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Abstract: Neurofeedback is a self-regulation technique that can be applied to learn to voluntarily
control cerebral activity in specific brain regions. In this work, a Transcranial Doppler-based
configurable neurofeedback system is proposed and described. The hardware configuration is
based on the Red Pitaya board, which gives great flexibility and processing power to the system.
The parameter to be trained can be selected between several temporal, spectral, or complexity features
from the cerebral blood flow velocity signal in different vessels. As previous studies have found
alterations in these parameters in chronic pain patients, the system could be applied to help them
to voluntarily control these parameters. Two protocols based on different temporal lengths of the
training periods have been proposed and tested with six healthy subjects that were randomly assigned
to one of the protocols at the beginning of the procedure. For the purposes of the testing, the trained
parameter was the mean cerebral blood flow velocity in the aggregated data from the two anterior
cerebral arteries. Results show that, using the proposed neurofeedback system, the two groups
of healthy volunteers can learn to self-regulate a parameter from their brain activity in a reduced
number of training sessions.

Keywords: transcranial doppler ultrasound; neurofeedback; digital signal processing; chronic pain;
fibromyalgia; FPGA; System on Chip

1. Introduction

Neurofeedback is a self-regulation technique that is applied to obtain voluntary control over
activity in specific brain regions. The training is performed providing the subject with feedback about
the activity in the brain region of interest. Research has shown that this approach has been effective for
improving symptoms of patients with different types of disorders or alterations (such as depression,
anxiety, post-traumatic stress disorder, affective disorders, epilepsy, brain injury, or degenerative motor
disorders) [1,2]. If a specific disorder is associated with altered patterns of brain activity in specific
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brain regions, a neurofeedback training system can be designed with the goal of modifying the neural
activity in those regions.

Neuroscience studies have found that there are specific brain regions that are activated during
painful stimulation, such as the primary and secondary somatosensory cortices, the insula, the anterior
cingulate and the thalamus, as well as prefrontal and parietal regions [3]. These regions are part of the
pain neuromatrix, which presents a higher activation and a more altered dynamic in the case of chronic
pain patients [4]. It has been found that neurofeedback training with EEG [5] or real time fMRI [6,7]
can be useful for chronic pain patients

Another technique that has been applied to monitor brain activity responses associated with
pain has been Transcranial Doppler Ultrasound (TCD). It is a diagnosis technique that registers
non-invasively cerebral blood flow velocity (CBFV) in main cerebral arteries [8] and that has been
widely applied in the psychophysiological field [9,10]. As the main arteries diameters remain without
significant changes in a wide range of experimental conditions, the velocity variations that are
registered using TCD reflect changes in regional cerebral blood flow generated by neuronal activity [11].

The technique is suitable for analyzing hemodynamical changes in the brain with a high temporal
resolution complementing other brain activation monitoring techniques such as fMRI. Its spatial
resolution is restricted to the brain regions supplied by the vessels that are being monitored. However,
it is appropriate to distinguish between activations in cerebral regions irrigated by different arteries in
each hemisphere.

In the case of pain studies, the main arteries that are monitored are the anterior cerebral arteries
(ACA) and the middle cerebral arteries (MCA) [12–14]. The ACAs supply blood to the medial and
superior areas of frontal and parietal lobes, which include regions associated with the processing
of affective and cognitive components of pain, while the MCAs irrigate lateral regions of cerebral
hemispheres, including the somatosensory cortex, which are more related with sensory aspects of
pain [14,15]. Painful stimulation (both with temperature and pressure) has resulted in measurable
variations in CBFV of the ACAs and MCAs [12–14]. In the case of chronic pain patients (fibromyalgia
patients), these changes are even more pronounced than in control volunteers [13,14]. Changes in
resting-state characteristics of CBFV have also been observed in chronic pain patients in comparison
with the general population. The envelope CBFV from patients has a higher complexity and changes
in the distribution of the power spectral density [16].

Taking these previous results into account, it seems logical to propose a configurable TCD-based
neurofeedback system to train the altered parameters in chronic pain patients.

1.1. Related Work

To our knowledge, there is only one previous study that has checked that healthy volunteers can
self-regulate TCD parameters [17]. In this previous work, the system was not configurable, as long as
it was specifically focused on the mean CBFV in the MCAs and it had no possibilities for expansion,
configuration, or re-design. In order to have access in real time to the envelope CBFV signals registered
by the commercial TCD system, it was necessary to digitalize the analog output signals from the
system using an analog to digital converter.

