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Abstract—Even though QR-factorization of the system matrix 

for tomographic devices has been already used for medical 
imaging, to date, no satisfactory solution has been found for 
solving large linear systems, such as those used in Computed 
Tomography (CT) (in the order of 106  equations). 

In computed tomography, the Feldkamp, Davis and Kress back 
projection algorithm (FDK) and iterative methods like conjugate 
gradient (CG) are the standard methods used for image 
reconstruction. As the image reconstruction problem can be 
modelled by a large linear system of equations, QR-factorization 
of the system matrix could be used to solve this system. Current 
advances in computer science enable the use of direct methods for 
solving such a large linear system. The QR-factorization is a 
numerically stable direct method for solving linear systems of 
equations, which is beginning to emerge as an alternative to 
traditional methods, bringing together the best from traditional 
methods. 

QR-factorization was chosen because the core of the algorithm, 
from the computational cost point of view, is pre-calculated and 
stored only once for a given CT system, and from then on, each 
image reconstruction only involves a backward substitution 
process and the product of a vector by a matrix.  

Image quality assessment was performed comparing contrast to 
noise ratio (CNR) and noise power spectrum (NPS); performances 
regarding sharpness were evaluated by the reconstruction of small 
structures using data measured from a small animal 3D CT. 

Comparisons of QR-factorization with FDK and conjugate 
gradient (CG) methods show that QR-factorization is able to 
reconstruct more detailed images for a fixed voxel size. 
 

Index Terms—Computed tomography, FDK, medical imaging, 
Conjugate gradient (CG), RTK toolkit, 3D images reconstruction, 
QR-factorization algorithm, reconstruction algorithms.  

I. INTRODUCTION 
HE image reconstruction problem in CT can be formulated 
mathematically as an inverse problem. It is well known that 

there exists no theoretically exact solution that can stably 
reconstructs the image from projection data acquired in the 
commonly used circular trajectory CT [1]. As a result, the 
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majority of one-shot image reconstruction algorithms, such as 
Feldkamp, Davis and Kress (FDK) [2] and its derivatives, for 
this configuration are approximate. Another interesting 
approach is the use of iterative methods, where the 
reconstruction problem can be described by a discrete linear 
system [3], which are also approximate methods.  

The main disadvantage in iterative methods compared to 
analytic methods is that the computational cost is higher [3] - 
[5]. Fundamental advances have been made and various 
methods have been proposed to improve the speed and quality 
of image reconstruction for medical [6]-[9] and industrial CTs 
[10]. These methods have shown good results in terms of speed 
and accuracy of the reconstructed images. Techniques like 
Simultaneous Algebraic Reconstruction Technique (SART) 
[11] and Least Square (LSQR) [12] combined with Fast 
Iterative Shrinkage-Thresholding Algorithms (FISTA) [13], 
[14] have been proposed to overcome the problem of image 
reconstruction when few projections are used. Notwithstanding 
those positive strides, FDK is still accepted as the method of 
reference in computed tomography [15]. 

Singular Value Decomposition (SVD) [15]-[17] and QR-
factorization [18] have already begun to be investigated as a 
new arising alternative to the traditional methods. QR-
factorization has already been used in medical imaging with 
promising results [19], [20] but, to date, no satisfactory results 
have been found for such a large linear systems as required for 
a 3D image of a CT (in the order 106 unknowns). 

This paper describes the novel use of QR-factorization of the 
system matrix of a computed tomography (CT) system, with the 
motivation to achieve a technique that combines advantages of 
the traditional method so far used for CT image reconstruction, 
such as FDK, and by using the system matrix, it allows some of 
the advantages of iterative methods [3]. Two methods have 
been used to compare the results obtained with QR-
factorization method: FDK, as the traditional method in CT 
image reconstruction [3] and [15]; and conjugate gradient 
algorithm (CG) [21], [22], with the implementation of the 
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reconstruction toolkit (RTK) [23]. CG was chosen because is a 
commonly used method in CT image reconstruction and it 
allows us to use the same system matrix than in the case of QR-
factorization.  

The main advantages of FDK are the computing speed, 
simplicity and robustness; CG method allows us to use a 
discrete linear system, which takes into account the scanner 
geometry, the physical processes involved in the measurements, 
and it is more suitable for the reconstruction of images with 
high contrast and precision [4] and [5].  

QR-factorization method could be a potential alternative 
reconstruction method for CT, incorporating the advantages of 
both methods. The most CPU time-consuming part of the QR-
factorization method is calculated and stored only once for a 
given CT system, and from then on, each image reconstruction 
only involves a matrix vector product and a backward 
substitution process. The authors have obtained promising 
results [24], [25] for the studies of the QR-factorization stability 
including the errors introduced by the reconstruction process. 
Additionally, a heuristic has been described in [25] to exploit 
the particular CT sparse matrix structure allowing a reduction 
in the number of projections, without compromising image 
quality.  

