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Abstract 

Using the easily applicable hydrothermal method Cr-doped hematite thin films have been 

deposited polycrystalline on conductive glass substrates. The hydrothermal bath consisted of 

an aqueous solution containing a mixture of FeCl3.6H2O and NaNO3 at pH = 1.5. The samples 

were introduced in an autoclave and heated for a fixed time at a fixed temperature and then 

annealed in air at 550ºC. The concentration of the incorporated Cr atoms (Cr4+ ions) was 

controlled by varying the concentration of the Cr(ClO4)3 precursor solution, varied from 0 % to 

20 %. All samples followed morphological and structural studies using field-emission scanning 

electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. 

Chronoamperometry measurements showed that Cr-doped hematite films exhibited higher 

photoelectrochemical activity than the undoped films. The maximum photocurrent density and 

incident photon conversion efficiencies (IPCE) were obtained for 16 at.% Cr-doped films. This 

high photoactivity can be attributed to both the large active surface area and increased donor 

density caused by Cr-doping in the α-Fe2O3 films. All samples reached their best IPCE at 400 

nm. IPCE values for 16 at.% Cr-doped hematite films were thirty times higher than that of 

undoped samples. This high photoelectrochemical performance of Cr-doped hematite films is 

mainly attributed to an improvement in charge carrier properties. 

 

Keywords: Thin films; Hematite; Chromium; XRD analysis; FESEM analysis; TEM 

analysis; Optical properties; Photoelectrochemical properties.  
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1. Introduction 

For the last twenty years, hematite (α-Fe2O3) is considered as the most promising material in 

view of cost, abundance and photocatalytic properties. Hematite has emerged as an efficient 

photocatalyst used in solar water splitting as well as hydrogen production due to its appropriate 

optical band gap (2.1-2.2 eV). According to theoretical predictions, solar-to-hydrogen 

efficiency of hematite can reach 16.8% and water splitting photocurrent can extent 12.6 

mA/cm2 [1,2,3]. Moreover, hematite exhibits an extraordinary chemical stability in an oxidative 

environment. However, the applied performance of hematite for solar water splitting is far from 

the ideal case which has been limited by several factors such as poor conductivity, short lifetime 

of the excited state carrier (10 ps), poor oxygen evolution reaction (OER) kinetics, short hole 

diffusion length, and improper band position for an unbiased Photoelectrochemical method [4]. 

So far, the photoelectrochemical activity (PECA) of hematite has remained quite low because 

of two main drawbacks. First, the conduction band edge energy of α-Fe2O3 system lies below 

the reversible hydrogen potential, thus hindering the charge-transfer process of photogenerated 

carriers (electrons and holes) at the hematite/electrolyte. Second, undoped hematite exhibits a 

rapid non-radiative electron–hole recombination due to its high density of intrinsic defects. As 

a result, the defects induce a short diffusion length almost 4 nm compared to the light 

penetration depth. Therefore, hematite has a relatively poor conductivity, severely limiting the 

overall photocurrent. However, incorporating foreign metallic atoms into the α-Fe2O3 structure 

has been considered an effective approach to inhibit the above-mentioned drawbacks and 

consequently enhance the PECA of hematite. 

A large range of elements, mostly belonging to transition metals such as Sn [5], Cu [6], Pt [7], 

Si [8,9,10,11], Ti [12,13,14], V [7], Al [7,15], Cd [16], Mo [17], Nb [18], Mg [7], Rh [19], Ce 

[20], Co [21], Cu [7,22], Zn [7,23], Cr [7,17], Pt[11], and Ta [24] have been used to dope 

hematite. Table I shows a review of the achievements in some typically doped α-Fe2O3 that can 

be found in the literature. Data in Table I includes the kind of the doping agents and the 

performance of the hematite water splitting photoelectrodes. These data are compared with the 

Cr-doped hematite obtained from the hydrothermal method described in this work. To dope α-

Fe2O3, diverse methods have been attempted, using a range of synthesizing methods including 

sol–gel [25,26,27], hydrothermal [28,29], magnetron sputtering [30,31], atomic layer 

deposition [32], spray pyrolysis [8,33,34,35], atmospheric pressure chemical vapor deposition 

