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Intra-node Memory Safe GPU Co-Scheduling
Carlos Reaño, Federico Silla, Dimitrios S. Nikolopoulos and Blesson Varghese

Abstract—GPUs in High-Performance Computing systems remain under-utilised due to the unavailability of schedulers that can safely
schedule multiple applications to share the same GPU. The research reported in this paper is motivated to improve the utilisation of
GPUs by proposing a framework, we refer to as schedGPU, to facilitate intra-node GPU co-scheduling such that a GPU can be safely
shared among multiple applications by taking memory constraints into account. Two approaches, namely a client-server and a shared
memory approach are explored. However, the shared memory approach is more suitable due to lower overheads when compared
to the former approach. Four policies are proposed in schedGPU to handle applications that are waiting to access the GPU, two of
which account for priorities. The feasibility of schedGPU is validated on three real-world applications. The key observation is that a
performance gain is achieved. For single applications, a gain of over 10 times, as measured by GPU utilisation and GPU memory
utilisation, is obtained. For workloads comprising multiple applications, a speed-up of up to 5x in the total execution time is noted.
Moreover, the average GPU utilisation and average GPU memory utilisation is increased by 5 and 12 times, respectively.

Keywords—GPU Co-scheduling, access synchronisation, memory safe, accelerator, under-utilisation, schedGPU
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1 INTRODUCTION

High-Performance Computing (HPC) systems are be-
coming heterogeneous in pursuit of exascale comput-
ing [1], [2].These systems not only offer CPUs, but also
provide accelerators, such as Graphics Processing Units
(GPUs). Heterogeneity can be leveraged for improv-
ing performance by decomposing compute-intensive
components of an application and offloading them on
to GPUs. Existing schedulers, such as Slurm [3] and
Torque [4], cannot safely schedule multiple applications
for sharing the same GPU [5], thereby exclusively lock-
ing a GPU for a single application. This results in
the under-utilisation of GPUs and will have negative
implications on the performance of future exascale sys-
tems [6], [7]. Hence, the research in this paper aims to
improve the utilisation of GPUs.

One way of addressing accelerator under-utilisation,
given that GPUs are usually coupled to a CPU node, is
by sharing GPUs among multiple applications that exe-
cute on different CPU cores of the same node. However,
there is a risk of running out of GPU memory which can
cause applications to unexpectedly end. Current tech-
niques that incorporate scheduling [8], [9], [10], kernel-
based [11], [12], [13], synchronisation [14] and architec-
tural [15], [16] approaches cannot safely share GPUs
among applications while eliminating the above risk.
Therefore, applications are currently executed sequen-
tially, although they may use the GPU for a relatively
small fraction of the entire execution time, as shown in
Figure 1a. This raises the need for a scheduler that can
account for GPU memory required by applications to
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Fig. 1: Execution of applications on a two CPU node with
one GPU. In Figure 1a, two applications need access to
the GPU, but are executed sequentially using existing
workload schedulers. Figure 1b shows the proposed ap-
proach that co-schedules applications on the same GPU
and accounts for GPU memory to maximise utilisation.

safely share GPUs as indicated in Figure 1b.
In this paper, we propose an intra-node, memory safe

GPU co-scheduling framework, referred to as schedGPU.
The framework safely handles multiple application re-
quests to access GPUs by ensuring that memory over-
runs do not occur during execution. Two implementation
approaches, namely a client-server and a shared memory
approach, are considered. The access of applications to
shared memory is synchronised by developing a custom
protocol that employs file locks and system signals. This
protocol avoids abandonment, the problem that arises
when the framework employs other interprocess syn-
chronisation mechanisms, such as mutexes. Four policies
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are proposed and investigated in schedGPU to handle
applications that wait to be scheduled on the GPU.

The feasibility of schedGPU is validated first using
popular GPU benchmark suites and then on three real-
world applications that have varying GPU utilisation.
Using schedGPU performance gain in terms of average
speed-up, average GPU utilisation and average GPU
memory utilisation when executing concurrent instances
of an application using schedGPU is noted to be up
to 10 times over conventional execution. For workloads
comprising multiple applications, using Slurm along
with schedGPU results in a 5x speed-up. Moreover,
the average GPU utilisation and average GPU memory
utilisation is increased by 5 and 12 times, respectively,
when compared to not using schedGPU.

The research contribution of this paper is an ap-
proach for intra-node scheduling at runtime. Conven-
tional schedulers schedule applications ahead-of-time
typically over multiple nodes. However, they do not
optimise scheduling on each node. The merit of our ap-
proach is that scheduling is performed on the fine-grain
level at runtime, therefore allowing any application to
be executed without knowledge of its GPU requirements
prior to execution. Existing schedulers exclusively lock
a given GPU for an application. Our novel approach on
the other hand is memory safe and shares GPUs to co-
schedule multiple applications. For this our approach
monitors the GPU resources to service applications.

The remainder of this paper is organised as follows.
Section 2 presents the key concepts of our GPU co-
scheduling framework. Section 3 provides the imple-
mentation approaches considered in our framework.
Section 4 describes the typical life cycle of an application
using our framework. Section 5 details a set of four
policies incorporated in the framework for scheduling
applications. Section 6 identifies suitable real-world use-
cases for schedGPU. Section 7 evaluates the performance
of the framework using two popular GPU benchmark
suites and then highlights its benefit for three real-world
applications. Section 8 considers the related research.
Section 9 concludes this paper and presents future work.