The reconstructed image obtained with QR-factorization is 
unique and equivalent to the solution obtained with the least 
squares method as long as the corresponding system matrix is 
injective [25]-[27].  

Different features have been be studied and compared:  
• Noise, which is a key characteristic in image analysis 

[28]. Two main approaches have been considered to address 
this issue: 1) standard deviation related analysis: this evaluation 
will be performed using two figures of merit, namely 
coefficient of variation (CV) [29] and contrast to noise ratio 
(CNR) [30]; and 2) spectral analysis, which will be evaluated 
by means of the noise power spectrum (NPS) [30], [31].  
• Sharpness, which will be studied applying a Sobel 
filter [32] to the reconstructed images.  

II. MATERIALS AND METHODS 
Images of a CT phantom and a mouse were collected on an 

Albira CT [33] (Fig. 1) and three dimensional (3D) images 
obtained with QR-factorization have been analysed and 
compared with those obtained with FDK and CG methods (Fig. 
1).  

A. Reconstruction methods 
QR-factorization and CG algorithms are model based 

methods. These model based algorithms consider that image 
reconstruction in CT can be modelled by a large sparse linear 
system of equations such as: 

                                       Ax = b                                         (1)  
where A is the system matrix, of dimensions M×N, M rows and 
N columns; b, of dimensions 1×M, contains the detector 
element measurements; and x, of dimensions N×1, is the a 
priori unknown image [25].  

Previous to explaining the way the methods were 

implemented, we are going to give a brief scheme on how the 
system matrix is constructed.  

 

 
Fig. 1. The CT measurements have been done with the tri-modal Albira 
PET/SPECT/CT. Three reconstruction methods have been used and 
compared: FDK, CG and QR-factorization.   
 
 

1) The system matrix 
The system matrix that describes the scanning process has a 

major impact on the quality of the reconstructed image [34]. 
There are two main points to take into account for designing the 
system matrix: 

1. The linear system must be stable. 
2. It is desirable that the linear system contains enough 

information for the image reconstruction. 
The first point is related, among others, with how good is the 

discretization of the CT system. It is necessary to choose the 
discretization appropriately for obtaining a stable system 
matrix, which keeps the condition of the matrix down: If aij, 

denotes the element of the matrix A (i-th row and j-th column), 
then each aij is defined as aij = c (i, j) vij, where vij is the volume 
intersection between the i-th X-ray beam and the j-th scanned 
volume voxel. As the size and relative positions of the pixel 
detectors and the X-ray source are known for each projection, 
computing each vij is a matter of computing the volume 
intersection between a given cube (voxel) and a pyramid such 
as its base matches a CT detector element and its apex matches 
the x-ray source (X-ray beam). The term c(i, j) is referred as the 
cone beam factor [35], and represents the divergence of the X-
ray cone beam generated in a point source.  

With respect to the second point, by enough information we 
are referring to A having full rank. We need to define a set of 
projections that produces at least N linearly independent rows 
in A. If there are sufficient projections in the matrix A, there will 
be enough information to uniquely solve the linear system (1), 
and that implies [25]-[27]: 

                                  d×P>N                                             (2) 
where d is the number of detectors considered in the detector 
panel, P is the number of projections and N is the number of 
voxels in the field of view. Notice that M = d×P is the number 
of detector element measurements.     
2) The QR-factorization algorithm 

As stated above, the QR-factorization method for 
tomographic image reconstruction is not a broadly-applied 
approach. For this reason, a brief explanation of the procedure 
is given below. Typically, for the solution of overdetermined 
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systems (like here), the "thin QR" factorization [26] is used, 
where R is an upper triangular matrix that keeps the dimensions 
of A, M×N, and Q is an M×M orthogonal matrix. In this case, 
the inverse of Q does not exist. Also, Q Qt is not the unity 
matrix, but Qt Q is (for non-square dimension of A). The general 
idea for solving the linear system is to perform the QR-
factorization of A, exploiting the easy calculation of Qt and 
apply backward substitution to obtain x. 

QR-factorization is done via CS-Givens rotations [18]. The 
numerical properties of this transformation are excellent, that 
is, the computation of the QR-factorization via Givens rotations 
is normwise and backward stable. More importantly, if the 
discretized system (1) is stable,  and matrix A has full rank, as 
is the case, (see point 1 of this section), then the QR-
factorization give us the unique solution of the least squares 
method for this system [25], [36], [37].  

Consequently, the linear system (1) is overdetermined, and 
the solution that minimizes the least square problem is: 
    x= arg miny ||A·y - b||= arg miny || R·y - Qt ·b||                 (3)  
 and it can be obtained in terms of the QR-factorization [26], 
[27]. 