(APCVD) [11,36,37], and electrodeposition [38,39,40,41]. These dopants influence the 

conductivity of the hematite as well as band gap width, the Fermi level, and charge-transfer- 
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processes. However, based on the literature, some researchers reported contradictory effects of 

doping on photoelectrochemical performances. This apparent discrepancy in the results has 

mainly been attributed to the doping concentration and processing methods. Undoped and 

doped hematites have been grown by various methods that can roughly be categorized in two 

groups. The first group involves physical deposition using gas as precursors and necessitates 

expensive and sophisticated devices as is the case in atomic layer deposition, chemical vapor 

deposition and magnetron sputtering. The second group includes wet chemical synthesizing 

methods requiring solution precursors and relatively low cost, simple utensils or set ups as in 

the case of electrochemical deposition, spray pyrolysis, sol–gel coating and hydrothermal 

growth. Compared to the methods, the hydrothermal method has several advantages. First, it is 

a reproducible, facile and inexpensive method since it consists of sealed “one pot” reactions 

requiring an operating temperature as low as 100 °C. Second, it allows crystalline growth of 

versatile nanostructured doped hematite with precise control of the microstructure 

morphologies. Recently, McFarland and co-workers [38] were able to fabricate Pt, Mo and Cr 

doped and undoped hematite films as PEC electrodes for water splitting. They found that the 

photoactivity of the iron oxide was improved by co-deposition with Mo or Cr. The best 

performing samples were 5% Cr and 15% Mo doped, which had IPCEs at 400 nm of 6% and 

12%, respectively, with an applied potential of 0.4V vs Ag/AgCl. These IPCE values were 2.2 

and 4 times higher than the undoped sample for the 5% Cr and 15% Mo samples, respectively. 

No evidence was found that the improved performance was due to the electrocatalytic effects 

of the dopant at the surface of the hematite thin film. The major effect of the Mo and Cr dopants 

is to improve the charge transport properties of the hematite so that a greater fraction of the 

photon generated electron/hole pairs is available for surface redox chemistry.  

Furthermore, under factual operating conditions, high overpotentials are desirable not only 

because of non-idealities but also due to the complexity of water splitting reactions. Current 

progress in nanostructured hematite synthesis including nanoparticles [42,43], nanowires [44] 

and nanonets [45] opens opportunities in tackling the drawbacks mentioned above. As a matter 

of fact, nanostructured photoanode offers an increased semiconductor/electrolyte interfacial 

area for water oxidation, as well as a substantial reduction of the diffusion length for minority 

carriers [46,47,48]. 

In this way, hole recombination can be decreased if the surface feature dimensions are tuned to 

be close to the hole diffusion length of α-Fe2O3 (2–4 nm [49] or 20 nm [50]). Nanostructures 

increase light absorption by increasing light scattering and trapping. As a result, nanostructured 
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hematite photoelectrodes greatly facilitate the collection of charge carriers better than if they 

were simply bulky and smooth [51]. An additional doping of hematite photoanodes has been 

extensively studied to perform a further enhancement of the photoactivity of these photoanodes 

[51,52,53]. Numerous studies have shown that PEC water splitting is advantageous combining 

nanostructure and doping effects [54,55]. 

Therefore, a more straightforward and up scaling fabrication method of nanostructured doped 

hematite electrodes is needed to compare the doping effects in terms of PECA before addressing 

their stability under real operating conditions. 

To date, no significant data have been published on optical, structural and electrical properties 

as well as PECA of chrome doped α-Fe2O3 films when synthesized by the hydrothermal 

method. In this study, we prepared Cr-doped α-Fe2O3 thin films by a hydrothermal process. The 

photoelectrochemical response shows that the samples are effective for the photo splitting of 

water and the doping level affects the photocatalytic of the thin films. The optimum sample is 

α-Fe2O3 doped with 16 at.% Cr. It is believed that this result could be beneficial for the 

applications of Cr-doped α-Fe2O3 in the fields of photocatalysis and photoelectrical devices. 

 

Table I: Summary of the results obtained for doped hematite photoelectrodes, fabrication 

methods and photoelectrochemical characteristics 

Dopant 
Preparation 

Method 

Potential 

(V) 
Electrolyte 

Light 

Intensity 

(mW·cm-2) 

IPCE 

(%) 

Photocurrent 

Density 

(mA·cm-2) 

Ref. 

undoped 

Mo 

Cr 

 

Electrodeposition 

 

0.4 vs. 