2 GPU SCHEDULING FRAMEWORK

Consider a typical server, which comprises multiple CPU
cores and one GPU. There are two challenges in exe-
cuting multiple applications on the same GPU. Firstly,
consider a scenario in which a conventional workload
scheduler, such as Slurm, is employed to schedule ap-
plications from multiple users, then the scheduler will
handle multiple requests to the GPU by simply executing
the jobs sequentially. While these schedulers can sched-
ule applications on multiple servers they schedule them
ahead-of-time, leaving no room for adapting to runtime
requirements. Therefore, the jobs are executed sequen-
tially on each server since the scheduler cannot ensure
whether the GPU memory requirements of requesting
application can be met at any time (for example, whether

there is sufficient GPU memory for a second application
on the GPU).

Secondly, assume a workload scheduler can schedule
multiple applications on the same GPU. While this can
improve GPU utilisation, it could lead to potentially
terminating the job (for example, if there is insufficient
GPU memory an out of memory error will be returned).
This is because there is no safe handling of GPU memory
requirements for co-scheduling jobs.

In this paper, we address the above challenges by
presenting a framework for intra-node GPU scheduling,
referred to as schedGPU1, that facilitates the simulta-
neous execution of multiple applications on a GPU.
Using schedGPU multiple applications can request GPU
memory during execution time. schedGPU safely co-
schedules the applications by taking memory require-
ments into account and thereby avoids potential memory
allocation errors due to unavailable memory on the GPU.
The schedGPU framework is proposed and developed
for CUDA-based [17] GPU applications. CUDA is widely
used in production and commercial environments when
compared to the OpenCL alternative [18].

The features of the GPU scheduling framework are:
(i) Intra-node scheduling: most schedulers schedule ap-

plications over multiple nodes at the coarse-grain level.
However, schedGPU schedules at the fine-grain level to
improve GPU utilisation of each node.

(ii) Scheduling at runtime: unlike conventional sched-
ulers that schedule applications ahead-of-time, our
framework can schedule applications on to the GPU in
sub-millisecond timescales during execution.

(iii) Memory-based safe co-scheduling: typically sched-
ulers allow for executing an application on multiple
GPUs. Our approach facilitates the execution of multiple
applications on the same GPU concurrently to improve
GPU utilisation. We consider memory requirements of
each application and ensure that no application unex-
pectedly ends due to insufficient GPU resources.

(iv) Scalability: the control of most workload sched-
ulers is centralised. On the contrary, the control of
schedGPU is distributed on each node hence avoiding
single points of failure and use on a large number of
nodes.

An application that needs to safely use a GPU through
our proposed framework follows a four stage life cycle.
The first stage is initialising an instance of schedGPU for
the application to allow interaction between the applica-
tion and the framework. The second stage is reserving
GPU memory required by an application, we refer to as
pre-allocation. The GPU memory requests made by the
application are appropriately handled by the framework.
The third stage is releasing reserved GPU memory after
the application makes use of the GPU, we refer to as
post-free. Applications still waiting for the GPU are
potentially serviced. The fourth stage is shutting down
the instance of schedGPU that was initialised.

1. The schedGPU framework can be requested for download from
http://mural.uv.es/caregon/schedgpu.html
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3 IMPLEMENTATION APPROACHES

The schedGPU framework incorporates two approaches,
namely a client-server and a shared memory model2. The
latter is the focus of this paper. A prototype of the client-
server approach was briefly reported elsewhere [19].

The functionality of both the client-server and shared
memory implementations is the same, which is to avoid
applications running out of GPU memory. However,
there are important differences architecturally. On one
hand, the first approach follows a client-server architec-
ture and the GPU information is centralised on the server
side. On the other hand, the second approach performs
a distributed management of the GPU information using
shared memory.

3.1 Client-Server

In this approach, each CUDA application is a client that
requests GPU memory to a centralised server daemon,
both of which are executed on the same node. The server
permits the application to continue execution if there is
sufficient memory on the GPU, otherwise the client may
choose to be either blocked until memory is available or
informed using CUDA error codes.

Figure 2 presents the architecture of the client-server
model. In this model, the CUDA application is minimally
modified by explicitly calling functions from the client
library to pre-allocate the GPU memory required by
the application. The calls are forwarded to the server
using a UNIX domain socket. We chose UNIX domain
sockets over TCP Loopback sockets due to the superior
performance of the former [20]. The server creates a new
thread for each client. A global view of the memory used
by all clients is maintained by the server through the
NVIDIA Management Library (NVML)3. We chose to
use NVML instead of the CUDA library to avoid the
creation of an additional GPU context that consumes
GPU memory. In addition, using NVML the physical
devices are accessed instead of using logical devices to
avoid any ambiguities in the framework (for example,
applications using different identifiers for logical devices
referring to the same physical device).

3.2 Shared Memory

One disadvantage of a centralised server is that it may
unexpectedly end resulting in the failure of the frame-
work. Therefore, an alternate distributed approach was
considered using shared memory in which the clients
are responsible for maintaining the global state of the
GPU memory in use. The client library makes decisions

2. In this paper, ‘shared memory’ does not refer to aggregating
host and device memory for offering a unified address space. This
is because schedGPU schedules the access of applications to the GPU
from the host side. Instead, we refer to shared memory as the host
memory which is accessible for different applications using schedGPU.
We refer to ‘shared memory data structure’ as the format of the data
and its contents that is stored in the shared memory.

3. https://developer.nvidia.com/nvidia-management-library-nvml
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based on the information available in the shared memory
data structure. Figure 3 shows the architecture of the
shared memory model. The client library directly makes
use of NVML. The shared memory structure is created
and managed using the Boost Interprocess library4.

The shared memory approach not only overcomes the
disadvantages of the client-server approach, but also
achieves better performance that will be considered in
Section 7. Therefore, this paper will focus on schedGPU
using the shared memory approach. Four features are
incorporated in the shared memory approach to enhance
the robustness of the model. Firstly checkpointing by
storing a backup of the shared memory structure by each
client library when the application ends.