Since the QR-factorization is precomputed and stored, image 
reconstruction only requires O(M×N + N2) operations. M is, at 
most, the total number of samples (pixel detector elements 
multiplied by the number of projections measured), and N is the 
total number of voxels in the reconstructed image. The first 
factor derives from a matrix vector multiplication, which in the 
worst case would require O(M×N) operations or less if the 
sparsity of the original system matrix is exploited. The second 
factor derives from a backward substitution process that 
requires N2 operations. The two processes are sequential and 
therefore their computational costs are added. On the overall 
cost, M is dominant and M×N is equivalent to the number of 
operations required to perform the QR-factorization of the 
system matrix. However, operations count can be substantially 
reduced if we take full advantage of the system matrix sparsity. 

As far as we now, it is the first time that a study of QR-
factorization algorithm for CT is done. This paper is the first 
study of the viability of the use of QR-factorization as a method 
for CT image reconstruction, so no filter was applied for QR-
factorization. The images are shown as the direct result of the 
QR-factorization algorithm.  
3) The FDK algorithm. 

Regarding FDK algorithm, the reconstruction filter function 
we have used in the FDK implementation is a band-limited 
ramp filter, using a Gaussian apodization function.  The 
apodization filter required by FDK results in an image blurring 
of the reconstructed image. 
4) The CG algorithm. 

When the projection data are complete, as in our case, CG 
implementation can be used [38]. CG is an unconstrained 
method that gives us the least square solution when data are 
complete. Both methods, CG and QR-factorization algorithms, 
use a system matrix for modelling the CT system. The most 
remarkable difference is that QR-factorization is a direct 
method and CG is a classic iterative method. CG was 

implemented using RTK toolkit [23] and 11 iterations. This 
number of iterations was chosen because, in our case, it 
maximized the image contrast to noise ratio (CNR). 

B. Data Acquisition 
Experimental measurements have been conducted with the 

CT of the trimodal PET/SPECT/CT Albira scanner [33]. The 
CT subsystem has a cone-beam configuration that uses a 50 kV 
microfocus X-ray source with a focal spot size of 35µm and a 
CMOS flat-panel detector with an active area of 120 mm×120 
mm that consists of a 2400×2400 pixelated array sensor. The 
nominal resolution is 8 lp/mm (line pairs per millimeter) 
although the measured value is about 11 lp/mm. Fixed distances 
from the x-ray tube to the isocenter (290 mm) and x-ray detector 
(425 mm) lead to a magnification factor of 1.46. CT transaxial 
field of view (FOV) is roughly 80 mm in diameter while the 
axial FOV is 65 mm. Two groups of images have been 
analysed: phantom measurements and in vivo measurements. In 
both cases, 3D images were reconstructed using QR-
factorization, FDK and CG methods.  

 
Fig. 2.  Phantom with inserts: 1, Air; 2, PFTE; 3, PMMA; 4, PE and 5, POM. 
 
A cylindrical phantom of polymethylmethacrylate (PMMA) 

50 mm height and 55 mm in diameter was used, see Fig. 2. Five 
holes of 8 mm in diameter were axially drilled at 16 mm off the 
axis. Three of the holes were filled with 8 mm in diameter 
inserts of polyethylene (PE), polyoxymethylene (POM) and 
Teflon or polytetrafluoroethylene (PTFE), which model 
adipose tissue, organs tissue and soft bone respectively. A 
PMMA insert was placed in the third hole, and was used to align 
the phantom in the scanner. The remaining hole was left empty 
to model an air region inside the body. A mouse image was also 
recorded following the procedure described in [25] and [33]. In 
which follows, we have considered pixel detector size of 0.2 
mm × 0.2 mm. Although the actual detector has 50 μm × 50 μm 
pixelated array, a 4 × 4 binning is selected in order to reduce 
statistical noise. 

C. Image Quality Indicators 
     The 3D CT images of the phantom were reconstructed using 
QR-factorization, FDK and CG methods. The first step for the 
numerical analysis of the reconstructed images is the definition 
of meaningful volume of interest (VoI). All VoIs were 
cylindrical along the axial axis with a height of approximately 
38 mm (in order to maximize the number of considered slices 
in all image configurations). Moreover, all VoIs have a 
diameter of 4 mm (inside each insert which is 8 mm in 
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diameter), so that the 2 mm outer side of each insert is excluded 
in order to avoid considering voxels that are part of transition 
between materials. In this case, the selected VoIs are 
representative of the different body regions: 

• Air, centered in its own insert, will be a measure of 
high contrast low valued region. Also, this VoI will demonstrate 
the ability for each algorithm to reproduce empty regions inside 
the body. 

•  Bone, centered in the Teflon insert, will be a measure 
of high contrast high valued region. 

•  Adipose tissue, centered in the PE insert, will be a 
measure of low contrast low valued region. 

•  Organs, centered in the POM insert, will be a measure 
of low contrast high valued region. 

•  Soft tissue, PMMA, will be a measure of CT images 
background that will be used to compute contrast for the 
different VoI regions.  

