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Abstract 

The paper presents two algorithms for the computation of intersection of geodesics 

and minimum distance from a point to a geodesic on the ellipsoid, respectively. They 

are based on the iterative use of direct and inverse problems of geodesy by means of 

their implementations with machine-precision accuracy in GeographicLib. The 

algorithms yield the same results as those obtained by Karney's approach based on the 

use of auxiliary ellipsoidal gnomonic projections with the advantage on our side that 

the algorithms are not limited to distances below 10000 km. This results in our 

algorithm being the only general solution for the problem of minimum distance from a 

point to a geodesic on the ellipsoid. 
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1 Introduction 

A geodesic on the ellipsoid is a curve with null geodetic curvature (i.e. null curvature 

on the tangent space). Given two points A and B on the surface on the ellipsoid, the 

geodesic AB provides the line of minimum length that connects A and B. Over the last 

centuries, geodesists have devised algorithms of increasing accuracy for solving the 

so-called direct and inverse problems of geodesy, that is, obtaining the coordinates of 
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a point B located on a geodesic starting at point A with a given azimuth A and 

distance s (direct problem) and obtaining the distance s and azimuths at both ends A 

and B given the coordinates of two points A and B on the ellipsoid (inverse problem). 

Among the most widespread methods today we find the algorithms by Vincenty 

(1975), suitable for small programmable calculators, Sjöberg (2006, 2009) and Karney 

(2011a, 2013). The latter are implemented in the GeographicLib suite (Karney 2017), 

a library of geodetic functions developed in several programming languages that 

permits to take advantage of the high precision of standard computers today. State-of-

the-art open source software for spatial analysis use an implementation of 

GeographicLib (e.g. PostGIS Development Group 2017). 

The question of intersection of geodesics has received not so much attention as the 

direct and inverse problems of geodesy. Sjöberg (2002, 2008, 2009) deals with the 

problem directly on the ellipsoid by using numerical integration and Karney (2011a, 

2011b, 2013) ingeniously solves the question by using a particular map projection 

(ellipsoidal gnomonic projection) in which geodesics are very nearly straight and 

angles are preserved at the origin. Even less attention has received the problem of 

minimum distance from a point to a geodesic on the ellipsoid, for which the only 

available procedure we find is the one based on Karney's approach using the 

ellipsoidal gnomonic projection (Karney 2011a, 2013), which is implemented in 

Karney (2011b) and JaVaWa (2017). In this paper we present new algorithms for 

solving these two problems. Without delving into the difficulties in dealing with the 

underlying systems of ordinary differential equations, their solution methods and the 

corresponding analyses of numerical stabilities, we resort to prior accurate 

implementations of the direct and inverse problems of geodesy (we recommend and 

will use their two implementations in GeographicLib) in order to build two easy-to-

implement robust algorithms. As we will show, they yield the same results as Karney 

and Sjöberg's methods for intersection of geodesics and Karney's auxiliary projection 

method for minimum point-to-line distance except for the case of very long distances 

where only our methods succeed.  

2 Intersection of geodesics on the ellipsoid 
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We want to derive an algorithm for computing the intersection of geodesics on the 

ellipsoid that is based on existing implementations of the direct and inverse problems 

of geodesy. We have in mind, in particular, the corresponding functions in 

GeographicLib, which are optimized to deliver accuracy close to machine precision. 

Beyond ensuring no loss of precision, we want our algorithm to be fast enough to be 

used not only for a single intersection but also as a possible tool in the future for more 

complex problems requiring multiple intersections. We describe next an iterative 

algorithm for the intersection of geodesics with fast convergence based on prior 

accurate implementations of direct and inverse problems of geodesy. 

Given points A, B, C and D on the ellipsoid we will compute the intersection of 

geodesics AB and CD. The problem is depicted in Fig. 1, where the intersection point 

is denoted by X.  

 

 

 

 

 

Fig. 1 Intersection of geodesics AB and CD 

A geodesic is mathematically described by a set of differential equations which are 

embedded in the corresponding implementations of the direct and inverse problems of 

geodesy. By using the implementation of the direct problem, for instance, we are able 

to move along the geodesic AB and obtain one point at a given distance from A. The 

idea of the current method is to find an expression for the distance from A to X, sAX, 

that is correct for small figures and approximate enough for larger ones to yield a new 

point on the geodesic that is closer to the intersection. This new point will 

subsequently be used as base for a new iteration.  

