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versus Digital Learning Spaces 
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Abstract 

Collaborative Problem Solving (CPS) is an essential soft skill that should be fostered from a 

young age. Research shows that a good way of teaching such skills is through video games; 

however, the success and viability of this method may be affected by the technological platform 

used. In this work we propose a gameful approach to train CPS skills in the form of the CPSbot 

framework and describe a study involving eighty primary school children on user experience and 

acceptance of a game, Quizbot, using three different technological platforms: two purely digital 

(tabletop and handheld tablets) and another based on tangible interfaces and physical spaces. The 

results show that physical spaces proved to be more effective than the screen-based platforms in 

several ways, as well as being considered more fun and easier to use by the children. Finally, we 

propose a set of design considerations for future gameful CPS systems based on the observations 

made during this study. 
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Research Highlights 

 Collaborative Problem Solving (CPS) is a valuable skill that should be fostered from a 

young age. 

 Games are a successful way of training CPS, but the platform used may affect its 

effectiveness. 

 We present a framework and a game implemented to foster CPS, and compare its 

acceptance and user experience with eighty primary school students in three different 

implementations: tabletops, tablets, and physical spaces. 

 Physical spaces are perceived as easier as and more fun than screen-based sedentary 

activities, and they are reported as the most desirable to use again both inside and outside 

the educational. They may also provide additional benefits for CPS enhancement in 

comparison with purely digital platforms, especially where planning and organization are 

concerned. 
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1 Introduction 

Modern educational approaches consider the development of communication, teamwork, 

adaptability, and problem solving key elements to include in current curricula (Greenberg & 

Nilssen, 2015; Pachauri & Yadav, 2014; UNESCO, 2017). Collaborative Problem Solving (CPS) 

emerges as the combination of such skills. The OECD in the PISA 2015 report (OECD, 2013), 

after revising and discussing more than 150 works in the field, defines CPS as “the capacity of an 

individual to effectively engage in a process whereby two or more agents attempt to solve a 

problem by sharing the understanding and effort required to come to a solution and pooling their 

knowledge, skills, and efforts to reach that solution.”  According to this report, CPS involves four 

cognitive processes or skills that have to be trained: exploring and understanding, representing 

and formulating, planning and executing, and monitoring and reflecting. In addition, Vygotsky’s 

Social Development Theory (1978) implies that a person’s potential can only be achieved through 

interaction with and support from other, ideally more capable, people and various tools. This is 

based on the idea that when trying to solve a problem, the exchange of ideas could lead to a shared 

understanding that an individual cannot achieve alone. Gokhale (1995) also highlights the fact 

that “the active exchange of ideas within small groups not only increases interest among the 

participants but also promotes critical thinking”. This leads to the conclusion that focusing on 

developing a person’s individual problem solving skills is not enough and it is now essential to 

have a certain level of proficiency in collaborative problem solving. 

 

Adding an element of play to the learning process has been proven to be a natural and successful 

way of improving the effectiveness of learning seeing as human culture is generated at least 

partially through play (Huizinga, 1949). With the aid of technology, educational games (or serious 

games) can be created to help develop skills like CPS through play and offer instant feedback and 

interactivity in a game-based learning environment. Educational games are designed to teach 

people about certain subjects, expand concepts, reinforce development, or help them learn or 

improve a skill (Dempsey, Rasmussen, & Lucassen, 1996) and they have been shown to have 

many cognitive, motivational, emotional, and social benefits (Granic, Lobel, & Engels, 2014; 

Wouters, van Nimwegen, van Oostendorp, & van der Spek, 2013). 

 

Many technological games designed to foster CPS rely on digital tabletops, often considered 

adequate for collaborative learning activities because of their public display, which enhances 

workspace awareness (Gutwin & Greenberg, 1998, 2002) and in turn improves collaboration. 

These devices, however, are seldom used in actual educational settings, mostly due to their high 

cost or their form factor, which hinders their mobility. Handheld devices, on the other hand, are 

becoming more and more popular in these settings. “Once seen as a distraction in the classroom, 
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mobiles are now a powerful tool for advancing learning” (The New Media Consortium (NMC) & 

Consortium for School Networking (CoSN), 2017). Also, according to the latest NMC Horizon 

Report (2017), “the global market for mobile learning is predicted to grow by 36% annually, 

increasing from $7.98 billion in 2015 to $37.6 billion by 2020”. However, interaction with these 

devices is limited mostly to touch contacts on the small screen area (Garcia-Sanjuan, Jaen, 

Fitzpatrick, & Catala, 2016). In contrast, several authors (e.g., (Antle, Droumeva, & Ha, 2009; 

Schneider, Blikstein, & Mackay, 2012; Xie, Antle, & Motamedi, 2008)) propose mediations via 

tangible objects, which have been identified suitable and interesting for designing learning 

activities for children (Strawhacker & Bers, 2014). Despite all of their different advantages, to 

our knowledge, no comparative studies have been made on which of these platforms is best 

experienced by children in the context of CPS learning. Quality of experience (Alben, 1996; 

Hassenzahl & Tractinsky, 2006) is a key factor because, as has been shown in other technological 

and learning contexts (Bargshady, Pourmahdi, Khodakarami, Khodadadi, & Alipanah, 2015; 

Pindeh, Suki, & Suki, 2016; Tan, Goh, Ang, & Huan, 2016), the usefulness, ease of use, and fun 

perceived by children influence their attitude towards the learning application usage and the 

effectiveness of the learning process. 

 

In this context, this work explores the potential of a gamified approach based on multi-surface 

environments (Garcia-Sanjuan, Jaen, Catala, & Fitzpatrick, 2015; Garcia-Sanjuan, Jaen, & 

Nacher, 2016b; Garcia-Sanjuan, Nacher, & Jaen, 2016) and tangible interactions in physical 

spaces to stimulate and foster skills such as communication, negotiation and teamwork  which, as 

indicated above, facilitate the collaborative resolution of problems. To our knowledge, no other 

previous work has compared traditional technological approaches for CPS with those based on 

multi-surfaces and tangible interactions in physical spaces to evaluate whether the quality of 

experience (Alben, 1996) is enhanced by these new technological forms. In this respect, the 

contributions of this work are manifold. First, the design of the CPSbot framework, a gameful 

approach to provide the students with an environment that stimulates and fosters skills such as 

communication, negotiation, and teamwork. Secondly, a study of a specific game (Quizbot) with 

eighty primary school students on three different technological platforms (a tabletop, tablets, and 

physical spaces). This study reveals that our approach based on physical spaces is perceived to be 

easier and more fun than the screen-based sedentary ones, along with being the platform that 

subjects manifest as being the one they most want to use again both in class and out-of-class 

scenarios. Additionally, we consider how the framework can support CPS backed by observations 

made during the study, suggesting that physical spaces may provide more benefits for CPS 

enhancement than purely digital platforms, especially where planning and organization are 

concerned. Finally, we provide a list of considerations for designers of future gameful CPS 

systems. 
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2 Related Works 

Problem solving skills are highly valued and therefore there are many studies on nurturing and 

enhancing these skills. In this section, we look at some of these works and separate them into 

different technologies attending to the quality of experience they enable. 

