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In any alive and nontrivial program, the source code naturally evolves along the lifecycle for many reasons such as the
implementation of new functionality, the optimization of a bottleneck, or the refactoring of an obscure function. Frequently, these
code changes affect various different functions and modules, so it can be difficult to know whether the correct behaviour of the
previous version has been preserved in the new version. In this paper, we face this problem in the context of the Erlang language,
where most developers rely on a previously defined test suite to check the behaviour preservation. We propose an alternative
approach to automatically obtain a test suite that specifically focusses on comparing the old and new versions of the code. Our
test case generation is directed by a sophisticated combination of several already existing tools such as TypEr, CutEr, and PropEr;
and it introduces novel ideas such as allowing the programmer to choose one or more expressions of interest that must preserve the
behaviour, or the recording of the sequences of values to which those expressions are evaluated. All the presented work has been
implemented in an open-source tool that is publicly available on GitHub.

1. Introduction

During its useful lifetime, a program might evolve many
times. Each evolution is often composed of several changes
that produce a new release of the software.There are multiple
ways of control so that these changes do not modify the
behaviour of any part of the program that was already correct.
Most of the companies rely on regression testing [1, 2] to
ensure that a desired behaviour of the original program is
kept in the new version, but there exist other alternatives such
as the static inference of the impact of changes [3–6].

Even when a program is perfectly working and it fulfils
all its functional requirements, sometimes we still need
to improve parts of it. There are several reasons why a
released program needs to be modified, for instance, improv-
ing the maintainability or efficiency, or for other reasons
such as obfuscation, security improvement, parallelization,
distribution, platform changes, and hardware changes. In
the context of scientific programming, it is common to
change an algorithm several times until certain performance
requirements are met. During each iteration, the code often
naturally becomes more complex and, thus, more difficult to
understand and debug. Although regression testing should
be ideally done after each change, in real projects, the

methodology is really different. As reported in [7], only 10%
of the companies do regression testing daily. This means that
when an error is detected, it can be hidden after a large
number of subsequent changes. The authors also claim that
this long-term regression testing is mainly due to the lack of
time and resources.

Programmers thatwant to checkwhether the semantics of
the original program remain unchanged in the new version
usually create a test suite. There are several tools that can
help in all of this process. For instance, Travis CI can be
easily integrated in a GitHub repository so that each time
a pull request is performed, the test suite is launched. We
present here an alternative and complementary approach that
creates an automatic test suite to do regression testing: (i)
an alternative approach because it can work as a standalone
program without the need for other techniques (therefore,
our technique can check the evolution of the code even if
no test suite has been defined) and (ii) a complementary
approach because it can also be used to complement other
techniques, providing major reliability in the assurance of
behaviour preservation.

More sophisticated techniques, but with similar purpose,
have been recently announced like Ubisoft’s system [8] that
is able to predict programmer errors beforehand. It is quite
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illustrative that a game-developer company was the first one
in presenting a project like this one. The complex algorithms
used to simulate physical environments and AI behaviours
need several iterations in order to improve their performance.
It is in one of those iterations that some regression faults can
be introduced.

In the context of debugging, programmers often use
breakpoints to observe the values of an expression during
an execution. Unfortunately, this feature is not currently
available in testing, even though it would be useful to easily
focus the test cases on one specific point without modifying
the source code (as it happens when using assertions) or
addingmore code (as it happens in unit testing). In this paper,
we introduce the ability to specify points of interest (POIs) in
the context of testing. A POI can be any expression in the
code (e.g., a function call), meaning that we want to check the
behaviour of that expression. Although they handle similar
concepts, our POIs are not exactly like breakpoints, since
their purpose is different. Breakpoints are used to indicate
where the computation should stop, so the user can inspect
variable values or control statements. In contrast, a POI
defines an expressionwhose sequence of evaluations to values
must be recorded, so that we can check the behaviour preser-
vation (by value comparison) after the execution. In particu-
lar, note that placing a breakpoint inside a unit test is not the
same as placing a POI inside it because the goals are different.

In our technique, (1) the programmer identifies a POI and
a set of input functions whose invocations should evaluate
the POI. Then, by using a combination of random test
case generation, mutation testing, and concolic testing, (2)
the tool automatically generates a test suite that tries to
cover all possible paths that reach the POI (trying also to
produce execution paths that evaluate the POI several times).
Therefore, in our setting, the input of a test case (ITC) is
defined as a call to an input function with some specific
arguments, and the output is the sequence of those values
the POI is evaluated to during the execution of the ITC. For
the sake of disambiguation, in the rest of the paper, we use
the term traces to refer to these sequences of values. Next,
(3) the test suite is used to automatically check whether the
behaviour of the program remains unchanged across new
versions. This is done by passing each individual test case
(which contains calls to the input functions) against the new
version and checking whether the same traces are produced
at the POI. Finally, (4) the user is providedwith a report about
the success or failure of these test cases. Note that as it is
common in regression testing, this approach only works for
deterministic executions. However, this does not mean that
it cannot be used in a program with concurrency or other
sources of nondeterminism; it only depends on where the
POIs are placed and the input functions used. In Section 7,
we clarify how our approach can be used in such contexts.

After presenting the approach for a single POI, we present
an extension that allows for the definition of multiple POIs.
With this extension, the user can trace several (and maybe
unrelated) functionalities in a single run. It is also usefulwhen
wewant to strengthen the quality of the test suite by checking,
for instance, that the behaviour is kept in several intermediate
results. Finally, this extension is needed in those cases where

a POI in one version is associated with more than one POI in
another version (e.g., when a POI in the final source code is
associated with two or more POIs in the initial source code
due to a refactoring or a removal of duplicated code).

We have implemented our approach in a tool named
SecEr (Software Evolution Control for Erlang), which is pub-
licly available at https://github.com/mistupv/secer.
Instead of reinventing the wheel, some of the analyses
performed by our tool are done by other existing tools such
as CutEr [9], a concolic testing tool, to generate an initial set
of test cases that maximize the branching coverage; TypEr
[10], a type inference system for Erlang, to obtain types
for the input functions; and PropEr [11], a property-based
testing tool, to obtain values of a given type. All the analyses
performed by SecEr are transparent to the user.The only task
in our technique that requires user intervention is identifying
suitable POIs in both the old and the new versions of the
program. In order to evaluate our technique and implementa-
tion, we present in Section 8 a comparison of SecEr with the
most extended alternatives for the detection of discrepancies
and their causes in Erlang. All techniques are compared using
the same example. Additionally, in Section 9, we complement
this study with an empirical evaluation of SecEr.

Example 1. In order to show the potential of the approach, we
provide a real example to compare two versions of an Erlang
program that computes happy numbers.They are taken from
the Rosetta Code repository (consulted in this concrete
version: http://rosettacode.org/mw/index.php?title=Happy
numbers&oldid=251560#Erlang) and slightly modified (the
introduced changes are explained in Section 6):

http://rosettacode.org/wiki/Happy numbers#Erlang

The initial and final versions of this code as they appear
in Rosetta Code are shown in Listings 1 and 2, respectively.
In order to check whether the behaviour is the same in
both versions, we could select as POI the call in line (9)
of Listing 1 and the call in line (18) of Listing 2. We also
need to define a timeout because the test case generation
phase could be infinite due to the test mutation process (the
number of possible execution paths could be infinite and
an infinite number of test cases could be generated). In this
example, with a timeout of 15 seconds, SecEr reports that the
executions of both versions with respect to the selected POIs
behave identically. In Section 6, we show how SecEr can help
a user when an error is introduced in this example and how
the multiple POIs approach is also helpful to find the source
of an error.

2. Overview of Our Approach to
Automated Regression Testing

Our technique is divided into three sequential phases that
are summarized in Figures 1, 2, and 3. In these figures,
the big dark grey areas are used to group several processes
with a common objective. Light grey boxes outside these
areas represent inputs and light grey boxes inside these
areas represent processes, white boxes represent intermediate

http://rosettacode.org/mw/index.php?title=Happy_numbers&oldid=251560
http://rosettacode.org/mw/index.php?title=Happy_numbers&oldid=251560
http://rosettacode.org/wiki/Happy_numbers
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(1) -spec main(pos integer(),pos integer()) ->
(2) [pos integer()].
(3) main(N, M) ->
(4) happy list(N, M, []).
(5)
(6) happy list( , N, L) when length(L) =:= N ->
(7) lists:reverse(L);
(8) happy list(X, N, L) ->
(9) Happy = is happy(X),
(10) if Happy ->
(11) happy list(X + 1, N, [X|L]);
(12) true ->
(13) happy list(X + 1, N, L) end.
(14)
(15) is happy(1) -> true;
(16) is happy(4) -> false;
(17) is happy(N) when N > 0 ->
(18) N As Digits =
(19) [Y - 48 ||
(20) Y <- integer to list(N)],
(21) is happy(
(22) lists:foldl(
(23) fun(X, Sum) ->
(24) (X ∗ X) + Sum
(25) end,
(26) 0,
(27) N As Digits));
(28) is happy( ) -> false.

Listing 1: happy0.erl.

(1) is happy(X, XS) ->
(2) if
(3) X == 1 -> true;
(4) X < 1 -> false;
(5) true ->
(6) case member(X, XS) of
(7) true -> false;
(8) false ->
(9) is happy(sum(map(fun(Z) -> Z∗Z end,
(10) [Y - 48 || Y <- integer to list(X)])),
(11) [X|XS])
(12) end
(13) end.
(14) happy(X, Top, XS) ->
(15) if
(16) length(XS) == Top -> sort(XS);
(17) true ->
(18) case is happy(X,[]) of
(19) true -> happy(X + 1, Top, [X|XS]);
(20) false -> happy(X + 1,Top, XS)
(21) end
(22) end.
(23)
(24) -spec main(pos integer(),pos integer()) ->
(25) [pos integer()].
(26) main(N, M) ->
(27) happy(N, M, []).

(28)

Listing 2: happy1.erl.
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results, and the initial processes of each phase are represented
with a bold border box.

The first phase, depicted in Figure 1, is a type analysis
that is in charge of preparing all inputs of the second phase
(test case generation). This phase starts by locating in the
source code the Erlang module (.erl1) and a function (Fun)
specified in the user input (we show here the process for
only one function. In case the user defined more than one
input function, the process described here would be repeated
for each function), e.g., function exp in the math module.
Then, TypEr is used to obtain the type of the parameters
of that function. It is important to know that, in Erlang,
a function is composed of clauses and when a function is
invoked, an internal algorithm traverses all the clauses in
order to select the one that will be executed. Unfortunately,
TypEr does not provide the individual type of each clause,
but a global type for the whole function. Therefore, we need
to first analyze the AST of the module to identify all the
clauses of the input function, and then we refine the types
provided by TypEr to determine the specific type of each
clause. All these clause types are used in the second phase.
In this phase, we use PropEr to instantiate only one of them
(e.g., ⟨𝑁𝑢𝑚𝑏𝑒𝑟, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟⟩ can be instantiated to ⟨4.22, 3⟩ or
⟨6, 5⟩). However, PropEr is unable to understand TypEr
types, so we have defined a translation process from TypEr
types to ProEr types. Finally, CutEr is fed with an initial call
(e.g., math:exp(4.22, 3)) and it provides a set of possible
arguments (e.g., { ⟨1.5, 6⟩, ⟨2, 1⟩, ⟨1.33, 4⟩, . . . }). Finally, this
set is combined with the function to be called to gener-
ate the ITCs (e.g., { math:exp(1.5, 6), math:exp(2, 1),
math:exp(1.33, 4), . . . }). All this process is explained in
detail in Section 3.1.

The second phase, shown in Figure 2, is in charge of
generating the test suite. As an initial step, we instrument the
program so that its execution records (as a side effect) the
sequence of values produced at the POI defined by the user.
Then, we store all ITCs provided by the previous phase into
a working list. Note that it is also possible that the previous
phase is unable to provide any ITC due to the limitations of
CutEr. In such a case, or when there are nomore ITCs left, we
randomly generate a new one with PropEr and store it on the
working list. Then, each ITC on the working list is processed
by invoking it with the instrumented code. The execution
provides the sequences of values the POI is evaluated to (i.e.,
the trace). This trace together with the ITC forms a new
test case, which is a new output of the phase. Moreover, to
increase the quality of the test cases produced, whenever a
non-previously generated trace is computed, we mutate the
ITC that generated that trace to obtainmore ITCs.The reason
is that a mutation of this ITC will probably generate more
ITCs that also evaluate the POI but to different values. This
process is repeated until the specified limit of test cases is
reached. All this process is explained in detail in Sections 3.2
and 3.3. In Section 4 there is a discussion of how this approach
could be extended to support multiple POIs.

Finally, the last phase (shown in Figure 3) checks whether
the new version of the code passes the test suite. First,
the source code of the new version is also instrumented
to compute the traces produced at its POI. Then, all the

generated test cases are executed and the traces produced
are compared with the expected traces. Section 5 introduces
functions to compare traces that give support to themultiple-
POI approach.

3. A Novel Approach to Automated
Regression Testing

In this section, we describe in more detail the most relevant
parts of our approach. We describe them in separate subsec-
tions.

3.1. Initial ITC Generation. The process starts from the type
inferred by TypEr for the whole input function. This is the
first important step to obtain a significant result, because
ITCs are generated with the types returned by this process,
so the more accurate the types are, the more accurate the
ITCs are. The standard output of TypEr is an Erlang type
specification returned as a string, which would need to be
parsed. For this reason, we have hacked the Erlang module
that implements this functionality to obtain the types in a data
structure, easier to traverse and handle. In order to improve
the accuracy, we define a type for each clause of the function
ensuring that the later generated ITCs will match it. For this
reason, TypEr types need to be refined to TypEr types per
clause.

However, the types returned by TypEr have (in our
context) two drawbacks that need to be corrected since they
could yield to ITCs that do not match a desired input func-
tion. These drawbacks are due to the type produced for lists
and due to the occurrence of repeated variables. We explain
both drawbacks with an example. Consider a function with a
single clause whose header is f(A,[A,B]). For this function,
TypEr infers the type f( 1 | 2, [ 1 | 2 | 5 | 6, . . . ] )
(TypEr uses a success typing system instead of the usual
Hindley-Milner type inference system. Therefore, TypEr’s
types are different from what many programmers would
expect, i.e., integer, string, etc. Instead, a TypEr’s type is a
set of values such as [ 1 | 2 | 5 | 6 ]or an Erlang defined
type, e.g., number and integer). Thus, the type of the second
parameter of the f/2 function indicates that the feasible
values for the second parameter are proper lists with a
single constraint: it has to be formed with numbers from
the set [1,2,5,6]. This means that we could build lists
of any length, which is our first drawback. If we use these
TypEr types, we may generate ITCs that will not match the
function, e.g., f(2,[2,1,3,5]). On the other hand, our
second drawback is caused by the fact that the value relation
generated by the repeated variable A is lost in the function
type. In particular, the actual type of variable A is diluted
in the type of the second argument. This could yield to
mismatching ITCs if we generate, e.g., f(1,[6,5]).

Therefore, the types produced by TypEr are too imprecise
in our context, because they may produce test cases that
are useless (e.g., nonexecutable). This problem is resolved
in different steps of the process. In this step, we can only
partially resolve the type conflict introduced by the repeated
variables, such as the A variable in the previous example. The
other drawback will be completely resolved during the ITC
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generation. To solve this problem, we traverse the parameters
building a correspondence between each variable and the
inferred TypEr type. Each time a variable appears more than
once, we calculate its type as the intersection of both the
TypEr type and the accumulated type. For instance, in the
previous example, we have A = 1 | 2 for the first occurrence
and A = 1 | 2 | 5 | 6 for the second one, obtaining the new
accumulated type A = 1 | 2.

Once we have our refined TypEr types, we rely on
PropEr to obtain the input for CutEr. PropEr is a property-
based testing framework with a lot of useful underlying
functionalities. One of them is the term generators, which,
given a PropEr type, are able to randomly generate terms
belonging to such type. Thus, we can use the generators in
our framework to generate values for a given type.

However, TypEr and PropEr use slightly different nota-
tions for their types, something reasonable given that their
scopes are completely different. Unfortunately, there is not
any available translator from TypEr types to PropEr types.
In our technique, we need such a translator to link the
inferred types to the PropEr generators. Therefore, we have
built the translator by ourselves. Moreover, during the ITC
generation, we need to deal with the previously postponed
type drawbacks. For that, we use the parameters of the clause
in conjunction with their types. To solve the first drawback,
each time a list is found during the generation, we traverse
its elements and generate a type for each element on the list.
Thereby, we synthesize a new type for the list with exactly the
same number of elements. The second drawback is solved by
using a map from variables to their generated values. Each
time a repeated variable is found, we use the stored value
instead of generating a new one.

We can feed CutEr with an initial call by using a
randomly selected clause and the values generated by PropEr
for this clause. CutEr is a concolic testing framework that
generates a list of arguments that tries to cover all the
execution paths. Unfortunately, this list is only used internally
by CutEr, so we have hacked CutEr to extract all these
arguments. Finally, by using this slightly modified version
of CutEr we are able to mix the arguments with the input
function to generate the initial set of ITCs.

3.2. Recording the Traces of the Point of Interest. There exist
several tools available to trace Erlang executions [12–15] (we
describe some of them in Section 10). However, none of them
allows for defining a POI that points to any part of the code.
Being able to trace any possible point of interest requires
either a code instrumentation, a debugger, or a way to take
control of the execution of Erlang. However, using a debugger
(e.g., [13]) has the drawback that it does not provide a value
for the POI when it is inside an expression whose evaluation
fails. Therefore, we decided to instrument the code in such a
way that, without modifying the semantics of the code, traces
are collected as a side effect when executing the code.

