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ABSTRACT Indoor Localization techniques are becoming popular in order to provide a seamless indoor 

positioning system enhancing the traditional GPS service that is only suitable for outdoor environments. 

Though there are proprietary and costly approaches targeting high accuracy positioning, Wi-Fi and BLE 

networks are widely deployed in many public and private buildings (e.g. shopping malls, airports, 

universities, etc.). These networks are accessible through mobile phones resulting in an effective 

commercial off-the-self basic infrastructure for an indoor service. The obtained positioning accuracy is still 

being improved and there is on-going research on algorithms adapted for Wi-Fi and BLE and also for the 

particularities of indoor environments. This paper focuses not only on indoor positioning techniques, but 

also on a multimodal approach. Traditional proposals employ only one network technology whereas this 

paper integrates two different technologies in order to provide improved accuracy. It also sets the basis for 

combining (merging) additional technologies, if available. The initial results show that the positioning 

service performs better with a multimodal approach compared to individual (monomodal) approaches and 

even compared with Google’s geolocation service in public spaces such as airports. 

INDEX TERMS BLE beacons, indoor location, indoor positioning, Internet of Things, Wi-Fi fingerprinting  

I. INTRODUCTION 

Indoor positioning and navigation services are more and 

more demanding nowadays and increasing research is being 

performed from both academia and industry, as there are a 

large variety of context-aware and location-based 

applications interested covering different fields such as 

security, healthcare and tracking. Outdoor location is widely 

performed via the Global Position System (GPS), but it is not 

suitable for indoor environments for several reasons, such as 

no line-of-sight, interference and noise, etc. [1][2]. Some 

theoretical alternatives for indoor GPS have been proposed in 

the literature [3][4][5][6], but they provide either no real tests 

or impractical scenarios for standard users as they require 

additional equipment. 

Though multiple technologies have emerged specifically 

in the indoor localization arena, many of them, such as Radio 

Frequency Identification (RFID) or Ultra-Wide Band 

(UWD), are not commonly used: special infrastructure setup 

is typically required with the deployment of location sensing 

devices which incurs in additional costs. Complex calibration 

process, moderate robustness or high installation costs are 

additional general drawbacks. Unless a high level of 

accuracy is mandatory, there is a common trend in providing 

a flexible and low-cost positioning technology using existing 

indoor infrastructure and exploiting communication and 

processing capabilities of users’ mobile devices. Wi-Fi is 

already deployed in many private and public buildings 

(airports, shopping malls, universities, etc.) and can provide 

an acceptable positioning technique in terms of accuracy and 

cost compared to similar systems.  

Bluetooth Low Energy (BLE) sponsored by Apple is also 

being deployed in many sites in form of iBeacons (small, 

cheap and autonomous devices easy to install) and can also 

be used as proximity and even positioning technology [7] [8]. 

From user’s and device’s perspective both network 

technologies are suitable as they are present in current user 

mobile phones. In fact, people are getting used to Google 

maps to self-locate not only outdoors, but also in indoor 

environments; Google geolocation plugin available in 

smartphones is able to scan for available Wi-Fi networks to 

determine indoor location and is expected to start using BLE 
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information in the positioning algorithm. This is clear 

evidence that multimodality is gaining acceptance and is 

probably the best approach to increase the accuracy and 

reliability for the location estimation by exploiting all current 

available off-the-self deployed networks. We have followed 

a similar approach in this paper focussing on merging the 

information from scanned BLE and Wi-Fi networks but we 

differ in the way the process is built: our approach is based 

on fingerprinting whereas Google is based on a 

crowdsourcing operation. 

The process of fingerprinting uses empirical data to 

estimate location and is composed of two phases. First, a 

radio map of the whole location is built by collecting the 

measured RSSI of known locations known as calibration 

grid. Second, the location of a user is estimated by 

comparing the real time measured RSSI values with the radio 

map. From a basic approach there is no need to model the 

complex signal propagation in the area and also no need to 

know the locations of the Access Points (APs). However, the 

first offline phase (calibration) can be tedious depending on 

the grid granularity and the area to be covered. Besides, some 

adjustments are typically required in the location algorithm in 

order to provide a moderate accuracy in real time 

environments.  Although a pretty good indoor accuracy can 

be obtained in controlled environments with reduced space 

and low experimental timeframes [9] [10], real living 

buildings (e.g. universities, airports, etc.) require robust 

location algorithms to provide acceptable estimations 

throughout time. This paper will investigate and provide 

results in such open living spaces. 

There are typically two different methods for 

implementing a positioning system: self and remote 

positioning. In self-positioning, the physical location is self-

determined by the user’s device using transmitted signals 

from terrestrial or satellite beacons (e.g. GPS for outdoor 

scenarios). The location is known by the user and can be 

used by applications and services operating on the user’s 

mobile device. In remote positioning, the location is 

determined at the server side using signals emitted or 

captured from the user device. The location is then either 

used by the server in a tracking software system, or 

transmitted back to the device through a data transfer 

method. This second approach is typically used in 

commercial indoor solutions as it provides a centralized 

management platform to better exploit business cases. 

Besides, enhanced features can be provided at server side. It 

is also important to highlight that the indoor estimation is 

typically offered as an indoor service to users where 

additional features are relevant and help self-determining the 

location. For example, whenever a user requests an indoor 

location estimation it typically expects a visual result in form 

of a (georeferenced) indoor map, and not just a point 

composed of latitude, longitude and altitude, which might not 

be helpful at all. Here a good indoor map implicitly provides 

additional information (e.g. stairs, elevator, toilets) allowing 

the user to automatically correct any potential deviation in 

the location algorithm's accuracy. 

The paper is structured as follows: section 2 presents 

related work considering different technologies and 

techniques for indoor positioning specially focussing in 

fingerprinting mechanisms. Section 3 presents the 

architecture of the system composed of three modules: map 

service, POI location and the indoor module with additional 

sub-modules. After that, the performance evaluation is 

presented providing real results obtained from a mobile app. 

Finally the paper ends with the conclusions and further work. 

 
II. RELATED WORK 

Although there are various taxonomies for indoor 

localization in the literature, there is a general classification 

in two separate groups: those based on RF approaches and 

those using other kind of technology. Among RF-based 

techniques one may cite GPS, wireless local area network 

(including Wi-Fi and BLE), and RFID localization. Non-RF-

based techniques may include different and alternative 

technologies based, among others, on audio, visual, 

ultrasonic, infrared and laser sensors. In this paper, we will 

primarily focus on RF-based techniques. Table 1 summarizes 

main RF technologies. 