Two figures of merit have been used to measure the quality 
of the phantom reconstructed images:   

• Coefficient of variation (CV) [9] quantifies the 
variability among voxel values in a VoI. CV is divided 
by µv in order to obtain a dimensionless parameter: 

            100
v

vCV
µ
σ

=                                          (4) 

where σv is the standard deviation of the VoI voxels and µv 
represents the CT (Hounsfield) number. 

• Contrast to noise ratio (CNR) [29] is a measure of the 
relation between contrast (difference between means) 
and noise (standard deviation) of a VoI and the PMMA 
background: 

       100||2
bv

bvCNR
σσ
µµ

+
−

=                    (5) 

where σb  and µb represent the standard deviation and the CT 
number of the background region, respectively.  

CNR and CV parameters complement each other. On one 
hand, the CNR gives a value of how much a given difference 
can be seen through the noise that is present. In other words, 
this parameter answers the following question: will the current 
noise level let see image features with a certain contrast? The 
result is a percentage representing the visibility of the 
considered VoI. 

On the other hand, the CV gives the voxel variability 
independent of its mean value, in order to get the noise values 
comparable among different VoIs. As our VoIs are defined over 
homogeneous regions, this parameter accounts directly for the 
noise present in the reconstructed image. Notice that this value 
will depend not only on the algorithm used for the image 
reconstruction, but also on the CT measurement (i.e. the quality 
of input data). However, differences in this parameter using the 
same CT data will account for the differences of the algorithms 
considered when dealing with noise. The combination of these 
two figures of merit illustrates the amount of noise present and 
its influence in the interpretation on the reconstructed image. 

We have implemented also a multidimensional analysis of 

the noise power spectrum (NPS), following the guidelines 
described in [25], [39] and [40]. Volumetric realizations have 
been extracted from 3D reconstructed images of an empty FOV 
(air). This results in uniform images that are easily detrended to 
zero mean images. 

The 3D NPS images have been obtained and averaged to 
avoid statistical fluctuations and, finally, the resulting 3D NPS 
image has been analysed. Reconstructed images have been 
converted to CT number, in order to obtain the NPS in the 
appropriate units.  

In order to quantify the blurring of the reconstructed images, 
several metrics have been proposed in the literature. For 
example, variance [41] or kurtosis [42], [43] based metrics, 
among many others [44], have been proposed. However, these 
metrics are influenced by the amount of noise in the 
reconstructed image and in our case they are very sensitive to 
changes in voxel size. One of the effects of blur is the spread of 
the edges in an image. As it will be seen later, (Results and 
Discussion section), QR-factorization, FDK and CG show quite 
different edge spreading in their reconstructed images. For that 
reason, the analysis of the spread of the edges [45] has been 
adopted and adapted to our particular case, in order to quantify 
the image blurring of the reconstruction algorithms. To do that, 
we have used the Sobel operator [32] which provides a gradient 
estimate at a slice (2D) image point obtained in a 3×3 pixels 
neighbourhood of that point. This operator has been widely 
used in image processing and nowadays is available in almost 
every image software.  

III. RESULTS AND DISCUSSION 

A. Phantom results 
Fig. 3 (a)-(h) show the results obtained for the axial central 

slice of the 3D reconstructed image of the phantom using QR-
factorization, FDK and CG for different voxel sizes. Cubic 
voxels of different edge lengths were used in the image 
reconstructions. For simplicity it will be used the length of the 
edge for voxel size labelling. Fig. 3 (i) shows a scheme of the 
axial, sagittal and coronal slices. Fig. 3 (j)-(k) shows the sagittal 
and coronal slice of the QR 0.8mm voxel size image. 

The differences among the used methods of reconstruction in 
the case of sagittal images or coronal images are similar to those 
observed in the case of axial images. QR results obtained for 
0.8 mm voxel size are comparable with those obtained with 0.2 
mm voxel size for FDK. Regarding the blur, the main feature of 
the transition between materials is how quickly it is made. 
Ideally, transitions should be quickly and therefore, abrupt. 
However, smooth transitions can be observed, for example, in 
the case of Teflon insert reconstructed with FDK or air insert 
reconstructed with CG. 

Fig. 4(a) shows the 3D rendering of the 3D reconstruction of 
the phantom with the QR-factorization algorithm with 0.8 mm 
of voxel size. Differences among the 3D renderings with the 
three reconstruction algorithms only are noticeable at the screw 
thread. Fig. 4 (b)-(d) show a zoom of the central fastening screw 
zone (see Fig. 2) with 0.8 mm of voxel sixe for QR-
factorization, FDK and CG reconstruction algorithms 
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respectively. It can be observed that for 0.8 mm of voxel size, 
only QR-factorization and CG algorithms are able to properly 
reproduce the screw thread. Fig. 4 (e) shows that FDK is also 
able to reconstruct the screw zone with 0.2 mm of voxel size. 

