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Abstract

A classical discretization for the angular dependence of the neutron trans-
port equation is based on a truncated spherical harmonics expansion. The
resulting system of equations are the PL equations. We review the multi-
dimensional PL equations, for arbitrary odd order L, and then we proceed to
the spatial discretization of these equations, for rectangular geometries, using
a nodal collocation method based on the expansion of the spatial dependence
of the fields in terms of orthonormal Legendre polynomials. The validity of
the method to deal with complex reactor problems is then studied with the
seven-group 2D NEA C5G7 MOX fuel assembly benchmark problem. The
solution is computed for different spatial meshes, showing that the PL results
are consistent with the reference Monte Carlo solution. Additionally, the first
subcritical modes are also computed for the the full reactor configuration.

Keywords: Multi-dimensional PL equations, Spherical harmonics method,
Nodal collocation method, Criticality calculations, C5G7 MOX benchmark

1. Introduction

The physics involved in the neutron interactions of a nuclear reactor
core are modelled by the Boltzmann neutron transport equation, which is
a integro-differential neutron balance equation in a space of three spatial
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variables, three angular variables and one energy variable. The computa-
tional solution of transport problems is difficult and complex and, except for
academic problems, the solution of the transport equation is obtained using
Monte Carlo methods (Spanier and Gelbard, 2008), deterministic methods
such as discrete ordinate (SN) methods, spherical harmonics (PL) methods,
or other numerical methods (Lewis and Miller, 1984). The two-group diffu-
sion approximation is a classical and well established method of performing
reactor calculations for the neutron multi-group transport problem, but this
approximation is inaccurate in optically thin regions and where the gradient
of the flux is large, so can produce large errors for heterogeneous cores with
complex fuel assemblies or for another analysis as fine mesh (pin-by-pin)
geometry.

The discrete ordinates method (SN) when applied to transport prob-
lems has been used in numerous codes such as DANTSYS (Alcouffe et al.,
1995), PENTRAN (Sjoden and Haghighat, 1996), DORT/TORT (Rhoades
and Childs, 1993) and DENOVO (Evans et al., 2010). The main shortcom-
ing of SN codes are ray-effects (Lewis and Miller, 1984) that arise from the
discrete angular directions of the method and give unphysical numerical ar-
tifacts in the computed scalar fluxes. The Monte Carlo methods are compu-
tationally expensive and do not provide complete flux solutions to the whole
problem geometry (Briesmeister, 2000), but on the other hand can accurately
compute integral quantities like keff , dose rate, etc. Recently, the methods
of characteristics (DeHart, 2009) have been studied and implemented; the
disadvantage of the method is the computational cost.

The PL approximation to the transport equation is well known (Davison,
1957; Weinberger and Wigner, 1958; Clark and Hansen, 1964), and is based
on the discretization of the angular dependence of the transport equation
by a spherical harmonic expansion truncated to a finite order L. The linear
system of equations that results from this expansion is known as the PL
equations. One advantage of the PL equations is that they are, like the
transport equation, rotationally invariant, and do not suffer from angular
defects in the solution (ray effects). Moreover, the PL equations formally
converge (in L2 norm) to the solution of the transport equation as L →
∞ (Davison, 1960). In three-dimensional geometries (3D), PL equations
form a complex set of first-order equations, that can be rewritten as second-
order differential equations, but the coupling involves not only the angular
moments but also mixed spatial derivatives.

These complexities led to propose the simplified PL (SPL) approximation
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(Gelbard, 1968), that eliminates cross-derivative terms in the equations and
then simplifies the spatial discretization, usually giving accurate enough re-
sults, providing then a practical way to solve simplified transport problems;
in fact, SPL equations are ”high-order asymptotic solutions of the transport
equations” (Brantley and Larsen, 2000); the SPL approximation actually im-
plies that, “to the lowest order of approximation, the angular flux is invariant
by rotations around the local axis” (Sánchez, 2009, p. 25). Unfortunately,
SPL equations are unable to deal with general 3D transport problems. It can
be shown (Tomasević and Larsen, 1996) that the accuracy of the solution can
not be increased with larger order L, and it is possible to obtain worse results
with the SPL approximation than with the diffusion equation.

The full PL approximation provide the best solution, but at a cost of a
complex computer implementation. Fletcher (1983) obtained a solution of
the PL equations removing odd-order fields and using the finite difference
or finite element method to discretize the resulting equations. Ziver et al.
(2005) implemented and solved in the code EVENT the spherical harmon-
ics (PL) equations using finite elements methods. Recently, in the work of
Yousefi et al. (2017), the solution of the multi-dimensional even parity neu-
tron transport equation is investigated. The even parity angular flux density
is expanded in spherical harmonics polynomials, being the spatial variable
approximated by finite element methods and the angular matrices by ana-
lytic integration. Furthermore, the 2D C5G7 benchmark problem is used for
validation.

In this work, we first review the multi-dimensional spherical harmonics
(PL) equations. We must remember that the PL equations can be developed
in several manners. We have opted for a diffusive form of the PL equations
and we briefly describe the application of a nodal collocation method for
these equations, based on the expansion of the spatial dependence of the
fields in terms of orthonormal Legendre polynomials, for arbitrary odd order
L. Only rectangular geometries will be discussed. The choice of odd inte-
ger order L guarantees continuity of the scalar neutron flux along material
discontinuities of the reactor volume. For explicit calculations, the reader
can consult previous works by the authors (Capilla et al., 2005, 2008, 2012),
where the nodal collation method was developed.

