
International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.21

274 Oscar Pastor, Marcela Ruiz
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

From Requirements to Code: A Conceptual Model-based
Approach for Automating the Software Production Process

Oscar Pastor*,a, Marcela Ruizb

a PROS Research Centre, Universitat Politecnica de Valencia, Spain
b Utrecht University, the Netherlands

Abstract. Conceptual Models are part of an increasing number of engineering processes. The model
driven development approach considers conceptual models as first-class entities and also considers tools,
repositories, etc. as models. In order to take full advantage of these ideas, model transformation is a
main activity. A sound software production process, conceptual-modelling based, must go from the initial
requirements model to the final application code through a well-defined set of conceptual models and
transformations between them. Model transformation aims at supporting the production of target models
from a number of source models, while keeping a full traceability support. The current paper presents
a practical application of these ideas using the Model Centred Architecture contributed by Heinrich C.
Mayr. In this line, we present our research efforts on the integration of requirements and executable
conceptual models. We reflect on the integration of Communication Analysis (a communication-oriented
business process modelling and requirements method) and the OO-Method (an object-oriented model-driven
development method).

Keywords. Conceptual Modelling • Conceptual Programming • OO-Method • Communication Analysis •
Model-Centred Architecture • Model-Based Software Production

1 Introduction

An essential component of a conceptual model-
based software production approach is an execut-
able conceptual model. This is how we start this
paper, presenting the OO-Method approach in
section 2. To avoid moving from an Extreme
Programming perspective to a kind of Extreme
Conceptual Modelling point of view, where a
particular conceptual model comes from must be
clearly determined. This is why we need a con-
crete requirements modelling strategy (presented
through the Communication Analysis perspective
in section 3), and a concrete model transformation
from the requirements model to its correspond-
ing executable conceptual schema. This is what
we discuss in section 4 using a model centred

* Corresponding author.
E-mail. opastor@pros.upv.es

architecture. Concluding remarks and references
complete the work.

2 The OO-Method approach

OO-Method is an approach for automatic software
generation based on the specification of object-
oriented conceptual models (Pastor and Molina
2007). It is supported by Integranova 1 , a model-
driven tool that provides an OO-Method modelling
environment, a conceptual model compiler, and
automatic code generation. OO-Method uses four
conceptual models partial views that conform all
together a complete information systems specific-
ation: i) Object model, ii) Dynamic model, iii)
Functional model, and iv) Presentation model.

1 http://www.integranova.com/

http://dx.doi.org/10.18417/emisa.si.hcm.21
opastor@pros.upv.es


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.21
From Requirements to Code 275
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

The conceptual models are platform independ-
ent, i.e., they do not involve platform-dependent
characteristics.

Object model

This model specifies the structure and static rela-
tionships between the classes of a software system.
It provides a graphical notation that can be con-
sidered equivalent to a UML class diagram where
only a delimited set of primitive constructs are se-
lected as relevant. It basically includes classes, at-
tributes, services (events (simple) and transactions
or operations (complex)), and the relationships
between the classes.

The basic graphical notation is complemented
with the specification of textual integrity con-
straints written according to a well-defined first-
order logical language. As an example, a rent-a-
car system will include in its object model classes
as car, customer, etc., each one with its corres-
ponding set of attributes and services.

Dynamic model

This model specifies the dynamic and behavioural
aspects of the classes of the object model. The
dynamic model can be considered equivalent to
UML’s state transitions diagram. The valid life-
cycles of the classes are represented in this model,
as well as the possible interactions between differ-
ent objects (i. e., instances of different classes).

Functional model

This model specifies the semantics of the change
of an object state as a result of event executions.
For example, a change in the state of an object car
(from available to rented) when the rent service
is activated. A set of services, preconditions, and
post-conditions are specified to define changes in
object states. OO-Method provides a declarative
language to indicate the constraints that are related
to each object state.

The functional model provides the facilities
to specify domain dependent restrictions. The
declarative language of the functional model is
aligned with the object and functional models.

Presentation model

This model specifies the characteristics of the
user interface of a software system and how the
users will interact with the system; the model is
created by means of a pattern-based graphical
model through three levels of detail, from more
general to more specific characteristics.

Applications generated from conceptual modelling
with the OO-Method follows a three-layer software
architecture. The presentation layer contains the
software components responsible for presenting
users the application interface to interact with the
software system. The application layer provides
services that implement the functionality. The
persistence layer provides the services that manage
data persistence, in order to store and obtain the
pieces of data necessary for the execution of an
application.

