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Patients affected by type 1 diabetes suffer from lack of insulin secretion by the pancreas
due to the autoimmune destruction of the insulin-producing beta cells. This translates into2

elevated plasma glucose concentration with deleterious effects in the cardiovascular system
that leads to serious long-term complications. With the improvement of continuous glucose4

monitoring technology, a significant amount of research has been focused in the last decade
on the development of an artificial pancreas, that is, a closed-loop glucose control system that6

automatically dispenses insulin. The artificial pancreas is nowadays closer to reality [1]. Indeed,
an artificial pancreas system was approved for the first time by the Food and Drug Administration8

(FDA) in United States in September 2016 [2], although the system still needs user intervention
at mealtime, as currently done in open-loop insulin pump therapy, to administer an insulin bolus10

based on carbohydrate counting (it is a “hybrid” closed-loop system). A first-generation artificial
pancreas is thus expected to be commercially available soon. However, there still remain issues12

to be addressed for the performance improvement of the artificial pancreas, such as inter- and
intra-subject physiological variability, efficient compensation of real-life disturbances (exercise,14

alcohol, diseases, etc.), pump faults, sensor accuracy and large dynamic lags induced by the
subcutaneous administration of insulin. This last challenge constitutes the focus of this article.16

Insulin is a glucose-lowering hormone that promotes glucose transport through the cell
membrane for its consumption or storage. Glucose regulation is completed in the human body18

through counterregulatory hormones, such as glucagon that promotes glucose production by the
liver resulting in an increase of blood glucose concentration. However, glucagon secretion by20

the alpha cells in the pancreas is also affected as the disease progresses along time, increasing
the risk of suffering hypoglycemia. Severe hypoglycemia can provoke comma and death.22

Unidirectional effect of insulin has major implications in the design of an artificial pancreas.
This is aggravated by the significant lag introduced by subcutaneous insulin infusion, which24
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is currently the safest infusion route for a commercial artificial pancreas, as opposed to the
endogenous pancreas that secretes insulin directly into portal circulation (the vessels that connect2

the pancreas and other organs with the liver, which acts as a first blood filter before entering the
main circulatory system). Even in approaches with concomitant infusion of glucagon (the so-4

called dual-hormone artificial pancreas), mechanisms are necessary to avoid an excess of insulin
delivery which may lead to late hypoglycemia putting at stake the patient’s safety. Independently6

of how these mechanisms are incorporated into the control schemes, all of them must rely on
pharmacokinetic models predicting either circulating plasma insulin or a measure of “insulin-on-8

board”, such as the insulin depot remaining at the subcutaneous tissue before entering circulation.
In this article, methods to constrain insulin delivery are reviewed, as well as the subcutaneous10

insulin pharmacokinetic models and estimators on which they rely upon.

A big challenge in the prediction of physiological signals, such as insulin concentration, is12

the large intra-subject variability that patients suffer. Indeed, in terms of control engineering, a
patient is a highly time-varying uncertain plant. The intra-day and day-to-day patient’s behavior14

change due to circadian rhythms (24-hour rhythmic physiological oscillations driven by the body
clock, for instance, daily patterns in insulin sensitivity), and other multiple sources of uncertainty16

arise in key physiological processes such as meal absorption and subcutaneous insulin absorption.
Despite this fact, the use of population models for the prediction of insulin pharmacokinetics,18

that is, how the infused insulin appears in blood, is still common practice.

The impact of variability on the model prediction and its implication in closed-loop20

performance is analyzed. Nevertheless, large intra-subject variability suggests that real-time state
and pharmacokinetic parameters estimation is convenient, even when individualized models are22

considered. The availability of continuous glucose measurements allows to address this problem
should an observable glucose-insulin model be available. Different observer techniques proposed24

to this purpose are reviewed and discussed.

The subcutaneous insulin route26

The pancreas secretes insulin into the portal vein towards the liver, which acts as a first
filter before insulin reaches systemic circulation. In the liver, insulin promotes glucose storage28

in hepatic cells decreasing glucose production. In the fat and muscle cells, insulin acts as a key
that triggers the mobilization of glucose transporters to the cell membrane promoting glucose30

uptake by the cell. As a result of both actions, plasma glucose concentration decreases. The
dynamic lag of insulin action is estimated to be about 30 minutes [3].32

An artificial pancreas is a classic closed-loop glucose control system (see Figure 1) that
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automatically dispenses insulin to a patient (the process), and has three main components: the
continuous glucose monitor (the sensor), the insulin infusion pump (the actuator) and the control2

algorithm (the controller). Contrary to the pancreas, an artificial pancreas cannot have direct
access to the hepatic portal circulation for insulin infusion. Implantable insulin pumps that infuse4

insulin into the peritoneum, that is, the body cavity containing the abdominal organs, were
proposed [4] in an attempt to emulate as close as possible the pancreas. However, nowadays,6

external insulin pumps that infuse insulin through the skin (the so-called subcutaneous route)
are the only ones considered feasible for a commercial artificial pancreas due to their minimal8

invasiveness. External insulin pumps were first introduced in the 1980s and they are nowadays
a well-established open-loop insulin therapy [5]. Traditional pumps infuse insulin through a10

small, flexible tube (a catheter) with a needle allocated into the fat layer under the dermis (the
subcutaneous adipose tissue). Patch pumps with no visible catheter are also available [6].12

Insulin pumps make use of fast-acting insulin analogs, like insulin aspart [7] or insulin
lispro [8], which are synthetic insulin molecules with some modification in the amino acid chain14

compared to human insulin in order to speed up subcutaneous absorption and get a faster insulin
action. No significant differences in pharmacokinetics and metabolic effects between insulin16

aspart and lispro are found [9]. Insulin molecules can be in the form of hexamers (groups of six
molecules), dimers (groups of two molecules) or monomers (a single molecule). Once infused at18

the subcutaneous tissue, the generated insulin depot starts diffusing from the infusion site while
dissociation of hexamers into dimers and monomers happen. Insulin analogs molecule structure20

is designed to facilitate this dissociation, since only dimers and monomers are small enough to
go through the capillary wall and thus be absorbed towards circulation [10]. The lag introduced22

by subcutaneous absorption is estimated to be about 50 minutes [3].

Subcutaneous insulin pumps are combined with subcutaneous needle-type continuous24

glucose monitors that compute plasma glucose values from electrochemical measurements of
interstitial glucose. Dynamics of glucose transport between plasma and the interstitial fluid26

introduce a measurement lag estimated in about 10 minutes [3].

Thus, the lag induced by the subcutaneous route adds up to 90 minutes since insulin is28

infused until its peak effect (50 minutes for insulin absorption, 30 minutes for insulin action,
and 10 minutes for glucose measurement). This significant dynamic lag poses an important30

challenge to glucose control, especially because once insulin is infused, its effect cannot be
easily counteracted by the controller, unless the patient eats carbohydrates as rescue. Only dual-32

hormone artificial pancreas systems can counteract an insulin excess with glucagon infusion at
the expense of much higher system complexity. However, glucagon administration must also34

be limited since its excess may produce side effects such as nausea and vomiting [11]. Thus,

3



mechanisms are necessary to avoid an excess of insulin delivery due to controller’s over-actuation,
since it may lead to late hypoglycemia putting at stake the patient’s safety. These mechanisms2

constitute a critical component of any artificial pancreas.

Large intra-subject physiological variability is an additional important challenge for the4

artificial pancreas and it is responsible, at least in part, for the difficulties of achieving a good
glycemic control. Nowadays, patients still have an average exposure to hypoglycemia (< 706

mg/dL) over 1 h/day and to hyperglycemia (> 180 mg/dL) higher than 9 h/day [12]. The
sources of physiological variability are not fully understood although variability of subcutaneous8

insulin absorption [13], [14] and changes of insulin sensitivity (due to circadian rhythms [15]
and premenstrual periods in women [16]) seem to play a major role. Meal ingestion also has a10

highly variable effect on glucose homeostasis [17].

Indeed, an intra-subject variability of 27% was reported for time-to-peak plasma insulin12

concentration (parameter tmaxI in model (26)-(28)) in a pharmacokinetic study of insulin aspart
in subjects with type 1 diabetes [13]. Nearly 40% of this variability was attributed to variations in14

depth of cannula insertion, insulin site age and local tissue perfusion. In contrast, insulin clearance
was highly reproducible in the same study. A recent study with insulin lispro also showed an16

important impact of lypohypertrophia (the accumulation of abnormal mass of fat under the
skin) of the insulin injection site on insulin absorption and insulin effect [18]. Lypohypertrophia18

appears when the same injection site is used repeatedly and it is characterized by hypertrophic
adipocytes, reduced vascularization and lower capillary density. Although patients are advised20

to rotate the injection site, a prevalence of lypohypertrophia ranging from 28% to over 64% is
reported, depending on the country, being more frequent in type 1 diabetes [18]. Compared to22

normal adipose tissue, lypohypertrophia increased substantially intra-subject variability both in
pharmacokinetic and pharmacodynamic parameters. The coefficient of variance (CV) of the area-24

under-the-curve of plasma insulin after an insulin injection in lypohypertrophic adipose tissue
ranged from 55% to 65% (compared to 11% to 20% for normal adipose tissue), corresponding26

to a 3- to 5-fold increment. No effect of lypohypertrophia on the time-to-peak plasma insulin
was found. Intra-subject variability of insulin effect (measured as the area-under-the-curve of28

the exogenous glucose infusion needed to keep plasma glucose constant after insulin injection)
was generally higher, especially during the first hour when CV reached 90% (compared to 66%30

for normal adipose tissue).