One advantage of the method is that this approach reduces the dimension
of the corresponding algebraic problem in comparison with other methods,
like finite elements of finite differences, because of the lower dimension of the
matrices. The method gives accurate results when discretization nodes of
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big size are considered, using a moderate number of Legendre polynomials.
Some drawbacks to the PL equations are also commented, like oscillatory
behavior of the solutions (Brunner, 2002).

The method is applied to criticality problems, where a generalized al-
gebraic eigenvalue problem approximates the initial differential eigenvalue
problem. Then, the k-effective and the stationary neutron flux distribution
of the system can be numerically computed, and also the subcritical eigen-
values and their associated subcritical modes.

The method has been implemented into a computer code called SHNC
(Spherical Harmonics-Nodal Collocation), that solves multi-dimensional multi-
group eigenvalue problems and source problems. Furthermore, and for its
application to the 2D C5G7 MOX benchmark problem, a new version of the
SHNC code, based on PL equations, has been parallelized using the SLEPc
library (Hernández et al., 2005).

The rest of the paper is organized as follows. In Section 2, we review the
spherical harmonics method that is applied to the transport equation eigen-
value problem, resulting into the first order multi-dimensional PL equations.
These equations are then rewritten as vector-valued second order differential
equations. The boundary conditions (vacuum and reflective) are then ap-
proximated by the spherical harmonics method. A nodal collocation method
is then applied to the spatial dependence of PL equations. The method is
based on a truncated Legendre polynomials expansion of the fields. The re-
sult of this discretization method is to replace the transport equation problem
by a large and sparse linear algebraic problem. In order to show the capabil-
ities of the methodology to treat realistic reactor problems, in Section 3 the
performance of the method is validated with a detailed pin-cell geometry 2D
C5G7 MOX reactor eigenvalue problem. Finally, in Section 4 we establish
our conclusions.

2. The transport equation and the PL equations

In this section we review the multi-dimensional PL equations, for arbitrary
angular order L, that will be formulated as a vector-valued second order
differential equation.

2.1. The Boltzmann transport equation

The physical phenomena of neutron transport and interactions in the re-
actor core are modelled by the Boltzmann transport equation (Stacey, 2001),
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which is an integro-differential neutron balance equation in a space of seven
dimensions. For a typical criticality calculation, where the k-effective and
the neutron distribution for a stationary configuration of a multiplying sys-
tem are determined, Boltzmann equation becomes the following steady state
eigenvalue problem (Stacey, 2001):

~Ω ~∇Φ(~r, ~Ω, E) + Σt(~r, E) Φ(~r, ~Ω, E) = Qs(~r, ~Ω, E) +
1

λ
Qf (~r, ~Ω, E) , ~r ∈ V .

(1)

Φ(~r, ~Ω, E) = 0 , for all ~Ω~n ≤ 0, ~r ∈ ∂V , (2)

where V is the volume of the system and ~n is the outward pointing normal
vector at the outside boundary of the system ∂V . Eq. (1) must be supple-
mented with appropriate boundary conditions; for example, Eq. (2) describes
vacuum boundary conditions, where there is no incoming neutron angular
flux. Here Φ(~r, ~Ω, E) is the neutron angular flux at location ~r = (x1, x2, x3)
(using Cartesian coordinates), in the direction of travel given by the unit

vector ~Ω = (cosϕ sin θ , sinϕ sin θ , cos θ), 0 < ϕ < 2π, 0 < θ < π; Σt is
the total macroscopic cross-section; and Qs and Qf are the scattering source
term and the source of neutrons by fission term respectively, given by

Qs(~r, ~Ω, E) =

∫
dE ′

∫
d~Ω′Σs(~r; ~Ω

′, E ′ → ~Ω, E) Φ(~r, ~Ω′, E ′) ,

Qf (~r, ~Ω, E) =
χp(E)

4π

∫
dE ′ νΣf (~r, E

′)

∫
d~Ω′Φ(~r, ~Ω′, E ′) ,

where Σs is the scattering cross-section from (~Ω′, E ′) to (~Ω, E); Σf is the
fission cross-section; ν is the average number of neutrons per fission and
χp is the fission spectrum. The largest value of λ for which a nonnegative
fundamental mode solution of problem (1-2) exists will be denoted as keff =
λmax.

The numerical solution of Eq. (1) requires a discretization of the six in-
dependent variables. First of all, the energy E is discretized into a finite
number of energy groups such that E ∈ [Eg, Eg−1[, g = 1, 2, . . . , G, with
E0 = +∞, EG = 0. This is known as the energy multi-group approximation.
For simplicity, in what follows we will consider one energy group, and we will
drop the dependence of Φ on energy.
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2.2. The spherical harmonics method

The discretization of the angular dependence of the neutronic flux Φ(~r, ~Ω)
is treated in a rotationally invariant way by a spherical harmonics expansion

Φ(~r, ~Ω) =
∞∑
l=0

+l∑
m=−l

φlm(~r)Y m
l (~Ω) , (3)

where Y m
l (~Ω) = Hm

l Pm
l (cos θ)eimϕ are the (complex) spherical harmonics,

Pm
l (cos θ) are the associated Legendre polynomials and Hm

l =
√

(2l+1)
4π

(l−m)!
(l+m)!

.