The software process of the OO-Method con-
sists of two stages. First, system analysts (mod-
ellers) create a conceptual schema, which corres-
ponds to a representation of the problem space (i.e.,
the application domain). A UML-based notation
and textual specifications are used according with
the four model views commented before. Second,
the code of an application is generated on the basis
of the Execution Model of Integranova, which cor-
responds to a representation of the solution space
and can be targeted at different technologies.

When comparing the OO-Method with other ap-
proaches for software modelling and development,
it deals with the static (data-oriented), the dy-
namic and functional (behaviour-oriented) and
the presentation views of an Information System
(IS). All together they constitute a complete IS
modelling and development approach. In addition,
it relies on an underlying formal model OASIS;
(Lopez et al. 1992) and it provides a conceptual
model compiler intended to make true the con-
ceptual programming goal that states that "the
conceptual model is the code" (instead of "the
code is the model") (Embley et al. 2011). This
strategy allows the generation of complete and

http://dx.doi.org/10.18417/emisa.si.hcm.21


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.21

276 Oscar Pastor, Marcela Ruiz
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

ready-for-running applications by precisely spe-
cifying an IS through its conceptual model.

In relation to MDA (Model Driven Architecture;
(Miller and Mukerji 2003)), a detailed description
of its correspondence with OO-Method can be
found in (Pastor and Molina 2007). The main
points are that: 1) an OO-Method conceptual
schema corresponds to a Platform-Independent-
Model; 2) the execution model corresponds to a
Platform-Specific-Model, and; 3) the code gener-
ated corresponds to an Implementation Model.

3 The Requirements Perspective:
Communication Analysis

This section presents the Communication Ana-
lysis (CA) method (España et al. 2009). The CA-
based approach extends the platform-independent
view provided by the OO-Method with the upper
Computation-independent model, where require-
ments modelling is going to be managed. To better
understand the underlying ideas from a practical
point of view, we are going to use a lab demo to
illustrate the use of the Communication Analysis
method.

The case presented in this paper is an adaptation
of The SuperStationery Co. case. SuperStationery
Co. is a company that provides stationery and
office material to its clients. The company acts
as an intermediary: the company has a catalogue
of products that are bought from suppliers and
sold to clients. This case is presented in full detail
in (España et al. 2011). In this paper, we focus
on the part of the sales manager business process
(acronym SALE).

3.1 Concepts of Communication Analysis
requirements models

To facilitate understanding of the illustrative ex-
ample, this subsection presents a brief explanation
of the concepts used for Communication Analysis
(Communicative Event Diagrams and Message
Structures).

Concepts of Communicative Event Diagrams

The Communicative Event Diagram (CED) is a
business process modelling technique that adopts
a communicational perspective and facilitates the
development of an IS that will support those busi-
ness processes (España 2011) (González et al.
2009). A communicative event is a set of actions
that are related to information (acquisition, storage,
processing, retrieval and/or distribution), which
are carried out in a complete and uninterrupted
way.

The unity criteria allows communicative events
to be identified. Each communicative event is
represented as a rounded rectangle and is given an
identifier, a number and a descriptive name (e.g.
SALE 1 in Figure 1).

For each event, the actors involved are identified.
The primary actor triggers the communicative
event and provides the input information. For
instance, the client is the primary actor of the
communicative event SALE 1.

The interface actor is in charge of physically
interacting with the IS interface. Interface actors
are specified at the bottom of the event. For
instance, the salesman is the interface actor of
the communicative event SALE 1. The receiver
actors are those who need to be informed of the
occurrence of an event. The sales manager is the
receiver actor of the communicative event SALE 1.

An ingoing relationship is a communicative inter-
action that feeds the IS memory with new meaning-
ful information. The main direction of the ingoing
communicative interaction is from the primary
actor to its related communicative event. For in-
stance, the relationship named ORDER between
the primary actor client and the communicative
event SALE 1 is an ingoing communicative interac-
tion. An outgoing relationship is a communicative
interaction that consults the IS memory.

The main direction of the outgoing commu-
nicative interaction is from the communicative
event to its related receiver actor. For instance, the
relationship named ORDER that is between the
communicative event SALE 1 and the receiving

http://dx.doi.org/10.18417/emisa.si.hcm.21


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.21
From Requirements to Code 277
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

actor SALES MANAGER is an outgoing commu-
nicative interaction.