Although the above study was carried out with insulin injections and not an insulin32

pump, it highlights the challenge that intra-subject variability poses for any insulin therapy
with subcutaneous administration, including an artificial pancreas. Current insulin infusion sets34

in pumps need to be replaced every 2 to 3 days to avoid inflammation and infection. Differences
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in insulin absorption of consecutive infusion sites due to the development of lypohypertrophia
can jeopardize the artificial pancreas performance, increasing the risk of hypoglycemia. Besides,2

current systems need two skin punctures, one for the sensor and one for the insulin pump,
making more difficult the rotation of the infusion site [19].4

Glucose-insulin models

Models describing the glucose regulation by insulin (henceforth referred as glucose-insulin6

models) are needed for controllers and observers design. The reader is referred to the reviews
in [20] and [21] for a historical perspective on modeling the glucose-insulin system, including8

models to measure key physiological signals or parameters in glucose metabolism (the so-called
minimal models), fine-grained models aiming at a detailed description of the physiological10

processes for simulation purposes (maximal models) and models for control with a simpler
structure capturing the most relevant dynamics.12

Independently of the model complexity, the description of glucose metabolism in the
context of any subcutaneous insulin therapy such as the artificial pancreas implies the following14

model components (see Figure 2):

1) A subcutaneous insulin pharmacokinetic model describing how insulin appears in blood16

after subcutaneous infusion. Although modeling of subcutaneous insulin pharmacokinetics
dates back to the 80s, only works related to the fast-insulin analogues currently used in18

insulin pump therapy are relevant here (insulin lispro and aspart), as well as new insulin
formulations under investigation for ultra-fast insulin absorption, for instance.20

2) An insulin action model describing how plasma insulin concentration exerts its effect on
glucose metabolism. This component involves mainly the transport lags from plasma to22

the insulin action site.
3) A carbohydrate digestion and absorption model describing how glucose enters blood after24

a meal. This model has proven to be challenging due to the complex physiology of gastric
emptying and intestinal absorption and the lack of glucose absorption rate measurements26

unless complex clinical studies are conducted.
4) A glucose metabolism model describing the comprehensive effect of insulin and meals on28

plasma glucose concentration. More complex models may also include other effects like
glucagon and exercise.30

Three widely used models in the artificial pancreas community, from lower to higher
complexity, are Bergman model (minimal) [22], Hovorka model (intermediate complexity) [23]32

and Dalla Man model (maximal) [24]. This latter is the core of the UVA-PADOVA type 1
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diabetes simulator [25], a simulation tool for the evaluation of glucose controllers accepted by
the FDA as a substitute of animal trials. Since models for simulation are not in the scope of this2

article, it will not be presented here for the sake of simplicity.

Table 1 presents the equations for the Bergman and Hovorka models (left and center4

columns). Bergman model originated in 1979 [26] to describe the intravenous glucose tolerance
test (IVGTT), a clinical test to analyze how the body metabolizes glucose. It consists in6

the infusion of glucose intravenously and the measurement of plasma glucose and insulin
concentrations for a certain time before and after the infusion. From these measurements, an8

index of insulin action, the so-called insulin sensitivity, is computed by means of a parsimonious
(minimal) model. Bergman model is a second order non-linear model relating plasma insulin10

concentration I(t) (input) and plasma glucose concentration G(t) (output). Insulin effect,
X(t), is modeled with a first-order system representing a lagged action of insulin. Plasma12

glucose concentration, G(t), is inhibited by glucose itself and insulin effect. A constant hepatic
glucose production p1Gb is considered that drives the system to equilibrium for a basal insulin14

concentration Ib. Finally, the term UG(t)/VG describes the intravenous glucose infusion (or
glucose rate of appearance from the meal when a meal model is interconnected). Parameters p1,16

p2 and p3 are kinetic parameters. Parameter p1 is called “glucose effectiveness” and it represents
glucose auto-inhibition. Insulin sensitivity is computed as p3/p2. Bergman model was conceived18

as a model for measuring. This is the reason why no subcutaneous insulin absorption or meal
ingestion is considered.20

Hovorka model [23], [27] (see Table 1) is a 7-th order non-linear model that includes
all model components in Figure 2. Carbohydrate digestion and absorption is described by the22

impulse response of a second order linear model, with input DG the amount of carbohydrate
in the meal, and output the glucose rate of appearance in blood, UG(t). Parameter AG is the24

carbohydrate bioavailability, that is, the fraction of carbohydrate in the meal that will finally
reach blood, and tmaxG is the time constant. Subcutaneous insulin pharmacokinetics is a 3-rd26

linear model. Subcutaneous absorption shares the same model structure as the meal model, with
u(t) the insulin infusion from the pump and states S1(t) and S2(t) representing mass of insulin28

along subcutaneous tissue, with transport time constant tmaxI . Insulin rate of appearance in blood
is S2(t)/tmaxI , that, once converted to concentration rate by dividing by the insulin distribution30

volume VI , enters the first-order kinetic equation defining plasma insulin concentration, I(t).
Parameter ke is the fractional elimination rate. Plasma insulin exerts three actions, following a32

first-order dynamics (representing a “remote” action): X1(t) is the effect of insulin on glucose
distribution/transport, X2(t) the effect on glucose disposal (it promotes glucose entering muscle34

and adipose tissue cells) and X3(t) the effect endogenous glucose production (it inhibits glucose
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production by the liver). Constants kai, i = 1, 2, 3, are kinetic constants and kbi/kai are the insulin
sensitivities for each effect. Finally, states Q1(t) and Q2(t) represent the glucose mass in plasma2

and interstitial tissue, respectively. Transport of glucose between both compartments happens
at rates k12 and X1(t), depending on the direction. Besides these transport flows, glucose from4

the meal, UG(t), and hepatic glucose production EGP0(1−X3(t)), with EGP0 the production
extrapolated to zero insulin, are input flows to the plasma compartment; insulin-independent6

consumption (mainly by brain), F c
01(t), and renal glucose elimination, FR(t) are output flows.

For the sake of simplicity, the reader is referred to [23] for the definition of F c
01(t) and FR(t).8

Regarding the interstitial compartment, aside the inter-compartment transport, glucose uptake by
muscle and adipose tissue, X2(t)Q2(t) is an output flow. Plasma glucose concentration (model10

output) is finally given by Q1(t)/VG, where VG is the glucose distribution volume.

Due to its simplicity and identifiability properties, Bergman model is widely used outside its12

original scope, in combination with a subcutaneous insulin pharmacokinetic and a carbohydrate
absorption model. An example is the so-called “Identifiable Virtual Patient” model [28], also14

presented in Table 1 (right column). Carbohydrate absorption is described as in Hovorka model,
although the output is divided by the glucose distribution volume VG for RA(t) to represent16

a concentration rate, instead of a mass rate (RA(t) = UG(t)/VG). Insulin action and glucose
metabolism are equivalent to the Bergman model, with the difference that plasma insulin I(t)18

is considered, instead of its deviation with respect to basal insulin Ib. State IE(t) and parameter
GEZI (Glucose Effectiveness extrapolated to Zero Insulin) are thus equivalent to X(t) and20

p1, respectively, with the change in its meaning due the above difference. Parameter EGP
is equivalent to p1Gb and describes the hepatic glucose production. The subcutaneous insulin22

pharmacokinetic model is of relevance here. It consists in a second order linear model with time
constants τ1 and τ2. Parameter Kcl is insulin clearance, that is, how much volume of plasma is24

cleared of insulin per unit time. Applying Laplace transform, the corresponding transfer function
is26

I(s)

uSC(s)
=

1
τ1

1
τ2

Kcl(s+ 1
τ1

)(s+ 1
τ2

)
. (1)

Its impulse response for an insulin bolus uSC(t) = U0δ(t) is

I(t) = U0
1

Kcl(τ2 − τ1)

(
e−t/τ2 − e−t/τ1

)
. (2)

This is why this model is referred often as “bi-exponential model” [29], [30]. An alternative28

7



state-space representation of model (1) is the compartmental model

dq1(t)

dt
= uSC(t)− 1

τ1

q1(t), (3)

dq2(t)

dt
=

1

τ1

q1(t)− 1

τ2

q2(t), (4)

I(t) =
q2(t)