In the case of other technologies for neurofeedback, such as EEG, many systems work without
any additional hardware to have access and process the registered signals. If real time access to
the monitored signals is provided by the system, the processing can be conducted with existing
applications such as BCI2000 [18] or self-made programs in Matlab or C. However, some studies have
applied specific hardware configurations that include analog to digital converters and microcontrollers
for EEG-based neurofeedback systems [19].

Focusing again on TCD-based systems, it is interesting to mention the advances that have occurred
in recent years in the Brain computer interfaces (BCIs) research area. BCI research requires technological
systems that share many design issues with neurofeedback ones. BCIs also need to have access in real
time to the monitored signal and to process it in real time, although in the case of BCIs the calculated
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parameters are used to generate control commands that can be applied for different purposes such as
controlling external devices [20]. In recent years, there have been many steps to advance into the design
of a fully functional TCD-based BCI system. Most of these studies only include offline analyses that
have been conducted to validate that it is possible to classify with sufficiently high accuracies between
different mental states associated to the performance of very specific tasks [21–24]. As the analyses were
conducted offline, TCD signals were recorded and later analyzed, so it was not necessary to have access
to the signals in real time in order to process them. No specific hardware was needed to digitalize or
analyze the recorded signals. The same happened with studies that proposed systems that combined
TCD signals with fNIRS [25] or EEG [26] in order to increase classification accuracy. The features
calculated by the previous BCI approaches were mainly based on temporal analyses, although some
recent studies have also calculated statistical features based on a five-level wavelet decomposition [26,27].

The only studies that describe an online TCD based BCI system for controlling an onscreen
keyboard [28,29] do not give details about how they have access to the TCD signal during the online
procedure or how the signal is processed to obtain the input parameters for the classifier.

As a conclusion, it can be highlighted that the TCD-based neurofeedback or BCI systems that have
been proposed and described in the previous studies are not based on hardware configurations that
allow advances in the real-time acquisition and processing of the TCD signal. By default, these systems
do not incorporate configurable hardware devices that can be applied to acquire and analyze the TCD
signals from the participants in real time.

1.2. Research Goals and Contributions

Taking into account all the limitations of previous TCD-based neurofeedback and BCI systems,
we propose a configurable system, based on FPGAs, with the possibility of applying advanced digital
signal processing methods to the monitored signals in real time. Different parameters (from different
domains: temporal, frequency, and information theory) and arteries can be monitored to provide the
appropriate feedback to the user, and different training protocols can be applied from the application,
allowing its personalized application for specific final users, such as chronic pain patients.

Most of the included parameters had not been considered in the previous TCD-based
neurofeedback system [17]. Consequently, it has to be tested if it is possible to learn to self-regulate these
parameters using the developed system. For ethical reasons, before analysing the clinical influence
of the procedure on patients, the system has to be tested with healthy participants, to validate that
it is working properly and to check that it is adequate for training the selected parameters. In all
the procedure, we follow the recommendations from previous studies [30]. As they indicate, there is
currently no single “correct” experimental design in neurofeedback studies, so “pilot testing” is
necessary to adjust the system parameters. Furthermore, this testing should follow the methods
of evidence-based medicine. The effects of neurofeedback should first be determined in healthy
participants (i.e., [31–33]), before conducting any studies to analyze the clinical influence of the
procedure on small patient groups.

Considering all these factors, the objectives of the present work are the following: (1) to technically
design and develop a configurable TCD-based neurofeedback system; and (2) to validate the system
with a small sample of healthy participants, analyzing if the trained participants are successful in the
training of the selected parameters with different protocols.

2. Materials and Methods

2.1. Technical Aspects of the System

2.1.1. Transcranial Doppler Monitoring

A commercial Transcranial Doppler ultrasound device is used to monitor CBFV (in cm/s) in
ACA and MCA from both hemispheres: Multi-Dop T (DWL Compumedics Germany GmbH, Singen,
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Germany). In order to monitor CBFV from both hemispheres, two 2-MHz probes are used. Each probe
can be fixed in the temporal bone of one hemisphere using a headset that is provided with the system.
As each probe is designed to conduct the exploration simultaneously at two different depths, it is
possible to monitor the ACAs (insonation depth between 65 and 70 mm) and MCAs (insonation depth
between 50 and 55 mm) from both hemispheres at the same time.

