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Abstract 

Learning analytics can be used in conjunction with learner dispositions to 

identify at-risk students and provide personalized guidance on how to 

improve. Participants in the current study were students (n=192) studying a 

first year anatomy and physiology course. A two-step cluster analysis was 

performed using learning analytics data from the learning management 

system and self-regulated learning behavior from meta-learning assessment 

tasks. Three clusters of students were identified – high, medium and low self-

regulated learners. High self-regulated learners were engaged with the meta-

learning tasks, reported the most self-regulated learning strategies and used 

new strategies during semester. They also had the highest academic 

achievement. Compared to low self-regulated leaners, medium self-regulated 

learners were more engaged in the meta-learning tasks and used more 

learning strategies during semester, including new strategies; however, both 

medium and low self-regulated learners had similar levels of academic 

achievement. It is possible that the medium self-regulated learners represent 

students who were attempting to improve their learning, but had not yet 

found strategies that were right for them. Future evaluation of academic 

performance may determine whether the attempts to improve learning by 

medium self-regulated learners distinguishes them from low self-regulated 

learners in the later years of their study. 
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5th International Conference on Higher Education Advances (HEAd’19)
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1. Introduction 

Every time a student interacts with a website - such as logging onto a student portal or 

submitting assignments - a digital trail is left behind. Learning analytics involves the 

collection, measurement and analysis of this trace data to improve learning and teaching 

(Tempelaar et al., 2018). Previous studies using learning analytics have identified online 

factors that correlated with course outcomes, such as log-in frequency, and engagement 

with the learning management system (LMS), such as submitting assessment, viewing 

assessment feedback and contributing to discussion boards (Colthorpe et al., 2015; 

Macfadyen & Dawson, 2010; Smith et al., 2012). These findings demonstrate the potential 

for learning analytics to identify indicators of online engagement that may influence student 

progress within a course and their academic performance. Such information can potentially 

allow course coordinators to intervene by identifying at-risk students early.  

Learning analytics may help to identify disengaged students who are academically at-risk; 

however, it does not explain why these students are at-risk, nor how they can improve. 

More recently, learning analytics data has been combined with learner dispositions to better 

understand how students engage with learning activities, so that more targeted feedback can 

be provided to at-risk students (Shum & Crick, 2012; Tempelaar et al., 2017). The 

combined analysis of learning data and learner data has been termed „dispositional learning 

analytics‟ (Tempelaar et al., 2017). Dispositional learning analytics researchers have 

augmented traditional trace data with a variety of student dispositions, including students‟ 

expectancies and values, motivations, approaches to learning, emotions, goals or lifelong 

learning traits (Gašević et al., 2017; Shum & Crick, 2012; Tempelaar et al., 2018; 

Tempelaar et al., 2017). These studies have demonstrated that collecting self-reported data 

on learner dispositions increased the predictive power of learning analytics models 

(Tempelaar et al., 2017).  

Although a broad range of dispositions have been incorporated into learning analytics 

studies, the specific types of self-regulated learning strategies students use while they learn 

have been largely ignored. Past research has demonstrated that students can use a variety of 

different learning strategies (Colthorpe et al., 2017; Hattie & Donoghue, 2016). Certain 

types of strategies are more effective than others. For example, strategies where students 

organize or transform information are associated with high academic achievement (Nota et 

al., 2004), whereas more passive learning approaches, such as managing the environment, 

are less effective (Hattie & Donoghue, 2016). In addition, higher achieving students use 

more learning strategies than lower achieving students (Kitsantas, 2002). The current study 

expands the field of dispositional learning analytics by combining learning analytics data 

with students‟ goal orientation, the type and number of learning strategies used during 

exam preparation, and their strategy adaptability. This data was used to group students 

using two-step cluster analysis. 
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2. Methods 

Participants were students studying a first-year anatomy and physiology course at the 

University of Queensland, Australia. As part of course assessment, students completed four 

online meta-learning tasks (12%) consisting of open-ended questions designed to encourage 

students to reflect on their learning (Colthorpe et al., 2018). Learning analytics data was 

collected from the tasks, including average word count per question, submission time and 

task completion rate. Other course assessment included a mid-semester exam (20%), end of 

semester exam (50%) and group assignment (18%). 