VI
=

1/τ2

Kcl

q2(t), (5)

where q1(t) is the mass of insulin at the subcutaneous tissue, q2(t) is the plasma insulin mass, VI2

is the insulin volume of distribution, which is the ratio between insulin clearance (Kcl) and insulin
elimination rate constant (1/τ2). It becomes apparent from (3)-(5) that the biexponential model4

corresponds to the Hovorka subcutaneous insulin pharmacokinetic model with the subcutaneous
space simplified to a single compartment and the parameter equivalences τ1 = tmaxI and 1/τ2 =6

ke. Figure 3 shows a comparison of the response of both models to an insulin bolus of 1U,
considering published nominal parameters.8

Insulin observers

Independently of the control algorithm used in an artificial pancreas, either single-hormone10

(only insulin) or dual-hormone (insulin and glucagon), mechanisms are necessary to avoid an
excess of insulin delivery for safety reasons. These mechanisms must rely on subcutaneous12

insulin pharmacokinetic models, as the ones described in the previous section, for the estimation
of either circulating plasma insulin or insulin-on-board (henceforth referred as IOB for short),14

which represents the injected, but not still used, insulin that will have an effect in the future.
Nevertheless, even with the use of individualized models, real-time estimation of those signals16

is convenient for an effective closed-loop glucose control, since large intra-subject variability
can compromise performance (see sidebar “Models and variability” for details). This problem18

could be addressed with the design of insulin observers, in case an observable glucose-insulin
model is available. The reader is referred to the sidebar “Observability of nonlinear systems” for20

a description of observability tests applicable to glucose-insulin models in Table 1. An observer
is a real-time estimator with a feedback mechanism for recursively correcting its estimated22

state based on the actual outputs measured from the real physical system. Observers can also
be used for real-time estimation of model parameters via a state extension. The Luenberger24

observer and especially different extensions of the Kalman filter to nonlinear systems (see sidebar
“Kalman filter extensions to nonlinear systems”) are proposed in literature. Basic knowledge on26

the Luenberger observer and linear Kalman filter is assumed henceforth. Remark that depending
on the modeling framework, the term “observer” (deterministic) or “filter” (stochastic) is used.28

For instance, Luenberger observer is strictly for deterministic systems whereas the Kalman filter
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is formulated in a stochastic framework that incorporates models for measurement and system
noise and it produces an explicit estimate for the covariance of the system state.2

Observers are integrated into some artificial pancreas systems for several purposes. In
[31], a Kalman filter is used in a Model Predictive Control-based system to update two4

model parameters: (i) a glucose flux quantifying model mismatch; and (ii) carbohydrate
bioavailability. A stochastic-based approach incorporating competing models differing in the rate6

of subcutaneous insulin absorption and action, as well as carbohydrate absorption, are used to
account for intra-subject variability. In [32], a Luenberger observer is used to estimate the initial8

state of the prediction model in a zone MPC system [33]. In [34], its performance is compared to
a moving horizon state estimator (MHSE), which is based on a constraint optimization problem10

that calculates the optimal sequence of the process and the measurement noises to minimize a cost
function, within a fixed history horizon. It is shown to have a better performance than Luenberger12

observer in simulation, rejecting a meal disturbance quicker without inducing hypoglycemia.

However, despite the risk for the patient’s safety implied by plasma insulin or insulin-on-14

board estimation errors due to large intra-subject variability, the number of works in literature
addressing the design of insulin observers and, most importantly, assessing its performance with16

clinical data, is scarce.

Hovorka glucose-insulin model [23] and the Extended Kalman Filter (EKF) are used18

in [35], where real-time estimation of plasma insulin concentration from continuous glucose
monitoring (CGM) measurements in subjects with type 1 diabetes is addressed in the context of20

insulin observers for closed-loop control. The extra equation

˙IG(t) =
1

τ
(G(t)− IG(t)) , (6)

where IG(t) represents interstitial glucose (what the CGM measures) and τ is the time constant22

for plasma-to-interstitial space glucose transport, is added to the Hovorka model to describe the
lagged measurement by the CGM. Process and observation noises are also added. In addition,24

state observers are designed to estimate uncertain pharmacokinetic parameters, in particular
fractional elimination rate, ke, and time-to-maximum insulin absorption, tmaxI (see Table 1), by26

building new extended models in which these parameters are considered as new states with no
dynamics. The observability of these models is demonstrated analytically through Lie derivatives.28

Plasma insulin estimations are validated in both a simulation study, with a total of five
meals and 25-hour duration, and a clinical validation, using real data from 12 patients with type30

1 diabetes who underwent four mixed meal studies during 5 hours, after a glucose normalization
phase [36]. Figure 4 shows an illustrative example of the observer performance against clinical32

data for a sample patient. As a comparator, the use of a population model for insulin prediction
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is considered, since it is still a common practice despite the expected variability in insulin
pharmacokinetics (see Section “The subcutaneous insulin route”). With regard to variability,2

different scenarios are devised: natural physiological variability in insulin pharmacokinetics at
a given infusion site along the lifetime of the infusion set; and more abrupt changes in insulin4

pharmacokinetics due to the use of a new infusion site after rotation, with different subcutaneous
tissue properties (for instance, affected by lypohypertrophia [18]). Due to the limited duration of6

the data (5 hours), the above scenarios are characterized in [35] through the observer initialization,
since a change in infusion site is expected to imply a larger mismatch between the observer model8

and the actual behavior. Thus three cases are compared in Figure 4: (i) a population model is
used as insulin predictor considering nominal pharmacokinetic parameters in the Hovorka model,10

which are clearly detuned for this patient (comparator); (ii) pharmacokinetic parameters ke and
tmaxI are included into the Kalman filter for real-time estimation with initial conditions set to12

nominal parameters in Hovorka model, far from the actual values (representing the case of a
new infusion site); and (iii) is the same case as (ii), but initial conditions of the pharmacokinetic14

parameters are set to the average of the parameter values estimated for the rest of patients
(following a cross-validation procedure), which are closer to the actual values as demonstrated by16

data (representing performance against variability of the current infusion site along its lifetime,
after a longer run of the observer). Remark that from the practical perspective, at most only18

individual parameters may be available for the initialization of pharmacokinetic parameters.
Figure 4 shows how real-time estimation of pharmacokinetic parameters leads to the detection20

of significant deviations in plasma insulin prediction with the population model, reaching more
accurate estimations after a transient time (solid blue line). Impact of this transient time on22

closed-loop performance needs to be investigated. Once adapted, insulin estimation is expected
to remain accurate enough (solid green line). Root mean square error (RMSE) and mean absolute24

relative deviation (MARD) are computed for the assessment of the observer performance in the
cohort of patients. The obtained RMSE values are 24.5±16.5 mU/L for case (i), 14.9±7.7 mU/L26

for case (ii) and 6.6± 3.9 mU/L for case (iii). Consideration of the pharmacokinetic parameters
ke and tmaxI as extended states significantly improves estimation accuracy, with a reduction of28

RMSE in 73% with respect to a population model approach.

In the simulation study presented in [37], the Unscented Kalman Filter (UKF) is used to30

calculate the bolus insulin size based on a state estimate (which includes plasma insulin) and
the meal size announced by the patient. The rationale is that aside meal size announcement,32

information provided by the early postprandial period can help to reduce the impact of errors
in carbohydrate counting by the patient, allowing for the computation of more accurate insulin34

bolus doses even at the expense of a delayed administration. The Identifiable Virtual Patient
(IVP) glucose-insulin model [28], described in Section “Glucose-insulin models” and Table 1,36
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is used in this work. Insulin sensitivity and the meal compartment are also estimated via a state
extension. Different bolus administration strategies are investigated (at mealtime, 15 minutes2

after and 30 minutes after the beginning of the meal) for 10 patients for three-day simulations
with three meals per day checking the median time spent in hyperglycemia, within target and in4

hypoglycemia. No specific results on the observer performance are reported. They conclude that
administering the meal bolus 15 minutes after mealtime both reduces the risk of hypoglycemia6

when meal size is overestimated by 50%, and the time spent in hyperglycemia for a meal size
underestimation again by 50%. However, administration of insulin at mealtime is optimal when8

the meal size is exactly known. Due to the problem posed in this work, administration before
the meal is not considered. However, clinical trials that assessed the best timing for meal bolus10

times generally conclude that the administration of the insulin bolus between 10 to 20 minutes
before the meal leads to reduced glycemic excursions, as compared to mealtime or after the12

meal [38], [39].