In terms of visual (subjective) quality, the QR reconstruction 
with 1.2 mm voxels size can be placed in between the 0.2 and 
0.8 mm voxel size reconstructions of FDK and CG. Likewise, 
the QR reconstruction with 0.8 mm voxel size produces even 
better visual quality image than the 0.2 mm voxel size 
reconstructions with FDK and CG.  

 
 
 

  
 (a) QR 0.8 mm 

voxel  size 
(b) QR 1.2 mm 
voxel  size 

   
(c) FDK 0.2 mm voxel 
size 

(d) FDK 0.8 mm 
voxel size 

(e) FDK 1.2 mm 
voxel size 

   
(f) CG 0.2 mm voxel 
size 

(g) CG 0.8 mm 
voxel size 

(h) CG 1.2 mm 
voxel size 

 

  

(i)  Scheme of the axial, 
coronal and sagittal 
views. 

(j) Sagittal slice of 
the QR 0.8 mm 
voxel  size image 

(k) Coronal slice of 
the QR 0.8 mm 
voxel  size image 
 

 

Fig. 3 (a)-(h) Central axial slice of the 3D reconstructed image of the 
phantom.  Differences in the edge definition can be perceived even with a 
naked eye. (i), (j) and (k) are the axial, sagittal and coronal views of the QR 
0.8 mm voxel size image. Only in the case of QR reconstruction, sagittal 
and coronal views have been included. The phantom inserts orientation-
location is the same already shown in Fig.  2 

This is significant in the sense that voxel size has an 
important role in the degradation of the image quality. In this 
case, a large voxel size (1.2 mm) refers to the relation between 
the voxel edge size and each insert diameter (8 mm) which 
leaves 6 voxels in diameter for each insert. With so few voxels, 

the reconstruction algorithms should perform a finer estimation 
of the attenuation coefficients, in order to correctly translate 
curved edges (between materials) and avoid blurring. 

  
(a) 3D QR 0.8 mm voxel size. (b) Zoom of the screw 

thread zone QR (0.8 
mm voxel size). 

   
(c) Zoom of the  screw 
thread zone FDK (0.8 
mm voxel size).  

(d) Zoom of the screw 
thread zone CG (0.8 
mm voxel size)  

(e) Zoom of the screw 
thread zone FDK (0.2 
mm voxel size). 
 

Fig. 4. (a) 3D phantom image reconstructed with QR algorithm. Differences 
among the three reconstruction algorithms only are easily noticeable in the 
screw thread with a zoom. (b)-(e) Zoom of the screw thread zone of the 
phantom.  
 
 

 
(a) (b) 

Fig. 5.  CNR (a) and CV (b) of the PE VoI for each algorithm and voxel 
size. CV is presented alongside CNR in order to highlight noise contribution 
to CNR worsening.  
 

 

 
(a) (b) 

Fig. 6.  CNR (a) and CV (b) of the air VoI for each algorithm and voxel size. 
CV is presented alongside CNR in order to highlight noise contribution to 
CNR worsening 
 
This effect is mostly appreciated in the FDK algorithm with 

1.2 mm voxels and it is not that evident in the QR-factorization 
and CG algorithms. The better performing of QR and CG is 
mainly due to the fact that they are model based methods. 
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Fig. 7.  NPS comparison among images reconstructed with 
QR, FDK and CG with 1.2 mm voxel size. 
 
In Fig. 5 results for CNR and CV measured in PE, low 

contrast VoIs, are presented. The degradation in CNR results is 
due to the increase in CV. The comparison between all the three 
algorithms shows that QR has the poorest CNR results. CNR 
and CV results obtained with QR (0.8 mm voxel size) are only 
comparable to those obtained with FDK or CG using 0.2 mm 
voxel size.  

 

 
(a) 

 
(c) 

 
(b) 

Fig. 8.  Characterization of transitions among different phantom inserts 
materials. In this example, image has been reconstructed with QR-
factorization using 0.8 mm voxel size. A line profile through the high contrast 
inserts at central slice (a) is selected, and shown as a filled curve in (c). In the 
first valley (around 35 mm) is located the air insert and in the first peak 
(around 50 mm) is located the Teflon insert. A Sobel operator is applied to 
the central slice to obtain a gradient estimate image (b) and the previous line 
profile is reevaluated to yield gradient estimates. Only the line segment 
between 25 and 57 mm (where the transitions involving inserts are located) is 
considered. Four Gaussian distributions are fitted to this line segment and 
shown in (c). The FWHM of these Gaussian distributions are associated to the 
transition widths. 
 

