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ELECTROCHEMICAL CHARACTERIZAT ION AND DATING
OF ARCHAEOLOGICAL LEADED BRONZE OBJECTS US ING

THE VOLTAMMETRY OF IMMOBIL IZED PARTICLES*
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Faculty of Archaeology and Anthropology, Yarmouk University, Irbid, Jordan
and T. PASÍES

Museu de Prehistòria de València, Corona 36 46003 Valencia, Spain

The application of solid state electrochemistry techniques for the characterization and dating
of leaded bronze objects is described. Characteristic voltammetric signatures of copper and
lead corrosion products were used as markers of more or less prolonged corrosion periods.
The proposed methodology was applied to samples from the Roman archaeological sites of
Valeria (Spain) and lGadara (Jordan), Roman and medieval sites in Xàtiva (Spain), and
modern statuary exhibited outdoors, on the campus of the Universitat Politècnica of Valencia,
Spain, covering a time interval between the fourth to second century BC and the 20th century
AD. For such samples, the ratio between the signals for copper and lead corrosion products
decreased monotonically with the corrosion time. This variation was modelled on the basis
of thermochemical and kinetic considerations, the experimental data being consistent with a
potential rate law for the corrosion process.

KEYWORDS: LEADED BRONZE, VOLTAMMETRY OF IMMOBILIZED PARTICLES, TAFEL
ANALYSIS, DATING

INTRODUCTION

The identification of the constitutive materials of archaeological metal objects and their dating
are classical analytical demands for archaeologists, conservators and restorers (Pernicka 1998;
Scott 2002). The tracing of the provenance of the materials can be derived from the chemical
composition of the alloy, isotope ratios, and the microstructure of the alloy and patina from
metallographic cross-sections (Attanasio et al. 2001; Constantinides et al. 2002). Since
sampling the metal core is in general not allowed for archaeological objects, the
characterization of the metallic material, its provenance, its manufacturing technique and its

*Received 2 May 2016; accepted 21 December 2016
†Corresponding author: email antonio.domenech@uv.es
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situation within a defined chronological context have to be obtained from the physico-
chemical properties of the metal surface products (Scott 1994; Robbiola et al. 1998 Q2; Robbiola
and Portier 1998, 2006; Sandu et al. 2006). Thus, the relation between the Zn/Cu and Sn/Cu
concentrations in the patina and the base alloy have been proposed as chronological indicators
for brass and bronze artefacts (Robbiola and Hurtel 1997; Welter 2003) based on
decuprification, destannification and dezincation, which are widely extended phenomena in
bronze corrosion (Weisser 1975; Meeks 1986; Leoni et al. 1991; Scott 1994; Robbiola and
Hurtel 1997; Robbiola et al. 1998; Chiavari et al. 2007; Robbiola and Portier 1998; De Ryck
et al. 2003; Welter 2003).

A variety of spectroscopic, diffraction and microscopy techniques have been used for
characterizing the composition of metal patinas (Constantinides et al. 2002; Selwyn 2004;
Chiavari et al. 2007; Cura D’Ars de Figueiredo et al. 2007). In this context, the voltammetry
of immobilized particles (VIMP), a solid-state electrochemical methodology developed by Q3

Scholz and Meyer (1998) and Scholz et al. (2014), which provides analytical information
on a variety of sparingly soluble solids (Doménech-Carbó et al. 2013), has been applied in
the archaeological domain (Doménech-Carbó et al. 2009; Doménech-Carbó 2010)
complementing well-established spectroscopic, diffraction and electron microscopy techniques.
The application of VIMP for identifying metals and alloys (Costa and Urban 2005; Costa
et al. 2010; Ottenwelter and Costa 2015) and the metal corrosion products (Souissi et al.
2004; Serghini-Idrissi et al. 2005; Doménech-Carbó et al. 2008; Satovic et al. 2010) has been
described, also including quantitation (Arjmand and Adriaens 2012) and layer-by-layer
analysis (Doménech-Carbó et al. 2010). Exploiting the possibility of ‘one-touch’ sampling
strategies based on ‘graphite pencil’ electrodes (Blum et al. 1996; Doménech-Carbó et al.
2011b), electrochemical data have previously been used for authentication of lead
(Doménech-Carbó et al. 2011d, 2015) and the dating of lead (Doménech-Carbó et al.
2011a, 2012b) and bronze (Doménech-Carbó et al. 2014, 2016b).