Other works address the design of insulin observers but either an intravenous route is14

considered, not used in current artificial pancreas systems, or endogenous insulin secretion is
included, which does not apply to type 1 diabetes. However, these works are reviewed below16

since they deal with glucose-insulin models and may be relevant to future developments in the
artificial pancreas context.18

A reduced-order Luenberger observer [40] is designed in [41] for the three-state minimal
Bergman model [22], where endogenous insulin secretion in the original model is substituted20

by an intravenous insulin infusion to represent subjects with type 1 diabetes. Disturbances
are included in the form of an exogenous glucose infusion rate. The observer aims at the22

reconstruction of the remote insulin compartment and plasma insulin deviation from plasma
glucose deviation measurements. The obtained results are tested on nonlinear closed loop24

simulations using the disturbance rejection Linear Quadratic method. A standard meal disturbance
with about six-hour duration is considered as test case. Graphically it is shown that the observer26

is faster than the system itself and it can provide a very good state recovery performance.

In [42] the Bergman Model is used in combination with different filters (symmetric UKF,28

EKF, simplex UKF and Particle Filter) for the estimation of plasma insulin concentration.
Endogenous insulin secretion is considered. Furthermore, linear interpolation is used to obtain30

glucose measurements in a time grid of 1 minute. After evaluating observability by the Lie
derivatives, the designed observers are validated with data from an intravenous glucose tolerance32

test (IVGTT) (see Section “Glucose-insulin models”) in non-diabetic subjects by computing the
root mean square error (RMSE). The symmetric UKF showed better results with an RMSE34

value of 10.277 mU/L, followed by EKF with 13.533 mU/L. This work is extended later in

11



[43] to incorporate parameter estimation via state extension characterizing first- and second-
phase insulin response as well as compartments for glucose and subcutaneous insulin inputs2

and for subcutaneous glucose measurements. Both the observability of states and external inputs
and the identifiability of model parameters are analyzed by the empirical observability Gramian4

from data. For the purpose of model validation, four scenarios are simulated: an IVGTT for
non-diabetic subjects, an oral glucose tolerant test (OGTT) for non-diabetic subjects, an IVGTT6

for diabetic subjects and an IVGTT with an insulin bolus after 30 min for diabetic subjects.
Similarly to IVGTT, the OGTT is a clinical test to analyze glucose metabolism but glucose is8

administered orally instead of intravenously. Simulated scenarios are compared with measured
data from non-diabetic and diabetic pigs. These data are used for parameter identification and10

model adaptation. The results are graphically evaluated concluding that a real-time estimation
of states, such as plasma insulin, and parameters, such as second-phase insulin response gain,12

is possible. It may improve real-time state prediction and a personalized model.

In [44], Bergman model is used with the UKF, the cubature quadrature Kalman filter14

(CQKF) and Gauss-Hermite filter (GHF) to track plasma glucose, plasma insulin and interstitial
insulin levels. The authors are based on the work presented in [42]. Thus, endogenous insulin16

secretion is again considered. The above filters are compared based on estimation accuracy,
in terms of RMSE, and computation efficiency by simulation. They show that all three filters18

successfully trace glucose and insulin levels from noisy blood glucose measurements with similar
performances (RMSE plots overlap) but the UFK computational load is lower.20

Finally, in [45], [46], [47], nonlinear discrete-delay differential equation (DDE) models
are used in the context of closed-loop glucose control. The authors state that DDE models22

seem to represent better the pancreatic insulin delivery rate, allowing for the extension of the
methodologies to type 2 diabetes. Moreover, the model has satisfactory properties, such as24

positivity and boundedness of solutions or local attractivity of a single positive equilibrium.
It is as well statistically robust, since its parameters are identifiable with very good precision by26

means of standard perturbation experiments, such as IVGTT. The authors consider the problem
of tracking a desired plasma glucose trajectory from initial hyperglycemia making use of only28

glucose measurements. To this aim, they use the nonlinear observer for time-delay systems to
estimate the plasma insulin concentration30 
Ĝ(t)

dt
Î(t)

dt

 =

 −KxgiĜ(t)Î(t) +
Tgh
VG

−KxiÎ(t) +
TiGmax
VI

f(Ĝ(t− τg) +
u(t)

VI
)

+Q−1(Ĝ(t), Î(t))W (G(t)− Ĝ(t)),

(7)
where Ĝ(t) and Î(t) denote the glucose and insulin estimates, respectively, and Q−1 is the inverse
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matrix of the matrix function

Q(x1, x2) =

[
1 0

−Kxgix2 −Kxgix1

]
. (8)

The observer gain matrix W ∈ R2×1 is designed to ensure that2

Ĥ =

[
0 1

0 0

]
−W

[
1 0

]
is Hurwitz with prescribed eigenvalues in the left half complex plane.

Numerical results from simulations show that this approach is robust with respect to the4

uncertainties of the model parameters, as well as to the glucose measurement errors and insulin
pump malfunctioning.6

Table 2 summarizes the above results.

Insulin infusion limitation in the artificial pancreas8

As previously stated, the main justification for the prediction, or estimation from data, of
plasma insulin or insulin-on-board in an artificial pancreas is the avoidance of the controller’s10

over-actuation (for instance, after a meal disturbance) inducing an excessive insulin infusion with
the consequent risk of hypoglycemia. Model predictive control (MPC), proportional-integral-12

derivative (PID) and fuzzy logic (FL) are the major control strategies used in the artificial
pancreas framework and most extensively evaluated through clinical trials [48]. According to a14

recent review [49], 18 artificial pancreas systems are currently under development at different
stages, of which eight are based on MPC, six on a PID-type control algorithm, three on FL and16

one in a bio-inspired approach. All of them must deal with the limitation of insulin infusion for
the sake of safety. Their strategies are reviewed next.18

Model Predictive Control

One of the advantages of MPC control is that it can easily incorporate constraints into the20

optimization process of the defined cost function. An example of such procedure is given in [50]
where a dynamic safety constraint on the maximum rate of insulin delivery based on empirical22

clinical knowledge is integrated into an MPC control scheme in order to avoid over-delivery of
insulin. The following constrained cost function is considered24

min
u∈R

(
ωyŷ

Tŷ + ωuû
Tû + ω∆u∆uT∆u

)
, (9)

s.t.

−0.5ûss ≤ û ≤ Umax(k), (10)
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where ŷ ∈ Rp×1 is the vector of predicted plasma glucose deviations with respect to the glucose
setpoint, with p the output prediction horizon; û ∈ Rm×1 is the vector of future calculated2

deviations of insulin infusion rate with respect to the basal rate ûss (that is, the insulin rate
required at steady-state to obtain the desired steady-state glycemia), with m the control horizon;4

and ∆u ∈ Rm×1 is the vector of future insulin infusion increments. The constraint, expressed
in terms of deviations of insulin infusion rate with respect to the basal rate ûss, indicates that6

insulin infusion rate is limited between half its basal value and a time-dependent maximum
deviation from its basal value, Umax(k), given by8

Umax(k) =

{
ICHO(k) + IG(k)− IOB(k) if ICHO(k) + IG(k) > IOB(k)

ICHO(k) otherwise
, (11)

with

ICHO(k) = M(k) · IC, (12)

IG(k) =

{
(G(k)−Gss(k)) · CF if G(k)−Gss(k) > 0

0 otherwise
, (13)

where ICHO(k) is the insulin needed at time k to compensate a meal, M(k) is the amount10

of carbohydrates from the meal absorbed at time k and IC [U/g] the insulin-to-carbohydrate
ratio used currently by clinicians (that is, how much insulin per gram of carbohydrate must12

be administered to compensate a meal). Moreover, IG(k) represents the insulin needed to
compensate a deviation from target (considered here the steady-state glucose concentration),14

Gss(k), as given by the correction factor CF [U (mg/dL)−1] used by clinicians in current insulin
therapy (that is, how much insulin must be administered to compensate an excess of one glucose16

concentration unit with respect to glucose target).

Finally, IOB(k) is the predicted insulin-on-board at time k, which is obtained from the18

convolution of the insulin administered in the last eight hours and a family of “active insulin
curves” as given by insulin pump manufacturers ranging different durations of insulin action20

(DIA) from 2 to 8 hours. These curves are based on insulin action plots and express the percentage
of remaining active insulin along time. Curvilinear and linear versions are available, depending22

on the manufacturer [51]. Although linear versions are easier to use by patients, curvilinear
versions represent better subcutaneous insulin pharmacokinetics and they are preferred. The use24

of dynamic curves to account for daily variations in insulin sensitivity is proposed in [52].

In a simulation study reproducing a 24h clinical protocol with three meals [50], limitation26

of IOB according to (9)-(10) resulted in a reduction of the number of simulations yielding a
hypoglycemic event, compared to the same MPC controller without IOB constraint, from 50%28

(18.6% of the overall simulation time) to 10% (0.75% of the overall simulation time). This
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was achieved at the expense of mild hyperglycemia, but for very short periods (3.5% of overall
simulation time).2

In [53], the insulin limitation problem is casted into an augmented single-input multiple-
output MPC formulation where the linear combination4

Φ(t) := sII(t) + sqq(t) (14)

of plasma insulin, I(t), and a measure of the pending effect of insulin-on-board, q(t), is
added as a new system output. A generalized predictive control (GPC) with extended output6

y(t) := [G(t) Φ(t)]T (G(t) is plasma glucose), is then formulated. GPC optimizes the multi-
stage quadratic cost function, after signals discretization,8

JGPC =
Nm∑
k=Nd

δk‖C(rt+k − yt+k)‖2 +
Nu∑
k=0

λk(∆ut+k)
2, (15)

where the first term penalizes the error with respect to the setpoint r along the prediction horizon
[Nd, Nm] and the second term penalizes the control action along the control horizon with bound10

Nu. Parameters δk and λk are weights.