2.1 Single Display Multi-Touch Environments 

The traditional desktop computer is a known and reliable medium very often used for educational 

games (Brayshaw & Gordon, 2016; Hatzilygeroudis, Grivokostopoulou, & Perikos, 2012; Liao 

& Shen, 2012; Raman, Lal, & Achuthan, 2014; Siang & Radha Krishna Rao, 2003). However, 

several studies show that primary-school children between 6 and 13 years of age find it difficult 

to use a mouse and keyboard (Berkovitz, 1994; Donker & Reitsma, 2007; Strommen, 1994), 

whereas others reveal newer multi-touch technologies as more intuitive and usable, even to 

children in kindergarten (Nacher, Ferreira, Jaen, & Garcia-Sanjuan, 2016; Nacher, Jaen, Navarro, 

Catala, & González, 2015; Romeo, Edwards, McNamara, Walker, & Ziguras, 2003). Many studies 

highlight the benefits of using digital tabletops in primary education. These benefits include a low 

interference with the teaching/learning process, increasing motivation (Salvador et al., 2012), 

fostering creativity (Giannakos, Jaccheri, & Leftheriotis, 2012), knowledge acquisition (Jackson, 

Brummel, Pollet, & Greer, 2013) and  assimilation (Salvador et al., 2012), and, most importantly 

in this case, favoring hands-on problem solving activities through collaboration (Dillenbourg & 

Evans, 2011). 

 

Works like (Falloon & Khoo, 2014; Mercier, Vourloumi, & Higgins, 2015; Rick & Rogers, 2008) 

are examples of studies where single multi-touch displays were used to enhance Collaborative 

Problem Solving skills, among others. Rick and Rogers (2008) present a game to learn 

relationships between mathematics and art on a multi-touch tabletop, and report on it being 

successful at promoting reflective dialogue in children aged 10-12. Mercier et al. (2015) test the 

effectiveness of the multi-touch display with respect to the usage of paper by comparing the 

problem solving process of children aged 10-11 in both platforms. The results of the work show 

higher levels of collaboration taking place when using the display. The one by Falloon and Khoo 

(2014) is a more concrete study with 5-year-olds of the type of communication that takes place 

when an Apple iPad is used as a public workspace for a CPS class activity. The results show that 

indeed a lot of on-task talk took place, but the young age of the students made it necessary to 

include a teacher in order to help them achieve the appropriate talk quality. 

 

Unfortunately, tabletops are a rare commodity in real educational settings, mostly due to their 

high cost, as well as because of their form factor, which prevents their usage in scenarios that 

require mobility. Other limiting factors associated with tabletops include the fact that the 



5 

 

workspace is always public, making it difficult to perform any kind of private task, as well as the 

fact that the actual workspace dimensions are very limited and can only accommodate a certain 

number of participants (Garcia-Sanjuan, Jaen, & Nacher, 2016a). 

2.2 Multi-Display Multi-Touch Environments 

One way of dealing with the disadvantages of tabletops while maintaining their positive aspects, 

such as awareness (Gutwin & Greenberg, 2002; Hornecker, Marshall, Dalton, & Rogers, 2008), 

parallelism (Rick, Marshall, & Yuill, 2011), and fluidity of the interaction (Hornecker et al., 2008), 

is to use handheld tablets instead. Handheld tablets easily solve the public vs. private space issue 

by having a different tablet assigned to each person. Mobility is also increased with these devices 

due to their small size and light weight, and the workspace dimensions become virtually unlimited 

if the application is so designed. Furthermore, handhelds are now very common and can be found 

in any regular household due to their low cost, making it possible to follow a “Bring Your Own 

Device” (Ballagas, Rohs, Sheridan, & Borchers, 2004) strategy if necessary.  

 

Several works use tablets as multi-touch, multi-display platforms to either facilitate or enhance 

collaborative problem solving in an educational environment. Araujo et al. (2014), for example, 

use tablet PCs in a high school setting to encourage 15/16-year-old students to work 

collaboratively to solve mathematical problems. The results show a general improvement in the 

students’ grades after a semester of using the tablets in class. Similarly, Lohani et al. (2007) use 

tablets in individual and group problem solving activities in a freshman-year  (ages 18-19) 

engineering course. Results show that the students liked using the tablets for taking notes and 

setting up collaborative sessions. The work by Sutterer and Sexton (2008) is another similar setup 

in a civil engineering course where the students (also aged 18-19) used tablet PCs for collaborative 

note taking as well as collaborative problem solving. The study concludes that the students 

believed that both in-class and out-of-class learning were improved, however, the final test scores 

showed no significant changes in performance. Mayumi (2015) introduces two systems developed 

by Fujitsu and meant to be used with tablets by secondary students. The first, called “Shu-Chu-

Train,” improves the student’s ability to concentrate and retain information. The other, called 

“Manavication,” speeds up communication between the teacher and students while supporting the 

development of thinking power, judgment, and expressive power. The two solutions can be used 

to support the development of collaborative problem-solving abilities. Finally, Cheng-Yu Hung 

et al. (2014) and Hung et al. (2012) present a collaborative educational game consisting of a 

jigsaw puzzle that can be played on a Microsoft Surface. After performing a pre-game test and a 

post-game test on 20 elementary-school participants (Hung et al., 2012) and 240 participants aged 

9-10 (Cheng-Yu Hung et al., 2014), the study concludes that the game did indeed help in raising 

the mean score in the tests. Mann et al. (2016) introduce several iPads on a classroom with 10-to-
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12-year-olds, and observe their use in a collaborative task to research a news story for later 

presentation. The setting enables different collaborative behaviors, including discussion among 

peers and designating different dedicated uses for each device in the multi-display environment. 

However, collaboration is not enforced by the activity, resulting in many children working 

individually and then gathering the information at the end. UniPad (Kreitmayer, Rogers, Laney, 

& Peake, 2013) does enforce collaboration by constraining students to share tablets in small 

groups, and a study with adolescents aged 16-17 showed the system as a successful facilitator of 

verbal participation in the classroom. 

 

Most of the works presented in this section include older participants of high school or college 

age. Furthermore, they do not consider any gameful approach, instead opting for less engaging 

tool designs. Cheng-Yu Hung et al. (2014) and Hung et al. (2012) are the exception in that regard, 

but they fall into the same pattern as the rest by assuming that multi-touch tablets are the go-to 

solution and do not make any type of comparison with other platforms to test the effectiveness of 

these devices. As a counterexample, the work by Chipman et al. (2011) presents a game for 

children aged 5-6 to collaboratively learn about patterns, and compares a tablet version versus an 

analogic (paper-based) one, finding that the former increases awareness, provides more shared 

experiences, and keeps the students engaged longer. 