In a previous paper (Doménech-Carbó et al. 2016a), we described the application of the VIMP
technique for characterizing the corrosion patterns of modern leaded bronze statuary using Tafel
analysis of voltammetric curves. The practice of preparing leaded bronze has been known since
antiquity (Hughes et al. 1982). This addition lowers the cost of the alloy and results in an
improved fluidity and mould-filling capability without affecting the structures after solidification.
The relatively low solubility of lead in copper results, however, in the appearance of peculiar
globular features and corrosion patterns (Gettens 1969; Meeks 1986; Chase 1994; Ingo et al.
2006), including the presence of unalloyed copper inclusions, which have been attributed to a
pseudomorphic replacement process associated with destannification (Leoni et al. 1991) and
the redeposition of copper in spaces left by lead oxidation and dissolution (McCann et al.
1999; Quaranta et al. 2014).

Here, the application of the VIMP methodology is described for the characterization and
dating of leaded bronze. It is pertinent to note that, in line with Meeks (1986), this approach
has two fundamental limitations, strictly speaking: an exact knowledge of the composition and
element distribution of the base metal and the corrosion layers and of the casting, cold working
and so on carried out in the fabrication of the object is necessary for the above purposes because
there is a potential high variability in the composition, fabrication technique and ‘corrosion
history’ of the studied pieces. Unfortunately, acquisition of much of the above archaeometric
information requires the use of destructive sampling, which is in general not accessible (Scott
1994; Robbiola et al. 1998; Robbiola and Portier 1998, 2006; Sandu et al. 2006). The purpose
of the current work—in spite of the aforementioned limitations—was an attempt to obtain
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analytical information using non-invasive sampling limited to the corrosion layers, which was
potentially applicable to samples having compositions and a ‘corrosion history’ that can be
assumed to be relatively similar.

The voltammetric data are complemented by attenuated total reflectance – Fourier transform
infrared spectroscopy (ATR–FTIR) and field emission scanning electron microscopy with
energy-dispersive X-ray microanalysis (FESEM–EDX). The study was carried out on leaded
bronze samples from various provenances, including a sculpture from the Roman city of Valeria
(Cuenca, Spain, second half of the first century AD), a set of weights from the site of Gadara
(Jordan), dated to the fourth century AD, various objects from archaeological sites in Xàtiva
(Valencia, Spain) and three modern sculptures from the statuary exhibited outdoors on the
campus of the Universitat Politècnica of Valencia (Spain). The provenance, conservation
condition and age of the samples are summarized in Table T11. In all cases, samples were taken
from objects that exhibited surfaces with a high degree of homogeneity in the smooth, plane or
smoothly curved regions, often accompanied by localized pitting corrosion and deposits of
powdered corrosion materials in the corners (robe folds etc.). Descriptions of the archaeological
contexts of the Valeria samples are available in Fuentes and Escobar (2013) and Donate
Carretero et al. (2015).

Table 1 The samples from leaded bronze sculptures and objects discussed in this study

Sample Description of the object Provenance

MP-1-1 to
MP-1-3

Votive figurine; dark green surface, apparently homogeneous
with greenish localized regions in corners

Iberian site (Despeñaperros, Jaén),
fourth to second century BC*

V-122–1 to
V-122–3

Fragment 1 of sculpture, dark grey surface with greenish
localized regions

Valeria site, second half of the first
century AD

†

V-390-1 to
V-390-3

Fragment 2 of sculpture, dark grey surface with greenish
localized regions

Valeria site, second half of the first
century AD

†

VI-1-1 and
VI-1-2

Fibulae, dark green surface, apparently homogeneous, with
greenish pitting and localized regions in corners

El Viveret site, first to second century
AD‡

G-1-1 to G-
1-4

Pieces 1–4 of a set of weights, black surfaces with high
homogeneity

Gadara site, fourth century AD
§

X-1 Fragment of spur (Caliphal period), dark green surface with
greenish localized regions in corners

Xàtiva (Valencia), AD 950‡

MP-2-1 to
MP-2-3

Buckle, black surfaces with high homogeneity but with several
localized greenish pits

San Cristóbal church (Picassent),
18th–19th century AD*

UPV-1 Gades, la dança, dark grey surface apparently homogeneous¶ Sculpture by Antonio Miró, 2001‖

UPV-2 Crónica del viento, dark grey surface apparently homogeneous¶ Sculpture by Martín Chirino, 1991‖

UPV-3 Unidad yunta, dark grey surface apparently homogeneous¶ Sculpture by Pablo Serrano, 1970‖

*Museu de Prehistòria de València, Spain.
†Universidad Autónoma de Madrid, Spain.
‡Museu Municipal of Xàtiva, Spain.
§Yarmouk University, Irbid, Jordan.
¶Data for these sculptures correspond to the air-exposed regions; regions near the soil showed localized corrosion (see Doménech-

Carbó et al. 2016a).
‖Campus of the Universitat Politècnica of Valencia, Spain.
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EXPERIMENTAL

Instrumentation and procedures

Electrochemical experiments were performed at 298±1K using a CH 920c device (Cambria
Scientific, UK) with a Pt auxiliary electrode and an AgCl (3M NaCl)/Ag reference electrode,
using an aqueous sodium acetate buffer (HAc/NaAc, Panreac) as a supporting electrolyte,
previously degasified by bubbling Ar for 10min. The powdered reference materials and samples
were abrasively attached to paraffin-impregnated graphite bars (Staedtler HB, and Faber Castell
TK 9071, diameter 2.0mm, 68wt% graphite), following the conventional VIMP protocols
(Scholz and Meyer 1998; Scholz et al. 2014).