 
TABLE I  

OVERVIEW FOR POTENTIAL INDOOR TECHNOLOGIES 

Technology Pros Cons 

GPS Moderate to high outdoor 
accuracy  

High availability 

Low to minimal indoor 
accuracy 

A-GPS Moderate outdoor accuracy Minimal indoor accuracy 

Pseudolite 
GPS 

High indoor and outdoor 

accuracy 

Very expensive 

equipment 
 

Cell tower Long range Highly inaccurate for 

both indoors and 
outdoors 

Wi-Fi Readily available 

throughout most buildings  
Minimal costs for 

implementation  

Medium range 

Network strength can 

vary due to multipath 
propagation 

Bluetooth Low power  

Low financial cost 

Moderate to low range 

 High cost of 

implementation 

Infrarred Moderate to high accuracy High costs for 

implementation 

Sunlight can affect 
outcome  

Low range 

UWB High accuracy  
Low power density  

Wide bandwidth 

High cost for 
implementation  

Not commonly used 

 
Nowadays developing indoor navigation systems for the 

common user is a hot topic. Researchers have explored 

several alternatives of Indoor Positioning Systems (IPSs) that 

use Wi-Fi signal intensity to estimate position [11] [12] [13]. 

Other wireless technologies, such as Bluetooth [14] [15] 

[16], Ultra-Wide Band [17] [18] and RFID [19] [20] have 
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also been proposed.  Another innovative approach uses geo-

magnetism to create magnetic fingerprints to track position 

from disturbances of the Earth’s magnetic field caused by 

structural steel elements in the building [21] [22]. Other 

alternatives for dealing with the problem of indoor location 

are the (combined) use of inertial sensors [23] [24], 

exploiting the smartphone accelerometer and gyroscope to 

build a reliable indoor positioning system without any 

infrastructure assistance. This paper will focus on the use of 

Wi-Fi and BLE technologies for the implementation of the 

indoor service. 

Depending on how the RF signal is treated one may 

classify the positioning process. Table 2 summarizes a list of 

available (indoor and outdoor) positioning techniques based 

on external beacons. 

 
TABLE II  

POSITIONING TECHNIQUES 

Technology Pros Cons 

Cell of Origin Base stations exist 

(cell towers)  

Base stations never 
move 

Highly inaccurate 

Angle of Arrival Moderate accuracy 

with appropriate 
hardware 

Requires directional 

antenna(s)  
Requires knowledge of 

orientation 

Angle Difference 
of Arrival 

Doesn’t require 
knowledge of 

orientation 

Requires and 
additional base station 

Time of Arrival Moderate indoor 
performance 

Base stations must be 
synchronized 

Low overall accuracy 

Time Difference 

of Arrival 

Moderate indoor 

performance 

Low overall accuracy 

Triangulation Very simple Requires 

determination of 
angles 

Location 

Fingerprinting 

High accuracy High calibration time 

requirement 

 

- Cell of Origin (CoO): this mode returns the closest base 

station to the user. It has normally been employed in 

cellular networks with an inaccuracy of at least the size 

of the cell. For better precision other technologies and 

techniques are combined, such as GPS, Time of Arrival 

and even some improvement algorithm [25].      

- Angle of Arrival (AoA): this technique is mostly suitable 

for areas with direct Line of Sight (LoS) between mobile 

users and reference points. The estimation is determined 

by measuring the angle between a line that runs from the 

reference point to the user and vice versa with a 

predefined direction [26] [27]. Though good accuracy, 

the biggest drawback lies in the need of special reference 

points to sense the exact direction of the received signal. 

- Time of Arrival (ToA): it is based on the measurement 

of the propagation delay from a user to one or more 

reference points [28] [29]. This technique is 

considerably difficult to perform accurately and requires 

synchronicity at clock level between user and reference 

points.  

- Angle Difference of Arrival (ADoA) and Time Difference 

of Arrival (TDoA) are similar to AoA and ToA, 

respectively, by just changing measured values with 

measured difference values. The obtained accuracy is 

somehow also similar.  

- Triangulation: it is a trigonometric method where the 

angles of a triangle formed by three reference points are 

measured. Some extensions have been proposed for the 

triangulation algorithm to improve the robustness [30] 

[31]. If distance instead of angle is measured, the 

technique is called trilateration. 

- Location Fingerprinting: It is a mechanism which 

compares the Received Signal Strength (RSS) from each 

wireless access point (other devices might also be 

possible) in the area with a set of pre-recorded values 

taken from several locations. This technique is usually 

broken down into two phases: offline sampling (training 

phase) and online location (positioning phase). With a 

great deal of calibration, this solution can yield very 

accurate results. However, this process is time 

consuming and has to be repeated at every new site. 

In order to reduce the scope of the research we will focus 

only in location fingerprinting, as it provides relatively good 

results. Regarding this approach, the K-Nearest Neighbours 

(KNN), decision tree, Bayesian classification and neural 

network methods are the most common techniques [32]. As 

they are quite different methodologies, this paper will 

concentrate in KNN algorithms as they will be used in the 

proposed system. The usage and comparison of other 

techniques is considered further work.   

KNN constructs distance vectors from RSSI data and 

calculates the position of the mobile user by comparing its 

fingerprint vector to the training vectors. After that, the signal 

space distances are sorted. The K samples with the smallest 

distances are chosen. Distance can be measured in various 

ways (e.g. Euclidean, Manhattan), with slightly different 

accuracies in most cases [33]. KNN is probably the most 

widely used method due to its simple approach, but current 

implementations often include weights in the selected K 

samples (WKNN) to better estimate the location by just 

considering that smaller error introduces larger weight. 

Additional improvements on top of the WKNN algorithm 

have been proposed in the literature. Authors in [34] propose 

a Differential Coordinate method (DC-WKNN) to reduce 

potential errors caused when calculating weights. Wang et al 

[35] investigate the impact of signal fluctuations in the 

positioning accuracy and suggest the use of a Gaussian 

filtering pre-process as well as a signal strength AP selection 

policy for the region decision policy. Gholoobi and Stavrou 

[36] advocate for the construction of the radio map of the 

localization environment based on the signal fading statistics 

of multiple short paths, instead of a homogenous grid. 

Besides location fingerprinting mobile users can also take 

advantage of present inertial sensors in their phones 
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(accelerometer, gyroscope, and magnetometer) [37] [38]. 