Ag/AgCl 

 

1 M NaOH 
410 

 

3 

12 

6 

0.690 

2,00 

1,2 

 

[17] 

Undoped 

Si 

Ti 

 

Sputtering 

0.5 vs. 

SCE 
1 M NaOH 

100 

 

U.A. 

3 

15 

Negligible 

0.100 

0.620 

 

[53] 

 

Undoped 

Ti 

Ti-Al 

Ta 

Ti-Pt 

Ni 

 

Spray Pyrolysis 

 

 

0.45 vs. 

NHE 

 

0.1M NaOH 

 

U.A. 

 

 

U.A. 

 

0.800 

4.000 

4.000 

1.000 

0.800 

Negligible 

 

 

[52] 

Undoped 

Pt 

 

Electrodeposition 

0.4vs. 

Ag/AgCl 
1 M NaOH 410 

3 

12 

0.690 

1.340 

 

[38] 

Undoped 

Al 

 

Electrodeposition 

0.4 vs. 

Ag/AgCl 
1 M NaOH 410 

3 

8 

0.690 

~1.000 

 

[39] 

Undoped 

Ti 
Spray Pyrolysis 

0.5 vs. 

SCE 
1 M NaOH 150 U.A. 

Negligible 

1.980 

 

[56] 

Undoped 

Mg 
Spray Pyrolysis 

0.2 vs. 

SCE 

0.5 M H2SO4 

 
U.A. U.A. 

U.A. 

0.22 

 

[57] 



F. Bouhjar, M. Mollar, M.L. Chourou, B. Marí and B. Bessaïs ; Electrochimica Acta 260, 838-846 (2018) 

5 
 

Undoped 

Zn 
Spray Pyrolysis 0 vs. SCE 

0.5 M H2SO4 

 

40 

 

U.A. 

20 

U.A. 

U.A. 

 

[58] 

Undoped 

Cr 
Hydrothermal 

0.1vs. 

Ag/AgCl 
1M NaOH 100 

Negligible 

6 

1.77 

2.68 

our 

work 

U.A. = Unavailable 

2. Experimental  

2.1. Material and methods 

The flowchart illustrating the synthesis of nanostructured α-Fe2O3thin films by the 

hydrothermal method is displayed in Figure 1. Initially, a fluorine-doped tin oxide (FTO) coated 

glass plate purchased from Pilkington glass company (USA), was cut into small rectangular 

pieces having a surface of 3x1 cm2 to serve as a starting substrate. These pieces were 

ultrasonically pre-cleaned by sequential rinses with acetone, distilled water, and ethanol. The 

hydrothermal bath was an aqueous solution containing a solution 0.15M FeCl3, 1M NaNO3 and 

1M Cr(ClO4)3 [59,60,61]. Some drops of hydrochloric acid (HCl) were added to adjust the pH 

of the mixture to 1.5. Cr(ClO4)3 solutions were added to the bath intended for Cr-doped films. 

The additional amount of Cr was calculated so that the molar ratio Cr/(Cr+ Fe) remained in the 

range of 0-20 at. %. All chemicals were purchased from Sigma Aldrich and used as received 

without any additional purification. Double deionized water, exhibiting a resistivity close to 15 

M·cm was generated by a Milli-Q academic ultra-pure water purification system (Millipore, 

Bedford, MA, USA). Once the solution was prepared, some FTO glass substrates were placed 

at the bottom of a Teflon recipient. Only 20 ml were transferred to the recipient so that the 

substrates were partially immersed in the solution. Then, the recipient was inserted in a 

stainless-steel autoclave. The filled autoclave was tightly sealed before being heated at 100 °C 

for 6 h in an oven. Finally, the system (autoclave with the samples) was naturally cooled down 

to room temperature. 