2.3 Tangible User Interfaces and Physical Spaces 

When dealing with younger children (such as primary school students or even kids in 

kindergarten) Tangible User Interfaces (TUIs) might be an even more interesting platform than 

purely digital ones like tabletops and tablets. Works like (Strawhacker & Bers, 2014) suggest that 

TUIs have an added value in early childhood education “as they resonate with traditional learning 

manipulatives.” Studies such as (Schneider, Jermann, Zufferey, & Dillenbourg, 2011) have 

showcased the advantages of TUIs, and others have made a direct comparison between the 

traditional desktop-based setup and tangible interfaces, showing that the latter enable more 

exploratory actions in children aged 7-10, which in turn provide faster and easier ways of 

interaction (Antle, Droumeva, & Ha, 2009), and that they can increase 4-to-6-year-old students’ 

interest, engagement, and understanding of the activity (Fails et al., 2005). Tangible user 

interfaces offer the possibility of creating imaginative and original CPS activities like the ones 

presented by Schneider et al. (2012). Combinatorix combines tangible objects with an interactive 

tabletop to help students explore, solve, and understand probability problems, which in turn 

allows them to develop an intuitive grasp of abstract concepts. The tool was only tested with five 

participants however and lacks a formal evaluation. 
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Several works that include a TUI platform focus on making a comparison with traditional methods 

and/or purely digital platforms, instead of presenting a tool on the TUI platform only. One 

example of such work is by Pan et al. (2015), who investigated the affordances and constraints of 

physical and virtual models integrated into a dynamics course. The students in this study were 

separated into three groups and received either traditional instruction, traditional plus physical 

manipulatives, or traditional plus virtual manipulatives. The results of the study suggest that 

adding physical and virtual manipulatives may be helpful. Schneider et al. (2011) also compare 

tangible and multitouch interfaces for collaborative learning and interaction, and conclude that 

tangibility helped perform the given problem solving task better and achieve a higher learning 

gain. 

 

Robots can be examples of TUI if they can be interacted via direct touch and manipulation, hence 

benefiting from the advantages of tangible manipulation described above. As reported by different 

studies and reviews (Ali Yousuf, 2009; Li, Chang, & Chen, 2009; Miller, Nourbakhsh, & 

Siegwart, 2008; Mubin, Stevens, Shahid, Mahmud, & Dong, 2013), the usage of robots in 

education has been steadily increasing. Possible causes of this include the fact that robots “capture 

the imagination” of children (Li et al., 2009) and that they provide both the ability to add social 

interaction to the learning context and a tangible and physical representation of learning outcomes 

(Mubin et al., 2013). According to Mubin et al. (2013), there is a trend of using robots in education 

under the theory of constructionism (Papert, 1980), which consists of acquiring knowledge 

through building a physical artifact (in this case, a robot) and reflecting on one’s problem solving 

experience based on the motivation to build it. A popular platform used in this context is Lego 

Mindstorms1, although the learning benefits of building robots with are not yet clear enough 

(McNally, Goldweber, Fagin, & Klassner, 2006), and they present some drawbacks that could 

prevent their implantation in actual schools. For example, Martin et al. (2000) introduced this 

platform in a primary school for a whole year and found that, even though they were able to build 

creative designs successfully, the teachers struggled with its learning curve. Other approaches rely 

on robots as companions to facilitate learning. Chang et al. (2010) introduced a robot in a 

language-learning course with 11-year-olds and explored five different roles the robot could play: 

storytelling, leading the students to read aloud, encouraging and cheering the children, 

commanding some tasks as well as responding to the students’ commands, and having a simple 

Q&A conversation. They observed high motivation levels on the children showing the approach 

as promising and engaging. Similarly, Saerbeck et al. (2010) observed a positive impact on 

learning performance with children aged 10-11 of different social supportive behaviors 

implemented on the iCat robot (Breemen, 2004). Another example is by Wei et al. (2011), who 

                                                      
1 https://www.lego.com/en-us/mindstorms 
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introduce a Lego Mindstorms robot as a companion for 8-year-old students to learn mathematics. 

The authors report such platform being able to increase motivation and to offer a more joyful 

learning experience, as well as supporting educators by providing them feedback on the students’ 

progress. 

 

With respect to physical spaces, physical body movements are proven to be essential for the 

enjoyment of life (Bowlby, 1969) and several works highlight the benefits of games which favor 

physical activity and make use of tangible objects (Cheok, ShangPing Lee, Kodagoda, Khoo Eng 

Tat, & Le Nam Thang, 2005; Xie et al., 2008). As Soute et al. (2010) showcase, creating games 

in which interaction transcends the boundaries of a display by making the children interact with 

the physical world can enable fun experiences and stimulate social interaction. In their work, the 

authors present what they call “Head Up Games,” which are intended to reminisce traditional 

games such as tag or hide-and-seek. The games they present, however, do not have an educative 

motivation underneath. In this respect, Stanton et al. (2001) design a TUI for collaborative 

storytelling. Multiple children aged 6-7 interact with the system by walking on a “magic carpet” 

with pressure sensors underneath and by showing some physical props to a camera. The authors 

suggest that collaborative work can be encouraged by using big-sized TUIs and physical props, 

because these slow down the pace of interaction and increase the effort required to make 

manipulations, which entails more communication and discussion among the students. Another 

example is by Georgiadi et al. (2016) with a mobile game to collaboratively learn about 

archaeological fieldwork. Each group of four students explores a physical space in search of 

special objects (Bluetooth beacons) that, when approached to a tablet, trigger specific mini-games 

and activities on it. Even though the children can explore the environment conjointly, each group 

is given only one tablet, which restricts multi-user interactions and limits collaboration. 

 

While these works do touch on CPS enhancement in some ways, they do not explore all the 

dimensions associated with the skill. For example, Pan et al. (2015) mention aiding 

communication, which we have identified as a CPS sub-skill, but completely overlook the 

planning process. Similarly, Schneider et al. (2012), Stanton et al. (2001) or Georgiadi et al. 

(2016) focus on the collaborative aspect in general but not on the individual processes that make 

up CPS. 

3 A Robot Board-Based Gamification Approach to Support CPS 

3.1 Designing a Gameful Framework to Support CPS 

For this work, we consider the PISA 2015 definition of Collaborative Problem Solving by the 

OECD (OECD, 2013), which is endorsed by more than 70 economies worldwide and by multiple 

researchers (Liu, Hao, von Davier, Kyllonen, & Zapata-Rivera, 2016; Nouri, Åkerfeldt, Fors, & 
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Selander, 2017; Webb & Gibson, 2015). The PISA 2015 report discusses more than 150 works 

related to CPS and, as a result, defines the CPS competency as “the capacity of an individual to 

effectively engage in a process whereby two or more agents attempt to solve a problem by sharing 

the understanding and effort required to come to a solution and pooling their knowledge, skills, 

and efforts to reach that solution.” From this definition, we can extract three core competencies, 

which are: 

 

 Establishing and maintaining shared understanding 

 Taking appropriate action to solve the problem 

 Establishing and maintaining team organization 

 

These competences require an adequate interrelation of four cognitive processes: exploring and 

understanding, representing and formulating, planning and executing, and monitoring and 

reflecting (OECD, 2010): 

 

 Exploring and understanding implies understanding the situation by deciphering the 

initial information provided about the problem and any further information that appears 

during the exploration of and interaction with the problem. 

 During the representing and formulating process, the information gathered previously is 

selected, organized, and integrated with previous knowledge. This is achieved by 

representing the information in the most convenient way, whether using graphs, tables, 

symbols, or words, and then formulating hypotheses by extracting the relevant factors 

and evaluating the information. 

 Planning and executing includes clarifying the goal of the problem, setting sub-goals, 

and developing a plan to reach the main goal. The plan created in the first half of this 

process is then executed in the second part. 

 Finally, monitoring and reflecting implies monitoring the steps in the plan to reach the 

main goal and reflecting on any possible solutions and assumptions. 

