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Abstract  

CuGaS2 thin films were obtained by sulfurization of CuGaSe2. CuGaSe2 thin films were first 

electrodeposited from aqueous solutions containing CuCl2, GaCl3, and H2SeO3 and 

subsequently annealed at 400 °C for 10 min in forming gas atmosphere and in the presence of 

molecular sulfur. This sulfurization process resulted in the complete conversion of CuGaSe2 

into CuGaS2. The formation of CuGaS2 was proven by X-Ray diffraction and optical 

spectroscopy. Diffraction peaks of CuGaS2 shifted to higher angles than those observed for 

CuGaSe2 films, and the optical band gap shifted to blue rising from 1.66 eV for CuGaSe2 to 2.2 

eV for CuGaS2. When Cr ions were added to the initial electrolyte, the final CuGaS2 films 

exhibited a broad in-gap absorption band centred at 1.63 eV that can be ascribed to Cr atoms in 

Ga sites. The performance of solar cells based on CuGaS2:Cr absorbers containing an in-gap 

absorption band was then estimated by numerical simulation using Solar Cell Capacitance 

Simulator Software. Both quantum efficiency and short circuit current of simulated 

Mo/CuGaS2:Cr/CdS/ZnO solar cells rose up proportionally to the amount of Cr present in 

CuGaS2:Cr absorbers. As a result, the photo conversion efficiency of the simulated devices 

changed from 14.7% for CuGaS2 to 34% for CuGaS2:Cr absorbers. Nevertheless, when neutral 

defects related to Cr-doping were introduced in the absorber layer, the positive effect of the 

enhancement of photon harvesting due to IGB was compensated by a decline in the carrier 

collection and the overall efficiency of the device fell considerably. 

 

Keywords: CuGaS2; thin film solar cells; intermediate band solar cell; numerical simulation; 

photoconversion efficiency; SCAPS.  
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1. Introduction  

CIGS Chalcopyrite semiconductors are one of the promising materials to be used in high-

performance photovoltaic devices due to their direct bandgap, which can be tuned between 1.1 

for CuInSe2 and 2.2 eV for CuGaS2. Also, their cost-effectiveness and easy processing are well 

known. Recently, CIGS thin-film photovoltaic devices reached a record solar efficiency of 

22.3% [1]. Among thin film technologies, CIGS solar cells have achieved highest conversion 

efficiencies at laboratory scale [2, 3].  Efforts to seek an economical and scalable method for 

the production of stoichiometric CIGS thin-films have been going on to allow the 

commercialization of these devices. Among several techniques, electrodeposition has 

demonstrated to produce CIGS devices with high efficiency [4]. Currently efforts are being 

made to increase the thin film efficiency to the theoretical determination as well as to improve 

inexpensive deposition strategies for the chalcopyrite absorber layer [5]. 

The band gap energy of semiconductor materials plays a key role in performance of 

photovoltaic devices [6]. According to the Shockley–Queisser limit the optimal band gap 

energy of single band gap PV device was calculated to be about 1.4 eV [7]. Therefore, it would 

be unreasonable to use CuGaS2 thin film as absorber in photovoltaic devices based on one 

junction due to their high band gap which is about 2.2 eV. However, this energy matches the 

optimal bandgap well to host an in-gap band (IGB) (also known as intermediate band) intended 

to absorb photons with energies lower than the gap. In the proposed IGB material electrons can 

follow two ways to be promoted from the valence band to the conduction band: a) absorbing a 

photon with energy higher than the bandgap, and b) through the absorption of two photons with 

energy below the bandgap. The absorption of one photon promotes one electron from the 

valence band to the partially filled IGB and then the electron is transferred from this IGB to the 

conduction band after the absorption of a second photon. This may allow a more efficient use 

of the solar spectrum in photovoltaic devices. This type of solar cells would be able to utilize 

the solar spectrum more efficiently, resulting in a theoretical efficiency limit of 63.2% [8], 

which is significantly higher than the 40.7% limit of conventional single band-gap photovoltaic 

cells [7]. Such devices would possess higher open circuit voltages and increased short circuit 

currents due to the higher band gap energy of the absorbing material and the greater absorption 

coming from sub-band gap photons, resulting in an increase of the overall efficiency [9]. 
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According to the literature [10], chrome substituting Ga in CuGaS2 chalcopyrite lattices 

would generate an IGB separated from both valence and conduction bands. When the transition 

metal (Cr) IGB is introduced into the CuGaS2 lattice it produces a partially filled band separated 

from both conduction and valence bands that allows promoting electron-hole pairs through a 

two photons absorption process with sub bandgap energies. Therefore, the use of an IGB 

absorber would allow harvesting higher amounts of solar photons.  

