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Abstract

Soundprism is a real-time algorithm to separate polyphonic music audio into source
signals, given the musical score of the audio in advance. This paper presents a frame-
work for a Soundprism implementation. A study of the sound quality of the online
score-informed source separation is shown, although a real-time implementation is
not carried out. The system is compound of two stages: 1) a score follower that
matches a MIDI score position to each time frame of the musical performance; 2)
a source separator based on a Non-negative Matrix Factorization (NMF) approach
guided by the score. Real audio mixtures composed of an instrumental quartets were
employed to obtain preliminary results of the proposed system.
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1 INTRODUCTION

Currently, Internet stores a huge amount of musical content which are freely accessible in platforms such as Youtube, iTunes,
Spotify, International Music Score Library Project†, etc. Different signal processing techniques could be employed to change the
ways people enjoy this content [1]. In this sense, audio source separation seeks to identify and segregate individual signal com-
ponents in a polyphonic mixture. Often, this technique relies on assumptions, such as the statistical independence of the source
signals or the availability of multiple channels (recorded using several microphones). In the context of audio signal processing,
sound sources often outnumber the information channels and are typically highly correlated in time and frequency. Consequently,
typical statistical methods such as independent component analysis (ICA) [2][3] or nonnegative matrix factorization (NMF) [4]
often fail to completely recover individual sound objects from music mixtures [5].
Over the last years, this field has been widely addressed with novel ideas and application scenarios [6] such as instrument-wise

equalization [7], personal music remixing [8], music information retrieval [9] and intelligent audio editing [10]. In the context
of classical music, source separation could be applied for different interesting scenarios. One of them is the improvement of the
sound quality of the existing monophonic or stereo recordings [11], employing two approaches called offline or online. In offline
case, the audio performance must be available as a whole from start to end. However, in the online approach, the input audio is
processed piece-by-piece in a serial fashion without having the entire audio available from the start, which makes it suitable for
streaming scenarios.
Furthermore, music source separation plays an essential role for education applications such as Minus One, which consists

in removing one voice (i.e. instrument) from the mixture. Similarly to a karaoke, a musician can interpret a music piece with
an accompaniment composed by all the source but the played one. Regarding the entertainment industry, some platforms of
classical music live broadcast, such as “Palco Digital”‡, could benefit from source separation in order to enrich their contents
with further features.

†http://imslp.org
‡https://www.palcodigital.com

http://imslp.org
https://www.palcodigital.com


2 ET AL

In the mentioned applications, the quality of the user experience is intimately related to the quality of the separation. Clas-
sical source separation methods exploit known spectro-temporal properties of the sources [5][12] and/or the annotations of the
recording material as additional prior knowledge [13][14][15][16]. For instance, the musical score (in the form of MIDI) is the
most common tool used to guide source separation process. In this way, a large amount of MIDI scores are available on the web
at sources such as Classical Midi Connection§. Source separation guided by a musical score is called score-informed source
separation [8][9][11]. In this scenario, a prior alignment between the score and audio is required.
In this paper, we propose an online score-informed method to separate polyphonic music recordings. We consider an online

method when the factorization of the input signal is computed without any future information, so the system generates the
output just after receiving the input. Thus, it is not necessary that the entire input is available from the start. Furthermore, our
proposal allows it implementation as a low latency system, understanding latency as the time delay between the signal is received
and the separation processed. This latency will depend on the computer and the optimization of programming. In fact, with a
suitable implementation and architecture, the proposed system can be computed in real-time and the music source separation is
referred as Soundprism. Note that in this work we focus on the description of the separation framework whereas the real-time
implementation of the proposed system is not covered here.
In this context, we decompose our proposal into two stages (see Fig. 1): 1) the score alignment and 2) the factorization stage.

Music Score (MIDI)

SourceScore

Follower Separator

Polyphonic

Signal

Source 1
Source 2

Source n

FIGURE 1 System overview.

In the first stage, each real audio frame is associated with a score position. For this purpose, we use an alignment kernel based
on our robust system proposed in [17][18]. On the other hand, the aligned score position are used to guide source separation in
the second stage. The segregation of the different sources is relied on a NMF framework using parametric instrument models.