The instrumentation process creates and collects the
traces of the POI. To create the traces in an automatic
way, we instrument the expression pointed by the POI. To
collect the traces, we have several options. For instance,
we can store the traces in a file and process it when the

execution finishes, but this approach is inefficient. We follow
an alternative approach based on message passing. We send
messages to a server (which we call the tracing server) that
is continuously listening for new traces until a message
indicating the end of the evaluation is received.This approach
is closer to Erlang’s philosophy. Additionally, it is more
efficient since the messages are sent asynchronously resulting
in an imperceptible overhead in the execution. As a result of
the instrumenting process, the transformed code sends to the
tracing server the value of the POI each time it is evaluated,
and the tracing server stores these values.

In the following, we explain in detail how the communi-
cation with the server is placed in the code. This is done by
applying the following steps:

(1) We first use the erl syntax lib:annotate
bindings/2 function to annotate the AST of the
code. This function annotates each node with two
lists of variables: those variables that are being bound
and those that were already bound in its subtree.
Additionally, we annotate each node with a unique
integer that serves as an identifier, so we call it AST
identifier.This annotation is performed in a postorder
traversal, resulting, consequently, in an AST where
the root has the greatest number.

(2) The next step is to find the POI selected by the user in
the code and obtain the correspondingAST identifier.
There are two ways of doing this depending on how
the POI is specified: (i) if the POI is defined with the
triplet (line, type of expression, occurrence), we locate
it with a preorder traversal (we use this order because
it is the one that allows us to find the nodes in the
same order as they are in the source code) of the tree.
However, (ii) when the POI is defined with the initial
and final positions, we replace, in the source code, the
whole expression with a fresh term. Then, we build
the AST of this new code and we search for the fresh
term in this AST recording the path followed. This
path is replicated in the original AST to obtain the
AST identifier of the POI. Thus, the result of this step
is a relation between a POI and an AST identifier.

(3) Then, we need to extract the path from the AST root
to the AST identifier of the POI using a new search
process. This double search process is later justified
when we introduce the multiple POIs approach in
Section 4. During this search process, we store the
path followed in the AST with tuples of the form
(Node, ChildIndex), where Node is the AST node
and ChildIndex is the index of the node in its
parent’s children array. Obtaining this path is essential
for the next steps since it allows us to recursively
update the tree in an easy and efficient way.When the
AST identifier is found, the traversal finishes. Thus,
the output of this step is a path that yields directly to
the AST identifier searched.

(4) Most of the times, the POI can be easily instrumented
by adding a send command to communicate its value
to the tracing server. However, when the POI is in



Scientific Programming 7

(LEFT PM) p = e ⇒ p = begin np = e, tracer!{ add, npoi }, np end

if (p = e, ) = 𝑙𝑎𝑠𝑡(𝑃𝑎𝑡ℎ𝐵𝑒𝑓𝑜𝑟𝑒)
∧( ,𝑝𝑜𝑠(p)) = ℎ𝑑(𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟)

where ( , npoi, np) = 𝑝𝑓V(p, 𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟)

(PAT GEN LC) [e || gg] ⇒ [e || ngg]
if ([e || gg], ) = 𝑙𝑎𝑠𝑡(𝑃𝑎𝑡ℎ𝐵𝑒𝑓𝑜𝑟𝑒)

∧ ( ,𝑝𝑜𝑠(p gen)) = ℎ𝑑(𝑡𝑙(𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟))
∧ ∃ 𝑖. 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(gg) s.t. gg𝑖 = p gen <- e gen

where ( , npoi, np gen) = 𝑝𝑓V(p gen, 𝑡𝑙(𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟))
∧ ngg i = p gen <- begin tracer!{ add, npoi }, [np gen] end

∧ ngg = gg1 ⋅ ⋅ ⋅ gg𝑖−1, np gen <- e gen,ngg i, gg𝑖+1 ⋅ ⋅ ⋅ gg𝑙𝑒𝑛g𝑡ℎ(gg)

(CLAUSE PAT) e ⇒ change clauses(e, ncls)
if (e, ) = last(PathBefore)

∧ ( , pos(p c)) = ℎ𝑑(𝑡𝑙(𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟))
∧ ∃ 𝑖. 1 ≤ 𝑖 ≤ length(cls) s.t. cls𝑖 = p c when g c -> b c

where cls = clauses(e)
∧ ( , npoi, np c) = pfv(p c, tl(PathAfter))
∧ nb c = begin tracer!{ add, npoi }, case np c of cls end end

∧ ncls i = np c when true -> nb c

∧ ncls = cls𝑖, . . . , cls𝑖−1, ncls i, cls𝑖+1, . . . , cls𝑙𝑒𝑛𝑔𝑡ℎ(cls)

(CLAUSE GUARD) e ⇒ change clauses(e, ncls)
if (e, ) = 𝑙𝑎𝑠𝑡(𝑃𝑎𝑡ℎ𝐵𝑒𝑓𝑜𝑟𝑒)

∧ ( , pos(g c)) = ℎ𝑑(𝑡𝑙(𝑃𝑎𝑡ℎ𝐴𝑓𝑡𝑒𝑟))
∧ ∃ 𝑖. 1 ≤ 𝑖 ≤ length(cls) s.t. cls𝑖 = p c when g c -> b c

where cls = clauses(e)
∧ (poi, ) = last(PathAfter)
∧ nb c = begin tracer!{ add, poi }, case np c of cls end end

∧ ncl = p c when true -> nb c

∧ ncls = cls𝑖, . . . , cls𝑖−1, ncl, cls𝑖+1, . . . , cls𝑙𝑒𝑛𝑔𝑡ℎ(cls)

(EXPR) e ⇒ begin fv = e, tracer!{ add, fv }, fv end

otherwise
where (e, ) = last(PathAfter) ∧ fv = 𝑓V( )

Algorithm 1: Instrumentation rules for tracing.

the pattern of an expression, this expression needs
a special treatment in the instrumentation. Let us
show the problem with an example. Consider a POI
inside a pattern { 1, POI, 3 }. If the execution tries
to match it with { 2, 2, 3 } nothing is sent to the
tracing server because the POI is never evaluated.
Contrarily, if it tries to match it with { 1, 2, 4 } we
send the value 2 to the tracing server. Note that
the matching fails in both cases, but due to the
evaluation order, the POI is actually evaluated (and it
succeeds) in the second case. There is an interesting
third case that happens when the POI has a value,
e.g., 3, and the matching with { 1, 4, 4 } is tried. In
this case, although the matching at the POI fails, we
send the value 4 to the tracing server. We could also
send its actual value, i.e., 3. This is just a design
decision, but we think that including the value that
produced the mismatch could be more useful to find
the source of a discrepancy. We call target expression
to those expressions that need a special treatment

in the instrumentation as the previously described
one. In Erlang, these target expressions are pattern
matchings, list comprehensions, and expressions with
clauses (i.e., case, if, functions, . . .). The goal of
this step is to divide the AST path into two subpaths
(PathBefore, PathAfter). PathBefore yields
from the root to the deepest target expression
(included), and PathAfter yields from the first
children of the target expression to the AST identifier
of the POI.
Finally, the last step is the one in charge of performing
the actual instrumentation. The PathBefore path
is used to traverse the tree until the deepest target
expression that contains the AST identifier is reached.
At this point, five rules (described below) are used
to transform the code by using PathAfter. Finally,
PathBefore is traversed backwards to update the
AST of the targeted function. The five rules are
depicted in Algorithm 1. The first four rules are
mutually exclusive, and when none of them can be
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applied, the rule (EXPR) is applied. Rule (LEFT PM)
is fired when the POI is in the pattern of a pattern-
matching expression. Rule (PAT GEN LC) is used to
transform a list comprehensionwhen the POI is in the
pattern of a generator. Finally, rules (CLAUSE PAT)
(function clauses need an additional transformation
that consists in storing all the parameters inside a
tuple so that they could be used in case expressions)
and (CLAUSE GUARD) transform an expression with
clauses when the POI is in the pattern or in the guard
of one of its clauses, respectively. In the rules, we
use the underline symbol ( ) to represent a value
that is not used. There are several functions used
in the rules that need to be introduced. Functions
ℎ𝑑(𝑙), 𝑡𝑙(𝑙), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙), and 𝑙𝑎𝑠𝑡(𝑙) return the head,
the tail, the length, and the last element of the
list 𝑙, respectively. Function 𝑝𝑜𝑠(𝑒) returns the child
index of an expression 𝑒, i.e., its index in the list of
children of its parent. Function 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑(𝑒) returns

true if 𝑒 is bounded according to the AST bind-
ing annotations (see step (1)). Functions 𝑐𝑙𝑎𝑢𝑠𝑒𝑠(𝑒)
and 𝑐ℎ𝑎𝑛𝑔𝑒 𝑐𝑙𝑎𝑢𝑠𝑒𝑠(𝑒, 𝑐𝑙𝑎𝑢𝑠𝑒𝑠) obtain and modify
the clauses of 𝑒, respectively. Function 𝑓V() builds a
free variable. Finally, there is a key function named
𝑝𝑓V, introduced in (1), that transforms a pattern
so that the constraints after the POI do not inhibit
the sending call. This is done by replacing all the
terms on the right of the POI with free variables
that are built using 𝑓V function. Unbound variables
on the left and also in the POI are replaced by
fresh variables to avoid the shadowing of the orig-
inal variables. In the 𝑝𝑓V function, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑒) and
𝑐ℎ𝑎𝑛𝑔𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑒, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) are used to obtain and
modify the children of expression 𝑒, respectively. In
this function, lists are represented with the head-tail
notation (ℎ : 𝑡).

Function 𝑝𝑓V

𝑝𝑓V (𝑝, 𝑝𝑎𝑡ℎ) =

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

(𝑝𝑜𝑖, 𝑝𝑜𝑖󸀠, 𝑝󸀠󸀠) if 𝑝𝑎𝑡ℎ = [(𝑝𝑜𝑖, 𝑝𝑜𝑠)]
where 𝑝𝑜𝑖󸀠 = 𝑓V ( ) ∧ 𝑝󸀠 = 𝑓V 𝑓𝑟𝑜𝑚 (𝑝𝑜𝑠, 𝑝)
∧𝑝󸀠󸀠 = 𝑝󸀠1 ⋅ ⋅ ⋅ 𝑝󸀠𝑝𝑜𝑠−1, 𝑝𝑜𝑖󸀠, 𝑝󸀠𝑝𝑜𝑠+1 ⋅ ⋅ ⋅ 𝑝󸀠𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)

(𝑝𝑜𝑖, 𝑝𝑜𝑖󸀠, 𝑝󸀠󸀠󸀠) otherwise

where ( , 𝑝𝑜𝑠) = ℎ𝑑 (𝑝𝑎𝑡ℎ) ∧ 𝑝󸀠 = 𝑓V 𝑓r𝑜𝑚 (𝑝𝑜𝑠, 𝑝)
∧ (𝑝𝑜𝑖, 𝑝𝑜𝑖󸀠, 𝑝󸀠󸀠) = 𝑝𝑓V (𝑝󸀠𝑝𝑜𝑠, 𝑡𝑙 (𝑝𝑎𝑡ℎ))
∧𝑝󸀠󸀠󸀠 = 𝑝󸀠1 ⋅ ⋅ ⋅ 𝑝󸀠𝑝𝑜𝑠−1, 𝑝󸀠󸀠, 𝑝󸀠𝑝𝑜𝑠+1 ⋅ ⋅ ⋅ 𝑝󸀠𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)

𝑓V 𝑓𝑟𝑜𝑚 (𝑝𝑜𝑠, 𝑝) = 𝑝󸀠1 ⋅ ⋅ ⋅ 𝑝󸀠𝑝𝑜𝑠, 𝑓V ( )𝑝𝑜𝑠+1 ⋅ ⋅ ⋅ 𝑓V ( )𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) where (𝑝󸀠1 ⋅ ⋅ ⋅ 𝑝󸀠𝑝𝑜𝑠, ) = 𝑐V (𝑝1 ⋅ ⋅ ⋅ 𝑝𝑝𝑜𝑠, [ ])

𝑐V (𝑙𝑖𝑠𝑡, 𝑚𝑎𝑝)

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

([ ] , 𝑚𝑎𝑝) if 𝑙𝑖𝑠𝑡 = [ ]
((𝑓V : 𝑝󸀠𝑡) ,𝑚𝑎𝑝󸀠) if 𝑙𝑖𝑠𝑡 = (𝑝ℎ : 𝑝𝑡) ∧ 𝑖𝑠 V𝑎𝑟 (𝑝ℎ) ∧ ¬ 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑 (𝑝ℎ)

where 𝑓V = 𝑓V ( ) ∧ (𝑝󸀠𝑡 , 𝑚𝑎𝑝󸀠) = 𝑐V (𝑝𝑡, 𝑚𝑎𝑝 ∪ {𝑝ℎ 󳨃→ 𝑓V})
((𝑓V𝑚𝑎𝑝 : 𝑝󸀠𝑡) ,𝑚𝑎𝑝󸀠) if 𝑙𝑖𝑠𝑡 = (𝑝ℎ : 𝑝𝑡) ∧ 𝑖𝑠 V𝑎𝑟 (𝑝ℎ) ∧ 𝑝ℎ 󳨃→ 𝑓V𝑚𝑎𝑝 ∈ 𝑚𝑎𝑝

where (𝑝󸀠𝑡 , 𝑚𝑎𝑝󸀠) = 𝑐V (𝑝𝑡, 𝑚𝑎𝑝)
((𝑝󸀠ℎ : 𝑝󸀠𝑡) ,𝑚𝑎𝑝󸀠󸀠) otherwise

where (𝑝ℎ : 𝑝𝑡) = 𝑙𝑖𝑠𝑡 ∧ (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛󸀠𝑝ℎ , 𝑚𝑎𝑝󸀠) = 𝑐V (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑝ℎ) , 𝑚𝑎𝑝)
∧𝑝󸀠ℎ = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑝ℎ, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛󸀠𝑝ℎ)
∧ (𝑝󸀠𝑡 , 𝑚𝑎𝑝󸀠󸀠) = 𝑐V (𝑝𝑡, 𝑚𝑎𝑝󸀠)

(1)

3.3. Test Case Generation Using ITC Mutation. The ITC
generation phase uses CutEr because it implements sophis-
ticated concolic analyses with the goal of achieving 100%
branch coverage. However, sometimes these analyses require
too much time and we have to abort its execution. This
means that, after executing CutEr, we might have only
the ITC that we provided to CutEr. Moreover, even when

CutEr generates ITC with a 100% branch coverage, they
can be insufficient. For instance, if the expression Z =
X − Y is replaced in a new version of the code with
Z = X + Y, a single test case that executes both of them
with Y = 0 will not detect any difference. More values
for Y are needed to detect the behaviour change in this
expression.
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Therefore, to increase the reliability of the test suite,
we complement the ITCs produced by CutEr with a test
mutation technique. Using a mutation technique is much
better than using, e.g., only the PropEr generator to ran-
domly synthesize new test cases (this statement is clarified
by the results obtained in Section 9), because full-random
test cases would produce many useless test cases (i.e., test
cases that do not execute the POI). In contrast, the use
of a test mutation technique increases the probability of
generating test cases that execute the POI (because only
those test cases that execute the POI are mutated). The
function that generates the test cases is depicted in (2). The
result of the function is a map from the different obtained
traces to the set of ITCs that produce them. The first call
to this function is 𝑡𝑔𝑒𝑛(𝑡𝑜𝑝, 𝑐𝑢𝑡𝑒𝑟 𝑡𝑒𝑠𝑡𝑠, 0), where 𝑡𝑜𝑝 is a
user-defined limit of the desired number of test cases (in
SecEr, it is possible to alternatively use a timeout to stop the

test case generation) and 𝑐𝑢𝑡𝑒𝑟 𝑡𝑒𝑠𝑡𝑠 are the test cases that
CutEr generates (which could be an empty set). Function
𝑡𝑔𝑒𝑛 uses the auxiliary functions𝑝𝑟𝑜𝑝𝑒𝑟 𝑔𝑒𝑛, 𝑡𝑟𝑎𝑐𝑒, and𝑚𝑢𝑡.
The function 𝑝𝑟𝑜𝑝𝑒𝑟 𝑔𝑒𝑛() simply calls PropEr to generate
a new test case, while function 𝑡𝑟𝑎𝑐𝑒(𝑖𝑛𝑝𝑢𝑡) obtains the
corresponding trace when the ITC 𝑖𝑛𝑝𝑢𝑡 is executed.The size
of a map, 𝑠𝑖𝑧𝑒(𝑚𝑎𝑝), is the total amount of elements stored in
all lists that belong to the map. Finally, function 𝑚𝑢𝑡(𝑖𝑛𝑝𝑢𝑡)
obtains a set of mutations for the ITC 𝑖𝑛𝑝𝑢𝑡, where, for each
argument in 𝑖𝑛𝑝𝑢𝑡, a new test case is generated by replacing
the argumentwith a randomly generated value, using PropEr
(note that we are using PropEr to replace only one argument
instead of all arguments. The latter is the full-random test
case generation explained above), and leaving the rest of the
arguments unchanged.

