache ODE are some of the business process
execution engines with support for WS-BPEL.

WS-BPEL covers different aspects required for process execution. It in-
cludes a property-based message correlation mechanism, XML and WSDL
typed variables, an extensible language plug-in model to allow writing ex-
pressions and queries in multiple languages –XPath is supported by default–
and structured-programming constructs including if-then-elseif-else, while, se-
quence –to enable executing commands in order– and flow –to enable execut-
ing commands in parallel.

WS-BPEL processes interact with external web services in two ways: (1)
invoking operations on other web services, and (2) receiving invocations from
clients –either the client that initiated the process or an external system in-
volved in an asynchronous communication. WS-BPEL defines the relationship
with external entities using the Partner Link concept. The Partner Link has
a name, a type –that defines the roles required for communication– and indi-
cates which of the roles it plays. In this way, the functionality required by each
party is exposed by the process engine –e.g., to allow callback invocations.

Another interesting aspect of WS-BPEL is that there exist mappings (OMG,
2006; Ouyang et al., 2006; Recker & Mendling, 2006) that cover the gap be-
tween modeling notations such as BPMN and WS-BPEL. Although there is
not a direct equivalence between both notations (Recker & Mendling, 2006),
model transformations were defined to bridge them (Giner et al., 2007a) for a
representative subset of their elements. So business processes modelled with
BPMN can be translated automatically to an executable WS-BPEL definition.



28 2 Related Work

2.2.3 Analysis and Discussion

Business process management area has gained momentum from both academy
an industry. Different kinds of solutions exist, from high level modeling nota-
tions to technological solutions to implement them. However, business process
management is constrained to the digital world. When facing the integration
of physical elements it is done at technological level. For example, using WS-
BPEL any system accessible by means of Web Services can be integrated.
However, dealing with Auto-ID particularities in the process implementation
makes the process description difficult to maintain.

The extension of business process modeling notations to integrate phys-
ical elements is faced in this work. In this way, identification requirements
are faced from a specification perspective. This work extends BPMN since it
has become one of the most accepted modeling notations for business pro-
cesses and the existing WS-BPEL mappings allows to turn specifications in
executable systems easily. In this way, physical objects can be modeled and
enter the BPM cycle from the beginning.

The possibility of defining business process that integrate seamlessly real-
world elements can make analysts to consider the use of Auto-ID in the sys-
tems they specify, favouring the implantation of the Internet of Things.

2.3 Conclusions

This chapter illustrates the state of the art in the two disciplines this work
is related to. Both areas are really active these days with many emerging
initiatives. However, there is still a lack of proposals to bridge both areas. On
the one hand, the Internet of Things area is still focused on implementation
issues, with little attention to modeling aspects. On the other hand, business
process modeling initiatives do not provide support for considering the specific
requirements of physical elements.

The present work proposes an integral approach facing the construction of
the Internet of Things from a business process modelling perspective. In this
way, both disciplines can be benefited from each other. The Internet of Things
area can improve its development methods by the use of modeling and the
Business Process area can design processes that are closer to the real world,
where activities take place.
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An Architecture for the Internet of Things

In the development of business process-supporting systems for the Internet of
Things, many technologies of different kinds are involved. This technological
heterogeneity is related to both, the Auto-ID aspects and the BPM aspects.
In order to avoid ad-hoc developments, this work proposes to raise the ab-
straction level for the development of such systems. In order to do so, as a
first step, the present chapter defines a software architecture to deal with
the particular requirements of this kind of applications avoiding technology
heterogeneity.

The presented software architecture is defined following an architectural
process that decouples architectural concepts from technological solutions and
stresses the relevance of automating the development process. This offers a
twofold benefit; on the one hand the obtained architecture is less sensible to
technological evolution, making it long-lived. On the other hand, architectural
concepts are clearly defined, which is basic for automating the development
process as it is illustrated in Chapter 4.

The rest of this chapter is organized as follows: Section 3.1 presents the
process followed to define the architecture. Section 3.2 defines architectural
concepts in a technology-independent fashion. Section 3.3 presents a program-
ming model to develop for the architecture. Section 3.4 defines the mapping
between the technology-independent concepts defined in the architecture and
a particular technological solution. In Section 3.5, a mock platform to ease the
development and facilitate testing is defined. Section 3.6 presents the develop-
ment of a vertical prototype to validate the fulfillment of the requirements for



30 3 An Architecture for the Internet of Things

the architecture. Section 3.7 presents different case studies developed that had
lead to the consolidation of the architecture. Finally, Section 3.8 concludes the
chapter.

3.1 The Architectural Process

In this chapter an architecture to integrate Auto-ID mechanisms in business
processes is defined. In order to offer support to business processes that in-
volve real-world elements, many technological aspects should be considered
related to both, business process management and Auto-ID. Some examples
include Business process execution engines –based on different specifications
like WS-BPEL or XPDL–, interoperability solutions –such as Web Services or
CORBA– to integrate different systems, and middleware to integrate Auto-ID
devices –such as RFID antennas, barcode readers and the like. The involved
technologies are many in both fields, and new ones are expected to appear.

In order to avoid that the presented architecture could be affected by the
high technology diversity in service orchestration and Auto-ID solutions, ab-
straction is used to cope with technological details. Based on the foundations
of MDE it is proposed the use of models –abstract technology-independent
description of systems– to face the automatic construction of this kind of
systems. In order to define an architecture that supports this automatic de-
velopment paradigm, the architectural process introduced by Völter (Völter,
2005) is followed. Völter proposes an architectural process –see Fig. 3.1– com-
posed of the following steps:

1. Elaboration phase. The architecture is defined decoupling the technol-
ogy independent concepts from the actual technological solutions. The
elaboration of the architecture defines the architecture first at a con-
ceptual level. This constitutes a technology-independent architec-
ture. Then, usage guidelines for the defined concepts are established in a
programming model. The technology mapping defines how artifacts
from the programming model are mapped to a particular technology. A
mock platform facilitates testing tasks to developers. Finally, the devel-
opment of a vertical prototype helps to evaluate the architecture and
provide feedback about non-functional requirements such as testability,
maintainability, scalability, etc.
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2. Iteration phase. This phase consists in putting the architecture to work
in order to consolidate the architecture. By iterating through the steps
of the first phase, feedback is received from its use that can help to make
the architecture more mature.

3. Automation phase. Finally, the use of the architecture can be improved
by avoiding repetitive programming tasks with automation. In this way,
software development for the architecture becomes more effective.

Fig. 3.1. Phases of the architectural process
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This chapter is focused on the definition of the architecture. So it comprises
the two first steps –elaboration and iteration– of the architectural process.
The third step of the process –focused on automating the development for
the defined architecture– is faced in Chapter 4.

3.2 Technology-independent Architecture

The present work deals with Information Systems that integrate real-world
elements to support business processes in an organization. This definition is
quite broad but this work is focused on applications where this linkage is
highly exploited and identification –specially Auto-ID– is relevant. These sys-
tems contain several elements suitable to be identified by means of potentially
different technologies.

An example of such a system could be a library in which clients can borrow
books just by picking them up. By providing a digital identity to books and
member cards, the system can be aware in every moment who is borrowing
a book. If a non-member –or a member with an expired card– takes some
book; the member first, and then, the security personnel can be warned. By
using Auto-ID technologies, there is no need for librarians to transfer the data
about book loans to the Information System. So, the process becomes more
efficient and queues can be reduced.

The defined architecture is focused on the role identification plays in busi-
ness processes. A software architecture supporting a system like the described
in the library example should fulfill many requirements derived from the au-
tomation of the physical-virtual linkage. In the following subsections these
requirements are stated and architectural concepts are proposed to define an
architecture at conceptual level that fulfills them.

3.2.1 Requirements for the Architecture

Real-world objects can affect business processes in different ways. Figure 3.2
illustrates an example of how a system can react when a physical object is
involved in a business process. In the example, the illustrated task consists in
the reception of a package containing some material previously requested. The
detection of an element –a package in this case– has a threefold impact on the
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system: (1) The system can retrieve some data about the detected package
such as the consignee or the requested material. (2) The process can continue
immediately with the next task –notify the consignee that his package just
arrived– since the package detection event determines the completion of the
current task. (3) The different services presented at the system can adapt
their behaviour to the requirements of the detected elements –e.g., since the
package is fragile, the “caution” light incorporated in the reception table is
turned on, to indicate that the package should be handled with care.

Fig. 3.2. Impact of real-world elements in the system

As illustrated in the figure, in this work the integration of real-world ele-
ments in business processes is faced from three different perspectives: (1) the
transient of information between physical and virtual worlds, (2) the genera-
tion of business level events that guide the process and (3) the requirements
for adaptation introduced by real-world elements. A more detailed description
of these three perspectives is provided below:

Information flow. When real-world elements participate in business pro-
cesses, information is constantly moving between physical and digital
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spaces. Physical objects are detected and information about them is stored
and retrieved from the system. The system should provide support for
the identification of real-world elements but also for the materialization
of identifiers in the physical world.

Process guidance. A business process consists in a set of activities. Several
instances of the process –e.g., different material requests– are executed
concurrently and the detection of a physical element can play an important
role in the process course. On the one hand, detecting an element can be
used to find the associated process instance. On the other hand, detection
events can determine the termination of a task. Normally, humans are
in charge of selecting the process instance they are working with, and
explicitly indicate when they have finished a certain task. Automating
task completion and correlation makes the process more fluent.

Adaptation triggering. An environment with lots of services embedded in
it, should provide its functionality in the best possible way. Physical ele-
ments have their requirements regarding system adaptation. This applies
to any identifiable element including objects, people and places. In the
previous example a warning light is turned on when a fragile package
is detected. In addition, the system can require adaptation to particular
needs of people –e.g., visual-impaired users require acoustic feedback– and
places –e.g., a meeting room requires a silent behaviour for services.

These three dimensions are considered along this work; from the definition
of the software architecture to the definition of the development process.

3.2.2 Conceptual Definition

In this section we present a technology-independent description of the archi-
tecture introduced in this work. By using a description based on technology-
neutral concepts we obtain a sustainable software architecture. This is,
an architecture that is not affected by technological hypes and can evolve in
time along several technological cycles.

For the definition of the architecture we rely on the component concept.
Components become the basic software pieces that will conform the system.
Component functionality is described by means of interfaces. Components
are connected by wires, and they offer asynchronous communication. We have
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Fig. 3.3. Architecture component overview

opted for asynchronous communication since business processes considered are
usually long-running and tend to involve human participation. In addition, a
subscription mechanism following the Observer Pattern (Gamma et al., 1995)
is used to deal with identification events for Auto-ID related components.

It is worth noting that several instances of a process are usually running
at the same time, so correlation mechanisms are needed. For example, in a
library, requesting new books and receiving them happens asynchronously.
When new books arrive, it is important to determine to which of the many
active requests they correspond to.

Since this work is considering the integration of Auto-ID mechanisms in
business processes, the presented architecture has to balance the message-
based approach usually associated with business processes with the event-
based approach of Auto-ID mechanisms. The presented architecture consid-
ers events as low-level messages that are processed –e.g., filtered, aggregated,
etc.– to generate business-level messages. Fig. 3.3 illustrates the components
involved in this process. In this diagram the different components are repre-
sented by boxes and arrows are used to indicate the communication among
them. Message-based communication is indicated by means of an envelope.
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The components defined respond to needs detected for each of the three
different aspects identified previously – information flow, process guidance and
adaptation triggering. The Identification Component is the central element in
this architecture and it is involved in the three identification aspects detected,
acting as a connection point.

This component provides the mechanisms to bridge physical and digital
spaces at different levels. It is in charge of (1) providing the required informa-
tion to tasks by consuming the Auto-ID services, (2) notifying the activation
and completion of tasks, and (3) triggering system adaptation when detected
elements have adaptation requirements.

The rest of components that form the architecture are in charge of sup-
porting one of the identification aspects. More detail about the different com-
ponents involved in each aspect is given below.

Information Flow Components

For the present work it is assumed that the underlying system functionality
is organized in Services. Service types are defined by clear interfaces and it
is possible that many services exist of the same kind. In order to offer its
functionality, services can make use of Resources. For example the lightning
service of a particular room is a service of the more generic lightning service
type, and different resources –such as light bulbs, neon tubes, gradual lights
and the like– can be used by this service.

In the present work four service kinds regarding identification are consid-
ered. These are Capturers, Minters, Transformations and Data Providers. For
each service of these types a component exists in the system in order to provide
the corresponding functionality and interact with the adequate resources.

Capturers –such as a barcode reader– can acquire identifiers from the Phys-
ical Space to the Digital Space. Minters are in charge of generating physical
representations of an identifier –such as a printing device that produces a
barcode label. Transformations define conversion operations between differ-
ent codifications. Data Providers provide the functionality required to obtain
the information associated to an identifier, modify this information and create
new instances –e.g., obtain the book details from its ISBN number.
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Process Guidance Components

In order to support business processes, the architecture should provide sup-
port to keep track of the different activities in the process. The components
considered in the present architecture for the control of the process flow are
detailed below.

Orchestration Component. This component is in charge of managing the
state of the long-running business process. It interchanges messages with
different systems in order to orchestrate the process. It is in charge of cre-
ating new process instances, keep track of the different process instances
and perform message correlation –i.e., find the process instance related
with the received message.

Task Manager. This component gives support to the asynchronous com-
munication of systems that participate in the business process. It receives
messages from the Orchestration Component and waits for components to
process them. The Task Manager can be queried to obtain the pending
tasks that conform certain criteria –e.g., targeted to a certain user. Pend-
ing tasks can be added and cancelled by the Orchestration Component
and completed by a Task Processing Component.

Task Processing Component. This component receives a message corre-
sponding to a pending task when it is activated. Then it retrieves infor-
mation and composes a response message. When the task is completed,
the response message is sent to the Orchestration Component. To com-
plete the response, the required information can be provided by the user
or by some Identification Component. The Task Processing Component
has to subscribe to the different Identification Components –subscription
is active until the task is completed.

These components can have a User Interface Component associated to
them to permit user participation or just display some helpful information.
Although process automation is one of the main goals of this kind of systems,
sometimes it is not possible to obtain a complete automation using sensors
and user interfaces are required.



38 3 An Architecture for the Internet of Things

Adaptation Triggering Components

When a physical element is identified by a software system it can trigger the
adaptation of the system to its needs. The system should react in response,
adapting the way in which services are offered. For example, if a quiet location
–such as a library– is detected, the system should offer its services in a silent
way.