For the computation of the approximate expression of the distance between a point, 

say A, and the intersection X of geodesics on the ellipsoid let us assume that A, C and 

X form a spherical triangle (where we will use a suitable value for the radius of the 
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sphere R as e.g. the semimajor axis of the ellipsoid). Now we resort to a rarely used 

formula of spherical trigonometry known as cotangent four-part formula, whose 

derivation can be found in Todhunter (1886), Sects. 43-44, that sets the following 

relation for a spherical triangle of angles A, X, C (as it is common we will denote both 

the vertex and the angle at the vertex by the same uppercase letter) and corresponding 

opposite sides a, x, c 

ACxcAx sincotsincotcoscos         (1) 

By transposition we can write 

ACAx

x
c

sincotcoscos

sin
tan


        (2) 

and obtain the approximate expression for sAX that we are looking for 
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Similarly we obtain 
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These expressions have no significant singularities apart from the trivial case when 

both A and C are zero, i.e. both geodesics are coincident, and the entire geodesics are 

then the intersection. We also assume that the implementing software is able to deal 

with arctangents of arbitrarily large values yielding ±/2. 

Now Eqs. (3) and (4) do not solve the problem unless distances are sufficiently small. 

They provide, however, approximate values for the correct distances so that an 

iterative process can be started as follows. 

After initial determination of azimuths AB and CD by means of the inverse geodetic 

problem with points A, B and points C, D (and considering that AX   AB and CX   

CD) we apply the direct geodetic problem at C with azimuth CX and the distance sCX 

obtained from Eq. (4), as well as the direct geodetic problem at A with azimuth AX 
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and the distance sAX obtained from Eq. (3). As shown in Fig. 2a) we obtain in the 

geodesic AB a point A2 which is much closer to the intersection than A. Similarly we 

obtain a point C2 in the geodesic CD which is much closer to the intersection than C. 

These points will act as new base points for the next iteration (i.e. A is replaced by A2 

and C by C2). The new distances bring the new points, A2 and C2, closer to the 

intersection (Fig. 2b). Note that azimuths change in every iteration since the azimuth 

of a geodesic changes along its different base points, i.e. the values AB and CD are 

different in Fig. 2b) than in Fig. 2a). Iterations can be stopped when the coordinate 

differences between A2 and C2 are below the required level of accuracy. In general the 

method converges fast and ensures that the intersection point X belongs to both 

geodesics (the successive application of inverse and direct problems ensures not to 

divert from the original geodesics).  

 

 

 

 

 

 

 

Fig. 2 Iterative procedure for the computation of the intersection point 

Several notes of caution are worth mentioning here. First, the distances resulting from 

Eq. (3) and Eq. (4) can be negative (as it would be the case of the next iteration in Fig. 

2b). Direction reversal with a positive distance shall be understood then, either by the 

particular implementation of the direct geodetic problem (as the corresponding 

function of GeographicLib does) or by inspection and modification before application 

of the corresponding function. This provides support also to the case where one or 

both lines need to be prolonged to meet the intersection. Second, apart from the 

intersection point X shown in Fig. 1 the two geodesics intersect also in an almost-

antipodal point. Our method naturally yields the intersection point that is closer to A 
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and C (assuming the arctangent function implemented returns values in the interval -

/2, /2), but it is easy to obtain the nearly-antipodal point provided we take only for 

the initial iteration the formulas 
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and then we continue the course of iterations with Eqs. (3) and (4). 

2.1 Practical examples 

We start with an example where the maximum distance to the intersection point (here 

sXB) is relatively small, 74 km. The geodetic coordinates of the points defining 

geodesics AB and CD are A = 52º, A = 5º, B = 51.4º, B = 6º, C = 51.5º, C = 4.5º, 

D = 52º and D = 5.5º. The course of iterations is shown in Table 1. As it can be seen 

our method quickly converges to coordinates for A2 and C2 that differ less than 

0.00001 arc seconds, which constitutes our finishing criterion.  

Table 1 Intersection of geodesics, example 1. Successive distances for the application of the direct 

problem of geodesy and corresponding coordinates of points on geodesics from A (point A2) and C 

(point C2). 