Test Case Generation Function

𝑡𝑔𝑒𝑛 (𝑡𝑜𝑝, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔,𝑚𝑎𝑝)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑚𝑎𝑝 if 𝑠𝑖𝑧𝑒 (𝑚𝑎𝑝) ≥ 𝑡𝑜𝑝
𝑡𝑔𝑒𝑛 (𝑡𝑜𝑝, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔󸀠, 𝑚𝑎𝑝󸀠) if 𝑠𝑖𝑧𝑒 (𝑚𝑎𝑝) < 𝑡𝑜𝑝

∧ ∃ 𝑖𝑛𝑝𝑢𝑡 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 | 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡) 󳨃→ ∉ 𝑚𝑎𝑝
where 𝑝𝑒𝑛𝑑𝑖𝑛𝑔󸀠 = (𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∪ 𝑚𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡)) \ {𝑖𝑛𝑝𝑢𝑡}
∧ 𝑚𝑎𝑝󸀠 = 𝑚𝑎𝑝 ∪ {𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡) 󳨃→ {𝑖𝑛𝑝𝑢𝑡}}

𝑡𝑔𝑒𝑛 (𝑡𝑜𝑝, {𝑝𝑟𝑜𝑝𝑒𝑟 𝑔𝑒𝑛 ( )} , 𝑚𝑎𝑝󸀠) if 𝑠𝑖𝑧𝑒 (𝑚𝑎𝑝) < 𝑡𝑜𝑝
∧ ∄ 𝑖𝑛𝑝𝑢𝑡 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 | 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡) 󳨃→ ∉ 𝑚𝑎𝑝
where 𝑚𝑎𝑝󸀠 = 𝑚𝑎𝑝
∪ { 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡𝑝) 󳨃→ ({𝑖𝑛𝑝𝑢𝑡𝑝} ∪ 𝑖𝑛𝑝𝑢𝑡𝑠𝑡𝑝)
| 𝑖𝑛𝑝𝑢𝑡𝑝 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∧ 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡𝑝) 󳨃→ 𝑖𝑛𝑝𝑢𝑡𝑠𝑡𝑝 ∈ 𝑚𝑎𝑝 }

(2)

Therefore, ourmutation technique is able to generate tests
more focused on our goal, i.e., maximizing the number of
times a POI is executed. Due to the random generation, a
mutant can produce repeated ITCs (which are not reexe-
cuted). It can also produce ITCs whose trace has been previ-
ously found (then they are not mutated). Moreover, a mutant
can produce unexpected ITCs or execution errors. These test
cases are not considered as invalid but, contrarily, they are
desirable because they allow us to check that the behaviour is
also preserved in those cases. Finally, CutEr is an optional
tool that can help to improve the resulting test cases by
contributingwith an initial test cases suitewith high coverage.

4. Extending the Approach to
Include Multiple POIs

The previous sections introduced a methodology to auto-
matically obtain traces from a given POI. An extension
of this methodology to multiple POIs enables several new

features like a fine-grained testing, or checking multiple
functionalities at once. However, it introduces new challenges
to be overcome.

In order to extend the approach for multiple POIs, we
need to perform some modifications in some of the steps
of the single-POI approach. The flow is exactly the same as
the one depicted in Section 2, but we need to modify some
of its internals. There is no need for modifications in all the
process described in Section 3.1, since this process depends
on the input functions that, in our approach, are shared by
all the POIs (we plan to explore in future approaches the idea
of defining individual input functions for each POI). On the
other hand, we need to introduce changes in the processes
described in Sections 3.2 and 3.3.

The tracing method introduced in Section 3.2 needs
to be slightly redefined here. This section defined 4 steps
that started from a source code and a POI and ended in
an instrumented version of the source code that is able to
communicate traces. Therefore, the only change needed is
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that, instead of having only one POI, we have more than
one. In order to deal with this change, we follow the same
4 steps but change the way in which they are applied. In the
single-POI approach, they are applied sequentially, but here
we need to iterate some of them. Concretely, steps (1) and
(2) are done only once in the whole process while the rest of
the steps are done once for each POI. The result of step (2)
is now a set of POI-AST identifier relations instead of a single
one. Then, we iterate the obtained AST identifiers applying
steps (3) and (4) sequentially. Note that although the result
of step (4) is a new AST, we are still able to find the AST
identifiers of the subsequent POIs since the transformations
do not destroy any node of the original AST; instead they only
move them inside a new expression. This justifies the double
search design performed in steps (2) and (3). If we tried to
search for the POI in a modified AST, we could be unable to
find it. In contrast, AST identifiers ensure that it can always
be found.

In the multiple-POI approach, there is also a justification
of why the identifiers are numbers and why the identification
process is done with a postorder traversal. First of all, there
is one question that should be discussed: is the order in
which the POIs are processed important? The answer is yes,
because the user could define a POI that includes another
POI inside; e.g., POI1 is the whole tuple { X, Y } and POI2
is X. This scenario would be problematic when the POI-
inside-POI case occurs inside a pattern due to the way we
instrument the code. If we instrumented first POI1, its trace
would be sent before the one of POI2. Note that this is not
correct since POI2 is evaluated first; therefore, it should be
traced first. This justifies the use of a postorder traversal,
where the identifier of a node is maximal in its subtree.
Thus, as the AST identifiers are numbers and their order is
convenient in our context, we can order the AST identifiers
obtained from the POIs before starting the transformation
loop.

The test case generation phase introduced in Section 3.3
is also affected by the inclusion of multiple POIs. In the
original definition, the traces were a sequence of values, and
therefore it was easy to check whether a trace had appeared in
a previously executed test. However, with multiple POIs, the
trace is not such a simple sequence, as the traced values can be

obtained from different POIs along the execution. Therefore,
we need a more sophisticated way to determine the equality
of the traces. The next section explains in detail how we can
achieve this goal.

5. Determining the Trace Equality with
Multiple POIs

We present in this section several alternatives to compare
traces that contain values frommultiple POIs. Concretely, we
explain the three default comparison functions provided in
our approach. In our setting, we also allow a user to define
their own comparison functions enabling all needed types of
comparison.

A trace of a POI is defined as the sequence of val-
ues that the POI is evaluated to during an execution.
It has been represented with 𝑡𝑟𝑎𝑐𝑒(𝑖𝑛𝑝𝑢𝑡), which obtains
the corresponding trace when the ITC is executed. In the
multiple-POI approach, we need to redefine the notion of
𝑡𝑟𝑎𝑐𝑒 to also include the POIs that originated the values
of the trace. In order to maintain the execution order,
the trace is still a sequence, but instead of simple values
it contains tuples of the form (𝑃𝑂𝐼, V𝑎𝑙𝑢𝑒). In this way,
𝑡𝑟𝑎𝑐𝑒(𝑖𝑛𝑝𝑢𝑡) will contain all the values traced for all the POIs
defined by the user, preserving their execution order. This
is achieved by slightly modifying the rules in Algorithm 1
to include the POI reference when sending the value to the
tracer.

Once 𝑡𝑟𝑎𝑐𝑒(𝑖𝑛𝑝𝑢𝑡) includes all the sequences of values
generated during the execution for each POI, we need a way
to compare them. Note that the standard equality function
is perfectly valid for comparing traces during the test case
generation phase (Section 3.3), because all of them come
from the same source code. However, it is no longer valid
for comparing program versions since POIs can differ in
the original program and the modified one. Therefore, we
additionally need to define a relation between POIs. This
relation, which we represent with 𝑅𝑃𝑂𝐼𝑠, is automatically
built from the input provided by the user. It is a set that
contains tuples of the form (𝑃𝑂𝐼𝑜𝑙𝑑, 𝑃𝑂𝐼𝑛𝑒𝑤). Therefore, a
simple equality function to compare two traces obtained from
different versions of a program can be defined as follows:

𝑒𝑞𝑢𝑎𝑙 (𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑, 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤, 𝑅𝑃𝑂𝐼𝑠) =

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑡𝑟𝑢𝑒 if 𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑 = [ ] ∧ 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤 = [ ]

𝑒𝑞𝑢𝑎𝑙 (𝑡𝑟𝑎𝑐𝑒󸀠𝑜𝑙𝑑, 𝑡𝑟𝑎𝑐𝑒󸀠𝑛𝑒𝑤, 𝑅𝑃𝑂𝐼𝑠)

if 𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑 = ((𝑃𝑂𝐼𝑜𝑙𝑑, V𝑜𝑙𝑑) : 𝑡𝑟𝑎𝑐𝑒󸀠𝑜𝑙𝑑)

∧ 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤 = ((𝑃𝑂𝐼𝑛𝑒𝑤, V𝑛𝑒𝑤) : 𝑡𝑟𝑎𝑐𝑒󸀠𝑛𝑒𝑤)

∧ V𝑜𝑙𝑑 = V𝑛𝑒𝑤 ∧ (𝑃𝑂𝐼𝑜𝑙𝑑, 𝑃𝑂𝐼𝑛𝑒𝑤) ∈ 𝑅𝑃𝑂𝐼𝑠

𝑓𝑎𝑙𝑠𝑒 otherwise

(3)
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This equality function is useful when the user is interested
in comparing the traces interleaved (i.e., when their inter-
leaved execution is relevant). However, in some scenarios,
the user can be interested in relaxing the interleaving con-
straint and comparing the traces independently. This can be
achieved by building a mapping from POIs to sequences of
values in the following way:

𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼) = [V | (𝑃𝑂𝐼, V) ∈ 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡)] (4)

The order is assumed to be preserved in the produced
sequences. Using these sequences, we can define an alterna-
tive equality function as follows:

𝑒𝑞𝑢𝑎𝑙 (𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑, 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤, 𝑅𝑃𝑂𝐼𝑠)

= ⋀
(𝑃𝑂𝐼𝑜𝑙𝑑 ,𝑃𝑂𝐼𝑛𝑒𝑤)∈𝑅𝑃𝑂𝐼𝑠

𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼𝑜𝑙𝑑)

= 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼𝑛𝑒𝑤)

(5)

There is a third equality relation that could be useful
in certain cases. Suppose that we detect some duplicated
code, so we build a new version of the code where all the
repeated code has been refactored to a single code. If we want
to test whether the behaviour is kept, we need to define a
relation where multiple POIs in the old version are associated
with a single POI in the new version. This is represented
in our approach adding to 𝑅𝑃𝑂𝐼𝑠 several tuples of the form
(𝑃𝑂𝐼𝑜𝑙𝑑1 , 𝑃𝑂𝐼𝑛𝑒𝑤), (𝑃𝑂𝐼𝑜𝑙𝑑2 , 𝑃𝑂𝐼𝑛𝑒𝑤), and so forth. A similar
scenario can happen when a functionality of the original
code is split in several parts in the new code (an example
of this scenario is the use case presented in Section 6.4).
In both cases, a special treatment is needed for this type of
relations. In order to do this, we define a generalisation of the
previous 𝑒𝑞𝑢𝑎𝑙 function where this kind of relations is taken
into account. The first step is to extract all the POIs in 𝑅𝑃𝑂𝐼𝑠.

𝑝𝑜𝑖𝑠 (𝑅𝑃𝑂𝐼𝑠) = {𝑃𝑂𝐼1 | (𝑃𝑂𝐼1, 𝑃𝑂𝐼2) ∈ 𝑅𝑃𝑂𝐼𝑠}

∪ {𝑃𝑂𝐼2 | (𝑃𝑂𝐼1, 𝑃𝑂𝐼2) ∈ 𝑅𝑃𝑂𝐼𝑠}
(6)

Then, we can define the set of POIs related to a given POI
in 𝑅𝑃𝑂𝐼𝑠.

𝑟𝑒𝑙 (𝑃𝑂𝐼, 𝑅𝑃𝑂𝐼𝑠) = {𝑃𝑂𝐼󸀠 | (𝑃𝑂𝐼, 𝑃𝑂𝐼󸀠) ∈ 𝑅𝑃𝑂𝐼𝑠}

∪ {𝑃𝑂𝐼󸀠 | (𝑃𝑂𝐼󸀠, 𝑃𝑂𝐼) ∈ 𝑅𝑃𝑂𝐼𝑠}
(7)

Finally, we need a new trace function that returns a single
trace of values that are obtained from all the POIs related to a
POI in 𝑅𝑃𝑂𝐼𝑠.

𝑡𝑟𝑎𝑐𝑒 𝑟𝑒𝑙 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼, 𝑅𝑃𝑂𝐼𝑠) = [V | (𝑃𝑂𝐼󸀠, V)

∈ 𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡) ∧ 𝑃𝑂𝐼󸀠 ∈ 𝑟𝑒𝑙 (𝑃𝑂𝐼, 𝑅𝑃𝑂𝐼𝑠)]
(8)

We can nowdefine an equality function that is able to deal
with replicated POIs.

𝑒𝑞𝑢𝑎𝑙 (𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑, 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤, 𝑅𝑃𝑂𝐼𝑠)

= ⋀
𝑃𝑂𝐼∈𝑝𝑜𝑖𝑠(𝑅𝑃𝑂𝐼𝑠)

𝑡𝑟𝑎𝑐𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼)

= 𝑡𝑟𝑎𝑐𝑒 𝑟𝑒𝑙 (𝑖𝑛𝑝𝑢𝑡, 𝑃𝑂𝐼, 𝑅𝑃𝑂𝐼𝑠)

(9)

In case a user needs amore intricate equality function, we
provide in our tool away to define a custom equality function,
which should contain the parameters 𝑡𝑟𝑎𝑐𝑒𝑜𝑙𝑑 and 𝑡𝑟𝑎𝑐𝑒𝑛𝑒𝑤
(the relation 𝑅𝑃𝑂𝐼𝑠 is not a parameter in the user function
because it is originally provided by the user). Hence, the user
can decide whether the generated traces can be considered as
equal or not.

Equality functions constitute a new parameter of the
approach that determines how the traces should be com-
pared. For the comparison of versions using multiple POIs,
it is mandatory to provide such a function, while for the
test case generation phase depicted in Section 3.3 it can be
optional. In the second case, the user could be interested in
obtaining more sophisticated test cases by providing their
own equality function. In order to enable this option, an
additional parameter is needed for the 𝑡𝑔𝑒𝑛 function. This
parameter will contain the equality function that should be
used when checking if a trace has been previously computed.

6. The SecEr Tool

In this section, we describe SecEr and how to use it to
automatically obtain test cases from a source code. Then, we
present some use cases that illustrate how SecEr can be used
to check behavioural changes in the code.

6.1. Tool Description. Given two versions of the same pro-
gram, SecEr is able to automatically generate a test suite
that checks the behaviour of a set of POIs and reports the
discrepancies. Listing 3 shows the SecEr command.

If we want to perform a comparison between two pro-
grams, we just need to provide a list of related POIs from both
programs. For instance,

./secer -pois "[{ { ‘happy0.erl',4,‘call',1 }, { ‘happy1.erl',27,‘call',1 } },
{ { ‘happy0.erl',9,‘call',1 }, { ‘happy1.erl',18,‘call',1 } }]" -to 10

Because the same POIs are often compared as the pro-
gram evolves, it is a good idea to record them together with

the input functions for future uses. For this reason, the user
can save in a file(e.g., pois.erl) the POIs of interest and
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(1) $ ./secer -pois "LIST OF POIS" [-funs "INPUT FUNCTIONS"] -to TIMEOUT [-cfun "COMPARISON FUN"]

Listing 3: SecEr command format.

their relations and define a function that returns them (e.g.,
pois:rel/0). Hence, they can simply invoke this function
with

./secer -pois "pois:rel()" -to 15

By default, the traces of the POIs are compared using the
standard equality, as it is defined by the first comparison func-
tion in Section 5. Alternatively, we can customize our com-
parison defining a comparison function (COMPARISON FUN).
The comparison function defined by the user must be a
function with two parameters (the old and the new traces).
We also provide a library with some common comparison
functions, like, for instance, the one that compares the traces
independently (secer:independent) as it is described in
the second and third functions (depending on the POI
relations) in Section 5.

Example 2. Consider twoPOIs,𝑃O𝐼1 and𝑃𝑂𝐼2, in the original
code and their counterparts 𝑃𝑂𝐼󸀠1 and 𝑃𝑂𝐼󸀠2 in the new code.
If an execution executes the POIs in the following order:

original code: 𝑃𝑂𝐼1 = 42 ⋅ ⋅ ⋅ 𝑃𝑂𝐼1 = 43 ⋅ ⋅ ⋅ 𝑃𝑂𝐼1 =
50 ⋅ ⋅ ⋅ 𝑃𝑂𝐼2 = 0,
new code: 𝑃𝑂𝐼󸀠1 = 42 ⋅ ⋅ ⋅ 𝑃𝑂𝐼󸀠1 = 43 ⋅ ⋅ ⋅ 𝑃𝑂𝐼󸀠2 =
0 ⋅ ⋅ ⋅ 𝑃𝑂𝐼󸀠1 = 50,

SecEr records the traces:

Trace 𝑃𝑂𝐼1 = [42, 43, 50]

Trace 𝑃𝑂𝐼󸀠1 = [42, 43, 50]
Trace 𝑃𝑂𝐼2 = [0]
Trace 𝑃𝑂𝐼󸀠1 = [0]

Ifwe executeSecErwith flag-cfun "secer:independent()",
SecErwill report that there are no discrepancies between the
POIs. In contrast, if no flag is specified, SecEr will take into
account the execution order of the POIs, and it will alert that
this order has changed.

Note that, in the implementation, the limit used to stop
generating test cases is a timeout, while the formalization of
the technique uses a number to specify the amount of test
cases that must be generated (see variable 𝑡𝑜𝑝 in Section 3.3).
This is not a limitation, but a design decision to increase the
usability of the tool.The user cannot know a priori howmuch
time it could take to generate an arbitrary number of test
cases. Hence, to make the tool predictable and give the user
control over the computation time, we use a timeout. Thus,
SecEr generates as many test cases as the specified timeout
permits.

6.2. Defining a Configuration File. SecEr permits using con-
figuration files that can be reused in different invocations. A
configuration file contains functions that can be invoked from
the SecEr command. For instance, the following command
uses functions rel/0, funs/0, and cf length/2 of module
test happy:

./secer -pois "test happy:rel()" -fun "test happy:funs()" -to
5 -cfun "test happy:cf length"

In Algorithm 2, we can see that POIs can be specified
in two different ways: (i) with a tuple with the format
{ ‘FileName', Line, Expression (expressionswith a spe-
cific name, e.g., variables, will be denoted by a tuple
{ var,‘VarName' }. Note that expressions denoted by reserved
Erlang words, e.g., case or if, must be specified in single
quotation marks), Occurrence } as shown in Algorithm 2
line (5) and (ii) with a tuple { ‘FileName', { InitialLine,
InitialColumn }, { FinalLine, FinalColumn } }(POIs
of this type are internally translated to POIs of the first type)
representing the initial and final line and column in the
specified file; this approach is shown in Algorithm 2 line
(7).

