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Abstract: Reactivity controlled compression ignition (RCCI) combustion has been shown to provide
simultaneous ultra-low NOx and soot emissions with similar or better thermal efficiencies than
conventional diesel combustion (CDC). Nonetheless, RCCI still has several challenges that restrict
its operating range and limit its practical application. The dual-mode operation, which involves
switching between different combustion modes, has been found as a promising alternative to
operation in the whole engine map. However, the combustion mode switching requires difficult
engine control, particularly during transient operation. The series hybrid vehicle (SHV) architecture
allows the thermal engine to operate in a limited operating range by decoupling it from the
drivetrain. Therefore, it could be an interesting alternative to the dual-mode concept. This work
explores the potential of the RCCI series hybrid vehicle architecture to provide low engine-out
emissions and COz by means of vehicle systems simulations. The results show the influence of the
main parameters and control strategies of the SHV vehicle on its efficiency and emissions under
different driving cycles. Finally, the optimal RCCI-SHV configuration is compared to CDC and
dual-mode combustion strategies, confirming its potential as a future vehicle architecture for high
efficiency and low emissions.

Keywords: reactivity controlled compression ignition; series hybrid vehicle; dual-fuel combustion;
efficiency; driving cycles

1. Introduction

The future requirements regarding engine-out emissions and greenhouse gas (GHG) pollutants
have been encouraging both engine original equipment manufacturers (OEMs) and the scientific
community to search for alternative solutions to meet the normative constraints. Advances have been
made in several systems such as injection devices (higher pressure pumps and faster injectors),
combustion chamber geometry, and after-treatment devices. In parallel, new combustion modes are
being developed aiming to reduce some of the raw emissions at a normative level. Among these
combustion modes, the so-called low-temperature combustion (LTC) is receiving particular attention
as this strategy can directly reduce the needs regarding after-treatment devices. This has fundamental
importance, as these systems make up a large part of the final cost of the vehicle. The most expensive
after-treatment system for vehicles operating with conventional diesel combustion is the selective
catalytic reduction (SCR), which is used to reduce the levels of NOx emissions at the tailpipe. The
second most expensive after-treatment system is the diesel particulate filter (DPF), which is needed
to retain and oxidize the soot emissions before emission to the atmosphere. Finally, with a minor cost,
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a diesel oxidation catalyst (DOC) is needed to reduce the hydrocarbons (HC) and carbon monoxide
(CO) emissions [1].

The major claim of the LTC concepts is the possibility to avoid the NOx-soot trade-off that occurs
with conventional diesel combustion (CDC) [2] while simultaneously providing a high thermal
efficiency [3]. One of the earlier investigated strategies was the homogeneous charge compression
ignition (HCCI) mode. This combustion mode was able to achieve reduced NOx and soot emissions
with efficiency levels similar to the diesel combustion modes. Despite these advantages, this method
presented several challenges regarding combustion controllability and transient operation. In
addition, its operation was limited to a narrow range due to high pressure gradients (upper limit)
and excessive combustion inefficiency (lower limit). Over the years, several concepts were described
in the literature such as the partially premixed combustion (PPC) [4] and spark-assisted PPC [5,6].
Nonetheless, similar issues as the one presented with HCCI combustion do not permit the attainment
of a TRL (Technology Readiness Level) higher than 6 (an exception to this is the SKYACTIV engine
produced by Mazda).

A recent change in the previous scenario was realized by the LTC concept called Reactivity
Controlled Compression Ignition (RCCI). This concept was first presented by Inagaki et al. [7] naming
it as dual-fuel premixed compression ignition (PCI) combustion. Interesting results were addressed
in their research, where extremely low NOx and soot emissions together with an excellent control of
the combustion onset were reported. The main hardware advance was the use of two injector systems
enabling the modification of the fuel percentages. Following these findings, Kokjohn et al. [8]
continued developing this concept and renamed it as RCCI [9]. As the RCCI relies on using port fuel
injection (PFI) for the low reactivity fuel (LRF) and direct injection for the high reactivity fuel (HRF),
additional fuel lines are needed to supply both fuels. The fuel injected by the PFI system can also
enhance the volumetric efficiency by reducing the charge temperature as demonstrated in the
literature [10-12]. From reviewing the literature, it can be stated that the most used HRF and LRF are
diesel and gasoline, respectively [13,14]. Nonetheless, the RCCI was tested with a wide variety of
fuels such as ethanol [15], methanol [16], and some others [17-20] resulting in similar results as those
obtained with gasoline.