The main determination of the present work is to dope CuGaS2 thin films with the transition-

metal Cr to create a suitable IGB absorber [11]. Herein, we report the synthesis and optical 

characterization of CuGaS2 and CuGaS2:Cr thin films containing an IGB associated to Cr. 

CuGaS2 thin films were produced by sulfurization of previously electrodeposited CuGaSe2 

films. The replacement of Se by S was completely substituted after sulfurization. Optical 

analysis showed that the band gap shifted from 1.66 for CuGaSe2 to 2.20 eV for CuGaS2.with 

the sulfurization, the position of X-Ray diffractograms peaks also shifted from 27 to 29 degrees. 

The effectiveness of Cr-doping was inferred from the presence of Cr in CuGaS2 layers detected 

by microanalysis and the optical detection of an in-gap absorption band. Furthermore, the 

behaviour of photovoltaic devices, based on CuGaS2 absorbers with and without an IGB, was 

calculated specific Solar Cell Capacitance Simulation (SCAPS) software [12]. 

2. Experimental  

CuGaSe2 layers were electrodeposited from an electrolyte solution containing 2 mMol L-1 

CuCl2, 4 mmol L-1 H2SeO3, 10mmol L-1 GaCl3, 50mmol L-1 KSCN, 100 mmol L-1 NH4Cl and 

300 mmol L-1 LiCl. The precursor solution pH was adjusted between 2.3 and 2.4 by adding 

hydrochloric acid (HCl) and potassium hydroxide (KOH). For better stability of the deposition 

bath solution LiCl was used as a supporting electrolyte, also improving the quality of the 

deposited layers.   

Electrodeposition was performed on a standard 3-electrode electrochemical cell. The 

CuGaSe2 thin films were deposited onto a 1µm thick Mo-coated soda lime glass substrate acting 

as a working electrode, a platinum wire was used as counter electrode and Ag/AgCl as reference 

electrode.  

For doping purposes, Cr3+ ions were added to the electrolyte described above. 150 mMol L-

1 of Cr (ClO4)3 was dissolved in 40 mL of the electrolyte aqueous solution. The pH of the final 

solution was adjusted between 2.3 and 2.4 using concentrated HCl. Electrodeposition produced 
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Cr-doped CuGaSe2 films and these films, which were subsequently sulfurized following the 

sulfurization procedure described below. 

CuGaS2 layers were obtained after subsequent sulfurization of previously electrodeposited 

CuGaSe2 layers. A complete replacement of the selenium by sulfur, transforming the precursor 

CuGaSe2 wurtzite film into a CuGaS2 chalcopyrite film took place in a quartz tube kept inside 

a cylindrical oven at a temperature of 400 ºC for 10 minutes in forming gas atmosphere. 

The crystal structure of CuGaSe2 and CuGaS2 thin films were investigated by X-Ray 

Diffraction (XRD) with a Rigaku Ultima IV diffractometer in the Bragg-Brentano configuration 

using CuKa radiation (l=1.54060 Å). The chemical composition was analysed by means of 

Energy Dispersive Spectroscopy (EDS) with a FESEM Zeiss model Ultra55. 

Numerical simulations were performed using SCAPS, which is a one dimensional computer 

software to simulate electrical characteristics of thin film heterojunction solar cells. SCAPS 

was developed for CIGS and CdTe thin film solar cells but it has been applied to other thin film 

materials [13]. CuGaS2:Cr absorber layers with different Cr contents were used in the 

simulation. Besides, the effect of neutral defects related to Cr-doping on the performance of 

solar cells was also studied and discussed. 

3.    Results and discussion 

Figure 1 shows the XRD patterns of CuGaSe2 and CuGaS2 thin films at their different 

preparation stages: (a) electrodeposited CuGaSe2 thin films and (b) sulfurized CuGaSe2 thin 

films annealed for 10 minutes at 450 ºC.  The diffractogram obtained for CuGaSe2 thin films 

matches the tetragonal crystal system JCPDS No. 075-0104 pattern well. The major peaks were 

located at 27.9°, 45.7°/46.2° and 54.3°/55.2° corresponding to (1 1 2), (2 2 0)/(2 0 4) and (3 1 

2)/(1 1 2) diffraction planes, respectively. 