The LIST OF POIS parameter is provided by function
rel/0 (see line (19)). It returns an Erlang list of well defined
POIs (or pairs of POIs). The INPUT FUNCTIONS parameter
is provided by function funs/0 (see line (26)). It returns

a string containing a list with the desired input functions.
The COMPARISON FUN parameter is provided by function
cf length/2 (see line (29)). It receives two arguments, each
of which is a list of tuples that contains a POI and a value.This
functionmust return true, false, or a tuple with false and
an error message to customize the error.

6.3. Use Case 1: Happy Numbers. In this section, we further
develop Example 1 to show how SecEr can check the
behaviour preservation in the happy numbers programs (see
Listings 1 and 2). First of all, to unify the interfaces of both
programs, in thehappy0module (Listing 1), we have replaced
main/0with main/2making it applicable for a more general
case. Moreover, in both modules, we have added a type
specification (represented with spec in Erlang) in order to
obtain more representative test cases. To run SecEr we use
the configuration file defined in Algorithm 2.
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(1) -module(test happy).

(2) -compile(export all).

(3)
(4) poiResultOld() ->
(5) { ‘happy0.erl',4,call,1 }.
(6) poiResultNew() ->
(7) { ‘happy1.erl',{ 27,2 },{ 27,16 } }.
(8)
(9) poiIsHappyOld() ->
(10) { ‘happy0.erl',9,call,1 }.
(11) poiIsHappyNew() ->
(12) { ‘happy1.erl',18,call,1 }.
(13)
(14) poiXOld() ->
(15) { ‘happy0.erl',9,{ var,'X' },1 }.
(16) poiXNew() ->
(17) { ‘happy1.erl',18,{ var,'X' },1 }.
(18)
(19) rel() ->
(20) [{ poiResultOld(),poiResultNew() }].
(21) relIsHappy() ->
(22) [{ poiIsHappyOld(),poiIsHappyNew() }].
(23) relX() ->
(24) [{ poiXOld(),poiXNew() }].
(25)
(26) funs() ->
(27) "[main/2]".

(28)
(29) cf length(TO,TN) ->
(30) ZippedList = lists:zip(TO,TN),

(31) lists:foldl(

(32) fun

(33) ( ,{ false,Msg,PO,PN }) ->
(34) { false,Msg,PO,PN };
(35) ({ { ,VO },{ ,VN } }, ) when length(VN) < length(VO) ->
(36) true;

(37) ({ { PO, },{ PN, } }, ) ->
(38) { false,"Invalid Length",PO,PN }
(39) end,

(40) true,

(41) ZippedList).

Algorithm 2: Configuration file to test happy modules.

Listing 4 shows the execution of SecEr when comparing
both implementations of the program with a timeout of 15
seconds. The selected POIs are the same POIs mentioned in
Section 1. They are the call in line (4) in Listing 1 and the
call in line (27) in Listing 2. As we can see, the execution of
both implementations behaves identically with respect to the
selected POIs in the 1142 generated test cases.

In order to see the output of the tool when the behaviours
of the two compared programs differ, we have introduced
an error inside the is happy/2 function of happy1module
(Listing 2).The error is introduced by replacing thewhole line
(4) with X < 10 -> false;. With this change, the behaviour
of both programs differs.When the user runs SecErusing the
previous POI, it produces the error report shown in Listing
5. From this information, the user may decide to use as new

POIs all nonrecursive function calls inside happy list/3
(for Listing 1) and happy/3 (for Listing 2) functions. With
this decision it can discard whether the error comes from the
function itself or from the called function.Therefore, the new
POIs are the call in line (4) in Listing 1 and the call in line (27)
in Listing 2. SecEr’s output for these POIs is shown in Listing
6. SecEr reports that the POI was executed several times
and in some executions the values of the POI differed. SecEr
also reports a counterexample: main(4,2) compute different
values. Because the current POIs are the results of calling a
function that should be equivalent in both codes, there are
two possible sources of the discrepancy: either the common
argument in both versions of is happy (i.e., X) is taking
different values during the execution, or something executed
by is happy produces the discrepancies. Listing 7 shows the
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$ ./secer -pois "test happy:rel()" -funs "test happy:funs()" -to 15

Function: main/2

----------------------------

Generated test cases: 1142

Both versions of the program generate identical traces for the defined points of interest

Listing 4: SecEr reports that no discrepancies exist.

$ ./secer -pois "test happy:rel()" -funs "test happy:funs()" -to 15

Function: main/2

----------------------------

Generated test cases: 1143

Mismatching test cases: 45 (3.93%)

POIs comparison:

+ { { ‘happy0.erl',4,call,1 },
{ ‘happy1.erl',27,call,1 } }

Unexpected trace value => 45 Errors

Example call: main(5,8)

------ Detected Error ------

Call: main(5,8)

Error Type: Unexpected trace value

POI: ({ ‘happy0.erl',4,call,1 }) trace:

[[7,10,13,19,23,28,31,32]]

POI: ({ ‘happy1.erl',27,call,1 }) trace:

[[10,13,19,23,28,31,32,44]]

----------------------------

Listing 5: Result replacing line (4) with X < 10 -> false.

$ ./secer -pois "test happy:relIsHappy()" -funs "test happy:funs()" -to 15

Function: main/2

----------------------------

Generated test cases: 1151

Mismatching test cases: 39 (3.38%)

POIs comparison:

+ { { ‘happy0.erl',9,call,1 },
{ ‘happy1.erl',18,call,1 } }

Unexpected trace value => 39 Errors

Example call: main(4,2)

------ Detected Error ------

Call: main(4,2)

Error detected: Unexpected trace value

POI: ({ ‘happy0.erl',9,call,1 }) trace:

[false,false,false,true,false,false,true]

POI: ({ ‘happy1.erl',18,call,1 }) trace:

[false,false,false,false,false,false,true,false,false,true]

----------------------------

Listing 6: SecEr reports discrepancies between is happy call as POI.
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$ ./secer -pois "test happy:relX()" -funs "test happy:funs()" -to 15

Function: main/2

----------------------------

Generated test cases: 1624

Mismatching test cases: 64 (3.94%)

POIs comparison:

+ { { 'happy0.erl',9,{ var,'X' },1 },
{ 'happy1.erl',18,{ var,'X' },1 } }

The second trace is longer => 64 Errors

Example call: main(6,3)

------ Detected Error ------

Call: main(6,3)

Error Type: The second trace is longer

POI: ({ 'happy0.erl',9,{ var,'X' },1 }) trace:

[6,7,8,9,10,11,12,13]

POI: ({ 'happy1.erl',18,{ var,'X' },1 }) trace:

[6,7,8,9,10,11,12,13,14,15,16,17,18,19]

----------------------------

Listing 7: SecEr reports discrepancies using variable X as the POI.

$ ./secer -pois "test string:rel()" -funs "test string:funs()" -to 15

Function: tokens/2

----------------------------

Generated test cases: 118878

Both versions of the program generate identical traces for the defined points of interest

Listing 8: SecEr reports that no discrepancies exist.

report provided by SecEr when selecting variable X as the
POI. The reported discrepancy indicates that both traces are
the same until a point in the execution where the version in
Listing 2 continues producing values. This behaviour is the
expected one, because the result of is happyhas an influence
on the number of times the call is executed. Therefore, the
user can conclude that the arguments do not produce the
discrepancy and the source of the discrepancy is inside the
is happy function.

Listings 5, 6, and 7 show that SecEr detects the errors and
produces a concrete call that reveals these errors showing the
effects. With more POIs, the user can obtain more feedback
to help in finding the source of a bug. Clearly, with this
information we can now ensure that the symptoms of the
errors are observable in function is happy.

6.4. Use Case 2: An Improvement of the string:tokens/2
Function. In this case of study, we consider a real commit of
the Erlang/OTP distribution that improved the performance
of the string:tokens/2 function. Algorithm 3 shows
the code of the original and the improved versions. The
differences introduced in this commit can be consulted here:

https://github.com/erlang/otp/commit/
53288b441ec721ce3bbdcc4ad65b75e11acc5e1b

The improvement consists in two main changes. The first
one is a general improvement obtained by reversing the input
string (the one that is going to be tokenized) at the beginning
of the process. The second one improves the cases where
the separators list has only one element. The algorithm uses
two auxiliary functions in both cases, so its structure is kept
between versions. However, the optimized version duplicates
these functions to cover the single-element list of separators
and the rest of the cases separately.

We can use SecEr to checkwhether the behaviour of both
versions is the same. In order to do this, we can define as
POIs the final expressions of the tokens/2 function in each
version, i.e., the call to tokens1/3 function in the original
version and the whole case in the optimized version. The
input function should betokens/2 because the changeswere
introduced to improve it (see Algorithm 4). This is enough
to check that both versions preserve the same behaviour (see
Listing 8).

We can now consider a hypothetical scenario where
an error was introduced in the aforementioned commit.

https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b
https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b
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$ ./secer -pois "test string:rel()" -funs "test string:funs()" -to 15

Function: tokens/2

----------------------------

Generated test cases: 105088

Mismatching test cases: 72260 (68.76%)

POIs comparison:

+ { { 'string0.erl',2,call,1 },
{ 'string1.erl',2,case,1 } }

Unexpected trace value => 72260 Errors

Example call: tokens([9],[5,19,3,2])

------ Detected Error ------

Call: tokens([9],[5,19,3,2])

Error Type: Unexpected trace value

POI: ({ 'string0.erl',2,call,1 }) trace:

[[[9]]]

POI: ({ 'string1.erl',2,case,1 }) trace:

[[9,[9]]]

----------------------------

Listing 9: SecEr reports discrepancies after modifying optimized string.erl.

Suppose that line (30) in Algorithm 3 (optimized version) is
replaced by the following expression:

[C | tokens multiple 2(S, Seps, Toks, [C])]

In this scenario, SecEr reports that some of the traces
differ (see Listing 9).

We can add more POIs to try to isolate the error. For
instance, the calls in lines (6), (8), (15), and (17) of Algorithm 3
(original version) are a good choice in this case, as it can
help in checking that the intermediate results are the expected
ones. This selection of POIs is also interesting because each
POI in the original version is duplicated in the optimized
version. For instance, line (6) in the original version cor-
responds to lines (14) and (28) in the optimized version.
This relation is specified by defining two tuples of POIs:
((original version, line (6)), (optimized version, line (14)))
and ((original version, line (6)), (optimized version, line
(28))). There is an additional issue that should be considered
before calling to SecEr. As one of the improvements was
to reverse the input string beforehand, the execution order
is different in the optimized version. This means that the
traces computed by SecEr for the two versions will surely
differ. To solve this inconvenience we can invoke SecEr
with the flag -cfun "secer:independent()" activated.
Thus, SecEr will ignore the order of the traces computed
for different POIs. The result produced by SecEr with this
configuration is shown in Listings 10 and 11.

The reported error is effectively pointing to a POI which
is a call to the function that produced the error.This scenario
demonstrates how useful SecEr can be to find the source of
the discrepancies. Another interesting feature of the report is
the categorization of errors. In this particular example, there
are two kinds of errors: errors related to the length of the trace,

where one trace is a prefix of the other, and errors related
to the values of the trace, where the values of each trace are
completely different. In Listing 10 (and also in Listing 11), the
first error detected by SecEr is a length error while the third
error is a value error. Moreover, there are errors indicating
that some POI was not executed (i.e., it produced an empty
trace, represented in the listings by the trace []). This is
because some of the POIs are not completely symmetrical in
this example. Concretely, when the separators list (the second
parameter of the function string:tokens/2) is empty, the
algorithms behave differently. As this is not a really interesting
test case input, we could use an Erlang’s type specifier (spec)
to constrain this second parameter to be a nonempty list. An
alternative is to use a comparison function that takes into
account this particularity.Therefore, by avoiding ITCs of this
type, the reported errors will be only related to the actual
error.

Now, we can return to the original scenario to explore
other interesting uses of SecEr. As we mentioned, this com-
mit improved the performance of functionstring:tokens/2.
We can use SecEr to check that this improvement actually
exists. In contrast to previous examples, this would need two
small modifications. In concrete, the first one is to replace
line (2) of Algorithm 3 (original version) with the following
expressions:

(1) Start = os:timestamp(),

(2) Res = tokens1(S, Seps, []),
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Original version
(1) tokens(S, Seps) ->
(2) tokens1(S, Seps, []).
(3) tokens1([C|S], Seps, Toks) ->
(4) case member(C, Seps) of
(5) true ->
(6) tokens1(S, Seps, Toks);
(7) false ->
(8) tokens2(S, Seps, Toks, [C])
(9) end;
(10) tokens1([], Seps, Toks) ->
(11) reverse(Toks).
(12) tokens2([C|S], Seps, Toks, Cs) ->
(13) case member(C, Seps) of
(14) true ->
(15) tokens1(S, Seps, [reverse(Cs)|Toks]);
(16) false ->
(17) tokens2(S, Seps, Toks, [C|Cs])
(18) end;
(19) tokens2([], Seps, Toks, Cs) ->
(20) reverse([reverse(Cs)|Toks]).
Optimized version
(1) tokens(S, Seps) ->
(2) case Seps of
(3) [] ->
(4) case S of
(5) [] -> [];
(6) [ | ] -> [S]
(7) end;
(8) [C] ->
(9) tokens single 1(reverse(S), C, []);
(10) [ | ] ->
(11) tokens multiple 1(reverse(S), Seps, [])
(12) end.
(13) tokens single 1([Sep|S], Sep, Toks) ->
(14) tokens single 1(S, Sep, Toks);
(15) tokens single 1([C|S], Sep, Toks) ->
(16) tokens single 2(S, Sep, Toks, [C]);
(17) tokens single 1([], , Toks) ->
(18) Toks.
(19) tokens single 2([Sep|S], Sep, Toks, Tok) ->
(20) tokens single 1(S, Sep, [Tok|Toks]);
(21) tokens single 2([C|S], Sep, Toks, Tok) ->
(22) tokens single 2(S, Sep, Toks, [C|Tok]);
(23) tokens single 2([], Sep, Toks, Tok) ->
(24) [Tok|Toks].
(25) tokens multiple 1([C|S], Seps, Toks) ->
(26) case member(C, Seps) of
(27) true ->
(28) tokens multiple 1(S, Seps, Toks);
(29) false ->
(30) tokens multiple 2(S, Seps, Toks, [C])
(31) end;
(32) tokens multiple 1([], Seps, Toks) ->
(33) Toks.
(34) tokens multiple 2([C|S], Seps, Toks, Tok) ->
(35) case member(C, Seps) of
(36) true ->
(37) tokens multiple 1(S, Seps, [Tok|Toks]);
(38) false ->
(39) tokens multiple 2(S, Seps, Toks, [C|Tok])
(40) end;
(41) tokens multiple 2([], Seps, Toks, Tok) ->
(42) [Tok|Toks].

Algorithm 3: string.erl (original and optimized versions).
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(1) -module(test string).

(2) -compile(export all).

(3)
(4) poiOld() ->
(5) { 'string0.erl', 2, call, 1 }.
(6) poiNew() ->
(7) { 'string1.erl', 2, 'case', 1 }.
(8)
(9) poiOldError() ->
(10) { 'string0.erl', 6, call, 1 }.
(11) poiNewError1() ->
(12) { 'string1.erl', 14, call, 1 }.
(13) poiNewError2() ->
(14) { 'string1.erl', 28, call, 1 }.
(15)
(16)
(17) rel() ->
(18) [{ poiOld(), poiNew() }].
(19) relError() ->
(20) [{ poiOldError(), poiNewError1() },
(21) { poiOldError(), poiNewError2() }].
(22)
(23) funs() ->
(24) "[tokens/2]".

Algorithm 4: Configuration file to test string modules.

(3) timer:now diff(os:timestamp(), Start),

(4) Res.
The second change is similar and consists in assigning

to variable Res the result of the case expression in line (2)
of Algorithm 3 (optimized version). To invoke SecEr, the
first step is to choose a POI. We can select in both codes the
expression timer:now diff(os:timestamp(), Start)
which computes the total time. Then, we need to use the
comparison function secer:comp perf/1 that returns
true when the execution time of the optimized version is
smaller than or equal to the execution time of the original
version. Note that we used the parameter of this function

which defines a threshold (of 30𝜇s in this case) to filter
those evaluations whose execution times are almost equal.
We discard, in this way, downgrade alerts that are not
significative. The report of SecEr (see Listing 12) shows
that effectively there is an efficiency improvement in the
optimized version; i.e., the time used by the optimized
version is less than the one of the original version in all
127573 generated test cases.

We can create a different scenario where the performance
has not been improved. We introduce a simple change to
simulate this case by replacing line (28) of Algorithm 3
(optimized version) with the following line:

timer:sleep(5), tokens multiple 1(S, Seps, Toks);

Thiswill introduce a delay of 5milliseconds before calling
function tokens multiple 1/3 affecting consequently the
overall performance. We can run SecEr again with this
version of the code and the report (Listing 13) reveals
two relevant problems: (i) many test cases show a worse
performance in the new code than in the original code (those
cases affected by the downgrade) and (ii) fewer test cases are
being generated by SecEr due to the sleep time introduced
in the execution.

The user could now easily introduce more time measures
in the code and rerun SecEr to find the source of the
downgrade in the performance.