The IR spectra of the samples, acquired in the ATR mode, were obtained using a Vertex 70
(Bruker Optik GmbH, Germany) Fourier transform infrared spectrometer with a fast-recovery
deuterated triglycine sulphate (FR-DTGS) temperature-stabilized coated detector and a MKII
Golden Gate attenuated total reflectance (ATR) accessory. A total of 32 scans were collected
at a resolution of 4 cm�1 and the spectra were processed using the OPUS 5.0/IR software (Bruker
Optik GmbH, Germany).

Field emission scanning electron microscopy X-ray microanalysis (FESEM) was carried out
using a Zeiss model ULTRA 55 field emission scanning electron microscope, operating with
an Oxford-X Max X-ray microanalysis system. Image acquisition was done at an accelerating
voltage of 3 kV. The samples were examined under a Zeiss model ULTRA 55 field emission
scanning electron microscope, operating with an Oxford-X Max X-ray microanalysis system.
Image acquisition was done at an accelerating voltage of 3 kV. The chemical compositions of
the minerals were obtained at an accelerating voltage of 20 kV and the working distance for
the X-ray detector was 6–7mm.

Reference materials and samples

The reference materials were Cu2O (cuprite), CuO (tenorite), PbO (litharge), PbO2 (plattnerite),
PbSO4 (anglesite), PbCO3 (cerussite) and PbCl2 (cotunnite), all Merck reagents, accompanied by
2PbCO3·Pb(OH)2 (synthetic hydrocerussite, Sigma-Aldrich) and CuCl (De Haën). Azurite
(K10200) and malachite (K10300) were supplied by Kremer pigments, whereas brochantite
and various copper trihydroxychlorides (atacamite, clinoatacamite) were prepared by means of
recommended procedures (Scott 2000). Identification of corrosion products was carried out based
on the VIMP and ATR–FTIR data of reference materials described in the literature (Scott 2000;
Bouchard and Smith 2003; Frost 2003; Selwyn 2004) and previous papers (Doménech-Carbó
et al. 2011b, 2014, 2016a). Previously studied UPV metal samples, for which the composition
of the base alloy was known, were taken as reference leaded bronze materials. Pertinent
analytical data can be seen in Doménech-Carbó et al. (2016 Q4).

All of the studied objects and sculptures showed dark grey/dark green surfaces with apparently
high hue and texture homogeneity in the plane or smoothly curved regions, accompanied by
localized pitting corrosion and deposits of powdered corrosion materials in the corners (robe
folds etc.). Sampling was performed by pressing the graphite electrodes on to the uniform regions
of the surface of the various objects, using the ‘one-touch’ protocol. The number of samples
taken from each object or sculpture varied between three and five, depending on the available
surface area. The criteria for the location of the sampling were: (i) regions of more or less
different hue and/or texture but homogeneous appearance; (ii) the absence of gross corrosion
features (powdered materials in surface, cracks and crevices). Note that the sampling area was

4 Doménech-Carbó A. et al.
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~2mm in diameter, so that inhomogeneities at the micrometre scale were averaged. Due to the
low hardness of graphite, the sampling procedure does not produce any macroscopic damage
on the surface of the artefact, leaving only a graphite powder mark that can easily be removed
with a smooth brush. In cases where the surface of the object contained any region with
powdered corrosion materials, additional samples were studied by taking an amount of ~1μg
of the corrosion products and processing it via conventional abrasive transference (Scholz
et al. 2014), aided by an agate mortar and pestle. It is pertinent to remark that sampling was
carried out at the various museums (see Table 1) and that the sample-modified graphite bars were
later transported to Valencia (Spain), where the voltammetric measurements were performed.
The composition of the uncorroded bronze bulk could not be obtained, because the necessary
penetrating assays were not allowed by the corresponding institutions. Table 1 summarizes the
provenance and characteristics of the studied samples. The archaeological context of the samples
from Valeria has been reported by Fuentes and Escobar (2013) and Donate Carretero et al.
(2015).