Secondly, an integrity check and recovery. When a new
client starts, the library checks whether the shared mem-
ory structure is corrupt. If corrupt, then it is recovered
from a backup. If there are no backups or if corrupt, then
the shared memory structure is freshly initialised.

Thirdly, a sanity check. When any client has ended
or is blocked and waiting for free memory, the client
library checks that processes with allocated memory are
still alive (this is done to free the memory of clients that
unexpectedly terminate). If not, the previously allocated
memory is freed for the waiting clients.

Fourthly, mitigating abandonment. If a client applica-
tion unexpectedly ends, the access to the shared memory
structure is not blocked and the framework could be
used by other clients transparently. If the client had
memory allocated, it will be freed.

Shared Memory Data: The data structure used in the
shared memory approach comprises the following data:

4. http://www.boost.org/doc/libs/1 59 0 b1/doc/html/
interprocess.html
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• Total GPU memory: the total installed or physical de-
vice memory accessible to the schedGPU framework.

• Total Used memory: the total memory utilised by
active schedGPU client applications.

• Itemised Used memory: memory utilised by each client
application that is uniquely identified by schedGPU.

• Queue of client applications waiting to access GPU
memory: a queue of applications that requested more
GPU memory than what was available. The priority
of an application is also included depending on the
policy in use. Policies will be described in Section 5.

Synchronising Access to Shared Memory: To avoid incon-
sistencies we synchronise the access of multiple clients
to the shared memory data structure using two methods.

The first method is based on using interprocess mu-
texes and conditions both provided by the same Boost
Interprocess Library that manages the shared memory
data structure. Access of each client application to the
shared memory data is controlled by a mutex which
ensures that only one client modifies the shared memory
structure at a given time. A condition is associated with
the mutex for either notifying clients that memory has
been freed or waiting for notifications on freed memory.

Although this is the most common method, it is
restricted due to abandonment: if a process owning the
mutex unexpectedly ends, then the mutex becomes un-
usable and other processes endlessly wait for it. This
can be avoided by the use of lock-free methods such
as robust mutexes. Such methods are currently available
for intraprocess communication (multi-threads). In the
case of schedGPU, multiple applications will need to
communicate with schedGPU simultaneously and this
additionally requires interprocess communication along
with intraprocess communication. However, there are no
standard solutions for lock-free synchronisation in inter-
process communication5. One available solution requires
patching the operating system kernel6.

In order to surmount the challenge of abandonment
when using interprocess communication in schedGPU,
we developed a second method that employs file locks
instead of interprocess mutexes for controlling the access
of client applications to the shared memory data struc-
ture. If a client owning a file lock unexpectedly ends,
then the file lock is still safely used by other clients.

However, conditions cannot be associated with file
locks. So a custom protocol using system signals was
developed for interprocess communication. The protocol
issues a user system signal for notifying a waiting client
that memory has been freed. The waiting client on re-
ceiving the signal continues execution on the GPU. This
method is more appropriate than the first method and
is therefore incorporated in the schedGPU framework.

5. http://www.boost.org/doc/libs/1 61 0/boost/interprocess/
detail/robust emulation.hpp

6. http://yurovsky.github.io/2015/06/04/lockfree-ipc/
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Fig. 4: Initialisation of a schedGPU client

4 THE LIFE CYCLE

Three functions are offered by schedGPU that imple-
ments the life cycle. They include the initialisation,
memory pre-allocation and memory post-freeing func-
tions. The shutdown stage in the framework is implicitly
called when the CUDA application terminates execution.
schedGPU provides two options for using the functions:
(i) implicit memory management - users do not modify
the source code, but memory is implicitly managed
by the framework using a set of default parameters,
and (ii) explicit memory management - users minimally
modify the GPU source code by including the schedGPU
functions. This provides the developer finer control on
memory management.

Initialisation: Figure 4 shows how a schedGPU client
is initialised in the shared memory approach using the
schedGPUInit() function. First of all, the client is
made ready to handle system signals that are used for
internal notifications. The shared memory data struc-
ture is then accessed or created. If the shared memory
structure is empty, then it is initialised by gathering
information of the GPUs using NVML. If the shared
memory structure already contains GPU information,
then an integrity check is performed to ensure that the
data is not corrupted (recovers from the shared memory
backup if the integrity check fails).

Pre-allocation: As shown in Figure 5 for pre-allocating
memory using the preCudaMalloc() function, the
client requests the ownership of the file lock. When the
ownership of the lock is obtained, the client checks that
the GPU requested is a valid device and the requested
memory is available on the GPU. If memory is insuffi-
cient, then the client performs a sanity check on whether
other clients with pre-allocated memory are still alive. If
memory is freed from other clients, then the client re-
checks if there is sufficient memory.

If the available memory is still insufficient and pro-
vided that the pre-allocation call is non-blocking, then
control is returned to the application with an error code
(cudaErrorNotReady). If the call is blocking, then the
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Fig. 5: Pre-allocation of memory by a schedGPU client

client waits for a specified time period7 defined by the
application until free memory is available. In the event
that the client does not pre-allocate all free GPU memory,
then it does not notify other clients of free memory. This
notification is carried out during post-freeing.

Post-free: As shown in Figure 6 for post-freeing mem-
ory using the postCudaFree() function, the client
requests the ownership of the file lock. When the owner-
ship of the lock is obtained the client checks that (i) the
GPU requested is a valid device and (ii) the requested
memory for freeing is already pre-allocated on the GPU.
If memory is freed, then the clients that may be waiting
for memory are notified (refer to Section 5).