6.5. Use Case 3: Regression Bug Fixed in a Real Commit
in etorrent. In this use case, we study a real commit
in the etorrent GitHub repository, a repository with an
implementation of a bittorrent client in Erlang. This commit
can be consulted here:

https://github.com/edwardw/etorrent/commit/
d9d8cc13bab2eaa1ce282971901b7a29bf9bc942

The commit corrects an error introduced in a previous
commit (https://github.com/edwardw/etorrent/commit/
a9340eb5b4e2da3cf08094d1f942bb31173f4011): the output
of a decoding function is modified from a single variable

https://github.com/edwardw/etorrent/commit/d9d8cc13bab2eaa1ce282971901b7a29bf9bc942
https://github.com/edwardw/etorrent/commit/d9d8cc13bab2eaa1ce282971901b7a29bf9bc942
https://github.com/edwardw/etorrent/commit/a9340eb5b4e2da3cf08094d1f942bb31173f4011
https://github.com/edwardw/etorrent/commit/a9340eb5b4e2da3cf08094d1f942bb31173f4011
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$ ./secer -pois "test string:relError()" -funs "test string:funs()" -to 15

Function: tokens/2

----------------------------

Generated test cases: 64458

Mismatching test cases: 31187 (48.38%)

POIs comparison:

+ { { 'string0.erl',6,call,1 },
{ 'string1.erl',14,call,1 } }

The second trace is longer => 40 Errors

Example call: tokens([11,6,4,4],[4])

+ { { 'string0.erl',6,call,1 },
{ 'string1.erl',14,call,1 } }

The first trace is empty => 364 Errors

Example call: tokens([47,3,19,7,1,10,1,25,4,16],[16])

+ { { 'string0.erl',6,call,1 },
{ 'string1.erl',28,call,1 } }

Unexpected trace value => 18078 Errors

Example call: tokens([4,24,0,4,13,10,1,0],[2,8,12,1,0])

+ { { 'string0.erl',6,call,1 },
{ 'string1.erl',28,call,1 } }

The first trace is empty => 7991 Errors

Example call: tokens([13,7],[1,1,2,3,6,4,11,8,7])

+ { { 'string0.erl',6,call,1 },
[{ 'string1.erl',28,call,1 },
{ 'string1.erl',14,call,1 }] }

The first trace is longer => 3058 Errors

Example call: tokens([6,3,1,7,4,9,5,7,28],[1,10,46,3,4,8,34,6])

+ { { 'string0.erl',6,call,1 },
[{ 'string1.erl',28,call,1 },
{ 'string1.erl',14,call,1 }] }

The second trace is empty => 8231 Errors

Example call: tokens([12,1],[2,10,0,4,12,4,6,2,22])

Listing 10: SecEr reports discrepancies in the multiple-POI execution.

to a tuple containing the atom ok together with this value.
This bug was found by the commit’s authors using unit
testing (EUnit in Erlang). Therefore, in this case, we do
not use the test generation feature of SecEr, but instead we
start from the test case that revealed the error. Therefore,
the input function is the failing unit test case, and we take
advantage of the multiple-POI approach, placing several
POIs in the function called by the unit test case. There are
two modules implied in the process. The fragments of the
involved modules defining the affected functions are shown
in Algorithm 5.

Therefore, the input function of SecEr is query ping 0
test/0. This function calls to the decode msg/1 function,
so we place some POIs inside it to check its behaviour. In
particular, we place one POI in each function call (lines (3)
and (5)) and one POI in the return expression of the function
(case expression in line (6)). All the parameters defined in this
use case can be found in the configuration file in Algorithm 6.
After placing these three POIs in both versions, we execute
SecEr obtaining the result shown in Listing 14.

The results provided by SecEr show that the bug is
located inside functionetorrent dht net old:decode/1.
With a quick inspection of both versions of the decode

function we can easily discover that the format of the return
expression is different. Although we should be confident that
the error is located in this expression, we can be completely
sure by placing some POIs in this function.This can be easily
done by adding the POIs to the configuration file.

After fixing an error, it is a good practice to rerun SecEr

in order to verify that there are nomore mismatches between
the defined POIs. Remember that SecEr only reports the first
mismatch found in the execution. In the first execution, if the
function call to get value/2 (line (5)) had also an error, it
would have been omitted by the previous mismatch found in
call to decode/1 (line (3)).

7. Using SecEr in a Concurrent Environment

Nondeterministic computations are one of themain obstacles
for regression testing. In fact, they prevent us from comparing
the results of a test case executed in different versions
because the discrepancies found can be well produced by
sources of nondeterminism such as concurrency. In some
specific situations, however, we can still use SecEr to report
whether the behaviour of a concurrent program is preserved.
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------ Detected Error ------

Call: tokens([11,6,4,4],[4])

Error Type: The second trace is longer

POI: ({ 'string0.erl',6,call,1 }) trace:

[[[11,6]]]

POI: ({ 'string1.erl',14,call,1 }) trace:

[[[11,6]],[[11,6]]]

----------------------------

------ Detected Error ------

Call: tokens([47,3,19,7,1,10,1,25,4,16],[16])

Error Type: The first trace is empty

POI: ({ 'string0.erl',6,call,1 }) trace:

[]

POI: ({ 'string1.erl',14,call,1 }) trace:

[[[47,3,19,7,1,10,1,25,4]]]

----------------------------

------ Detected Error ------

Call: tokens([4,24,0,4,13,10,1,0],[2,8,12,1,0])

Error Type: Unexpected trace value

POI: ({ 'string0.erl',6,call,1 }) trace:

[[[4,24],[4,13,10]]]

POI: ({ 'string1.erl',28,call,1 }) trace:

[[10,24,[4,24],[4,13,10]],[10,24,[4,24],[4,13,10]]]

----------------------------

------ Detected Error ------

Call: tokens([13,7],[1,1,2,3,6,4,11,8,7])

Error Type: The first trace is empty

POI: ({ 'string0.erl',6,call,1 }) trace:

[]

POI: ({ 'string1.erl',28,call,1 }) trace:

[[13,[13]]]

----------------------------

------ Detected Error ------

Call: tokens([6,3,1,7,4,9,5,7,28],[1,10,46,3,4,8,34,6])

Error Type: The first trace is longer

POI: ({ 'string0.erl',6,call,1 }) trace:

[[[7],[9,5,7,28]],[[7],[9,5,7,28]],[[7],[9,5,7,28]]]

POI: ([{ 'string1.erl',28,call,1 },
{ 'string1.erl',14,call,1 }]) trace:

[[[7],[9,5,7,28]],[[7],[9,5,7,28]]]

----------------------------

------ Detected Error ------

Call: tokens([12,1],[2,10,0,4,12,4,6,2,22])

Error Type: The second trace is empty

POI: ({ 'string0.erl',6,call,1 }) trace:

[[[1]]]

POI: ([{ 'string1.erl',28,call,1 },
{ 'string1.erl',14,call,1 }]) trace:

[]

----------------------------

Listing 11: SecEr reports discrepancies in the multiple-POI execution (cont.).

For instance, consider the client-server model depicted in
Figure 4. In this simple example, a POI should not be placed
in 𝑆𝑒𝑟V𝑒𝑟, because we cannot know a priori whether 𝑟𝑒𝑞1 is
going to be served before or after 𝑟𝑒𝑞2, and this could have
an impact on the traces obtained from that POI. However, we
could place a POI in any of the clients, as long as the request

is not affected by the state of the server. This is acceptable for
many kinds of servers, but it is still a quite annoying limitation
for many others.

However, in Erlang, as it is common in other languages,
there is a high-level way to define a server. In particular, real
Erlang programmers tend to use the Erlang-OTP’s behaviour
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$ ./secer -pois "[{ 'string0.erl', LINE timer:now diff, call, 1 }, { 'string1.erl', LINE timer:now diff,

call, 1 }]"
-funs "test string:funs()" -to 15 -cfun "secer:comp perf(30)"

Function: tokens/2

----------------------------

Generated test cases: 127573

Both versions of the program generate identical traces for the defined points of interest

Listing 12: SecEr reports the result of comparing the performance POI.

$ ./secer -pois "[{ 'string0.erl', LINE timer:now diff, call, 1 }, { 'string1.erl', LINE timer:now diff,

call,1 }]"
-funs "test string:funs()" -to 15 -cfun "secer:comp perf(30)"

Function: tokens/2

----------------------------

Generated test cases: 4587

Mismatching test cases: 1286 (28.03%)

POIs comparison:

+ { { 'string0.erl', LINE timer:now diff,call,1 },
{ 'string1.erl', LINE timer:now diff,call,1 } }

Unexpected trace value => 1286 Errors

Example call: tokens([7,5,4,2,16,3,11,3],[4,2,9,2])

------ Detected Error ------

Call: tokens([7,5,4,2,16,3,11,3],[4,2,9,2])

Error Type: Slower Calculation

POI: ({ 'string0.erl', LINE timer:now diff,call,1 }) trace:

[2]

POI: ({ 'string1.erl', LINE timer:now diff,call,1 }) trace:

[5395]

----------------------------

Listing 13: SecEr reports discrepancies after entering the sleep expression.

named gen server. By implementing this behaviour, the
programmer is only defining the concrete behaviours of a
server, leaving all the low-level aspects to the internals of
the gen server implementation.These concrete behaviours
include how the server’s state is initialized, how a concrete
request should be served, or what to do when the server
is stopped. When using gen server, programmers could
use the functions implementing these concrete behaviours as
input functions for SecEr. In this way, they can check, for
instance, that a server is going to reply to the user and leave
the server’s state in the same way across different versions of
the program.

We can explain it with a real example. Consider the
code in Algorithm 7, which shows a fragment (although
those parts of the module that are not shown here are also
interesting, we have removed them because they are not used
in the use case) of the gen server defined in

https://github.com/hcvst/erlang-otp-tutorial#otp-
gen server

The server’s state is simply a counter that tracks the num-
ber of requests served so far. The server defines three

types of requests through the functions handle call and
handle cast:

(1) The synchronous request (i.e., a request where the
client waits for a reply) get count, which returns the
current server’s state.

(2) The asynchronous request (i.e., a request where the
client does not wait for a reply) stop, which stops the
server.

(3) The asynchronous request say hello, which makes
the server print hello in the standard output.

The first and the third requests modify the server’s state
by adding one to the total number of requests served so far.
The second one does notmodify the state but rather it returns
a special term that makes the gen server stop itself.

To illustrate how SecEr can detect an unexpected
behaviour change between two versions of the code, consider
that the current (buggy) version is the one depicted in
Algorithm 7, while the (correct) original version of the code
contains line (38) instead of line (39).

Then, we can define a configuration file like the one in
Algorithm 8 and run SecEr to see whether the behaviour

https://github.com/hcvst/erlang-otp-tutorial
https://github.com/hcvst/erlang-otp-tutorial
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etorrent dht net old.erl
(1) decode msg(InMsg) ->
(2) io:format("0: ∼p\n", [InMsg]),
(3) Msg = etorrent bcoding old:decode(InMsg),
(4) io:format("0: ∼p\n", [Msg]),
(5) MsgID = get value(<<"t">>, Msg),
(6) case get value(<<"y">>, Msg) of
(7) <<"q">> ->
(8) MString = get value(<<"q">>, Msg),
(9) Method = string to method(MString),
(10) Params = get value(<<"a">>, Msg),
(11) { Method, MsgID, Params };
(12) <<"r">> ->
(13) Values = get value(<<"r">>, Msg),
(14) { response, MsgID, Values };
(15) <<"e">> ->
(16) [ECode, EMsg] = get value(<<"e">>, Msg),
(17) { error, MsgID, ECode, EMsg }
(18) end.
(19) query ping 0 test() ->
(20) Enc = "d1:ad2:id20:abcdefghij0123456789e1:
(21) q4:ping1:t2:aa1:y1:qe",
(22) { ping, ID, Params } = decode msg(Enc),
(23) ?assertEqual(<<"aa">>, ID),
(24) ?assertEqual(
(25) <<"abcdefghij0123456789">>,
(26) fetch id(Params)).
etorrent dht net new.erl
(27) decode msg(InMsg) ->
(28) io:format("0: ∼p\n", [InMsg]),

(29) Msg = etorrent bcoding new:decode(InMsg),

(30) io:format("0: ∼p\n", [Msg]),

(31) MsgID = get value(<<"t">>, Msg),

(32) case get value(<<"y">>, Msg) of

(33) <<"q">> ->
(34) MString = get value(<<"q">>, Msg),

(35) Method = string to method(MString),

(36) Params = get value(<<"a">>, Msg),

(37) { Method, MsgID, Params };
(38) <<"r">> ->
(39) Values = get value(<<"r">>, Msg),

(40) { response, MsgID, Values };
(41) <<"e">> ->
(42) [ECode, EMsg] = get value(<<"e">>, Msg),

(43) { error, MsgID, ECode, EMsg }
(44) end.

(45) query ping 0 test() ->
(46) Enc = "d1:ad2:id20:abcdefghij0123456789e1:

(47) q4:ping1:t2:aa1:y1:qe",

(48) { ping, ID, Params } = decode msg(Enc),

(49) ?assertEqual(<<"aa">>, ID),

(50) ?assertEqual(

(51) <<"abcdefghij0123456789">>,
(52) fetch id(Params)).

etorrent bcoding old.erl
(1) -spec decode(string() | binary()) -> bcode().

(2) decode(Bin) when is binary(Bin) ->
(3) decode(binary to list(Bin));

(4) decode(String) when is list(String) ->
(5) { Res, Extra } = decode b(String),

(6) Res.

(7)

Algorithm 5: Continued.
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etorrent bcoding new.erl
(8) -spec decode(string()| binary()) ->
(9) { ok, bcode() }|{ error, Reason }.
(10) decode(Bin) when is binary(Bin) ->
(11) decode(binary to list(Bin));

(12) decode(String) when is list(String) ->
(13) try

(14) { Res, Extra } = decode b(String),

(15) { ok, Res }
(16) catch

(17) error:Reason -> { error, Reason }
(18) end.

Algorithm 5: etorrent source files (original and buggy versions).

$ ./secer -pois "test etorrent:rel()" -funs "test etorrent:funs()" -to 15

Function: query ping 0 test/0

----------------------------

Generated test cases: 1

Mismatching test cases: 1 (100.0%)

POIs comparison:

+ { { 'etorrent dht net old', 3, call, 1 },
{ 'etorrent dht net new', 29, call, 1 } }

Unexpected trace value => 1 Errors

Example call: query ping 0 test()

------ Detected Error ------

Call: query ping 0 test()

Error Type: Unexpected trace value

POI: ({ 'etorrent dht net old', 3, call, 1 }) trace:

[[{ <<97>>,[{ <<105,100>>,<<97,98,99,100,101,102,103,104,105,106,48,49,50,51,52,53,54,
55,56,57>> }] },

{ <<113>>,<<112,105,110,103>> },{ <<116>>,<<97,97>> },{ <<121>>,<<113>> }]]
POI: ({ 'etorrent dht net new', 29, call, 1 }) trace:

[{ ok,[{ <<97>>,[{ <<105,100>>,<<97,98,99,100,101,102,103,104,105,106,48,49,50,51,52,53,
54,55,56,57>> }] },

{ <<113>>,<<112,105,110,103>> },{ <<116>>,<<97,97>> },{ <<121>>,<<113>> }] }]
----------------------------

Listing 14: SecEr reports discrepancies after defining multiple POIs.

is preserved or not. This configuration file uses two input
functions (handle call and handle cast) and a POI
relation that defines three POIs, one for each request output.
If we run SecEr using this configuration we obtain the
output shown at Listing 15. In the output we can see that no
errors are reported for function handle call, which means
that the request get count is served in the same way in
both versions. In contrast, an error is reported in function
handle cast, pointing to the POI defined in line (19) of
Listing 14. This means that for the request say hello the
behaviour has not been preserved, while for the request stop
it has been preserved. In particular, the error found reveals
that there is a discrepancy between the new server’s states
returned by each version of the program.

This simple example shows how SecEr can be used
to check behaviour preservation even in concurrent

context. The key is that there is no need to run an execution
with real concurrency; instead we can study directly the
relevant functions that are used during the concurrent
execution, like handle call or handle cast in the
example above.

8. Alternative Approaches to SecEr

There exist several techniques that are currently being applied
in professional Erlang projects to avoid regression faults.
SecEr has been designed as both an alternative and a
complement to these techniques.

In this section, we compare SecEr with the already
available debugging and testing techniques that could be used
when behaviour preservation is checked in an Erlang project.
To illustrate these techniques, we use a real improvement
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(1) -module(test etorrent).

(2) -compile(export all).

(3) poio1() ->
(4) { 'etorrent dht net old', 3, call, 1 }.
(5) poio2() ->
(6) { 'etorrent dht net old', 5, call, 1 }.
(7) poio3() ->
(8) { 'etorrent dht net old', 6, 'case', 1 }.
(9)
(10) poin1() ->
(11) { 'etorrent dht net new', 29, call, 1 }.
(12) poin2() ->
(13) { 'etorrent dht net new', 31, call, 1 }.
(14) poin3() ->
(15) { 'etorrent dht net new', 32, 'case', 1 }.
(16)
(17) rel() ->
(18) [{ poio1(), poin1() },
(19) { poio2(), poin2() },
(20) { poio3(), poin3() }].
(21)
(22) funs() ->
(23) "[query ping 0 test/0]".

Algorithm 6: Configuration file to test etorrent modules.