The precedence relationships are represented as
arrows among communicative events (e.g. SALE 1
requires the previous occurrence of PROD 2 and
CLIE 1).

Figure 1: CED of the Sale process of SuperStationery
Co.

Concepts of Message Structures

Message Structures is a specification technique
that allows the message that is associated to a com-
municative interaction to be described (González
et al. 2011). A substructure is an element that
is part of a message structure. This way, LINE,
Client and Payment type are substructures that are
part of the substructure ORDER (See Figure 2).

There are two classes of substructures: fields
and complex substructures. A field is a basic
informational element of the message that is not
composed of other elements. A data field is a
field that represents a piece of data with a basic
domain. For instance, payment type is a data field.
A reference field is a field whose domain is a type
of business object. For instance, Client refers to a
client that is already known by the IS.

A complex substructure is any substructure
that has an internal composition. An aggregation
substructure specifies a composition of several sub-
structures. It is represented by angle brackets < >.
For instance, LINE=<Product+Price+Quantity>

specifies that an order line consists of information
about a product, its price, and the quantity. An
iteration substructure specifies a set of repetition
of the substructures it contains. It is represented
by curly brackets {}. For instance, an ORDER
can have several lines for each product requested.

Figure 2: Message Structure of the communicative
event Sale 1

The Communication Analysis Method is suppor-
ted by means of the GREAT Process Modeller
(Rueda et al. 2015). GREAT allows creating com-
municative event diagrams (i.e. business process
models), specifying message structures (which
describe the messages associated to each commu-
nicative event), and automatically generating a
class diagram (representing the data model of an
information system that would support organisa-
tional communication).

4 Generating an Executable Conceptual
Model

España (2011) integrates the Communication Ana-
lysis and the OO-Method. The integration strategy
is based on an ontological alignment of the concept

http://dx.doi.org/10.18417/emisa.si.hcm.21


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.21

278 Oscar Pastor, Marcela Ruiz
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

definitions in which the two methods are grounded.
As a result, the ontological alignment provides
precise transformation guidelines to transform
Communication Analysis models into OO-Method
object models (see Figure 3). The systematic de-
rivation of OO-Method conceptual models from
Communication Analysis requirements models is
offered in two flavours: a set of rules to be manu-
ally applied by a human analyst, and an ATL model
transformation that automates this task (Jouault
and Kurtev 2006).

This is where the link between requirement
modelling and conceptual model execution is es-
tablished in a precise way through the connection
between a CA model and its associated OOM
model, the result of the transformation.

Figure 3: Model derivation strategy from (Jouault and
Kurtev 2006)

4.1 Model Centred Architecture of
Communication Analysis and
OO-Method

Our research line applies the core concepts of
the Model Centred Architecture paradigm (Mayr
et al. 2017). As a result, the requirement and
conceptual models of Communication Analysis
and OO-Method can be seen as the core of inform-
ation systems. Figure 4 presents an overview of
the Model Centred Architecture paradigm applied

to the Integration of Communication Analysis and
OO-Method.

The Model Centred Architecture for the integra-
tion of Communication Analysis and OO-Method
ensures a complete support for domain-specific
applications. Thanks to model-driven tools like
GREAT and Integranova, it is possible to give the
power to system users and metamodel authors to
specify and maintain information systems.

5 Conclusions

The current paper reflects on our research efforts
for automating the software production process.
The practical application of the Model Centred
Architecture is reflected in the integration of the
model-driven methods Communication Analysis
and OO-Method. The application of the Model
Centred Architecture benefits the role of system
users by facilitating the maintenance and usage of
model-driven tools.

In the near future we plan to explore the applic-
ation of round trip model transformations. The
idea is to involve system users when applying the
transformation engines from requirements to code.
The involvement of end users in the transformation
process will ensure the implementation of domain
specific requirements that should be specified dur-
ing the transformation process. In addition, we
plan to integrate a tool support for goal model-
ling to our current software production process.
With the intentional perspective, the entire Model
Centred Architecture acquires different views that
will enrich the final software product.

We plan to improve the metamodel and model
exchange interfaces support. The idea is to facilit-
ate the connection among the different requirement
specifications (processes, goals, and conceptual
models) and software code. In this line, one big
challenge will be the design of a modelling en-
vironment in which the traceability links become
explicit assets.