Several studies have been carried out to demonstrate the potential of the RCCI strategy
addressing single-cylinder [21], multi-cylinder [22], heavy-duty [23], medium-duty [24], and light-
duty diesel engines [25] operating with low [26], medium [27], and high [28] compression ratios (CR).
In general, the results demonstrated that operation in stationary conditions results in NOx levels that
are below the limits proposed by the emissions regulations, together with ultra-low soot emissions
[29]. Despite the advantages of this combustion mode, common issues of the LTC modes are also
present, such as high amounts of unburned HC and CO emissions during the low engine load
operation [30], and excessive pressure rise rates (MPRR) and in-cylinder maximum pressure peaks
(Pmax) at high loads. Therefore, the RCCI operation is still restricted to moderate loads inside the
engine map [31]. Some approaches have been investigated to overcome these issues and complete
the engine map whenever the RCCI is unable to run properly. The low level of geometric and
hardware modifications allow switching the combustion mode to, typically, CDC [32]. Nonetheless,
such a strategy is difficult to justify from a technological standpoint. The RCCI/CDC dual mode can
only be attractive to the transport industry if the fuel consumption versus single CDC and the cost of
the required after-treatment systems needed to surpass the emissions regulations are reduced. For
this purpose, the RCCI operation in the global engine map should be maximized [33].

Despite the improvements in the combustion area, achieving the normative values constraints
is still a challenge. In this sense, electrification becomes more and more frequent in the OEMs in order
to reduce the total CO: emitted by their fleet. Approaches such as fuel cell vehicles are also extensively
investigated, demonstrating a capability to reduce the vehicle emissions to almost zero [34,35].
Detailed information can be found in [36,37]. Regarding electric vehicles, different concepts such as
Mild, Series, and Parallel hybrid vehicles can be found as options in the market, and much research
has been developed addressing their utilization. The use of high-efficiency cycles such as the
Atkinson cycle [38] and low-temperature modes are a major research focus. Regarding the LTCs, their
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typical application is found in series architecture due to the simplicity of the implementation and
working points of view. Previous numerical studies demonstrated that the operation using RCCI
combustion can reduce up to 9% of the total fuel consumption compared to a hybrid spark ignition
(SI) engine [39]. In addition, experimental investigations demonstrated that the SHV can reach
normative values for emissions by implementing appropriate design changes [40]. For this
architecture, the charging strategy and the number of operating conditions used to charge the engine
were found to have fundamental importance. Solouk et al. [41] stated that as the number of operating
conditions is increased, better fuel consumption is achieved. However, the same authors recognized
that the number of starts of the internal combustion engine during the cycle and the transition
between the different operating conditions should be taken into account. As a general conclusion, all
the authors state that the use of RCCI combustion in a series concept should improve the fuel
consumption values. However, the conclusions regarding emissions on driving cycles are difficult to
find in the literature.

The objective of this work is to evaluate the benefits of the hybrid architecture with the internal
combustion engine (ICE), studying the RCCI combustion mode compared to conventional modes
operating in diesel and dual-mode combustion. Experimental steady maps from fuel consumption
and emissions were measured in a test bench for a high CR light-duty diesel engine (17.1:1) and are
used as boundary conditions to estimate the transient performance of the vehicle. For this, two vehicle
models were developed in GT-drive to evaluate the conventional and the hybrid powertrain. Values
of fuel consumption as well as emissions were assessed for different driving cycles used for
homologation purposes in Europe (worldwide harmonized light vehicles test cycle (WLTC) and real
driving cycle (RDE)). This allows comparison of the final simulation values with the current
normative values. In addition, the total emission of CO: for each case is presented and discussed to
investigate the potential of the hybrid concept to meet the future CO: targets.

2. Materials and Methods

2.1. Test Cell, Fuels, and Engine Description

The single-cylinder diesel engine (SCE) used to acquire the experimental data that was
subsequently utilized to perform the simulations is based on a production light-duty 1.9 L engine,
the main characteristics of which are reported in Table 1. The engine has four valves driven by dual
overhead cams. The production piston, with a re-entrant bowl and a geometric compression ratio of
17.1:1 was used. The swirl ratio was fixed at 1.4 to be representative of the value used in the
production engine. To set the desired swirl ratio, the SCE was equipped with tangential and helical
valves located in the intake port [42].

Table 1. Engine characteristics.