QL software (DWL, Germany) was installed in the TCD ultrasound device and with the system
it was possible to register the signals from the four cerebral arteries (ACA and MCA from both
hemispheres). The registered signals are delivered at the analog output connector located at the rear
panel of the device (dynamic range 2.5 V). The CBFV signals can also be locally saved in the TCD
ultrasound device with a sampling rate of 100 Hz.

2.1.2. Digitalization

A Red Pitaya board is used to acquire the four analog signals delivered at the analog output
connector from the TCD ultrasound device. As indicated, the analog output connector generates a
real-time analog copy of the CBFV acquired signals.

A self-made cable has been developed to interconnect the analog output from the TCD ultrasound
device to the Red Pitaya ports.

Red Pitaya is an FPGA-based data acquisition board mainly used to develop your own
measurement instrumentation equipment. An FPGA is a digital logic device that is composed of
thousands of configurable interconnected logic cells. The FPGA can be configured to act as a digital
complex system. FPGAs are mainly used for real time data processing and data analysis acceleration.
The used FPGA is ISP (In System Programmable). Consequently, hardware can be reconfigured
on the fly to increase its processing capabilities. Red Pitaya includes a Xilinx Zynq 7010 SoC FPGA
together with two high speed ADCs (Analog to digital converters), two high speed DACs (Digital
to Analog converters), 512 MB DRR3 SRAM memory block and different communication interfaces
(USB, Gigabit Ethernet). Zynq 7000 FPGAs are System on Chip (SoC) devices that integrate together
with the logical programmable logic a DualCore ARM Cortex-A9 microprocessor and 4 low speed
analog-to-digital converters (ADC), with a 12-bit resolution and a sampling frequency of 100 kS/s.
Its configurability, real time signal processing capabilities, the low cost of the system (around $300),
and reduced dimensions (approximately 110 mm × 70 mm × 30 mm) are the main reasons to select
this FPGA SoC board as the main processing block in the neurofeedback system.

The device simultaneously acquires data corresponding to the 4 CBFV channels using these low
speed ADCs. Each ADC is configured to work with a sampling frequency of 48.45 kHz. As the acquired
data are later decimated by 10, the resulting sampling frequency is 4845 Hz.

The hardware design has been made using the design tools from Xilinx, Vivado, version 2015.4
with webpack license. Several intellectual properties (IP) blocks were required for the design.
The XADCWizard was used to configure the ADC: acquisition mode, channels and AXI-Stream bus
interface to be used. Each sample is composed of 16 bits, but only 12 bits are effective. The remaining
4 bits are used to include the channel identifier for the current sample.

On the other hand, a DMA block is used to transform the information from non-mapped
memory in the Stream bus, to fixed memory positions in the physical memory map of the FPGA
(DDR3) memory that is shared by the Cortex-A9. The Cortex-A9 configures the logic hardware using
software instructions that are sent through the AXI4-Lite bus, which interconnects the Cortex-A9
with the logic programmable blocks. Logic FPGA blocks act as memory-mapped peripherals at the
microprocessor side.

The control software for the FPGA programmable subsystem that is executed in the Cortex-A9
has been written in C language. The operating system that runs in the Cortex-A9 is a Linux Debian.

The data frame size is fixed in 8192 bytes, that is, 1024 samples of 2 bytes per each of the four
channels. When a complete data frame is generated, logic stores it in the shared memory. Then, they
are read by the Cortex-A9 running software. The software constructs the UDP data frames and sends
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them to the computer (PC) using a socket. The PC is connected by Ethernet to the Red Pitaya board.
The data link between the PC and the board can be USB, wireless or Ethernet, depending on the
application requirements. Figure 1 presents a block diagram with the different parts of the TCD-based
neurofeedback system.Sensors 2018, 18, x FOR PEER REVIEW  5 of 16 
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Figure 1. Block diagram with the different parts of the Transcranial Doppler Ultrasound (TCD)-based
neurofeedback system.

2.1.3. Data Processing

The system is prepared to obtain several parameters from the CBFV signal that can be used to
provide feedback to the participant. The parameters are continuously calculated from the CBFV data
contained in a buffer with a fixed and configurable length. This buffer is updated with new data as
soon as it is received.