RESULTS AND DISCUSSION

The voltammetric pattern

Figures F11 (a) and 1 (b) show the squarewave voltammetric responses of sample MP-2-2 from a
buckle dated to the 18th–19th century AD, attached to a graphite electrode immersed in a
0.25M HAc/NaAc aqueous solution at pH4.75. This sample displayed voltammetric features
similar to those of 20th-century UPV samples, consisting of cathodic peaks at �0.10V (C1)
and �0.55V (C2) and oxidation peaks at �0.45V (A2) and 0.00V (A1). On the basis of an
abundant literature on the electrochemistry of copper and lead corrosion products (Doménech-
Carbó et al. 2016a and references herein), the peak C1 can be attributed to the reduction of
cuprite, usually forming the primary patina of copper corrosion (Robbiola et al. 1998) and
frequently accompanied by minerals of the brochantite type and/or malachite and/or atacamite
types. The peak C2 corresponds to the reduction of lead corrosion products, where litharge
(PbO) usually forms the primary patina. The representative electrochemical processes are as
follows:

Cu2O solidð Þþ2Hþ aqð Þþ2e–→Cu solidð ÞþH2O; (1)

PbO solidð Þþ2Hþ aqð Þþ2e–→Pb solidð ÞþH2O: (2)

In turn, the processes A1 and A2 correspond to the well-known oxidative dissolution of copper
and lead metal oxides, respectively.

Figures 1 (c) and 1 (d) depict the voltammograms for sample X-1 from a spur (Caliphal period,
10th century AD). Here, additional cathodic signals at �0.45V (C3) and +0.65V (C4) and a
shoulder between �0.75V and �0.95V (C5) appeared. Such additional signals appeared,
although with differing intensities, in all ‘ancient’ samples, as can be seen in Figures F22 (a) and
2 (b) for samples G-1-1 (Gadara site, fourth century AD) and V-1-3 (Valeria site, first century
AD). Based on literature data, these signals can be attributed, respectively, to the reduction of
Sn(II) species (Doménech-Carbó and Doménech-Carbó 2005) and/or tenorite (Doménech-Carbó
et al. 2014, 2016a) (C3), plattnerite (PbO2, C4) (Pavlov et al. 1989, 1991; Cai et al. 1995;
Zakharchuk et al. 2000; Doménech-Carbó et al. 2011b,d) and porous PbO generated as a result
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of the alteration of the primary patina of litharge (Pavlov et al. 1989, 1991; Cai et al. 1995) (C5).
As previously noted (Doménech-Carbó et al. 2011a,d), the peak C4, although weak, was well
defined in samples submitted to prolonged corrosion but absent in samples from the 18th–20th
century (Fig. 2 (c)).

The first aspect to be underlined in the recorded voltammograms is that, in general, the lead-
based voltammetric signals were more intense than the copper-based ones, both in the negative-
and in the positive-going potential scans. This feature is in agreement with the major corrosivity
of lead expected on the basis of the values of the standard electrode potentials for the various
Pb(II)/Pb(0) and Cu(II)/Cu(0) couples (see below). Also in agreement with those expectations,
the ratio between the peak currents (ip) for processes C1 (reduction of copper corrosion products)
and C2 (reduction of lead corrosion products), ip(C1)/ip(C2), appeared to decrease on increasing
the corrosion time. This can be seen on comparing the voltammograms for sample MP-2-2 (Fig. 1
(a)) with those in Figures 1 (c), 2 (a) and 2 (b). Similar reasoning applies to the ratio between the
peak currents of the processes A1 and A2, ip(A1)/ip(A2).

A relevant question, however, was to what extent the voltammetric data were representative of
the whole objects. For this reason, sampling was performed on between three and five differing
points of each object, selecting areas of apparently homogeneous texture and hue. The deviations
in the measured values of the ip(C1)/ip(C2) and ip(A1)/ip(A2) ratios for each object were typically

Figure 1 Squarewave voltammograms of samples (a, b) MP-2-2 from a buckle (18th–19th century AD), and (c, d) X-1
from a spur (10th century AD) attached to a graphite electrode immersed in a 0.25M HAc/NaAc aqueous solution at
pH 4.75. Potential scan initiated at (a, c) +0.85 V in the negative direction and (b, d) –0.85 V in the positive direction;
potential step increment 4 mV; squarewave amplitude 25 mV; frequency 5 Hz. The baselines used for measuring peak
currents are depicted as dotted lines.
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within 5–10%, in a few cases reaching a maximum deviation of 25% between them. Since the
differences of the values of such ratios between recent and ‘ancient’ objects were larger than
400% (see below), it appeared reasonable to consider the above ratios as representative of aging.