Engine Type Four Stroke, Four Valves, Direct Injection
Number of cylinders [-] 1
Displacement [L] 0.477

Bore x stroke [mm] 82 x90.4

Compression ratio [] 17.1:1
Bowl type Re-entrant
Rated power [kW] 27.5 @ 4000 rpm
Rated torque [Nm] 80 @ 2000-2750 rpm

Figure 1 shows the fuel injection systems used for RCCI operation, the main characteristics of
which are depicted in Table 2. A centrally located solenoid direct injector (DI) was used to inject the
EN590 diesel fuel into the cylinder. The fuel was supplied to the injector by means of a common-rail
fuel injection system. A DRIVVEN controller was used to manage the different injection parameters.
The gasoline fuel was injected into the intake manifold by means of a port fuel injection (PFI)
governed through a Genotec unit. The PFI was located 160 mm from the intake valves to avoid
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pooling of the fuel. The mass flow rate of both fuels was measured using dedicated AVL 733S fuel
balances (AVL LIST GmbH, Graz, Styria, Austria). Table 3 summarizes the main properties of the
diesel and gasoline fuels used in this work.

Pump Fuel meter

=

4 M

Gasoline tank Filter

Fuel meter

Filter

Diesel tank

Settling
chamber

Heat
exchanger

-

4

7
Y
Heat |
exchanger
-

Figure 1. Fuel injection systems scheme [43]. PFI: port fuel injection; DI: direct injector.

Filter

Table 2. Diesel and gasoline fuel injector characteristics.

Diesel Injector Gasoline Injector
Actuation type [-] Solenoid Injector style [-] Saturated
Steady flow rate @ 100 bar [cm?3/min] 880 Steady flow rate @ 3 bar [cm®/min] 980
Included spray angle [°] 148 Included spray angle [°] 30
Number of holes [-] 7 Injection strategy [-] single
Hole diameter [um] 141 Start of injection [CAD aTDC] 340
Max. injection pressure [bar] 1600 Max. injection pressure [bar] 5.5

Table 3. Physical and chemical properties of the fuels.

Properties Gasoline Diesel
Density [kg/m?] (T =15 °C) 747 842
Viscosity [mm?/s] (T =40 °C) 0.545 2.929
Research octane number [-] 97.6 -
Motored octane number [-] 89.7 -
Cetane number [-] - 51
Lower heating value [M]/kg] 44.09 42.50

Figure 2 shows the layout of the test cell used in this work. During the experimental tests, the
engine speed and load are controlled by an electric dynamometer. To feed the engine with fresh air,
several devices are used. The first element is a screw compressor, which is used to compress the air
up to a pressure of 3 bar. Afterward, a heat exchanger and an air dryer are used to set the desired
temperature and relative humidity of the air. The mass air flow is measured using an airflow meter.
Finally, a settling chamber is connected to the intake ducts to attenuate the pulsating flow induced
by the cylinder movement. As Figure 2 shows, several pressure and temperature sensors are
instrumented along the intake line to control their values. The exhaust gas recirculation (EGR) line
consists of a heat exchanger to modulate the intake charge temperature, a settling chamber to
promote a regular EGR mass flow, and a regulation valve to modify the EGR rate as required. As for
the fresh air, the EGR temperature is controlled in various locations along the EGR line. Lastly, the
temperature and pressure of the intake charge (air-EGR mixture) is controlled in the intake manifold
before entering into the cylinder.

The exhaust line has a similar disposition to the intake line. First of all, the pressure and
temperature of the exhaust stream are monitored through transducers located in the exhaust
manifold. After that, the flow is attenuated in a settling chamber before reaching the pneumatic valve
used to regulate the EGR flow. This valve is also used to replicate the backpressure provoked by the
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turbine in a real engine. Finally, the emissions analyzers are located at the end of the exhaust line.
The gaseous emissions are measured using a five-gas Horiba MEXA-7100 DEGR analyzer (HORIBA
GmbH, Tulln, Lower Austria, Austria). Each operating point is measured three times for a period of
60 s. The smoke content of the exhaust gas is measured using an AVL 4155 smoke meter (AVL LIST
GmbH, Graz, Styria, Austria). In this case, each operating condition was measured three times, each
sample having a volume of 1 L, with the paper-saving mode switched off. Table 4 shows the accuracy
of the different elements of the test cell.
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compressor ‘ # Airdryer Aihoater PT f PT Bati/l;ﬁ/reessure
] ettlin Settling || |
@ = KVQEE-_ xha chamber : : —mp
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Figure 2. Test cell scheme [43]. EGR: exhaust gas recirculation.
Table 4. Accuracy of the instrumentation used in this work.
Variable Device Manufacturer/Model Accuracy
Pi lectri
In-cylinder pressure lezoe ectric Kistler/6125BC +1.25 bar
transducer
Pi —
Intake/exhaust pressure lezoresistive Kistler/4603B10 +25 mbar
transducers
Temperature in set.thng chambers and Thermocouple TC direct/type K 105°C
manifolds
. +0.02
Crank angle, engine speed Encoder AVL/364
CAD
HORIBA/MEXA 7100 o
NOx, CO, HC, Oz, CO2 Gas analyzer DEGR 4%
+0.025
FSN k t AVL/41
S Smoke meter /415 FSN
Gasoline/diesel fuel mass flow Fuel balances AVL/733S +0.2%
Air mass flow Air flow meter Elster/RVG G100 +0.1%