In this case, the following bi-exponential insulin pharmacokinetic model is used12

I(t) = KU0

(
e−α1t − e−α2t

)
, (16)

which corresponds to (2) with K := 1
Kcl(τ2−τ1)

, α1 := 1
τ2

and α2 := 1
τ1

. The pending effect of
insulin-on-board at time t is computed as14

q(t) =

∫ ∞
t

I(τ)dτ =
KU0

α1α2

(
α2e

−α1t − α1e
−α2t

)
. (17)

Factors sIp and sq in equation (14) scale the corresponding units of I(t) [U/dL] and q(t)

[Umin/dL] into [mg/dL] for an homogeneous cost index. Remark that q(t) is an area-under-16

the-curve of plasma insulin concentration, not mass of insulin.

Finally, another relevant MPC-based artificial pancreas system is presented in [23], already18

tested in free living conditions without supervision during three months [54]. Their system
includes the following safety checks to avoid excess of insulin delivery [31]: (i) insulin infusion20

rate is limited of 2 to 5 times the preprogrammed basal rate, depending on the current glucose
measurement, the time since the previous meal(s), and carbohydrate content of meal(s); (ii)22

shutting off insulin delivery when glucose measurement is below 77 mg/dL; (iii) reducing
insulin delivery when glucose is decreasing rapidly; and (iv) capping the insulin infusion to24

the preprogrammed basal rate if a pump occlusion is inferred by the MPC. Unfortunately no
more technical details were published aside the ones presented here extracted from their patent,26

to the best of our knowledge.
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PID Control

Two approaches with clinical validation are found for insulin limitation in PID-based arti-2

ficial pancreas systems: Insulin Feedback and Sliding Mode Reference Conditioning. Although
applied to PID control, they might be used with other control structures.4

Insulin feedback

In a healthy person, the beta cells do automatically avoid insulin excess by auto-inhibiting6

the endogenous insulin production depending on the insulin plasmatic concentration. However,
in type 1 diabetes this phenomenon is lost due to the destruction of the auto-regulating beta8

cells. However, an artificial pancreas can emulate this process by using the Insulin Feedback
algorithm (IFB) [55], where a prediction of plasma insulin is fed on the forward delivery of10

insulin of the PID algorithm. All PID-based studies used this strategy since then [48], with just
one exception that is reviewed in the next section [56].12

The classic PID control within the artificial pancreas framework usually include the
following three different terms14

uAP = uPID + ubasal + ubolus, (18)

where ubasal is the basal insulin needed by the patient to keep a proper glycemia level between
meals and at night (basal metabolic conditions), uPID is the additional control action (insulin16

delivered) proposed by the PID algorithm to deal mainly with disturbances, and ubolus is the extra
insulin dose needed at meal time (considering meal announcement, where the patient informs18

the control algorithm about the meal time and estimated amount of carbohydrates).

A possible implementation of the IFB algorithm (see [30] or [29]) is20

uIFB = uAP − γI, (19)

where the original control action uAP is limited by an action proportional to the predicted
plasma insulin concentration I . For this purpose, the bi-exponential model (2) is used, with22

transfer function given by

GPKIFB
(s) :=

I(s)

uIFB(s)
=

1
τ1

1
τ2

Kcl(s+ 1
τ1

)(s+ 1
τ2

)
, (20)

which corresponds to equation (1) with input signal uIFB. The γ parameter multiplying I must24

be set by the control engineer. The insulin feedback approach described is, from a classical
control point of view, mathematically equivalent to a cascade control system [30], as shown in26

Figure 5. It must be remarked that for IFB to keep the original insulin infusion uAP at steady
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state, the original PID parameters must be retuned or a reduction in insulin infusion would lead
to an increase in glucose concentration [30]. In order to avoid this, the term uAP in (19) must2

be multiplied by f := (1 + γ lims→0GPKIFB
(s)). This is equivalent to retuning the controller’s

proportional gain. Integral and derivative terms may also need some adjustments depending on4

the tuning of γ.

Equation (21) presents an equivalent IFB implementation as a limiting action proportional6

to I − IB, where IB is the predicted basal plasma insulin:

uIFB = uAP − γ (I − IB) . (21)

In this case the additional term is zero in basal (stationary) conditions and PID gain retuning8

is thus not necessary.

Different studies show the good performance of the IFB approach. In [30] simulation results10

using the Hovorka model [23] are presented for 24h with 3 meals, and a decrement of the peak
postprandial excursion while at the same time a reduction of late-postprandial hypoglycemia12

is reported. In [55], the ability of IFB to improve the breakfast meal profile in a 30h closed-
loop in-clinic study with 8 adult subjects with type 1 diabetes was assessed with a substantial14

improvement over prior studies, but supplemental carbohydrates after breakfast was needed for
3 subjects; the clinical study also showed feasibility of overnight control. On the other hand,16

in [57] 4 subjects were studied for 24h and the IFB, as compared to a standard PID control,
reduced the occurrence of hypoglycemia without increasing meal-related glucose excursions.18

Finally, [58] presents simulation results of the IFB strategy used in a fully implantable artificial
pancreas using intraperitoneal insulin delivery and glucose sensing (that is, the peritoneal cavity,20

which is the area in the body that contains the abdominal organs, is used for a rapid sensing
and actuation, mimicking better the healthy pancreatic activity). In this case, the IFB alone was22

not enough to attenuate postprandial undershoot but in combination with anti-windup provided
very good results.24

Sliding Mode Reference Conditioning control

The technique of Sliding Mode Reference Conditioning (SMRC) is proposed in [56] to26

build an external feedback loop, named as Safety Auxiliary Feedback Element (SAFE), in order
to keep “insulin-on-board”, represented here by the size of the subcutaneous insulin depot, inside28

predefined limits. Remark that this measure differs from the “active insulin curves” currently
used in insulin pumps which include insulin pharmacodynamics [59]. Upper and lower limits30

for IOB can be defined if desired. SMRC uses the modulation of glucose target as a new degree
of freedom for glucose regulation (see Figure 6). A prediction of insulin-on-board, IOB(t),32
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drives a switching function σSM(t) triggering a discontinuous signal ω(t) that, after a filtering
step, adds up to the standard glucose target. The rationale behind SMRC is that a way to upper2

limit insulin-on-board is by increasing the desired glucose target. Any controller will react in
the sought direction: diminishing insulin infusion. The opposite applies when a lower limit for4

insulin-on-board is desired.

SMRC originates on concepts of invariance control and sliding regimes as a transitional6

mode of operation. In contrast with conventional sliding mode control, the aim here is not
evolving in sliding regime towards the equilibrium point. Only when the system, by itself, reaches8

a given sliding surface separating the space into feasible and unfeasible regions (characterized by
the constraint on insulin-on-board in this case), the sliding regime is stablished by conditioning10

the reference, until the system returns, by itself again, to the feasible region. In this sense, there
is no reaching mode as such, since no control effort is done to drive the system to the sliding12

surface [60].

Given a (possibly time-variant) upper limit on insulin-on-board, IOB(t), and denoting as14

x(t) the system state, the set

Σ :=
{
x(t) | IOB(t) ≤ IOB(t)

}
(22)

is invariant (that is, if the initial state fulfills the constraint IOB(t) ≤ IOB(t), then it will be16

fulfilled for all t > 0) for a discontinuous signal ω(t) of the form

ω(t) =

{
ω+ if σSM(t) > 0

0 otherwise
, (23)

with ω+ > 0 large enough (see [56] for technical details) and18

σSM(t) := IOB(t)− IOB(t) +
l−1∑
i=1

τi
(
IOB(t)(i) − IOB(t)(i)

)
, (24)

where l is the relative degree between the output IOB(t) and the input ω(t), superscript (i)

denotes the i-th derivative and τi are constant gains.20

The first-order filter

dGRF (t)

dt
= −αGRF (t) + α(GR(t) + ω(t)) (25)

is considered to keep all signals in the control loop smooth, where GRF (t) is the modulated22

(conditioned) glucose target fed to the controller, GR(t) is the standard glucose target (usually
constant), and α defines the filter cut-off frequency. Remark that stability of the system is24

guaranteed since the SMRC loop acts only on the setpoint, which is always bounded.
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Relative degree l is determined by the relative degree of the filter (25) and the relative
degree of the insulin-on-board predictor, since the controller has a proportional action. Although2

the subcutaneous insulin pharmacokinetic model in [61] was considered in the initial work
[56] (which is the model in the UVA/Padova simulator), the Hovorka subcutaneous insulin4

pharmacokinetic model [23] (presented in Table 1 and reproduced here for clarity),

dS1(t)

dt
= usc(t)−

1

tmaxI
S1(t), (26)

dS2(t)

dt
=

1

tmaxI
(S1(t)− S2(t)), (27)

with insulin-on-board defined as6

IOB(t) := S1(t) + S2(t), (28)

was finally chosen in the implementation for clinical evaluation due to parsimony criteria.
Figure 7 shows the typical time profile of insulin-on-board as defined by (26)-(28) expressed8

as a percentage of the bolus size. It becomes apparent the curvilinear nature of subcutaneous
insulin pharmacokinetics, also characteristic of active insulin curves provided by insulin pump10

manufacturers [51].