Shutdown: As shown in Figure 7 the client requests
the ownership of the file lock. When the ownership is
obtained the client (i) ensures that it has post-freed all
pre-allocated memory, and (ii) performs a sanity check
whether other clients with pre-allocated memory are still
alive. If memory is freed, then the waiting clients are
notified (refer to Section 5). The shutdown is implicitly
handled by the postCudaFree() function.

5 NOTIFICATION POLICIES

Client applications that wait in a queue for GPU memory
are notified when memory is available because another
application released it. Policies are required to schedule
memory requests of waiting clients. Scheduling policies
are reported for managing CPU resources [21], [22].
Popular policies include First-In, First-Out (FIFO) and
those that maximise resource utilisation. Priority-based
policies are implemented to prioritise execution by the

7. This avoids a deadlock; the user either has to provide a timeout
for the pre-allocation call or receives an instantaneous error message.
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operating system. We adapted these policies in the con-
text of GPU co-scheduling.

The FIFO policy is simple, but is limited in that
if the first waiting application’s GPU memory request
cannot be furnished, then even if there was a subsequent
waiting client that could be scheduled to access the GPU
has to wait. This potentially reduces the utilisation rate
of the GPU. This can be mitigated by using policies based
on consumable resources. In the context of GPU co-
scheduling, a policy to maximise the usage of memory
on the device is ideal, which in turn increases utilisation.

The basic version of both FIFO and Maximum Mem-
ory Utilisation (MMU) policies do not consider the
quality of service offered to the clients. This requires
priority of waiting applications to be accounted for to
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provide preferential services to applications with higher
priorities. In this paper, we considered four policies, two
basic policies and two priority-based policies.

GPU utilisation can be used as a good priority criterion
in policies as in CPU scheduling. However, we have
chosen GPU memory utilisation since it is a more stable
indicator given that it can be quantified more reliably
than GPU utilisation. This is because current techniques
employed on GPUs do not provide accurate estimates
of utilisation as on the CPU. Therefore, the policies
considered in this paper are based on GPU memory.

Policy 1 - First-In, First-Out (FIFO): Consider there are
n waiting clients, represented as C = {C1, C2, · · · , Cn},
and that ∆i is maximum time client Ci waits for free
memory. In this policy, the first waiting client in the
queue C1 is benefited. C1 waits until there is sufficient
free memory. If memory is available, then it is preallo-
cated to C1, and if there is more free memory then the
next client is served. If there is insufficient memory, then
client C1 waits for a maximum time of ∆1 as it is blocked
by the scheduler (also applied for the next 3 policies).

Policy 2 - Maximum Memory Utilisation (MMU): The
aim of this policy is to use maximum GPU memory and
hence the request of the first client in the queue that
can be pre-allocated memory is furnished. If no clients
can be serviced, then the clients continue to wait until a
subsequent client terminates and memory is available.

Policy 3 - Priority FIFO: This policy is similar to the
FIFO policy, but has a priority associated with each
client. Therefore, in the queue, the clients with the
highest priority are pre-allocated memory. The first client
with the highest priority will be served, but if there
is insufficient memory to serve this request or there is
more memory available after serving a request, then a
following client with the same priority is served.

Policy 4 - Priority MMU: This policy is similar to the
MMU policy, but has a priority associated with each
client. To maximise GPU memory usage the request of
the first client with the highest priority in the queue that
can be pre-allocated memory is furnished. If no clients in
the queue with the highest priority can be attended to,
then clients continue waiting until a subsequent client
terminates and more memory is available.

The implications of using the above policies for exe-
cuting workloads is explored in the subsequent sections.

6 EXPERIMENTAL SETUP

The hardware platform and the benchmarks and
use-cases employed for validating the feasibility of
schedGPU are presented in this section.

Hardware Platform: The experimental test-bed used for
our experiments is one 1027GR-TRF Supermicro server
comprising two Intel Xeon hexa-core processors E5-2620
v2 (Ivy Bridge) operating at 2.1 GHz and 32 GB of
DDR3 SDRAM memory at 1,600 MHz. One NVIDIA
Tesla K20m GPU which has 4,799 MiB of memory is
available on the server. The CentOS 6.4 operating system
and the CUDA 7.5 with NVIDIA driver 352.39 is used.

Benchmarks: We evaluate the performance of
schedGPU using two popular GPU benchmark suites,
namely Rodinia [23] and Parboil [24].

Use-cases: Three real-world applications are considered
as use-cases in this paper. The first is a catastrophe
risk simulation employed in the financial risk industry,
referred to as Aggregate Risk Analysis (ARA) [25]. This
simulation computes a key risk metric, namely Probable
Maximum Loss (PML) on an industry size input com-
prising 150,000 catastrophic event trials and a collection
of one thousand events and their corresponding losses.

The second and third are applications for aligning
DNA sequences in bioinformatics. The second applica-
tion, which is referred to as MUMmerGPU [26], is used
for aligning DNA sequence data to a reference sequence
which is useful in genotyping and genomics. In our
experiments, the search pattern is a sequence length of
25 base pairs that is matched against the reference, which
is a complete genome of Bacillus Anthracis allowing up
to five differences in an alignment for 500,000 reads.

The third application is referred to as the GPU Basic
Local Alignment Search Tool (GPU-BLAST) [27]. The ap-
plication searches a database of proteins for a nucleotide
with a sequence length of 5,000.