The sulfurization process of the electrodeposited CuGaSe2 films took place after a short 

annealing time in presence of molecular sulfur, resulting in the formation of the CuGaS2 

chalcopyrite phase as revealed by the XRD pattern of sulfurized films, [Figure 1 (b)]. The XRD 

peaks shifted to higher angles with the sulfurization process. The main XRD peak 

corresponding to (1 1 2) diffraction peaks shifted from 27.9 to 29.0 degrees. Furthermore, the 

peaks corresponding to (2 2 0) and (2 0 4) and (3 1 2) and (1 1 6) diffraction planes observed 

for annealed CuGaSe2 films also shifted to higher angles for sulfurized films. These XRD peaks 

match the JCPDS No. 75-0103 pattern corresponding to CuGaS2 films. This diffraction pattern 
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confirms the replacement of Se atoms by S atoms after sulfurization, and consequently, 

CuGaSe2 thin films were transformed into CuGaS2 [14,15,16]. 

Both CuGaSe2 and CuGaS2 films exhibited a tetragonal crystalline structure. The XRD 

patterns of CuGaSe2 and CuGaS2 thin films display a highly crystalline structure, offering the 

possibility of being used for photovoltaic devices with high conversion efficiency [17]. 

EDS was used to estimate the composition of deposited CuGaSe2 and CuGaS2 films. Figure 

2 (a, b) shows the EDS spectra of annealed CuGaSe2 and CuGaSe2 films doped with chrome. 

Main X-ray peaks belong to Cu, Ga, Se and Mo, produced by the substrate. In Cr-doped 

CuGaSe2 films, three lines located at 0.5, 5.5 and 6.0 keV, respectively, support the presence of 

chrome in these samples. After sulfurization the lines related to Se practically disappear, which 

means that the substitution of selenium by sulfur took place [18]. Only a residual part of 

selenium (below 1%) remains after 10-minute sulfurization. The content of chrome in doped 

films always remains between 1 and 2%, irrespective of the amount of Cr3+ added to the starting 

electrolyte, which means that the Cr:Ga ratio ranges from 4 to 8%. 

Figure 3 shows the normalized absorbance for CuGaSe2, CuGaS2 and CuGaS2:Cr thin films, 

respectively. According to Figure 3 (a), the cut-off wavelength for CuGaSe2 is about 746 nm, 

which corresponds to a bandgap of 1.6 eV. Figure 3 (b) displays the normalized absorbance for 

CuGaS2 films after sulfurization treatment. The cut-off wavelength for CuGaS2 films shifts to a 

lower wavelength (563 nm), which means a higher energy bandgap (2.2 eV). Figure 3 (c) shows 

the normalized absorbance for CuGaS2:Cr thin films. An additional characteristic with respect 

to undoped CuGaS2 films is evidenced: in CuGaS2:Cr films, a wide absorption band centered 

at 760 nm (1.63 eV) appears. This absorption band can be assigned to a sub-band related to Cr-

doping. According to theoretical studies, the substitution Ga3+ by some transition metals like 

Cr would give rise to a partially filled absorption band into CuGaS2 chalcopyrite structures, 

which would then support the promotion of electrons from the valence band to the conduction 

band through a two-photon absorption procedure [19].  

The proposed in-gap band concept has gained a great deal of attention in the field of third 

generation solar cell research. The IGB position should neither overlap with the valence band 

(VB) nor with the conduction band (CB). Such an in-gap band does not only absorb photons 

having an energy higher than that of the band gap (Eg) but also permits the absorption of 

photons corresponding to the sub-band gap, which are capable to promote electrons from the 

VB to the IGB and then from the IGB to the CB [20]. The IGB associated to Cr-doped CuGaS2 
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may allow a higher current to be obtained at the voltage corresponding to the energy gap value, 

which is described in detail in the simulation part. 

4.   Numerical simulation of solar cells based on CuGaS2:Cr absorbers. 

The performance of photovoltaic devices based on IGB-absorbers has been numerically 

simulated using SCAPS. The simulated photovoltaic device consists of the following sequence 

of layers: Mo/CuGaS2:Cr/CdS/ZnO corresponding to back contact, absorber, buffer and 

window layers, respectively.  

In the simulation we used the experimental absorption coefficient measured for CuGaS2:Cr 

considering that 5% of Ga was substituted by Cr. To further estimate the effectiveness of the 

Cr-related IGB, we proportionally increased the Cr content to 10% and 20% and then studied 

its effect on the performance of the solar cell. 