A policy mechanism is defined to avoid forcing physical elements and
systems to know details about each other, making more flexible their rela-
tionship. A policy is defined in the present work as a set of assertions. Each
assertion is formed by a pair (P,Q) where P is a property and Q is a qualifier
for this property. Properties are general behavioural intents that indicate how
system behaviour is expected –e.g., silent, non-distracting, efficient and the
like. The qualifier Q indicates the enforcement degree for a property. Four
qualifiers are considered: required, preferred, discouraged and forbidden.

The qualifiers considered vary in their positiveness and their enforcement
degree. When a property is required, the system is forced to fulfill this property
in its behavior –if this is not possible, it is considered an error. The preferred
qualifier is not so strict, systems are just recommended to operate in a certain
way. Analogously, the forbidden qualifier forces the system to avoid a certain
property while the discouraged qualifier is considered a recommendation for
avoiding some property in system behaviour.

An example of the role of policies in system adaptation is illustrated in
Fig. 3.4. Physical elements –in this case a physical location such as a library–
can be accompanied by a policy. This policy expresses requirements for the
system such as requiring a silent behaviour. This requirement is expressed by
means of an assertion that states that the silent system property is qualified
as required. If the silent property is part of a standard vocabulary, system
designers could define how to handle elements that require a silent operation
without the need to know details about the specific objects.

In order to support policies at the system side, the different resources of
the system should be qualified to indicate which ones provide a better support
for a certain property. When there are several possible resources a service can
use, the selection will be made considering the fulfillment level each resource
provides. The resources that better support the properties demanded by the
different policies are chosen. Three fulfillment levels are considered –complete,
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Fig. 3.4. An example of the use of policies for system adaptation

partial or none. The complete level is for resources that allow for an operation
that intrinsically fulfills the property. The partial level is for resources that
can be accepted as fulfilling a given property. Finally, the none level is for
resources that do not support a given property.

In the example, a feedback service would be provided using vibration,
avoiding the use of speakers since they do not fulfill the silent property. In
order to support this adaptation process different components are considered
in the architecture. These are Characterization, Analyzer and Reconfiguration
components.

Characterization component. This component identifies the active poli-
cies as a list of properties. This supposes to aggregate the different asser-
tions contained in all the active policies. Assertions of different policies can
be contradictory and some trade-off should be considered. These trade-offs
consist in prioritizing the most restrictive assertions.

Analyzer component. Considering the active assertions, this component
ranks the different resources available in the system. This ranking indicate
for a given service which resources fulfill better each assertion.
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Reconfigurator component. This component performs the bindings be-
tween services and resources. When the system needs to access a resource,
this component provides the most adequate resource –considering the
ranking provided by the analyzer component– to the demanding service.

3.3 Programming Model

Once defined a technology-independent architecture, this section defines how
this architecture is used from the developer perspective. Many of the compo-
nents defined by the architecture are generic. They constitute an infrastruc-
ture that could be used for any particular domain. In order to customize a
system for a particular application, a business process description should be
provided to the Orchestration Component. For each task defined in the pro-
cess, a Task Processing Component should be implemented. This component
will rely on different Identification Components to be aware of the physical
world. These components should also be implemented. The defined services
required for these Identification components should be developed in case they
are not already present in the system. Finally, resources used by these services
can be qualified to allow system adaptation. More detail about the definition
of these components is given below.

3.3.1 Business Process Definition

The Orchestration Component is in charge of orchestrating the different ac-
tivities that conform the business process. These activities and their temporal
relationship is defined declaratively. Given this definition, the component can
invoke external systems, wait for messages or generate new messages for the
corresponding components of the architecture.

3.3.2 Task Processing Component

A Task Processing Component is defined for each kind of task present at
the business process –e.g., the reception of requested material. Given an in-
put message for a pending task, the logic that determines how the resulting
response message is constructed should be defined.
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For each concrete activity –e.g., the reception of a given book–, there is an
input message sent by the Orchestration Component 1 to provide some context
information –e.g., request number, expected book, etc. By processing this
context information, and accessing the adequate Identification Components
–e.g., to retrieve the book information.– the task completion message can be
produced and returned to the Orchestration Component.

Fig. 3.5. Two Identification Components supporting a task

When defining the Task Processing Component, information dependencies
are detected, this determines the required Identification Components. For ex-
ample, in a library, the lend book task can require the identification of the
client and all the books the client is borrowing. So two Identification Com-
ponents –implementing the Identification Component interface– are required,
one for detecting clients and another for books as illustrated in Fig. 3.5.

3.3.3 Identification Components

The development of Identification components consist in (1) selecting the ad-
equate services required to bridge physical and virtual worlds, (2) controlling
task life-cycle and (3) managing error situations.

1 Messages are obtained from the Task Manager component. However, they are pro-

duced by the Orchestration Component, being the Task Manager role a message

buffer to store messages until activated.
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Selecting Services

The service kinds considered for the present work are Capturers, Minters,
Data Providers and Transformations. All these elements implement different
interfaces, and normally wrap the functionality offered by the specific techno-
logical solution.

Once the required elements are defined, they are connected together. In
addition, a specific User Interface Component offering a customized view of
the Task Manager for each particular task can be defined to provide specific
information required for a certain task in order to improve user experience.

In order to choose the Auto-ID technology used for each component we
have to make several considerations. For example, Capturers used should be
compatible with the Minters used in previous tasks –using a barcode reader
for some products is useless if these products have not been previously labelled
with barcodes. For Minters and Capturers it is important to know whether
they are capable to detect several elements at the same time or not. In ad-
dition, some non-functional considerations such as implantation and mainte-
nance costs should be considered for technological election.

Defining Task Life-cycle

When defining Task Processing Components the origin of task life-cycle events
–initiation and termination of the tasks– should be identified. Identification
Components can provide this information.

For example, in a library when a package of books arrive –see Fig. 3.6–,
the completion of the reception task can be notified explicitly by the user
–using a User Interface Component– or implicitly using Auto-ID mechanism–
by means of an Identification Component. When Auto-ID events guide task
life-cycle, the process becomes more fluent since the system is notified as the
task is performed.

Error Management

Since Information Systems have not full control of the physical world, there
is a need to define error conditions when the detected elements are not the
ones expected. Error management is essential when implementing the access
to data providers.
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Book Reception
title: Mr. Vertigo

ISBN: 0-571-17092-7

Done

Book 
Reception

a) explicit notification b) implicit notification

author: Paul Auster

Fig. 3.6. Explicit and implicit task life-cycle

When defining a Identification Component, is important to define how the
system is responding in certain situations such as the absence of information
associated with an identified element, or the presence of two information pieces
associated with the same identifier.

3.3.4 Service Definition

Since this work is particularly interested in Auto-ID, the defined service types
correspond to basic functionality usually found in this kind of systems (Kind-
berg et al., 2002). These service include Capturers, Minters, Data Providers
and Transformations. The present architecture defines an interface for each
service type. Since each service implementation conforms to its service type
interface, replaceability of services is guaranteed. Although services can be re-
placed, in the case of identification some semantic mismatch can be produced
due to the use of different codifications –this is addressed from a modeling
perspective in Chapter 4.

A service can use different resources to provide its functionality. For exam-
ple, warning the user of a certain event –such as a phone call–, can be done in
different ways –e.g., a message in a screen, a beep using the speakers or with
vibration– involving different resources. Although the service functionality re-
mains the same, the use of one or another resource has an impact on some
non-functional aspects. Some resources can be more power-demanding, more
silent or more expensive to use. The policy system used in the architecture
allows each service to select the most suited resource.
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In order to do so, resources should be qualified, indicating the degree of
fulfillment –complete, partial or none– for each of the system properties con-
sidered relevant. The labeling of resources follows a similar approach as the
followed in folksonomies (Mathes, 2004). Resources are tagged with the prop-
erties they support to enable the lookup of resources. Techniques to process
tags applied to folksonomies can be also applied to the policy properties –e.g.,
consider synonym properties if a pair of properties are always present together
when resources are qualified.

3.4 Technology Mapping

Once defined the technology-independent concepts that conform the architec-
ture and the programming model that defines how to use this architecture,
the technology mapping is elaborated. The technology mapping defines how
artifacts from the programming model are mapped to a particular technology.
More detail about the target technology selected and how architectural
concepts can be mapped to the technological solution is given below.

3.4.1 Target Technology

Service Component Architecture (SCA) has been chosen as the target technol-
ogy. SCA is a vendor, technology and language neutral model for implementing
Service Oriented Architectures (SOAs). We have adopted this technology for
the following reasons:

Component model. The SCA component model fits with the technology-
independent architecture concepts defined. SCA components declare ex-
plicitly their references in terms of required interfaces and are resolved
following the Dependency Injection pattern. Components are injected by
a container to solve these dependencies according to a configuration file.

Support for asynchronous communication. Asynchronous communica-
tion is supported by SCA by means of the bidirectional interface concept.
A bidirectional interface is composed by a pair of interfaces, the provided
and the callback interface. A component implementing the bidirectional
interface should implement the methods defined in the provided interface,
while clients of this component should implement the callback interface.
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Data abstraction. For data handling, SCA can use Service Data Objects
(SDO). SDO makes it possible to hide the back-end data source, as it
offers homogeneous access for XML, relational or file based data sources
among others. In addition, SDO permits disconnected data access patterns
with an optimistic concurrency control model. These properties are also
adequate for the considered application domain. Since data portions from
many sources are combined and updated.

Support for distribution. The systems this work is dealing with usually
expand across organizations and they involve diverse computing resources.
Labels are commonly produced by one system and read by many differ-
ent systems with the potential need to share information among them.
SCA components can be distributed easily in different computing nodes,
from different threads in the same machine to different computers. This
flexibility is desirable in the current application domain.

Technological integration. SCA allows the use of different technologies for
the implementation of components and their communication. This favours
the integration of different systems. For the purpose of this work, the
possibilities of integrating Business Process Execution engines and Auto-
ID middleware solutions is specially interesting.

From the different available implementations of SCA and SDO specifica-
tions2, Apache Tuscany3 has been chosen since it is an open source solution
in a mature state.

3.4.2 Mapping to a Technological Solution

Once SCA has been chosen as the target technology, it is defined how the
technology-independent concepts described in Section 3.2 are mapped to im-
plementation assets.

Orchestration Component: Since Business Process Management commu-
nity is familiar with the WS-BPEL standard, WS-BPEL has been chosen
as the language for the Orchestration Component. Therefore, a WS-BPEL
definition of the business process activities and its interface –by means of a

2 http://www.osoa.org/display/Main/Implementation+Examples+and+Tools
3 http://tuscany.apache.org/
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WSDL definition– are required. Apache Tuscany supports the implemen-
tation of components using WS-BPEL by means of Apache ODE Orches-
tration Engine. However, since the Task Manager Component is exposed
as a Web Service, other process execution engines and Web Service-based
software –such as Enterprise Service Buses or Messaging Middleware– can
be used to drive the business process execution.

Task Manager. This component is implemented in Java. It is a repository
for pending tasks. Query capabilities are provided thanks to the XPath
support that SDO offers. Pending tasks are formed by a header that in-
cludes some metadata –reception date, user group in charge of completing
the task, ect.– and the payload – domain-specific data that the Task Pro-
cessing Component will handle. When designing data structures, meta-
information included in tasks should be defined. The more meta-data
considered, the more fine-grained queries could be. On the other hand,
including great amounts of metadata supposes to move complexity to the
Orchestration Component since this is the component in charge of pro-
viding this information.

Task Processing Component. Components of this kind define a set of ref-
erences according to the information elements they require –or they need
to generate– to complete a specific task. SDO API is used to compose
the resulting message that is returned to the Orchestration Engine. In the
component specification, wires are defined to determine which Identifica-
tion Components are providing the defined references.

Identification Component. This component provides a bidirectional in-
terface to allow subscriptions. Task Processing components that are sub-
scribed to a particular Identification Component should implement the
corresponding callback interface. Identification Components can be con-
nected to the Task Manager to trigger the activation of certain tasks.
They can be also connected to Task Processing Components to trigger
their completion.
For the definition of Capturers, Minters, Data Providers and Transforma-
tions an implementation of the corresponding interfaces should be pro-
vided. These components can be implemented using several technologies.
Fig. 3.7 shows Java interfaces defined for Capturers. Capturers should
implement the Capturer interface. This interface defines a read method
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Fig. 3.7. Bi-directional interface for the capturers

for retrieving the current detected identifiers and a subscribe method to
receive identification notifications. The subscribe method is executed asyn-
chronously –see the OneWay SCA annotation– so execution can continue
without waiting for a response. The Capturer interface is associated with a
callback interface –see the Callback annotation in the Capturer interface–
that should be implemented by the classes that make use of Capturers.
The callback interface implements two methods that are used in response
of the previous ones. The id readed method returns the captured identi-
fiers. The read updated indicates the occurrence of an event in the Cap-
turer.
In addition to Java, for our implementations OSGi is quite interesting to
obtain some dynamic capabilities for services.

Reconfiguration components. Characterization, Analyzer and Reconfigu-
ration components are implemented in Java. Policies are defined using
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XML, so they can be easily handled thanks to SDO. The XML names-
pace notion is used to avoid name collision when dealing with multiple
properties. Service qualification is also defined in an external XML file, so
it could be easily updated without affecting the system. When new polices
are activated, their constraints are considered and the resource descrip-
tion file is accessed to indicate which resource fulfills better the required
properties.

User Interface Components. Apache Tuscany allows the implementation
of components using different technologies. For simple user interfaces
HTML and Javascript offering a json-rpc4 based communication, have
been used. For more advanced user interfaces, Java libraries for the de-
sign of graphical user interfaces and visualization techniques have been
also used.

3.5 Mock Platform

Once the technology for the architecture has been decided, it is important to
define a mock platform for developers. With a mock platform, developers can
run tests locally as early as possible. The choice of SCA and SDO as target
technologies offers good properties to be used as a mock platform.

SCA is based on the Dependency Injection Pattern. Components declare
their dependencies and the application wiring is defined in an external asset.
Thus, components are easily interchangeable as far as the replacing compo-
nent provides the same interface than the replaced one. This allows an easy
definition of mock components for test purposes.

At the data level, SDO makes it possible to hide the back-end data source,
as it offers homogeneous access for XML, relational or file based data sources
among others. This allows a seamless migration from a mock platform –e.g.,
based on static XML files– for testing to a production environment –e.g, based
on Web Services.