The use-cases were chosen based on the following
three observations from Figure 8, which shows the CPU
and GPU utilisation and the GPU memory in use during
execution. Firstly, low GPU utilisation. ARA, in Figure 8a,
uses GPU acceleration for a short time period at the
end of the simulation. For the given input, over 16%
of GPU memory is used and therefore, up to a maxi-
mum of 6 concurrent instances of the application can
be safely executed on this GPU without potential GPU
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memory allocation errors (in this paper, we refer to this
as ‘maximum concurrent instances’). Such concurrent
applications that have low GPU utilisation are ideal
candidates for schedGPU since the framework can co-
ordinate the access of multiple applications to the GPU,
which otherwise would execute sequentially.

Secondly, moderate GPU utilisation. MUMmerGPU, in
Figure 8b, harnesses GPU acceleration at regular in-
tervals. For the given input, the GPU is used for ap-
proximately 50% of the total execution time and the
maximum GPU memory used is nearly 15% allowing
for up to 6 parallel instances of the application to be
reliably executed. Concurrent executions of moderate
GPU utilising applications are again ideal candidates
for schedGPU since the framework can maximise the
number of these applications safely using the GPU.

Thirdly, high GPU utilisation (and GPU memory is still
available). GPU-BLAST (Figure 8c) uses the GPU nearly
80% of the total execution time, but for the given in-
put maximum GPU memory used is over 36% of total
available memory. This allows for safe execution of up
to 2 concurrent application instances. This is not an ideal
candidate for schedGPU, however performance gains
may be obtained when GPU memory usage drops below
30% towards the end of the execution.

7 EVALUATION

In this section, we present the experiments carried out
for validating the feasibility of schedGPU. For this we (i)
evaluate the overheads associated with the client-server
and shared memory approaches, (ii) analyse the perfor-
mance using popular GPU benchmark suites, (iii) high-
light the benefits of employing schedGPU to improve
the throughput of concurrent executions of an individual
application, and (iv) consider the performance gain of
workloads comprising multiple applications.

7.1 Overhead of the approaches

Figure 9 compares different stages of the schedGPU
life cycle. Both the client-server and shared memory
approaches are considered. For the former, an additional
server initialisation and server shutdown stages are re-
quired since these are distributed between the client and
the server. For the latter, initialisation and shutdown are
carried out by the client since no servers are present.

It is observed that the server initialisation and server
shutdown stages for the client-server approach are costly
in terms of time although they occur only once. The
client initialisation and client shutdown stages are how-
ever shorter. Regardless, even when excluding the time
for initialising and shutting down the server, the total
time taken by the client-server is nearly twice as taken by
the shared memory approach. This is because communi-
cations over UNIX sockets introduce an overhead. There-
fore, only the shared memory approach is employed in
the experiments considered in subsequent sections.

Post-free

Server
initialisation 

Client
initialisation 

Pre-
allocation 

Client
notification 

Client
shutdown 

Server
shutdown 

Total (excluding
server initialisation

and shutdown) 

1.0 10.0 100.0 1000.0 10000.0
584.9586.7 1165.5

Shared Memory (file lock)
Shared Memory (mutex)
Client-Server

1 10 100 1,000 10,000 
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654.7
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200.0
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N/A

584.9
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199.0

14.9

22.5

23.5

325.0

N/A

Time (μs)

Fig. 9: Comparison of the stages of the schedGPU life cy-
cle for the client-server and shared memory approaches.

Both shared memory approaches using mutexes and
file locks offer similar performance. In the initialisation
stage, the file locks method requires more time since
the notification protocol using system signals needs to
be set-up. With mutexes the notification protocol using
conditions is set-up in the pre-allocation stage and hence
an increase in time for the pre-allocation stage is noted.

Given that both the shared memory approaches have
similar performance, in the following sections we con-
sider the file lock method since it is more robust than
mutexes by avoiding the problem of abandonment.

The overhead of the different implementations is less
than one millisecond. This does not have any impact on
long running applications. However, the shared memory
implementation does not require an additional service
to run on the server. This is valued by administrators
of production systems to keep the number of services
running on a server to a minimum for security reasons.

7.2 schedGPU with Benchmark Suites

Figure 10 shows the execution time and speed-up of
10 Rodinia and 8 Parboil benchmarks when schedGPU is
employed. The tests were run in three different scenarios.
The first scenario does not use schedGPU and one
instance of the benchmark is safely executed at a time.
Hence, if 12 instances of the benchmark were required
to be executed, then they are executed sequentially.
The second scenario, similarly does not use schedGPU.
However, we manually packed tasks to maximise GPU
memory usage. This is not realistic, but was pursued
for the sake of comparison, as workload schedulers do
not know GPU memory required by an application in
advance. The third scenario employs schedGPU and
safely runs multiple instances of the benchmark.
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Fig. 10: Speed-up using schedGPU when concurrently running 12 instances of benchmarks selected from Rodinia
and Parboil suites.

Multiple instances of an application or multiple ap-
plications are executed concurrently using schedGPU.
Therefore, the overall execution time of all instances/ap-
plications is reduced when compared to running them
sequentially, which is referred to as performance speed-
up. However, the execution time of an individual in-
stance is not improved and optimising performance of
individual applications is not within scope of this paper.

We observe that using schedGPU there is over a 2x
speed-up when compared against the first scenario that
does not employ schedGPU. On the contrary, compared
to the second scenario, the execution time is increased
40% on average when using schedGPU. These bench-
marks have short execution times (2 seconds on average),
therefore, it is more difficult to compensate the overhead
introduced by schedGPU with the potential gain of
concurrently using the GPU. However, this is because
we have manually packed tasks to maximise the usage
of GPU memory, but as previously noted this is not
realistic. In the next section, we use production codes
instead of benchmarks to demonstrate the benefits of
schedGPU.