However, Inertial Navigation Systems (INSs) are usually 

subjected to “integration drift,” which is the error in 

measurement of acceleration and angular velocity. Since 

these errors are integrated each iteration, they will be 

compounded into greater inaccuracy over time. Therefore, 

INSs are often used to supplement another navigation system 

to provide a higher degree of accuracy. Authors in [39] 

present a fusion algorithm that integrates a typical Wi-Fi 

indoor positioning system with a Pedestrian Dead Reckoning 

(PDR) system resulting in an increased accuracy. 

RFID is also a technology that can be considered to some 

extent as COTS. Many of the RFID papers found in the 

literature compare results with the traditional LANDMARC 

algorithm [40], such as [41] and [42]. Though internally the 

localization mechanisms in such papers are using some kind 

of WKNN approach, the obtained results are commonly 

based on reduced layouts (e.g. 3.6m x 4.8 m) to provide high 

accuracy, but no result is provided for big open spaces such 

as airports, which differ in form and shape significantly. 

From another perspective, in contrast to Wi-Fi and BLE, 

RFID is not deployed on the pilot sites used in this paper and 

therefore cannot be easily considered a COTS approach as it 

would require deploying an important number of RFID 

readers to cover the whole airport area; furthermore, there are 

some privacy issues challenging the approach as travellers 

typically are reluctant to carry RFID tags and be tracked. 

Such issues are investigated in the PASSME European 

research project [43].   

In summary, indoor positioning is a hot research topic with 

plenty of technologies and algorithms being used and under 

experimentation. Improved accuracy is typically obtained 

when a hybrid approach is chosen combining different 

techniques. However, to the best of authors’ knowledge this 

combination is mainly produced between radio and inertial 

systems, but not between two or more radio technologies. 

This paper focuses on the combined use of Wi-Fi and BLE 

and an enhanced WKNN algorithm to estimate indoor 

locations in public living spaces such as universities and 

airports. 

 

III. SYSTEM ARCHITECTURE 

In order to correctly manage indoor location there are two 

additional modules to be considered if there is an aim for 

providing a standalone positioning service. The first module 

refers to the map service: if a user is to be graphically located 

on a place, it makes sense to do it on a map. Though strictly 

the feature of indoor location might involve only a name (e.g. 

room A), it turns out that for every day (mobile) applications 

users want their location to be displayed on a map, so that 

they get an overall picture of the scenario. Sometimes it is 

better the name of positioning, as this feature provides a 

more detailed level of accuracy. The other component to be 

included as part of the overall architecture is the POI (Points 

of Interest) module, as they are also a relevant piece of 

information for the user at presentation level. 

A. MAPS SERVICE 

Valid indoor maps are typically not provided and the very 

first task should start on this topic. In general terms, in public 

spaces such as universities and airports, the process starts 

from an architectural (CAD) map and should end into a 

georeferenced map. The georeferenced map can be of type 

either rasterized or vectorial. The latter is obviously the 

preferred format in order to preserve quality as the user 

performs zoom in/out. The typical vectorial format for 

georeferenced images are Shapefiles (SHP) which has been 

chosen in this paper. 

The conversion from proprietary CAD formats (e.g. DWG 

or DGN) to shapefile is not a one click process and should be 

typically left to an expert for a professional outcome. There 

are tools (e.g. ESRI’s ArcCatalog) able to make an initial 

conversion, but one has to select the different types of 

entities to be considered (e.g. Annotation, MultiPatch, Point, 

Polygon, Polyline) and it is not possible to anticipate the best 

option for each map. Thus, a trial-and-error approach needs 

to be performed in order to obtain the best output. In any 

case, the resulting output is often not clean and some 

additional (manual) adjustment is necessary. Additionally, 

when exporting the map to shapefile format, spatial reference 

information is typically lost, and spatial adjustment is 

required using some background cartography: 

OpenStreetMaps (OSM), Google Maps or national reference 

cartography via Web Map Service (WMS). A result example 

can be seen in Fig.1 for the Palma de Mallorca (PMI) airport. 

All the resulting shapefiles are imported into a GIS Server 

(the open source GeoServer) in order to provide all maps 

through a standard WMS (Web Map Service) service. 

 

 

FIGURE 1. Final shapefile example (PMI airport, Main Terminal, Floor 0). 

B. POINTS OF INTEREST 

It is important to include POIs as an independent module as 

they provide added value when deploying a location service: 

a user may not only want to know its current location, but 

also the location of nearby entities (POIs) without explicit 
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need for navigation. Regarding indoor location, and focusing 

on airports, POIs are: 

- Interesting places for users (e.g. restaurants, information 

points)  

- Special zones to be used or avoided (e.g. queues in 

security checks, stairs, lifts) 

- Special points to monitor for status, availability and 

changing conditions (e.g. boarding gates, lifts)  

Even if there are a large variety of POIs, 14 categories have 

been basically identified and selected, mainly focusing on 

mobility relevance, as the location service is expected to be 

later integrated with an indoor navigation service. The 

categories are: toilets, elevators, escalators, travelators, 

boarding gates, entrances, security checkpoints, check-in 

points, stairs, catering, shops, information points, luggage 

belts, meeting points, shuttle bus stations, car rental places, 

taxis, public buses,  car sharing stations and bike sharing 

stations. 

POIs are described in a generic and extensible format that 

includes, besides position and category, additional 

information as Key-Value-Pairs (KVPs). 

 

 
FIGURE 2. Georeferenced POIs (PMI airport, Terminal C). 

 

C. INDOOR LOCATION 

The indoor positioning process involves three main actors: 

- The environment itself as a series of deployed devices 

able to provide or broadcast information that help 

estimating user’s location. For indoor environments, it is 

typically referred to as Wi-Fi APs or iBeacons.   

- The user’s device, typically a mobile phone able to sense 

the environment and collect measurements that serve as 

basic input for the estimation algorithm. Once the 

algorithm has been executed, the client’s device presents 

the result to the user, typically on a georeferenced map. 

- The server side, which performs the necessary process 

(location estimation). It may also provide related and/or 

additional features such as maps and POIs. In a general 

sense, the server also encapsulates the business logic 

defined by a company exploiting the service. 

The process sequence is very simple: (1) the mobile user 

senses the environments and collects Wi-Fi/BLE 

measurements, (2) sends them to a remote server for location 

estimation and (3) finally presents the result to the user. 

Location FingerPrinting (FP) has been selected in this 

paper as positioning technique. Thus, there is a need for a FP 

database based on RSSI measurements for each floor from 

each building/terminal. Each measurement can potentially 

include any radio source that the mobile user is able to sense, 

which normally maps to the use of Wi-Fi and BLE. The 

mobile network radio signal (3G/4G) was also considered 

initially, but provided poor results compared to Wi-Fi and 

BLE in indoor environments.   