If we assume that scattering depends only on the relative angle between the
incident and the scattered neutrons, ~Ω ~Ω′, then

Σs(~r, ~Ω ~Ω′) =
∞∑
l=0

2l + 1

4π
Σs,l(~r)Pl(~Ω ~Ω′) ,

where Pl are Legendre polynomials.
These expansions are then inserted into Eq. (1) and, using the orthogo-

nality properties of the spherical harmonics, the following set of (complex)
equations for φlm is obtained:

1

2

(
−C1(l + 1,m+ 1)

∂φl+1,m+1

∂x1

+ C2(l,m)
∂φl−1,m+1

∂x1

− C1(l,m)
∂φl−1,m−1

∂x1

+ C2(l + 1,m− 1)
∂φl+1,m−1

∂x1

)
+

1

2i

(
−C1(l + 1,m+ 1)

∂φl+1,m+1

∂x2

+ C2(l,m)
∂φl−1,m+1

∂x2

− C1(l,m)
∂φl−1,m−1

∂x2

+ C2(l + 1,m− 1)
∂φl+1,m−1

∂x2

)
+ C3(l + 1,m)

∂φl+1,m

∂x3

+ C3(l,m)
∂φl−1,m

∂x3

+ Σt φlm

= Σs,l φlm +
1

λ
δl0δm0 νΣf φ00 , l = 0, 1, . . . , m = −l, . . . ,+l ,

(4)

where

C1(l,m) =

(
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

)1/2

, C2(l,m) = C1(l,−m) ,

C3(l,m) =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

)1/2

.
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(It is assumed in Eqs. (4) that φlm = 0 for invalid indices, l < 0 or |m| > l).
A numerical treatment of these equations requires a finite approximation, so
the series are truncated at some finite order l = L, i.e., φlm = Σs,l = 0 for
l > L (the so-called PL closure condition (Reed, 1972)) and the resulting
equations are known as the (complex) PL equations. In the following, we
will only consider L to be an odd integer because it guarantees (see interface
conditions, Sec. 2.3) continuity of even order moments and, in particular,

continuity of the neutronic flux
∫

Φ d~Ω =
√

4π φ00 along the reactor volume.
We will now obtain the real form of PL equations (4). The neutron an-

gular flux Φ must be a real function, then φlm
∗ = (−1)mφl,−m and there

are only 2l + 1 real independent moments φlm for each l > 0, that is,
{φl0,Reφlm, Imφlm,m = 1, . . . , l}. If we define the real moments

ξlm = Reφlm =
1

2
(φlm + (−1)mφl,−m) , l = 0, 1, . . . , L ,

ηlm = Imφlm =
1

2i
(φlm − (−1)mφl,−m) , l = 1, . . . , L ,

(5)

and real vectors of even/odd l moments

X = (ξl,m≥0, ηl,m>0)l=even and X̄ = (ξl,m≥0, ηl,m>0)l=odd

with dim(X) = ne = L(L+1)
2

and dim(X̄) = no = (L+1)(L+2)
2

= ne + L + 1 for
odd L then, taking real and imaginary part in Eqs. (4), we obtain the real
PL equations that can be written as the following set of vector-valued first
order differential equations:

3∑
j=1

Mj
∂X̄

∂xj
+ ΣaX =

1

λ
diag(δl0 νΣf )l=evenX , (6)

3∑
j=1

M̄j
∂X

∂xj
+ Σ̄a X̄ = 0 , (7)

where Σa = diag(Σt−Σsl)l=even, Σ̄a = diag(Σt−Σsl)l=odd are square diagonal
matrices, and Mj and M̄j are numerical rectangular matrices (of dimension
ne × no and no × ne, respectively) defined from the coefficients of Eqs. (4).
Eq. (7) is a generalization of Fick’s law,

X̄ = −D
3∑
j=1

M̄j
∂X

∂xj
, (8)
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X

Z Y

x1,0x1,0 −∆ x1,0 + ∆

Σ

Figure 1: A transition region is inserted when a discontinuity occurs at x1,0.

where D = Σ̄−1
a = [diag(Σt − Σsl)l=odd]−1. If we replace Eq. (8) into Eq. (6)

we obtain the diffusive form of PL equations:

−
3∑

i,j=1

∂

∂xi

(
MiDM̄j

∂X

∂xj

)
+ ΣaX =

1

λ
diag(δl0 νΣf )l=evenX , (9)

which is a second order vector-valued differential equation. Notice that the
(square) effective diffusion matrices MiDM̄j are the analogous of the diffusion
coefficient [3(Σt − Σs1)]−1 of P1 equation for L > 1.

2.3. Interface conditions

At points where the internal source or any cross-section is discontinuous
Eqs. (6) and (7) are undefined, and we will require some sort of interface
conditions for these regions. Let us replace the interface with a very thin
transition region, where the physical properties of the medium change rapidly,
but continuously (Greenspan, 1968). If, for example, the discontinuity occurs
at the YZ plane with coordinate x1 = x1,0, the transition region extends from
x1,0−∆ to x1,0 + ∆, see Fig. 1. On integrating the PL equations (6) and (7)
over the transition region,∫ x1,0+∆

x1,0−∆

[ 3∑
j=1

Mj
∂X̄

∂xj
+ ΣaX

]
dx1 =

1

λ

∫ x1,0+∆

x1,0−∆

[
diag(δl0 νΣf )l=evenX

]
dx1 ,

∫ x1,0+∆

x1,0−∆

[ 3∑
j=1

M̄j
∂X

∂xj
+ Σ̄a X̄

]
dx1 = 0 ,
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we get

M1

(
X̄(x1,0 + ∆)− X̄(x1,0 −∆)

)
+

∫ x1,0+∆

x1,0−∆

[ 3∑
j=2

Mj
∂X̄

∂xj
+ ΣaX

]
dx1

=
1

λ

∫ x1,0+∆

x1,0−∆

[
diag(δl0 νΣf )l=evenX

]
dx1 ,

M̄1

(
X(x1,0 + ∆)−X(x1,0 −∆)

)
+

∫ x1,0+∆

x1,0−∆

[ 3∑
j=2

M̄j
∂X

∂xj
+ Σ̄a X̄

]
dx1 = 0 .