The first parameter that can be calculated is the mean CBFV.
The second parameter that can be obtained is the LZC. This feature evaluates the randomness

of finite one-dimensional sequences [34], which is associated with the recurrence of the different
substrings that appear in the signal [35]. Higher values indicate a higher complexity of the signal.
This parameter has been included because it has been found that higher values of LZC from CBFV in
L-MCA and L-ACA are observed in fibromyalgia patients in resting-state conditions in comparison
with healthy subjects [16].

Finally, a parameter associated with the spectral distribution of the CBFV signal is obtained:
the LF/HF ratio, which is defined as the ratio between the low frequency (LF: 0.04–0.15 Hz) and
high frequency (HF: 0.15–0.4 Hz) components [36]. In this case, the parameter was included because
previous research has obtained that, in resting-state conditions, this ratio (calculated from CBFV in
L-MCA, R-MCA and L-ACA) is lower in fibromyalgia patients than in healthy controls [16].

2.1.4. Neurofeedback Application

In the computer, an UDP server is running to receive the data frames that are sent from the
RedPitaya. An application was programmed using Matlab R2015b (The Mathworks Inc., Natick,
MA, USA) to initialize the UDP server and to provide feedback to the participant about the relevant
parameters of CBFV signals in the main cerebral arteries. The complete neurofeedback configuration
that has been developed can be visualized in Figure 2.

As previously indicated, the neurofeedback application is configurable, and allows the
experimenter to indicate the parameter that can be trained, selecting between LZC, ratio LF/HF
and mean. This parameter will be calculated from the vessels that are chosen from the application:
a single vessel (L-MCA, R-MCA, L-ACA and R-ACA) or a combination of vessels (both ACAs or
both MCAs). In this last case, the CBFV from right and left hemisphere ACA or MCA are aggregated.
The buffer length used to store the data before calculating the parameter can also be configured.

On the other hand, the application also allows the experimenter to indicate how many trials
are included in a training block. Each trial consists of a baseline period followed by training period,
the length of which is also configurable. Finally, other options can also be selected: selecting to work
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in a simulation mode with files previously registered (instead of receiving in real time the acquired
signals from the Red Pitaya), the filter to be applied to the signal (sliding window or IIR), and the
kind of graph to be used to give the feedback to the user (Bar or line). All the different options and
parameters that can be configured can be observed in Figure 3.
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Figure 2. Different parts of the developed TCD-based neurofeedback system can be observed in the
figure. The TCD ultrasound device registers the cerebral blood flow velocity (CBFV) signals from the
participant. The analog output from this device is connected to the Red Pitaya board, which acquires
the signals and delivers them to the control computer by Ethernet. The control computer receives
the signals and executes the neurofeedback application. The feedback is provided to the participant
through the computer screen (user interface).
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Figure 3. Configuration screen of the neurofeedback application.

The selected parameter is represented on a figure on the computer screen to provide the visual
feedback to the final user. This figure is a linear graph representing the parameter that is being trained.
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This parameter has to be calculated from the CBFV values (in cm/s) contained in the buffer window
defined in the application, which is continuously being updated as new data is received. Initially, just
a single point is represented, and every 1.1 s a new point is calculated and added on the right part of
the graph. In order to smooth the representation and to avoid abrupt changes, the represented value is
a weighted arithmetic mean of the current value and the three previous values. An example from one
of the training periods of one participant is shown in Figure 4.
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Figure 4. Graph shown to the volunteers during the neurofeedback training. An example from one of
the training periods is shown in the figure. The goal that the participant is to achieve is that the red
line goes below the 4 value, which is represented in the screen with a blue line. When the selected
parameter is the mean CBFV, the 4 value represents a CBFV (cm/s) that is 3% smaller than the mean
CBFV (cm/s) obtained during the baseline period. The current value of the parameter is marked in the
graph with a green circle.

The vertical axis of the graph ranges between 0 and 10. A value of 5 corresponds to the mean value
of the parameter during the baseline condition. Changes by 1 point (positive or negative) correspond
to percentage changes (increases or decreases) in the trained parameter of 3% with respect to the
parameter in the baseline period. This scale has been chosen following the arrangements made in the
previous study with TCD-based neurofeedback [17].