It was conceivable that segregation of lead, a typical feature of leaded bronze (Meeks 1986;
Ingo et al. 2006; Cura D’Ars de Figueiredo et al. 2007), produced heterogeneities lowering the
representativity of the VIMP measurements. However, although lead segregation forming noduli
can occur even in ‘modern’ sculptures, as can be seen in Figure 2 (d), the intensity of the copper-
centred signals relative to the lead-centred ones varied from ‘old’ to ‘modern’ objects, as
previously noted. This can be attributed to the fact that the region sampled for electrochemical
measurements (an electrode area of 2mm diameter) was clearly larger than the size of the lead
noduli (typically 10μm; Fig. 2 (d)).

The application of Tafel analysis (Doménech-Carbó et al. 2008, 2010, 2011b, 2016a) to
signals C1 and C2 indicated that cuprite, often accompanied by malachite or minerals of the
atacamite group, was the main copper corrosion product, whereas litharge (PbO), accompanied
by anglesite (PbSO4) in the case of the Valeria samples, was the predominant lead corrosion
product. These data were consistent with the composition of the powdered materials extracted
from localized highly corroded regions of samples UPV, G and V, determined by both VIMP
and ATR–FTIR spectroscopy. In particular, the presence of anglesite was denoted by

Figure 2 Squarewave voltammograms of samples (a) G-1-1 from the site of Gadara (fourth century AD) and (b) V-1-3
from the site of Valeria (first century AD); (c) a detail of the region of peak C4 in the squarewave voltammograms of
samples MP-1-2 (fourth to second century BC) and MP-2-2 (18th–19th century AD); and (d) a FESEM image of sample
UPV-2.
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characteristic infrared bands at 605, 642, 979 and 1057 cm�1 (Bouchard and Smith 2003; Frost
2003). The presence of anglesite is not usual in the archaeological context (Selwyn 2004) and
suggested the possibility of an artificial patination using sulphur or any sulphur compound
performed at origin. This hypothesis is in agreement with the recognized attempts in the Roman
statuary to mimic Greek statuary (Formigli et al. 2005, 2006; Donate Carretero et al. 2015).

Electrochemical age criteria

As described in preceding sections, the studied samples corresponded to regions of apparently
homogeneous smooth corrosion of lead bronze artefacts. Then, assuming that the composition
and corrosion processes were similar for all pieces, the presence of large C2/C1 peak current
ratios can be considered as a diagnostic criterion suggesting relatively prolonged corrosion
(see below). Additional criteria can be derived taking into account that both the aerobic oxidation
of PbO to PbO2 (ΔGo

f (PbO) =�187.9 kJ/mol; ΔGo
f (PbO2) =�217.3 kJ/mol) and of cuprite to

tenorite ( ΔGo
f (Cu2O)=�146kJ/mol; ΔGo

f (CuO)=�130 kJ/mol) (Nair et al. 1999) are
thermodynamically spontaneous processes, but they occur at a low reaction rate under ordinary
corrosion conditions. Accordingly, it is reasonable to expect that under prolonged contact with
oxidizing atmospheric conditions, the amounts of PbO2 and CuO should increase relative to
the primary corrosion products, Cu2O and PbO, progressively. Then, the appearance of peak
C4 denoting the presence of plattnerite can be considered as indicative of prolonged lead
corrosion (Doménech-Carbó et al. 2011a,b,d). Identical considerations apply to the appearance
of a relatively intense signal of tenorite reduction (C3), because of the aerobic oxidation. This
process would be favoured in bronze artefacts due to their contact with a CO2-rich atmosphere,
as well as with calcareous materials (Scott 1997). Consistently, the tenorite reduction signal C3

increases relative to the reduction of cuprite (C1) in samples submitted to relatively smooth
atmospheric corrosion, prompting the use of such signals for dating purposes (Doménech-Carbó
et al. 2014, 2015).

As described in earlier papers, the Tafel analysis (Doménech-Carbó et al. 2008, 2010, 2011b)
and the modified Tafel analysis (Doménech-Carbó et al. 2011c, 2016a) of the voltammetric curves
permitted the identification of copper and lead corrosion products from the slope and the ordinate at
the origin (Tafel SL and TafelOO, respectively) of the linear variations of ln(i/ip) versus E – Ep and
of ln[(ip – i)/ip] versus ln(E – Ep) using the values of the current i at a given potential E and the
corresponding peak current (ip) and peak potential (Ep) of the voltammetric waves.