In the long term, we intend to implement an
evolution support for metamodels, models, and
domain models. In this future scenario, the system

http://dx.doi.org/10.18417/emisa.si.hcm.21


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.21
From Requirements to Code 279
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 4: Model Centred Architecture for Communication Analysis and OO-Method

users will be in charge of the maintenance of the
three layers of the Model Centred Architecture.

References

Embley D. W., Liddle S. W., Pastor O. (2011)
Conceptual-Model Programming: A Manifesto
In: Handbook of Conceptual Modeling: Theory,
Practice, and Research Challenges Embley D. W.,
Thalheim B. (eds.) Springer, pp. 3–16 https://doi.
org/10.1007/978-3-642-15865-0_1

España S. (2011) Methodological Integration of
Communication Analysis into a Model-Driven
Software Development Framework. PhD thesis,
Universitat Politecnica de Valencia http : / / hdl .
handle.net/10251/14572

España S., González A., Pastor O. (2009) Commu-
nication Analysis: A Requirements Engineering
Method for Information Systems In: Advanced In-
formation Systems Engineering: 21st International
Conference, CAiSE 2009 van Eck P., Gordijn J.,
Wieringa R. (eds.) Springer Berlin Heidelberg,
pp. 530–545

España S., González A., Pastor O., Ruiz M. (2011)
Integration of Communication Analysis and the
OO Method: Manual derivation of the Conceptual
Model. The SuperStationery Co. lab demo. In:
CoRR abs/1101.0105 http://arxiv.org/abs/1101.
0105

González A., España S., Pastor O. (2009) Unity
criteria for Business Process Modelling: a theor-
etical argumentation for a Software Engineering
recurrent problem. In: IEEE, p. 10

http://dx.doi.org/10.18417/emisa.si.hcm.21
https://doi.org/10.1007/978-3-642-15865-0_1
https://doi.org/10.1007/978-3-642-15865-0_1
http://hdl.handle.net/10251/14572
http://hdl.handle.net/10251/14572
http://arxiv.org/abs/1101.0105
http://arxiv.org/abs/1101.0105


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.21

280 Oscar Pastor, Marcela Ruiz
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

González A., Ruiz M., España S., Pastor O. (2011)
Message Structures a modelling technique for
information systems analysis and design. In: p. 12

Jouault F., Kurtev I. (2006) Transforming Models
with ATL. In: Bruel J.-M. (ed.) Satellite Events at
the MoDELS 2005 Conference. Springer Berlin
Heidelberg, pp. 128–138 https://doi.org/10.1007/
11663430_14

Lopez O. P., Hayes F., Bear S. (1992) Oasis: An
object-oriented specification language. In: Lou-
copoulos P. (ed.) Advanced Information Systems
Engineering. Springer Berlin Heidelberg, pp. 348–
363 https://doi.org/10.1007/BFb0035141

Mayr H. C., Michael J., Ranasinghe S., Shekhovt-
sov V. A., Steinberger C. (2017) Model Centered
Architecture In: Conceptual Modeling Perspect-
ives Cabot J., Gómez C., Pastor O., Sancho M. R.,
Teniente E. (eds.) Springer International Publish-
ing, pp. 85–104 https://doi.org/10.1007/978-3-
319-67271-7_7

Miller J., Mukerji J. (2003) MDA Guide Version
1.0.1.. Object Management Group (OMG)

Pastor O., Molina J. C. (2007) Model-Driven
Architecture in Practice. Springer-Verlag Berlin
Heidelberg, Upper Saddle River, NJ, p. 302 https:
//doi.org/10.1007/978-3-540-71868-0

Rueda U., España S., Ruiz M. (2015) GREAT
Process Modeller user manual. In: ArXiv e-prints
http://adsabs.harvard.edu/abs/2015arXiv150207
693R

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ licence.

http://dx.doi.org/10.18417/emisa.si.hcm.21
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/BFb0035141
https://doi.org/10.1007/978-3-319-67271-7_7
https://doi.org/10.1007/978-3-319-67271-7_7
https://doi.org/10.1007/978-3-540-71868-0
https://doi.org/10.1007/978-3-540-71868-0
http://adsabs.harvard.edu/abs/2015arXiv150207693R
http://adsabs.harvard.edu/abs/2015arXiv150207693R
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