 
The air VoI presents a different case (see Fig. 6), mainly due 

to the fact that there is a great influence of noise in the air VoI 
due to its low attenuation coefficient. Moreover, for the rest of 
inserts considered in the phantom (PTFE, PMMA, PE, and 
POM), the CV obtained with FDK increases as the voxel size 

decreases. However, for the air insert, we notice that the 
minimum CV for the FDK is obtained with 0.5 mm voxels (see 
Fig. 6). We have not found so far any clear reason capable to 
explain this behaviour. 
 

TABLE I 
AVERAGED FWHM OF THE FITTED GAUSSIANS DISTRIBUTION TO THE SOBEL 

GRADIENT ESTIMATES.  
 

Material 
Method 

Voxela 
Size 
(mm) 

FWHM b 
(mm) 

Air QR 0.8 1.5 
CG 0.8 1.9 

0.5 1.4 
0.2 1.0 

FDK 0.8 2.3 
0.5 1.6 
0.2 0.5 

Teflon QR 0.8 1.5 
CG 0.8 1.8 

0.5 1.4 
0.2 0.9 

FDK 0.8 2.6 
0.5 1.6 
0.2 0.6 

PE QR 0.8 1.3 
CG 0.8 1.9 

0.5 1.5 
0.2 0.6 

FDK 0.8 2.5 
0.5 1.4 
0.2 0.5 

POM QR 0.8 1.4 
CG 0.8 2.2 

0.5 1.5 
0.2 0.6 

FDK 0.8 2.5 
0.5 1.7 
0.2 0.5 

 

aCubic voxels of different edge lengths have been used in the image 
reconstructions. For simplicity it has been used the length of the edge for voxel 
size labelling. 

b The averaged FWHM for each material is the mean value of its two 
FWHM (corresponding to the transition inside and outside the insert for a 
selected line profile in the central slice, see Fig. 9 and 10).  
 
Fig. 7 shows the result of the NPS for QR, FDK and CG. 

FDK exhibits the expected behaviour. QR produces lower 
values than FDK and CG at low frequencies while for higher 
spatial frequencies it produces higher values than FDK and   
CG. This difference is associated with the preservation of high 
spatial frequencies by the QR-factorization algorithm and 
therefore although fine details in the image are preserved, 
producing higher sharpness (see Fig. 3 (a)) than FDK and CG, 
it produces fine noise too, as can be seen in Fig. 7. 

In Fig. 8 the sharpness (in terms of the spread of the phantom 
edges concerning transitions among different phantom inserts) 
is characterized and quantified for the QR-factorization 
algorithm using 0.8 mm voxel size. The Sobel filter was applied 
to the original image (Fig. 8 (a)), obtaining the gradient estimate 
image (Fig. 8 (b)) in which the transitions between different 
insert materials can be easily characterized. Fig. 8 (c) shows the 
line profile: the four central peaks (transitions into and out of 
the inserts) are selected and then four Gaussian distributions are 
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fitted to them (as seen in Fig. 8 (c)). The Full Width at Half 
Maximum (FWHM) of these distributions represents the 
distance needed for the reconstruction algorithm to perform the 
transition between different materials. The two FWHMs of the 
two Gaussian distributions associated to the transitions 
involving an insert are averaged, in order to obtain a single 
value for each material. 

 
(a) 

 
(b) 

 
(c) 

(d) 

(e) 
Fig. 9.  Gradient estimate fitting through a line profile for high contrast 
inserts (air and Teflon) from images reconstructed with QR (a), FDK (b) and 
CG (c) algorithms. In d) the image voxel size is the same (0.8 mm), while 
in e) the image voxel size for QR (0.8mm) is different from that used for 
FDK and CG (0.5 mm). 
 
The same procedure was applied to images reconstructed 

with FDK and CG algorithms. Notice that the procedure is 
defined for a given line profile. However we have verified that 
different line profiles produce similar FWHM values. The 

Sobel gradient estimates fitted to Gaussian distributions, both 
to the high contrast gradients (air and Teflon) and to the low 
contrast gradients (PE and POM) are shown in Fig. 9 and 10, 
respectively. 

 

 
(a) 

 
(b) 

 
(c) 

(d) 

(e) 
Fig. 10. Gradient estimate fitting through a line profile for low contrast 
inserts (PE and POM) from images reconstructed with QR (a), FDK (b) and 
CG (c) algorithms.  In d) the image voxel size is the same (0.8 mm), while 
in e) the image voxel size for QR (0.8mm) is different from that used for 
FDK and CG (0.5 mm). 
 
In our case, the most important parameter of the gradient 

peaks is their width (FWHM). Thin peaks represent short 
transitions and therefore, sharp edges. In Fig. 9 and 10 the 
different peaks represent, from left to right, transitions inside 
and outside the first insert and inside and outside the second 
insert (air and Teflon in the high contrast case, Fig. 9, and POM 
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and PE in the low contrast case, Fig. 10). In all cases, for the 
same voxel size, QR-factorization algorithm produces thinner 
gradients, i.e. sharper transitions. Gradients produced by QR 
using 0.8 mm voxel size are equivalent to those produced by 
FDK or CG using 0.5 mm voxel size.  It should be noticed that 
despite of the fact that in some cases FDK and CG produce 
thinner gradients than QR, this implies a considerable increase 
in the image size (from 0.8 mm to 0.5 mm voxel size). In other 
words, with fewer voxels, QR is able to produce transitions as 
narrow as FDK or CG with almost half sized voxels. 