Even if the main sources of information are radio signals, 

it is possible to include additional information of the 

environment. Here we refer to the possibility of including 

inertial sensors (mobile accelerometer and gyroscope) that 

might help in the location estimation. Note that typically the 

obtained location result is much more accurate when the user 

is still (motionless) than when the user is moving (e.g. across 

the terminal). This makes sense because there is a time 

needed for collecting the measurements; if the user moves 

during this interval, the ‘quality’ of the measurements are 

compromised and thus the algorithm will provide a location 

result with less accuracy.  

The general process that involves the different tasks 

performed to provide an indoor location service is depicted in 

Fig.3. It consists of six building blocks: data model, maps, 

Fingerprinting Grid, Algorithm implementation, Mobile tests 

(probes) and analysis of the obtained results, which has an 

impact on some of the previous processes in case an error is 

detected or some enhancement is suggested. Each process 

will be described in the following subsections.   

 

 

 

 

 

 

 

 

 

FIGURE 3. General overview of the indoor service process. 

 

1) DATA MODEL OVERVIEW 

The indoor service is considered a standalone service and 

therefore requires a data model to represent the different 

entities involved according to its own architecture. Without 

going in deep detail into the data model, some general 

aspects might be highlighted in order to better understand 

data representation and the relevant entities to be considered 

in the architecture: 

- Basic entities are floors, which is the normal scenario 

where a user is located indoors. A collection of floors 

represents a building (a Terminal according to airport 

Data Model

Zone, Building/Terminal, 
Floorl

Maps

PMI, SXF, TXL, UPVLCl

FP Gridl

Algorithm

Swagger API, 
Configurationl

Test App 

Calibration, Positioningl

Results

Populate DB, Analysis 
toolsl
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terminology) whereas a collection of buildings 

represents a zone (an airport according to airport 

terminology). For each entity a management console has 

been developed to add, edit or delete items.  

- Measurement data is treated in two steps: raw data and 

average measurements. Raw data can store as many data 

(RSSI values per each detected radio signal on a specific 

location) as needed and allows performing an 

independent (signal) analysis without linking to other 

information available in other tables. Processed data 

(measurements) represent average values that are 

assigned to a specific FingerPrinting node and is 

therefore linked to other tables, and used by the 

positioning algorithm.  

- The FingerPrinting database is mainly composed of the 

fingerprinting nodes that make the link between specific 

locations on a floor with the associated RSSI average 

values provided by the measurement data. 

- POIs should also be represented on this model, but are 

not linked to measurement data. They contain 

geolocation and additional information, similar to 

overlay georeferenced maps that are linked to floors.   
 

2) MAPS OVERVIEW 

This process has already been described in a previous section 

(maps service) 

 

3) FINGERPRINTING GRID OVERVIEW 

The insertion of FingerPrinting nodes on each floor is 

typically a manual process. Once the maps are available, 

some specific points (nodes) have to be defined where 

measurements will be collected during the calibration phase. 

It is difficult to generate the radio map automatically for 

several reasons (building orientation, wall order, specific 

places to omit, etc.). Besides, one has to consider that node 

separation cannot be very small (neighbor nodes will get 

practically the same measurements, the process may become 

really though) or very high (accuracy will diminish), and the 

best separation value is not always possible to anticipate.    

In order to facilitate edit and management functions, a web 

user interface tool was developed to place georeferenced 

nodes on any available floor (containing maps). Besides, for 

each node the administrator can set a radius to look for 

adjacent nodes which is independently of node density. This 

might be useful for the positioning algorithm in order to 

reduce the target FingerPrinting space or even predict 

trajectories. In general terms, a distance of around 5m 

between nodes has been (empirically) considered as an 

appropriate default value for large spaces (halls, corridors, 

etc.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Fingerprinting Grid (PMI airport, Floor 4). 

 

Each FingerPrinting node collects not only Wi-Fi but also 

BLE measurements. In fact, iBeacons is the approach 

proposed by Apple, which drove the market to the release of 

an ‘Android’ branch called Eddystone. It is not exactly the 

same, but the data model has been adapted to store the three 

types of measurements (Wi-Fi, iBeacons and Eddystone). In 

all cases an RSSI value is obtained from each technology. 

Last, the data model can be extended to incorporate 

additional radio signals. 

 

4) ALGORITHM OVERVIEW 

The algorithm is called DORA and is responsible for 

estimating the user location depending on the collected real 

time measurements, by comparing this collection with the 

ones available in the Fingerprinting database (radio map). 

Basically, the value to be taken as comparison is the RSSI, 

and the node providing the least distance value in signal 

space is the one selected as the candidate value (NN 

approach), but it is also possible to take the K nearest nodes 

and interpolate (KNN approach). The various configuration 

parameters are: 

- Positioning algorithm: currently weighted NNSS 

(Nearest Neighbor in Signal Space) is used. Other 

algorithms, such as HLF (Hyperbolic Location 

FingerPrinting), are expected to be introduced and 

analyzed in the future but are beyond the scope of this 

paper and considered further work. Also statistical 

processing to better characterize the signal behavior such 

as the Spearman correlation factor [44] is considered 

further work. 

- Maximum sample size: this represents the maximum 

number of measurements considered within a sample. In 

practical terms, if a value of 50 is set, this means that the 

mobile device is able to provide one RSSI value for up 

to 50 different SSIDs. This value is configured for each 

technology. Wi-Fi works with SSIDs whereas iBeacon 

and Eddystone work with UUID. 

- Missing MAC penalty: In order that the comparison 

between collected measurements and FP database can be 

performed, it is necessary to ‘homogenize’ the field. A 

missing MAC (related to an SSID) in the user’s request 
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will be interpreted by the algorithm as a ‘virtual’ 

measurement with a configurable value (e.g. -200dB). 

This parameter is necessary but can be sometimes tricky 

as it can have an impact on the final distance value and 

therefore on the estimation. 

- Candidate set size: this parameter allows diminishing 

the FP space to the top T nearest FP nodes of the 

previous calculated node. In practical terms, if the user is 

not moving quite fast, and was at node N at time interval 

t, it makes sense to try to position him/her on the 

neighbor nodes at interval t+1. Even if the FP space is 

not reduced, it seems more sensible to locate the user 

near the previous estimated node if the algorithm gets 

two candidate similar values, one far away and the other 

close to the previous node.  