 

Problem-solving tasks can be categorized by one or several of the following properties: large, 

complex, spatially distributed, and in need of extensive communication and a large degree of 

functional specialization between the agents (Obeid & Moubaiddin, 2009). If a problem satisfies 

one or more of these properties, it is considered unsolvable by a single agent and therefore the 

collaboration of several agents is required. 
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We have developed a framework called CPSbot to support the previous CPS processes and 

competencies. More specifically, its design revolves around the following four sub-skills 

associated with CPS (OECD, 2013): 

 

 Negotiation: wherein the agents involved in the CPS task are expected to share their 

knowledge, express their ideas and come to a shared understanding leading to an 

agreement over the solution of the problem or the course of action to take in order to 

reach a solution. In some cases, an actor is expected to learn to become more flexible in 

the negotiations, while in other cases an actor may need to learn to be more assertive. 

 Planning: this includes the ability to divide a given problem into smaller tasks and 

formulating as efficient a plan as possible in order to reach the final solution. 

 Communication: this skill makes the enhancement of the other skills possible. 

Negotiation, planning, and organization can only be achieved through communication; 

therefore, it is essential to develop the right type of communication in order to ensure the 

correct transmission of information and the effective interaction between the actors. 

 Organization: wherein the agents are expected to take on the necessary roles in the team 

in order to structure and coordinate their efforts and therefore reach a solution in the least 

chaotic way possible. 

 

CPSbot has been developed for multi-touch tabletops, handheld tablets, and physical spaces. It is, 

in essence, a framework for creating board games with a robot as the main actor that the players 

can move. Board games, particularly cooperative ones, are known to promote communication and 

socialization between the players due to their co-located nature promoting face-to-face 

communication (Eisenack, 2013; Zagal, Rick, & Hsi, 2006). The framework allows the 

instantiation of different types of robot-based board games supporting any arbitrary problem 

domain. CPSbot allows the definition of new problem solving scenarios in an extensible way, i.e., 

game designers may include new types of behaviors for interactive elements on the board and 

education practitioners may define educational content tailored to their needs in the form of 

different types of quizzes to be solved. 

 

CPSbot aims to foster CPS by compelling the users to collaborate in order to solve the given 

problems. The platform enables the design of interactive exploration spaces where decision-

making processes about the coordination of the actions to be carried out by the robot to follow a 

given path; the interactive elements to be consulted; the division of work or roles assigned to each 

participant, and the communication strategies to use take place continuously during the game as 

mechanisms that drive the acquisition of CPS skills. Three main design aspects of CPSbot would 

make it suitable to support CPS with respect to the previous list ok skills: the distribution of game 
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elements on a publicly visible and accessible board, the distribution of the robot’s movement 

commands among the players, and the slow pace at which the game is played. With respect to the 

former, the fact that all items are spatially distributed on the board and made available to every 

player would enable exploring the possible solutions, planning the proper path for the robot to 

take, maintain a shared understanding of the game state and the resolution process, and, once a 

solution is executed (i.e., bringing the robot to a specific cell), monitoring the decision adopted. 

In turn, the distribution of the movement commands would enable the functional specialization 

of each participant, making team organization through communication necessary not only to 

move the robot, but also to be able to solve the game problems correctly. The choice of having a 

slowly paced action is also important, since it would allow the users to take their time to 

understand the problem statement presented, negotiate and plan a strategy, and finally, in case of 

failure, reflect and propose another one. Of course, the educational contents in the form of 

problems being defined by teachers would be crucial to fully and successfully develop CPS skills. 

Therefore, teachers are provided with a tool to specify this educational content (see Figure 2). 

3.2 Quizbot: A CPSbot Game 

Gamification, or gameful design, is defined by Deterding et al. (2011) as “the use of design 

elements characteristic for games in non-game contexts.” Therefore, when designing a specific 

game with CPSbot, we took the five game dynamics identified by Bartel et al. (2015) in 

accordance with Deterding et al.’s definition into consideration. These dynamics are constraints, 

emotions, narrative, progression, and relationships.  

 

Among the different game approaches that could be implemented with CPSbot, a quiz-style board 

game was selected because, as pointed out by Harris (2009), in this type of game students 

“participate and collaborate as members of a social and intellectual network of learners and . . . 

the learning takes place as a natural and authentic part of playing these board games”. This is also 

confirmed by Westergaard (2009) who points out that quiz-style games “can encourage 

participation and foster an informal, positive and energetic learning environment”. Finally, this is 

an effective learning strategy because it supports retrieval practice which is, as pointed out in 

(Blunt & Karpicke, 2014) “a powerful way to enhance long-term meaningful learning of 

educationally relevant content”. 

 

Following this design strategy, the CPSbot framework was used to implement Quizbot, a robot-

based board, quiz-style game (see Figure 1). In Quizbot, the players are presented with a board 

split up into an undetermined number of cells. At this point, the game is considered to be in its 

normal mode (versus the quiz mode described further below). The board cells may be empty, or 

they may contain one of the following items: 
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 Key: this is the most important item in the game. Keys are used to activate the game’s 

quiz mode, which presents the players with a question that must then be answered. 

 Block: This mostly harmless item simply serves as a blockade. The robot that the player 

controls cannot pass through these cells on the board. 

 Bomb: this could be considered the game’s main antagonist. Colliding with a bomb while 

the game is in quiz mode undoes any previously correct answers and the quiz is restarted 

from the beginning. 

 

The bombs in this case work both as the main constraint in the game when considering the 

previously mentioned game dynamics, as well as for interaction precision measurement. They are 

also meant to be the main cause of emotional outbursts in players (whether negative due to 

collision or positive due to evasion). 

 

The board itself also contains a robot, which acts as the player’s agent. Four movement commands 

are associated with the robot and players may have any number of these commands available to 

them. The commands are go forward, turn left, turn right, and stop. The reason behind this setup 

is so that in a multiplayer case, different players would control different commands and must 

coordinate with each other in order to move the robot efficiently, thus fulfilling the relationships 

metric in the gameful design. In the normal mode, the goal is to move the robot to a key-containing 

cell while avoiding blocks and bombs in order to activate the next quiz. Once that is done, the 

game enters into quiz mode. 

 

In quiz mode, the blocks and bombs remain in place but all the key-containing cells minus the 

one that the robot reached in order to activate the quiz are turned into answer cells (see Figure 1-

right). The reached cell is turned into a question cell instead. A question cell, as the name suggests, 

contains a question that the player(s) must answer. A question, or quiz, is answered by guiding 

the robot to the correct answer cells. The game contains three types of questions that must be 

answered in different ways: 

 

 Choice questions: this type of question is a multiple-choice type of question where the 

players are presented with several answers and must choose the correct one(s) out of 

those, visiting the cells containing these answers in any order of the players’ choice. 

 Ordering questions: in this type of question, all the answers are correct but the cells 

containing them must be visited in a specific order dictated by the question itself. 
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 Accumulation questions: these questions provide the players with a greater freedom of 

choice where answering is concerned. The players simply have to choose any number of 

answers wherein their sum equals the value given in the question. 

 

Once a question is answered correctly, the quiz is considered ended and in the case of there being 

more questions available the game goes back to its normal mode with the previous keys (or answer 

cells), bombs and blocks being removed from the board and replaced with new ones scattered 

over different cells. If there are no further questions available, the game is considered to have 

finished. The number of questions in the game and the distribution of the items per question on 

the game board can be modified using the external application shown in Figure 2, which creates 

and stores configuration files that Quizbot accesses on startup, making it possible to follow any 

desired game narrative. Progression can also be achieved through this by increasing the difficulty 

of the question or increasing the number of bombs (or constraints). The number at the top left 

corner of the board would serve as an indicator for this progress. 