4 http://json-rpc.org/
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3.6 Vertical Prototype

In order to validate the defined architecture we have implemented an appli-
cation based on the Smart Toolbox (Lampe et al., 2004) case study, a repre-
sentative application in this domain. This case study consists in monitoring
the tools used for aircraft maintenance tasks. During aircraft reparations, the
system should prevent tools from being lost and causing potential damage.
In order to do so, the content, the location and the carrier of the toolbox
is sensed automatically in real-time. This application improves the aircraft
Maintenance, Repair, and Overhaul (MRO) process in an unobtrusive man-
ner, so it fits perfectly in the application domain targeted in this work.

In this stage of the architecture development the focus is on testing the
non-functional requirements, so only a small subset of the functional require-
ments were considered for the development. Development was focused on one
of the process tasks that consist on the reparation of planes. During repa-
ration, the toolbox content is monitored. When the reparation is completed,
the system checks that the toolbox contains all the previously assigned tools
–avoiding tools to be accidentally forgotten and causing any damage. Repair-
ing task completion is automatically informed by a location change. When
the toolbox detects that the mechanic is leaving a certain location, the task
is automatically considered as completed.

Fig. 3.8. Smart Toolbox prototype
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Figure 3.8 shows an screenshot of the developed prototype. This proto-
type integrates different identification technologies. Mechanics and locations
are identified by textual labels while tools contained in the toolbox are identi-
fied by fiducials (Bencina & Kaltenbrunner, 2005) –two-dimensional barcodes
specially designed for real-time video camera recognition.

For the minting of text labels and fiducials, a common printer was used.
For capturing physical elements, different technologies are used. Textual labels
are transferred to the system using a web interface. For fiducials, the Fiducial
Capturer Component wraps the reacTIVision framework5. A wide-angle lens
webcam was used as a capturing device. The window at the right hand side
of Fig. 3.8 shows the images acquired by the reacTIVision framework. Paper
labels with a printed fiducial –accompanied by an illustration of the tool
kind– are used to detect the content of each toolbox –a wrench, a screwdriver
and gloves for the example. At the left hand side of the figure, there is a
representation of the information present at the digital space.

Since the support for WS-BPEL in Tuscany is quite recent, some prob-
lems were found with the Orchestration Component, so an external Process
Execution Engine –Intalio BPMS6– was used instead, using the Web Service
binding for the communication with the Task Manager.

This solution increased the reliability of the system but performance was
sacrificed by the use of Web Services. Since the architecture is intended to sup-
port long-running processes, this performance reduction was not considered
meaningful.

3.7 Consolidation of the Architecture

In order to stabilize the architecture concepts, define better the programming
model and adjust the technology mapping; we have applied the architecture to
two existing case studies. These case studies came from both, Business Process
Management area –not dealing with real-world elements– and the AmI area
–not considering business process aspects.

Introducing the defined architecture for the development of these case
studies offers two complementary visions of the benefits this architecture pro-

5 http://reactable.iua.upf.edu/?software
6 http://bpms.intalio.com/
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vides. On the one hand, BPMs can be extended to consider real-world ele-
ments. On the other hand, AmI systems can become process-aware; adapting
to the user specific needs for each task. The comparison with the original
systems was useful as feedback to improve the architecture.

The considered case studies are (1) the complete version of the Smart
Toolbox and (2) the Smart Library case study. The Smart Toolbox case study
extends the developed prototype to cover the whole MRO process as it was
described in the original case study. The Smart Library case study describes
a library where members can borrow books in a self-service fashion.

Both case studies have been implemented following the present architec-
ture and have been also used as testbeds for the development method pre-
sented in this work. More detail about the development of these case studies
–including specification and implementation aspects– is provided in Chap-
ter 6.

3.8 Conclusions

The present chapter introduces an architecture for the support of business
processes where real-world elements are involved. The architectural process
followed in its design decouples the architectural concepts from the particular
technological choices. In this way, the architecture becomes long-lived and can
survive the technological evolution of the system.

A programming model is defined for this architecture with support for the
testing of the resulting systems. The architecture has been used in several case
studies to freeze the architectonic concepts and check that the technological
decisions can fulfill the requirements for the applications faced in this work.

Therefore, this architecture responds to the needs derived from the integra-
tion of real-world elements in business process. The following chapters build
on top of this architecture new concepts and methods to ease the development
of this kind of systems.
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Automating the Development

One of the main reasons for following the current architectural process is
that it is focused on automation. Business process requirements change quite
often, and systems need to evolve accordingly. By automating the development
process, the system can adapt to requirement changes without losing quality.
Thus, changes in requirements can be mapped automatically to the particular
technology the system relies on, facilitating its evolution.

In order to automate the development process, system descriptions should
be machine-processable. Modeling techniques can play a key role in this pro-
cess. Models are communication artifacts expressed by some kind of language.
Modeling languages can take the form of arrows and boxes, text or even
speech. But the important thing is to capture the rules that represent this
language in a precise way to allow an unambiguous use. In order to determine
which constructs can be used to define a model, a metamodel –this is, the
model of a modeling language (Favre, 2004)– is used.

Provided that metamodel concepts are defined in a precise way, models
can be transformed automatically into new models by means of model trans-
formation techniques. This enables automation in system development since
artifacts can be derived in a systematic way. Many technologies and standards
give support to this development paradigm. For example, the Object Man-
agement Group (OMG) defined Model Driven Architecture (MDA) (Miller &
Mukerji, 2003) to provide support to these ideas with standards for metamod-
eling and the definition of model transformations.
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Either following MDA or any other paradigm based on MDE ideas, soft-
ware development can be improved by the raise in the abstraction level that
the use of models provides.

To allow the description of a system based on the architecture concepts
introduced in this work, these concepts must be precisely defined. The present
chapter uses modeling techniques to formalize concepts and raise the level of
abstraction in the development of the kind of systems this work is dealing
with.

The rest of this chapter is organized as follows: Section 4.1 details how the
architectural concepts have been formalized. Section 4.2 provides mechanisms
to avoid repetitive tasks in the development. Section 4.3 defines modeling
primitives to capture the requirements of this kind of applications. Finally,
Section 4.4 concludes the chapter.

4.1 Architecture Metamodel

MDE proposes the use of metamodels to formalize concepts and their rela-
tionships. A metamodel defines the constructs that can be used to describe
systems. Using a metamodel, system descriptions become unambiguous at
least at syntactic level. This makes the descriptions machine-processable.

The architecture metamodel has been defined as the first step towards
the automation of the development process. This metamodel captures the
concepts defined in Section 3.2 such as the Identification Component or the
Task Processing Component, and the constraints for their composition.

Fig. 4.1 shows a diagram for the architecture metamodel. The AmiBizSys-
tem metaclass is the root element that represents the whole system. Elements
from the system infrastructure appear as optional metaclasses for which only
one instance is allowed in the system. It is the case of the Orchestration Com-
ponent, Task Manager or the Adaptation Component that includes adaptation
related components – such as Characterization, Analyzer and Reconfigurator
components.

Domain-dependent elements –such as Identification or Task Processing
components– can appear more than once in a system. So, they have a name
–they extend the Named Element metaclass– to distinguish each instance.
The system functionality is organized in Services. The notion of Service is
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extended in the metamodel to define identification-related components such
as the UI Component for user interfaces and the Identification Component.
The Identification Component can make use of other services to achieve iden-
tification tasks.

It is worth noting that since the Identification Component is also a service,
Identification Components can be used by other Identification Components.
This is useful for handling containment relationships. For example, in the
Smart Toolbox example, a component detects the tools contained in the tool-
box and another component makes use of it to provide the detection of the
toolbox.

Fig. 4.1. Architecture metamodel

By using the constructs defined in the metamodel, different systems can
be modeled. This enables the resulting models to be processed automatically
by different MDE tools. For the definition of the architecture metamodel, con-
cepts have been formalized using Ecore. Ecore, part of the Eclipse Modeling
Framework1 (EMF), is a language targeted at the definition of metamodels
1 http://www.eclipse.org/modeling/emf/
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with precise semantics. EMF provides tool support for the definition of meta-
models and the edition of models.

4.2 Glue Code Generation

The technology mapping generally involves several repetitive tasks. For our
target technology, the definition of each Identification Component involves
actions like the definition of a Java class that extends the IDComponent in-
terface, the use of SCA annotation to indicate the SCA container that an
identification service is provided and the definition of the component in the
XML configuration file. This boilerplate code can be automatically generated
by the information captured in system models. In this way, developers can
focus on implementing only relevant business-logic.

From the description of a system following our defined metamodel, source
code can be generated with model-to-text transformations.

Glue code generation have been implemented using Xpand templates from
openArchitectureWare2. The application of templates to models is similar
to the way templates are used to generate dynamic web pages in the web
application development area. Model elements can be iterated and pieces of
code can be produced instantiating them with values obtained from the model.

The current implementation generates the SCA configuration file for the
system, and the Java classes that are required for the implementation of the
different components. SCA annotations and method declaration is also gener-
ated. Although full code generation is not provided for component implemen-
tation, the provided code skeletons let developers focus on the implementation
of the business-logic behavior, avoiding to deal with particular details of the
target technology. Since the SCA specific artifacts are generated, the use of
SCA is made transparent to the developer, who only has to deal with Java
programming.

2 http://www.eclipse.org/gmt/oaw/
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4.3 DSL-based Specification

In order to face the construction of the kind of systems this work is dealing
with, a Domain Specific Language (DSL) is defined. In this way, requirements
regarding identification in business processes can be defined in a natural way.

DSLs describe concisely problems of a certain domain. Thus, domain
knowledge is vital for the definition of a DSL. Prior to the design of the
language, the analysis of the domain is necessary. In order to do so, the
following steps are required (van Deursen et al., 2000; Deursen & Klint, 1997):
(1) identify the problem domain of interest, (2) gather all relevant knowledge
of this domain, and (3) cluster this knowledge in a handful notions and oper-
ations on them.

The present work deals with Information Systems that integrate real-world
elements to support business processes in an organization. This definition of
the domain is quite broad but this work is focused on applications where this
linkage is highly exploited and identification –especially Auto-ID– is relevant.
These systems contain several elements suitable to be identified by means of
potentially different technologies.

Once the domain is identified, relevant knowledge of this domain
should be gathered in order to characterize it. For the domain of interest in
this work, the core concept is the identification mechanism. The identification
mechanism is in charge of preserving the real-virtual linkage.

Systems for the Internet of Things integrate different services –sensors and
actuators– seamlessly in the environment. Identification mechanisms can be
considered as a specific kind of sensor and actuator combination –e.g., a print-
ing service combined with a barcode reading one–. However, some properties
specific to identification, not present when considering these sensors and ac-
tuators independently, emerge when they are part of an identification system.
These properties are described below.

Limited replaceability. The functionality that an identification system
provides is well-known (Kindberg, 2002). Functions to create or acquire
identifiers are common to any identification technology. However, in con-
trast to common sensors, the replaceability of services involved in identi-
fication is quite limited. Replacing a barcode reader by an RFID reader,
despite its common functionality –capture an identifier and transfer it to
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the digital word– is not trivial. Some compensatory measures –such as
label all products with RFID tags if it was not done preventively– should
be taken for this change to work. On the other hand, some services can
be re-used with no problem. A printing service can be used to produce
both, a barcode or a numeric label.

Multiplicity of the real-virtual linkage. The relation between physical
elements and their virtual counterpart is not always one to one. Phys-
ical elements can share the same identifier –i.e., products that are la-
beled indicating their product type– or contain multiple identifiers –i.e.,
a human-readable numeric code accompanying a barcode–. This suggest
that identification between physical and digital worlds is not conceived as
an identity relation in the mathematical sense, but it is more close to the
ideas of the Counterpart Theory (Lewis, 1968).

Distributed processes. Another particular aspect about systems of this
kind is that they usually expand across organizations and they involve
diverse computing resources. Labels are commonly produced by one sys-
tem and read by many different systems with the potential need to share
information among them. To support a whole business process, several
systems need to be integrated.

In order to cluster the knowledge about the domain providing a good
separation of concerns, the modeling primitives that constitute the DSL are
structured in six perspectives. These perspectives are related to data struc-
ture, business process definition, technological aspects, services, interaction and
policy properties.

The following subsections provide more detail about these modeling per-
spectives defining the concepts by means of a metamodel and illustrating3 the
use of the primitives by means of an example based on the Smart Library case
study –for more detail about this case study, see Chapter 6.

4.3.1 Data Perspective

The data perspective represents the available information at the Digital Space.
Pieces of information are organized in classes and relationships between these
3 The concrete syntax used in examples is not normative. Further research is needed

to determine the best concrete syntax –either graphical or textual– in terms of

intuitiveness and comprehensibility.
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classes. The relevant information for all the members of a class is expressed by
means of attributes. It can be modeled by means of a class diagram. Instead of
using a complex metamodel such as UML2, a metamodel suited to the needs
of this work has been defined to capture data structure as it is illustrated in
Fig. 4.2.

Fig. 4.2. Metamodel for the data perspective

The DataModel metaclass is the root element of the data perspective. To
define the information handled by the system, it includes basic types, classes
and associations. Basic types are defined explicitly, to promote extensibil-
ity and avoid dependencies with specific platform types, no basic types are
predefined.

Classes are formed by attributes and operations that can contain different
parameters. Regarding associations, only binary associations are considered.
Associations can be directed or bidirectional, and composition is considered
a particular case of directed association. The cardinality for association ends
considers only the four values defined in the CardinalityType enumeration
–optional, one, many and oneOrMore– not accepting intermediate values.
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Example

In the library case study, the data model includes different classes such as
Book, Shelf, Member and Loan. Figure 4.3 illustrates by means of a Class
Diagram some of the classes defined for the example.

Fig. 4.3. An example of data model

Attributes are used to define the relevant information for these entities
such as the book title or the member sanctioned status. The different associ-
ations allow to determine which shelf is a book assigned to or which member
has borrowed a certain book. Operations to allow the lending and return of
books are also defined.

4.3.2 Business Process Perspective

The present work relies in BPMN for business process description. Since
BPMN has not support for handling real-world elements explicitly, an exten-
sion is proposed to cope with this kind of elements. The BPMN metamodel
used is the one defined by the Eclipse SOA Tools Platform (STP) Project4.

The Physical Object primitive is introduced as an extension of the BPMN
Data Object to define real-world elements that are involved in a process task.
Physical Objects can be required or generated by a task, depending on this,
the association between the object and the task is defined in one or another
direction. When a task needs the information associated to a Physical Object,

4 http://www.eclipse.org/stp/
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the direction of the association is from the object to the task. On the contrary,
when the Physical Object is generated by a task, the association is defined in
the opposite direction.