2 NON-NEGATIVE MATRIX FACTORIZATION FOR SOURCE SEPARATION

Non-Negative Matrix Factorization (NMF) [19] is one of the most successful technique used for audio source separation. The
principle is to model the magnitude or power spectrogram of a music recording X ∈ ℝFxT

+ as a linear combination of K
elementary nonnegative spectra called basis function. Therefore, NMF can factorize the spectrogram matrix as follow:

X ≈ X̂ = WH (1)
where W ∈ ℝMxK

+ is the basis matrix, H ∈ ℝKxN
+ is a matrix of component gains, F ∈ ℕ and T ∈ ℕ denote the number of

frequency bins and number of time frames and X̂ is the estimated spectrogram.
The procedure to compute the factorization in Eq. (1) is to minimize a cost function defined as:

D(X|X̂) =
∑

F

∑

T
d(X|X̂) (2)

§http://www.classicalmidiconnection.com

http://www.classicalmidiconnection.com
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where d(a|b) is a function of two scalar variables. The �-divergence [19] [20] [21] is the most popular cost function and its
definition includes Euclidean (EUC) distance (� = 2), Kullback-Leibler (KL) divergence (� = 1) and the Itakura-Saito (IS)
divergence (� = 0).
Standard NMF used the gradient descend algorithm to estimate the model parameters during the factorization (see [19] for

further details). Using this algorithm, the matrices W and H are initialized and then iteratively updated using the following
multiplicative rules as follows:

H ← H ⊙

(

∇−HD(X|X̂)

∇+HD(X|X̂)

)

(3)

W ← W ⊙

(

∇−WD(X|X̂)

∇+WD(X|X̂)

)

(4)

After this process, each column of W represents a certain sound component and the corresponding row of H encodes the
activation of these components.

3 PROPOSED FRAMEWORK

The proposed framework for our source separation method is presented in Fig. 2. As can be seen, the framework is composed
of two main stages. First, the audio-to-score alignment is computed. Then, the signal factorization is performed to learn all the
parameters needed for the reconstruction of all sound sources. As can be observed, the MIDI score, the real performance signal
and instruments models are the inputs of our proposal. These instrument models contains the spectral patterns of each note and
instrument [22][23].

3.1 Alignment stage
The aim of this stage is to synchronize the audio recording of the musical piece with the corresponding MIDI score. We propose
the framework presented in [17], where the alignment is divided in two steps: MIDI feature extraction and alignment. As can be
seen in Fig. 2, once the alignment is performed, the output parameterAp,j(t) is used for guiding the factorization. This parameter
indicates the active notes p in MIDI scale of the instruments j in the time-frame t of the audio performance.
Firstly, the input MIDI score is represented by a binary matrix GT (n, �) denoting the active notes n in MIDI scale at each

time-frame � referenced to the score (MIDI time). Each unique occurrence of individual or concurrent notes will be denoted as
a score unit. In terms of score units, the score matrix GT (n, �) can be decomposed as follows:

GT (n, �) = Q(n, k)R(k, �); (5)
whereQ(n, k) is the binary notes-to-units matrix, k the index of each unique unit and R(k, �) represents the binary activation of
each unit. Observe thatQ(n, k) informs about the notes belonging to each unit, whereasR(k, �) retains the MIDI time activation
per unit. Fig. 3 displays an example of the score decomposition presented in Eq. 5.
Afterwards, a synthetic signal is generated from the score using a MIDI synthesizer in order to learn a single spectral pattern

for each score unit (spectral pattern learning block). Expressing the magnitude spectrogram of the synthetic signal as Y (f, �),
where f being the frequency bin index, it can be decomposed according to the following model:

Y (f, �) ≈ Ŷ (f, �) = B(f, k)G(k, �) (6)
where Ŷ (f, �) is the estimated spectrogram, G(k, �) matrix represents the gain of the spectral pattern for unit k at frame �, and
B(f, k)matrix represents the spectral patterns for all the units defined in the score. The parameters are estimated using NMFwith
�-divergence and multiplicative update rules, where G(k, �) is initialized to R(k, �), and B(f, k) to random positive numbers.
At the cost matrix computation block, the distortion between the frequency transform of the input signal and the spectral

patterns learned per unit is computed to measure the similarity between the audio and the different units defined by the score.
In that sense, we denote the frequency-domain input signal vector at time t as xt(f ) and the k-th unit spectral pattern as bk(f ).
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FIGURE 2 Block diagram of the proposed framework.