- Checks before hop: the previous assumption might not 

be always appropriate and may guide the algorithm to 

fail. If a distant node from a previous estimation gets a 

‘better’ distance than another one close to the previous 

estimation for various consecutive time intervals, then 

the distant node is selected. 

- Distance algorithm: this parameter refers to the way the 

distance in signal space is calculated.    Typically, the 

Euclidean distance is used (norm 2), but other 

alternatives are possible: Manhattan, Chebyshev, and 

Minkowski.  

- Distance algorithm arguments: additional arguments (if 

any) required by the previous chosen selected distance 

algorithm. For example, the Euclidean distance 

algorithm does not require additional parameters, 

whereas the Minkowski approach does.  

- Filter sequence: The algorithm allows the inclusion of 

several filtering expressions with the obtained result. 

Note that the result at an intermediate level of the 

algorithm is not just a candidate node, but the whole set 

that can be ordered. For example, one can be able to 

obtain the best N candidate nodes (NHIGHEST filter), 

or skip a certain SSID during the evaluation (REGEX 

filter). 

The core algorithm process is initially decomposed into 

three parallel threads treating the different technologies (Wi-

Fi and BLE). For each technology, a best estimation (or a list 

of best candidates) is given. Afterwards, both technologies 

are merged in order to provide a better and more stable result. 

Note that it is impossible to compare directly Wi-Fi and BLE 

values because the sensitivity and the signal space size are 

quite different. Therefore, the raw values of distance for both 

technologies differ and have to be somehow normalized. For 

our algorithm, we have established a basic approach similar 

to WKNN for establishing the weights to the best candidates 

for both technologies. There are also some special cases or 

exceptions to consider in the process: for small distances 

BLE is typically more accurate than Wi-Fi and it is 

recommended to omit Wi-Fi estimations which would 

increase the confidence radius. In the next section estimation 

results will be presented for both Wi-Fi and BLE 

technologies.         

In order to promote interoperability with other internal or 

external services (e.g. indoor navigation) a swagger REST 

API has been developed. Basically, the algorithm only needs 

to know a space (floor, building or zone) and a collection of 

taken measurements (provided in the HTTP body). 

Optionally, the user may also provide a previous node, in 

order to facilitate (speed up) the search. The response 

provides the best candidate node and a position that results 

from interpolation of the three best candidates nodes, among 

other parameters (floor identifier, level, etc.). 

IV. PERFORMANCE EVALUATION 

Initial tests have been performed at the Universitat 

Politecnica de Valencia (UPVLC) premises for practical 

reasons. Afterwards, the tests have also been performed in 

two airports: Palma de Mallorca (PMI) and Berlin-Tegel 

(TXL). 

A. APP OVERVIEW 

In order to test the service, a mobile app has been developed 

that allows not only getting the measurements (training 

phase), but also displaying the results on a map (positioning 

phase). The app has been developed in the cross-platform 

environment Ionic and thus allows to be compiled for both 

Android and iOS devices. Development for Android resulted 

with no problem; however, there is a serious drawback in the 

current iOS SDK: it does not allow scanning for Wi-Fi 

signals. There might be non-standard (non-official) SDKs 

that allow this functionality, but it will be detected by Apple 

if the final app is to be placed in the Apple marketplace and 

will be withdrawn. The reason for that is unclear but it seems 

that Apple prefers for its devices to use iBeacon technology, 

offering an SDK for this. This issue motivated the support for 

iBeacons (and Eddystone) in the positioning service in order 

to reach both Android and Apple users. In the remaining 

paper results will be presented from those obtained from 

Android devices. From an algorithmic point of view, Wi-Fi 

localization is more challenging than BLE localization, so a 

special analysis and considerations will apply for Wi-Fi 

measurements.    

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. App for taking measurements 
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B. WI-FI CONSIDERATIONS 

The success (accuracy) of a FingerPrinting approach depends 

on a relatively stable radio signal strength along time as the 

algorithm has to compare an average measurement taken at 

time T with another measurement taken in the future at time 

T+t. If the signal fluctuations are significant, this may have 

an impact on the calculated estimation. For this reason, we 

made an initial radio analysis and scanned continuously for a 

whole day the signal fluctuation of one of the APs available 

at UPVLC premises (see Fig.6) in the 2.4 GHz frequency 

band. It turned out that during nights there is some internal 

recalibration mechanism where the signal strength 

diminishes by more than 10 dB. This fluctuation led to the 

additional use of special Wi-Fi beacons manufactured by the 

company Creative Systems Engineering (CSE) with a more 

stable beacon signal. 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. RSSI fluctuation for an Access Point at UPVLC. 

C. INITIAL POSITIONING RESULTS 

In order to pre-test the algorithm and anticipate up to some 

extent the possible result, we integrated a basic Wi-Fi heat 

map tool into the service management console in order to 

calculate the ‘signal distance’ from one FP node to the other 

nodes in the same floor. This must be performed for each of 

the nodes, detecting up to 3 different situations (see Fig. 7): 

- Desired situation: the signal at one FP node is quite 

different to the others. For the algorithm, it will be easy 

to decide if the user is at this location. 

- Acceptable situation: the signal at one FP node has 

similarities with adjacent nodes. The algorithm will have 

some difficulties to estimate the best location, but as 

long as the nodes are close to one another, the deviation 

might be acceptable. 

- Undesired situation: the signal at one FP node is similar 

to many nodes, not only adjacent ones. The algorithm 

will probably perform poorly here, as there might be no 

means to associate a best candidate accurately. This 

situation may happen for various reasons: the adjacent 

radius between nodes is very low; nodes are in open 

space quite distant from APs (thus the received signal is 

similar), etc. One possibility to alleviate this situation 

consists in introducing another technology (e.g. 

iBeacons) and giving priority to special signals. Another 

possibility is to consider previous location estimations 

(if provided), infer trajectories and setting a small 

potential candidate size. 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. Heat map analysis at UPVLC (ETSIT, Floor 2). 

 

Another series of results is depicted in Fig. 8. We took 

various measurements at each of the 32 FP nodes building 

the radio map throughout a short period of time (5 minutes 

for each FP node). We identified how many of these (in %) 

provided an accurate result (i.e. the algorithm provided the 

same FP node were the measurements were taken). The first 

(top) bar chart depicts a relatively poor performance for basic 

configuration parameters of the algorithm; in average, in only 

50% of the cases the algorithm provided the right node. This 

is not necessarily a bad performance as in most of the cases 

(78%) an adjacent node was estimated and the perception by 

the user might be acceptable. 