Physical Object primitive has the following attributes in addition to the
ones such as name or documentation that are inherited from the Data Object
element as indicated by the BPMN specification:

Class. This attribute determines the element from the data model this Phys-
ical Object is representing. In this way, the structure of the information
associated to a Physical Object is defined.

Mediums. This attribute contains a list of the mediums used to represent
the identifier of a given Physical Object. When multiple mediums are
present, the identification is replicated using each one.

Multiple. This boolean attribute defines whether many objects of the same
kind or just one can be involved in the business process task. Allowing
the detection of multiple objects at the same time will have an impact in
the way users interact with the system.

Used for correlation. This boolean attribute indicates whether a Physical
Object can be used to find the current process instance. Physical Objects
that can participate only once in a process instance –such as a book in a
loan– are good candidates for correlation.

Example

Members and books are involved in the business process defined for the library
loans as shown in Fig. 4.4. The Physical Objects represented in the figure are
associated with the corresponding classes defined in the data perspective. For
the pick up book task, members are identified using paper and radio mediums.
Later this could imply to attach and RFID label to the member card and
include a written identity number on it.

The use of Physical Objects for correlation is also illustrated in the exam-
ple. Books –identified in a radio medium– are used to determine which is the
process instance for the return book task. This implies that, for a member,
returning a book could be as easy as dropping it in a box.

Objects involved in correlation are represented with a thick border in the
figure. However, the design of a concrete syntax for the DSL falls out of the
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Fig. 4.4. An example of business process model

scope of the present work. So the syntax used for illustrating the DSL by no
means is normative.

4.3.3 Technological Perspective

The technological perspective represents the possibilities that exist to connect
the data elements with the services used for identification. Several primitives
are defined to make this relationship as flexible as possible. The defined prim-
itives are mediums, codifications and technologies. The identity of an element
is expressed following a codification at the Digital Space. This identity can be
represented in the Physical Space in different mediums and some technologies
are able to handle the movement of information between both spaces. Fig-
ure 4.5 illustrates the relationship between these concepts by the excerpt of
the DSL metamodel that captures the technological perspective.

Fig. 4.5. Metamodel for the technological perspective
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The identity of objects can be present in the physical world in different
forms. Mediums are physical supports for identifiers. For instance, a sequence
of bars on a paper or a radio wave emitted by an RFID tag.

Mediums can be defined as needed. For each medium it should be indicated
the codifications and technologies it supports. Codifications represent a family
of identifiers. Codifications usually are based on numbering schemata such as
Electronic Product Code (EPC) and are used to encode some of the classes
defined in the data perspective.

Technologies in this context are defined as families of services that can
be used for a certain codification in a given medium. A technology can sup-
port different service types –e.g., minters and capturers– and to do so, sev-
eral resource types can be required. The Function metaclass defined in the
metamodel represents this relationship between service types, technology and
resource type.

Example

For the library example, different mediums are defined –see Fig. 4.6. Mediums
are related in a hierarchy to specialize them in groups with shared properties.
In the example, numbers on paper is a kind of paper medium. The paper
medium requires line of sight to allow the extraction of the identifier. Two
specializations are defined to distinguish an identifier expressed by means of
numbers –readable by humans– from one expressed by means of an image
–more likely to be processed by a machine.

Fig. 4.6. An example of mediums in the technology perspective

Two codifications are defined in the example, Electronic Product Code
(EPC) and Consecutive Numbering. EPC is the codification proposed for
RFID while Consecutive Numbering codification consists in the sequence of
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natural numbers. Therefore, Consecutive Numbering is much simpler than
EPC, but there is not guarantee of global uniqueness of the generated identi-
fiers in different organizations, so it is not well-suited for inter-organizational
processes.

Technology Function Resource Type

RFID capturer, minter RFID antenna

Fiducials capturer video camera, photo camera

minter printer

Text label capturer keyboard, keypad

minter printer, pen

Table 4.1. Technologies and related resources

Technology Codification Medium

RFID EPC radio

Fiducials Consecutive numbering image on paper

Text label Consecutive numbering, EPC text on paper

Table 4.2. Mediums and codifications for the different technologies

The technologies considered for the example are RFID, Fiducials and a
simple text label. The relationship among technologies and resource types is
captured in Table 4.1. This information indicates which resources are needed
to provide a certain service for each technology –the production of Fiducials
and Text labels can be done using a printer. Technologies are considered to
provide different functions. For each function several resources can be used.
These resources are considered alternatives, requiring only one of them to
provide the corresponding function –e.g., Fiducials can be captured either
using a video or a photo camera.

Table 4.2 captures the relationship among technologies, codifications and
mediums for the example. The codifications and mediums supported for each
technology can be useful to detect codification incompatibilities –e.g., the
radio and image on paper have no codification in common.
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4.3.4 Services Perspective

The service perspective defines two main primitives, Service Type and Service.
A Service Type represents a certain functionality and a Service represents a
particular instantiation of a service type in a given context. For example,
considering the capturer service type used for identification, several services
can be defined such as the mailbox capturer –to identify new postal mail– or
the fridge capturer –to detect when some goods are lacking in the fridge.

Fig. 4.7. Metamodel for the services perspective

The context of a Service is defined by the business process task this service
is used in –indicating the Physical Objects that make use of this service. In
addition, services can be attached to elements of the system. In the toolbox
example, a tool detection service is included in each toolbox. This has two
consequences, (1) each tool detection should include information about the
toolbox in which it was detected, and (2) when a new toolbox is created,
some resources should be used to incorporate the desired functionality –e.g.,
installing an RFID antenna is needed each time a new toolbox is created.
These relationships are illustrated in Fig. 4.7.

A service that is not attached to any physical element can be also replicated
–e.g., forming a network of capturers– but it acts as a whole, not distinguishing
the replica in which the detection took place. When this context information is
required, services should be attached to the element that provides the required
context information.
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Example.

In the library example, shelves are equipped with capturing devices in order
to detect when a book is taken or returned to the library. In order to represent
this, a Shelf Detector service is defined –as illustrated in Fig. 4.8. This service
is present in every library shelf and it is used for the detection of books and
members in the Pick up book task, and the detection of books in the Put on
shelf task. The technology used is RFID.

Fig. 4.8. An example of services model

Assigning more technologies implies installing more resources to each li-
brary shelf and checking codification compatibility. If fiducials were also used
as a technology, on the one hand, a video camera –or a photo camera– should
be installed in each shelf. On the other hand, books should use the Consec-
utive Numbering codification in addition to the EPC since Fiducials do not
support the EPC codification –as stated in the technological perspective.

4.3.5 Interaction Perspective

Users can handle physical elements in different forms. The interaction perspec-
tive defines interaction patterns to permit a natural participation of users in
the business process. The defined primitives in this perspective –see Fig. 4.9–
extend the Task and the Physical Object concepts with interaction properties.

The Ready Signal metaclass defines the possible ways in which the com-
pletion of a task or the detection of an element are triggered. The following
patterns are considered:
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Fig. 4.9. Metamodel for the interaction perspective

Cardinality. Once a certain number of elements are present, the detection is
considered complete. The number of elements should be configured. The
default cardinality is 1, implying that once any element is detected, the
capture is finished.

Time. Since the task is started, there is a limited amount of seconds to com-
plete the task. At the end of this time, the elements detected in this cur-
rent moment are the ones captured and task is considered automatically
finished.

Explicit. Mechanisms are provided to users in order to allow them to in-
dicate when detection is finished and a task is completed. This method
provides users with more control of the process, but the process efficiency
is penalized.

Implicit. The completion in the detection of a certain object, can trigger the
completion of the current task or object detection.

By Service. The execution of a service –not related with identification– can
trigger the completion of the current task or object detection.

Physical Objects in addition have a boolean attribute to indicate if the
detection requires to provide feedback to users. Is worth noting that there
could be a mismatch between the multiplicity offered by the identification
technology and the one desired –as indicated in the business process model.
For example, barcodes –readable only one by one– are commonly used at
supermarkets to check the content of a shopping cart –normally containing
several products. On the contrary, RFID-enabled passports are read one by
one, being RFID technology capable of reading multiple items at a time.
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In order to handle this mismatch, the way in which the user interacts with
capturers can be also specified indicating one of the following modes:

Scan. The detected elements are those identified in a given instant. Capturing
many objects at the same time is only possible if the underlying technology
supports it.

Add. Each element identified is added to a selection. When the ready signal
is produced, all the detected elements are considered as captured. This is
the mechanism traditional supermarkets use to indicate to the system the
products of a shopping cart.

Remove. An element is detected when, being detected in a given moment,
it is removed and not detected again. This mechanism is useful for tech-
nologies that allow the detection of multiple elements, when the interest
is in which element becomes absent.

Appear. Elements are detected when they are identified but the reader must
be empty before and after the detection. Multiple elements are not al-
lowed, resulting in no detection. This method is useful to offer an explicit
identification.

Another important aspect to specify in interaction terms is the error han-
dling mechanisms used. When retrieving the information associated to a de-
tected element, some errors can be produced. The detected error pattens are
described below.

Error when not found. In the normal case is considered an error that an
element lacks associated information. The physical identifier can be read
by the system but the system has no information about this element. This
error is probably caused by skipping some process step where information
about the element is created.

Error when found. This approach expects that elements are not associated
with any information when they are identified in order to create this infor-
mation. In this case an error is considered when information is found. The
detection of an element triggers the creation of a new piece of information
attached to this element.

Avoid errors. A combination of both behaviors is also possible. If a piece of
information is found for an element, this information is selected. In case
it is not found, a new piece of information is created.
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Example

An excerpt of the interaction patterns for the library example are illustrated
in Fig. 4.10. The Pick up book task uses an implicit completion pattern, so it
is completed when a book and a member are detected.

Fig. 4.10. An example of interaction model

The detection of members in this task is based on cardinality –one mem-
ber is detected– and feedback is provided to the member when this happens
to make explicit the interaction. In addition, members should be previously
registered in the system, if a non-registered member is detected, an error is
produced.

The interaction mechanisms chosen –appear for members and scan for
books– allows for the following way of acting. Members can put the book on
a special part of the shelf and by approaching their member cart –if no other
member card is near the reader–, the task is completed providing feedback to
the user.

4.3.6 Policy Properties

In order to capture the different ways in which the system can behave, proper-
ties are defined. These properties are used to qualify resource types regarding
its fulfillment degree. When some requirements –expressed by means of asser-
tions contained in a policy– are stated, the resources that better fulfill these
requirements are chosen.
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Fig. 4.11. Metamodel for the policy properties perspective

As it is shown in Fig. 4.11, assertions and property fulfillment is expressed
in terms of properties. Three degrees are considered for expressing the fulfill-
ment –none, partial and complete. However, four different qualifiers –required,
preferred, discouraged and forbidden– can be used for assertions.

The definition of policies enables a dynamic behavior for system services
that provides a great flexibility in the evolution of the system. If a new resource
type is also supporting a given property, it only has to be qualified in order
to take profit of its capabilities.

Example

In the library example, each time a member takes a book, feedback is pro-
vided. In this way, the process of borrowing a book is notified to the member.
Notification can be performed in different ways such as using a light bulb
that flashes or a a speaker that makes a beep. Considering the silent ambient
of a library, the use of a light is preferred. However, some visually-impaired
members require a feedback mechanism not visually demanding.

In order to capture this, in the example –see Fig. 4.12– a service is defined
to perform the feedback and it is associated to a Beepers technology. This
technology represents all the devices that can be used to provide a warning
to the user by means of any sense –e.g., visually, acoustically, vibration, etc.
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Fig. 4.12. An example of resource qualification to support policies

In the example the considered properties are the acoustic and visual behavior
offered by the considered resource types –a light bulb and a speaker.

Given this resource description, a general policy could be defined where an
acoustic behavior is discouraged. With these policy feedback would be offered
using light as default. A policy for visually-impaired users can determine that
the visual behavior should be forbidden for them. In this way, the system can
adapt to the particular needs of each user, using the speaker only when it is
really needed.

4.4 Conclusions

In order to apply MDE principles, this chapter provides concept formalization
and abstraction raise for the development of the Internet of Things. The ar-
chitectural concepts are formalized by means of metamodeling. In this
way, the architecture can be used at modeling level. This architectural defini-
tions can be transformed automatically in a specific technological solution by
means of the glue code generation that automates the technological map-
ping. So, developers have only to deal with specific business logic not worrying
about architectural constraints.

A DSL is defined in order to face the specification of requirements about
the physical-virtual connection by means of concepts that can be easily under-
stood by the different stakeholders. These concepts are also formalized using
metamodels. This constitutes the foundation for the development method in-
troduced in next chapter.
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A Model-based Development Process

The modeling primitives defined in Chapter 4 are useful for capturing the
requirements regarding business processes where real-world elements are in-
volved. The present chapter introduces a development process that determines
how to define these models and from them obtain a technological solution
based on the architecture defined in Chapter 3 in a systematic way.

The presented development process has been designed to allow a clear
separation of concerns and minimize the impact of changes in re-
quirements. On the one hand, the elaboration of the different models can be
achieved by different development groups with different skills. For example,
the definition of the business process activities does not require any knowl-
edge about Auto-ID technologies. On the other hand, the process follows an
iterative and incremental approach for development, so the complexity of re-
quirement changes can be handled effectively.

Is worth noting that the presented method is only focused on identification
aspects. In order to derive a complete software solution, different aspects
should be also considered depending on the domain needs. Techniques to
model these aspects can be selected from the literature (Krogstie et al., 2007)
depending on the desired expressivity.

The remainder of this chapter is structured as follows. Section 5.1 pro-
vides an overview of the development process. Section 5.2 defines the steps
that should be followed in order to capture system requirements by means of
modeling primitives. Section 5.3 provides the guidelines for verifying the ob-
tained specifications. Section 5.4 defines the steps for translating the system
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specifications to the final software solution. Finally, Section 5.5 concludes the
chapter.

5.1 Method Overview

The present section provides an overview of the model-based development
method introduced in this chapter. The development method is formed by a
set of steps carried out by different actors. The roles involved in the develop-
ment and the different coordinated activities that constitute the development
process are detailed below.

5.1.1 Roles in the Development

Different roles are involved in the development process in order to provide
flexibility in the organization according to the project size. Development roles
can all be played by the same person if the project is small, or they can be
shared among different groups of developers for large projects. The method
considers the following five roles: Business Analyst, System Analyst, System
Architect, System Developer and Driver Developer.