Under hydrothermal conditions, the aqueous solution enables the Fe3+ hydrolysis ions with OH-

, producing iron oxide nuclei, as described by the following reaction (1): 

Fe3+
(aq) + 3OH-

(aq) →β-FeOOH(s) + H2O  (1)  

Finally, a uniform yellowish layer of akageneite β-FeOOH covered the FTO/glass substrates 

uniformly. The akageneite-coated substrates were then washed with deionized water and 

subsequently introduced in a muffle furnace to be sintered in air at 550 °C for 4 hours. At the 

end of this calcination step, the β-FeOOH was converted into α-Fe2O3. Correspondingly, as 

illustrated in Figure 1, the color of the substrate turned from yellow to red-brown indicating a 
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phase transition from β-FeOOH to α-Fe2O3 [57].The chemical reaction expected to occur during 

this phase transition is represented by the reaction displayed below (2): 

 

2β-FeOOH(s) →Fe2O3(s) +H2O (L or G)  (2) 

Fig.1. Schematic illustration of Cr-doped hematite photoanodes synthesized by the 

hydrothermal method. 

 

2.2. Characterization setup 

Microstructural properties of various hematite films were obtained at room temperature using 

a Rigaku Ultima IV X-ray diffractometer (XRD) in the Bragg-Bentano configuration using 

CuKα radiation (λ = 1.54060 Å). Chemical composition, surface morphology, and topography 

were characterized using energy dispersive spectroscopy (EDX) coupled to a field emission 

scanning electron microscope (FESEM) Zeiss ULTRA 55, equipped with an In-Lens SE 

detector. The selected electron diffraction and high-resolution transmission electron 

microscopy (HRTEM) images were obtained by a JEOL-2010 TEM set at an acceleration 

voltage of 200 kV. Optical absorption was recorded with a UV-visible spectrophotometer 

HR4000 provided by Ocean Optics. The spectrophotometer was coupled to an integrating 

sphere to collect both specular and diffuse transmittance. 

The photoelectrochemical measurements of the samples were performed in a quartz cell to 

facilitate light reaching the photoelectrode surfaces. The surface area of the working electrode 

was 0.2 cm2.The electrolyte consisted of 1 M solution of NaOH (pH = 13.6) with a pure nitrogen 

stream bubbling before and during the test to remove the dissolved oxygen. The 

chronoamperometric curves of the hematite thin films were also obtained at + 0.1 V (vs. 

Ag/AgCl) both in dark and under illumination performed by a 300 W Xenon lamp 

(PLSSXE300/300UV). The luminous intensity of the Xenon lamp was fixed at 100 mWcm-2. 
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The set-up was completed with an automatic shutter and a filter box. The whole system was 

controlled by homemade software. 

For wavelength-dependent photocurrent measurements a monochromator giving a ∼20 nm 

bandpass from 360 to 680 nm was used together with cut off filters to eliminate secondary -

harmonics. To be able to detect low photocurrent intensity, the set-up was completed with a 

photo-chopper and a lock-in amplifier (signal recovery). The absolute intensity of the incident 

excitation light was measured with a radiometer/photometer (international light). The incident 

photon to electron conversion efficiency (IPCE) of the samples was calculated as follows: 

𝐈𝐏𝐂𝐄(%) =
𝟏𝟐𝟒𝟎·𝒊𝒑𝒉𝒐𝒕𝒐𝒄𝒖𝒓𝒓𝒆𝒏𝒕  (𝛍𝐀/𝒄𝒎𝟐)

𝛌(𝐧𝐦)·𝒋𝒑𝒉𝒐𝒕𝒐𝒏𝒔(𝝁𝑾/𝒄𝒎𝟐)
∗ 𝟏𝟎𝟎%     (3) 

Were iphotocurrent is the photocurrent densities, λ(nm)is wavelength of the incident light and 

jphotons is the measured irradiance. 

3. Results and discussion 

3.1. Morphological characterization 

3.1.1. FESEM analysis 

The morphology of undoped and Cr-doped α-Fe2O3 samples obtained under hydrothermal 

conditions was monitored by FESEM images (Figure 2). Figure 2 shows a typical morphology 

of hematite nanorod (NR) arrays grown on the FTO substrates by the hydrothermal process. 

Top view images show clearly that hematite NRs are uniformly distributed on the substrate and 

oriented upward with respect to the substrate. While others are detached from the substrate, 

being free standing and horizontal. Each hematite NR looks like a grain of rice as can be seen 

in Fig. 2 (a, b, c, d, and e (200 nm)) of the as-prepared sample, enabling the identification of a 

typical nanoparticle formation. On the other hand, top-view analysis of Cr-doped α-Fe2O3 

electrodes synthesized during hydrothermal treatment 550 °C for 4h showed that this substrate 

is formed by rods. The effect of different Cr-doped α-Fe2O3 did not affect the morphology of 

the iron oxide nanoparticles.  
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Fig.2. FESEM of hydrothermal deposited α-Fe2O3 (a) undoped, (b) 4at.% Cr, (c) 8at.% Cr, 

(d) 16 at.% Cr, and (e) 20 at.% Cr (1µm and 200nm). 