In a second iteration, we introduced three filter sequences 

in order to increase the accuracy level (see Fig. 8). The 

correspondent (low) bar chart demonstrated that the 

algorithm performed better providing in average a right result 

in 80% of the cases and an adjacent node in 94% of the 

cases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. Location results. 

 

Regarding results at mobile phones, the developed app was 

tested on an Android device and the results were compared 

with the built-in geolocation plugin (available also through 

Ionic), which is used e.g. in Google Maps. Our indoor 

service outperformed the internal geolocation plugin: 

Google’s plugin places sometimes the user directly on the 

street even if it is in an indoor environment, and sometimes it 
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converges to a more accurate location, but sometimes not. 

This situation is depicted in in Fig.9, where the real place is 

depicted in red, Google’s internal geolocation plugin 

estimation is represented in blue and the DORA algorithm 

estimation is depicted in green. This Figure shows the best 

and worst case scenario for both estimation (DORA 

algorithm and Google’s estimation) in two different 

screenshots. In our experiments at UPVLC premises the 

results were always better (more accurate) with our approach 

than using Google’s plugin. Our indoor service provides an 

accuracy of less than 5 meters in 80% of the cases, and less 

than 15 meters in 99% of the cases. On the other side, 

Google internal geolocation plugin is providing errors of up 

to 30 meters in 50% of the cases, which in some cases 

corresponds with outdoor locations even if the user is located 

indoors. However it is important to highlight that Google’s 

algorithm is dynamic and converges after a couple of 

minutes in 70% of the cases, providing acceptable values. 

From another perspective, our algorithm is able to provide z-

coordinate (level) whereas Google’s plugin is not (yet) 

providing this information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. Location estimation (indoor algorithm vs Google built-in 

geolocation plugin). 

D. POSITIONING RESULTS IN AIRPORTS 

The positioning service has been tested in the airports of 

Palma de Mallorca (PMI) and Berlin (TXL). For Tegel 

airport (TXL), 461 FP nodes were defined to cover Terminal 

C, Terminal B, part of Terminal A and an external car rental 

station (see Fig. 10). Note that some nodes (yellow nodes) 

did not get any associated signal scan during the calibration 

phase. This is the case of some nodes on an outdoor path 

where GPS should provide positioning information. The 

offline phase detected up to 220 different SSIDs across the 

whole scanned area; most of these SSIDs had to be filtered as 

they related to temporal or untrusted Wi-Fi networks 

resulting in a final list of 15 relevant SSIDs to be considered. 

Some results are depicted for Terminal C at TXL (see Fig. 

11) in form of screenshots extracted from the mobile app.  

The screenshots have been taken in different time intervals 

(but from the same location) in order to check the variability 

for the estimation and trying to show best and worst case 

scenarios. As can be observed, the indoor service average 

accuracy (around 5 meters) outperforms the internal 

geolocation plugin (around 10 meters). In this case, the 

reason mainly lies in the usage of BLE technology (besides 

Wi-Fi) as Terminal C is fully covered with iBeacons. Though 

in most cases the indoor service provided a reduced 

confidence radius, in 10% of the cases it could increase up to 

19 meters (worst case).  

 

 

 

 

 

 

 

 

 

 

FIGURE 10. FP grid for TXL airport. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11. Positioning results (Terminal C, TXL). 

 

The airport in Palma (PMI) is much bigger than TXL airport 

and therefore the FingerPrinting process took longer and was 

performed Terminal by Terminal. 720 FP nodes where 

defined for Terminal C where 40 different SSIDs were 

scanned. For the main Terminal there were 287 FP nodes and 

62 different SSIDs for floor 0, 297 FP nodes and 42 different 

SSIDs for floor 2, and 205 FP nodes and 35 SSIDs for floor 

4. After a proper filtering a set of 5-11 relevant SSIDs were 

selected for each floor. Some results are depicted in Fig. 12, 

Fig. 13 and Fig. 14. In general terms, the results were not that 

successful compared to TXL airport, because there was no 

BLE technology deployed and also because of a larger 

amount of metallic objects deployed (e.g. travelators). The 

latter reason has probably caused more signal fluctuations 
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with a real impact on the estimated position and accuracy. In 

fact, the DORA WKNN algorithm did not provide the real 

nearest FP nodes in most cases (see Fig. 12). However, 

compared to Google’s internal geolocation plugin, our indoor 

service still provides a clear better estimation in 70% of the 

cases, with average accuracy of 5 meters in 60% of the cases, 

though the confidence radius varies from 5-15 meters. 

However, in some cases (see Fig. 12), the provided result 

including the confidence radius does not cover the real 

location and thus resulting in a bad estimation. Here 

Google’s internal plugin does not ‘converge’ and provides 

the same estimation continuously (except for Fig. 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12. Positioning results (Terminal C, PMI). DORA variability. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13. Positioning results (Terminal C, PMI). No Google’s plugin 

convergence. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14. Positioning results (Terminal C, PMI). Google’s plugin 

convergence. 

 

We firmly think that this is caused because of the strong 

signal variability (see Fig. 15) that has been detected on 

several areas of the airport. We could not change it because 

access to infrastructure in airports is very limited and takes 

too much time. The situation in our preliminary results was 

not that bad but variability was also detected due to overlap 

in the Wi-Fi channels at 2.4 GHz band. However we expect 

to repeat the experiment in the near future, as the PMI airport 

operator plans to deploy iBeacons in several months; thus the 

comparison improvement is considered as further work.      

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Wi-Fi signal variability at PMI airport. 

 

E. FURTHER IMPROVEMENTS AND RESULTS 
In order to minimize or mitigate the potential errors that 

could appear at Wi-Fi level in real scenarios the algorithm 

has been improved in several aspects: 

- Support for 5 GHz band: current deployed access points 

are supporting both 2.4 and 5 GHz bands, therefore the 

attenuation impact is mitigated. Furthermore, there is no 

overlap in 5 GHz channels and so the signal strength is 

more stable (some access points reconfigure TX power 

at 2.4 GHz when strong interference is detected).  

- Infrastructure deployment awareness: now the algorithm 

considers the location of access points, the relevant 

SSIDs involved, the involved MACs as well as the TX 

power at each band. As will be shown later, such 

awareness reduces the target node set, the average 

accuracy and the average response time.  

- Internal geolocation plugin support: the algorithm 

supports also as optional input parameter the estimation 

provided by a third party, in this case the internal 

geolocation plugin of the smartphone. This has several 

advantages. First, it is an independent estimation that 

can be also used either as input for a data fusion 

technique or as a comparator with the internal result of 

the algorithm in order to check which one is providing 

the best accuracy. Second, it can be used as default value 

if the algorithm has no way to provide an estimation; 

this could be the case when the traveler is wandering 

across the terminals through an outdoor path without 

Wi-Fi coverage but GPS support.   
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FIGURE 15. Awareness of infrastructure deployment information 

(UPVLC). 