Iteration 

No. sAX (m) sCX (m) A2 A2 C2 C2 

1 21637.0270 64700.0631 51º51'56.3972" 5º13'38.8427" 51º51'56.3311" 5º13'38.7157" 

2 0.0762 3.1832 51º51'56.3954" 5º13'38.8456" 51º51'56.3954" 5º13'38.8456" 

3 0.0000 0.0000 51º51'56.3954" 5º13'38.8456" 51º51'56.3954" 5º13'38.8456" 

We can check the correctness of the final value (X = 51º 51' 56.3954", X = 5º 13' 

38.8456") by inspection of azimuth equalities: AX   AB (in this case 133º 36' 

13.4578") and BX   BA (in this case 314º 23' 18.7197") needed since the intersection 

point X belongs to the first geodesic, and CX   CD (in this case 50º 45' 17.6875") and 

DX   DC (in this case 231º 32' 24.8830") since the intersection point X belongs to the 

second geodesic. All of them are dutifully fulfilled. We can also see that, as expected, 

in every geodetic line the azimuths from the intersection point to both ends are equal 

(if the line had to be prolonged) or differ exactly in 180º. In this example XA   133º 
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46' 58.1263" and XB   313º 46' 58.1263", as well as XC   51º 19' 32.4304" and XD  

 231º 19' 32.4304". 

We obtain exactly the same coordinates for the intersection by Karney's method 

whereas we find some discrepancies (1" in latitude, 2" in longitude) after the 

application of Sjöberg's (they are probably due to the numerical evaluation of the 

integral involved and not to the method itself). 

Now we compute another example which appears in Karney (2011b) involving much 

longer distances (the distances to the intersection point will result in values from 1100 

to 5600 km). We take A = 42º, A = 29º, B = 39º, B = -77º, C = 6º, C = 0º, D = 

64º and D = -22º as coordinates defining the geodesics AB and CD and we have the 

course of iterations displayed in Table 2. 

Table 2 Intersection of geodesics, example 2. Successive distances for the application of the direct 

problem of geodesy and corresponding coordinates of points on geodesics from A (point A2) and C 

(point C2). 

Iteration 

No. sAX (m) sCX (m) A2 A2 C2 C2 

1 3402464.8393 4589822.8334 54º40'00.1134" -13º45'42.2728" 46º24'36.9467" -10º27'32.0442" 

2 52037.0641 957583.2555 54º43'01.3449" -14º33'50.5265" 54º37'33.5290" -14º30'34.4773" 

3 -11.6217 10723.2692 54º43'01.3066" -14º33'49.8807" 54º43'01.3061" -14º33'49.8804" 

4 0.0000 0.0152 54º43'01.3066" -14º33'49.8807" 54º43'01.3066" -14º33'49.8807" 

5 0.0000 0.0000 54º43'01.3066" -14º33'49.8807" 54º43'01.3066" -14º33'49.8807" 

We can check that the final value (X = 54º 43' 1.3066", X = -14º33'49.8807") is 

correct by inspection of azimuth equalities AX   AB = 309º 18' 22.4891", BX   BA 

= 47º 44' 07.2214", CX   CD = 349º 1' 47.4802", DX   DC = 154º 29' 46.5383". We 

can also see that, as expected, XA   275º 51' 17.7681" and XB   95º 51' 17.7681" 

differ in 180º, as well as XC   340º 55' 2.9801" and XD   160º 55' 2.9801". 

Although the computation by Karney's method assumes that geodesics are straight 

lines in the ellipsoidal gnomonic projection centered in X while in fact they are only 

"very nearly straight" (Karney 2013) we do not find any differences between our final 

results and those by Karney's method. By contrast, this problem does not find a 

reasonable result by means of Sjöberg's method. It is due to the known inability of the 

method to follow the geodesic beyond its vertices (Sjöberg and Shirazian 2012), since 

in the present example the geodesic arc AB crosses the point of maximum latitude ( 

= 54º 55' 43"), which is in fact quite close to the intersection point. 
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Finally, we compute a third example that is also intractable by Karney's method based 

on the gnomonic projection. Since this projection cannot represent more than one 

hemisphere and it has to be centered in the intersection point, the intersection 

problems for which at least one of the distances from the intersection point to the 

initial points A, B, C, or D are longer than some 10000 km are impossible to solve by 

Karney's method. We take for instance A = 35º, A = -92º, B = 40º, B = 52º, C = -

8º, C = 20, D = 49º and D = -95º, for which the distances to the intersection point 

will eventually result in values from 1100 to 11300 km). Table 3 shows the course of 

iterations. 

Table 3 Intersection of geodesics, example 3. Successive distances for the application of the direct 

problem of geodesy and corresponding coordinates of points on geodesics from A (point A2) and C 

(point C2). 