 
3.1.2. HRTEM analysis 

The morphology of α-Fe2O3 nanostructure films was characterized by TEM and HRTEM. 

Figure 3 (a, b) shows a low magnification TEM image of the α-Fe2O3 nanostructures analyzed 

shows that the as-synthesized NRs exhibit a smooth surface and a relatively uniform diameter 

along the axial direction, using the high-resolution transmission electron microscopy (HRTEM) 

technique Figure 3 (c, d, e, f) shows a clear interplanar distance of 2.24 nm, matching the d110 

spacing of pure hexagonal hematite. The NRs tend to have a parallel alignment, owing to weak 

Van der Waals attraction. The inset displays the electron diffraction (ED) pattern, which was 

taken of the entire area. The diffraction ring indicates the polycrystalline nature of α-Fe2O3 and 

is highly consistent with the XRD results (Figure 4). Furthermore, the elemental mapping 

images (Figure 3 B) of the Fe (Kα), O (Kα), Cr(Kα) nanorod reveal that the Cr dopants are 

distributed over all the nanostructures without any segregation on the surface or inside the 

crystals. 
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Fig.3 :(A) HRTEM of hydrothermally deposited undopedα-Fe2O3, (B) Element Mapping 

images of the Cr-Fe2O3 photoanode. 

 

3.2. Structural characterization  

Figure 4 shows the XRD patterns of doped and undoped hematite films. The diffraction peaks 

match the JCPDS Card No. 33–0664.Diffraction peaks located at 2θ = 24.2°, 33.1°, 35.6°, 

40.9°, 49.5°, 54.1° and 64°correspond to (012), (104), (110), (113), (024), (116) and (300) 

diffraction planes, respectively. No peak corresponding to mixed oxides or impurities was 

detected in any of the samples. Hematite (α-Fe2O3) belongs to the space group R-3c (167) with 

the lattice parameters a= 5.036 Å, b= 5.036 Å, and c = 13.74 Å. This result proves that after 

being heated in air at 550°C for 4 h, the precursor was completely converted from FeOOH to a 

pure α-Fe2O3 rhombohedral phase. Hence, undoped and Cr-doped hematite films have the same 

crystal structure as α-Fe2O3.  

The crystallite size of the samples was calculated using the Debye–Scherer formula: 

𝑫 =
(𝐊𝛌)

(𝛃 𝐜𝐨𝐬 𝛉 )    
   (4) 

 

where λ = 1.5405 Å is the wavelength of Cu Kα radiation, β, the full width at half maximum 

(FWHM) of the main diffraction peak in radian, θ, the Bragg angle and k, the Scherrer's constant 

equal to 0.90.  
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Table 1 displays the calculated crystallite sizes for hematite samples doped at different Cr 

concentrations for the most intense peaks that correspond to (012) and (110) diffraction planes. 

The average crystallite size was found to decrease from 44 nm to 11.7 nm for (012) and 40.6 

nm to 4.8 nm for (110) as Cr doping varied from 0% to 20%, leading to a gradual decline of the 

intensity of the (012) and (110) XRD lines (See Fig. 4). The shift to higher angles observed for 

XRD peaks as Cr content increases (Table 1) confirms the replacement of Fe2+ ions (ion radius 

= 0.74 Å) by the smaller Cr 3+ ions (ion radius = 0.69 Å). This replacement results in a 

contraction of the α-Fe2O3 lattice. It is also worth noting that EDX and optical analysis 

confirmed Cr-doping. 

 

Fig.4. XRD patterns of α-Fe2O3 and Cr-doped α-Fe2O3 films at different Cr concentrations. 

 

Table1: Variation of the crystallite size of undoped and Cr-doped α-Fe2O3 vs Cr content. 