Server

＃ＦＣ？ＨＮ1 ＃ＦＣ？ＨＮ2

；ＨＭ1

Ｌ？Ｋ2Ｌ？Ｋ1

；ＨＭ2

Figure 4: A simple client-server model.

of performance done in the orddict:from list/1 func-
tion from the standard library of Erlang-OTP. The commit
description can be found at

https://github.com/erlang/otp/commit/
5a7b2115ca5b9c23aacf79b634133fea172a61fd

This commit did not introduce any regression faults so,
in order to make this study more interesting, we have also
included a fault (see lines (8-9) in Listing 17). Listing 16 shows
the code changed in the commit (function from list/1)
and the code involved in the change (function store/3).
Listing 17 shows the new version of function from list/1

and function reverse pairs/2, used to reverse a list. The
new version also uses function lists:ukeysort/2 (this
function is described within a comment in Listing 17) to sort
the given list. The original version uses function store/3

that, whenever an already stored key is stored again, replaces
its current value by the new one. On the other hand, function

lists:ukeysort/2 does exactly the contrary (see lines (13-
14) in Listing 17). This is the reason why the list needs to be
previously reversed. Therefore, the fault introduced assumes
that programmers forgot to reverse the list. This is what line
(9) in Listing 17 stages. The correct version is commented
on above in line (8). In the following, all the techniques are
applied to the described scenario.

8.1. Unit Testing. This is the most common way of checking
behaviour preservation. In Erlang, it is common to define
unit test cases and execute them with EUnit [16] (Erlang’s
unit testing tool). The test file of Algorithm 9 includes
unit test cases specific for our scenario. Those tests using
function from list test common/1 check whether the
intended behaviour has been implemented by using three
simple cases. On the other hand, the tests using function
from list vs/2 check whether the behaviour is preserved
across different versions for the same three cases. The output
of EUnit with these test cases is shown in Listing 18.

https://github.com/erlang/otp/commit/5a7b2115ca5b9c23aacf79b634133fea172a61fd
https://github.com/erlang/otp/commit/5a7b2115ca5b9c23aacf79b634133fea172a61fd
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(1) -module(hello server).

(2)
(3) -behavior(gen server).

(4)
(5) -record(state, { count }).
(6)
(7)%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(8) %% gen server Function Exports

(9)%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(10)
(11) -export([ % The behavior callbacks

(12) init/1, % - initializes our process

(13) handle call/3, % - handles synchronous calls

(14) handle cast/2, % - handles asynchronous calls

(15) terminate/2]). % - is called on shut-down

(16)
(17) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(18) %% gen server Function Definitions

(19) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(20)
(21) init([]) ->
(22) { ok, #state{ count=0 } }.
(23)
(24) -spec handle call(get count, any(),{ state, integer() }) ->
(25) { reply, integer(),{ state, integer() } }.
(26) handle call(get count, From, #state{ count=Count }) ->
(27) { reply, Count, #state{ count=Count+1 } }.
(28)
(29) -spec handle cast(stop | say hello, { state, integer() }) ->
(30) { stop, any(),{ state, integer() } }
(31) |{ noreply, { state, integer() } }.
(32) handle cast(stop, State) ->
(33) { stop, normal, State };
(34)
(35) handle cast(say hello, State) ->
(36) io:format("Hello∼n"),
(37) { noreply,
(38) % #state{ count = State#state.count+1 } % RIGHT

(39) #state{ count = State#state.count-1 } % WRONG

(40) }.
(41)
(42) terminate( Reason, State) ->
(43) error logger:info msg("terminating∼n"),
(44) ok.

Algorithm 7: hello server.erl.

EUnit reports 3 failing tests: two were expected, since
they are pointing to the tests that include the wrong ver-
sion of the code (functions from list new wrong test/0
and from list old test vs new wrong test/0). How-
ever, there is a third one that is a false positive. False posi-
tives happen because EUnit cannot find discrepancies when
comparing erroneous computations. Therefore, an input that
produces an error in the first version is reported as a failing
test without checking whether it also fails in the second
version.

All in all, unit testing allows us to identify a failing test
case, which is a starting point to find the source of the
discrepancy. The main problem is that unit testing requires

writing a robust set of tests. Note that, without the second
test case, i.e., [{ 0, 1 }, { 0, 2 }, { 2, 3 }], no test would fail
(except for the false positive).

8.2. Property Testing. This approach is similar to unit testing,
but it allows us to define more test cases in an easy way. It was
first defined for Haskell and named QuickCheck [17]. Erlang
has two implementations of this approach: QuviQ’s Erlang
QuickCheck [18] and PropEr [11]. Both are almost
equivalent, with the exception of some small particularities
(https://github.com/manopapad/proper#incompatibilities-
with-quviqs-quickcheck). The big difference is that theErlang
QuickCheck is a commercial tool developed by QuviQ AB,

https://github.com/manopapad/proper
https://github.com/manopapad/proper
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$ ./secer -pois "test hello server:rel()" -funs "test hello server:funs()" -to 15

Function: handle call/3

----------------------------

Generated test cases: 19083

Both versions of the program generate identical traces for the defined points of interest

----------------------------

Function: handle cast/2

----------------------------

Generated test cases: 42

Mismatching test cases: 21 (50.0%)

POIs comparison:

+ { { 'examples/gen server/hello server.erl',37,tuple,1 },
{ 'examples/gen server/hello server wrong.erl',37,tuple,1 } }

Unexpected trace value => 21 Errors

Example call: handle cast(say hello,{ state,4 })
------ Detected Error ------

Call: handle cast(say hello,{ state,4 })
Error Type: Unexpected trace value

POI: ({ 'examples/gen server/hello server.erl',37,tuple,1 }) trace:

[{ noreply,{ state,5 } }]
POI: ({ 'examples/gen server/hello server wrong.erl',37,tuple,1 }) trace:

[{ noreply,{ state,3 } }]
----------------------------

Listing 15: SecEr reports discrepancies in the functions implementing the requests.

(1) -module(test hello server).

(2) -export([rel/0, funs/0]).

(3)
(4) file(0) ->
(5) 'examples/gen server/hello server.erl';

(6) file(1) ->
(7) 'examples/gen server/hello server wrong.erl'.

(8)
(9) poi rel(POI) ->
(10) { POI(0), POI(1) }.
(11)
(12) poi1(Version) ->
(13) { file(Version), 27, tuple, 1 }.
(14)
(15) poi2(Version) ->
(16) { file(Version), 33, tuple, 1 }.
(17)
(18) poi3(Version) ->
(19) { file(Version), 37, tuple, 1 }.
(20)
(21) rel() ->
(22) [poi rel(fun poi1/1), poi rel(fun poi2/1),

(23) poi rel(fun poi3/1)].

(24)
(25) funs() ->
(26) "[handle call/3, handle cast/2]".

Algorithm 8: test hello server.erl.
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(1) -spec from list(List) -> Orddict when

(2) List:: [{ Key:: term(), Value:: term() }],
(3) Orddict:: orddict().

(4)
(5) from list(Pairs) ->
(6) lists:foldl(

(7) fun ({ K,V }, D) -> store(K, V, D) end, [], Pairs).

(8)
(9) -spec store(Key, Value, Orddict1) -> Orddict2 when

(10) Key:: term(),

(11) Value:: term(),

(12) Orddict1:: orddict(),

(13) Orddict2:: orddict().

(14)
(15) store(Key, New, [{ K, }=E|Dict]) when Key < K ->
(16) [{ Key,New },E|Dict];
(17) store(Key, New, [{ K, }=E|Dict]) when Key > K ->
(18) [E|store(Key, New, Dict)];

(19) store(Key, New, [{ K, Old }|Dict]) -> % Key == K

(20) [{ Key,New }|Dict];
(21) store(Key, New, []) -> [{ Key,New }].

Listing 16: orddict old.erl.

(1) -spec from list(List) -> Orddict when

(2) List:: [{ Key:: term(), Value:: term() }],
(3) Orddict:: orddict().

(4)
(5) from list([]) -> [];

(6) from list([{ , }]=Pair) -> Pair;

(7) from list(Pairs) ->
(8) lists:ukeysort(1, reverse pairs(Pairs, [])) % RIGHT

(9) lists:ukeysort(1, Pairs). % WRONG

(10)
(11) % ukeysort(N, TupleList1) -> TupleList2

(12) % Returns a list containing the sorted elements of

(13) % list TupleList1 where all except the first tuple of

(14) % the tuples comparing equal have been deleted.

(15) % Sorting is performed on the Nth element of the tuple

(16)
(17) reverse pairs([{ , }=H|T], Acc) ->
(18) reverse pairs(T, [H|Acc]);
(19) reverse pairs([], Acc) -> Acc.

Listing 17: orddict new.erl.

while PropEr is an open-source project available at GitHub.
The authors of the commit defined their property tests for
Erlang QuickCheck. Therefore, we have adapted them to
PropEr (1st property: https://github.com/mistupv/secer/blob/
master/examples/orddict/orddict t1.erl; 2nd property: https://
github.com/mistupv/secer/blob/master/examples/orddict/
orddict t2.erl) (with really few modifications) to make it
available for any interested researcher that wants to reproduce
the outputs shown below.

In the commit, the authors explain what properties they
check and how they check them (the source code of the
properties can be found in the commit):

The first QuickCheck test first generates a list
of pairs of terms, then uses the list to create
both an original and revised orddict using
from list/1, then verifies that the results of the
operation are the same for both instances. The

https://github.com/mistupv/secer/blob/master/examples/orddict/orddict_t1.erl
https://github.com/mistupv/secer/blob/master/examples/orddict/orddict_t1.erl
https://github.com/mistupv/secer/blob/master/examples/orddict/orddict_t2.erl
https://github.com/mistupv/secer/blob/master/examples/orddict/orddict_t2.erl
https://github.com/mistupv/secer/blob/master/examples/orddict/orddict_t2.erl
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> eunit:test(orddict tests).

orddict tests: from list new wrong test...∗failed∗
in function orddict tests:'-from list test common/1-fun-1-'/1 (orddict tests.erl, line (21))

in call from orddict tests:from list test common/1 (orddict tests.erl, line (19))

∗∗error:{ assertEqual,[{ module,orddict tests },
{ line,(21) },
{ expression,"Mod: from list ( [{ 0 , 1 }, { 0 , 2 }, { 2 , 3 } ] )" },
{ expected,[{ 0,2 },{ 2,3 }] },
{ value,[{ 0,1 },{ 2,3 }] }] }

output:<<"">>
orddict tests: from list old test vs new wrong test...∗failed∗
in function orddict tests:'-from list vs/2-fun-1-'/2 (orddict tests.erl, line (44))

in call from orddict tests:from list vs/2 (orddict tests.erl, line (42))

∗∗error:{ assertEqual,[{ module,orddict tests },
{ line,(44) },
{ expression,"Mod2: from list ( Case2 )" },
{ expected,[{ 0,2 },{ 2,3 }] },
{ value,[{ 0,1 },{ 2,3 }] }] }

output:<<"">>
orddict tests: from list old test vs new ok test...∗failed∗
in function orddict old:'-from list/1-fun-0-'/2 (orddict old.erl, line 60)

called as '-from list/1-fun-0-'(1,[])

in call from lists:foldl/3 (lists.erl, line 1263)

in call from orddict tests:'-from list vs/2-fun-2-'/2 (orddict tests.erl, line (46))

∗∗error:function clause

output:<<"">>
=======================================================

Failed: 3. Skipped: 0. Passed: 2.

error

Listing 18: EUnit’s output.

second QuickCheck test is similar except that it
first creates an instance of the original and revised
orddicts and then folds over a randomly-generated
list of orddict functions, applying each function
to each orddict instance and verifying that the
results match.

The output of PropEr is depicted in Listings 19 and
20 (because the inputs are randomly generated, the results
may vary across different runs). The first property fails with
input [{ 1,false },{ 1,true }].This is one of the cases where
the buggy version behaves differently, so the error reported
actually identifies a discrepancy. Nevertheless, the error
found by PropEr with the second property is a mismatch
in the comparison of the resulting dictionaries, without even
executing the list of orddict functions; thus this error is
synonymous of the first one.

As it happens with unit testing, this approach is handy
to find a failing test case to begin the debugging process that
finds the source of the discrepancy. However, the definition
of properties is difficult and can miss some corner cases. In
general, property testing is more powerful than unit testing
because each property can be used to generate an arbitrary
number of tests, but the definition of properties often involves
more time.

8.3. CutEr. Even though we use CutEr [9] in the internals of
our tool to generate inputs, it was conceived as a standalone
tool.Themain difference with the previous approaches is that
CutEr is awhite-box approach. It does not randomly generate
the inputs, but it analyzes the source code to generate inputs
that explore different execution branches.

In our scenario, one can use CutEr to generate test
cases for the current version and/or for the previous version.
Unfortunately, by doing this, the relationship between the
versions is not considered during the generation; i.e., the
introduced changes are not considered in the test generation.
In Listing 21, we can see that CutEr was able to generate for
the previous version some list where some of the elements
have a common key, i.e., tests that could reveal the error.
The time used to compute all the tests was 2 minutes 43
seconds. For the current version, Listing 22 shows that CutEr
only generated 5 input tests. The time used to generate them
was 7.4 seconds. Only one generated test has tuples with
a repeated key: from list([0.0,2.0,0,1.0]). Note that
this case is useful in our scenario, but it could be useless in
other situations. For instance, if pattern matching was used
to compare values, 0 and 0.0 would not be considered as
matching values.

This example shows that CutEr can be very helpful to
generate a lot of test cases that cover most paths in the code.
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(1) -module(orddict tests).

(2) -compile(export all).

(3)
(4) -include lib("eunit/include/eunit.hrl").

(5)
(6) from list old test() ->
(7) from list test common(orddict old).

(8)
(9) from list new ok test() ->
(10) from list test common(orddict new ok).

(11)
(12) from list new wrong test() ->
(13) from list test common(orddict new wrong).

(14)
(15) from list test common(Mod) ->
(16) ?assertEqual(

(17) [{ 0,1 }, { 1, 2 }, { 2, 3 }],
(18) Mod:from list([{ 0,1 }, { 1, 2 }, { 2, 3 }])),
(19) ?assertEqual(

(20) [{ 0,2 }, { 2, 3 }],
(21) Mod:from list([{ 0,1 }, { 0, 2 }, { 2, 3 }])),
(22) ?assertError(

(23) function clause,

(24) Mod:from list([1, { 1, 2 }, { 2, 3 }])).
(25)
(26) from list old test vs new wrong test() ->
(27) from list vs(orddict old, orddict new wrong).

(28)
(29) from list old test vs new ok test() ->
(30) from list vs(orddict old, orddict new ok).

(31)
(32) from list vs(Mod1, Mod2) ->
(33) Case1 =

(34) [{ 0,1 }, { 1, 2 }, { 2, 3 }],
(35) Case2 =

(36) [{ 0,1 }, { 0, 2 }, { 2, 3 }],
(37) Case3 =

(38) [1,{ 1, 2 }, { 2, 3 }],
(39) ?assertEqual(

(40) Mod1:from list(Case1),

(41) Mod2:from list(Case1)),

(42) ?assertEqual(

(43) Mod1:from list(Case2),

(44) Mod2:from list(Case2)),

(45) ?assertEqual(

(46) Mod1:from list(Case3),

(47) Mod2:from list(Case3)).

Algorithm 9: EUnit tests.

However, what test cases can reveal a different behaviour
remains unknown. Therefore, we are forced to run the test
cases on the other version to check that the results are the
same. When a discrepancy is found, a debugging process
should be started. Moreover, as we can see in the CutEr’s
execution with the old version, the time needed to compute
all the test cases is significantly bigger due to the white-box
analysis.

8.4. Print Debugging. Print debugging is still a very extended
practice because it allows us to quickly check the values of any

variable at some specific point. Essentially, we must modify
the code to catch the value of some selected expressions. Two
drawbacks are that these changes can introduce new errors,
and they should be undone when debugging has finished.

In our scenario, we can use one of the test cases
reported by PropEr to start the debugging process, e.g.,
orddict:from list([{ 1,false },{ 1,true }]). Before
executing this test case in the two versions, we must add
some prints to show some intermediate values. In particular,
we replaced lines (6) and (7) of Listing 16 with the code
shown in Listing 23.With this addition we are able to observe
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> orddict t1:test().

............................!

Failed: After 29 test(s).

An exception was raised: error:{ badmatch,false }.
Stacktrace: [{ orddict t1,'-prop equivalent dict modules/0-fun-0-',1,

[{ file,"orddict t1.erl" },{ line,25 }] }].
[{ 1,1 },{ 1,-2 }]
Shrinking...(3 time(s))

[{ 1,false },{ 1,true }]
false

Listing 19: PropEr’s output for the first property.

> orddict t2:test().

..................................................................................

.................!

Failed: After 100 test(s).

An exception was raised: error:{ badmatch,false }.
Stacktrace: [{ orddict t2,'-prop equivalent dict modules/0-fun-0-',2,

[{ file,"orddict t2.erl" },{ line,39 }] },
{ lists,foldl,3,[{ file,"lists.erl" },{ line,1263 }] },
{ orddict t2,'-prop equivalent dict modules/0-fun-1-',1,

[{ file,"orddict t2.erl" },{ line,37 }] }].
{ [{ 2.50411088062667,-7.851645940978741 },{ 1,<<239,224,172,126>> },

{ -0.6360219784877551,4 },{ 1,<<177,118,23,95,55>> }],[store,fetch,fetch,find] }
Shrinking........(8 time(s))

{ [{ 1,false },{ 1,0 }],[is key] }
false

Listing 20: PropEr’s output for the second property.

the input accumulator and the output accumulator in each
iteration. For the code in Listing 17, the changes should be
made inside function lists:ukeysort/2 because it is the
function in charge of calculating the final output oforddict:
from list/1. The idea of the change in this case is similar,
so the code is modified as it is shown in Listing 24 (all
complete files are available at https://github.com/mistupv/
secer/tree/master/examples/orddict).

The output produced by the print statements for both
the old and new versions is depicted in Listings 25 and 26,
respectively. It can help to understand that the old version
keeps the new value of a key that is already at the dictionary,
while function lists:ukeysort/2 does the contrary. If
this is not evident for programmers, then they need to
add more print statements in the auxiliary functions of
lists:ukeysort/2 and in function orddict:store/3.