3.2.1 Quizbot for Tabletops and Handheld Tablets 

Quizbot is based on a client-server architecture, where the tabletop or the handhelds would act as 

clients, making it possible to have the same game view on more than one device at a time. This 

way, each user could have their own private space while still seeing the game board with the 

results of the actions taken by everyone playing. While this is not particularly interesting for the 

tabletop platform, shown in Figure 3, it is so for the handheld tablets, shown in Figure 4 (where, 

in this particular case, each tablet has one of the four possible movement commands). 

3.2.2 Quizbot for Physical Spaces 

We also created a version of Quizbot using a mixture of physical and digital spaces for a Tangible 

User Interface experience. For this platform, several objects and devices were used (Figure 5). 

The non-technological objects included interlocking foam mats for a 7m x 4m board, where each 

piece of the mattress represented a cell on the board. Foam tubes were used to represent “block 

items”, and inflatable rubber balls were used to represent the “bombs” on the board. As for the 

technological aspect of the game, several Android handheld tablets were used as “key cells” to be 

placed on the foam mattress in their corresponding cell. Furthermore, a Lego Mindstorms robot 

(Figure 6) was used as the actual robot actor to be controlled on the board. Finally, in order to 

allow for communication between the board and the robot, RFID tags were placed around the 

“key” and the “bomb” cells on the back side of the mattress, and an Android phone connected to 

an RFID reader was mounted on the robot. This communication is made through the game server, 

where once a tag is read, the smartphone sends a message to the server about whether it was a key 

or a bomb cell (in case of the former, the ID of the cell is included), and the server then behaves 

according to the message received. 
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4 Evaluation 

The overall goal of our study was to analyze the experience of primary school children with a 

game-oriented approach based on physical spaces for the enhancement of CPS skills and compare 

the proposed gamification approach with other more traditional technologies based on tabletops 

and multi-touch tablets. 

4.1 Participants 

Eighty primary school students between the ages of 9 and 10 took part in the study, of which 36 

were girls and 44 were boys. The study was carried out at the Universitat Politècnica de València’s 

Summer School, with the additional benefit of the children being from different schools with 

different curriculums. 

4.2 Apparatus 

Two implementations of the game were made. A version for the tabletop and handheld tablets was 

implemented using the LibGDX framework and Node.js. The tabletop device used ran Windows 

OS and included a 42-inch multi-touch screen. The tablets for the handheld version were BQ 

tablets running Android OS. Finally, the tangible version of the game was developed in native 

Android. RFID tags and an RFID reader were used to identify “bomb” and “key” item cells. An 

Android smartphone connected to the RFID reader was mounted on a Lego Mindstorms robot, 

allowing it to also read movement commands from RFID tagged paddles. BQ tablets running 

Android OS were used to simulate “key” item cells showing the quiz questions and answers. 

4.3 Procedure 

The children were separated randomly into ten groups of eight and were made to test the three 

platforms in different rotations. For example, one group would start with the tabletop then move 

onto the handheld tablets and then onto the TUI, while another group would start with the TUI 

platform then move onto the tabletop and then onto the handheld tablets. This helped reduce order 

effects on factors such as enjoyment or learning. A fully counterbalanced design could not be 

conducted due to logistic reasons since the time the children could be participating in the activities 

was limited. The questions to resolve on the platforms were randomized in order to ensure that 

any possible variability in problem difficulty would not have an effect on the children’s 

impression of the platform. The questions themselves were taken from third and fourth grade 

school textbooks. 

 

For each group on each platform, four children were playing at any given moment while the other 

four would observe from the sidelines. They would then switch after three minutes of gameplay 

and then back again after another three and so on, for a total of 18 minutes of gameplay. This does 
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not include the time it took for them to complete a trial question at the beginning of each 

platform’s session. Each participant was given control over one of the robot’s commands (turn 

left, turn right, move forward, stop) and they were left to their own devices as far as everything 

else was concerned. Throughout all the activities, several observations were made of the 

children’s behavior by two different observers as no video recording was allowed. These 

observations consisted on events the observers found relevant with respect to the children’s 

collaboration, problem resolution, or impressions, including both their actions and comments. 

Furthermore, at the end of each group session, after a group had tried out Quizbot on all three 

platforms, a questionnaire was administered to each child in order to get their feedback on the 

experience. The questionnaire itself is a Fun Toolkit (Read, 2008; Read & MacFarlane, 2006) 

questionnaire adapted to this study. Table 1 shows the questions that were asked in the 

questionnaire. Questions 1 to 6 use a Smileyometer in order to measure how much fun the children 

had on each platform and how easy they found controlling the robot was on each platform. 

Questions 7 to 10 use a Fun Sorter in order to measure on which platform the children thought 

they performed better and worse, and on which platform the children had the most and the least 

fun. Questions 11 and 12 use an Again-Again table where the children can report the likelihood 

with which they might play the game on each platform inside and outside a classroom. This is a 

way of indirectly measuring the intrinsic motivation caused by the platform although participants 

did not provide details about in which external contexts they would prefer to play. Finally, 

questions 13-15 deal with additional considerations in order to have a better grasp of the type of 

quiz questions the children prefer, and whether they prefer playing in collaboration with friends 

or whether they prefer playing alone. The last question is simply for future reference, in order to 

make Quizbot more appealing and therefore possibly more effective. 

4.4 Results 

This section describes the three types of result obtained from the tests: performance results 

obtained from the game logs, user impressions from the questionnaires that all the participants 

filled out, and a summary of the observations we made during the session. 

4.4.1 Performance 

The three platforms included a logging system, each of which logged events such as the 

movement command given, a bomb contact, an answer has been reached, a quiz has started, and 

a quiz has ended. Table 2 shows a summary of the averages per platform obtained from these logs 

as well as the significance level obtained from running a Friedman test on them. With α=0.05, the 

only significant differences found were for the time between answers and the number of wrong 

answers. A Wilcoxon test was then used to check for significant differences between pairs of 

platforms for the two significantly different variables. The results of a Bonferroni adjustment 
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(α=0.05/3=0.017), which takes into consideration that three independent variables are being 

compared, indicate that the significant differences are in the comparisons between the tangible 

platform and the other two platforms for both the average number of wrong answers and the 

average time between answers (Table 3).  

4.4.2 Impressions 

The results obtained from the Fun Toolkit questionnaire are reported in this section. The questions 

were split into groups where the same factor was being measured for the different platforms in 

order to see how the children perceived the platforms. 

 

A Wilcoxon test was used on the Smileyometer results in which the questions were paired by 

platform (tabletop, tablets, tangible) for each measurement factor (fun, ease of use). The results 

of these tests are summarized in Table 4, where it can be seen that the only statistically significant 

difference (p < 0.017, due to the Bonferroni adjustment) obtained was between the tablets and 

TUI ease of use factor. 

 

The results from the Fun Sorters where the children’s platform preferences for the fun and the 

ease of use factors were asked explicitly (questions 7 to 10) are shown in Table 5. The average 

score is shown for each platform. This score was established by assigning 3 points to the platform 

that was chosen as the best, 2 points for the platform that was chosen as second best, and 1 point 

to the platform that was chosen as worst. This means that the closer the score is to 3, the better it 

is. Table 6 shows the results of the Wilcoxon test applied to the results of the Fun Sorters. 