Assuming a signal model in which only a single pattern can be active at t, Eq. 7 computes the time varying gain for each unit
gk,t as the projection of the pre-learned basis functions over the observed mixture signal spectrogram.

gk,t =

∑

f
xt(f )bk(f )(�−1)

∑

f
bk(f )�

(7)

Finally, the distortion matrix for each unit at each frame is defined by:

Φ(k, t) = D�(xt(f ))|gk,tbk(f )) (8)
where D(⋅) is the �-divergence function and � can take values in the range ∈ [0, 2].
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(a) MIDI Ground-Truth Transcription GT (n, �).
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(b) Note-to-units matrix Q(n, k).
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(c) Units activation matrix R(k, �).

FIGURE 3 Example of score matrixGT (n, �) decomposition. (a) MIDI Ground-Truth TranscriptionGT (n, �). (b) Note-to-units
matrix Q(n, k). (c) Units activation matrix R(k, �). The instruments in (a) and (b) are displayed using different colors.

As can be inferred, the distortion matrixΦ(k, t) provides us information about the similitude of each k-th unit spectral pattern
with the real signal spectrum at each frame t. Using this information, we can directly compute the cost matrix between the MIDI
time � and the time of the input signal t as:

D(�, t) = RT (�, k)Φ(k, t), (9)
where superscript "T" stands for matrix transposition. This matrix has dimensions Tm × Tr, where Tm is the number of frames
of the MIDI score and Tr is the number of frames of the input signal.
Finally, at theDTW block, the optimum path across matrixD(�, t) is computed using DTW algorithm to provide the alignment

between the score and performance times. More information about the alignment described above can be found in [17][18].
The software ReMAS (Real-time Musical Accompaniment System), designed to track the reproduction of a musical piece

with the aim to match the score position into its symbolic representation on a digital sheet, was presented in [24]. ReMAS shows
that it is possible to exploit efficiently several cores of an ARM R© processor, or a GPU accelerator, reducing the processing time
per frame in a few milliseconds in most of the cases. On the other hand, a parallel online DTW solution based on a client-server
architecture implemented for multi-core architectures (86, 64 and ARM R©) is proposed in [25].
Both softwares have a high degree of similarity to the alignment stage. Thereby the framework proposed for the alignment in

this work aims to adapt, extend and test the parallel heterogeneous algorithms of [24] and [25] to the new problem.
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3.2 Factorization stage
For the factorization of the audio signal, we proposed the following signal model presented in [26]:

X(f, t) ≈ X̂(f, t) =
∑

p,j
Sp,j(f )Ap,j(t) (10)

whereX(f, t) is the magnitude spectrogram of the audio signal, X̂(f, t) is the estimation of this magnitude spectrogram, Sp,j(f )
is the basis matrix and contains the spectral patterns of each note of each instrument,Ap,j(t) is the time varying gains matrix that
shows the temporal intervals in which the previous basis functions are active, p are the notes in MIDI scale and j is the number
of instruments.
In this work, the basis matrix Sp,j(f ) is trained using the Real World Computing (RWC) music database [27][28] as in [22],

where it is shown that it is profitable to learn bases in advance and fix them during the separation process. Besides, the coefficients
of the gains matrix Ap,j(t) are initialized with the optimum path across matrix D(�, t) provided by DTW.
Subsequently, an standard NMF with the following multiplicative update rules which minimize the �-divergence between the

observed spectrogram X(f, t) and the model X̂(f, t) can be used for the factorization:

Ap,j(t)← Ap,j(t)⊙

(
∑

f,p,j Sp,j(f )[X̂(f, t)�−2 ⊙X(f, t)]
∑

f,p,j Sp,j(f )X̂(f, t)�−1

)

(11)

Finally, we proposed to apply a Wiener filter method to compute the relative energy of the mixed signal as in [23].