Before validating if the system could be successfully applied to train the selected parameters, it was
checked that the acquisition system was working correctly. In order to do that, the Intraclass Correlation
Coeficient (ICC) Cronbach α was calculated between a signal registered with the neurofeedback system
and the original signal registered with the TCD system. A high reliability estimation between the two
signals was obtained (α = 0.977). A representation of a fragment of both CBFV signals can be observed
in Figure 5.
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Figure 5. Representation of a fragment of the CBFV signal (cm/s) in the l left anterior cerebral artery
(L-ACA) of a volunteer, as registered with the TCD ultrasound device (continuous line) and as acquired
by the Red Pitaya (dashed line).
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2.2. System Validation

A study was designed to test the developed system and evaluate if it could be successfully applied
to train a parameter that has shown alteration in the CBFV responses of patients with chronic pain.
The parameter that was selected was the mean of the aggregated CBFV in the ACAs.

This parameter was selected based on previous studies that have found an altered CBFV response
in those arteries [13,14]. This altered response could be associated to medial structures that intervene
in the processing of affective and cognitive aspects of pain.

Participants were randomly assigned to one of the two different versions of the training protocol
that were proposed and that are described below: (1) long training periods: this protocol was composed
of a reduced number of repetitions of long training periods (2 min); and (2) short training periods:
this protocol included several repetitions of short training periods (30 s).

Prior to the proposal of the two protocols, some pilot testing was conducted to evaluate the effects
on the training results of different period lengths, and longer training periods were avoided because
of the difficulties of the participants for maintaining their training strategies during longer periods
of time.

2.2.1. Participants

As indicated in the Introduction, the validation of the system only requires a limited number of
healthy participants [30]. In the current study, 6 volunteers have participated: 2 men and 4 women,
aged between 18 and 66 years (mean age 39 years; SD 19.6). Three of the volunteers were assigned to
one of the proposed training protocols in the present study, and the other three to the other training
protocol (training protocols will be described in detail later). That gives us the possibility of evaluating
the evolution of the success of different individuals during the training procedure with each protocol.

Exclusion criteria included major psychiatric diseases, neurological disorders, or relevant physical
diseases. In order to recruit the volunteers, announcements were posted in notice boards of universities.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Universitat Politècnica de València (Project identification
code: PSI2013-48260-C3-2-R).

2.2.2. Questionnaires

Manual preference of the participants was assessed using the Edinburgh Handedness
Inventory [37,38]. Besides, in order to evaluate their mood, the State-Trait Anxiety Inventory (STAI)
questionnaire was applied [39]. Finally, after each session, participants had to answer a question
describing the strategies that the participants had applied during the training.

2.2.3. Experimental Design

Sessions were repeated several times in different weeks (4 different sessions in the first protocol
and 3 different sessions in the second protocol).

Before starting the first session, participants received written information about the procedure
and signed the informed written consent.

In the first session of the procedure, the volunteers filled out the complete STAI questionnaire and
the Edinburgh Handedness Inventory. In the successive sessions, the volunteers just had to fill out the
STAI-State questionnaire.

The Doppler box and the probes were adjusted to detect the ACAs by an experimented neurologist,
and blood pressure was measured using a wrist blood pressure monitor (R3 Intellisense; Omrom
Healthcare Co., Ltd., Kyoto, Japan).

After that, the training period started. The participants had been informed that the graph on
the computer represented a parameter obtained from CBFV signals in a pair of cerebral vessels.
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Their task consisted of trying to reduce the parameter below the 4 value (see Figure 4) in the vertical
axis (which corresponded to a decrease of 3% with respect to the CBFV mean during baseline).
Following recommendations from previous works that remark that the use of explicit techniques is
unnecessary [40,41], participants did not receive any indications about how to use specific strategies to
control the CBFV parameter, so participants were free to try the mental strategy or cognitive scheme
that is more suitable for them.

In the first protocol (long training periods), there were 6 trials in each session. Each trial was
composed of a baseline period (2 min) followed by the training period itself (2 min). As there is only
one previous study with TCD-based neurofeedback [17], this protocol is based on the protocol that
was used in this previous study, where long training periods of several minutes were applied.

However, other hemodynamical techniques, such as real-time fMRI, have also been applied
in neurofeedback studies [2,42]. Most real-time fMRI studies use a block design for the training.
That means that they have to regulate the BOLD signal for periods of approximately 15–30 s,
which alternate with resting periods with a similar duration. Usually, each trial includes a number of
blocks between 3 and 6, and is repeated between 2 and 5 times in an experimental session [43].