Business Analyst specifies the business process that the system is intended
to support. System Analyst defines how system functionality is organized, how
the users are going to interact with the system and the policy definitions.
System Architect defines which resources are used to offer the functionality
needed by the system. System Developer translates the knowledge captured in
the defined models and expresses it in architecture concepts implementing the
remaining functionality. Finally, there is a need for a Driver Developer whose
mission is to develop the software adapters to enable the different devices to
be used in the system. For instance, if the system is implemented using Web
Services, a Web Service wrapper should be created for the devices that are
not based on this technology.

5.1.2 Development Phases

Models are the main assets in the process. System requirements regarding
identification in the business process are captured by models. The method
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proposes the use of familiar notations for the domain experts using Domain
Specific Languages (DSLs) (van Deursen et al., 2000), the validation of the
system prior to its construction and the systematization in the development
of the final code for specific platforms. The method proposes three stages:

DSL-based specification of the system. Using the modeling primitives
defined in Chapter 4, the requirements for the system are captured. This
phase requires several iterations to ensure that the captured requirements
fulfill the real needs. Different roles are involved in this stage including
the Business Analyst, System Analyst and System Architect.

Model-based verification. System specification should be analyzed to check
some constraints imposed by technological limitations. This is done auto-
matically thanks to model validation tools.

Translation to architecture concepts. Once the requirements stated by
models have been validated, a model of the system is defined at architec-
ture level. Guidelines are provided to systematize the development of the
architecture model. Once the architecture model is defined, glue code is
generated automatically and the remaining functionality is implemented.
System Developer and Driver Developer roles are involved in this stage.

5.2 DSL-based Specification

The explicit definition of the business process is central to the system speci-
fication. Business process tasks become the basic unit of work during devel-
opment. Once a set of tasks is detected as part of the business process, the
development process can be applied to this set of tasks. Therefore, tasks are
used to modularize the system functionality and organize the development.
Following the development process iteratively, a prototype of the system–
including the considered tasks– is obtained. Then, feedback from users drives
changes in requirements and the detection of new tasks of the process. In this
way the initial prototype can be evolved to the final solution.

Figure 5.1 gives an overview of the development activities considered in
the method using BPMN notation. Activities and the roles in charge of them
are illustrated in the figure.

1. The first step in the system specification is the definition of the busi-
ness process by the Business Analyst. This definition is not intended to
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Fig. 5.1. Activities for the system specification

be complete, it can include from one task to the whole process. For the
tasks involving real-world elements, the mediums used should be identi-
fied. In this way, the Business Analyst states the requirements for identi-
fication.

2. The System Analyst defines the services present in the system, the inter-
action mechanisms offered by the system, and the relevant policy proper-
ties and assertions. This supposes organizing system functionality, defin-
ing how users interact with identification services and defining high level
properties that are considered relevant for the system.

3. The System Architect selects the most appropriate technologies for each
identification service. In order to do this, a technological catalogue is elab-
orated. Then, the System Architect assigns the most adequate technology
for each service. In addition, policy property fulfillment is defined for each
resource type.
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The following sections provide more detail of the different steps of the
development process.

5.2.1 Business Process Specification

The specification of the business process activities is useful to detect the tasks
where real-world elements are involved. Physical elements can be involved in
the process because of their detection or their creation. In any case, regarding
the information flow, it should be defined (1) the structure of the associated
information and (2) the requirements related to their identification.

Information structure. A Class Diagram can be used to capture relevant
entities, their information and the relationships that connect this infor-
mation. The data model should not include any artificial attribute for
identification. In this way, information is decoupled from the way in which
it is identified.
When modeling real-world elements it is important to decide at which
granularity level information is defined. This also depends on the identifi-
cation granularity level used in the system. For example, if the products
of a supermarket are labeled on an individual basis they could have an
individual price potentially different from other products of the same type
–e.g., based on expiration date. In this case, the price should be defined
as an attribute of the product. However, if all the products of the same
type have the same price, price attribute should be considered as part
of the product type. Even more, if all the relevant information is about
the product type, is the product type identifier what should be present in
each product label.

Requirements for identification. Requirements for identification are de-
fined by indicating the mediums used for each Physical Object. The
medium concept is still technological-independent but the definition of
mediums is useful for guiding the later technological decisions.
For the Business Analyst the image on paper medium is related to an
identification mechanism that requires direct line-of-sight and it is easy to
process by machines. But the analyst does not need any knowledge about
the technologies that support this medium –e.g., using fiducials with a
video camera or QR Code with a photo camera from a mobile phone.
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In addition, the need for alternative identification –e.g. enclose the ma-
chine processable identifier with a more human-usable one– is expressed
by indicating multiple mediums. By combining different mediums their
weaknesses can be palliated.

Regarding process guidance, it is important to determine whether Phys-
ical Objects are used for correlation or not. When used for correlation, the
process can become more fluent specially if the detection of a certain object
can determine unambiguously the process instance. In the library example,
when returning a book it is clear to which process instance it belongs since
one book can be involved in only one loan at a time.

5.2.2 Service Definition

In order to support the different business process tasks, services are defined.
Services of very different kinds exist, but this work is specially focused on
identification-related service types.

Services can be shared and replicated. On the one hand, identification
services can be shared among different tasks and/or Physical Objects. For
example, due to economical restrictions a company can use a single printing
service for the minting of all the identification labels for any task of their
business processes.

On the other hand, services are not restricted to be offered in a single point
in space and time. A service defined once in the specification can be accessible
from different contexts. However, if the context from which it is accessed is
relevant, it should be indicated in the specification. In order to do so, services
can be attached to a data element –e.g., a reading service in each office of a
department or each shelf of the library. This information is interesting at run-
time –the system should know in which context the detection is produced–
but also at deploy-time for guiding the system installation.

Identification services –Capturers, Minters, Data Providers and Transfor-
mations– provide a well-known functionality. However, for the rest of the ser-
vices, some methodological approach such as PervML (Muñoz & Pelechano,
2005) could be followed for their specification. How to integrate the service
definition within the presented development process falls out of the scope of
the present work.
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5.2.3 Technology Description

The technological description captures the requirements for identification at
technological level. The existing technological solutions, the mediums they
support and the resources they need constitute the technological catalogue.
This is a reusable asset that can be useful for projects of very different do-
mains. Each time a new technology is available, it should be included in the
catalogue.

The System Architect given the mediums detected by the Business Analyst
can choose the best technology that fulfills the requirements stated for each
medium. This include the compatibility of supported codifications but also
other requirements stated in natural language –e.g., not requiring line-of-sight
for identification, to be human-processable, etc.

The System Architect uses the technology catalogue to assign the resources
each service demands. For example, if the catalogue states that a RFID-based
capturer requires an RFID antenna, and the system has a capturer service for
each room of a house, then an RFID antenna should be placed in each house
room for this service. The catalogue restricts the possible resources that can
be assigned to a service to allow only the technologically compatible.

Many types of resource can be assigned to a service. If these services
are considered alternatives, policy property fulfillment can be indicated to
differentiate them. In this way, the system can choose, between the different
alternatives, the one that better fulfils the policy requirements in a given
moment.

5.2.4 Interaction Specification

One of the most important properties for the systems this work is dealing
with is the unobtrusiveness. The presence of an Information System should
not force people to act artificially. When defining the interaction mechanisms
for each Physical Object in a business process, the deviation from the natural
way of performing an activity should be kept to a minimum, offering the most
natural way of interaction to users.

The System Analyst should determine for each task if the completion of
the task can be determined automatically, or it requires explicit confirma-
tion by the user of the system. For each Physical Object, interaction patterns
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should be selected according to the natural affordances of objects. For exam-
ple, identity cards are usually shown and hidden in a one-by-one basis; on the
contrary, many products are normally present in a shopping cart at the same
time –so detecting all of them at the same simultaneously is preferred.

The error conditions are another aspect that has an impact in the process
fluency. System Analyst should consider what happens when information is
lacking for some element, and choose the most adequate error pattern.

5.2.5 Policy Definition

During the development process, the System Analyst is in charge of detecting
some properties that determine the ways –e.g., silent, resource-saving, etc.–
in which the system can operate. System Architects define how the different
resources fulfill those properties. If a resource is qualified as having a complete
support for silent behavior, this would be preferred when a silent behavior is
required.

The standardization of system properties would promote the interoper-
ability among systems. Thanks to standard properties, Physical Objects can
include policies that would be understood by any system the object enters. So
this guarantees that the system behavior would respect the object needs when
it crosses the boundaries of a system. If a global standardization process is not
achievable, the definition of a common vocabulary among business partners
should be a must.

The definition of policies can be also used to detect flaws in the system de-
sign. The inability of the system to offer a certain behavior indicates the need
for new resources that are capable of offering it. The need for new resources
can be detected if there is no resource that fulfills some of the defined policy
properties. If the system supports the silent behavior and the only resource
available for a given service does not fulfill this property, it could be desirable
to add a new one that offers a silent behavior.

5.3 Model-based Verification

One of the most important use of models is to reason about the system
they describe. Model-based verification can ensure that the system is valid
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prior to its construction. This section introduces some validations in order to
ensure that some technological decisions made during system specification are
consistent.

The presented properties to check in this section are applicable to any
system fitting the architecture defined in this work. However, there is also a
need for the definition of domain-specific validations for particular needs. For
example, a company can define its own validations to ensure the implantation
cost for the system is not excessive. During development of a new system,
the interesting properties to check should be defined and expressed in a query
language to allow the automatic validation of models.

5.3.1 Technology Compatibility

In a business process in the context of the Internet of Things, objects are
constantly moving between digital and physical worlds. The used technologies
should guarantee that once an identity is transferred to the physical world it
could be retrieved again.

In order to do so, for each entry or exit point a given Physical Object moves
across the physical-visual linkage, there should be at least a codification in
common. To verify this property Object Constraint Language (OCL) (OMG,
2005) can be used. The expression that verifies this property is the following:

let objects : Sequence(PhysicalObject) =

PhysicalObject.allInstances() in

objects->forAll(p|objects->select(x|x<>p and p.class = x.class)->

forAll(q |p.service.codifications -> intersection(

q.service.codification ) -> notEmpty() )

)

5.3.2 Objects Not Minted

A Physical Object, in order to be identified, requires to have an identifier
attached to it. In the common case objects are minted prior to their identifiers
are captured. So it could be useful to detect Physical Objects modeled in a
business process where their identifier is not generated. A query to detect this
circumstance is defined below using OCL:
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let objects : Sequence(PhysicalObject) =

PhysicalObject.allInstances() in

objects->select(x|x.direction= Dir:in and

not object->exists(y|y.direction = Dir:out

and x.class = y.class))

Is worth noting that this circumstance is not always an error. Objects
can be minted in a different process or by an external system. However, the
previous query is also useful to detect them. In this way it is easy to obtain a
list of Physical Objects whose identification depends on external partners.

5.3.3 Unsupported Properties

In order to allow system adaptation, several policy properties are defined for
the system during development. If a property is demanded for a given Physical
Object, a service cannot use a resource that does not support the property.
Therefore is interesting to know if there is any service that becomes unusable
when a certain property is required.

The OCL query that checks this condition for all the declared properties
and the specified resources is detailed below:

Services.allInstances().type.function->forAll(f|

Properties.allInstances()->forAll(p|

f.resources.properties->select(x|

x.fulfillment = Fulfillment:None and x=p)->size()

< f.resources.size()

)

)

5.4 Translation into Architecture Concepts

In the present section we illustrate how the different concepts defined in the
DSL can be mapped to the target architecture. In this way, the production of
the final system is systematized. The last stage of the development process is
composed by three steps: (1) define the architecture model based on the DSL
specification, (2) generate the glue code and (3) complete the generated code
by the remaining functionality.
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The glue code generation was described in Chapter 4. In this section, it is
described the mapping between DSL concepts and the architecture, defining
for each element which architectonic components should be defined and how
to complete their implementation.

Fig. 5.2. Development of the Smart Toolbox prototype

5.4.1 Business Process Specification

From the business process specification, an executable definition of the
process should be derived. WS-BPEL can be used for this purpose. This
work is particularly interested in how to translate the primitives introduced as
BPMN extensions to cope with physical elements into WS-BPEL constructs.
For the rest of standard BPMN constructs some of the existing mappings
between BPMN and WS-BPEL can be used (OMG, 2006; Ouyang et al.,
2006; Recker & Mendling, 2006; Giner et al., 2007a).

In order to support the presence of Physical Objects in WS-BPEL, two
aspects should be implemented. On the one hand, the message interchange
between the Information system and the Business Process Execution system
should be defined using WS-BPEL. In this way, the process notifies the system
that it is waiting for the detection or minting of an object in the context of a
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certain task. On the other hand, correlation sets should be defined according
to the correlation properties of each Physical Object.

BPMN tasks that involve Physical Objects result in a sequence of a pair
of WS-BPEL operations. First, an invoke operation is defined to indicate
the identification system which elements are expected for a given task. This
operation sends a message to the Task Manager component with information
related to the task context. Next operation is a receive operation to wait for
the identification system response.

For each detected task in the business process specification, a Task Pro-
cessing Component is required in the architecture and each Physical Object
participating in the task requires an Identification Component in the archi-
tecture. Figure 5.2 shows at its bottom the definition of IdElement interface
–and its corresponding callback interface– that is implemented by Identifica-
tion Components.

The Task Processing Component is wired with the Identification compo-
nents –this is done by the Glue Code Generation– and information retrieved
from them should be processed to generate the return message that the pro-
cess is waiting for. The construction of the message is performed using the
SDO API, and the System Developer is in charge of implementing it. In addi-
tion, Identification Components require to choose their interaction and error
management patterns. The corresponding SCA components can be configured
using a property to indicate this. However, if some custom behavior is desired
–e.g., to obtain personalized error messages– this would require also manual
development.

The use of WS-BPEL requires offering system functionality as Web Ser-
vices. This is not a major problem since SCA defines a Web Service binding
that permits to expose the system functionality using this technology.

5.4.2 Data Structure Specification

Information structure captured in this dimension can be easily expressed as
an XML Schema –Fig. 5.2 shows at the top-right side the Eclipse XSD editor
used. The defined XML Schema is used by the business process definition
and the identification infrastructure. On the one hand, the message structure
is based on this schema when a message is defined for the process. On the
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other hand, the XML Schema is imported by the SDO framework to define
the system data types to be used in the Information System.

The different data elements require a Data Provider service to retrieve
the information from different data sources. The System Developer should
implement the accessing mechanism for each information repository.