This is confirmed in the summary of the Sobel analysis we 
show in Table 1, where the FWHM of the fitted Gaussians 
distribution to the Sobel gradient estimates, for the different 
algorithms, voxel sizes, and phantom insert materials 
considered in this work are shown.  

The FWHM we show in Table 1 should be considered as an 
estimator that remains almost invariable to changes in the noise 
level. From Table 1 we can conclude that QR reproduces image 
edges as sharp as FDK or CG but using almost half the voxel 
size. Notice that image resolution is influenced by the sharpness 
of the edges, in the sense that spatially close regions belonging 
to two different anatomical features could be indistinguishable 
if their transitions are smooth enough. 

B. In Vivo Results 
 
In order to verify the previously results in a more realistic 

situation, in vivo measurements of a mouse have been 
reconstructed with all three methods (QR, FDK and CG), using 
0.8, 0.5 and 0.2 mm voxel sizes. Comparisons were carried out 
selecting a line profile through a fine feature region in the knee 
of the mouse (see Fig. 11). 
The same slice in the axial direction has been selected in all 
images, yielding a cross section in the mouse femur, tibia and 
fibula. Considering the size of the detectors (0.2 mm) used for 
these measurements, the soft bone tissue of the mouse femur (1 
mm) should be clearly visible, surrounded by the femur hard 
bone tissue (approximately 1 mm to the left and to the right) 
and hard bone tissue for the tibia and  fibula  (0.7 mm). The 
femur has been considered as a coarse feature and the fibula has 
been considered as a fine feature. A line profile through the 
femur and fibula is enough to observe the presence of these 
coarse and fine features. This line profile should present peaks 
in hard bone regions and valleys in soft bone regions (or 
between bone pieces).  

Considering the mouse image slice and line profile analysed 
in this section, three different resolution levels could be defined. 
The first one, in which the femur is clearly seen (3 mm total 
width), although its interior, soft bone tissue, is not observable. 
This is partly due to the spread of the edges of the hard bone 
peaks. The second one, in which the femur and its interior, soft 
bone tissue, is observable, but the fibula is not. This is partly 
due to the impossibility of the production of thin peaks with 
smooth transitions. And the third one, in which all features are 
observable, namely, femur soft and hard bone and fibula hard 
bone tissues. 
 

The results of this test are summarized in Fig. 12. As previous 
results indicated, QR with 0.8 mm voxel size and CG with 0.5 
mm voxel size have comparable sharpness and almost the same 
features can be observed, see Fig. 12 (a) and (b). As we already 
stated in the phantom measurements section, QR-factorization 
method can produce images as sharp and rich in features as CG, 
but CG needs almost twice voxel size. FDK algorithm with 0.5 
mm voxel size, see Fig. 12 (c), produces the worst result. 
Visually, FDK slice presents a lower edge definition than QR 
and CG and, therefore, less features can be observed, unless 0.2 
mm voxel size is used, Fig. 12 (d). 

In Fig. 12 (e)-(f) attenuation profiles (in Hounsfield units) for 
FDK and CG are compared with that obtained with QR method. 
The hard bone peaks produced by QR-factorization algorithm 
are not exactly where they should, due to the undersampling 
produced for the use of large voxel sizes.  CG and FDK methods 
show a peak in the fibula region for the smaller voxel size (0.2 
mm) and all the three algorithms are capable to reproduce the 

 
(a) 

 
 (b) 

 

 
(c) (d) 

 
(e) (f)  

Fig. 11.  3D reconstruction of a mouse using QR-factorization method and 
0.8 mm voxel size. The entire mouse is shown in (a) and the mouse left knee 
is pointed by an arrow. The mouse is on a stretcher that provides it with 
anesthesia. (b) axial view of the mouse showing the fibula and tibia bones 
marked by the arrow in (a). (c) Shows a scheme of the axial, coronal and 
sagittal views. (d), (e) and (f) are the axial, coronal and sagittal images 
respectively.  
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femur soft bone tissue. Using almost twice the voxel size, QR-
factorization algorithm reconstructs even a sharper image than 
FDK, Fig. 12 (e). The main numerical difference arises in the 
transition involving the femur soft bone tissue. While QR is 
able to reproduce it, the FDK reconstruction with voxels sizes 
ranging from 0.8 to 0.5 mm, is not. It is necessary to use FDK 
with 0.2 mm voxel size to properly reproduce the femur soft 
bone tissue, but as already mentioned this implies a 
considerable increase in the image size.  