These protocols based on shorter periods of approximately 15–30 s are also suitable for TCD-based
neurofeedback, as TCD is also a modality to monitor hemodynamical changes in the brain (in this case,
CBFV). That led us to include a second protocol (short training periods) in the experimental design.

In the second protocol (short training periods), there were 4 trials in each session. Each trial
included 5 repetitions of the complete training period, which is composed of a baseline period (30 s)
followed by a neurofeedback period (30 s). If the objective of reducing the parameter below the value
of 4 was achieved, a congratulation message was shown on the screen during a short period of 5 s to
make them know that they have succeeded.

A graphical schema describing the two protocols can be observed in Figure 6.
During any baseline period, participants were told to relax and keep their eyes open looking to a

white cross shown in the center of the screen.
After having finished the training period of each trial, blood pressure was measured again. Finally,

the participant had to answer the question about the strategies that he or she had applied during
the training.
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Figure 6. Schema of the two protocols applied in the validation sessions. Protocol 1 is composed of
4 sessions, with 6 trials in each session. A trial is composed of 2 min of baseline (BL) and 2 min of
neurofeedback training (NF). Protocol 2 is composed of 3 sessions, with 4 trials in each session. A trial
is composed of 5 repetitions of a 30-s baseline period (BL) and a 30-s neurofeedback period (NF).
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2.2.4. Success Level

The success level, defined as the percentage of successful training periods in each session,
was calculated. A training period was considered successful if the mean CBFV has descended a
3% (the graph has descended below the 4 value) during the training period with respect to the mean
CBFV during the previous baseline.

3. Results

3.1. Questionnaire Data

All the participants were right-handed based on the Edinburgh Handedness Inventory responses.
None of them presented high levels of trait anxiety. Furthermore, the participants did not show high
levels of state anxiety in any of the sessions in which they participated. Details for each group of
participants (depending on the protocol that they followed) can be observed in Table 1.

Table 1. State-Trait Anxiety Inventory (STAI)-Trait, STAI-State during the first session of the training
(PRE) and STAI-State during the last session of the training (POST). Data are presented as mean value
± standard deviation.

Protocol STAI-Trait STAI-State PRE STAI-State POST

Long training periods 8.33 ± 14 13.67 ± 11.23 11 ± 2
Short training periods 14 ± 1.73 17.33 ± 8.14 17 ± 8.88

From the responses to the question about the strategies that participants had tried during the
session, it could be observed that they had applied different techniques to train the parameter, such as
thinking of happy songs, thinking of annoying things, focusing on the changes of point position in the
graph representation, focusing on breathing patterns, arithmetic tasks, or avoiding thinking about the
task performance.

3.2. Success Level

The success level from the three subjects that followed the protocol with long training periods is
represented in Figure 7. In the first subject there is an increment in the success rate from 16.66% in
the first session to 83.33% in the last session. The second subject did not achieve a successful training.
And the third subject’s success rate increased from 0% in the first session to 50% in the last one.
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Analogously, Figure 8 shows the task performance success level corresponding to the three
subjects that followed the protocol with short training periods. In this case, the first subject did
not achieve a successful training. But the other two subjects improved their success rate from 15%
(subject 2) and 45% (subject 3) in the first session, and to 95% in both cases in the last session.

Blood pressure values from each participant remained stable during the procedure.
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4. Discussion

In this work, a new and configurable TCD-based neurofeedback system has been designed and
developed. The system allows the selection of aspects such as the parameters that are trained by
the system, the vessels from which they are calculated and the length of the different periods of the
training protocol. That way, it is possible to personalize the neurofeedback protocol, making it more
suitable for specific groups of users, such as patients with chronic pain.

One of the hardware parts that gives the system the needed flexibility and power is the acquisition
system based on the Red Pitaya board, which is a device with a reduced size and cost which includes a
Xilinx FPGA (Xilinx Zynq 7010 SoC) with a DualCore ARM Cortex-A9. This hardware combination
provides several advantages to the board. It improves in different ways traditional neurofeedback
microprocessor-based data acquisition systems [44]. The approach presented in the present work
increases the real-time data processing capabilities of the system, allowing us to process the acquired
signals in a faster way to extract important parameters. This can be done because FPGA configurable
hardware is used to generate dedicated logic to implement the complex processing algorithms. Besides,
having a board with an FPGA and a DualCore ARM Cortex-A9 gives processing power to the system.
It is possible to apply parts of the digital signal processing from the FPGA and parts from the Cortex-A9.
Although both systems can perform digital signal processing operations, the CPU is more appropriate
to run control software and the FPGA to execute complex signal processing in real-time.