As ∆ goes to zero all integrands remain continuous at the transition region,
therefore we arrive at the following interface conditions

lim
∆→0+

M1 X̄(x1,0 + ∆) = lim
∆→0+

M1 X̄(x1,0 −∆) , (10)

lim
∆→0+

M̄1X(x1,0 + ∆) = lim
∆→0+

M̄1X(x1,0 −∆) . (11)

But matrix M̄1, of dimension no×ne (with no > ne for odd L approximation)
has rank ne, so the second equation implies continuity of even order moments
X at the interface,

lim
∆→0+

X(x1,0 + ∆) = lim
∆→0+

X(x1,0 −∆) . (12)

On the other hand, as dim(M1) = ne × no, the first equation gives ne linear
relations between the no (> ne) odd moments X̄, so it is not possible to
impose continuity of all the moments.

2.4. Boundary conditions

Two kind of boundary conditions will be used in this work: vacuum
and reflective. Vacuum boundary conditions correspond to zero incoming
angular neutronic flux, Φ(~r, ~Ω) = 0, for all ~Ω~n ≤ 0, where ~r ∈ ∂V and ~n is
the outwardly directed unitary normal vector to the external surface. This
condition can not be satisfied in an exact way by a finite spherical harmonics
series so some approximation is required. A well-known approximation is
given by Marshak’s conditions (Stacey, 2001):∫

~Ω~n≤0

d~Ω Y m
l
∗(~Ω) Φ(~r, ~Ω) = 0 , (13)
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for l = 1, 3, 5, . . . , L (odd) and m = 0, 1, . . . , l (we remove negative m in-
dex conditions because the neutronic flux Φ is a real function). For regions

with prismatic geometry and from the symmetry Y m
l (−~Ω) = (−1)lY m

l (~Ω) we
obtain that, for l + l′ even,∫

~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Y m′

l′ (~Ω) =
1

2

∫
d~Ω Y m

l
∗(~Ω)Y m′

l′ (~Ω) =
1

2
δll′ δmm′ . (14)

Inserting the expansion given by the equation (3) for Φ truncated up to a
finite odd order L, into Marshak’s conditions (13) and using (14), it results
into the conditions

1

2
φlm +

L−1∑
l′ even

−l′≤m′≤l′

(∫
~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Y m′

l′ (~Ω)

)
φl′m′ = 0 , (15)

for l = 1, 3, 5, . . . , L and m = 0, 1, . . . , l. Taking real and imaginary part in
(15), Marshak’s conditions can be written as

X̄ +N X = 0 , (16)

where real vectors X and X̄ were previously defined, and N is a real rectan-
gular matrix (of dimension no × ne) with matrix elements

N(lm),(l′m′) = 2

∫
~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Y m′

l′ (~Ω)

((lm), l odd, are row indices; (l′m′), l′ even, are column indices, with ap-
propriate ordering). In order to compute the numerical values of matrix N ,
we must specify the geometry of the boundary surface. For example, if the
unitary normal vector ~n to the boundary surface points to negative Z axis,

N(lm),(l′m′) = (N−3 )(lm),(l′m′) = 4πδmm′H
m
l H

m
l′

∫ 1

0

dµPm
l (µ)Pm

l′ (µ) ,

(µ = cos θ) is a real-valued matrix. In the particular case of P1 approximation
for planar geometry (the spatial variation of the neutronic angular flux is only

in the Z direction) l = 1, l′ = 0 (even) so m′ = m = 0, N(1m),(00) = δm0

√
3

2
,

and Marshak’s condition (16), using Fick’s law (8), reduces to the usual form

− 1√
3(Σt − Σs0)

∂X

∂x3

+

√
3

2
X = 0 , with X = ξ0,0.
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If vector ~n points to positive Z axis, the corresponding matrix N+
3 = −N−3

has opposite sign.
We treat the discontinuity between the external surface and the interior

region by inserting a very thin transition region, as in Section 2.3. If, for
example, the boundary surface has normal vector ~n pointing to Z axis and is
located at x3 = x3,0, the transition region covers the interval [x3,0, x3,0 + ∆].
We obtain, reasoning as is Section 2.3, the following interface conditions:

lim
∆→0+

M3 X̄(x3,0 + ∆) = M3 X̄(x3,0) ,

lim
∆→0+

X(x3,0 + ∆) = X(x3,0) ,
(17)

so X is continuous at the interface but, using Eq. (16), X̄ satisfies the inter-
face condition

lim
∆→0+

M3 X̄(x3,0 + ∆) = −M3N
−
3 X(x3,0) , (18)

that is, a system of ne linear conditions.
Reflective boundary conditions applies when physical conditions are iden-

tical at both sides of a symmetry plane. Then Φ(~r, ~Ω) = Φ(~r,
~̃
Ω) , where

~̃
Ω

is the reflected angular direction with respect to the symmetry plane. For
example, if the normal vector ~n to the symmetry plane points to the negative
Z axis, the symmetry condition is

Φ(~r, ϕ, θ) = Φ(~r, ϕ, π − θ) , for 0 < ϕ < 2π , 0 < θ < π/2 . (19)

Inserting the spherical harmonics expansion for Φ, this equation is equivalent
to the condition

φlm = 0 , whenever l +m odd, (20)

for l = 0, 1, . . . and m = 0, 1, . . . , l. The same condition is valid if vector ~n
is pointing to the positive Z axis.