2.2. Mode Strategy Description and RCCI Engine Maps

The dual-mode concept combines CDC and RCCI combustion regimes to enable operation along
the whole engine map. The aim of this strategy is to promote RCCI operation whenever possible and
switch to CDC to cover the engine map regions in which RCCI presents difficulties. Figure 3
illustrates the dual-mode engine map proposed by the authors in a previous work [43] in which the
portions covered by both combustion regimes are differentiated and the ISFC values found for the
RCCI region in the map. It can be seen that the low load-low speed region of the map leads to the
worst performance, while the minimum indicated specific fuel consumption (ISFC) is achieved at
3000 rpm and 7 bar indicated mean effective pressure (IMEP), with values lower than 180 g/kWh.
The influence of the engine speed on the ISFC is moderate, while the engine load has a large effect
The RCCI diesel-gasoline region is covered with NOx and soot emission levels below 0.4 g/kWh and
0.01 g/kWh, respectively. The maximum load achievable with RCCI was limited by excessive MPRR
(>10 bar/CAD) and/or excessive in-cylinder pressure peaks (Pmax > 160 bar). On the other hand, the
lower operating region with RCCI was limited by excessive CO levels (>5000 ppm). Details regarding
the dual-mode calibration procedure can be found in [31].
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Map of ISFC [g/kWh]

IMEP [bar]

RCCI region

1500 2000 2500
Engine Speed [rpm]
Figure 3. Illustration of the combustion strategies used to cover the engine map with the dual-mode
reactivity controlled compression ignition (RCCI) diesel-gasoline/conventional diesel combustion
(CDC) concept and indicated specific fuel consumption in the RCCI portion of the map. ISFC:
indicated specific fuel consumption.

Figure 4 shows the engine-out emissions results for the RCCI portion of the map, which will be
used to implement the RCCI-SHV configuration. In terms of engine-out emissions, it is observed that
NOx emissions are below 0.4 g/kWh across the entirety of the map, and the soot emissions are an
order of magnitude lower than the limit imposed during the calibration process (0.01 g/kWh). This is
possible by using gasoline fraction levels from 50% to 85% over the entirety of the map [28].
Regarding HC and CO emissions, the low load region shows unacceptable levels of both pollutants,
while at upper loads the HC and CO levels are approximately 8-15 g/kWh.
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Figure 4. Engine-out emissions in the RCCI portion of the map.
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2.3. Vehicle Systems and Drive-Cycle Simulations

The performance of the different concepts was assessed using the commercial software GT-
Power from Gamma Technologies® (v2016, Gamma Technologies, LLC., Westmont, IL, USA, 2016).
The GT-Drive package allows the simulation of the whole vehicle with its subsystem such as gearbox,
tires, cooling circuits, etc. In addition, the software also possesses the required devices to perform the
hybridization process, resulting in different batteries (NiMh, Li-ion, etc.), motors, and controller
devices. Additionally, the vehicle can be submitted to load and speed profiles, allowing assessment
of its performance on different driving cycle conditions. In this way, the mapping results from bench
experiments were used as inputs for the simulation. Different models were developed for each of the
powertrains, and are presented in Figure 5. The main differences between the models are the
increased number of controllers, the absence of a gearbox, and the addition of batteries and motors
in the hybrid powertrain system, (Figure 5b).

The maps obtained from experimental bench tests are used as inputs for the model. These data
are specified in the engine object in Figure 5. First, geometric parameters of the engine such as total
displacement, idle, engine type, etc., are specified. Following this, the maps that characterize the
workings of the engine are defined. The required maps for this step are the break mean effective
pressure (BMEP) values as a function of load percentage and engine speed, and the friction mean
effective pressure (FMEP) maps related to the BMEP values and the engine speed, see Figure 6. With
these data, the IMEP values can be obtained, and the emissions and fuel consumption maps can be
converted from indicated to brake-related values. Finally, the data for emissions and fuel
consumption are inserted into the model. The advantage of this calculation method is to know, a
priori, the values that the parameter will possess based on a determined operating condition (BMEP
and engine speed). For intermediary conditions, the experimental maps are interpolated to predict a
value. This operating condition is obtained from the solution of the differential equations of vehicular
motion. The total required torque to move the vehicle is defined by Equation (1) [44].
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Figure 5. Simulation models built in GT-Power: (a) Conventional powertrain; (b) hybrid powertrain.
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Equation (1) relates all the forces that are acting on the vehicle to evaluate the required work to
achieve the target speed. It considers parameters such as Itanst and Iians2 (input and output inertia of
the transmission system), lash and Iax (driveshaft and axle moment of inertia), Ra and Rt (terms related
with the gearbox). warv is the instantaneous vehicle speed and is a function of the wheel radius (rwh).
Muveh, Faer, Frol, and Fgra, are the vehicle mass, aerodynamic forces, rolling resistance forces, and gravity
forces respectively. For both powertrains, the same set of motion equations are solved. However, the
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hybrid system uses additional equations to determine the battery charging, instantaneous state of
charge, etc. It is also important to mention that an additional loss term was added to the system for
the hybrid powertrain. As the engine remains turned-off for long periods of time, every time it is
started, an additional fuel consumption will be observed as a result of the increased heat losses.
Therefore, a fuel penalty was attributed to each engine start and was considered during the
simulations.