Model (26)-(28) has a relative degree of 1, giving rise to a total relative degree of l = 2.12

The switching function (24) is thus given by

σSM(t) = IOB(t)− IOB(t) + τ

(
dIOB(t)

dt
− dIOB(t)

dt

)
. (29)

For an interpretation of the above switching function, consider, for simplicity, a constant upper14

IOB limit, IOB. This will be so, for instance, in a postprandial period or during the night. The
switching function σSM(t) will be positive when IOB(t)+τ dIOB(t)

dt
exceeds the limit IOB, that16

is, when the predicted IOB is “about” to violate the constraint. How close IOB is allowed to
approach (from below) its limit will depend on the IOB trend, weighted by the tuning parameter18

τ . This defines a threshold on IOB, which corresponds to IOB − τ dIOB(t)
dt

. A rapidly changing
IOB will lower this threshold compared to an IOB approaching slowly the limit. A similar20

interpretation holds for variable upper IOB limit, IOB(t), but in this case the threshold on
IOB depends on the difference in the trends for IOB and its limit. When IOB goes beyond22

this threshold, an increment of the glucose setpoint is triggered, provoked by the discontinuous
signal ω(t) and amounting to ω+, after a transient given by the filter (25). As a reaction to the24

new (generally much higher) glucose setpoint, the controller will reduce the insulin delivery,
impeding the violation of the IOB limit for high enough ω+. Glucose setpoint will return to its26

original value, after the transient imposed by the filter, when IOB goes back below the threshold
in which case ω(t) = 0.28

19



Similar formulae are obtained for lower limiting insulin-on-board, changing the inequality
sense in (23) and the sign for ω(t) (glucose target must be decreased).2

SMRC was evaluated, in combination with a PD controller, in an in-clinic clinical study
where 20 patients with type 1 diabetes underwent a standardized 60g-carbohydrate mixed meal4

on four occasions (two in open loop and two in closed loop). SMRC showed an improvement
of postprandial control with a significant decrement of postprandial peak and increment of time-6

in-range (70-180mg/dL) without a clinically meaningful increased risk of hypoglycemia [62].
Simulation validation of SMRC in combination with other controllers can be found in [63]8

demonstrating the benefit of the SAFE loop.

Fuzzy Logic10

The two control strategies presented previously (MPC and PID) are based on the use
of mathematical models of glucose-insulin dynamics. However, the biological system to be12

controlled is nonlinear and complex, and subject to lags and uncertainties. Therefore, it is very
difficult to capture the physiological behavior of a patient. Fuzzy logic allows the development14

of a fuzzy controller without any patient model by including fuzzy rules (IF input is A THEN
output is B), where A and B are linguistic variables. In this way, a controller can be built from16

medical expertise [64]. In addition, multiple inputs and multiple outputs can be included in a
natural way. Different groups have proposed a fuzzy-controller-based artificial pancreas [65],18

[66], and insulin limitation based on predictions of insulin-on-board are also applied in fuzzy
logic systems.20

The MD-logic system presented in [65] is based on: (i) a control-to-range layer consisting
on fuzzy rules giving rise to an insulin recommendation expressed as percentage of patient’s22

basal insulin; and (ii) a control-to-target layer that takes into account, among other things, special
glucose dynamics requiring specific corrections and safety measures. The control-to-range layer24

considers four inputs: past and future glucose trend, and current and future glucose level. This
latter is predicted through an auto-regressive model. The values of the trend input variables are26

defined as “steep descent”, “descent”, “stable”, “ascent” and “steep ascent”, defined over the
range of ± 5 mg/dL/min. Glucose level values are defined as “very low”, “low”, “normal”,28

“normal high”, “high” and “very high”, defined over the physiological range for glucose. Two
output variables are considered: percent change in patient’s standard basal rate and standard bolus.30

In the control-to-target layer, the final insulin rate to be delivered in computed. A prediction of
insulin-on-board based on the following piecewise functional approximation of insulin aspart32
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pharmacokinetics is considered [7]

fI/G[%] =


1 t ≤ t1

P2 t1 < t ≤ t2
P3(t−t3)
t3−t2 t2 < t ≤ t3

0 t3 < t

, (30)

and subtracted from the insulin to be delivered (see Supplemental data in [65]). Unfortunately2

no further technical details are provided.

Another fuzzy logic approach is the Dose Safety system presented in [66], [67]. The4

fuzzy controller has as well two components: (i) the fuzzy logic Dosing component, which
computes through a rule matrix an insulin dose based on the glucose value, rate and acceleration6

to keep glucose in the range 80-120 mg/dL; and (ii) the Dosing Personalization component,
which computes a personalization scale factor for the computed insulin dose. In [66], it is8

stated that the system does not track insulin-on-board, although the function will be included in
subsequent versions. In [68] an extension of the system with a Hypoglycemia Prevention Module10

is presented, which incorporates a hypoglycemia predictor based on pattern matching techniques
from glucose and insulin-on-board signals. However, to the best of our knowledge, no further12

technical details have been disclosed.

Open challenges14

The use of the artificial pancreas in free living conditions poses extra challenges to
the performance of the controller, and with it, the efficiency of its mechanisms for insulin16

infusion limitation. An example is physical activity, with very different effects on plasma glucose
concentration depending on its type and intensity. Mild and moderate intensity physical activity18

requires a reduction of insulin infusion, while more intense activities necessitate a rise in insulin,
at least in early recovery [69]. This can affect algorithms limiting insulin infusion under physical20

activity scenarios, which may need a different tuning. However, it implies that the system must be
informed in some way about physical activity, such as patient’s announcement or measurements22

from a physical activity monitor.

Moreover, the dynamic lags imposed by the subcutaneous route might be a barrier for an24

efficient compensation of physical activity, which may provoke rapid fluctuations in glucose.
Subcutaneous insulin pharmacokinetics can also be affected by physical activity. In [70], an26

increase of circulating insulin is observed after a pump basal insulin rate reduction before a
moderate-intensity aerobic exercise, which is hypothesized to be due to the increased cardiac28

output and increased subcutaneous blood flow during exercise provoking an acceleration of
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insulin pharmacokinetics. It is thus expected that physical activity may affect the performance
of insulin observers. To date, there are no accurate enough exercise models. Physical activity can2

also compromise accuracy of continuous glucose measurements, with an overall overestimation
of glucose values [71]. Possible sources of this loss of performance are changes in subcutaneous4

blood circulation and increase in body and skin temperature during physical activity, which affect
the dynamics of glucose transport between plasma and the interstitial space where the sensor is6

located.

Another important challenge is postprandial control. There is growing evidence that insulin8

dosing algorithms should consider not only the carbohydrate content of a meal, but also fat and
protein [72], [73], [74]. An artificial pancreas study investigating performance for a low-fat10

versus high-fat dinner, with identical carbohydrate content, showed elevated plasma glucose
levels during the high-fat dinner despite the administration of 42% more insulin [75]. Model12

fitting from data produced in this study revealed not only the expected lag in gastric emptying
due to an increased fat content, but also a lower insulin sensitivity in the high-fat meal [73].14

In [74], a controlled study was conducted comparing a low-fat-low-protein meal with a high-
fat-high-protein meal with identical carbohydrate content, covered with identical insulin doses,16

showing a two-fold glucose incremental area under the curve in the latter case. In the same
study, an adaptive model-predictive insulin bolus strategy required 65% more insulin, with a18

30%/70% split over 2.4h, to achieve glucose target in the high-fat-high-protein case, compared
to low-fat-low-protein. Further investigation is needed to understand how these findings affect20

the performance of insulin limitation algorithms in an AP. Meal composition announcement is
not desirable due to the extra burden for patients. Besides, current meal models only consider22

carbohydrates which is an important limitation.

The need to incorporate psychological stress into the artificial pancreas is also under24

investigation. In [76], a significant relationship between daily stress (rated by the patient in
a 5-point scale) and glucose variability was found, as well as an increase percentage of time in26

hypoglycemia and reduced carbohydrate consumption. However, mean glucose was not affected.
More studies are needed to reveal the clinical significance of these findings and justify its28

consideration in an artificial pancreas for individuals more reactive to stress.