2.5. The nodal collocation method

The final step in the numerical approximation to Eq. (1) is the spatial
discretization of PL equations (9). The diffusive nature of this equation
suggests that a nodal collocation method can be numerically efficient. This
approach was previously used for the neutron diffusion equation (Hébert,
1987; Verdú et al., 1994) and generalized for eigenvalue problems associated

11



x2,0 x1

x1,0

x2

x1,1 x1,2 x1,3 x1,4 · · · x1,m1

x2,1

x2,2

x2,3

...

x2,m2

∆xe=1
2

∆xe=1
1

N e=1 N e=2 · · · N e=m1−2

e = m1 − 1 e = m1 · · ·

V

Figure 2: Sample rectilinear mesh covering the domain for 2D geometry. A natural order-
ing for spatial nodes Ne has been chosen.

to PL equations in multi-dimensional rectangular geometries in (Capilla et
al., 2005, 2008, 2012). We will give a short description of the key ideas of
the method. For a detailed development, we refer to the references above
mentioned.

We consider a domain that can be divided into N adjacent rectangular
prisms, or nodes, of the formN e = [x1,i1 , x1,i1+1]×[x2,i2 , x2,i2+1]×[x3,i3 , x3,i3+1],
being e = 1, . . . , N the node index and {x1,i1 , x2,i2 , x3,i3} the vertex coordi-
nates of a rectilinear mesh (ij = 0, 1, . . . ,mj, for j = 1, 2, 3, are the vertex
indices), see Fig. 2 for 2D geometry. The nodal collocation method assumes
that on each node N e the cross-sections in Eq. (1) are constant.

A generic node N e is then transformed into the cubic node of volume one
N e
u = [−1

2
,+1

2
]3 using the change of variables

uj =
1

∆xej

(
xj −

1

2
(xj,ij + xj,ij+1)

)
, j = 1, 2, 3 , (21)

where ∆xej = xj,ij+1 − xj,ij ,
For each node N e

u, the change of variables (21) is then applied to the PL
equations (9). Furthermore, if Xe(u1, u2, u3) denotes the previously defined
vector of l = even moments that appears in (9) for node N e

u, its spatial
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dependence is expanded in terms of (orthonormal) Legendre polynomials
Pk(u) =

√
2k + 1Pk(2u), k = 0, 1, ... up to finite order M ,

Xe(u1, u2, u3) =
M∑

k1,k2,k3=0

xek1k2k3Pk1(u1)Pk2(u2)Pk3(u3) , (22)

where uj ∈ [−1
2
,+1

2
], j = 1, 2, 3. The series (22) is then inserted into Eqs. (9)

and equations for the unknowns to be determined, that is, the Legendre
moments xek1k2k3 , are derived.

In performing this process, integration of “diagonal terms” in Eqs. (9),
that is, ΣaX

e and diag(δl0 νΣf )l=evenX
e, and integration of second derivative

terms when i 6= j, is straightforward using the orthonormality properties of
Pk(u). On the other hand, integration of second derivative terms for node
N e
u, when i = j, involves coupling with neighbouring nodes using interface

conditions given by Eqs. (10) and (12). In the case that the node N e
u is adja-

cent to an external boundary, then Marshak’s conditions (16) and interface
conditions (18) are used.

Finally, this procedure approximates Eqs. (9) by a generalized eigenvalue
problem

AV =
1

λ
B V , (23)

where V is a real vector of components (ξm;e
l;k1k2k3

, ηm;e
l;k1k2k3

) and A, B are sparse
real matrices of dimension N × G × NLeg × ne (N is the number of nodes;
G is the number of energy groups; NLeg = Md is the number of Legendre
moments, with M the order in Legendre series (22) and d the spatial dimen-
sion and finally ne = L(L + 1)/2 = dim(X), being L the order of the PL
approximation).

3. Numerical results of the NEA 2D C5G7 benchmark

The numerical method exposed above has been implemented into the
multi-group multi-dimensional FORTRAN 90 code SHNC (Spherical Harmonics-
Nodal Collocation), that computes and solves the discretized generalized real
non-symmetric eigenvalue problem (23), that is formulated as B V = λAV ,
for an arbitrary PL approximation, with odd L. The largest eigenvalue
λ ∈ R is numerically computed on uniprocessor systems using ARPACK
subroutines (Lehoucq et al., 1998). Linear systems are iteratively solved
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using the bi-conjugate gradient stabilized method (BCGSTAB), with incom-
plete LU factorization (ILUT) as preconditioner, from the FORTRAN library
SPARSKIT (Saad, 1994). Very large eigenvalue problems are effectively com-
puted in parallel using the software library SLEPc (Hernández et al., 2005),
that is based on the PETSc (Balay et al., 2016) data structures and em-
ploys the MPI standard. A Krylov-Schur method was chosen as eigensolver
and linear systems were iteratively solved with the BCGSTAB method using
HYPRE BoomerAMG as parallel preconditioner. Computational times vary
from some hours to a few days on a Xeon CPU E5-2650 using 8 cores. It was
observed that, with respect to computational time, the code scales (almost)
lineally with the numbers of computer cores up to 6 cores. Beyond this, an
increase of the number of computer cores does not reduce the computational
time, but has the advantage of increasing the amount of global memory avail-
able to the computer code. The code also solves the isotropic fixed source
problem for an arbitrary PL approximation for odd order L (Capilla et al.,
2016).