This example shows that, evenwith a small change like the
one considered here, the number of functions involved can
be quite big and the use of prints to the standard output can
become an impracticable approach. Moreover, this approach
can introduce new errors due to the additions/deletions in the
(already buggy) code.

8.5. The Erlang Debugger. Known as Debugger [19], it is
a GUI for the Erlang interpreter that can be used for the

debugging of Erlang programs. It includes common debug-
ging features such as breakpoints, single-stepped execution,
and the ability to show/modify variable values.

In our scenario, we can use Debugger to place some
breakpoints in the code and observe, step by step, how the
dictionaries are created in each version. The first intuition
is to place a breakpoint in line (7) of Listing 16 to observe
the evolution of the accumulator (as we did in the previous
technique). However, because breakpoints refer to a (whole)
line, we are already facing one of the problems of this
approach: we cannot place the breakpoint in the desired
spots (the input accumulator and the output accumulator).
Fortunately, one can easily change the code so each expres-
sion of interest is placed in one different line allowing the
use of breakpoints as desired, i.e., in the header of the
anonymous function and in the line that contains the call to
the orddict:store/3 function. When we run the test we
realize that the breakpoints are ignored and that the test is
run without stopping. Therefore, we need to add breakpoints
for each line of the orddict:store/3 function, which has
various clauses. Note that all the breakpoint definitions are
done through the graphical interface so this process is quite
slow. After adding these new breakpoints, the execution does
stop at some of these new breakpoints and we are able to
inspect the intermediate results. We should do something

https://github.com/mistupv/secer/tree/master/examples/orddict
https://github.com/mistupv/secer/tree/master/examples/orddict
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$ ./cuter orddict oldfrom list '[[{ 0,1 }]]' -r -v

Compiling orddict old.erl... OK

Testing orddict old:from list/1...

orddict old:from list([{ 0,1 }])... ok

xxx

orddict old:from list([])... ok

...

orddict old:from list([{ 0,0.0 },{ 0,1.0 }])... ok

...

orddict old:from list([{ [],0.0 },{ [],1.0 }])... ok

...

orddict old:from list([{ 0,0.0 },{ 0,1.0 },{ 4,2.0 }])... ok

...

Solver Statistics...

- Solved models: 84

- Unsolved models: 432

Listing 21: CutEr’s output for the old version (trimmed).

$ ./cuter orddict new wrong from list '[[{ 0,1 }]]' -r -v

Compiling orddict new wrong.erl... OK

Testing orddict new wrong:from list/1...

orddict new wrong:from list([{ 0,1 }])... ok

orddict new wrong:from list([])... ok

xx

orddict new wrong:from list([{ 0.0,1.0 },{ 3.0,2.0 }]) ... ok

xxxxxxxxxxx

orddict new wrong:from list([{ 0,0.0 },{ 1.0,2.0 }])... ok

orddict new wrong:from list([{ 0.0,2.0 },{ 0,1.0 }])... ok

orddict new wrong:from list([{ 0,0.0 },{ 1,1.0 }])... ok

xx

Solver Statistics...

- Solved models: 5

- Unsolved models: 15

Listing 22: CutEr’s output for the current version.

(1) lists:foldl(
(2) fun ({ K,V }, D) ->
(3) io:format("Input: ∼p\n", [D]),

(4) Res = store(K, V, D),

(5) io:format("Output: ∼p\n", [Res]),

(6) Res

(7) end,

(8) [],

(9) Pairs).

Listing 23: Fragment of orddict old.erl with io:format/2.

similar with the code of Listing 17. In this case, it makes more
sense to add breakpoints inside the lists:ukeysort/2
function. Figure 5 shows an instant of the Debugger’s session
where a user can realize that the second elementwith repeated
key is ignored, instead of the first one.

(1) ukeysort(I, L) when is integer(I), I > 0 ->
(2) io:format("Input: ∼p\n", [L]),

(3) Res =

(4) case L of

(5) ...

(6) end,

(7) io:format("Output: ∼p\n", [Res]),

(8) Res.

Listing 24: Fragment of lists:ukeysort/2 with io:format/2.

Although Debugger is very helpful in general, the inser-
tion of breakpoints through the GUI can become tedious.
Moreover, as shown in the example, a single line in Erlang
can include several interesting spots where one would place
a breakpoint. Unfortunately, Debugger does not include a
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> orddict old:from list([{ 1,false },{ 1,true }]).
Input: []

Output: [{ 1,false }]
Input: [{ 1,false }]
Output: [{ 1,true }]
[{ 1,true }]

Listing 25: Output of orddict old.erl with io:format/2.

> orddict new wrong:from list([{ 1,false },{ 1,true }]).
Input: [{ 1,false },{ 1,true }]
Output: [{ 1,false }]
[{ 1,false }]

Listing 26: Output of orddict new.erl with io:format/2.

way to define breakpoints in a fine-grained way, thus forcing
users to modify their code so they can define the breakpoints
as desired. The good point of this approach is that when all
configurations are set up, it becomes a very illustrative way to
see what the code is doing in each place in order to find the
source of an unexpected behaviour.

8.6. Erlang’s Declarative Debugger (EDD). Algorithmic
debugging is a technique that allows debugging a program
through an interview with the programmer where questions
refer to the intended behaviour of the computations. In
functional languages, the questions are about the validity of
a function call and its result. Erlang has an implementation
of this approach named EDD [20].

Listing 27 shows an EDD session to debug our buggy
program. In this session, we use the same input test case as in
the previous debugging approaches, i.e., from list([{ 1,
false },{ 1,true }]). EDD starts asking about the call
lists:ukeysort(1, [{ 1, false }, { 1, true }]). The
computed value is correct, so the answer given by a user
should be yes (y). With only this question EDD finishes
(because there are no more calls inside this function) and
blames the third clause of orddict:from list/1.

Although, in general, declarative debugging is very help-
ful to debug buggy programs, for this example, it does not
help too much. EDD points to the source of the discrepancy,
so the user can find that there is something wrong in one
of the arguments of lists:ukeysort/2. Nevertheless, with
the information provided, it is still not easy to interpret what
the error is or how to solve it.

8.7. Dialyzer. Erlang is a dynamically typed language. There-
fore, type checking is not performed at compilation time and
this can result in several undetected errors that eventually
arise at execution time. While many programmers like this
feature, others miss a type system. Erlang has a tool named
Dialyzer [21] that partially solves this problem through the
use of static analysis. Dialyzer’s input is an Erlang module,

and it reports any type discrepancies found in its function
definitions. The use of type contracts (spec in Erlang) helps
Dialyzer to improve their results.

In our scenario, Dialyzer is not really helpful. It does not
report any type discrepancy (because they do not exist) in the
buggy code. However, for other scenarios, it could discover
regression faults when incorrect values (with an unexpected
type) are involved.

8.8. Checking the Performance Improvement. The authors of
the commit provide a link to a system implemented by
themselves that they used to check whether the performance
of the orddict:from list/1 function has been actually
improved. When this program is run the results obtained
are similar to the ones included in the commit message. The
fact that they implemented ad hoc that program to check the
performance improvement demonstrates (recall that this is a
commit on the OTP-Erlang package, i.e., the official Erlang
release) that, unfortunately, there is not any tool available to
check nonfunctional features like the execution time.

8.9. SecEr. Finally, we showhowSecErmakes a step forward,
being an alternative (or a complement) to the previous
approaches to identify discrepancies.

In order to check the performance of both versions,
the first step is to build a configuration file for SecEr (it is
shown in Algorithm 10). This configuration file specifies that
the results computed in function orddict:from list/1
are the same in both versions. Lines (10), (11), and (12)
define POIs to compare the unique clause in the original
version with each of the three new clauses in the current
version (in future versions, we plan to add special POIs
that refer to all outputs of a function, without the need for
defining the output of each clause. The POI relation rel1/0
could be redefined to something like [{ { file(o), 60,
function, 1 }, { file(n), 59, function, 1 } }]). The
output of SecEr with this configuration is shown in Listing
28. SecEr does automatically all the work that we had
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Figure 5: Debugger’s session.

> edd:dd( "orddict new wrong:from list([{ 1,false },{ 1,true }])").
lists:ukeysort(1, [{ 1, false }, { 1, true }]) = [{ 1, false }]? [y/n/t/v/d/i/s/u/a]: y

Call to a function that contains an error:

orddict new wrong:from list([{ 1, false }, { 1, true }]) = [{ 1, false }]
Please, revise the third clause:

from list(Pairs) -> lists:ukeysort(1, Pairs).

Listing 27: EDD’s session for the current version.

to do manually in the previous approaches: (i) test cases
generation, (ii) checking whether test cases evaluate the
POIs, (iii) comparison of traces, taking into account the fact
that the same error in both versions is not a discrepancy, and
(iv) producing a report with all discrepancies. As a result,
SecEr has identified the discrepancies and it has shown a
sample call that produces the discrepancy.

At this point, we can use SecEr again to inspect the inter-
mediate results produced during the computation reported as
responsible for the discrepancy. Since both versions compute
the dictionary in a very different way, instead of using SecEr
to compare the traces, it is better to use it to store the
values generated at certain points and print all of them

afterwards so that we can manually check them. For this,
we can (i) define POIs to observe the key value introduced
in each iteration and the resulting dictionary, (ii) define an
input function that simply calls one of the failing cases that
were reported in Listing 28, and (iii) use the predefined
comparison function secer:show/0 that simply prints the
values of the POIs traces. Algorithm 11 shows a configuration
file that implements these ideas. The output of SecEr with
this configuration prints the values generated in the selected
POIs for each version of the program (it is shown in Listing
29).

SecEr can also be used to check whether a performance
improvement has been actually achieved. In the current
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$ ./secer -pois "test orddict:rel1()" -funs "test orddict:funs()" -to 15

Function: from list/1

----------------------------

Generated test cases: 16428

Mismatching test cases: 555 (3.37%)

POIs comparison:

+ { { 'orddict/orddict old.erl',60,call,1 },
{ 'orddict/orddict new wrong.erl',62,call,1 } }

Unexpected trace value => 555 Errors

Example call: from list([{ { },-9 },{ { },3.1981469696010247 }])
------ Detected Error ------

Call: from list([{ { },-9 },{ { },3.1981469696010247 }])
Error Type: Unexpected trace value

POI: ({ 'orddict/orddict old.erl',60,call,1 }) trace:

[[{ { },3.1981469696010247 }]]
POI: ({ 'orddict/orddict new wrong.erl',62,call,1 }) trace:

[[{ { },-9 }]]
----------------------------

Listing 28: SecEr’s output when comparing the two versions.

(1) -module(test orddict).

(2) -compile(export all).

(3)
(4) file(o) ->
(5) 'orddict/orddict old.erl';

(6) file(n) ->
(7) 'orddict/orddict new wrong.erl';

(8)
(9) rel1() ->
(10) [{ { file(o), 60, call, 1 }, { file(n), 59, list, 2 } },
(11) { { file(o), 60, call, 1 }, { file(n), 60, { var, 'Pair' }, 2 } },
(12) { { file(o), 60, call, 1 }, { file(n), 62, call, 1 } }].
(13)
(14) funs() ->
(15) "[from list/1]".

Algorithm 10: SecEr’s configuration file to identify discrepancies.

version of SecEr, this involves small changes in the code,
but we are working to automate these changes. The changes

needed are very simple and applied in the last expression of
each clause involved. For instance,

(1) Start = os:timestamp(),

(2) Res = lists:ukeysort(1, reverse pairs(Pairs, [])),

(3) { Pairs, timer:now diff(os:timestamp(), Start) },
(4) Res.

With these modifications we can now trace the input and
the time used to compute each result. In order to identify
a significative difference in the calculated runtimes, we
need to produce big lists for the input. However, the lists
that SecEr generates are in most cases too small for this
purpose. Therefore, in the configuration file we can include
the following function to produce bigger lists:

(1) from list replicate(Pairs) ->

(2) from list(replicate(5000, Pairs, [])).

(3)
(4) replicate(1, List, Acc) ->
(5) Acc ++ List;

(6) replicate(N, List, Acc) ->
(7) NList = lists:map(fun inc/1, List),

(8) replicate(N - 1, NList, Acc ++ List).
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$ ./secer -pois "test orddict:rel1()" -funs "test orddict:funs()" -to 3 -cfun "secer:show()"

Trace old version:

POI: { orddict/orddict old.erl',60,tuple,1 }
Value: { { },-9 }
POI: { 'orddict/orddict old.erl',60,application,2 }
Value: [{ { },-9 }]
POI: { orddict/orddict old.erl',60,tuple,1 }
Value: { { },3.1981469696010247 }
POI: { 'orddict/orddict old.erl',60,application,2 }
Value: [{ { },3.1981469696010247 }]
Trace new version:

POI: { 'orddict/lists.erl',836,{ var,'X' },1 }
Value: { { },-9 }
POI: { 'orddict/lists.erl',836,{ var,'Y' },1 }
Value: { { },3.1981469696010247 }
POI: { 'orddict/lists.erl',839,application,1 }
Value: [{ { },-9 }]
Function: secer failing test/0

----------------------------

Generated test cases: 1

Both versions of the program generate identical traces for the defined points of interest

----------------------------

Listing 29: SecEr’s output when tracing and comparing values in both versions.

(1) -module(test orddict).

(2) -compile(export all).

(3)
(4) file(o) ->
(5) 'orddict/orddict old.erl';

(6) file(l) ->
(7) 'orddict/lists.erl'.

(8)
(9) rel1() ->
(10) [{ { file(o), 60, tuple, 1 }, { file(l), 836, { var, 'X' }, 1 } },
(11) { { file(o), 60, tuple, 1 }, { file(l), 836, { var, 'Y' }, 1 } },
(12) { { file(o), 60, call, 2 }, { file(l), 839, call, 1 } }].
(13)
(14) funs() ->
(15) "[secer failing test/0]".

Algorithm 11: SecEr’s configuration file to trace values.

(9)
(10) inc({ X, V }) ->
(11) { { 1, X },V }.

This function creates 5000 copies of the input list changing
their keys in each iteration. The new configuration file
(shown in Algorithm 12) uses this function as input function,
and it keeps the same POI relation as in Algorithm 10.
Additionally, we use the predefined comparison function
secer:list comp perf/1 to report an error when the
new version takes more time than the original version.
We should discard those test cases where the difference
is not significative, so we fix a threshold (defined by the

secer:list comp perf/1 function parameter) of, e.g.,
2000 microseconds. The output generated by SecEr using
this configuration file is shown in Listing 30. After having
generated 503 lists of different sizes, in only one case the new
version performs worse than the original version. This is
probably an outlier, so maybe if we use this test input again,
it will also run faster in the new version. However, reporting
extra information, we can increase the confidence in the
performance study. We can modify the comparison function
used by secer:io list comp perf/1, whichworks exactly
like the previous one but also prints information about the
computation that runs faster in the new version. With this
change, the output indicates the exact improvement achieved
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by the new version. A sample of some lines produced for this
example is as follows:

(1) ⋅ ⋅ ⋅
(2) Faster Calculation: Length: 400 -> 13365 vs 1524 ms.

(3) Faster Calculation: Length: 800 -> 49912 vs 2566 ms.

(4) Faster Calculation: Length: 1000 -> 26944 vs 3128 ms.

(5) ⋅ ⋅ ⋅

In all the printed cases, 398 in this example (the rest were
discarded because of the defined threshold), there is a
significative improvement in the computation time. These
data increase the reliability of the study.

We can conclude that SecEr can be especially helpful in
those contexts where no test suite is available; and even if
we already have test cases, it can be used to generate new
test cases that are specific to test POIs. It can also be helpful
to print values for a concrete failing test or even for various
(through the introduction of more input functions). More-
over, it can be also helpful in checking nonfunctional features
like performance improvement. Finally, we want to highlight
that SecEr has been used in the previous examples for
three different purposes (discovering discrepancies, finding
the source of a discrepancy, and checking the performance
preservation), and in the three cases the methodology was
exactly the same.

9. Experimental Evaluation

In this section we study the performance and the scalability
of SecEr. In particular, we compare different configurations
and study their impact on the performance. First, we collected
examples from commits where some regression is fixed.
Most of the considered programs were extracted from EDD
[20] (https://github.com/tamarit/edd/tree/master/examples)
because this repository contains programs with two code
versions: one version of the code with a bug and a second
version of the same code with the expected behaviour, i.e.,
where the bug is fixed. In order to obtain representative
measures, the experiments were designed in such a way
that each program was executed 21 times with a timeout
of 15 seconds each. The first execution was discarded in
all cases (because it loads libraries, caches data, etc.). The
average computed for the other 20 executions produced one
single data. We have repeated this process enabling and
disabling the two most relevant features of SecEr: (i) the
use of CutEr and (ii) the use of mutation during the ITC
generation. The goal of this study is to evaluate how these
features affect the accuracy and performance of the tool.
To compare the configurations we computed three statistics
for each experiment: the average amount of generated tests,
the average amount of mismatching tests, and the average
percentage ofmismatching tests with respect to the generated
ones.

Table 1 summarizes the experiments (all data and
programs used in this experiment are available online at
https://github.com/mistupv/secer/tree/master/benchmarks),

where the best result for each program has been highlighted
in bold. These results show that our mutation technique is
able to produce better test cases than random test generation.
Clearly, the configuration that does not use CutEr (the one in
the middle) is almost always the best: it generates in all cases
the highest amount of test cases, and it also generates more
mismatching test cases (except for the erlson2 program).
The interpretation of these data is the following: CutEr
invests much time to obtain the initial set of inputs, but the
concolic test cases it produces do not improve enough the
quality of the suite. This means that in general it is better
to invest that time in generating random test cases, which
on average produce more mismatching test cases. There are
two exceptions: erlson2 and vigenere. In erlson2 the error is
related to a very particular type of input (less than 0.02% of
the generated tests report this error), and CutEr directs the
test generation to mismatching tests in a more effective way.
With respect to the second program (vigenere), although
the configuration that does not run CutEr generates more
mismatching tests than the rest, the tests generated by CutEr
allow the tool to reach a mismatching result faster. This is
the reason for the slight improvement in the mismatching
ratio. The common factor in both programs is that the
mismatching ratio is rather low.This is a clear indication that
CutEr can be useful when some corner cases are involved in
the regression.