Our data for peak C1 provided representations with high linearity for both the reference
materials and the samples. Figure F33 depicts the representation of Tafel SL versus Tafel OO for
the reference materials, represented as error squares, representative of the maximum uncertainty,
from five independent replicate experiments such as in Figures 1, 2 (a) and 2 (b). The positions of
the data points for brochantite, azurite, malachite, cuprite and atacamite are aligned in the
diagonal of the diagram (the ‘reference materials region’, marked by an ellipse drawn in Fig. 3).
The positions of the data points for the Valeria samples (triangles) and sample UPV-1 are
distributed around the region of the diagram, the extremes being brochantite and atacamite.
Samples in this region display a voltammetric response similar to that of copper corrosion
products and mixtures of such products. In turn, samples UPV-2 and UPV-3 (solid triangles)
are also placed in the above diagonal, but in the prolongation of the copper(II) trihydroxychloride
region (also marked by an ellipse in Fig. 3). This feature suggests, as observed using
conventional Tafel analysis (Doménech-Carbó et al. 2016a), that the presence of lead corrosion
products modifies the electrochemical parameters for the reduction of those of copper corrosion.
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The fact that the data points of all ‘ancient’ samples fall within the region of the reference
materials can be interpreted on assuming that, after prolonged corrosion, the corrosion products
of copper and lead become mutually disaggregated and produce mutually independent
voltammetric responses. This would be also the case for the ‘modern’ sample UPV-1. In the case
of ‘modern’ samples UPV-2 and UPV-3, the voltammetric response diverges from that of the
reference minerals, denoting that the corrosion products of copper and lead remain aggregated,
thus mutually influencing their voltammetry (Doménech-Carbó et al. 2016a).

Accordingly, the location of the data points near those of the reference materials in the
diagonal of the modified Tafel diagram would be indicative of prolonged corrosion. Obviously,
this criterion necessarily has to be handled with caution because ‘modern’ samples, depending
the corrosion conditions, can also produce disaggregated corrosion products the voltammetric
response of which falls in the region of the reference materials, as would be the case of sample
UPV-1 in Figure 3.

It is pertinent to note that the voltammetric response of the copper and lead corrosion products
should be also influenced by the presence of other frequent metallic components such as Sn and
Zn. The voltammetric and ATR–FTIR data do not provide evidence of the presence of Sn and Zn
corrosion products (at least, in significant amounts) in the studied samples, a feature consistent
with the frequent occurrence of decuprification, destannification and dezincation during the
corrosion of bronze (Weisser 1975; Meeks 1986; Leoni et al. 1991; Scott 1994; Robbiola and
Hurtel 1997; Robbiola et al. 1998; Chiavari et al. 2007; Robbiola and Portier 1998; De Ryck
et al. 2003; Welter 2003).

The dating of leaded bronze artefacts

As previously noted, the variation of the peak current (or peak area) ratio of the copper- and lead-
centred signals in the voltammograms can be taken as a quantitative parameter representative of
the composition, corrosion conditions and age of the leaded bronze object. Figure F44 compares the
peak current ratio for samples in this study taking the ip(C1)/ip(C2) ratio (‘A’) in negative-going
scan voltammograms and the ip(A1)/ip(A2) ratio in positive-going scan voltammograms (‘B’, ‘C’)
for UPV, Valeria and Gadara samples. As previously noted, ‘one-touch’ sampling on the surface

Figure 3 A representation of Tafel SL versus Tafel OO calculated for the C1 peak (reduction of copper corrosion
products) in voltammograms of reference materials (squares), Gadara and Valeria (triangles) and UPV (solid triangles)
from voltammograms in conditions such as in Figures 1 (a), 1 (b), 2 (a) and 2 (b).
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of the object yields ip(C1)/ip(C2) values for modern UPV samples that are consistently larger (2–4
times) than those of all ‘ancient’ archaeological samples, as can be seen in Figure F55 (a), where the
variation of the copper-to-lead molar ratio, equivalent to the ip(C1)/ip(C2) ratio on the age of the
samples, is depicted. The same result was obtained for the ip(A1)/ip(A2) ratio, which was about 10
times larger for modern leaded bronze sculptures than for Roman-age samples. The same effect
was obtained for samples consisting, when available, of powdered corrosion products in
localized, highly corroded regions, illustrated for the ip(A1)/ip(A2) ratio in Figure 4 (‘C’).

A first approach to rationalizing this result can be obtained upon considering the corrosion
potentials of lead and copper in leaded bronze. On first examination, one can assume that after
very prolonged corrosion under aerobic conditions and treating the metallic samples as a
thermodynamically closed system, a limiting situation of thermochemical equilibrium should
be established between the base alloy and the corrosion products. This equilibrium can be
expressed in terms of a generalized reaction Pb+ {copper corrosion products}→Cu+{lead
corrosion products}. Given the standard electrode potentials E°(Cu2+/Cu) =+0.340V and
E°(Pb2+/Pb) =�0.126V (versus NHE), and assuming, for simplicity, that tenorite (CuO) and
litharge (PbO) are the corrosion products involved, the equilibrium constant for the above
reaction would be given by

ln Keq ¼ nF
RT

Eº Cu2þ=Cu
� �� Eº Pb2þ=Pb

� �� �þ nF
RT

ln
Ks CuOð Þ
Ks PbOð Þ

� �
; (4)

where Ks(J) denotes the solubility product of the J-compound. Taking available thermochemical
data for differing corrosion products,1 one obtains Keq > > 1 for the case, in which tenorite and
litharge are the corrosion products. Then, for given equilibrium conditions, the ratio between the
thermochemical activities of CuO and PbO, aCuO/aPbO, which can be estimated from the peak
current ratio in the voltammetric data, cab be given by