 

 

 

Sample ID 
2𝜃 (°) 

Peak (012) 

Crystallite 

Size [nm] 

2𝜃 (°) 

Peak (110) 

Crystallite 

Size [nm] 

Fe2O3 24.13 44.0 33.14 40.6 

Fe2O3: Cr 4% 24.21 31.6 33.24 31.5 

Fe2O3: Cr 8% 24.28 23.2 33.26 23.1 

Fe2O3 : Cr 16% 24.30 17.7 33.28 18.6 

Fe2O3 : Cr 20% 24.32 11.7 33.33 4.8 
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3.3. EDX analysis 

Elemental analysis of the α-Fe2O3 thin films was done by Energy Dispersive X-ray analysis 

(EDX) spectra (Fig. 5). The L line of the Fe element peaks at 0.6398 keV, while the K-line of 

oxygen peaks at 0.525 keV. The atomic percentages of Fe, Cr, and O in undoped and Cr-doped 

α-Fe2O3 are shown in Fig. 5. The excess of oxygen (detected by EDX) could have arisen from 

SnO2, as all Cr-doped films keep the hematite structure, it can be assumed that the films do not 

deviate excessively from the stoichiometric composition. The calculated atomic ratio of Fe and 

O is approximately equal to 2:3, which agrees with the stoichiometric composition of α-Fe2O3, 

indicating that the films are rather thick so that only oxygen coming from the hematite is 

detected. On the other hand, the Cr concentration in the films is different from that existing in 

the precursor solution. 

 

Fig.5. EDX spectrum of (a) undoped α-Fe2O3, (b) 4 at.% Cr-doped α-Fe2O3, (c) 8 at.% Cr-

doped α-Fe2O3 (d) 16 at.% Cr-doped α-Fe2O3 and (e) 20 at.% Cr-doped α-Fe2O3. 

 

3.5 Optical characterization of Cr-doped Fe2O3 thin films 

Figure 6 shows the optical transmission spectra in the wavelength range of 450 to 800 nm. The 

films displayed a transparency above 65% with an excitation wavelength above 600 nm. With 

increasing Cr content, the absorption edge (550–700 nm) shifted towards the longer wavelength 
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region. It appears that α-Fe2O3 has a high absorbance in the blue region, indicating its 

applicability as an absorbing material in this wavelength range (Figure 7). 

 
Fig.6. Transmittance spectra of undoped and 

Cr doped α-Fe2O3 

 
Fig.7. Absorbance spectra of undoped and 

Cr doped α-Fe2O3 

 
The effect of Cr-doping on the band-gap energy of the synthesized films was determined from 

the Tauc plot. The band-gap energy (𝐸𝑔) is estimated from the optical transmission spectra by 

calculating the absorption coefficient as follows [30]: 

α =
1

d
ln (

1

T
) (5) 

The relation between the absorption coefficient and the incident light energy hν is approximated 

as [62]: 

αhν = A (hν - Eg) n  (6) 

where α is the absorption coefficient, A is a constant, h is the Planck’s constant, ν is the photon 

frequency, Eg is the optical bandgap, and n is equal to 1/2 for direct bandgap transitions and 2 

for indirect ones. Figure 8 shows the Tauc plot for direct bandgap transitions for undoped and 

Cr-doped α-Fe2O3 films. The optical band-gap energy of undoped α-Fe2O3 films was estimated 

to be 2.154 eV, slightly lower than that of bulk α-Fe2O3 (2.3 eV). It can be observed that the 

optical band-gap of Cr-doped α-Fe2O3 remains in the range of 2.05 eV - 2.1 eV (Table 2). 
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Fig.8. Tauc plot of undoped and Cr-doped α-Fe2O3 

Table 2. Optical band-gap for α-Fe2O3 thin films having different Cr-doping 

α-Fe2O3: Cr-doping Cr 0 % Cr 4% Cr 8% Cr 16% Cr 20% 

Bandgap energy (Eg) 

(eV) 
2.15 2.09 2.08 2.05 2.07 

 

3.6 Photoelectrochemical properties of the Cr-doped α-Fe2O3 electrode. 

The photocurrent response was measured under visible light irradiation. To improve the 

photocurrent response of α-Fe2O3 films the charge carrier transport must be enhanced in bulk 

and on the surface to reduce carrier recombination at both sites. All measurements were made 

in 1M NaOH [63,64] electrolyte and under a potential bias of 0.4 V. 