As more data is available from long-term clinical closed-loop studies in free living30

conditions, improvements addressing all these aspects may be expected.

22



Conclusion

Glucose control in type 1 diabetes is a complex problem from the control engineering2

point of view. The plant (that is, the patient) is a highly-variant nonlinear system due to the
nature of physiology and its intrinsic variability. Besides, significant lags are introduced by4

the use of the subcutaneous route, due to its minimal invasiveness. The fact that insulin has a
unidirectional action poses additional challenges to the efficacy and safety of control algorithms.6

These aspects were introduced in this article, focusing both on physiological knowledge for a
thorough understanding of the problem at hand, and different control engineering approaches8

proposed in the artificial pancreas field to address these challenges.

It becomes apparent that a critical component of any artificial pancreas is the limitation10

of insulin delivery based on some measure of insulin in the body. Plasma insulin concentration,
active insulin curves and size of the subcutaneous insulin depot are examples of such measures.12

Methods for insulin limitation differ depending on the control framework. MPC incorporates
such measures as constraints or in the cost index for optimization. PID control makes use of14

additional structures such as cascade control or reference conditioning. Fuzzy logic incorporates
insulin measures as components of the rule base. All these approaches are based on insulin16

predictors (or estimators). Due to the large variability, another critical component of an artificial
pancreas shows to be real-time estimation and model parameters adaptation. The availability of18

continuous glucose measurements allows to address this problem through the design of observers.
Different observer techniques have been used to this purpose, although validation with clinical20

data is scarce. Results published on the development of insulin observers were reviewed. Some
open challenges were also pointed out. With this, this article aims at introducing the reader in22

the challenge of automatic subcutaneous insulin delivery and the opportunities that it brings to
control engineering to alleviate the current burden of self-control to patients with type 1 diabetes.24
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TABLE 1. Low and intermediate complexity models widely used in the artificial pancreas field.

Bergman
model [22]

Hovorka
model [23]

Identifiable
Virtual Patient

model [28]

Carb.
absorp. N/A UG(t) =

DGAGte
−t/tmaxG

t2maxG

RA(t) =
DGAGte

−t/tmaxG

VGt2maxG

S.c.
insulin

PK
N/A

Ṡ1(t) = uSC(t)−
S1(t)

tmaxI

Ṡ2(t) =
S1(t)

tmaxI
− S2(t)

tmaxI

İ(t) =
S2(t)

tmaxIVI
− keI(t)

İSC(t) = −
ISC(t)

τ1
+
uSC(t)

τ1Kcl

İ(t) = −I(t)
τ2

+
ISC(t)

τ2

Insulin
action

Ẋ(t) = −p2X(t)

+ p3(I(t)− Ib)

Ẋ1(t) = −ka1X1(t) + kb1I(t)

Ẋ2(t) = −ka2X2(t) + kb2I(t)

Ẋ3(t) = −ka3X3(t) + kb3I(t)

İE(t) = −p2IE(t)

+ p2SII(t)

Glucose
metab.

Ġ(t) = −(p1 +X(t))G(t)

+ p1Gb +
UG(t)

VG

Q̇1(t) = −X1Q1(t) + k12Q2(t)

− F c
01(t)− FR(t) + UG(t)

+ EGP0(1−X3(t))

Q̇2(t) = X1Q1(t)− k12Q2(t)

−X2(t)Q2(t)

G(t) =
Q1(t)

VG

Ġ(t) = −(GEZI + IE(t))G(t)

+ EGP +RA(t)
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TABLE 2. Summary of publications addressing the design of observers in the context of diabetes.

Reference Model Observer Validation Evaluation
Wilinska et al., 2012
[31]

Hovorka Kalman N/A N/A

Gondhalekar et al.,
2013 [32]

Linear Luenberger N/A N/A

Lee et al., 2014 [34] Linear Luenberger, MHSE Simulation SSE
Pereda et al., 2015
[35]

Hovorka EKF Simulation
& data from
DM1 subjects

RMSE and MARD

Boiroux et al., 2015
[37]

MVP UKF Simulation Median time in
hyperglycemia,
within target or
hypoglycemia

Kovács et al., 2007
[41]

Bergman Luenberger Simulation Graphs

Eberle and Ament,
2011 [42]

Bergman EKF, UKF, PF Simulation RMSE

Eberle and Ament,
2012 [43]

Bergman UKF Simulation &
data from pigs

Graphs

Biswas et al., 2016
[44]

Bergman UKF, CQKF, GHF Simulation RMSE

Palumbo et al.,
2012-15 [45], [46],
[47]

DDE Nonlinear Simulation Amount of hypo-
glycemic events and
plasma glycemia
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Figure 1. The artificial pancreas as a classic closed-loop glucose control system (medical
vocabulary in bold and control engineering vocabulary in italics).
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Figure 2. Model components for the glucose-insulin system.
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[23] and the biexponential model [30] with nominal parameters (Hovorka: tmaxI = 55 min,
ke = 0.138 min−1, VI = 0.12 L/Kg, body weight 70 Kg; biexponential: τ1 = 55 min, τ2 = 70
min, Kcl = 1 L/min).
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Figure 4. Example of performance of the insulin observer in [35] for a sample patient. Dashed
red line represents the case with nominal pharmacokinetic parameters in the Hovorka model;
solid blue line the case with real-time adaptation of ke and tmaxI with initial values set to nominal
values; and solid green line the case with real-time adaptation of ke and tmaxI with initial values
set to the average of the parameter values estimated for the rest of patients. Green diamonds
represent measurements (adapted from [35]).
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Sidebar: Models and variability

The large intra-subject variability in the patient’s response represents a big challenge2

for modeling, since it may jeopardize any identification process giving rise to individualized
patient models representing only an “average” behavior with limited prediction accuracy. From4

the mathematical perspective, variability entails uncertainty in model parameters and initial
conditions. Simulation tools for models with uncertainty can thus be helpful to understand the6

impact of intra-subject variability in the accuracy of model predictions, as well as implementing
more robust algorithms for the artificial pancreas.8

A natural way to describe uncertainty in model parameters and initial conditions is through
the representation of values as intervals, giving rise to “interval models” [S1]. The output of an10

interval model is an envelope enclosing all possible glucose trajectories (for each possible value
in the interval), instead of a single trajectory as it is the case with a standard set of differential12

equations. Envelopes should be efficiently computed with mathematical guarantee, that is, they
must include all possible responses with the minimum possible overestimation. Interval methods14

[S2] generally lead to divergent envelopes and Monte Carlo simulation [S3] is not applicable
since the inclusion condition is not guaranteed. Other tools as the differential inclusions can be16

efficient under certain cooperative conditions (see [S4]), but unfortunately, they are not useful
for glucose-insulin models. Nowadays, new techniques as differential inequalities and monotone18

dynamical systems (see [S5], [S6] and the references therein) have been implemented. In fact,
monotone systems theory has been successfully used for the prediction of an envelope containing20

all the possible glycemic responses since, in some cases, it is possible to calculate the exact
envelope for all possible behaviors [S7].22

The interconnection of monotone systems may be studied by considering a flow x(t) =

φ(x0, t). A system is monotone if24

x0 � y0 ⇒ φ(x0, t) � φ(y0, t), (S1)

for all t ≥ 0, where � is a given relation order [S4], as represented in Figure S1.

From analytical point of view (see [S4]), the rate of change of the state vector x =26

(x1, . . . , xn)T of a monotone system can be described as

dx

dt
= f(x,p,u(t)), (S2)

where the vector function f = (f1, . . . , fn)T satisfies the following property:28

∂fi
∂xj
· ∂fj
∂xi
≥ 0, for all i 6= j, t ∈ R+. (S3)
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In particular, for cooperative systems [S7], the relation order is induced by the corresponding
positive orthant, which is characterized by a Metzler Jacobian Matrix, that is,2

∂fi
∂xj
≥ 0, for all i 6= j, t ≥ 0. (S4)

Monotonicity can be also characterized by using a species graph, in which a node is assigned
to each state, parameter, input and output, and a spin assignment is carried out for each node4

based on the sign of partial derivatives (see [S5]). Moreover, the monotonicity of the system
with respect to the parameters of the model can be analyzed by considering the parameters as6

system states in an extended model [S8].

In [S9] tight glucose envelopes were obtained for models of certain complexity like8

Hovorka model [23], under uncertain input, initial state and model parameters with little
computational complexity. For an illustration, Figure S2 shows the envelopes for plasma10

glucose and plasma insulin concentrations, for the interval Hovorka simulator developed in [S9],
considering an uncertainty of ±30% in time-to-peak plasma insulin concentration, tmaxI , while12

the rest of the model parameters are kept at their nominal value. A prediction horizon of 150 min
is considered. Reported variability of this single pharmacokinetic parameter yields to a glucose14

concentration after 150 min ranging from 84 mg/dL to 154 mg/dL, that is, almost a twofold
difference. Variability in insulin sensitivity and meal intake would increase further this range,16

as well as uncertainty in initial conditions of the model state. A maximum envelope width of
approximately 12 mU/L is produced for plasma insulin concentration, which corresponds to18

more than twice its basal value.