Since SDO is independent of the back-end data repository, the same data
definition allows the most natural way of working in each field. XML and
related languages such as XPath can be used in the process definition while
at the system data is accessed as Java objects.

5.4.3 Service Specification

A service at specification level corresponds to many services at the architecture
level. For each Physical Object involved in a specification Service, a Service
Component is defined in the architecture. However, physical objects are not
mapped to services in a one-by-one basis. Several Physical Objects included in
the same specification service can be mapped to the same Service Component
if all of them share the same resources to support the used technology –e.g:
a barcode and a fiducial-based object will be minted by the same printer,
provided both are specified in the same service in the system specification.

Depending on the resources used by a service, the implementation of the
Service Component would be different. The implementation class –indicated
in the SCA configuration file for each component– used for the component
should provide access to the resource functionality. To facilitate the develop-
ment, Java Interfaces are defined for the different service types. The Driver
Developer should implement the adapters for each particular resource follow-
ing this interfaces.

The connection of components is defined in the SCA configuration file.
This file uses XML to configure the different components involved in the
system –at the upper-left side of Fig. 5.2 is an example of configuration for
the Smart Toolbox prototype.

5.4.4 Interaction Specification

For each of the Identification Components defined, interaction patterns should
be implemented to provide the corresponding behavior. Capturer services no-
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tify all the detection events to Identification Components, however to imple-
ment the different interaction patterns these events should be processed in a
different way.

For implementing the different interaction patterns normally two list of
elements are handled, corresponding to detected and the selected element. The
interaction patterns considered in the DSL are implemented in the following
way:

Scan. For the scan pattern both lists contain the same elements, each ele-
ment added or removed to the detected elements is respectively added or
removed from the selected elements list.

Add. For the add pattern, each time an element is detected, it is included in
the selected list.

Remove. The remove pattern implementation is opposed to the add one,
each time an element is removed form the detected list it is added to the
selected list. The difference is that, if an element is detected again, then
it is removed from the selection.

Appear. The appear pattern, is a combination of the add and remove pat-
terns. An element is added when it is removed but the detected element
list should be empty and only one object is allowed at a time in it.

In addition, the completion of tasks can be either triggered automati-
cally or by users. In case it is triggered automatically –by cardinality, time,
the detection of an object or the execution of a service–, it should be con-
sidered in the implementation of the Identification Component. In case task
completion is informed by users –implicit completion– a User Interface com-
ponent should be defined to allow the user to indicate when a task is complete.
Many technological options exist for this and the decision would depend on
the particular requirements of each application.

Error management patterns should be also implemented when defining
the retrieval of information for Identification Components depending on the
presence of information and the defined pattern in the specification for each
detected element. Different means exist to notify errors, such as using the user
interface, the execution of a service or a log.
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5.4.5 Policy Definition

Architecture services that allow the access to resources should be labeled for
their fulfillment of the different policy properties. Since the resource used
cannot be decided at design time, the services with several possible resources
are wired at runtime – the SCA attribute wiredByImpl should be set to false.
In addition, this components should implement an interface that allows for
the query of their property fulfillment capabilities.

The specification of policies and resource fulfillment is expressed declara-
tively by means of XML files. These files can be modified during the operation
of the system.

5.5 Conclusions

This chapter connects the architecture and the DSL defined in previous chap-
ters. A model-based development method is defined where a system spec-
ification using the DSL defines the system requirements, model-based
verification is applied to check consistency for the specification, and guide-
lines are provided to translate the specification into the architecture previously
defined.

In this way, a systematic path between specification and implementation is
defined in the present chapter. Business process can be decomposed and their
requirements specified from a high level of abstraction, to iteratively obtain
the specific software solution.

Is worth noting that although the present development method can be used
for the development of systems from scratch, it is also applicable to already
existing systems. Since the business process task is used as development units,
the process can be applied only to the new tasks or the modified ones. Next
chapter provides some results of the application of the method in order to
validate the proposal.
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Validation of the Proposal

The development method presented in this work has been put into practice
in order to validate the proposal. The objectives of the validation are (1)
checking that the defined architecture could be used to implement the kind of
applications targeted in this work, and (2) verify that the modeling primitives
are expressive enough to capture the required knowledge about the system to
drive its development.

In order to do so, two representative case studies have been selected for
the application of the proposal. Case studies were not defined from scratch
but based on the literature to ensure their representativeness. These case
studies came from both, the Internet of Things area and the Business Process
Management area.

The original case studies do not consider either the business process mod-
eling or the integration of real-world elements, but for the purpose of the
present work these case studies have been extended to incorporate the lack-
ing aspects. On the one hand, from the Internet of Things field, the Smart
Toolbox case study provides support to aircraft maintenance operations. The
original case study does not consider an explicit definition of business process
so it has been incorporated to better fit the application domain. On the other
hand, the smart library is based on the classical library scenario where books
are borrowed by library members but introducing Auto-ID technologies to fit
in the Internet of Things domain.

Provided that the developed case studies are representative enough for
the applications domain, the development of such case studies becomes a good
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test for the present development method. Therefore, by successfully developing
the case studies, the architecture components and the modeling primitives are
proven capable of representing the system at specification and implementation
levels. In this way, the applicability of the method is guaranteed.

The rest of this chapter is organized as follows: Section 6.1 presents the
Smart Toolbox, a case study from the Internet of Things area where an ex-
plicit business process definition has been introduced. Section 6.2 presents the
Smart Library, a case study for the improvement of library loan process where
physical elements are seamlessly integrated. Finally, Section 6.3 concludes the
chapter.

6.1 Smart Toolbox

The Smart Toolbox case study was originally introduced by Lampe (Lampe
et al., 2004) as an example of application of Auto-ID technologies to improve
industrial processes. The proposed scenario is based on the maintenance, re-
pair, and overhaul (MRO) process of aircrafts. MRO activities are strictly
regulated and their cost represents 12% of the total operating costs of an air-
craft. Thus, companies are interested in making the execution of MRO more
efficient.

Tool management is improved for the MRO process in this case study. The
original MRO process includes several manual tasks related to the identifica-
tion of tools. Mechanics have to check whether all tools are in their box and
no tools have been exchanged with colleagues. If a tool is missing, the aircraft
is checked until the tool is found, resulting in a time-consuming activity.

The proposed solution is to monitor the tools used for aircraft maintenance
tasks by means of Auto-ID technologies. During aircraft reparations, tools are
monitored preventing them to be lost, and therefore, causing potential damage
or introducing delays in the process. In order to do so, tools are labeled and
each toolbox is equipped with an identification system. The original case study
is based on RFID. However, it has been extended to introduce different Auto-
ID technologies for the identification of tools, mechanics and locations.

The toolbox is the main element in the present case study. Different infor-
mation is sensed for each toolbox –see Fig. 6.1–, being its content –the tools it
contains– the essential information for detecting missing tools. However, some
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additional information can complement the content information in order to
define better the context of the toolbox –e.g., who carries it and where it is.
This contextual information is useful to determine which activity is being car-
ried out –which one from all the planned reparations is the toolbox involved
in.

Fig. 6.1. Illustration of the Smart Toolbox scenario

The Smart Toolbox is part of a more generic set of applications, corre-
sponding to the Smart Box concept (Floerkemeier et al., 2003). Smart Box
applications are based on Auto-ID, but not all of them are intended to sup-
port a business processes. In this case, the original Smart Toolbox case study
does not consider the modeling of the business process or an explicit represen-
tation for its execution. Introducing a process definition provides two benefits
respect to the original case study. On the one hand, a business process model
is useful to provide an intuitive description of the MRO process improv-
ing its comprehensibility compared to reading manuals and legislations. On
the other hand, using an executable definition, there is a guarantee that the
process is carried out as described avoiding mismatches between process
specification and the Information System implementation.

The specification of the system and some details about its implementation
are provided below.
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6.1.1 System Specification

The first step for the development of the case study is the specification of the
system. For capturing the identification requirements of the Smart Toolbox
system, the DSL defined in Chapter 4 is used.

The definition of the different aspects considered in the DSL such as busi-
ness process, the technological aspects, the defined services, interaction and
policy properties for the present case study are detailed below.

Business Process

The first step for the specification of the system is to make an explicit defini-
tion of the business process. The business process specification represents the
MRO activities. According to the original case study, the activities comprised
in the process are the following:

Customer order and planning. A MRO event is initiated with the cus-
tomer order. At an agreed date the plane is brought to the hangar and
the relevant documents –logbooks– are handed over to the service center.
The logbooks contain information about flying hours, operating hours,
starts and landings, condition of the plane and its parts as well as com-
plaints. Based on this information the MRO tasks are planned. Some of
these data were recorded automatically –e.g., flying hours–, others were
recorded by the pilots or owners of the plane –e.g., starts and landings,
complaints– or during the last MRO. This holds the potential of inaccu-
racy –e.g. valuations– or human errors. The planning is recorded in the
Maintenance Planning Document (MPD) that describes the MRO tasks
and for each task the necessary activities.

Procurement of parts and tools. Based on the MPD, the necessary parts
and tools are determined. Missing parts can be ordered from the procure-
ment center by using the Illustrated Parts Catalogue (IPC). Special tools
can be checked out from a central tool inventory. Missing spare parts, long
delivery times for parts, or misplaced tools can delay the MRO process.

Carry out MRO actions. The MRO activities are carried out according
to the MPD. Some failures are only discovered in this step, which makes
it necessary to complete the MPD and procure additional spare parts or
tools. The mechanics use a PC to record all activities they carry out in
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the discrepancies report (ROD). For each activity the mechanics identify
all parts that are subject to inspection, replacement, or repair by its serial
number and describe the status of the part. The duration of the task is
documented as well. The correct inspection procedures for the parts need
to be looked up in the MRBs that are only available in printed form.
This task is very time consuming and it is assumed that sometimes the
mechanics forget it.

Control and delivery. Once the MRO is completed, an inspector checks
the result. The inspector fills up an “Aircraft Certificate of Release to
Service and Maintenance Statement” that describes all checks that were
carried out, the repairs that were done, and the parts that were replaced.
Finally, the plane is delivered to the customer.

Fig. 6.2. Business process diagram for the Smart Toolbox scenario
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Figure 6.2 illustrates by means of a BPMN diagram the MRO business
process activities. The most interesting activities for the purpose of this work
are the ones where physical elements are involved –Procurement of parts and
tools and Carry out MRO actions. The remaining of the system specification
is only concerned with these two tasks since identification is not relevant for
the rest of the process.

The definition of mediums for the identification is also captured in Fig. 6.2.
Two mediums –namely image on paper and text on paper– are defined, both
based on paper tags. This is because, one of the goals for this development was
the use of real technologies in the implementation, avoiding simulators. So,
only cost-effective technologies are considered. Since the detection of parts
and tools is the most critical one, they are identified using the image on
paper medium. This medium although requires direct line-of-sight, provides a
greater automation level compared with the text on paper one –used for the
rest of physical elements of the case study.

Data Structure

In order to support the Procurement of parts and tools and MRO actions
some information is required at the digital world. Its structure is captured in
Fig. 6.3 by means of a Class Diagram. Each Reparation should be performed
in a Location –such as the cabin or the left wing– of a Plane. Each reparation
requires a certain parts and tools. Parts and tools required for a reparation
are indicated by its types –e.g., a hammer or a wrench in case of tools, but
not a specific hammer from all the available ones.

In the example, a Toolbox can be in a Location and it can be carried by
a Mechanic. It can contain several Tools which usually are a subset of the
tools that were assigned to this toolbox. There are different types of tools. A
ToolKind represents the tools of the same type and it provides information
regarding tool lifetime. When a tool is used during a longer period, it should
be replaced.

Technologies

The mediums considered for the identification of the different elements are
paper based –image on paper and numbers on paper. These mediums introduce
the following requirements for identification:
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Fig. 6.3. Data model for the Smart Toolbox scenario

Cost-effective. They are cheap to produce and require simple devices for
their capture. The cost depends on the quality of the used material –e.g.,
water-resistant plastic and inks– and the concrete technology used.

Line-of-sight required. Since identifiers are encoded graphically on a pa-
per surface, they should be recognized optically. So it is required a direct
line of sight between the reader and the label. This introduces some lim-
itations such as requiring the absence of obstacles between the capturer
and the label, the need for good lightning conditions and some limits in
the distance and view field width at which a label can be identified.

Although both of the considered mediums are paper based, there are some
differences between both. The image on paper medium offers a greater degree
of automation –allowing the detection of multiple identifiers at the same time.
On the one hand, image on paper medium is easily machine-processable but
humans are not capable of processing it. On the other hand, numbers on
paper medium is easy to process by humans but its capture is difficult to be
automated.

The technologies considered for supporting the requirements introduced by
the different mediums are Text label and Fiducials. These technologies demand
different resources to perform identification tasks –for the MRO actions task,
only capturers are needed. For capturing Fiducials, a video camera is required.
Text label requires a typical input device such as a keyboard or a keypad with
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the numeric keys. For the use of Text label technology, humans are responsible
of transferring identifiers to the system by means of an input device. However,
with Fiducials users do not have the need for decoding the identifier, and just
placing the object in front of the reader is enough.

Regarding codifications, Consecutive Numbering is used for all the physical
elements involved in the case study. This is a simple codification but it is
suited for the current case study since it can be used in both of the considered
mediums. Either numbers or images can be used to represent this codification
in different technologies.

Services

Identification is present in different situations for the current case study.
Fig. 6.4 provides an informal diagram of the different physical elements in-
volved in the case study and their identification needs. The toolbox is the
central element in this case study. For each toolbox it is necessary to sense
its context in each moment. This includes the mechanic that is carrying the
toolbox, the location at which the toolbox is and the tools that it contains.
Tools and parts are also identified in their arrival to the Warehouse. Services
are defined to cover these needs.

Services are specified to identify where physical elements can cross the
boundary of the system. Services define where and how identification function-
ality is offered. Fig. 6.5 illustrate the different services for the Smart Toolbox
case study. The identification services defined to support the MRO Actions
task are Toolbox Context, Toolbox Content and Toolbox Detector. The Toolbox
Context service is present in each toolbox, and it is used to detect the Me-
chanic and the Location using the Text label Technology. In order to support
this technology, a keyboard can be incorporated to the toolbox. The Mechan-
ics use this keyboard to introduce their identifiers and the identifier of the
location in which they are.