In previous works, we studied several multi-dimensional problems to ver-
ify the accuracy and test the convergence of the spherical harmonics-nodal
collocation method. The reader can consult Capilla et al. (2005, 2008), where
we analyzed one and two dimensional eigenvalue problems, in particular we
treated problems with anisotropic scattering or strong spatial heterogeneity.
In Capilla et al. (2012), we analyzed the capability of the nodal collocation
method to deal with three-dimensional realistic reactor problems.

To test the capability of our method to treat advanced reactor problems,
we present in this work results of the seven-group 2D NEA C5G7 fuel as-
sembly benchmark, which is a detailed pin-cell geometry MOX reactor. We
remark that also the subcritical modes can be obtained with our code.

3.1. Description of the benchmark and discretization model

We will analyze the application of the SHNC code to solve the two dimen-
sional version of the C5G7 fuel assembly benchmark, proposed by the Nuclear
Energy Agency (NEA) of the Organization for Economic Cooperation and
Development (OECD) to test the ability of modern transport methods and
codes to treat reactor heterogeneous core problems without spatial homoge-
nization above the fuel pin level (Lewis et al., 2001).

This benchmark problem has been analyzed with various code packages
(OECD/NEA, 2003), and a very precise solution was obtained using the
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Monte Carlo method implemented in MCNP code, providing the keff eigen-
value solution, and also the core pin power predictions and the related errors.

The configuration of the 2D C5G7 MOX benchmark consists of a core
with two MOX and two UO2 square fuel assemblies, surrounded by a water
reflector (moderator) region, as it is shown in Fig. 3 for a quarter of the
core. The overall dimensions of the quarter configuration are 64.26 cm ×
64.26 cm. Vacuum boundary conditions are applied to the right and to the
bottom boundaries, and reflective boundary conditions to the top and to
the left boundaries. Each fuel assembly consists of 17 × 17 square fuel pin
cells, with side length 1.26 cm. The geometry and composition of a fuel pin
cell is shown in Fig. 3. Every fuel pin consists of a single moderator region
outside a circular region with radius 0.54 cm (fuel-clad mix) representing
a fuel pin, a fission chamber or a guide tube. The MOX assemblies have
three enrichments of 4.3%, 7.0% and 8.7% and the UO2 assemblies have one
enrichment. The same moderator composition is used in all the fuel pin cells
and in the region surrounding the assemblies.
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Figure 3: The core configuration for the 2D C5G7 benchmark problem and the fuel pin
cell geometry.

More specifications about the seven-group, isotropic scattering cross-
sections for UO2, the three enrichments of MOX, the guide tubes, fission
chamber and the moderator are provided in Lewis et al. (2001); OECD/NEA
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(2003).
We present the solution of the 2D C5G7 benchmark problem, computed

with the SHNC code, and the PL results will be compared with the refer-
ence MCNP solutions (OECD/NEA, 2003) for keff eigenvalue, core pin power
distribution and assembly average power. For the SHNC calculations, two
different mesh discretizations of the pin cells were considered, both preserv-
ing the area of the circular region. Fig. 4(a) shows the rectangular mesh type
A for a fuel pin cell, with 6 × 6 fine cartesian nodes (OECD/NEA, 2005).
Fig. 4(b) shows the mesh type B, with the pin cell divided into 7× 7 nodes
resulting in a finer level of spatial resolution.
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Figure 4: (a) Mesh A: SHNC spatial discretization by a 6 × 6 nodes, and (b) mesh B:
spatial discretization by a 7× 7 nodes.

To obtain reference cases with our method, the discretization according
with meshes type A and B, were continued for every cell with a pin size in
the moderator region, giving a calculation with 306×306 = 93636 nodes and
357× 357 = 127449 nodes for the quarter reactor, named as meshes A1 and
B1, respectively.

Starting from the discretizations A and B for the fuel pins, an alternative
spatial discretization was considered throughout the moderator region, that is
schematically described in Fig. 5 for mesh type B, and taken in a similar way
for mesh type A. These models are named as A2 and B2. This problem has
a highly anisotropic behaviour localized in the vicinities of MOX assemblies.
Then, in order to obtain a smooth transition, in meshes A2 and B2, the
fuel region nodalisation was continued for the first 6 neighbouring cells in
the moderator, as can be seen in Fig. 5. The total number of nodes for the
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quarter reactor is 251 × 251 = 63001 and 291 × 291 = 84681 for meshes
A2 and B2, respectively. Then, for each type of the pin cell discretizations,
A and B, we used two different models corresponding to different levels of
spatial resolution for the moderator region extended to the right and below
the outer assemblies. Meshes A2 and B2 give about a 34% reduction in the
number of nodes with respect to meshes A1 and B1, and we will see that
the calculations using meshes A2 and B2 maintain the same computational
accuracy.

cells

34 x 6

6 x 34

cells

34 x 34

pin cells

MODERATOR

CORE

Figure 5: Scheme of the mesh B2, showing the grid of the moderator region, when the
7× 7 pin cell nodalisation is taken.