Furthermore, we conducted chronoamperometric measurements under repeated light-on and 

light-off conditions for all hematite films with and without Cr doping. As shown in Fig. 9, the 

photocurrent of hematite is low and all Cr-doped hematite films exhibit higher photocurrents 

than undoped ones. Hematite films with 16 at. % of Cr displays the highest photocurrent, which 

is consistent with the UV-vis.  

 The results clearly demonstrate that the photocurrent density generated from the Cr-doped α-

Fe2O3 electrode is significantly higher than that of undoped electrodes due to the presence of an 

easier electron transport mechanism. In fact, structural studies showed that XRD peaks 

exhibited a slight shift towards higher diffraction angles as Cr doping increases, which indicates 

that Fe3+ ions were replaced by smaller Cr4+ ions. Accordingly, Cr (Cr4+) acts as an electron 

donor in the α-Fe2O3 matrix, thus confirming the substitution of Fe3+ by Cr4+ ions. 
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In fact, Cr doping increases the donor concentration and enhances the charge carrier 

transportation by increasing the electric field across the space charge layer. The growth of the 

donor concentration would reduce the width of the space charge layer; hence, the charge carriers 

within the region should be efficiently separated before recombination. On the other hand, a 

higher concentration of dopant would provide more efficient defect-scattering/recombination 

inhibiting the increased separation efficiency, which might also explain the variation of the 

photocurrent density with the doping levels.  

 

 

Figure 9: Photocurrent intensity for Cr-doped Fe2O3 electrodes under on/off illumination, measured in 

1M NaOH electrolyte with a bias potential of +0.4 V, under successive illumination cycles. 

Figure 10 shows the performance of doped samples as compared to undoped sample. Significant 

performance enhancements were observed upon doping throughout the illumination 

wavelengths. The performance of the 4 at.% Cr-doped films is 4 times higher than that of the 

undoped sample. The IPCE of 16 at.% Cr-doped films measured at 400 nm with an applied bias 

of +0.4 V (vs. Ag/AgCl) is 6%, which corresponds to a thirty-fold improvement over the 

undoped hematite. The higher photon energy was absorbed in the outmost layers of hematite 

and therefore, the photogenerated holes have a shorter diffusion path to reach the surface where 

they will contribute in H2O oxidation reaction. An anodic applied bias will increase the 

collection efficiency of the electrons, and an IPCE improvement can be seen in Figure 10. 

Furthermore, the applied bias will enable H2O reduction at the Pt counter-electrode by 

overcoming the mismatch (0.4 V (vs. Ag/AgCl)) between the hematite conduction band edge 

level and the reversible hydrogen potential (see Figure 11). The improved IPCE performance 

is implausible to be related to an increase in the absorption of the doped samples since no 
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significant change was obtained in the absorption spectra of the different Cr-doped samples 

(see Figure 7). 

 

Fig.10. IPCE for undoped and Cr-doped α-Fe2O3 films at an applied potential of +0.4 V (vs. 

Ag/AgCl) in1 M NaOH. 

 

 
 

Fig.11. Energy diagram of the n-type hematite photoanode and schematic illustration of the 

photoelectrochemical water splitting on photoanode and cathode. 
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4. Conclusions 

Cr-doped α-Fe2O3 films were successfully deposited on FTO-coated glass substrates using the 

hydrothermal method and an annealing process. The concentration of the incorporated Cr atoms 

(Cr4+ ions) was controlled by varying the concentration of the Cr(ClO4)3 precursor solution, 

(i.e., the concentration of the dopant in the sample can be controlled by adjusting the electrolyte 

composition). The Cr dopant served as an ionized donor and was found to increase the carrier 

density of the α-Fe2O3 films. The major effect of Cr atoms is the improvement of the 

conductivity and the charge transport properties of the α-Fe2O3 films. The photoactivity of the 

iron oxide was improved by co-deposition with Cr. The best performing samples have a doping 

rate of 16 at% Cr, which in turn has an IPCE of 6% at 400 nm, with an applied potential of 

+0.4V (vs Ag/AgCl). These IPCE values were thirty times higher than that of the undoped 

sample. Hence, a greater fraction of the photon-generating electron–hole pairs is available for 

surface redox chemistry. The apparent optimum at 16 at.% Cr doping may balance these 

competing effects most effectively and yield the best PCE performance. The Cr-doped α-Fe2O3 

films provide potential applications in photocatalysis for water splitting or in photoelectrical 

devices. 
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