22

FMEP [bar]
20 0.600
0.802
1.004
16F 1.207
1.409
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2120 1813
& 2.016
E 2218
8F 2.420

2622
2.825
3.027
3.229
3.431
3.634

2000 2500 3000 3500 4000

Engine Speed [rpm]

0
1000 1500

Figure 6. Friction experimental data from the engine used in this work. BMEP: break mean effective

pressure.

Table 5 specifies the vehicle characteristics used in the drive-cycle simulations. The vehicle used
to perform the simulations is an Opel Vectra, which is equipped with a four-cylinder engine with the
same characteristics of the single-cylinder engine tested on the test bench. The aerodynamic and
mechanical characterization of the vehicle allows modeling of the dragging and inertial forces that
were described above.

Table 5. Vehicle specifications.

Vehicle Mass [kg] 1573
Vehicle drag coefficient [-] 0.28
Frontal area [m?] 2.04
Tires size [mm/%/inch] 225/45/18
Additional Components for the Hybrid Powertrain
Electric motor power [kW] 45
Generator power [kW] 25
Battery size [Ah] 20
Battery component [-] Li-ion

The driving cycles selected for study in this work are the worldwide harmonized light vehicles
test cycle (WLTC) and the real driving emissions cycle (RDE); chosen because they have a major
relevance with regard to the current regulatory stages of the European emissions standards. The time-
vehicle speed profiles for both cycles are presented in Figure 7, where the RDE profile was taken from
a previous investigation made by the authors [45]. Figure 7 shows that the total duration of the WLTC
cycle is 1820 s (=23 km), while the RDE cycle has a substantially higher duration (5580 s, =67 km).
Another important difference between both cycles is the number of accelerations and decelerations
during the urban (RDE) and low (WLTC) phases. In this sense, the RDE cycle is based on real traffic
conditions with a higher number of stop-starts that leads to more accelerations than the WLTC. This
difference will have a direct impact on the fuel consumption and engine-out emissions.
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Figure 7. Time-vehicle speed profiles of the real driving emissions (RDE) (a) and worldwide
harmonized light vehicles test cycle (WLTC) (b) cycles

3. Results and Discussion

This section is divided into two subsections. The objective of the first is to find the optimal values
for the state of charge (SOC) and the number of operating conditions to be run with the internal
combustion engine (ICE), which is achieved through a series of parametric studies. The results are
used as boundary conditions in the second subsection, where the hybrid concept is compared versus
both conventional diesel combustion and dual-mode combustion.

3.1. Basic Parameters for the RCCI-SHV Operation

3.1.1. State of Charge Selection

As a preliminary study, the effect of the initial SOC on the final fuel consumption was evaluated.
Four values were chosen (0.84, 0.64, 0.44 and 0.24) as initial SOC values. Its charging limits were
scaled by the initial value maintaining the upper and lower limits for all the cases. Therefore, the
results are function of the electrical characteristics of the vehicle, such as the charging and discharging
voltage, in addition to the resistance, both functions of the actual SOC. Figure 8 shows the results
obtained for the SOC sweep regarding its behavior along the driving cycle (left) and the final fuel
consumption (right). As can be seen, the SOC variation is very small for the initial phases of the cycle.
In these conditions, there are a considerable number of decelerations, where the brake energy
recovery can take place. In addition, once the engine starts, the battery is recharged fast, because the
power demand is not as high. Nonetheless, as the cycle advances towards the extra high phase, the
energy demand increases, thus decreasing the SOC value. In this case, the ICE plays a key role in
driving the SOC to its original level. The impact of these changes for the different initial SOCs on the
final fuel consumption can be verified in Figure 8b. An absolute variation lower than 2% when
comparing the two extreme values is verified. Therefore, it can be stated that, despite the variations,
using initial SOC values above 0.24 returns satisfactory results.
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Figure 8. Instantaneous state of charge (SOC) (a) and final fuel consumption (b) for different initial
SOC at the worldwide harmonized light vehicles test cycle (WLTC) driving cycle.