The system, as a configurable logic hardware, allows us to interact or to synchronize the
acquired signals with signals from other laboratory subsystems in real-time. The board has different
input-output connectors that make the device accessible from different kinds of systems. In our case,
a specific cable has been developed to connect the input connectors to the analog outputs from the
Doppler device. Having 4 ADCs allow the simultaneous acquisition of up to 4 CBFV channels from
the DWL Doppler Box, making it possible to simultaneously acquire data from both ACAs and both
MCAs if necessary. But, in the future, other configurations could be easily prepared in case there is a
change in the Doppler device that is applied or if signals from other devices have to be monitored.
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The nature of the ISP system allows the modification of the hardware configuration at any
time introducing more functionality or new processing algorithms. For this reason, it is an
ideal research platform to test new real time processing algorithms with the goal of improving
the neurofeedback functionality. New developed research functionalities and algorithms can be
reconfigured easily on the daily used neurofeedback systems installed on hospitals or on research
laboratories. This reconfiguration can be performed in remote mode because the developed
neurofeedback system can be connected to the institution network where it is installed.

Moreover, digital hardware FPGA design was a complex task traditionally reserved to electronic
engineers. However, nowadays, new FPGA logic synthesizers allow us to generate hardware logic from
a behavioral algorithm description in C++. These new logic synthesizers permit that non electronic
engineer researchers can easily design FPGA logic to improve the processing capabilities of their
neurofeedback systems.

Another thing to take into consideration is the portability of the system due to the small size of
the acquisition system and its different connectivity possibilities. In the future, the control PC can be
replaced with a tablet or smartphone connected directly to the Red Pitaya board, thus reducing the
neurofeedback system to the TDC, the Red Pitaya board and the two tablets or smartphones (one to
control the system and another one as a user interface)

All these aspects show that the hardware and software selection that has been made for the design
and development of the neurofeedback system is adequate and constitutes an advance with respect
to the only previous TCD-based neurofeedback system [17], which was not configurable and only
allowed the training of one specific parameter which was the mean CBFV in MCAs, or with respect to
previous TCD-based BCI systems [21–29].

The proposed TCD-based neurofeedback system can be adapted to be applied with different
kinds of final users, but it has been specifically designed for chronic pain patients to reduce their
pain perception. The advances and the scientific evidence gathered during the last years regarding
the neural bases of chronic pain allow us to include in the system the possibility of training several
parameters in which alterations have been found in chronic pain patients [13,14,16]. The specific
parameters that have been selected are the mean CBFV, the LZC, and the ratio LF/HF of the ACAs.

It is important to remark that TCD-based systems provide a small spatial resolution, which is
determined by the brain areas supplied by the vessel under study. This impossibility of training CBFV
in smaller brain areas is a limitation of any TCD-based neurofeedback system.

Focusing on the designed system, it is necessary to evaluate if it is possible to learn to self-regulate
one of these parameters. So this possibility has been tested with a small group of healthy volunteers
with low levels of anxiety as evaluated with the STAI questionnaire. Results have shown that the
volunteers can be trained to self-regulate a CBFV parameter in a reduced number of training sessions.

Furthermore, there are some relevant observations that have been made and that may be necessary
to adapt and apply the training protocol for chronic pain patients.

On one hand, it was not considered necessary to give explicit instructions to the participants about
the mental strategies to be applied to achieve a successful training. The results from the validation
show that several strategies have been applied by the different participants. And successful training
results have been observed with highly different training strategies. This is coherent with previous
works that remark that explicit techniques are unnecessary [40,41].