To conclude, interval models embed variability into the patient’s model [S10] and can be20

useful in worst-case approaches for an increased robustness. In any case, robustness to prediction
errors and model adaptation are essential features of an artificial pancreas.22
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Sidebar: Observability of nonlinear systems

The property of observability measures how well internal states of a system can be deduced2

by knowledge of its external outputs. A dynamical system is called observable on a finite time
interval [t0, tf ] if any initial state x(t0) = x0 is uniquely determined by the corresponding output4

y(t) for t ∈ [t0, tf ].

All physiological glucose-insulin models belong to the category of nonlinear models. The6

observability of a nonlinear system

ẋ(t) = f(x(t), u(t)), (S5)

y(t) = h(x(t)), (S6)

can be analyzed by means of analytical methods, through the Lie derivatives [S11], or by8

numerical methods, through the empirical observability Gramian [S12]. Both of them have been
used in type 1 diabetes research. In particular, Lie derivatives are used in [35] (Hovorka model)10

and [42] (Bergman model), and the empirical observability Gramian in [43] (Bergman model).

Lie derivatives12

The Lie derivative of h(x) with respect to f(x, u) is defined as Lf(x,u)h(x) = Oh(x)f(x, u)

and it is calculated recursively as follows:14

Lif(x,u)h(x) = Lf(x,u)(L
(i−1)
f(x,u)h(x)), if i = 1, 2, ...

L0
f(x,u)h(x) = h(x).

The system (S5)-(S6) is considered observable if the following Jacobian matrix

∂

∂x


h(x)

Lf(x,u)h(x)

· · ·
Ln−1
f(x,u)h(x)

 (S7)

has rank n, where n is the system order.16

Empirical observability Gramian

The Gramian observability matrix W0 is also determined for observability analysis. This18

matrix quantifies generalized energy transfer E0 from initial state x0 to the output within an
infinite time horizon:20

E0 =

∫
yT (τ)y(τ)dτ = xT0W0x0. (S8)
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The Gramian observability matrix can be computed from experimental or simulation data
within a region where the process is to be operated (see [43], [S12], [S13] for details). In2

these cases, it is called the empirical observability Gramian. For nonlinear systems, each state
is normalized such that its energy transfer to the output is equal to one. Then, its singular4

values, must be determined. The smallest singular value, λ, quantifies the energy transfer from
the least observable state to the outputs. A system is considered unobservable if λ = 0, and6

practically observable if λ > 0.1. Moreover, λ < 0.1 for the normalized system indicates that
the signal-to-noise ratio might be too small for a reliable state estimation.8

It is worth remarking that even when the system is observable, difficulties in the reliable
estimation of pharmacokinetic parameters may arise due to non-identifiability issues. The “a10

priori” or structural identifiability property of a model indicates if the parameters of the model
can be determined assuming that all observable variables are error-free. Lack of structural12

identifiability arises due to the model structure only and it is independent of the amount and
quality of the given experimental data. However, a parameter that is structurally identifiable14

may still be practically non-identifiable. This can arise due to insufficient amount and quality of
experimental data or the chosen measurement time points. Common problems in the identification16

of glucose-insulin models are the lack of excitability of basal insulin, which is rarely variable
enough, especially during the night, and the administration of insulin boluses at mealtime, making18

difficult to separate the meal and insulin effects on glucose after meal intake.

References20

[S11] R. Hermann and A. J. Krener, “Nonlinear controllability and observability,” IEEE
Transactions on Automatic Control, vol. 22, pp. 728–740, 1977.22

[S12] D. Geffen, D. Findeisen, M. Schliemann, F. Allgower, and M. Guay, “Observability based
parameter identifiability for biochemical reaction networks,” American Control Conference,24

2008.
[S13] S. Lall, J. Marsden, and S. Glavaski, “A subspace approach to balanced truncation26

for model reduction of nonlinear control systems,” International Journal of Robust and
Nonlinear Control, vol. 12, pp. 519–535, 2002.28

46



Sidebar: Kalman filter extensions to nonlinear systems

Physiological variability can be represented as noise in the system dynamics. Besides, the2

use of sensors also introduce noise into the measurements. If stochastic properties of these noise
sources are available, state estimation may be performed more effectively than simply using4

sensor signals as noise-free signals and estimating the state based on noise-free state transition
model. Rudolph Kalman investigated this problem and developed the widely used Kalman filter6

[S14]. Originally, he addressed the general problem of estimating the state x ∈ Rn of a discrete-
time controlled process that is governed by the linear stochastic difference equations8

x(k + 1) = Ax(k) +Bu(k) + w(k), w(k) ∼ N(0, Q), (S9)

y(k) = Cx(k) + v(k), v(k) ∼ N(0, R), (S10)

where y ∈ Rr are the measurements and the random variables w(k) and v(k) represent the
process and measurement noise, which are assumed to be independent, white and with normal10

probability distributions of variances Q and R, respectively. The Kalman filter provides an
efficient computational method to estimate the state of a process in a way that minimizes the12

mean of the squared error in a two-step process: the prediction step (the current state estimate is
projected ahead in time) and the correction step (the projected estimate is adjusted by an actual14

measurement).

Since the time of its introduction, the Kalman filter has been the subject of extensive16

research and application. The Kalman filter theory has been extended to nonlinear processes,
given by18

x(k) = f(x(k − 1), u(k − 1)) + w(k − 1), w(k − 1) ∼ N(0, Q), (S11)

y(k) = h(x(k)) + v(k), v(k) ∼ N(0, R), (S12)

where f(x(k− 1), u(k− 1)) defines the system dynamics and h(x(k)) denotes the measurement
function. For that, this kind of systems are transformed through a linearization procedure known20

as Extended Kalman Filter (EKF) [S15], [S16], or by an unscented transformation called
Unscented Kalman Filter (UKF) [S17], [S18], [S19]. The use of the EKF has two well-known22

drawbacks in practice: linearization can produce highly unstable filters if the assumption of
local linearity is violated. Besides, the derivation of the Jacobian matrices are nontrivial in most24

applications and often lead to significant implementation difficulties. These disadvantages may
be overcome with the use of the UKF. It is based on the Unscented Transformation (UT), which26

is a deterministic sampling approach to capture mean and covariance estimates with a minimal
set of 2n + 1 state sample points, called sigma points, based on a square-root decomposition28

of the prior covariance. These sigma points are propagated through the nonlinearity, without
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approximation, and a weighted mean and covariance is found. The sigma points are chosen so
that their sample mean and sample covariance are in agreement with the mean x̄ and covariance2

P of the n-dimensional random variable x. The underlying idea is to approximate the probability
distribution instead of the function (see Figure S3).4

Moreover, Kalman filter extensions can also be used in continuous-time systems that are
represented by differential equations6

ẋ(t) = f(x(t), u(t)) + w(t), w(t) ∼ N(0, Q(t)), (S13)

y(t) = h(x(t)) + v(t), v(t) ∼ N(0, R(t)), (S14)

after a discretization procedure. The glucose-insulin models found in the literature belong to this
kind of systems.8
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Figure S3. Example of the Unscented Transformation (UT) for mean and covariance propagation,
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Sidebar: Why is insulin estimation and prediction needed in an artificial pancreas?

In order to keep glucose levels of patients affected by type 1 diabetes in a safe range,2

the artificial pancreas can be used as a closed-loop control system that automatically dispenses
insulin. However, the use of insulin as control action has different limitations:4

• Insulin has a unidirectional effect lowering glucose values. Any insulin excess cannot
be compensated beyond pump switch-off, and external actions are required like meal6

consumption or glucagon administration.
• Insulin is delivered subcutaneously, as opposed to the pancreas which delivers insulin into8

blood. The lag introduced by subcutaneous insulin absorption amounts to 50 minutes.
Control action peak is reached after another 30 minutes, with a total dynamic lag of10

80 minutes. An excessive insulin infusion might thus provoke hypoglycemia later. Severe
hypoglycemia can lead to comma and death.12

Therefore, mechanisms are necessary to avoid an excess of insulin within the patient’s body.
They rely upon the prediction of plasma insulin or insulin-on-board, the injected insulin that14

didn’t have an effect yet, from subcutaneous insulin pharmacokinetic models. Control action is
then modulated accordingly. However, high variability of insulin pharmacokinetics suggests that16

real-time estimation of pharmacokinetic parameters and signals is also needed for a better and
safer performance. This can be addressed with the design of insulin observers.18

50



Author Biography

Dr. Jorge Bondia received an M.Sc. degree in Computer Science in 1994, and the Ph.D.2

degree in Control Engineering in 2002 both from the Universitat Politècnica de València,
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