Figure 4 The variationQ5 of the copper signals/lead signals peak current ratio for samples in this study: A, ip(C1)/ip(C2) in
negative-going scan voltammograms; B, C, ip(A1)/ip(A2) in positive-going scan voltammograms for samples taken in the
patina (B) and powdered corrosion products (C). [Colour figure can be viewed at wileyonlinelibrary.com]
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ln
aCuO
aPbO

� �
¼ ln Keq þ ln

aCu
aPb

� �
; (5)

ln
aCuO
aPbO

� �
¼ nF

RT
Eº Cu2þ=Cu
� �� Eº Pb2þ=Pb

� �� �þ nF
RT

ln
Ks CuOð Þ
Ks PbOð Þ

� �
þ ln

aCu
aPb

� �
: (6)

In the most favourable case, quasi-equilibrium conditions would be reached without extensive
corrosion in the metallic phase(s), and the ratio between the thermochemical activities of the
metals, aCu/aPb, could be approximated by the initial composition of the bronze. As a result,
under quasi-equilibrium conditions for idealized corrosion, the net amount of lead corrosion
products should be clearly larger than those of copper corrosion products, even for bronzes

Figure 5 Theoretical lines for various selected compositions of leaded bronze, inserting k�Cu= 1.0 × 10�3 years�1 andk�Pb
= 1.0 × 10�1 years�1 into equation (11), and experimental data for the ip(C1)/ip(C2) peak current ratio recorded in
negative-going voltammograms for samples in this study using (a) semi-logarithmic and (b) double-logarithmic
representations.

1See http://www.aqion.de/site/16 (accessed 24 February 2016).
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containing a low proportion of lead. Since the ip(C1)/ip(C2) ratio is representative of the (copper
corrosion products)/(lead corrosion products) ratio, the preceding thermochemical considerations
are consistent with the record of low ip(C1)/ip(C2) ratios for ‘ancient’ samples.

Following the literature on metal corrosion (Feliu and Morcillo 1982) and metal dating (Reich
et al. 2003; Doménech-Carbó et al. 2011a, 2012 Q6, 2014, 2016b), the increase in the loading of
corrosion products can be represented by a potential rate law. Although the modelling of the
growth of corrosion layers on metal surfaces requires consideration of a variety of factors,
electrochemical corrosion can be treated by considering that the rate of the oxygen reduction
reaction equals the rate of metal oxidation (Venkatraman et al. 2011 Q7) and, in our case, equals
the sum of the rates of oxidation of copper and lead. In the most simple approach, the surface
concentration of corrosion products of a metal M, xM, should satisfy a potential rate law of the
form dxM/dt= kMx–δ, where kM is the M-characteristic rate constant. Using the previously
described simplified model for two-metal corrosion (Doménech-Carbó et al. 2012a), it will be
assumed that a fine layer of the primary metal corrosion product (mainly cuprite and litharge)
would be formed in this initial stage so that, depending on the corrosion conditions, a gross
secondary patina of corrosion products grows progressively. Integration of the above generalized
differential rate law yields

xM ¼ XM
1þδ þ kMt

� �1= 1þδð Þ
; (7)

where XM denotes the amount of primary corrosion product when the formation of the secondary
corrosion layers is initiated. Accordingly, the ratio between the amounts of secondary corrosion
products of copper and lead, which is the quantity accessible to the solid state voltammetric
measurements, can be expressed as

ip C1ð Þ
ip C2ð Þ≈

xCu
xPb

¼ X Cu
1þα þ kCut

� �1= 1þαð Þ

X Pb
1þβ þ kPbt

� �1= 1þβð Þ : (8)

The relative uncertainty associated with the measurements of the peak current ratio, Δ[ip(C1)/
ip(C2)]/[ip(C1)/ip(C2)], can be expressed as a function of time, using the usual theory of error
propagation, as

Δ ip C1ð Þ
ip C2ð Þ

� 	
ip C1ð Þ
ip C2ð Þ

� 	 ¼ kCu X Cu
1þα þ kCut

� ��1 � kPb X Pb
1þβ þ kPbt

� ��1
� 	

Δt: (9)

Then, the relative uncertainty associated with age estimates, Δt/t, would be time-dependent:

Δt
t
¼

Δ ip C1ð Þ
ip C2ð Þ

� 	
ip C1ð Þ
ip C2ð Þ

� 	 1
kCu

X Cu
1þαþkCut

þ kPb
X Pb

1þβþkPbt

� 	
t
: (10)

Previous data on lead (Reich et al. 2003; Doménech-Carbó et al. 2011a) and copper
(Doménech-Carbó et al. 2014) corrosion suggests that α≈ β≈ 0.07, so that equation (8) can be
approximated by
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ip C1ð Þ
ip C2ð Þ≈

xCu
xPb

¼ X Cu=X Pb þ k�Cut
� �0:93

1þ k�Pbt
� �0:93 : (11)

In this equation, k�Cu and k�Pb represent the kCu/XPb and kPb/XPb ratios. At time zero, equation
(11) reduces to xCu/xPb =XCu/XPb, a ratio that can be assumed to be essentially identical to the
composition of the alloy. Note that, as before, it is assumed that all other metals (Sn, Zn and
Sb) do not influence the voltammetric response of the copper and lead corrosion products.
Figure 5 compares the theoretical curves using equation (11) for various compositions of leaded
bronze, taking k�Cu= 1.0 × 10�3 years�1 andk�Pb = 1.0 ×10�1 years�1, with the experimental data
(represented as error rectangles, including the extreme values for the differing samples from
the same archaeological site) for the ip(C1)/ip(C2) peak current ratio recorded in negative-going
voltammograms previously described using the baselines depicted in Figure 2. Here, semi-
logarithmic (Fig. 5 (a)) and double-logarithmic (Fig. 5 (b)) scales have been depicted in order
to facilitate the comparison between the different theoretical lines at short and long times,
respectively.

A comparison of the theoretical calibration curves using equation (11) with the
experimental data in Figure 5 suggests that although there is a relatively large uncertainty
in age estimates and there is a relatively large dispersion in the values of the ip(C1)/ip(C2)
ratio, there is no inconsistency between them. In these circumstances, such data can be
considered as potentially usable for dating leaded bronze of unknown age under favourable
conditions.

It should be emphasized that the corrosion response of metallic artefacts is extremely sensitive
to the environment, so that the extent and type of corrosion can vary significantly from one
sample to another or even in different regions of the same sample. It is also pertinent to note that
lead extraction can occur as dendrite or interdendritically, and there are cases where all the lead
inclusions have been fully converted to cuprite or redeposited copper. The reported methodology
can be considered as applicable under a specific set of conditions, limited here to samples
moderately corroded under atmospheric/soil in the Mediterranean region. Its extension to other
corrosion conditions—in particular, gross corrosion with the formation of thick layers, and
corrosion in marine environments—is problematic and has to be assessed in future research.

The proposed methodology can be viewed as a complementary tool that can be used to
characterize leaded bronze archaeological objects and provide information about their age.
It is pertinent to underline that an appropriate calibration is required and that this is valid
only for a specific set of corrosion conditions. Due to the aforementioned limitations, the
resolution in age estimates provided by the reported methodology was relatively low,
increasing with the corrosion time (see Fig. 5) to uncertainties between ±250 to ±500years
at the end of the period of time (fourth to second century BC and 20th century AD) covered
in this study. Although a detailed knowledge of the composition and properties of each
object via elemental and metallographic analyses is needed for a complete study of
archaeological pieces, the proposed methodology can be considered as potentially useful
to complement existing techniques because of: (i) the simplicity and versatility of
voltammetric measurements; (ii) the requirement for non-invasive sampling, limited to the
corrosion products; and (iii) the possibility of easy in-field sampling and transportation for
laboratory measurements.
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CONCLUSIONS

The electrochemical responses, using the voltammetry of immobilized particles methodology, of
samples from the corrosion layers of leaded bronze objects in contact with aqueous acetate buffer
consisted mainly of signals due to copper and lead corrosion products, which were consistent
with the known occurring processes of destannification and dezincation. Several voltammetric
features can be considered as indicative of prolonged corrosion: (i) cathodic signatures of Pb(IV)
and ‘porous’ PbO; (ii) low ratios between the intensities of cathodic signals for copper corrosion
products and lead corrosion products; and (iii) low ratios between the intensities of stripping
signals for copper and lead oxidative dissolution. A theoretical modelling was proposed to
describe the relationship between the intensity of the signals of the copper and lead corrosion
products, the composition of the original alloy and the corrosion time, using a potential rate
law. Experimental data for samples from statuary from the Roman archaeological sites of Valeria
and El Viveret (Spain) and a set of weights from the Roman site of Gadara (Jordan),
accompanied by modern statuary exhibited outdoors, on the campus of the Universitat
Politècnica of Valencia, Spain, were found to be consistent with that theoretical model within
the tested time interval (fourth to second century BC and 20th century AD).
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