 

Figure 7 shows the results of the Again-Again tables in which the children state their intention of 

playing again on each platform in class and outside (questions 11 and 12). The general response 

in both cases can be seen as a positive one. Table 7 displays the results of the Wilcoxon test applied 

to the Again-Again tables and shows that, while all three platforms got a generally positive reply, 

the tangible platform got a significantly more positive reaction in comparison. Figure 8 shows 

which school subjects the children prefer for the quiz questions on each platform (question 13). 

Figure 9 shows the ratio of children who prefer playing alone vs. with friends on each platform 

(question 14). The majority of them stated that they would rather play with friends on all three 

platforms. Finally, Figure 10 shows some of the changes that the children suggested for Quizbot 

(question 15). Most of these changes appear to be related to the game visuals. 

4.4.3 Observations 

Throughout the game sessions, two observers took notes about the children’s general behavior 

with respect to CPS and the game. Afterwards, both of them discussed their notes and extracted 
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some patterns from those behaviors they had both observed. These observations are not quantified 

as the impossibility of recording the sessions prevents us from reporting precise measures. 

 

The most frequently observed action on all three platforms was planning. Whether it was at the 

beginning of each quiz or after a correct (and sometimes incorrect) answer, all 10 groups would 

stop and discuss which path to take to get to the next question. Some of the discussion revolved 

around whether the robot would be able to pass between two items on the board or not. 

Sometimes, they would plan ahead for several answers. However, there were also some cases in 

which no plans were made and some children in the group would take charge and try different 

answers randomly. It was not only the children who were playing at that moment who planned; 

the four children watching from the sidelines were also observed planning in hushed voices for 

when it was their turn to play. 

 

Another frequently observed action was exploration. Whenever a new quiz would start, before 

selecting an answer the children would visit all the possibilities before starting the planning 

process. This was observed most frequently on the TUI platform, especially among the children 

watching from the sidelines. During the exploration and planning processes, a lot of knowledge 

sharing also took place, especially if a child was sure of an answer or if someone asked a question. 

 

A lot of negotiation in different forms took place on all three platforms. For example, sometimes 

the children would discuss whether a set of answers was correct or not and would then agree to 

visit one answer and then another. Negotiations related to path planning also took place, where 

they would evaluate whether it was worth risking a shorter path containing bombs or if it was 

better to play it safe and take a longer path. Some subgroups would also negotiate which 

movement command each person would have whenever it was their turn to play. This last type of 

negotiation was observed most frequently on the TUI platform and sometimes on the tablet 

platform, but rarely on the tabletop. 

 

In most groups, one of the children would eventually take on a leadership role, ordering 

movements constantly. Most of the children would shout for the robot to be stopped, especially 

when it was about to collide with a bomb, making some children either avoid having that 

movement command or purposely ask for it, but the group leaders would shout out all the 

movements, telling the others when to go forward or when to turn. 

 

In some groups, children would be fed up with waiting for someone to perform a movement 

command and would either invade the other’s workspace (in the tabletop and tablets case) or 

grasp the other child’s hand to force them to perform the wanted command.  
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In some groups, the children waiting on the sidelines would collaborate with those currently 

playing by telling them the answer or warning them about a bomb. This occurred most frequently 

on the handhelds platform, but also sometimes on the other two platforms. However, the children 

on the sidelines were more frequently found trying to annoy those playing by counting down the 

time for their turn to end, taunting them, asking them to collide with a bomb or to choose a wrong 

answer, giving them wrong answers, or actually sabotaging by invading their interface. 

 

There were also cases where one of the players would sabotage the rest by constantly turning the 

robot or stopping it as soon as it started moving. In these cases, the other children would either 

tell them off or, in a few cases, physically stop them by grabbing their hand. 

 

Overall, there were several groups with good coordination and groups with bad coordination. 

Sometimes a person would know and say the correct answer but the others would ignore them, 

causing them to sulk and ignore the game. In some cases, after answering wrongly, part of the 

group would sulk and momentarily stop playing. There were also cases where someone would try 

to cheer up the rest of the group and encourage them to try another answer. 

 

As far as individual platform observations go, a couple of children complained about the warm 

air given off by the tabletop, as well as about having to read the question and the answers upside 

down (for those standing in the north position). In the latter case, the person standing in the south 

position would help by reading the text aloud. 

 

While playing on the tablets platform, the children would sometimes stand up when they got 

excited (such as when they answer something correctly or, in the case of the children on the 

sidelines, a wrong answer is chosen). The children on the sidelines would also stand up sometimes 

to have a better view of all the tablets, even though they can view one or two tablets easily from 

their position. A lack of coordination was also observed when it came to the two children with the 

turning movements; they would often turn the robot left and right at the same time, causing it to 

stay in the same position. They would also often call out an answer to go to, by saying “This one!” 

while pointing at their own tablet, causing the others to ask “Which one?” in return.  

 

Finally, when faced with the TUI platform, several children would make satisfied exclamations 

such as “That’s so cool!” or “This is great!” and so on. In a few cases, the children would make 

the robot purposely collide with the blocks. There were also cases where the robot came apart 

because of the children’s rough handling (whether because of colliding or because they moved 

the robot manually). On some occasions, the children who were supposed to be on the sidelines 
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would stay on the board to observe the actions of those who were playing, while on others they 

would move around the board to play with the foam blocks or the rubber balls. 

4.5 Discussion 

4.5.1 Performance 

The performance results show an overall lack of significant differences between the three 

platforms, which is interesting in certain cases, such as in the number of quizzes completed. We 

expected fewer questions to be completed on the platform using physical spaces due to the bigger 

size of the board making it more time consuming to check the different answers, but the groups 

divided that task efficiently enough between the members to make this not be the case. Instead, 

the bigger board size could be the reason behind the two significant differences that were obtained 

from the logs. We observed the children colliding with an unwanted (and usually incorrect) 

answer by accident several times on both digital platforms (usually when trying to make a right 

or left turn), making the average time between answers in general less than on the tangible 

platform despite the average time between correct answers being mostly similar. This could be 

due to the perceived distances on the board; the bigger physical board amplifies the otherwise 

small distance that is seen on a screen. The children would shrug off the accidental collisions with 

wrong answers the same way they would shrug off a collision with a “block” item, which is 

probably why these collisions had no effect on the total time it would take them to complete a 

quiz. 

 

In sum, these results seem to indicate that the platform using physical spaces is the best platform 

to use with children in terms reducing undesired mistakes. The two variables with significant 

differences (number of wrong answers and time between answers) are both affected by movement 

precision, and unlike screen-based technologies, in which size is either limited or hard to extend, 

physical spaces such as the one described in this work make it very easy to expand the game world 

since the RFID tags, mats, and other props used are very cheap and easy to install. Nevertheless, 

they do occupy space that in some contexts might be unavailable. On the other hand, as far as the 

rest of the measured variables are concerned, the three platforms provided no significant 

differences, meaning that no single platform provides any particular disadvantage, while physical 

spaces do provide a major advantage. 