7.3 schedGPU Performance Gain on Use-cases
We further explore performance in terms of utilisation
of GPU resources, speed-up and throughput in the fol-
lowing two ways: (i) on an experimental environment,
to study mechanisms to achieve maximum performance
of the three use-cases with and without schedGPU, and
(ii) on a production environment, to assess the potential
of schedGPU using real-world workloads.

7.3.1 Concurrent Execution of Individual Applications
Three schedGPU functions considered in Section 4 were
included in the three applications. The initialisation func-
tion was included at the beginning of the CUDA pro-
gram, the pre-allocation function was inserted before the
CUDA memory allocations and the post-free function
was placed after CUDA release memory calls. Up to 12
instances of each application were concurrently executed
(the number of CPU cores in the experimental test-bed).

Figure 11 shows the improvement in execution time
and speed-up of the three applications when schedGPU
is employed. The three scenarios of Section 7.2 were
considered again. It is immediately inferred that when
comparing our proposed approach (the third scenario)
using schedGPU against (i) the first scenario that does
not employ schedGPU there is a 10x speed-up for ARA,
nearly 9x speed-up for MUMmerGPU and close to 1.5x
speed-up for GPU-BLAST, and (ii) the second scenario
the speed-up is approximately doubled when running 12
concurrent instances of ARA and MUMmerGPU. These
applications have low and moderate GPU utilisation
allowing schedGPU to take advantage of the time pe-
riods that the GPU remains under-utilised. During these
time periods schedGPU services instances that request
the GPU to maximise GPU utilisation. In the second
scenario, the execution of large number of instances of
an application (more than 6 for ARA and MUMmerGPU
respectively) at the same time will not be possible due
to insufficient GPU memory. schedGPU still outperforms
this unrealistic scenario of manually packing tasks. Not
only is it feasible to execute large number of instances
using schedGPU, but also a profitable speed-up is noted.

However, there is only a small improvement in perfor-
mance for GPU-BLAST with the execution of 4 concur-
rent instances achieving maximum speed-up. The appli-
cation has high GPU memory utilisation almost during
all of its execution (over 30% on average as shown in
Figure 8c). Therefore, there is insufficient GPU mem-
ory for boosting performance of concurrent instances.
Nonetheless, schedGPU yields a small improvement in
performance by making use of any spare GPU memory.

Figure 12 shows the average CPU, GPU and GPU
memory utilisation when maximum speed-up is ob-
tained for the three applications using schedGPU. The
amount of GPU memory utilised by each application is
indicated in the figures. GPU utilisation is maximised,
which in turn results in an observed speed-up.

Figure 13 shows the frequency distribution of GPU
utilisation for the three applications. For all applications
it is observed that the amount of time the GPU achieves
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Fig. 11: Speed-up using schedGPU when varying number of instances of an application are concurrently executed.

TABLE 1: Comparison of GPU utilisation and GPU
memory utilisation when executing the use-cases

Average GPU Utilisation (%), Average GPU
Memory Utilisation (%)

Maximum
Application 1 instance

without using
schedGPU

concurrent
instances
without using
schedGPU

12 concurrent
instances us-
ing schedGPU

ARA 0.51, 0.37 2.74, 0.90 5.26, 2.02
MUMmerGPU 2.46, 4.04 12.73, 26.13 20.96, 41.59
GPU-BLAST 69.48, 33.73 86.28, 63.71 90.24, 70.09

between 91% and 100% utilisation is increased (the time
the GPU is not utilised decreases - 0%) and yields a
speed up as shown in Figure 11. This validates that
schedGPU can improve the utilisation of resources.

Table 1 shows the average GPU utilisation and GPU
memory utilisation for the applications when one in-
stance of the application is executed without using
schedGPU, running the maximum number of concurrent
instances of the application supported without using
schedGPU and 12 concurrent instances using schedGPU
are employed. It is evident that schedGPU has superior
performance since GPU utilisation is improved over 10
times for a single instance and nearly 2 times over six
instances for ARA. Similarly, GPU memory utilisation
is improved over 10 times for a single instance of
MUMmerGPU and nearly 2.25 times over six instances
of ARA. The memory utilisation of GPU-BLAST is high
without using schedGPU leaving little room for optimi-
sation. However, a small improvement is noted.

Table 2 shows that the individual performance of
an application is not improved by co-scheduling. We
compare the execution time of the individual application
when (i) running 1 instance without using schedGPU
and (ii) the average of 1 instance when running 12
concurrent instances using schedGPU. The execution
time of an individual instance is not improved by co-
scheduling, but there is a collective performance gain
when running multiple instances concurrently.

7.3.2 Workloads Comprising Multiple Applications
Our experimental test-bed uses the Slurm [3] work-
load scheduler for scheduling jobs from multiple users.

TABLE 2: Comparison of execution time when (i) run-
ning 1 instance of each use-case without using schedGPU
and (ii) the average of 1 instance of the use-case when
running 12 concurrent instances using schedGPU

Application 1 instance without
using schedGPU

12 concurrent
instances using
schedGPU

ARA 226.847 260.108
MUMmerGPU 322.799 370.169
GPU-BLAST 69.144 184.751

However, given that one GPU is used in the test-bed,
Slurm handles multiple jobs requesting the GPU by
sequentially executing them. As expected this results in
the under-utilisation of the GPU.

On the other hand, schedGPU can be employed to
mitigate the above problem by managing the access of
multiple job requests requiring GPUs. If there are m
real GPUs and n CPUs, then Slurm is reconfigured (by
only making changes to the configuration file) to be in
possession of m × n GPUs. On our test-bed Slurm is
reconfigured to have 12 GPUs (1 real GPU × 12 CPUs).
This allows for Slurm to execute up to 12 concurrent jobs
as if each CPU had access to a GPU. SchedGPU ensures
that the jobs make use of the GPU safely.