One of the problems of neurofeedback is that an effective mental strategy may show comparable
effects regardless of how it has been learned: through neurofeedback training or just because the
experimental procedure (consisting of a repetitive training with simple instructions) may lead the
participant to be in a specific mental state. However, as in the present study participants had to answer
to a question describing the strategies that they had applied during the training, it could be checked
that different strategies were applied depending on the participants and that none of them mentioned
strategies that could be generated indirectly by the experimental procedure such as relaxation.
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On the other hand, it is important to highlight that two training protocols have been assessed
in the present work. One training protocol is pretty similar to the protocol applied in the previous
work with TCD-based neurofeedback [17], with long training periods of around 2 min, and the
other one is based on shorter training periods (30 s) with several repetitions. This second protocol is
more closely related to those applied if neurofeedback based on other techniques such as real-time
fMRI is used [42]. The mean success rate increases with the number of sessions with both protocols,
with higher improvements (higher success rates and faster learning curves) using the protocol with
shorter training periods. The mean success rate in the last session of the training with longer training
periods is 44.44%. In the case of the protocol with shorter training periods, the mean success rate in
the last session is 68.3%. It can be observed that a higher increment is observed in the protocol with
shorter training periods.

In a similar way to studies with brain–computer interfaces [45], the success rate parameter has
been defined to evaluate if the participant can self-regulate the trained parameter during the different
parts of the training protocol. In the current system, a training period is considered successful if there
has been a 3% decrement in mean CBFV with respect to the mean CBFV value in the preceding baseline.
This percentage change value has been selected based on observed variations in the different training
sessions from the previous TCD-based neurofeedback work [17].

In the second protocol (short training periods), if the participant was able to reduce the parameter
below the 4 value during a neurofeedback period (30 s), a congratulation message was shown on
the screen for a short period of 5 s to make him/her know that he/she has succeeded. There are
neurofeedback researchers that indicate that the amount of positive feedback participants receive has
an influence on the training outcome [46]. This is probably one of the reasons that justify the faster
learning curve and higher success rates that are observed with the second protocol.

Furthermore, it has been observed during the trials that participants show greater difficulties
in maintaining the training during longer periods. Reducing the training times from 2 min to 30 s,
makes it easier for the participants to maintain the mental strategy they are applying during the whole
training period (30 s). Besides, it also allows more repetitions of the training period, which probably
also has an influence on the final learning curves.

Besides, results have shown that there is a high heterogeneity in controls and that not all of
them can learn to self-regulate correctly the trained parameter. That is the case for subject 2 of the
protocol with longer training periods and for subject 1 of the protocol with shorter training periods.
This is coherent with previous scientific studies, which have found that, even with different training
protocols and different experimental conditions, there exists approximately 20% of individuals that
cannot self-regulate their brain activation [45]. Cerebral plasticity is an important factor that may
explain observed differences between participants. There may be factors related to the specific cerebral
plasticity of each participant that can have an influence on the effectivity of the training.

This heterogeneity is expected to appear in chronic pain patients, or even to be greater, as long
as these patients show altered brain activations in their pain neuromatrix, so it will be necessary
to examine the number of training sessions required for chronic pain patients in order to learn
to self-regulate a specific parameter. On the other hand, the influence of this self-regulation on
clinical parameters such as the chronic pain level and the intensity of the patient symptoms has
to be evaluated in future studies, as the main goal of this kind of system is to achieve clinical and
significant improvements on patients’ pain perception.

There may be factors related to the specific cerebral plasticity of each patient that can have an
influence on the effectivity of the training. Deepening on the study of these factors may allow the use of
neurofeedback in the way of personalized medicine, defining the characteristics of the intervention and
its possibilities. Methodological aspects [43] such as the number of sessions, interval between sessions,
or the trained parameters should be adjusted based on the personal characteristics of each patient.
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Including FPGA systems is a way to advance in a research area. These configurable devices
allow us to apply complex digital signal processing methods to the monitored signals in real time,
which cannot be applied using traditional hardware configurations in real time.

The originality of the present work is that it is designed as a configurable system, based on
FPGAs, with the possibility of applying advanced digital signal processing methods to the monitored
signals in real time, thus overcoming the limitations from previous studies that do not incorporate this
kind of device. Different parameters (not only from the temporal domain, but from other different
domains: temporal, frequency and information theory) and arteries can be monitored in the proposed
configurable TCD-based neurofeedback system.

Taking all the previous comments into account, it can be concluded that the application of a
neurofeedback system for chronic pain patients is highly relevant for researchers interested on cerebral
plasticity, neuroscience, or neurorrehabilitation. The configurable neurofeedback system presented in
this work provides all the necessary hardware, software, and all the configuration capabilities required
to train specific subjects to self-regulate their brain activity parameters.
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