4.5.2 Impressions 

The main purpose of the Fun Toolkit questionnaires was to compare the three platforms in order 

to see whether one would stand out from the rest. Overall, it seemed like the children’s preference 

was the TUI platform using physical spaces. 
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The Smileyometer results (questions 1 to 6) showed that the tangible interface was easier to use 

than the tabletop/tablets, and this agrees with the Fun Sorter results shown in Table 5 and Table 

6. This could be due to a combination of smaller public workspace in the latter, which makes 

knowledge sharing harder, and the generally higher difficulty observed with the entirely digital 

version of the game. Table 5 and Table 6 show that the tangible platform was both the most fun 

and the easiest to use, while the tablets were both the least fun and the least easy to use, which 

suggests a correlation between the two variables. The reason behind these results could be that 

the TUI was more intuitive for the children, as some previous studies revealed (Schneider et al., 

2011; Strawhacker & Bers, 2014). The tangible game being a generally rarer type of activity might 

also affect the fun factor in this case. 

 

The results of the Again-Again table (Figure 7) show a mostly positive reaction to all three 

platforms, which could possibly be related to the children’s age and their eagerness to play most 

of the time. This could be considered a positive result since the intention is to make CPS skill 

enhancement fun so that the activity would be repeated willingly, thus helping to further enhance 

the children’s Collaborative Problem Solving skills.  This is reinforced by the fact that they report 

willing to play outside the classroom, i.e., during their free time and with no enforcement of the 

teachers. 

 

Figure 8, which displays what subjects the children would like to study using the three platforms, 

does not show much variety between the subjects the children chose based on platform, but there 

is somewhat more of a variety of subjects on the TUI platform. This could be due to the wider 

options this platform provides. For example, Physical Education-related activities would be 

harder on the digital-only platform. 

 

When asked whether they would rather play Quizbot alone or with friends, an overwhelming 

number responded that they would prefer to play with friends. This is a positive result considering 

the purpose of Quizbot is to enhance Collaborative Problem Solving, which requires the 

participation of more than one agent. The handheld tablets might have the highest number of 

replies indicating they would rather play alone due to children perceiving tablets as generally 

private devices. 

 

On the last question in the questionnaire, where the children were asked about any changes they 

would make to Quizbot, it can be noted that most of the changes suggested by the children are 

aesthetic, suggesting that visually pleasant items are more appealing, which is important to take 

into consideration when creating something with the intention of being used repeatedly. Some 

children also wanted higher participation from the other children in their group, possibly 
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indicating a difference in motivation levels. This would probably be avoided in cases where 

friends were playing together during a time they chose themselves. Finally, an interesting change 

that was suggested is one related to receiving rewards, which is a common extrinsic motivator in 

games. While an interesting addition to consider, studies suggest that it is more rewarding for the 

learning process to rely on intrinsic motivation instead (Deci, Vallerand, Pelletier, & Ryan, 1991; 

Werbach & Hunter, 2012). 

4.5.3 Observations 

As for the observations that were made during the study, a lot of them involved seeing 

communication, negotiation, and planning taking place, which is in accordance with the processes 

needed for CPS to be fostered (OECD, 2013). Organization varied between the different teams, 

mostly depending on whether there were one or two children sabotaging the activity or not, which 

could be attributed to children simply acting their age. Sometimes, better organization simply 

took longer, waiting instead for a group leader to appear. Other roles identified by Fan (2010) as 

usually formed during a CPS activity were also present to different degrees in each group. These 

roles are Brainstormer, Critic, Supporter, and Team Wrangler.  

 

The three main CPS competencies discussed in Section 3.1 were clearly observed taking place 

during the study. The children would share their knowledge when required, take action to solve 

the given questions and maintain some level of organization. The fact that improvement in some 

of these aspects could be observed already shows that Quizbot fulfills its intended purpose of 

encouraging the practice of the CPS sub-skills and CPS skills in general. 

 

On a platform-specific level, the reason more exploring took place on the TUI platform could be 

the fact that the children had to move around to explore, and that is precisely what the children 

wanted. It would also explain the constant standing up on the other platforms. More negotiation 

was observed on the TUI platform as well, at least when it came to negotiating what movement 

command (which could be considered a tool) each child would have. Since this was observed on 

the handhelds as well, albeit to a lesser extent, it could be related to the fact that it is easier to 

move the movement commands around on these two platforms. The only drawback that we found 

on the TUI platform was that it was somewhat distracting for the children, diverting them from 

the game’s main objective while they sometimes walked around the board aimlessly. 

 

The tabletop platform’s main flaw was having to read text upside in some positions, which could 

be attributed to its limited workspace dimensions. As a possible solution, 360º controls could be 

used to enable all users to have the same view, regardless of their position (Catala, Garcia-

Sanjuan, Jaen, & Mocholi, 2012). 
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Finally, the handheld tablets provided a mixed bag of results. On the one hand, the private space 

seemed to have made coordination more difficult for the children because they would point at 

their own tablet and say “here” or “there” when referring to a point on the board to go to. However, 

this can be seen as an opportunity to improve the children’s communication skills by encouraging 

them to be more specific and descriptive with their language. 

4.5.4 Design Considerations for Future Game-Based CPS Systems 

As a result of this work, we present a series of recommendations for future game-based CPS 

designers. These lessons are based mostly on our observational results, but also take into 

consideration the results on performance and user impressions. 

 

4.5.4.1 Engender equitable face-to-face discussions 

While one of the main CPS sub-skills is communication, it is important to design the system so 

that it would support discussion through face-to-face communication. Several works reported in 

(Drago, 2015) suggest that the decrease in the amount of time children spend interacting face to 

face may eventually have “significant consequences for their development of social skills and 

their presentation of self” (Brignall & Van Valey, 2005). Physical spaces such as the one presented 

in this work enable this type of communication within the game space facilitating the direct 

reference to physical game elements that everyone in the space can see and refer to. The use of 

multi-surface environments to implement a purely digital game environment may be problematic 

because users have local copies of the game elements and it may not be clear to which game 

element a participant is referring to during a collective discussion. This problem could be 

overcome by using digital shared pointers that everyone could see. On the other hand, a positive 

aspect of using purely digital distributed interactive surfaces over physical spaces is that the 

former enable teachers to implement scenarios for children to understand the differences between 

face-to-face and online communication. Having multiple surfaces located on the same physical 

space enable face-to-face communication whereas separating them in distributed physical spaces 

would force children to use online communication. These two modes of communication can be 

practiced and discussed with children so that they understand the positive effects of the face-to-

face modality (Przybylski & Weinstein, 2013). Finally, another interesting aspect to consider 

when engendering equitable discussions is to foster the public oral expression of all the 

participants. In this respect, the strategies could range from trivial turn-based ones implemented 

in a multi-surface system by using visual clues on the devices to communicate which person is 

allowed to speak during a group discussion to more advanced orchestration strategies such as 

those described in (O’Connor & Michaels, 1996). This would give shy children or children with 

communication problems the opportunity to express their opinions.  
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4.5.4.2 Encourage group-based negotiation at multiple levels 

CPS involves negotiating different aspects of the problem from different perspectives. In this 

respect, it is critical the design of discussion spaces where different approaches can be negotiated. 

The use of a physical space may also naturally support the creation of subgroups around different 

physical artifacts to engage in different aspects of negotiation. This could also be promoted with 

purely digital multi-surface environments by suggesting group members to create subgroups of 

negotiations over a subset of the multi-surface space. This situation, in which different children 

focus on different elements of the problem, facilitates the process of learning to construct a shared 

interest. This is a key element of negotiation strategies (Fisher, Ury, & Patton, 2011) where each 

child needs to understand the other child’s side to find a solution. Another aspect related to 

negotiation learning supported by the platforms evaluated in this work is the task of brainstorming 

options. It takes children time and practice to get used to finding options, but learning to invent 

and create options for mutual gain is an important aspect of CPS that has to be properly addressed. 