Iteration 

No. sAX (m) sCX (m) A2 A2 C2 C2 

1 1604865.7945 4348568.2893 47º31'26.0523" -82º22'38.4586" 21º52'41.8516" -5º53'11.1551" 

2 389269.4887 4565612.7810 50º24'28.6348" -79º21'46.4166" 46º28'27.8630" -46º38'35.2232" 

3 9744.5640 2273004.8317 50º28'44.6977" -79º16'58.1459" 50º30'44.8473" -77º01'21.0483" 

4 2.0208 160366.4992 50º28'44.7508" -79º16'58.0861" 50º28'44.8137" -79º16'55.5158" 

5 0.0000 50.7146 50º28'44.7508" -79º16'58.0861" 50º28'44.7508" -79º16'58.0861" 

6 0.0000 0.0000 50º28'44.7508" -79º16'58.0861" 50º28'44.7508" -79º16'58.0861" 

We obtain the result X = 50º 28' 44.7508", X = -79º 16' 58.0861" and azimuth 

equalities AX   AB = 27º 0' 50.0492", BX   BA = 330º 57' 3.3917", CX   CD = 

319º 57' 19.8704", DX   DC = 75º 46' 33.9244". We can also see that, as expected, 

XA   35º 44' 35.7125" and XB   215º 44' 35.7125" differ in 180º, as well as XC   

267º 48' 9.5053" and XD   87º 48' 9.5053". In this case, Sjöberg's method is unable to 

find the correct solution since the intersection is beyond the vertex of geodesic CD 

when computed from C. We can however use Sjöberg's method and attain a result 

with rather small discrepancies with respect to ours (0.1" both in latitude and 

longitude) and 0.5" of maximum discrepancy in the azimuth check if we interchange 

points C and D, or, in other words, if we compute the intersection point from D not C 

(so that the vertex of the geodesic is not reached before the intersection). At any rate, 

Sjöberg's method demonstrates to be not always applicable, in contrast to ours. 

3 Minimum point-to-line distance on the ellipsoid 
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The problem now is to find the minimum distance from a point P to a geodesic AB on 

the ellipsoid (Fig. 3). We can devise an algorithm based on the iterative use of the 

implementations of the direct and inverse problems of geodesy plus the necessary 

condition of intersection at right angles (Patrikalakis et al. 2009).  

 

 

 

 

 

Fig. 3 Minimum point-to-line distance 

Again the idea is to use approximate expressions for the distances from A to X, sAX, 

and P to X, sPX, that are correct for small figures and approximate enough for larger 

ones to yield a new point on the geodesic AB that is closer to the intersection. This 

new point will subsequently be used as base for a new iteration.  

For the computation of the approximate expressions for distances let us assume that 

points A, P and X form a spherical triangle, one that has a right angle X, where we will 

use a suitable value for the radius of the sphere R (e.g. the semimajor axis of the 

ellipsoid). 

The sine rule for angles A, X (90º) and corresponding opposite sides a, x reads 

Axa sinsinsin           (7) 

  ARsRs APPX sin/sinarcsin        (8) 

The use of one of Napier’s analogies for the spherical triangle of angles A, P, X (90º) 

and corresponding opposite sides a, p, x permits us to write 

2
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Eqs. (8) and (10) are not approximate enough unless the distances are sufficiently 

small, so an iterative process must be started as follows. 

Using the implementation of the inverse problem of geodesy we determine the 

distance sAP as well as azimuths AP and AB. Angle A is the difference of these 

azimuths. By means of Eq. (8) we obtain an approximate value for the distance sPX 

only to be introduced in Eq. (10) so that an approximate value for sAX can be obtained. 

Now we use the implementation of the direct problem of geodesy to compute a point 

A2 along the geodesic AB located at distance sAX from A, which will act as base point 

for the next iteration (i.e. A is replaced by A2), just the same as we did in the first 

method (Fig. 2). The difference now is that we do not know the azimuth of the 

geodesic XP so we cannot iterate P. After several iterations the differences between 

successive coordinates of A2 are below the required level of accuracy (or, 

equivalently, the distance sAX can be regarded zero for our level of accuracy) and the 

iterations can be finished. 

The method converges fast to the solution of minimum distance from point P to 

geodesic AB – note that we were not interested in the other possible larger value of the 

arcsin function in Eq. (8) – supports line prolonging and has no significant 

singularities (it yields the correct solution even if the point P is in the geodesic AB).  

Next we apply the algorithm to some examples and compare the results with those that 

can be obtained by Karney (2011b) by means of use of the auxiliary gnomonic 

projection. 