With the aim of verifying the influence of the driving cycle characteristics on the parametric
study results, the same analysis was performed for the RDE driving cycle, as shown in Figure 9. The
SOC variation along the cycle presents similar behavior to that found in the WLTC cycle, with the
highest decrease in the SOC values occurring during the highway phase. Regarding the final fuel
consumption, its variations for the different SOCs are close to 1%, smaller than those found with the
WLTC. Again, the initial SOC of 0.24 was the one that presented the highest fuel consumption. The
optimum operating range was found between 0.44 and 0.84. Therefore, an intermediate value of 0.64
was chosen as the boundary condition for the comparison against the combustion modes.
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Figure 9. Instantaneous SOC (a) and final fuel consumption (b) for different initial SOC at the RDE
driving cycle.

3.1.2. ICE Operating Conditions Selection

The rule-based control (RBC) charging concept relies on defining pre-established operating
conditions to charge the battery whenever it is required [46]. However, the same power can be
delivered by changing the total time that the engine is operating and the operating condition of the
engine. As a result, the same fuel consumption will not be achieved. In addition, the battery charging
can be done using a different number of operating conditions, for example, one condition of average
power or two different conditions, one with lower power and the other with a higher power value.
For this reason, a parametric study aiming to understand the effect of using one, two, or three
operating conditions to charge the batteries was performed, which will serve to define the best
strategy for the hybrid concept. All the conditions selected are inside the RCCI zone to take advantage
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of the benefits in terms of efficiency, NOx, and soot emissions. The three operating conditions selected
(19, 23, and 32 kW) to perform the parametric study are marked in Figure 10.

Ni [kW]

IMEP [bar]

1boo ‘ 2000
Speed [rpm]
Figure 10. Indicated power in the RCCI portion of the map. The three selected points to perform the
parametric study are marked in the map.

Figures 11 and 12 show the instantaneous SOC and fuel consumption along the WLTC and RDE
cycle, respectively, for the cases of using one, two, or three ICE operating points. Figure 11 shows
slight differences for the initial phases of the driving cycle. In these conditions, the battery is mainly
charged by the energy recovered through regenerative braking, while the ICE is started during only
a few intervals. After 1000 s of the cycle, the SOC profiles for the three strategies become distinct as a
function of the higher power requirement. However, the great differences are observed in the
highway phase, where the vehicle reaches speeds higher than 100 km/h. In this case, when three
operating conditions are used, it takes a short time to recharge the battery. In addition, as the number
of operating conditions is increased, the SOC variation lessened compared to the case with one
operating condition. Finally, it is also seen that the use of low-power operating conditions as much
as possible decreases the total mass fuel consumption as its value is proportional to the power.

Figure 12 shows similar results for the RDE driving cycle, but with lower differences in general.
The only condition where it is possible to realize SOC differences is in the highway phase. For this
segment, it is observed that the SOC decrease is considerably reduced as the number of operating
conditions of the ICE is increased. Furthermore, the fuel consumption values also decrease for the
condition with three operating points, as was found with the WLTC. Therefore, the approach based
on three operating conditions to charge the battery was chosen to perform a comparative study.
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Figure 11. Instantaneous SOC (a) and cumulative fuel consumption (b) for the three-charging strategy
during the WLTC driving cycle.
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Figure 12. Instantaneous SOC (a) and cumulative fuel consumption (b) for the three-charging strategy
during the real driving cycle (RDE) driving cycle.

3.2. Combustion Modes Comparison

The objective of this section is to assess the potential of the RCCI-SHYV architecture compared to
the dual-mode concept described in Section 2.2 and conventional diesel combustion. For this purpose,
performance and emissions maps of the original diesel engine and dual-mode RCCI were used as
input data for the model. The driving cycles were simulated using the same gear shifting strategy for
CDC and dual-mode combustion, while the hybrid concept relied on direct transmission with a fixed
gear ratio. The operating conditions reached during the RDE cycle with CDC and dual-mode
concepts are shown in Figure 13. It is interesting to note that the charging strategy for the hybrid
vehicle was based on RBC (rule-based control), where the engine operating conditions are defined
on SOC ranges. This allows for tailoring of the operating conditions to obtain the desired values of
emissions. This means that the ICE will operate in a defined operating condition based on the
previous state and the actual SOC value from the battery. The basic control strategy is summarized
in Table 6 where CD stands for charge depleting operation and CS for charge sustaining mode. Other
control strategies such as dynamic programming and a model predictive controller are able to obtain
higher energy savings, but RBC has easier implementation from the control standpoint. Therefore,
the energy savings achieved with the hybrid powertrain can potentially be even higher than the
values presented here. Future works will be focused on the optimization of the charging strategy.
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Figure 13. Operating conditions reached during the RDE cycle for CDC (top) and dual-mode
combustion (bottom).