C. Execution time.  
The image reconstruction times have been measured in a 

computer with an Intel Core i7 with 8 threads at 4 GHz clock 
frequency. RTK toolkit is parallelized into 8 threads; the CG 
reconstruction with 11 iterations needed 94.6 s for 1.2 mm 
voxel size and 146.9 s for 0.8mm voxel size. With respect to 
QR-factorization algorithm, it is necessary to point out that the 
reconstruction time accounts for Qt·b matrix vector 
multiplication plus the backward substitution process; the time 
for the backward substitution process with a parallelization of 7 
threads is 12.0 s for 1.2 mm of voxel size and 96.3 s for 0.8 mm 
of voxel size, and computation time for the matrix vector 
multiplication Qt·b (without parallelization) is 80.0 s for 1.2 mm 
voxel size and 6050 s for 0.8 mm voxel size. The reconstruction 
time, in the case of CG, increases a factor of 1.5 when the voxel 
size decreases 1/3, while in the case of QR-factorization this 
factor is 75. This is due to the increase in the number of fill-in 
of the matrix that depends on the structure of the matrix, i.e. the 
increase is not linear. Finally, as expected, FDK reconstruction 
time with 8 threads is 0.25 s for 1.2 mm voxel size and 0.65 s 
for 0.8 mm voxel size. 

IV. CONCLUSIONS 
During decades, FDK has been the standard method used for 

tomographic imaging reconstruction. However, as the image 
reconstruction problem can be modelled by a large linear 
system of equations, and taking into account the current 
advances in computer science, QR-factorization of the system 
matrix could be considered as a serious competitive method in 
reconstruction of tomographic images. Main advantage of the 
proposed QR-factorization method is that the core of the 
algorithm, from the computational cost point of view, is pre-
calculated and stored only once for a given system, and from 
then on, each image reconstruction only involves a backward 
substitution process. We have developed the QR-factorization 
method for CT system and we have compared the images 

obtained with FDK and CG using real data from a preclinical 
CT system. Comparison between QR, FDK, and CG for images 
of a phantom with different material inserts show that QR-
factorization provides more information for a fixed voxel size, 
providing more detailed images and introducing less blurring in 
the reconstructed image, see  Fig. 4 (e)-(h). NPS analysis shows 
that QR produces higher values than FDK and CG at higher 
spatial frequencies and therefore although fine details in the 
image are preserved, producing higher sharpness (see Fig. 3 (a)) 
than FDK and CG, it produces fine noise too (Fig. 7). 

Reconstructed images sharpness has been quantified using 
the Sobel operator, which provides a gradient estimate for a 
given 2D slice. The Sobel gradient estimate shows that QR 
reproduces image edges as sharp as FDK and CG using almost 
half the voxel size. It should be pointed out that QR method not 
only is able to obtain higher gradient magnitude than FDK and 
CG, which is related to fast change between image values in 
Hounsfield units, but also the peak width of the gradients 
(FWHM) for QR reconstructed images are thinner than those of 
FDK and CG. The peak widths are directly related to the ability 
of the algorithm when dealing with border zones between 
different materials, i.e. regions with different X-ray absorption. 
In vivo measurements of a mouse confirm the results we have 
obtained for the phantom, i.e. for a fixed voxel size QR 
outperforms the other two algorithms considered in this work 
(CG and FDK). In this sense, we could conclude that the QR-
factorization algorithm is more efficient in terms of image 
features (image information).  Although QR-factorization 
algorithm has not yet been depurated in terms of execution time, 
run time of QR-factorization algorithm is comparable to that 
needed for CG for 1.2 mm of voxel size, assuming 11 iterations 
for CG. Future work will include QR time execution 
optimization by parallelization of the different processes of the 
algorithm and new strategies for reduction of the amount of fill-
in produced during the reduction of the system matrix to the 
triangular form.  

The use of the QR-factorization algorithm for tomographic 
image reconstruction is just starting. The obtained results 
encourage us to further development of this technique to 
overcome the challenges we currently face. This will lead to the 
development of a reconstruction algorithm for tomographic 
image reconstruction with the advantages of FDK, like the 
speed and robustness; and the advantages of iterative 
algorithms, by using the system matrix, where fully physical 
information of the system can be included. 

 
  



 
Published TRPMS-2018 

 

10 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 12.  Line profiles through mouse femur and fibula axial slice. The slice has been selected from a 3D image reconstruction 
using: (a) QR with 0.8 mm voxel size, (b) CG with 0.5 mm voxel size, (c) FDK with 0.5 mm voxel size, and (d) FDK with 0.2 mm 
voxel size. Attenuation profiles (in Hounsfield units) for FDK (e) and CG (f) using different voxel sizes are compared with that 
obtained with QR for 0.8 mm voxel size. Profile plots begin right before entering the femur and end right after leaving the fibula. 
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