3.1 Practical examples 

Let us start with an example where the point-to-line distance is relatively small, some 

24 km. The geodetic coordinates of the points defining the geodesic AB and point P 

are A = 52º, A = 5º, B = 51.4º, B = 6º, P = 52º and P = 5.5º. The course of 

iterations is shown in Table 4. As it can be seen, our method converges to the final 
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value in just three iterations (our finishing condition is that successive coordinates for 

A2 differ less than 0.00001 arc seconds).  

Table 4 Point to geodesic, example 1. Successive coordinates of point A2 and corresponding distances 

sAX. 

Iteration 

No. A2 A2    sAX (m) 

1 51º50'45.9212" 5º15'37.5426" 24784.2886 

2 51º50'45.9212" 5º15'37.5426" -0.0002 

3 51º50'45.9212" 5º15'37.5426" 0.0000 

We ensure that the solution X = 51º 50' 45.9212", X = 5º 15' 37.5426" is correct by 

checking right-angle conditions (in this case XA   313º 48' 31.4766", XP   43º 48' 

31.4766" and XB   133º 48' 31.4766") along with the condition that X is on both 

geodesics (which was indeed part of our implementation of intersection of geodesics: 

AX   133º 36' 13.4578" and AB   133º 36' 13.4578", as well as BX   314º 23' 

18.7191" and BA   314º 23' 18.7191"). The results are the same following Karney's 

approach. 

Our second example is taken from Karney (2011b) and involves a point-to-line 

distance much longer (around 1000 km). With A = 42º, A = 29º, B = 39º, B = -77º, 

P = 64º and P = -22º we have the course of iterations shown in Table 5. 

Table 5 Point to geodesic, example 2. Successive coordinates of point A2 and corresponding distances 

sAX. 

Iteration 

No. A2 A2       sAX (m) 

1 54º55'42.7066" -21º56'18.1328" 3928857.7554 

2 54º55'42.7134" -21º56'14.2477" -69.1851 

3 54º55'42.7134" -21º56'14.2477" 0.0000 

Again it is checked that the solution X = 54º 55' 42.7134", X = -21º 56' 14.2477" 

fulfills right-angle conditions (XA   89º 49' 31.0947", XP   359º 49' 31.0943" and 

XB   89º 49' 31.0947"), belongs to geodesic AB (AX   309º 18' 22.4891" and AB   

309º 18' 22.4891", as well as BX   47º 44' 7.2214" and BA   47º 44' 7.2214") and is 

exactly coincident with the one in Karney (2011b). 

Finally, we compute an example that is intractable by Karney's method based on the 

gnomonic projection due to its limitation to one hemisphere (i.e. requires that all 

distances from the projection center, point X, be below 10000 km). With A = 42º, A 
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= 29º, B = -35º, B = -70º, P = 64º and P = -22º we have the course of iterations 

shown in Table 6. 

Table 6 Point to geodesic, example 3. Successive coordinates of point A2 and corresponding distances 

sAX. 

Iteration 

No. A2 A2   sAX (m) 

1 37º58'39.9186" 18º20'53.7147" 1012443.9063 

2 37º58'41.2237" 18º20'56.6280" -81.6969 

3 37º58'41.2237" 18º20'56.6280" 0.0000 

The solution X = 37º 58' 41.2236", X = 18º 20' 56.6279" verifies right-angle 

conditions (XA   60º 29' 33.8570", XP   330º 29' 33.8570" and XB   240º 29' 

33.8570") and belongs to geodesic AB (AX   247º 21' 11.9791" and AB   247º 21' 

11.9791", as well as BX   56º 53' 14.0821" and BA   56º 53' 14.0821"). As 

mentioned before, the resulting distance sXB  12200 km is longer than 10000 km, 

what makes the problem intractable by Karney's method and, as far as we know, by 

any other method that has been published so far. 

4 Conclusions 

We have presented two algorithms for solving the problems of intersection of 

geodesics and minimum distance from a point to a geodesic on the ellipsoid, 

respectively. They can be applied to all range of distances: from local-scale problems 

(a few km) to global-scale ones (even more than 10000 km). Being iterative in nature, 

and the second algorithm also resorting to the implementation of the first, their 

computational cost is dependent on the distances involved. They represent a 

competitive implementation with the currently standard approach by Karney based on 

the use of an auxiliary ellipsoidal gnomonic projection, with the advantage on our side 

that Karney's method is inapplicable for distances longer that 10000 km. This results 

in our algorithm being the only possibility for accurately solving the general problem 

of minimum distance from a point to a geodesic on the ellipsoid. 
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