Table 6. Rule-based control (RBC) control strategy.

Transitions Conditional Statement
CD to CS Level 1 State =1 & SOC < 0.62
CS Level 1 to CD State =2 & SOC > 0.64

CS Level 1 to CS Level 2 State =2 & SOC < 0.60
CS Level 2 to CS Level 1 State = 3 & SOC > 0.62
CS Level 2 to CS Level 3 State = 3 & SOC < 0.58
CS Level 3 to CS Level 2 State =4 & SOC > 0.60

Figure 14 presents the results obtained for the cumulative fuel consumption and the respective
fuel saving for each combustion mode. In the dual-mode case, most of the operating conditions fall
inside the RCCI zone, which leads to a fuel consumption improvement of almost 5% compared to
CDC. This is possible because the RCCI zone has lower values of brake-specific fuel consumption
(BSFC) than CDC due to the highly diluted and fast combustion process. The RCCI-SHV strategy
results in higher fuel savings since all the charging operating conditions come from the RCCI zone.
In addition, the three points selected allow the ICE to run the engine in optimized conditions,
overcoming the drawbacks associated with regular powertrains. The comparison with the CDC mode
shows an energy saving of almost 19%. The reduction in the energy consumption is also higher
compared to the dual-mode case, reaching absolute values of around 13%. Thus, despite the fact that
the charging strategy is not optimal, the hybrid vehicle was able to reach considerable fuel savings
compared to both RCCI and CDC operations. The values obtained for the RDE driving cycle are
presented in Figure 14b. Since the RDE cycle is longer than the WLTC, the effect of the RCCI zone is
observed. This is directly translated in a higher fuel saving compared to the CDC case, reaching
values around 6%. Nonetheless, the same cannot be observed for the hybrid powertrain. The
increased number of starts of the engine during the cycle leads to an increase in the total fuel
consumption since a fuel penalty constraint was used to assess the higher fuel consumption upon
starting the engine. Therefore, the final fuel saving reached 13.4%, an absolute decrease of almost 5%
compared to the WLTC cycle.
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Figure 14. Cumulative fuel consumption and fuel savings for WLTC (a) and RDE (b) driving cycles.

The SOC variation during the cycle has a notable importance on the hybrid concept
performance. The SOC value at the end of the cycle must reach the initial SOC to consistently deliver
the same amount of energy for the driver upon each use of the car. For this study, an initial SOC value
of 0.64 was used, and its behavior during the driving cycle is presented in Figure 15. It can be seen
that the initial and the final values are the same. Whenever SOC reaches the lower limit, the engine
starts and remains running during the time required to achieve the SOC upper limit, as illustrated by
the blue line. The steady operation in a single condition defines an increasing step in the fuel
consumption profile. On Figure 15b, the cumulative fuel consumption profiles during the WLTC
cycle for the three modes are presented. It can be seen that the extra high phase is responsible for
almost 50% of the total fuel consumption of the vehicle. In this sense, as the cycle progresses, the ICE
starts to operate more frequently and at high load conditions to maintain the charge level. This can
be visualized by looking at the engine state number in Figure 15a, as 1 stands for charge depleting
and 4 for the higher power density condition. As a result, the extra high phase exerts a dominance on
the final fuel consumption. Figure 16 shows the results of the RDE cycle. It is clear that the engine
starts more frequently during this driving cycle than with the WLTC. This is directly related to the
velocity profiles that were presented in Figure 7. The RDE cycle has higher velocities than the WLTC
during the initial phases. Therefore, the energy requirements are also higher, making it necessary for
the ICE to work. However, at the final phase of RDE, the state 4 is not achieved, i.e., the higher load
condition is not required to charge the batteries. This is explained by the maximum velocity achieved
during the driving cycle. While the WLTC cycle reaches maximum velocities of 130 km/h, the RDE
remains under 120 km/h for the duration of the cycle. Therefore, low power density conditions are
enough to maintain the charge or to drive the battery energy to its original condition.
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Figure 15. SOC, internal combustion engine (ICE) on-off state, and cumulative fuel consumption for
the hybrid powertrain (a) and instantaneous fuel consumption comparison for the different concepts
(b) during the WLTC cycle.
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Figure 16. SOC, ICE on-off state, and cumulative fuel consumption for the hybrid powertrain (a) and
instantaneous fuel consumption comparison for the different concepts (b) during the RDE cycle.