A workload comprising 12 concurrent jobs (12 jobs
since there are 12 CPUs, each job requires one CPU
and one GPU for execution) using 4 instances of ARA,
MUMmerGPU and GPU-BLAST applications was sub-
mitted to Slurm. The applications have the same input
as presented in the previous section. Figure 14 shows
average CPU and GPU utilisation and average GPU
memory utilisation for the workload. Figure 15 shows
CPU utilisation of the cores for each application in the
workload (Y-axis shows 0-100% utilisation for each core).

When considering non-priority based policies, it is
observed that using FIFO (refer Figure 14a) there are
peaks in the GPU and GPU memory utilisation. This
is because when sufficient memory is not available to
furnish a request, no further requests are considered and
hence memory remains under-utilised. However, using
the MMU policy (Figure 14b) GPU memory utilisation
is more evenly spread out. Requests of waiting clients
are immediately furnished to maximise GPU memory
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(c) GPU-BLAST running 4 concurrent instances

Fig. 12: CPU and GPU usage when running concurrent instances of the applications using schedGPU.
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Fig. 13: Frequency distribution of GPU utilisation when executing the application with and without schedGPU.

usage. The MMU policy results in a reduction of nearly
3% in the execution time of the workload over the FIFO
policy as shown in Table 3. An improvement of nearly
1.5% is also noted for both the average GPU utilisation
and average GPU memory usage for MMU over FIFO.

For non-priority based policies it is noted that CPU
cores of the jobs waiting for GPU memory remain idle
as shown in Figure 15a and Figure 15b. This is noted for
MUMmerGPU and GPU-BLAST instances since there is
insufficient memory on the GPU to furnish all requests.

Since it is observed that the MUMmerGPU takes the
most time for completing execution, all MUMmerGPU
instances are assigned a high priority in an attempt
to optimise the execution of the workload by further
reducing the total execution time. When priority-based
policies are taken into account, it is observed that the ini-
tial CPU utilisation increases and similar trends to non-
priority based policies is observed for GPU utilisation.

In Figure 15c and Figure 15d, assigning a higher prior-
ity to MUMmerGPU instances reduces waiting times for
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Fig. 14: CPU and GPU usage when running a workload
using schedGPU for different client notification policies.
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Fig. 15: Usage per CPU core when running a workload
using schedGPU for different client notification policies.
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TABLE 3: Comparison of GPU utilisation and GPU mem-
ory utilisation when executing a workload comprising
multiple applications

Average Average
Configuration Time (s) GPU GPU

Utilisation Memory
(%) Used (%)

Without schedGPU 2,485.20 9.24 3.79
schedGPU FIFO 542.51 43.09 42.65
schedGPU MMU 527.22 43.74 43.25
schedGPU Priority FIFO 515.57 45.59 46.59
schedGPU Priority MMU 512.53 45.75 47.15

free GPU memory, thereby the CPU is idle for shorter
periods of time. This translates into a reduction of total
execution time using the priority-based policies by 15
seconds over the best case non-priority policy (MMU)
as shown in Table 3. Similarly, an improvement of over
4.5% and 9% are noted for GPU utilisation and GPU
memory utilisation, respectively, over the MMU policy.

The advantage of using different policies on per-
formance and utilisation is small when compared to
the naive FIFO policy. This is because of the generic
workload we have chosen in this paper to avoid a bias
in our experimental results. Our workload comprises
equal number of low, moderate and high GPU utilisation
jobs. Even for such a workload there is some benefit in
speeding up the overall execution time and utilisation.
The benefit of the policies will be more apparent in work-
loads, for example, where a high memory utilisation
job blocks a number of small memory utilisation jobs.
A study on the effect of policies on different types of
workloads is beyond the scope of this paper.

7.4 Summary
We make three observations from the experiments.
Firstly, the overhead of the shared memory approach
is significantly less than that of the client-server ap-
proach, making it an ideal candidate for facilitating the
schedGPU framework (refer Figure 9).

Secondly, the performance gain, measured in terms of
average speed-up, average GPU utilisation and average
GPU memory utilisation, when concurrently executing
individual applications using schedGPU is noted to be
up to 10 times better than when not using schedGPU.

Thirdly, for workloads comprising multiple applica-
tions, using Slurm along with schedGPU results in a
speed-up of up to 5 times in the total execution time.
The average GPU utilisation and average GPU memory
utilisation is increased by 5 and 12 times, respectively,
when compared to not using schedGPU.

8 RELATED WORK

Approaches for efficiently utilising GPUs include (i)
scheduling, (ii) kernel-based, (iii) synchronisation, and
(iv) architectural approaches. Scheduling approaches in-
clude coarse-grain and fine-grain job scheduling. Coarse-
grain job scheduling improves the overall throughput

by scheduling concurrent applications on to nodes of
the cluster [8]. While throughput is improved, the focus
is on inter-node scheduling of jobs, without consider-
ing a further level of optimisation at the intra-node
level. Load balancing is commonly used for fine-grain
job scheduling in multiple GPU environments [9], [10].
However, the focus has been to uniformly distribute the
executing workload across the GPUs, but not to improve
utilisation of the GPUs. This paper focuses on intra-
node scheduling at the fine-grain level to maximise GPU
utilisation and to improve the overall throughput.