3.2. 2D C5G7 results and analysis

Now we analyze the effect of the different spatial discretizations on the PL
solutions. Also, for each type of mesh, we study how changes in the Legendre
polynomial order M in Eq. (22) affect the PL results. Table 1 shows the keff

eigenvalue results obtained with the P1 and P3 approximations, the reference
MCNP solution and percent relative errors with respect to the reference
solution, defined the last as 100(kSHNC

eff − kRef
eff )/kRef

eff .
We observe that the results for keff with the P3 approximation show

smaller errors when the mesh type B is considered, then the increase of
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Table 1: keff eigenvalue solutions and percent errors for the C5G7 benchmark problem
computed with SHNC, for different spatial meshes and values of M

MCNP: keff = 1.186550 (±0.008)
SHNC M keff and percent error SHNC M keff and percent error

Mesh A1 Mesh A2
P1 3 1.183922 (−0.221) P1 3 1.183700 (−0.240)

4 1.183813 (−0.231) 4 1.183818 (−0.230)
P3 3 1.180198 (−0.535) P3 3 1.180140 (−0.540)

4 1.177268 (−0.782) 4 1.176693 (−0.830)
Mesh B1 Mesh B2

P1 3 1.183433 (−0.263) P1 3 1.183244 (−0.279)
4 1.183056 (−0.294) 4 1.182943 (−0.304)

P3 3 1.187656 (+0.093) P3 3 1.186949 (+0.034)
4 1.183001 (−0.299) 4 1.181710 (−0.408)

the spatial resolution improves the P3 results. However, no significant dif-
ferences are observed between the P1 results obtained with meshes type A
and B. Then the spatial approximation of the pin cell has less impact on the
quality of the calculations than the angular modelling. Better computational
efficiency is obtained with meshes A2 and B2, that maintain almost the same
accuracy as the calculations with meshes A1 and B1, while the computational
time and memory required for the calculations is about a 34% lower. We can
conclude that the PL keff eigenvalue solutions in Table 1 for meshes B1 and
B2 have an agreement with the MCNP solution using a 98% confidence in-
terval. Although the results are consistent with the reference solution, our
eigenvalue results show an oscillatory behaviour with the Legendre order M
due to the polynomial origin of the spatial approximation.

Tables 2, 3 and 4 present results of the pin power, assembly power and
percent errors, that help us to analyze the convergence and determine the
precision of the PL calculations. A direct comparison of the PL pin power
results against the reference solution in each individual pin, would be difficult
because there are a total of 1056 fuel pins. Therefore, percent error measures
were used in the form of average pin power percent error (AVG), root mean
square (RMS) of the pin power percent error distribution and mean relative
pin power percent error (MRE) (see OECD/NEA (2003)). Table 2 shows the
pin power distribution error measures for the P1 and P3 solutions obtained
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with the meshes A1 and B1, for different values of M , together with the
reference MCNP solution. We observe that, as the angular order L increases,
the error measures decrease approaching the MCNP reference values. Also,
when the order M is increased from 3 to 4, the P3 error measures improve
with respect to the reference solutions.

Table 2: Pin power distribution error measures for the C5G7 benchmark

AVG RMS MRE
MCNP 0.32 0.34 0.27
SHNC M Mesh A1
P1 3 1.47 1.78 1.27

4 1.48 1.78 1.28
P3 3 0.89 1.04 0.88

4 0.63 0.74 0.61
SHNC M Mesh B1
P1 3 1.44 1.75 1.22

4 1.43 1.77 1.18
P3 3 1.14 1.34 1.15

4 0.85 1.00 0.84

Table 3 tabulates the maximum pin power and the minimum pin power
from the SHNC P1 and P3 solutions along with the reference MCNP solu-
tions and percent relative errors. We also show in the table results from
the ENTRANS code reported in Yousefi et al. (2017), where the even par-
ity angular flux density is expanded in spherical harmonics polynomials, the
angular matrices are treated by analytic integration and the spatial variable
is treated using finite element method. The keff values obtained by (Yousefi
et al., 2017, Table 6) were keff = 1.18383 (P1) and keff = 1.18416 (P3). We
observe that an advantage of our method is that the maximum percent error
in Table 3 is lower than in classical deterministic methods (OECD/NEA,
2003); this measure usually represents the largest deviations between Monte
Carlo calculations.

Table 4 shows the PL results for the assembly powers against the reference
MCNP solutions.

In Table 5, we give the number of fuel pins that fall within the reference
MCNP 68%, 95%, 99% and 99.9% confidence intervals. This information
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Table 3: Specific pin powers and percent error results for the C5G7 benchmark problem

Max. pin Percent Min. pin Percent Max. percent
power error power error error

MCNP 2.498 ±0.16 0.232 ±0.58
SHNC P1 2.525 1.09 0.240 3.77 5.92

P3 2.521 0.93 0.234 1.24 1.85
ENTRANS P1 2.520 0.881 0.242 4.310 NA

P3 2.533 1.401 0.236 1.724 NA

Table 4: Assembly power and percent error results for the C5G7 benchmark problem

Inner Percent MOX Percent Outer Percent
UO2 error error UO2 error

MCNP 492.8 ±0.10 211.7 ±0.18 139.8 ±0.20
SHNC P1 496.0 0.65 210.6 −0.52 138.8 −0.72

P3 495.5 0.54 210.5 −0.59 139.6 −0.10

shows the accuracy of the pin power distribution obtained with SHNC PL
approximation, giving the P3 results greater number of fuel pins within the
confidence intervals.