Table 6 shows the engine-out emissions for the different combustion modes and the two driving
cycles. It can be seen that the dual-mode concept is not able to reach engine-out levels that are below
the Euro 6 regulation levels. Therefore, it will need the conventional after-treatment layout. This is
because during the driving cycles some operating conditions fall inside the CDC zone, see Figure 14,
leading to an increase in the total amount of NOx and soot produced. This results in differences of
NOx versus CDC of only 0.1 g/km.

In the case of the RCCI-SHYV, the fixed operating conditions for the ICE allows for the best values
in terms of fuel consumption and emissions to be obtained. The results confirm that the RCCI-SHV
leads to the lowest engine-out emissions, with NOx and soot levels below the Euro 6 regulation. The
NOx reduction versus CDC is 76.2% and 67.7% for the WLTC and RDE cycle, respectively. In terms
of HC and CO, values with RCCI-SHV are higher than CDC but lower than dual-mode. However, it
is expected that a conventional diesel oxidation catalyst (DOC) will reduce the RCCI-SHYV tail-pipe
levels below the regulation limits [47].

The CO2 reduction is also clear from Table 7. Both concepts (dual-mode and RCCI-SHV) are able
to reach consistent reductions of this pollutant, with levels below the upcoming 2021 target of 95
g/km [48]. As the RCCI concept relies on highly diluted combustion, some of the exhaust gases are
recirculated to avoid high pressure gradients. Therefore, the total exhaust mass is reduced. This
parameter is used to convert the concentration values of the emissions to mass flow quantities. Then,
the emission values on a mass basis are considerably reduced for this combustion mode. The same
can be stated for the RCCI-SHV concept, as the ICE relies on RCCI combustion. Compared to CDC,
the dual-mode combustion presented a total reduction of almost 30% while the hybrid concept
decreased the emissions by half, which confirms that advanced combustion modes in addition to
hybrid powertrains present a huge potential to decrease the GHG emissions.

Table 7. Engine-out emissions for the different modes and the two driving cycles with the respective
Euro 6 limits in g/km.

Cycle Mode  NOx|[g/km] HC [g/km] CO [g/km] Soot[g/km] CO:[g/km]

CDC 0.366 0.748 1.162 0.015 132.065
WLTC Dual-mode 0.263 1.849 5.120 0.003 95.007
RCCI-SHV 0.078 1.138 1.726 0.001 62.292
CDC 0.256 0.944 1.451 0.013 123.606
RDE  Dual-mode 0.165 1.806 5.105 0.002 84.591
RCCI-SHV 0.056 1.147 1.690 0.001 60.012

Euro 6 - 0.08 0.17 * 0.5 0.005 -

* The limit for HC is a function of the total emission of NOx in Euro 6 legislation. The value of 0.17
g/km stands for the sum of HC + NOx.
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4. Conclusions

This work evaluated the performance and emissions for an SHV with an ICE working under a
RCCI regime and compared its values versus diesel and dual-mode combustion (diesel + RCCI). The
results were obtained by means of vehicle systems simulations for the WLTC and RDE cycles.
Preliminary studies demonstrated that an optimum range exists for the initial SOC of the battery (0.2
to 0.8), leading to a reduction in the final fuel consumption. This reduction can be also obtained by
increasing the number of operating conditions in which the ICE works. In this sense, the use of
different power conditions to charge the batteries allows the selection of the required operating
condition for each driving cycle phase, improving the final performance of the vehicle.

The most important conclusions from the comparison of the three concepts (CDC, dual-mode
and hybrid) under the RDE and WLTC driving cycle can be drawn as follows:

*  Owing to the higher EGR levels with RCCI, lower mass flows through the exhaust system are
verified for the dual-mode concept. Therefore, the total CO: emissions in g/km presented a
decrease of almost 30% compared to the CDC case.

*  The RCCI-SHV concept reduces the CO:z emissions by half compared to the CDC case.

e  The use of operating conditions calibrated to fulfill Euro 6 limits as charging points for the
batteries allowed an SHV concept that presents engine-out NOx and Soot emissions inside
legislation limits to be obtained without requiring DPF and SCR devices.

Therefore, it can be stated that the use of SHV in conjunction with RCCI considerably decreases
the total fuel consumption of the vehicle while maintaining the NOx and soot engine-out emission
levels under the Euro 6 limits. Such a result directly impacts the final after-treatment cost, since the
requirements for the DPF and SCR devices can be minimized.
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