 

 

 

 

 

 

 

 

 

Some preliminary results have been obtained at UPVLC 

where the required information related to infrastructure has 

been obtained. Figure 15 shows the deployed access points 

for a floor building at UPVLC whereas Fig 16 and 17 show 

the associated node sets assigned to a specific access point. 

 

 

 

FIGURE 16. Node set associated to access point ar1-tel4d2sc at 2.4 GHz 

band (UPVLC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 17. Node set associated to access point ar1-tel4d2sc at 5 GHz 

band (UPVLC). 

 

The node set for each access point deployed is built after the 

FingerPrinting process. For each fingerprint of the 

floor/building, the strongest signal measured is associated to 

an access point according to the MAC. The result is that 

every access point has an assigned node set which 

corresponds to its strongest area of influence, and is different 

depending on the frequency band (see Fig. 16 and Fig. 17). 

Several partial conclusions can be extracted. First, the 

assigned node set is not only dependent on frequency but 

also on TX power from nearby access points; some 

fingerprints on one floor may be even assigned to access 

points located in a different floor. Second, the aggrupation of 

fingerprints in node sets can be exploited to reduce the target 

node set in the online phase:  

- In the first version of the algorithm, whenever a 

measurement is taken at a given location, the target node 

set may be the whole floor, building or the entire airport. 

Obviously the required time for calculating distances 

increases as well as the potential accuracy error.  

- In the new version, the measurement is processed in 

order to extract the closest (strongest) access points, and 

the target node set is built as the union of such access 

points (APs) node sets. It is clear that such target node 

set is significantly reduced, among all compared with the 

whole airport and the potential accuracy error also 

diminishes. The usage of more than one AP node set (if 

detected) makes the algorithm more reliable, because 

due to signal fluctuations one may think that some 

fingerprints may have been assigned to one or another 

access points depending on the moment the 

measurement is taken. Considering up to 3 APs node 

sets for building the target node set (if detected) provides 

enough confidence and guarantee that the target node set 

is correct and the remaining nodes can be filtered out.      

Some results are presented in the following Figures for the 5 

GHz Wi-Fi band. In order to better describe the location 

process some extra nodes have been depicted as described in 

Fig. 18. At a given real place (red node) measurements are 

taken from the smartphone and sent to the indoor positioning 

service. First, measurements are filtered to consider only 

relevant SSIDs. Second, RSSI values are ordered in order to 

get those with strongest signal, and the corresponding access 

points are detected. As can be observed in Fig. 17 two nearby 

access points have been detected, and the target node set is 

built from the union of both AP node sets (yellow nodes). 

Therefore there is no need to get the node set of the whole 

floor, reducing the processing time. Finally, the target node 

set is compared with the taken measurement and the three 

nearest ones (in signal space) are selected (grey nodes around 

yellow ones). A weighted approach (WKNN) is applied 

resulting in a final estimation (green node) including 

level/floor detection as well as an accuracy radius. The 

accuracy radius depends on the target node set and the 

distance between nearest access points.      
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FIGURE 18. Positioning results at 5 GHz band (UPVLC, SATRD lab). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 19. Positioning results at 5 GHz band (UPVLC, corridors 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 20. Positioning results at 5 GHz band (UPVLC, corridors 2). 

 

The response time of the indoor positioning service has also 

been evaluated. Whereas the first version of the algorithm 

provided responses within 1-2 seconds, depending on the 

target node set (floor, building, airport), the second version is 

providing values below 0.5 seconds. Even for 20 

simultaneous requests values below 0.7 seconds are obtained. 

This is in fact not relevant for the user because the 

smartphone is not continuously scanning for Wi-Fi, but 

periodically after 6-8 seconds for battery savings reasons. 

Besides, reliable BLE scanning may take around 5 seconds in 

smartphones, and the service response time is considerably 

below such value. 

F. INTEGRATION IN IOT ENVIRONMENTS 
It is common to find in IoT context models the location of 

the objects (entities) as an attribute; it can be either fixed for 

static entities or dynamic for entities with mobility 

capabilities. Usually, mobile entities are equipped with GPS 

enabled support providing location data that is acceptable for 

outdoor environments; however, they struggle to provide an 

accurate position when the entities enter indoor facilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21. DORA IPS integration with the Port IoT environment. 

 

In order to facilitate third-party integration, the DORA IPS 

has been integrated and tested in a multi- IoT environment, 

considering as use case activity carried out at ports (see Fig. 

21). Typically, the Port Authority is the entity in charge of 

providing security and managing the coordination of all 

involved parties in port transactions. Each party owns its own 

IoT platform to manage internal processes, and limited 

interoperability is exposed. In order to ease communication 

and optimize resources among all of them an interoperability 

platform, called Inter-IoT, has been proposed [40]. It 

encompasses a multi-level architecture so that 

interoperability between IoT platforms can be established at 

different layers (device, network, middleware, application, 

and semantics). The objective in our paper consisted in 

setting up the DORA IPS as an application service on top of 

Inter-IoT, so that different IoT platforms are able to use the 

service through an integrated interface (see Fig. 21).  

Interoperability in Inter-IoT requires a meta-model for any 

entity subject to be interoperable between two or more IoT 

platforms. Thus there is a need to represent virtual objects 

covering multiple dimensions. The object representation 

must be extensible in order to fulfill present and future 

service requirements. In our use case, we have included an 

indoor model extension in order to cover those entities 

operating in indoor environments, conceptually similar as for 

a typical outdoor model. Basically, the indoor model relates 

the target radio map (fingerprinting grid), the scanned 

measurements and the positioning estimation. Note also that 

the radio map may be provided from each IoT platform 

operator, sharing just the access to the algorithm. 
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The use case tested in this paper relates to a third party 

transportation company entering the port of Valencia by 

truck. Here Access Control Systems (ACS) and Port 

Community System (PCS) verify the correct entrance of the 

truck and allow them to go to the destination terminal. In a 

typical scenario, the exchange of tracking information 

between systems mainly involves GPS coordinates, but there 

was no effort to include indoor positioning. In our system 

this is performed by incorporating the DORA IPS with 

support in some buildings at the port. Moreover, the 

positioning service can involve both the truck and the driver, 

which might not be on the same place necessarily in an 

indoor environment. Here indoor geo-Role Based Access 

Control (RBAC) policies can be established in order to 

assure that truck and driver only enter authorized zones. 