4 EXPERIMENTS AND RESULTS

For testing our method, we have used the database proposed in [29]. This database is compounded of 10 J.S. Bach four-part
chorales and each music excerpt consists of an instrumental quartet (violin, clarinet, tenor saxophone and bassoon). The audio
files are approximately 30s long and are sampled at 44.1kHz from real performances.
We are going to compare different configurations of the proposed method and a baseline score-informed source separation

method proposed in [29], denoted as Duan’s Soundprism. Duan et al. proposed an online method without instrument models. Its
algorithm separates sources using harmonic masking where the energy of overlapping harmonics are distributed according to
the harmonic indixes of the sources.
In the comparison, four configurations of our method are presented. GT denotes the variant of our proposed method in which

the perfect annotation score is used to guide the factorization stage, ScoreFree denotes the variant in which no alignment stage is
used and, therefore the gains matrix Ap,j(t) is initialized with random values, and, Offline and Onlinemake reference to variants
whose alignment stages have been implemented following theOffline andOnline approaches described in [18]. Furthermore, we
are also going to contrast our proposal with Oracle version, which uses the individual sources to establish the best separation
that can be obtained using the proposed softmask reconstruction strategy. It sets an upper bound of all the configurations of the
proposed method.
For obtain numerical results of this comparison, we use the metrics Source to Distortion Ratio (SDR), the Source to Inter-

ference Ratio (SIR) and the Source to Artifacts Ratio (SAR), implemented in [30] (BSSEVAL Toolbox 2.1). These metrics are
widely used by the research community in source separation, and therefore facilitate a fair evaluation of the method.
Fig. 4, Fig. 5 and Fig. 6 show the comparison results on the 10 excerpts. Each box represents 40 data points, one for each

individual instrument of the ten mixtures test database. The lower and upper lines of each box show 25th and 75th percentiles
of the sample. The line in the middle of each box is the median. The lines extending above and below each box show the
extent of the rest of the samples. As can be observed, ScoreFree method obtain the worst results because of not employing the
alignment stage. GT, Duan’s Soundprism, Offline and Online obtain results very similar. The reason of this behaviour is because
the alignment scheme used in these methods obtained a high percent of precision, as can be observed in theMIREX task of Real-
time Audio to Score Alignment (MIREX 2010¶). Therefore, the initialization of the parameter Ap,j(t) is practically the same for
this database with a low polyphonic complexity. The slight outperforming of the Offline and Online methods over the Duan’s
Soundprism system is due to the introduction of the instrument models learned with real instruments (using RWC database),
instead of using fixed timbrical models of Duan’s Soundprism which are independent from the instruments.

¶https://www.music-ir.org/mirex/wiki/2010:Real-time_Audio_to_Score_Alignment_(a.k.a._Score_Following)_Results

https://www.music-ir.org/mirex/wiki/2010:Real-time_Audio_to_Score_Alignment_(a.k.a._Score_Following)_Results
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FIGURE 4 Comparison of the source separation methods in terms of SDR.
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FIGURE 5 Comparison of the source separation methods in terms of SIR.
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FIGURE 6 Comparison of the source separation methods in terms of SAR.

5 CONCLUSION

In this paper, we have presented a framework for a Soundprism implementation. The proposed system aims to segregate an input
polyphonic mixture into source signals and is compound by two stages: a score follower and a factorization stage. The first one
is based on DTW to synchronize the audio recording of the musical piece with the corresponding score. Then, the factorization
is computed guided by the score follower and using NMF approach. Finally the reconstruction of the source signals is performed
by a Wiener filter method to obtain the energy contribution of each source.
We have tested our proposal with real audio mixtures composed of an instrumental quartets. For the evaluated dataset, our

method has demonstrated superior results in terms of separation metrics among the compared methods. The evaluation has
revealed the robustness of the proposed method for online scenarios.

6 FUTURE WORK

Regarding future work, we propose the following lines of work to improve the system:

• Test new databases with more polyphonic complexity in order to study the behavior of the proposed method in orchestra
performances.

• Study alternatives to the proposed signal model with less dependent of the alignment errors. Modifying the output of the
DTW block (see Fig. 2) for activating more notes in each frame could solve these alignment errors.

• Make a real-time implementation using parallel programming. Duan’s Soundprism (proposed in [29]) presents a high
computational cost that makes it impossible to implement in real-time with the current technology. In their experiments,
the algorithm runs about three times slower than real time. However, our proposal has a lower computational cost that
combined with efficient techniques to solve the NMF problem, such as [31], could make its implementation possible.
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