Figure 4 shows the energy band diagram for Mo/CuGaS2:Cr/CdS/ZnO thin film solar cells. 

The diagram plots various key electron energy levels as the Fermi level and the energy band 

edges. The band gap of pure CuGaS2 is 2.2 eV, which is appropriate for hosting an IGB 

separated from both conduction and valence bands. Cr doping originates an IGB centered at 

1.63 eV, which enhances the absorption and allows boosting the efficiency of the device. 

Figure 5 shows the External Quantum Efficiency (EQE) under AM1.5 illumination for 

CuGaS2:Cr solar cells with a different Cr content ranging from 0 to 20%. The EQE is the ratio 

of the amount of charge carriers collected by the solar cell with respect to the amount of incident 

photon energy on the solar cell. The EQE for pure CuGaS2 falls to zero for wavelengths longer 

than 620 nm, which corresponds to the band gap of the absorber (2.2 eV). However, due to the 

absorption of the IGB, a rise in EQE is observed within the 620-1000 nm range. This increase 

in EQE is related to the absorption of sub-band gap photons associated to the IGB and the 

general rule is: the higher the Cr content, the higher the EQE in the region below the band gap. 

The key goal of this research was to improve the performance of solar cells by inserting an IGB 

to cover a wider wavelength range. 

Figure 6 shows the J-V characteristic of solar cells for CuGaS2 absorbers with various Cr 

contents. Under AM1.5 illumination, the short circuit current (Jsc) depends on the Cr content in 

the CuGaS2 absorber layer. The short circuit current increases with regard to the Cr percentage. 

For Cr 0%, the CuGaS2 absorber gives Jsc=12.6 mA/cm2, and Jsc increases proportionally to the 

Cr content of up to 29.41 mA/cm2 for Cr 20%. Cr 5%, 10%, and 20% means that the remaining 

Ga atoms are 95, 90 and 80% with respect to Ga atoms in pure CuGaS2 absorbers assuming that 
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all Cr atoms are substituting Ga atoms. Unfortunately, this cannot be inferred from EDS 

analysis. 

Table 1 displays the main photovoltaic parameters for the studied devices in relation to the 

Cr content. Both, the open circuit voltage (Voc=1.34 V) and the fill factor (FF=89.5) remain 

constant with the amount of Cr. However, the short circuit current (Jsc) dramatically increases 

with the Cr content, and as a result the photo conversion efficiency (PCE) increases from 

14.73% for the CuGaS2 absorber layer without Cr to 34.00% for CuGaS2:Cr (20%) absorbers. 

This increase in the PCE is directly related to the effectiveness of the intermediate band for 

absorbing photons with energies below the band gap. 

In the CuGaS2 lattice, Cr atoms should act as a neutral defect and would then hinder the 

movement of the carriers. Therefore, Cr doping add two effects; a) increasing the photon 

harvesting through the related IGB, and b) hindering the carriers drift as the doping modifies 

the crystal lattice. In order to take into account both effects, we calculated the photovoltaic 

parameters for CuGaSe2:Cr devices for an increasing concentration of neutral defects. 

 Figure 7 shows the J-V curves for PV devices based on CuGaSe2:Cr  absorbers with an 

increasing concentration of Cr-related neutral defects. Several features can be seen in these J-

V curves: a) increasing neutral defects results in a drop of Voc, b) Jsc is also decreased as the 

number of neutral defects increases. As a result, PCE drops drastically with the amount of 

neutral defects. The photovoltaic parameters of such devices in relation to the neutral defects 

concentration are summarized in Table 2.   

By introducing neutral defects, the relationship between the PCE and defects is inverse. 

When the neutral defect concentration increases from 1016 to 1020 cm-3, the PCE decreases from 

34 to 2.3%, which means that the performance of the photovoltaic device is very sensitive to 

neutral defects. Cr-doping improves photon harvesting and, consequently, the short circuit 

current but, simultaneously, spreads the concentration of neutral defects that obstruct the 

extraction of carriers to the external load. 
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5.    Conclusions 

CuGaS2 thin films were obtained by sulfurization at 400 ºC for 10 min of previously electro-

deposited CuGaSe2 precursor films. The shift observed in X-ray diffraction peaks and the 

widening of the optical bandgap from 1.66 to 2.20 eV confirm the conversion of CuGaSe2 into 

CuGaS2. 