Although our proposal supports the brainstorming of paths to be followed by the shared robot and 

the consideration of the alternative interactive elements to be visited when solving a quiz, it does 

not support the storage and visualization of the choices expressed by each child. In our opinion, 

having an explicit mechanism for expressing alternatives on the board would facilitate the 

reconsideration of previous discussions when a chosen alternative fails to succeed. 

 

4.5.4.3 Promote the acquisition and expression of different social and personality roles 

Designers of gameful CPS systems should consider choices in which typical CPS roles 

(Brainstormer, Critic, Supporter, and Team Wrangler) can emerge naturally. The different roles 

help with developing innate organization. Multi-tablet environments may be a good approach for 

this purpose because personalized indications in each participant’s device may be provided. These 

indications may include the role to play and the distinctive features that define the role. This can 

promote the training of different socio-cognitive skills at different moments during the game. This 

aspect is important in the design of future gameful CPS systems so that children develop the 

regulation and expression of emotions, empathy, the identity of self in relation to others, and social 

understanding (Dunn, 1988).  Another opportunity that emerges with gameful CPS environments, 

if properly designed, is their potential to implement group-play therapies and interview therapies 

for children with very distinct personality traits. As pointed out in (Ginott, 1961), “most children 

between the ages of nine and thirteen have genuine difficulty in communicating emotional 

conflicts either verbally or through miniature toys,” and this is particularly the case with two 

opposite children personality categories: the over-inhibited and the acting-out. The former prefer 

quiet activities and usually the goal of the group activity is to lead them to more energetic forms 
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of expression whereas the latter engage in uproarious and destructive activities and the goal of 

the group activity is to lead them to more focused forms of collaboration. In this respect, CPS 

systems based both on physical spaces and on purely digital multi-surfaces can present an 

opportunity to accommodate both types of goals. Physical CPS spaces could include, as pointed 

out in (Ginott, 1961), tangible elements that allow for safe and respectable expression of 

aggression (e.g., group-operated boxing or penny-arcade machines, physical elements in the game 

to be destroyed, etc.) Purely digital CPS environments could have similar digital interactive 

elements where energetic children could find ways for acting more vigorously and then be ready 

to engage in more focused group activities. These interactive elements could also be an 

opportunity “for children who cannot sustain close contact to become part of the group without 

having to go beyond their depth in personal relationships” (Ginott, 1961). 

 

4.5.4.4 Design to support private vs. public spaces 

Separately, private and public spaces have their own advantages and disadvantages, but having a 

public-only space is not usually representative of a real workspace, while a private-only space 

makes discussion and knowledge sharing harder. This separation can be naturally supported by 

multi-surface environments of handheld devices that may be used either privately or as a 

collective, shared, larger surface where collaboration arises. This aspect is important if divergent 

thinking needs to be supported as part of a CPS experience based on creativity (Sternberg & 

O’Hara, 1999). A pitfall in the design of our physical space for CPS is the fact that all surfaces 

were used as public displays of interactive content during gameplay but were not available for 

children as personal spaces to record notes, strategy plans, etc. It remains to be studied whether 

the inclusion of personal devices in CPS environments based on physical spaces has a positive 

effect on the cognitive processes discussed above related to negotiation, communication, and 

planning. 

5 Conclusions 

This work focuses on the many soft skills that are required of today’s students, and the 

consolidation of said skills into what is referred to as Collaborative Problem Solving. These skills 

can be nurtured and enhanced in many ways, but one way that has been proven effective for 

learning in general is through video games. However, the program’s effectiveness mainly depends 

on the platform used. 

 

Reviewing other works that are related to the subject at hand revealed that, while it is generally 

agreed upon that collaborative problem solving skills need to be developed in all students, very 

few try to add a gamification approach to the enhancement process. Comparisons between 
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platforms to test the differences that they could provide besides the tool itself are also rare. A CPS 

skills enhancement framework called CPSbot and a quiz-style game based on this platform, 

Quizbot, was therefore developed on three platforms in order to compare user experience and 

acceptance of an approach using physical spaces with screen-based sedentary platforms. 

 

Quizbot is a mixture of a board game and a quiz-solving game, where the users control a robot, 

moving it on a board with cells containing different game items. Some game items trigger quizzes 

that the players must answer, also by guiding the robot to the correct answer(s). The game presents 

a CPS scenario by urging the players to coordinate their actions to make the robot move, plan the 

robot’s route, and share their knowledge to answer the quiz questions. 

 

The first of the three platforms Quizbot was developed for is a multi-tactile tabletop, which 

provides a public space where players can share their knowledge with more ease. The second is a 

multi-tactile handheld platform where the board can be viewed on several tablets, making it 

possible to give each player their own private space. The third and last platform is based on a 

Tangible User Interface using physical spaces where the robot, the game board, and even the robot 

movement commands became physical objects.  

 

A study was performed with eighty summer school students in which they were split into groups 

of eight to try out the three platforms in turn. The children were observed without interference 

while they played, and at the end of each group session, a questionnaire was handed out. A 

summary of the logs taken by the logging system that was previously implemented shows that the 

only significant gameplay differences between the platforms were in the number of wrong 

answers and the time between answers, which can probably be attributed to the perceived 

distances due to the board size. The questionnaire itself showed that the TUI platform was both 

the most fun and the easiest to use, besides the fact that it instilled a general eagerness to play 

again both in class and out-of-class environments. The observational results of the study provided 

feedback on concrete differences between the three platforms, as well as verifying that Quizbot 

serves its intended purpose and encourages the use of the skills associated with CPS. Finally, this 

study provides the first evidence that indicates that, despite the current widespread individual 

tablet-based learning strategies, educational technology for CPS skill acquisition should 

concentrate on collaborative games based on physical spaces in which technology based on robots 

is perceived by children as natural and motivating game elements. 
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Figure Captions 

Figure 1: Quizbot in normal mode (left) and quiz mode (right) 

Figure 2: Quizbot configuration application 

Figure 3: Instance of Quizbot running on a Windows tabletop 

Figure 4: Four connected instances of Quizbot running on Android tablets 

Figure 5: Quizbot in a physical space 

Figure 6: Tangible Lego Mindstorms robot setup 

Figure 7: Again-Again table results, stating desire to play again in class and outside 

Figure 8: Results for which school subjects are preferred for questions on the three platforms 

Figure 9: Company preference for the three platforms 

Figure 10: Changes suggested for Quizbot 
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Table Captions 

Table 1: Post-game session questionnaire 

Table 2: Log summary (* indicates significance, p < 0.05) 

Table 3: Wilcoxon test results for platform pairs (* indicates significance, p < 0.017) 

Table 4: Smileyometer result comparison; questions 1 to 6 (* indicates significance, p < 0.017) 

Table 5: Fun Sorter results (mean score for each platform is shown between parentheses) 

Table 6: Fun Sorter results comparison; questions 7-10 (* indicates significance, p < 0.017) 

Table 7: Again-Again tables results comparison; questions 11 and 12 (* indicates significance, p 

< 0.017) 