We can conclude that the results obtained by the tool
are strongly related to the location of the error and the type
of error. If it is located in an infrequently executed code or
it is a corner case, the most suitable configuration is the
one running CutEr. In contrast, if the error is located in
a usually executed code, we can increase the mismatching
tests generation by disabling CutEr. Because we do not know
beforehandwhat the error is andwhere it is, themost effective
way of using the tool is the following: First, run SecEr

without CutEr, trying to maximize the mismatching test
cases. If no discrepancy is reported, then enable CutEr to
increase the reliability of the generated test cases.

We have also evaluated the growth rate of the generated
test cases and of the percentage of mismatching ITCs. For
this experiment we selected the program turing because
it produces a considerable amount of tests in the three
configurations, and also because the mismatching ratio is
similar in all of them and not too close to 100%. We ran
the three configurations of SecEr with this program with a
timeout ranging between 4 and 20 seconds with increments
of 2 seconds.
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$ ./secer -pois "test orddict perf:rel1()" -funs "test orddict perf:funs()" -to 60 -cfun "secer:lists

comp perf(2000)"

Function: from list replicate/1

----------------------------

Generated test cases: 503

Mismatching test cases: 1 (0.19%)

POIs comparison:

+ { "User Defined","User Defined" }
Unexpected trace value => 1 Errors

Example call: from list replicate([{ { [],4.686994537220225,{ },-1.5219780046371083 },
...])

------ Detected Error ------

Call: from list replicate([{ { [],4.686994537220225,{ },-1.5219780046371083 },...])
Error Type: Slower Calculation: Length: 700 -> 1031 vs 22564 𝜇s.
----------------------------

Listing 30: SecEr’s output when comparing performance.

(1) -module(test orddict perf).

(2) -compile(export all).

(3)
(4) file(o) ->
(5) 'orddict/orddict old perf.erl';

(6) file(n) ->
(7) 'orddict/orddict new ok perf.erl'.

(8)
(9) rel1() ->
(10) [{ { file(o), 62, tuple, 1 }, { file(n), 62, tuple, 1 } },
(11) { { file(o), 62, tuple, 1 }, { file(n), 67, tuple, 1 } },
(12) { { file(o), 62, tuple, 1 }, { file(n), 72, tuple, 1 } }].
(13) funs() ->
(14) "[from list replicate/1]".

Algorithm 12: SecEr’s configuration file to check the performance improvement.

Table 1: Experimental evaluation of three SecEr configurations with a timeout of 15 seconds.

CUTER + MUTATION NO CUTER NOMUTATION
Generated Mismatching % Generated Mismatching % Generated Mismatching %

ackermann 13.9 12.9 93.274% 21.8 21.8 100.0% 12.85 11.65 91.27%
caesar 37765.94 1615.1 4.2714% 103072.0 4534.95 4.3997% 38830.55 1702.7 4.3865%
complex number 69420.2 67236.55 96.8549% 89670.2 86891.75 96.9015% 67451.75 65349.95 96.8825%
erlson1 14780.05 1.55 0.0105% 14966.2 2.65 0.0177% 14872.5 1.9 0.0127%
erlson2 15494.5 0.95 0.0059% 16758.59 0.8 0.0047% 15553.8 0.95 0.0061%
mergesort 29718.35 25634.45 86.2585% 34315.1 29622.9 86.3259% 29994.3 25884.2 86.299%
rfib 28.05 28.05 100.0% 29.0 29.0 100.0% 28.4 28.4 100.0%
roman 513.79 101.95 19.8415% 535.35 108.05 20.1801% 512.2 101.7 19.8461%
sum digits 426.3 422.3 99.0615% 534.0 534.0 100.0% 434.0 430.0 99.078%
ternary 85.9 28.05 29.4187% 1005.4 323.25 32.2485% 130.0 39.7 27.8311%
turing 41828.65 28268.95 67.5825% 77247.45 52651.5 68.1595% 41573.1 28150.95 67.7135%
vigenere 115.55 2.1 1.269% 308.7 4.59 1.1849% 114.9 1.95 1.4849%
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Figure 6: Number of tests generated for Turing.
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Figure 7: Mismatching ratio produced for Turing.

The results of the experiment are shown in Figures 6
and 7. In Figure 6, the X axis represents SecEr timeouts
(in seconds), and the Y axis represents the number of test
cases generated. In all cases, the configuration that does
not run CutEr generates the highest number of tests. This
configuration has a linear growth. On the other hand, the
configurations using CutEr show a slow onset. They need at
least twelve seconds to reach a considerable increase in the
number of generated tests. There is not a significative differ-
ence between the configurations using CutEr. This means
that the mutation technique does not slow down the test
generation. In Figure 7, the X axis represents SecEr timeouts
(in seconds), and the Y axis represents the percentage of
mismatching tests over the total amount of tests generated.
Clearly, in the three configurations, the quality of the gener-
ated test cases increases over time (i.e., the mismatching tests
ratio increases over time). The configuration that does not
run CutEr presents the highest percentage. In this case, the
two approaches using CutEr produce different results. With
smaller timeouts, it is preferable to enable mutation.

10. Related Work

The orchestrated survey of methodologies for automated
software test case generation [22] identifies five techniques
to automatically generate test cases. Our approach could
be included in the class of adaptive random technique as
a variant of random testing. Inside this class, the authors
identify five approaches. Our mutation approach of the
test input shares some similarities with various of these
approaches like selection of best candidate as next test case
or exclusion. According to a survey on test amplification
[23], which identifies four categories that classify all the work
done in the field, our work could be included in the category
named amplification by synthesizing (new tests with respect to
changes). Inside this category, our technique falls under the
“other approaches” subcategory.

Automated behavioural testing techniques like Soares et
al. [6] andMongiovi [5] are similar to our approach, but they
are restricted in the kind of changes that can be analyzed
(they only focus on refactoring). In contrast, our approach is
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independent of the kind (or the cause) of the changes, being
able to analyze the effects of any change in the code regardless
of its structure.

There are several works focused on the regression test
case generation. DiffGen [24] instruments programs to add
branches in order to find the differences in the behaviour
between two versions of the program, and then it explores
the branches in both versions, and finally it synthesizes test
cases that show the detected differences. An improvement
of this approach is implemented in the tool eXpress [25]
where the irrelevant branches are pruned in order to improve
the efficiency. Our technique, in contrast, is not directed by
the computation paths, but it is directed by the POIs (i.e.,
what the user wants to observe). Another related approach
is model-based testing for regression testing. This approach
studies the changesmade in amodel, e.g., UML [26] or EFSM
models based on dependence analysis [27], and test cases are
generated from them. We do not require any input model
neither infer it, so although some ideas are similar, the way
to implement them is completely different. Finally, there are
works that use symbolic execution focused on the regression
test generation, like [28, 29]. All these works are directed to
maximize the coverage of the generated test suites. Moreover,
they need an existing regression test case suite to start with.
There exist alternatives, but with the same foundations, like
[30] where a tree-based approach is proposed to achieve
high coverage. Our approach is not directed by coverage, but
instead by the POIs, and we do not require any regression test
as input.

Automated regression test case generation techniques
like Korel and Al-Yami [31] are also very similar to our
approach, but the user can only select output parameters
of a function to check the behaviour preservation. Then,
their approach simply runs that specific function and checks
that the produced values are equal for both versions of the
program. Therefore, their approach helps to discover errors
in a concrete function, but they cannot generate inputs for
one function and compare the outputs of another function.
This limits, e.g., the observation of recursion. In contrast,
we allow selecting any input function and place the POIs in
any other function of the program. Additionally, their test
input generation relies on white-box techniques that are not
directed by the changes. Our approach, however, uses a black-
box test input generation which is directed by changes.

Yu et al. [32] presented an approach that combines
coverage analysis and delta debugging to locate the sources
of the regression faults introduced during some software
evolution. Their approach is based on the extraction and
analysis of traces. Our approach is also based on traces
although not only the goals but also the inputs of this process
are slightly different. In particular, we do not require the
existence of a test suite (it is automatically generated), while
they look for the error sources using a previously defined test
suite. Similarly, Zhang et al. [33] use mutation injection and
classification to identify commits that introduce faults.

The Darwin approach [34] starts from the older version
of the program, a program that is known to be buggy, and an
input test case that reveals the bug. With all this information,
it generates new inputs that fail on the buggy program and

then runs them using dynamic symbolic execution and stores
the produced trace (in their context, a trace contains the
visited statements). Finally, the traces from the buggy version
and from the old version are compared to locate the source of
the discrepancy. Although the approach could seem similar
to ours, the goals are different. We try to find discrepancies,
while they start from an already-found discrepancy.

Our technique for mutation of inputs shares some sim-
ilarities with RANDOOP [35]. In their approach, they start
from test cases that do not reveal any failure, and randomly
construct more complex test cases. The particularity of their
approach is that the random test generation is feedback-
directed, in the sense that each generated test case is analyzed
to take the next decision in the generation. We do something
similar, althoughour feedback is directed by the POIs selected
by the user.

DSpot [36] is a test augmentation technique for Java
projects that creates new tests by introducing modifica-
tions in the existing ones. The number of variants that
will be generated is known beforehand and determined by
parameters like the number of operations or the number of
statements. In order to define the output of a test case, they
introduce a concept called observation point, which is similar
to our POIs. The difference is that they define and select
their observation points (in particular, attribute getters, the
toString() method, and the methods inside an assertion)
while in our approach it is the user who defines them.
Additionally, our approach does not need an already existent
test suite.

Sieve [37] is a tool that automatically detects variations
across different program versions. They run a particular test
and store a trace that in their context is a list of memory
operations over variables. The generated traces are later
studied in order to determine what changed in the behaviour
and why it changed. Although their goal is not the same as
ours, their approach shares various similarities with ours, in
particular code instrumentation and trace comparison.

Mirzaaghaei [38] presented a work called Automatic
Test Suite Evolution where the idea is to repair an existing
test suite according to common patterns followed by the
practitioners when they repair a test suite. A repair pattern
can be something like the introduction of an overloaded
method. A modification of our technique could be used to
achieve a similar goal, by not only producing test case input,
but also repairing patterns in order to check whether they are
effectively repairing an outdated test suite.

Most of the efforts in regression testing research have
been put in the regression testing minimization, selection,
and prioritization [1], although among practitioners it does
not seem to be the most important issue [7]. In fact, in the
particular case of the Erlang language, most of the works in
the area are focused on this specific task [39–42]. We can
find other works in Erlang that share similar goals but more
focused on checking whether applying a refactoring rule will
yield to a semantics-preserving new code [3, 4].

With respect to tracing, there are multiple approxima-
tions similar to ours. In Erlang’s standard libraries, there are
two implemented tracing modules. Both are able to trace
the function calls and the process related events (spawn,
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send, receive, etc.). One of these modules is oriented to trace
the processes of a single Erlang node [13], allowing for the
definition of filters to function calls, e.g., with names of the
function to be traced. The second module is oriented to
distributed system tracing [14] and the output trace of all the
nodes can be formatted in many different ways. Cronqvist
[12] presented a tool named redbug where a call stack trace
is added to the function call tracing, making it possible to
trace both the result and the call stack. Till [15] implemented
erlyberly, a debugging tool with a Java GUI able to trace
the previously defined features (calls, messages, etc.) but
also giving the possibility of adding breakpoints and tracing
other features such as exceptions thrown or incomplete calls.
All these tools are accurate to trace specific features of the
program, but none of them is able to trace the value of an
arbitrary point of the program. In our approach, we can trace
both the already defined features and also a point of the
program regardless of its position.

11. Conclusions

During the lifecycle of any piece of software, different versions
may appear, e.g., to correct bugs, to extend the functionality,
or to improve the performance. It is of extreme importance
to ensure that every new version preserves the correct
behaviour of previous versions. Unfortunately, this task is
often expensive and time-consuming, because it implies the
definition of test cases that must account for the changes
introduced in the new version.

In this work, we propose a new approach to automati-
cally check whether the behaviour of a certain functionality
is preserved among different versions of a program. The
approach allows the user to specify a POI that indicates the
specific parts of the code that are suspicious or susceptible of
presenting discrepancies. Because the POI can be executed
several times with a test case, we store the values that the POI
takes during the execution. Thus, we can compare all actual
evaluations of the POI for each test case.

The technique introduces a new tracing process that
allows us to place the POI in patterns, guards, or expressions.
For the test case generation, instead of reinventing the wheel,
we orchestrate a sophisticated combination of existing tools
like CutEr, TypEr, and PropEr. But we also improve the
result produced by the combination of these tools intro-
ducing mutation techniques that allow us to find the most
representative test cases. All the ideas presented have been
implemented and made publicly available in a tool called
SecEr.

There are some limitations in the current technique. First
of all, it is not always easy to infer good types for the input
functions. If an inferred type is too generic (like 𝑎𝑛𝑦()), our
approach could start generating ITCs that are not useful.
However, this is a problem specific of dynamically typed
languages (like Erlang). In statically typed languages, this
limitation does not exist. Value generation can be also a
limitation if we need to generate complex values. This limi-
tation is also common in other techniques such as property
testing, where it is overcome by allowing users to define
their own value generators. We plan to make our technique

compatible with these user-defined value generators. Finally,
we think that the ITC mutation could be more sophisticated,
e.g., by incorporating some kind of importance ranking per
parameter. The final goal of the improvements will be to
generate better ITCs and to produce them faster.

There are several interesting evolutions of this work. One
of them is to adapt the current approach to make it able
to compare modules when some source of nondeterminism
is present (e.g., concurrency). We could also increase the
information stored in traces with, e.g., computation steps or
any other relevant information, so that we could also check
the preservation (or even the improvement) of nonfunctional
properties such as efficiency. An alternative way of doing
this is by defining a special POI that indicates that we are
interested in a certain performance measure (time, memory
usage, etc.) instead of the value. The tool could also provide
comparison functions for such performance POIs. Another
interesting extension is the implementation of a GUI, which
would allow the user to select a POI by just clicking on the
source code. We could also define quality attributes linked to
each test case in order to ease the prioritization and selection
for test cases. This feature would be very appreciated by the
programmers as [7] reports. Finally, the integration of our
toolwith control version systems likeGit or Subversionwould
be very beneficial to easily compare code among several
versions.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work has been partially supported by MINECO/AEI/
FEDER (EU) under Grant TIN2016-76843-C4-1-R and by
GeneralitatValenciana underGrant PROMETEO-II/2015/013
(SmartLogic). Salvador Tamarit was partially supported by
Conselleria de Educación, Investigación, Cultura yDeporte de
la Generalitat Valenciana, under Grant APOSTD/2016/036.

References

[1] S. Yoo andM.Harman, “Regression testingminimization, selec-
tion and prioritization: a survey,” Software Testing, Verification
and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[2] J. S. Rajal and S. Sharma, “A Review on Various Techniques for
Regression Testing and Test Case Prioritization,” International
Journal of Computer Applications, vol. 116, no. 16, pp. 8–13, 2015.

[3] E. Jumpertz, Using QuickCheck and semantic analysis to verify
correctness of Erlang refactoring transformations, Radboud Uni-
versity Nijmegen, 2010.

[4] H. Li and S. Thompson, “Testing erlang refactorings with
QuickCheck,” in Symposium on Implementation andApplication
of Functional Languages, pp. 19–36, Springer, 2007.

[5] M. Mongiovi, “Safira: A tool for evaluating behavior preser-
vation,” in Proceedings of the ACM international conference
companion on Object oriented programming systems languages
and applications companion, pp. 213-214, 2011.



Scientific Programming 41

[6] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral
testing of refactoring engines,” IEEE Transactions on Software
Engineering, vol. 39, no. 2, pp. 147–162, 2013.

[7] E. Engström and P. Runeson, “A Qualitative Survey of Regres-
sion Testing Practices,” in Product-Focused Software Process
Improvement, 11th International Conference, PROFES 2010, Lim-
erick, Ireland, June 21-23, 2010, M. A. Babar, M. Vierimaa, and
M. Oivo, Eds., vol. 6156 of Lecture Notes in Business Information
Processing, pp. 3–16, Springer, 2010.

[8] co. uk, wired.co.uk. Ubisoft is using AI to catch bugs in games
before devsmake them. https://www.wired.co.uk/article/ubisoft-
commit-assist-ai, 2018.

[9] A. Giantsios, N. Papaspyrou, and K. Sagonas, “Concolic testing
for functional languages,” Science of Computer Programming,
vol. 147, pp. 109–134, 2017.

[10] T. Lindahl and K. Sagonas, “TypEr: A type annotator of erlang
code,” in Proceedings of the Erlang’05 - ACM SIGPLAN 2005
Erlang Workshop, pp. 17–25, September 2005.

[11] M. Papadakis and K. Sagonas, “A PropEr integration of types
and function specifications with property-based testing,” in
Proceedings of the 10th ACM SIGPLAN workshop on Erlang,
K. Rikitake and E. Stenman, Eds., pp. 39–50, Tokyo, Japan,
September 2011.

[12] M. Cronqvist, https://github.com/massemanet/redbug, 2017.
[13] A. B. Ericsson, dbg. http://erlang.org/doc/man/dbg.html, 2017.
[14] A. B. Ericsson, Trace tool builder. http://erlang.org/doc/apps/

observer/ttb ug.html, 2017.
[15] A. Till, erlyberly. https://github.com/andytill/erlyberly, 2017.
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