After partial substitution of Ga by Cr atoms an absorption band below the gap is observed. 

This in-gap band is centered at about 1.63 eV above the valence band. Apart from transitions 

from the VB to the CB, the IGB band in CuGaS2:Cr  films allows the absorption of two sub-

band gap photons and promotes electrons from the VB to the CB via the intermediate IGB. As 

a result, the absorption coefficient of the IGB absorber extends to longer wavelength region. 

Using the experimental absorption coefficient obtained for CuGaS2:Cr films with 5% of Ga 

atoms being substituted by Cr, we performed numerical simulations to assess the behavior of a 

solar cell based on CuGaS2:Cr absorbers for various amounts of Cr. The absorption due to the 

IGB dramatically increases the short circuit current of the solar cell, and the photo conversion 

efficiency also grows from 14.7% for the CuGaS2 absorber layer without Cr to 34% for the 

CuGaS2:Cr absorber layer with 20% Cr content. However, as the amount of neutral defects 

related to Cr increases, the efficiency of devices diminishes, showing that the PCE for IGB-

absorbers is very sensitive to the presence of neutral defects. 
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TABLES 

Table 1: Output parameters of the modeled Mo/CuGaS2:Cr/CdS/ZnO thin film solar cell with 

various Cr content. 

Cr (%) Voc (Volt) Jsc (mA/cm2) FF (%) PCE (%) 

0 1.344 12.22 89.7 14.73 

5 1.339 20.31 89.5 24.35 

10 1.341 23.38 89.5 28.07 

20 1.343 29.41 89.5 34.00 

 

 

Table 2: Output parameters of the modeled Mo/CuGaS2Cr/CdS/ZnO thin film solar cell with 

neutral defects. 

 

Neutral 
Defects (cm-3) Voc (Volt) Jsc 

(mA/cm2) FF (%) PEC (%) 

0 1.34 29.41 89.70 34.00 

1016 1.34 29.32 70.90 30.29 

1017  1.30 26.48 51.71 17.80 

1018  1.27 23.92 42.70 12.97 

1019  1.21 21.74 38.82 10.21 

1020  1.10 7.80 26.34 2.26 
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FIGURE CAPTIONS 

Figure 1. XRD patterns of CuGaSe2 and CuGaS2 films: (a) CuGaSe2 after annealing at 400 

ºC in forming gas atmosphere, and (b) after sulfurization in molecular sulfur for 10 minutes at 

400 ºC. 

Figure 2. EDS spectrum for: a) annealed CuGaSe2 b) CuGaSe2 doped with Cr. 

Figure 3. Comparison of the absorbance of CuGaSe2, CuGaS2 and CuGaS2:Cr thin films. 

The broad absorption band observed for CuGaS2:Cr, centred at 760 nm, is attributed to the Cr-

related in-gap band.  

Figure 4.   Band diagram of the Mo/CuGaS2/CdS/ZnO thin film solar cell. 

Figure 5. EQE for Mo/CuGaS2:Cr/CdS/ZnO solar cells with different Cr contents under 

standard AM1.5 illumination.  

Figure 6. J-V characteristics of CuGaS2:Cr thin film solar cells with various Cr contents. 

     Figure 7. J-V characteristics of solar cells based on CuGaS2:Cr 20% absorbers with 
different amounts of neutral defects. 
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FIGURES 

 

FIGURE 1. XRD patterns of CuGaSe2 and CuGaS2 films: (a) CuGaSe2 after annealing at 
400 ºC in forming gas atmosphere, and (b) after sulfurization in molecular sulfur for 10 minutes 
at 400 ºC. 
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    (a) 
 

 
    (b) 
 

Figure 2. EDS spectrum for: a) annealed CuGaSe2, b) CuGaSe2 doped with Cr. 
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Figure 3. Comparison of the absorbance of CuGaSe2, CuGaS2 and CuGaS2:Cr thin films. The 
broad absorption band observed for CuGaS2:Cr, centred at 760 nm, is attributed to the Cr-
related in-gap band.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Band diagram of the Mo/CuGaS2/CdS/ZnO thin film solar cell. 
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Figure 5. EQE for Mo/CuGaS2:Cr/CdS/ZnO solar cells  with different Cr contents under 
standard AM1.5 illumination.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. J-V characteristics of CuGaS2:Cr thin film solar cells with various Cr contents. 
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Figure 7. J-V characteristics of solar cells based on CuGaS2:Cr 20% absorbers with different 
amounts of neutral defects. 
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