The Toolbox Content service is also required for each toolbox. It is used
to monitor the content of the toolbox. The tools contained in the toolbox are
detected using Fiducials. This implies to install a video camera in the toolbox
since an image capturing resource is required for the capture of Fiducials –as
it is stated in the technological model of the specification. In addition to their
context, toolbox should be detected too. The Toolbox Detector service is in
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Fig. 6.4. Identification needs for the Smart Toolbox scenario

Fig. 6.5. Services model for the Smart Toolbox scenario

charge of this. By attaching this service to each toolbox, the toolbox could be
identified at deployment time not requiring user intervention at run-time.
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Regarding the Procurement of parts and tools task of the MRO process, a
service is defined to detect the reception of tools and parts. The Warehouse
service detects the available parts and tools as they arrive. Fiducials are used
for the detection.

Interaction

Interaction aspects are defined for the Physical Objects present in the different
tasks of the business process. The interaction patterns used for the tasks where
physical elements are involved are represented in Fig. 6.6.

As stated in the business process description for the Procurement of parts
and tools task, several tools and parts can be involved in the process at the
same time. The big size of plane parts and the possible number of tools makes
difficult to place all the received elements in the reader at the same time. In
this case, the add interaction pattern is chosen. The received elements can be
placed near the reader in small groups. All the groups are considered as if they
were detected at the same time when the reading process is completed. The
completion of the reading process is indicated explicitly by the user. However,
task completion is indicated implicitly when the reading for parts and tools
is complete.

In this case the error pattern used is error when found. Since the received
material is new and should be identifiable in an individual basis, no other
element can share its identifier, so there should be no information about these
elements in the system.

Fig. 6.6. Interaction model for the Smart Toolbox scenario
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Regarding the MRO Actions task, interaction is defined for the different
elements involved in this task. For mechanics and locations the interaction
pattern selected is the appear pattern. The reading is considered complete
by cardinality –detection consists in the first element that is read for each
kind. The different tools are detected using the scan pattern. The toolbox has
no identification pattern assigned since its identification is predefined –each
toolbox has computing capabilities that inform of a preset identifier.

The MRO Actions task is considered completed when the location is
changed. So completion is defined as implicit. When the task is completed, the
toolbox content is checked to ensure tools are not missing. Information about
all the detected elements should be present in the system. So error when not
found is the error pattern defined for all the detections of this task.

Policies

During the MRO process some of the plane parts require special care due to
its fragility or dangerous nature. The illumination system of the warehouse
can be used for indicating the need for special care for the received parts
in an unobtrusive manner. In order to do so, light of different colors are
used. A white light would be used as default and a red one would indicate
the materials require a special care. In order to support this behavior three
steps are required. First, the handle with care property should be defined as
a relevant property. Then, the lightning service should be specified. Finally,
the resources involved in the lightning service should be qualified to indicate
their support for the property.

The lightning service is supported by the lightning technology. Two re-
source types –white light and red light– are assigned to this technology to
provide lightning capabilities. The red light resource type is qualified as pro-
viding a complete support for the handle with care property. Once resources
are qualified, policies can be defined and applied. In the default policy an
assertion indicating that the handle with care property is discouraged would
ensure that red lightning is only used when it is really needed. In this way,
white light is used by default and red light is only used when an object requires
the handle with care property in its policy.
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6.1.2 System Development

Once the system is specified, the system can be developed following the guide-
lines describes in Chapter 5. Apache Tuscany implementations of SCA and
SDO are used for the implementation of the different components of the sys-
tem and a business process execution engine is used to keep track of the
process state. More detail about the different elements developed for this case
study is provided below.

Business Process

The first step is to obtain an executable definition of the business process.
Intalio BPMS is used as the process engine, using WS-BPEL as the process
description language. The partners involved in the process are the Customer
that wants a plane to be repaired, the Procurement Center that provides the
tools and parts for the reparation and the Maintenance Center that provides
support to the MRO process. For these partners a WS-BPEL PartnerLink
element is defined. In addition, the Identification System is also considered in
the process.

Since the tasks involved in the MRO process are performed sequentially,
the WS-BPEL operations that constitute the process description are executed
in a sequence. This sequence of operations is the following:

1. The process starts with a receive operation for the Customer order that
triggers the initiation of the MRO process. The received message includes
the relevant information about the plane –flying hours, operating hours,
starts and landings, condition of the plane and its parts as well as com-
plaints.

2. In response to the customer order, a reply operation returns a message
to the customer indicating the day and hangar for the current reparation
request. The Maintenance Center is in charge of assigning mechanics and
tools for the reparation.

3. The Procurement Center is invoked to request the needed tools and parts
for the reparation. The request message includes the number and type of
the required tools and parts.

4. A receive operation is executed in order to make the process instance
wait for the notification of tool and parts arrival. The message received
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includes the information of each particular tool –including its identifier.
This information is sent electronically by the Procurement Center, but
the physical elements can suffer a delay.

5. An invoke operation is executed to notify the Identification System that
several parts and tools are expected to arrive for the current reparation
request.

6. A receive operation is executed to make the process wait for the detection
of the physical parts and tools. Once received the material, it is compared
with the expected ones, raising an error in case it does not match.

7. An invoke operation is used to notify the Identification System that the
different elements involved in the MRO actions task –toolbox, mechanic,
location and tools– are expected to be identified.

8. A receive operation is executed to make the process wait for the detection
of the elements involved in the MRO actions. The content of the tools
present in the toolbox are compared to the ones assigned to detect missing
tools.

9. An invoke operation is executed to notify that the reparation task has
concluded and the plane is ready for inspection.

10. A receive operation is executed to make the process wait for the results
of the checks performed by the inspector. The received message contains
the information defined in the “Aircraft Certificate of Release to Service
and Maintenance Statement”.

11. An invoke operation is executed to notify the Customer that the MRO
process has concluded and the certificate is ready.

System Components

At the Identification System side, to support the implementation of the sys-
tem several components are required. A Task Processing Component is de-
fined for each task present in the process. Simple graphical user interface
–defined as User Interface Components– are developed for tasks that do not
integrate physical elements. These interfaces collect the required data for the
corresponding Task Processing Component that composes the message that
is returned to the Orchestration Component in order to allow the process to
continue. These interfaces are implemented using a web form.
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For the tasks with intervention of real-world elements, Task Process-
ing Components require to define an Identification Component for each
Physical Object involved in the corresponding task. Fig. 6.7 illustrates the
identification-related components and how are they wired together. Is worth
noting that the Toolbox Identification Component and all the dependent com-
ponents should be replicated for each toolbox present in the system. This im-
plies to deploy the corresponding components into the computing capabilities
the toolbox provides and installing the physical resources they require.

Fig. 6.7. Architectonic components for the Smart Toolbox scenario

The services defined in the specification determine how the different com-
ponents are wired together. Some Identification Components share the un-
derlying Capturer Service. Capturers are shared when they are part of the
same service of the system specification. For example, since a unique service
is defined for capturing mechanics and locations –see Fig. 6.5–, only a Text
Label Capturer is defined for both –this implies using the same keyboard for
identifying both kinds of elements.

The technology chosen for each service in the specification determines the
implementation of each Capturing Service. The Text Capturer is implemented
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as a web interface where an input box allows the introduction of text by any
conventional input device.

Fiducial Capturer is implemented as a wrapper around the reacTIVision
framework. This is a computer vision framework for the fast and robust track-
ing of fiducial markers attached onto physical objects, as well as for multi-
touch finger tracking. It was mainly designed as a toolkit for the rapid de-
velopment of table-based tangible user interfaces and multi-touch interactive
surfaces.

Fiducials can be tracked by means of a conventional video camera. The re-
acTIVision framework sends OpenSound Control (OSC) messages via a UDP
network socket to any connected client application. It implements the TUIO
protocol, which was specially designed for transmitting the state of tangible
objects and multi-touch events on a table surface. To support the different
components that require fiducial-based identification for the Smart Toolbox
case study, different UDP ports are used.

Data Structure

Data providers are also required for accessing the information related to the
different physical elements involved in the process. A data provider is imple-
mented for each element of the data model. SDO is used for accessing and
manipulating information.

Information is structured following the data structure as it is specified
in the system specification –see Fig. 6.3. Information structure is defined by
means of an XML Schema and information regarding physical elements is
stored in XML files. However, the use of SDO allows for different data back-
ends.

Interaction

The developed system should support the interaction mechanisms defined
in the specification –see Fig. 6.6–. Each Identification Component receives
different detection notifications from the different Capturers. Depending on
the interaction pattern defined in the system specification, these notifications
are handled in a specific way. The same is true for error conditions.



104 6 Validation of the Proposal

User interface components are defined using the Widget implementation
supported by Apache Tuscany as a means of wiring SCA components in Web
2.0 style applications. The only exception is an interface that represents the
context of each toolbox –contained tools, carrying mechanic and the current
location.

Fig. 6.8. Different interfaces for the Smart Toolbox prototype

In order to provide an intuitive representation of the toolbox context,
prefuse1, a data visualization library is used. Visualization techniques are

1 http://prefuse.org/
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quite useful for representing large amounts of data in an intuitive way. As it
is illustrated in top-left side of Fig. 6.8, information is represented in a graph.
Nodes contain an image that defines its type –toolbox, mechanic, location or
the different tool kinds– and a text label with their name. The different arcs
determine the associations between elements. In this way, the content of the
different toolboxes can be monitored easily.

6.2 Smart Library

Prior to the arrival of Internet, libraries were the main information reposi-
tories. The need for cataloging and structuring all this information has been
faced for long, becoming a classic example of Information System. However,
although the central interest of libraries is in physical elements such as books,
not much effort has been made to automate the linkage between physical and
digital spaces in their Information Systems –being the use of barcodes the
most advanced Auto-ID technology in use. With the emergent Internet of
Things, a better integration between physical and digital elements is possible
in order to improve the different activities that take place in the library.

One of the main activities of libraries is to lend books to their clients
and control that books are returned on time. The present case study –named
the Smart Library– is based on the classical library scenario but allowing the
library members behave more autonomously. Each library shelf is provided of
Auto-ID capabilities. Members can just take the required books and books
are borrowed for the system. For returning books, members only have to place
them in the returning box. Eventualities such as delays in returning books or
books that are taken by a sanctioned members –or non-members– are also
considered. More detail about the complete specification of the system and
its implementation is provided below.

6.2.1 System Specification

The specification of the system becomes the first step in the development of
the Smart Library case study. For capturing the identification requirements
of the system, the DSL defined in the present work is used. The definition of
business process, the technological aspects, the defined services, interaction
and policy properties is detailed below.
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Business Process

The business process that is followed in the Smart Library is slightly different
from the traditional lending process. The system is designed to be as unobtru-
sive as possible for users. Figure 6.9 shows the BPMN diagram that represents
the loan book process.
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Fig. 6.9. Business process model for the Smart Library scenario

In a common scenario, a member approaches the shelf and takes the books
she wants. When a book is taken, feedback is provided to the user to indicate
the completion of the lending process. Later, when the member is finished
with her books, she –or anybody else in her behalf– only has to place them
in one of the return boxes –notice that books are used for correlation as it
is illustrated using a thick border in the diagram. If the member is delayed
too much in returning some books, a sanction is applied. Sanctioned members
are not allowed to take books, so if a sanctioned member is detected picking
books, security personnel are warned about the situation.
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Library users that are not members are allowed to take books provided
they register as members after taking them. These users should find a librarian
in order to register as members in a short period of time. If this period becomes
too long, security personnel are warned about the situation. Library personnel
is equipped with a mobile device in order to make their work more flexible,
allowing them to perform their activities anywhere in the library. Librarians
are in charge of registering new members and placing the returned books in
its place. The use of a mobile terminal allows to access information closer to
the place the activity takes place.

Fig. 6.10. Mediums defined for the Smart Library scenario

Physical Objects are identified in the present case study by means of dif-
ferent mediums. The defined mediums –see Fig. 6.10– are radio and paper.
The paper medium is specialized in two mediums depending on the use of
images or numbers to express the identifiers –see inheritance relationship in
Fig. 6.10.

The radio medium offers wireless identification at different distances not
requiring direct line of sight between labels and capturers. Since a great degree
of automation is desired, the radio medium is considered the main medium
for identification in this case study. However, the identification by means of
paper is also considered as a backup for books. Since books are paper-based,
the use of this medium is quite natural.

Data Structure

The information handled at the digital space in the Smart Library case study
includes the definition of Books, Members and Loans. In addition to these main
classes, information about books such as their Author or the Shelf assigned
to them is considered. Loans are created as books are borrowed by a member.
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Fig. 6.11. Data model for the Smart Library scenario

The attributes considered for the different elements have been kept to a
minimum since the purpose of this work was on identification aspects. In a
real scenario more information about the books –and possibly other kinds of
media– would be considered.

Technologies

Several identification technologies have been selected for this case study. These
are RFID, Fiducials and Text Label. RFID provides identification capabilities
supporting the radio medium. Fiducials and Text label provide identification
capabilities by means of the paper medium. Fiducials technology uses images
while the Text label uses numbers to represent identifiers. The considered
technologies support different codifications. EPC is supported by RFID and
Text label, while Consecutive numbering is supported by Fiducials and Text
label.

In addition to the identification technologies, the Beepers technology is
included to represent the different devices that can be used to provide feedback
to the user. Devices of this kind can provide feedback by means of any of the
different human senses.

Table 6.1 defines the possible resources that can be used for each technol-
ogy in the different functions the technology offers. RFID technology requires
an antenna for both minting and capturing identifiers. Image capturing de-
vices, such as a video or photo camera, are required for Fiducials. While input
devices are required for Text label capturers –a keyboard or a numeric keypad
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Technology Function Resource Type

RFID capturer, minter RFID antenna

Fiducials capturer video camera, photo camera

minter printer

Text label capturer keyboard, keypad

minter printer, pen

Beepers feedback light bulb, speaker

Table 6.1. Technologies and resources for the Smart Library scenario

are considered for the example. Printing resources are required for the minting
of paper-based technologies. For providing feedback, beepers would use either
light or sound depending on the chosen resource.

Services

Different services are defined to cope with the requirements of the case study.
Each library shelf is provided a Shelf Detector service. This service is in charge
of detecting the movement of books in the shelf. It also detects the members
that take books to register the corresponding loan. RFID is used as the iden-
tification technology to offer a good process fluency. A feedback mechanism is
also incorporated in each shelf –by means of the Feedback service– to inform
of member identification the need for identifying members.

A Return Box service is defined to allow an easy return of books. Different
return boxes can be present in the library making no difference in which one
members place the books in –this service does not provide contextual infor-
mation since is is not attached to any element. The Mobile Librarian service
is used for each librarian to offer assistance to members for their registration
and the return of books. In addition to RFID, Text label technology is used
by this service, so it is useful when there is some problem with the RFID
infrastructure –e.g., a damaged tag.