Table 5: Number of fuel pins within the reference confidence intervals for the C5G7 bench-
mark

SHNC 68% 95% 99% 99.9%
P1 44 77 129 170
P3 124 197 268 352

Fig. 6(a) shows the P3 pin power distribution as a 3D graph. The power
takes maximum values in the central core assembly. It is also observed that
the power increases slightly in the area of the assemblies that is surrounded
by moderator. In Fig. 6(b), we display the absolute values of the relative
errors of P3 pin power results with respect to the MCNP solution. We find
that the largest relative errors are located in the proximities of the interface
between the assemblies and the moderator region. The results of Fig. 6 and
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those of Tables 3, 4 and 5 were obtained with the A1 reference mesh, and
Legendre polynomial order M = 4.
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Figure 6: (a) P3 pin power distribution for the C5G7 benchmark and (b) absolute value
of the percent relative errors of the P3 pin power values.

Figs. 7(a) and 7(b) show the contour plots of the P3 scalar flux in fast
(group 1) and thermal (group 7) energy groups, respectively. The obtained
flux distribution was also calculated using mesh A1 and M = 4.

Due to the greater scattering cross-section in the moderator, the thermal
scalar flux presents a peak in this region. The thermal flux in UO2 assembly
is higher than in MOX assembly, this is because the fast to thermal scattering
cross-section in UO2 is greater than in MOX. Fig.7(a) shows the maximum
value of the flux distribution in the central UO2 assembly, and it is reduced
to the other assemblies and moderator region.

From the above results, we observe that the SHNC PL approximation is
able to reproduce the power distribution and the scalar flux reasonably well,
obtaining consistent solutions for typical reactor calculations, where P1 and
P3 are practical approximations. The remaining errors can be attributed to
the high-order space-angle approximation necessary to solve this particular
benchmark problem.

We have finally calculated the subcritical modes for the full reactor con-
figuration. Table 6 shows the first dominant eigenvalues for this problem
computed with P1 and P3 approximations using mesh A2 and M = 4. The
presence of degenerate modes is due to the symmetry of the problem. Com-
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Figure 7: P3 fast (a) and thermal (b) flux distribution for C5G7 benchmark problem.

puted relative errors ‖BV−λAV ‖‖λV ‖ for the subcritical modes reported by SLEPc

code were < 10−5 for P1 approximation and < 10−3 for P3 approximation.

Table 6: First dominant eigenvalues for the 2D C5G7 benchmark problem

Eigenvalues P1 P3

keff 1.183813 1.177268
2nd, 3rd 1.039234 1.039254
4th 0.949887 0.957624
5th 0.904549 0.915306
6th 0.859538 0.875609
7th, 8th 0.815803 0.827131

Figs. 8(a) and 8(b) display the contour maps of the eigenvectors corre-
sponding to the second and fourth subcritical modes, respectively, using P3

approximation, for energy groups 1 (fast) and 7 (thermal). We omit the third
subcritical mode because, due to the symmetry of the reactor, it is obtained
by rotating the second mode 90o counterclockwise.
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Figure 8: P3 eigenvectors for the 2nd and 4th subcritical modes for the C5G7 benchmark.

4. Conclusions

The application of a nodal collocation method for the diffusive form of
the multi-dimensional spherical harmonics (PL) equations has been reviewed.
The method has been implemented into a computer code called SHNC, that
solves multi-dimensional multi-group neutron eigenvalue problems and trans-
port source problems in single-core and multiple-core computers.

The main advantages of the method are: PL equations are invariant un-
der rotations so there is no ray effect in the solutions. The method gives
satisfactory results when nodes of big size are considered, using a moderate
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number of Legendre polynomials. The lower dimension and good character-
istics of the matrix associated to the algebraic problem, since this approach
reduces the dimension of the corresponding algebraic problem in comparison
to other methods, like finite elements or finite differences. This makes feasi-
ble to compute the first subcritical modes of the full reactor configuration,
showing the degenerate modes that arise from the symmetry of the problem.

On the other hand, disadvantages of the method are: the relative com-
plexity of the equations involved (that can be hidden with appropriate com-
puter libraries), oscillatory behaviour of the solution of PL equations, and
unphysical negative values of the scalar flux, due to the polynomial nature
of the spatial approximation. These issues will be addressed in future works.

In this work we have treated, for the first time with our method, the het-
erogeneous core reactor problem 2D C5G7 MOX fuel assembly benchmark,
which is a realistic and computer intensive criticality benchmark problem.
Although the results are consistent with the reference Monte Carlo solution,
our PL keff eigenvalue results show oscillatory behaviour with respect to the
order L, due to the spectral nature of the PL approximation. As was observed
in other works, we notice that the spatial approximation of the pin cell has
less impact on the quality of the calculations than the angular modelling.
The SHNC P1 and P3 approximations reproduce the reference power distri-
bution and the scalar flux reasonably well; the remaining errors are due to
the high-order space-angle approximation necessary to solve this particular
benchmark problem. An advantage of our method is that the pin power max-
imum percent error for this problem is lower than in classical deterministic
methods.

In summary, the implementation of multi-dimensional PL equations in the
neutronic modules of reactor core simulators allows the analysis of complex
heterogenous cores. The availability of fast computers will allow a more
common use of this kind of methods to solve the neutron transport equation.
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