Considering the generic approach of IoT platforms, entities 

may not only be trucks and drivers. Though this is not yet 

implemented and is considered as further work, the internal 

radio map (FingerPrinting Grid) typically provided by each 

building owner may be dynamically generated and updated 

by a special entity (mobile device) managed by an IoT 

platform (radio map provider). 

Though it is difficult to evaluate the impact of integrating 

the positioning system in a multi IoT environment with 

numbers, some basic Key Performance Indicators have been 

established and listed in Table 3. The response time of the 

DORA IPS takes as average 6,3 seconds; this is caused if 

BLE is used as scanning technology because it takes a time 

for the ranging process; this is just a limitation of the internal 

plugin of the mobile device. If only Wi-Fi is used, the 

response time is reduces less than 1 second. Integrating the 

DORA IPS into the IoT environment does not have any 

practical impact as depicted in Table 3. Some additional 

milliseconds are needed in the IoT environment due to 

security checks for granting access. Regarding the 

management of radio maps, the DORA IPS was conceived as 

a central service and thus it has to manage all FingerPrinting 

grids (TXL airport, PMI airport). Integrated in a multi-IoT 

platform, the generation and updates of radio maps is 

delegated to each IoT platform, each one in charge of 

managing their own maps. In our use case, we were able to 

set up 2 FingerPrinting management entities, one radio map 

for the Port Authority IoT platform (1 building) and another 

one for one of the Terminals (1 building). 

Considering the number of platforms integrated, we were 

able to test the interoperability with three different open 

platforms: FIWARE, Open-IoT and WSO2. In fact most of 

the work is done by the Inter-IoT platform and mainly the 

indoor model extension was necessary. Such integration 

allowed us to easily use the integrated DORA IPS from 

multiple services in the three platforms that can potentially 

make use of an indoor location for their internal processes. 

We successfully tested it with 9 services, three from each of 

the IoT platforms. Obviously this number may increase 

seamlessly; it just depends on the services requiring indoor 

positioning in each IoT platform. We tested it on 9 services 

in order to check and verify the integration process. 

 
TABLE III 

KPIS FOR THE DORA IPS INTEGRATION 

KPI 
DORA IPS 

 

DORA 

IPS+IoT 

 Ratio 

Response Time (ms) 6340  6597   1,04 

FP Management 
entity 

1 2  2 

Platforms 
integrated 

1 3  3 

Services Integrated 1 9  9 

 

As further work and considering potential business 

models, various IPS services may converge and register into 

the Inter-IoT platform, exposing different FingerPrinting 

technologies and accuracy. For example, DORA IPS is based 

on Wi-Fi and BLE but another IPS may support RFID and 

UWB. In this scenario, each IoT platform may request 

available capabilities and decide which one to use. 

 
V. CONCLUSIONS 

Indoor location is a trendy topic and is foreseen to grow in 

the upcoming years, once the outdoor scenario is already 

stabilized. Some of the first target indoor areas are airports 

and shopping malls, thus there is a recent approach to deploy 

indoor solutions.   

A general indoor service has been developed based on Wi-

Fi FingerPrinting and Wi-Fi beacons, with the possibility to 

include also iBeacons and Eddystone beacons. The indoor 

service is decomposed in various components and integrates 

smoothly with other related services (maps, POIs). Besides, 

there is a HTTP REST interface available with Swagger 

support that facilitates an easy integration with other software 

components (e.g. indoor navigation).  

The developed service included not only a server side 

component but also a mobile app to target fingerprinting and 

location tests using Ionic, and the latter one can serve as 

initial basis for custom apps. 

Indoor maps are really important not only for users but 

also for setting up the fingerprints. If the surface to cover is 

really huge, it is important to have important reference points 

(e.g. pillars) available in order to assure that the fingerprint is 

taken at the right place. From the end user perspective, some 

building details should be removed to provide a simple view. 

This is a work intended for a design professional worker 

from the airport. 

In general terms, Wi-Fi does not seem to be well suited for 

accurate indoor location as single technology. It can provide 

good estimations at certain spots, but for big areas with 

changing conditions strange estimations might occur and on 

site adjustments are required. So it is important to combine 

different technologies (BLE and GPS if possible) in order to 

increase the accuracy and reduce the effect of signal strength 
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variations. The usage of both bands (2.4 GHz and 5 GHz) for 

Wi-Fi helps also mitigating signal strength variability and 

thus reducing the average accuracy error. 

The obtained accuracy in real live conditions can range 

from 2-15 meters; it depends on several factors, such as the 

fingerprinting grid and signal strength stability, among 

others. For very accurate estimation, additional investment is 

required, which will be no longer a COTS approach. The 

algorithm has been enhanced from an unaware infrastructure 

approach to an aware one, exploiting the knowledge of 

access point’s locations, their MACs, TX power and relevant 

SSIDs. Under such circumstances, the target node set is 

reduced, as well as the response time and the accuracy error. 

This is also helpful in airports to mitigate the extreme 

population density in airports where signal strength severely 

reduces, as the algorithm infers the estimation based on the 

nearest (strongest) access points detected.  

It is important to work with the airport staff in order to set 

the fingerprinting grid, deploy additional beacons and finally 

test the indoor location; a lot of different tests have to be 

performed across the target place (including restricted areas). 

Thus, some staff working daily at airports is required to make 

tests and help generating a model to overcome the details of 

an airport. Note that each airport is different and has different 

problems in terms of signal propagation that affects the 

quality of measurements taken, thus guiding to 'surprising' 

estimations unless the situation is detected and corrected or 

minimized. 

Probably the most challenging aspect for indoor 

positioning relates to the location of users while they are 

moving, as the signal strength varies across the path. Here the 

DORA algorithm (and also Google’s one) provides 

inaccurate results even if including inertial sensors and also 

time window filtering. Intensive work has to be performed in 

this direction to obtain good results without consuming too 

much battery (energy).  

Long corridors with long metallic travellators seem to 

provide unexpected signal reflections and thus resulting in a 

poor estimation. Accuracy seems better at the waiting areas 

at both sides of the main corridors. 

The positioning system has also been successfully 

integrated and evaluated in a multi IoT scenario where 

different services from different open IoT platforms were 

able to get an indoor positioning value enriching the 

capabilities of their services. 

Further work can spread in different directions, but we are 

mainly focussed on improving the DORA algorithm for just 

Wi-Fi deployed areas as well as studying different 

positioning technologies (e.g. RFID) to better test and 

improve the merging process.    
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