Interaction

The interaction mechanisms considered for each task of the process in terms of
identification are intended to offer a natural interaction to users. For the pick
up books task, books are identified as they are removed from the shelf. The
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Fig. 6.12. Services model for the Smart Library scenario

total of books involved in this task is determined implicitly by the detection
of a Member. This is, the books removed previously to the identification of a
Member are the ones she is picking up. Members are identified following the
appear pattern with a cardinality of one for the detection –i.e., the detection
takes place when the member card is detected and later is not. This means
that the member is detected when, after approaching the shelf and haven
taken some books, she leaves.

The register member task takes place when a user that is not registered
in the system has taken some books. These books are detected by parts –
one by one or several at the same time–, so the add pattern is chosen as the
interaction pattern. The completion in the detection of the taken books is
determined explicitly by the librarian. In the case of return books and put on
shelf tasks, detection also follows the add pattern, but the completion in the
detection is determined by cardinality, so a one-by-one approach is followed.

For all the tasks involving Physical Objects, the error pattern chosen is the
not found. So information about each identified element should be present in
the system.
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Fig. 6.13. Interaction model for the Smart Library case study

Policies

Although non-obtrusiveness is the main goal of this case study, making the
user aware of certain system behavior is essential to avoid uncertainty. When
a loan is performed, the user should be notified. In order to do so, feedback
is provided in the detection of a member during the loan process.

As it is stated in Table 6.1, the Beepers technology –used for offering
feedback– can use two different resource types, a light bulb that flashes or a
a speaker that makes a beep. Considering the silent ambient of a library, the
use of a light is preferred. However, some visually-impaired members require
a feedback mechanism not visually demanding.

The first step to offer the system adaptation to this requirement is to
define the properties of interest for the system. In this case the properties are
visual and acoustic behavior. Then, resource types are qualified to indicate
that the light bulb supports the visual behavior while the speaker supports
the acoustic one.

Given this resource description, a general policy could be defined where an
acoustic behavior is discouraged. With this policy, light is used as the default
feedback. A policy for visually-impaired users can determine that the visual
behavior should be forbidden for them. In this way, the system can adapt
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to the particular needs of each user, using the speaker only when it is really
needed.

6.2.2 System Development

A prototype of the system previously described has been developed. For the
development of the Smart Library prototype, Apache Tuscany is used as the
implementation of the SCA and SDO standards. The business process for
the library loans is supported by Intalio BPMS, a business process execution
engine. To support RFID identification the Accada middleware is used. The
use of Accada allows for the development of RFID based solutions that follow
EPCglobal standards. In this way, RFID devices can be simulated when the
system is prototyped.

More details about the development of the Smart Library prototype is
provided below.

Business Process

An executable definition of the business process is obtained for the loan
process of the Smart Library. The current business process is an intra-
organizational process since not external partners are involved. So the WS-
BPEL definition only includes the Library and the Task Manager as partner
links. The Task Manager is in charge of the activities that require interaction
with the physical world –either because they require user participation or be-
cause physical elements are involved– introducing the need for asynchronous
communication. The Library partner link represents the library Information
System that coordinates the process.

The process flow for this process is linear for the common case. However,
exception handling is required in some of the tasks. For example, the pick up
book task considers three different exceptional situations. These exceptions
occur when (1) a member is not detected, (2) a sanctioned member is detected
and (3) a book is not returned in the expected time. To express this in the
WS-BPEL definition, the pick activity is used. This activity waits for the
occurrence of exactly one event from a set of events, then executes the activity
associated with that event. So three events are defined, the two former ones
are message based –using the onMessage event type to detect sanctioned or
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non registered members– while the later is timer based –using the onTimer
event type.

For the rest of tasks the defined WS-BPEL follows the invoke-receive
schema described in the guidelines of Chapter 5 –already applied for the Smart
Toolbox case study.

Book identifiers are used for the process correlation, since a particular
book can only be involved in just one loan process instance at a time. In this
way, given a book, the loan process in which it is involved is clearly defined. To
offer more flexibility in the process, each book initiates an individual instance
of the process. So, users are not forced to return all their books at the same
time.

System Components

For each of the tasks requiring identification of physical elements, a Task
Processing Component is defined. These components make use of different
Identification Components depending on the Physical Objects they access.

Fig. 6.14. Architectonic components for the Smart Library scenario

Some Capturers are shared among different Identification Components.
This is possible when a service is defined in the specification including several
tasks with some physical elements that can be identified with the same tech-
nology. For example, the pick up books and put on shelf tasks are supported
by the Shelf Detector Service from the specification –see Fig. 6.12. So the
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identification of members and books for these tasks is done using the same
capturer –since RFID is used in all the cases.

RFID Capturers implementation is a wrapper around the Accada API
that implements the EPCglobal Reader Protocol. Identifiers are transmitted
using HTTP and structured by means of XML. The XML element tagID con-
tains the identifier while the context of identification is expressed by different
elements. The tagEvent indicates information such as the event type –e.g.,
observed or lost– or the time in which the event was produced. The sour-
ceInfo indicates which antenna performed the detection, which is useful to
distinguish between the detections associated to the different library shelves
in the case study.

Data Structure

The structure of the data handled by the system was defined in a XML schema.
Each of the classes present in the data model –see Fig. 6.11– is defined as a
Type in the schema –defining its attributes and relationships. For each physical
element involved in the business process an element is defined in the schema.
In addition, for each physical element, a Data Provider component is created.
The implementation of Data Providers relies in SDO to access a XML file
where all the information about the library is stored.

Interaction

To interact with the system, the RFID simulator provided by Accada was
used. With the simulator different antennas and tags can be defined, allowing
for the triggering of events in an easy way. A screenshot of the simulator for
the present case study is depicted in Fig. 6.15. The detection events produced
using the simulator are managed by the Identification System in order to
provide the adequate interaction according to the patterns defined in the
system specification.

For the implementation of graphical interfaces for the different tasks that
require user intervention, Eclipse Forms2 were used. Eclipse Forms are a Java
solution based on the Standard Widget Toolkit3 (SWT) that offers facilities

2 http://www.eclipse.org/articles/Article-Forms/article.html
3 http://www.eclipse.org/swt/
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Fig. 6.15. The RFID simulator used for the Smart Library case study

for creating web-like forms in the Java platform. The use of Eclipse Forms
results in responsible and clean user interfaces. Its message handling mech-
anisms resulted quite adequate to notify the user when the specified error
conditions occur.

Fig. 6.16. Interface defined for the register member task

Figure 6.16 shows the interface defined for the Register member task. In
the upper part the data required for completing the task –name and sanc-
tioned status of the new member– is collected. Bellow a list of the books
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taken by this person is shown. Since task completion is explicit for this task,
the interface includes a button to trigger its completion.

6.3 Conclusions

The application of the development method in the presented case studies has
provided valuable feedback at different levels. After this process the expres-
sivity for capturing identification requirements provided by the DSL and the
infrastructure support from the defined architecture are considered adequate
for the application domain.

The resulting applications from these case studies are interesting by them-
selves. Although some aspects have been simplified for the development of
prototypes, the technologies in use are production ready. In addition, the de-
sign effort to improve both case studies has lead to better enhancing the user
experience and the business process fluency.

Considering that the case studies were originated in the two different areas
that this work comprises, a notion of how applications of each area can be
extended to cover the remaining aspects is also provided.
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Conclusions

The present work has introduced a model-driven development method for the
construction of business process supporting systems in the context of the In-
ternet of Things. Facing the development of such systems from a specification
perspective has resulted innovative and different contributions were produced
from this work. In addition, the research line in which this work is aligned is
by no means completed here. Further work can complement and extend this
thesis.

This last chapter introduces the conclusions of the work developed in this
thesis. First, Section 7.1 presents the main contributions to both the Business
Process Management and the Internet of Things communities. Section 7.2
provides an overview of the publications that have emerged from this work.
Finally, Section 7.3 outline the ongoing and future work that can extend this
research line.

7.1 Contributions

The main contribution of this work is a development process for the construc-
tion of business process supporting systems that integrate the digital and
the physical worlds. The development process comprises from architectonic to
methodological aspects. So, the work provides the following contributions:

Architecture for implementation. An architecture supporting the inte-
gration of real-world elements in business process has been defined. In
order to obtain a sustainable architecture, architectonic concepts have
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been detected in a technologically-independent fashion. Mappings to a
particular technological solution have been also established to obtain
a system that meets the demanded requirements.

DSL for specification. Modeling primitives have been defined to facilitate
the specification of identification aspects in business processes. BPMN
has been extended to cope with the integration of physical elements in
process definitions. Separation of concerns and metamodeling techniques
have been applied to capture and organize formally the concepts
that conform this specification language.

Method for development. A development method has been defined to
guide the developer in the construction of business process-supporting
solutions for the Internet of Things. The method comprises from speci-
fication to the final implementation. To promote separation of concerns,
different development roles are defined for the method.

7.2 Publications

The present work connects two different research areas such as Business Pro-
cess Management and the Internet of Things from a modeling perspective.
A total of 14 research publications of different nature have been elabo-
rated in the context of this work. Table 7.1 compiles all the published works
indicating the author position, the type of publication and the conference or
journal where it was published. The author position is used as an indicator
of the degree of contribution made by the author of the present work in each
one of the publications.

In addition, two senior theses were co-directed in the context of this
work to explore some concepts and related technologies. A more detailed de-
scription of the different contributions in these works is exposed below. Pub-
lications are organized according to their relation with the Business Process
Management area or the Internet of Things area.

7.2.1 Business Process Related Publications

The first phase of the work consisted on an exploration of Business Pro-
cess modeling area and model transformation techniques. The interest was to
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Publication Author

Position

Type Published at

(Giner & Pelechano, 2008) 1st International Conference AmI 2008

(Giner et al., 2008a) 1st International Conference ICEIS 2008

(Giner et al., 2008b) 1st International Conference UCAmI 2008

(Giner et al., 2008c) 1st Workshop DSDM 2008

(Giner et al., 2007b) 1st Conference JISBD 2007

(Giner & Torres, 2007) 1st International Workshop IDEAS 2007

(Giner et al., 2007c) 1st Demo Session JISBD 2007

(Giner et al., 2007a) 1st International Workshop MDWE 2007

(Cetina et al., 2008) 2nd International Workshop Models@Run.time

2008

(Torres et al., 2007a) 2nd International Workshop CAiSE Forum 2007

(Torres et al., 2007b) 2nd Workshop PNIS 2007

(Torres et al., 2007d) 3rd International Journal IEEE Latin America

Transactions

(Torres et al., 2007c) 3rd International Journal ERCIM News

(Torres et al., 2006) 3rd Conference JISBD 2006

Table 7.1. Summary of Publications

explore the expressivity of BPMN and the use of model transformation tech-
niques to derivate SOA-based applications. These concepts were applied in a
Web Engineering method developed by Victoria Torres constituting a common
point of research that resulted in four publications (Torres et al., 2007d,b,c,
2006). Essential knowledge for the development of the present work in business
process-related languages –BPMN and WS-BPEL– and modeling techniques
was obtained from this collaboration.

A more direct contribution to the present work is the definition of model
transformations that bridge the gap between BPMN and WS-BPEL. In the
present work, this is used to automate part of the development process. The
result of this is the publication of a paper with the definition of this model
transformation (Giner et al., 2007a) and a demo session showing the defined
tool support (Giner et al., 2007c).

A Senior Thesis in this area titled “Generación automática de aplicaciones
web de soporte a procesos de negocio” (II-B-DSIC-379/06) was co-directed.
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In this work, some of the architectonic concepts required for the support of
business processes were explored.

7.2.2 Internet of Things Related Publications

Once confidence in business process modeling notations and execution support
was obtained, the challenge was the application of these concepts to reach the
physical world. This was faced considering (1) the architecture, (2) system
specification and (3) development method for the kind of applications this
work is dealing with.

The architecture presented in the present work was published in the Eu-
ropean Conference on Ambient Intelligence (AmI’08) (Giner & Pelechano,
2008). That work included the description of the architectural process fol-
lowed, the definition of the architecture at conceptual level and its mapping
to a SCA-based solution. The reconfiguration aspects of the architecture and
the policy mechanism incorporated to the architecture has been published
in the 3rd Symposium of Ubiquitous Computing and Ambient Intelligence
(UCAmI’08) (Giner et al., 2008b), and the strategy for adaptation has been
published in the Models@run.time Workshop (Cetina et al., 2008) from the
Models 2008 conference.

Regarding system specification, a conceptual framework was defined to
detect the different concepts involved in the identification process (Giner et al.,
2008a). The description of some interaction aspects (Torres et al., 2007a) and
the different primitives that conform the DSL (Giner et al., 2008c) presented
were also of interest for the modeling community.

Finally, the study of the requirements for a model-based development pro-
cess (Giner & Torres, 2007) and the definition of a method for integrating
Ubicomp services with business processes (Giner et al., 2007b) has lead to the
development process presented in this work.

In addition, a Senior Thesis titled “Diseño e implementación de una ar-
quitectura para orquestar servicios en sistemas pervasivos” (II-B-DSIC-33/07)
was co-directed. In this work, some of the architectonic concepts required for
the integration of AmI systems and business processes were explored.



7.3 Future Work 121

7.3 Future Work

The use of modeling techniques to formalize concepts allows for the automa-
tion of software development. In the present work, only the generation of glue
code is obtained automatically. The next big step is automating the de-
velopment process. In order to do so, the DSL primitives that capture the
requirements for the system should be proven expressive enough and model
transformations should be defined to formalize the mapping between the dif-
ferent primitives.

In order to evaluate the expressivity of the defined DSL, the develop-
ment of more case studies in production environments is required. The
feedback of development teams and final users would be really valuable. This
feedback could also help to find a concrete syntax for the primitives defined
in the language.

The development of tools to support the process and the integration
with existing modeling solutions in the area such as PervML would pro-
vide a great value to the work. The integration with PervML would allow the
definition of some aspects –such as service behavior– that are not related with
identification but are needed for the construction of a complete system.
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wards a precise definition of the
omg/mda framework. In ASE
’01: Proceedings of the 16th IEEE
international conference on Au-
tomated software engineering , (p.
273). Washington, DC, USA: IEEE
Computer Society.
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genieŕıa del Software y Bases de
Datos. Zaragoza.

Giner, P., Torres, V., & Pelechano,
V. (2007c). Generation of business
process based web applications. XII
Jornadas de Ingenieŕıa del Software
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