Kernel-based approaches have included event-
driven programming models for scheduling on shared
GPUs [11]. This approach does not concurrently share
the GPU, but interleaves kernel executions on the GPU.
A mechanism for concurrent execution of GPU kernels
has been proposed [28]. However, the mechanism does
not safely handle GPU memory, such that sufficient
GPU memory is available for the executing applications.
A scheduler to facilitate multiple concurrent kernel
executions has been proposed [29]. Only two kernels
can be executed and this may lead to potential
deadlocks. More complex frameworks for synchronising
GPUs have been developed [12], [13]. These require
modifying the Linux kernel or GPU drivers, thereby
limiting their use in production environments. Kernel-
based approaches require extensive modifications, but
the schedGPU framework requires no modifications to
the source code, if the implicit memory management
functionality is used. As considered in Section 4, the
framework additionally provides explicit memory
management functions requiring the source code to
be minimally modified using the API, but offers the
developer finer control over memory management. Our
approach is simpler than modifying kernels.

Synchronisation approaches manage implicit and ex-
plicit synchronisations in GPU hardware and software
for improving application concurrency [14]. This ap-
proach avoids concurrent GPU operations to be executed
sequentially. An application cannot use multiple kernel
streams and cannot support unified memory. Our frame-
work achieves synchronisation by a custom protocol we
developed using file locks and system signals.

Architectural approaches, such as Multi-Process Ser-
vice (MPS) [15], [30] or Hyper-Q [16], [31], improves
the GPU utilisation by allowing multiple processes, or
threads, to simultaneously access a single GPU. How-
ever, in this research, GPU memory is not considered,
and therefore, jobs fail when GPU memory is not avail-
able. The schedGPU framework on the other hand, safely
handles GPU memory, and therefore applications do not
fail due to insufficient memory but wait in a queue.

Workload schedulers such as Torque [4], PBS [32]
or Slurm [3] include mechanisms for scheduling jobs
on GPUs. We differentiate our framework from such
schedulers in the following two ways. Firstly, schedulers
operate at the cluster level (inter-node) and are capable
of coarse-grain job scheduling, whereas schedGPU op-
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erates at the node level (intra-node) and performs fine-
grain job scheduling to share the same physical GPU
among multiple CPUs. Secondly, the schedulers work
ahead-of-time; the configurations need to be set before
execution of the workload. However, schedGPU works
just-in-time, such that scheduling is dynamic and occurs
during the execution of the workload.

Preemption mechanisms have been developed, but
is based on including hardware extensions [33]. More
recent GPU architectures provide preemption (for ex-
ample, on the NVIDIA Pascal architecture) [34]. Pre-
emption prevents long-running applications that block
other applications from monopolising the system. Such
preemption mechanisms cannot inherently co-schedule
applications. Our framework can be employed on both
preemptible and non-preemptible GPUs and does not as-
sume the GPU to be either time or space shared. A frame-
work that can be used on non-preemptive accelerators to
guarantee a given QoS for an application in terms of time
duration by improving GPU utilisation is reported [35].
Although QoS violation due to kernel interference and
PCI-e bandwidth contention is minimised, it does not
account for GPU memory-based co-scheduling.

9 CONCLUSIONS AND FUTURE WORK

Currently, there are no schedulers that can safely co-
schedule multiple GPU applications in terms of memory
requirements. This results in the under-utilisation of
GPUs in high-performance computing systems. In this
paper, we aimed to improve the utilisation of GPUs
by proposing an intra-node GPU scheduling framework,
referred to as schedGPU. We incorporated a client-server
and shared memory approach for synchronising the ac-
cess of multiple applications to the GPU. The schedGPU
framework was validated using real-world applications
both individually as single applications and collectively
as workloads. A gain of over 10 times, as measured
by performance speed-up, GPU utilisation and memory
utilisation, was obtained for individual applications. For
workloads, a speed-up of up to 5 times was noted and
the average GPU utilisation and average GPU memory
utilisation was increased by 5 and 12 times, respectively.

We intend to pursue the following three areas in
our future research on schedGPU. Firstly, exploring
the performance of schedGPU against memory paging
supported on new GPUs. We note that the memory
paging mechanism is only available in the latest NVIDIA
GPUs that use the Pascal architecture [34]. Our approach,
however, is also compatible with GPUs that do not
employ memory paging (pre-Pascal); such GPUs are
widely used in current HPC clusters and do not support
memory paging. For example in the June 2017 Top500
list, NVIDIA GPUs used in clusters are all pre-Pascal
GPUs. Using the NVLink high speed interconnect with
Pascal GPUs may outperform schedGPU, but we expect
competitive results when compared to the PCI-e version
of Pascal GPUs. We anticipate that not all applications

will benefit from GPU memory oversubscription and
the page migration feature of the Pascal architecture.
This is because memory access patterns are sometimes
extremely difficult for prefetchers to predict. In these
case, schedGPU may be used to complement memory
paging for optimising application performance.

Secondly, by considering applications whose GPU
memory requirement cannot be known before execution.
It may not be always possible to know the total GPU
memory required by an application as assumed in this
paper. For example, when GPU memory is allocated at
runtime; if two or more applications were concurrently
executed and gradually increased their GPU memory
usage, then when all GPU memory is used some of
these applications could require more time to complete
execution or may exit with a runtime error. In this case,
schedGPU is not beneficial and other ways of improving
performance will need to be explored.

Finally, by accounting for applications that do not ben-
efit from sharing the same GPU. For example, consider
applications that require large amounts of GPU resources
- many kernels, threads and register files per kernel.
Even if GPU memory was available, it would not be
beneficial to use schedGPU for co-scheduling another
application due to the overheads in kernel switching.
Running the applications exclusively and sequentially on
the GPU may be beneficial. An application can be exclu-
sively allocated to a GPU using schedGPU by simply
pre-allocating all GPU memory to the application and
then releasing it at the end of execution.
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