This study received ethics approval from the University of Queensland Human Ethics 

Committee. To ensure consenting students (n=192; 74%) were academically representative 

of the whole cohort, a t-test was used to compare their final exam results. There was no 

significant difference (p>0.05) between consenting participants (65.8% ± 1.1) and the 

whole cohort (64.9% ± 1). 

2.1. Self-regulated learning behaviors  

Responses to meta-learning questions were thematically analyzed to characterize students‟ 

self-regulated learning behaviors. Early in semester, students described their personal goals 

for the course. Responses to this question were deductively coded (Braun & Clarke, 2006) 

into mastery or performance goals (Hattie & Donoghue, 2016). Half-way through semester, 

students described the study strategies they used when preparing for the mid-semester 

exam. Responses to this question were deductively coded using the learning strategy 

categories identified in the self-regulated learning interview schedule (Nota et al., 2004) to 

determine both the type and number of strategies students used. In a meta-learning question 

asked at the end of semester, students identified new strategies they had used during the 

course. This question was coded to determine how many new strategies students used, 

which indicated their adaptability. 

To confirm the reliability of the coding schemes, a second naïve researcher coded 25% of 

the data for both goals and strategies, with inter-rater reliability scores of 87% and 89% 

respectively. These reliability scores are acceptable for coding self-regulated learning 

strategies (Nota et al., 2004). 

2.2. Cluster analysis  

A two-step cluster analysis was performed in SPSS
TM

 (IBM Statistics, NY, USA) using the 

learning analytics data (meta-learning task completion rate and time of submission, and the 

average number of words written for each question) and self-regulated learning behavior 

(type and number of learning strategies used, goals, and strategy adaptability). The two-step 

clustering procedure (Tkaczynski, 2017) involves the formation of pre-clusters, where 
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students within the same pre-cluster are treated as a single entity. In the second stage of the 

procedure, the pre-clusters are merged using a hierarchical clustering algorithm. The 

procedure generated a 3-cluster model when using either the Schwarz‟s Bayesian Criterion 

and Akaike‟s Information Criterion to determine optimal cluster number. The variables 

with the most influence over cluster formation included the type of goals students set, the 

number of planning strategies and the total number of learning strategies students reported 

using for the mid-semester exam (Figure 1).  

The clustering procedure was validated by splitting the sample into two random groups and 

then repeating the procedure to ensure that the same number of clusters with similar 

characteristics were generated compared to the original cluster solution. 

 

Figure 1. Predictor importance of variables in generating clusters. Solid bars represent self-regulated learning 

strategies. Bars with diagonal lines represent meta-learning (ML) task analytics. The dotted bar represents the 

students’ exam mark.  

3. Results 

The two-step cluster analysis separated students into high, medium and low self-regulated 

learners (Table 1). High self-regulated learners (n=43) reported using the most learning 

strategies for exam preparation, and the most new strategies. They had the highest academic 
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performance (71.4% ± 2.3), wrote the most detailed responses for the meta-learning tasks, 

and had a high task completion rate. Low self-regulated learners (n=55) reported the lowest 

number of learning strategies, were the least likely to try new strategies and relied on 

mastery goals. These students were also the least engaged with the meta-learning tasks with 

the lowest word count for their responses, and the lowest completion rate. Medium self-

regulated learners (n=72) set a combination of mastery and performance goals, used more 

strategies than low self-regulated learners and were willing to try new strategies. They had 

higher engagement with meta-learning tasks than low self-regulated learners, but had 

similar exam results (medium = 64.6% ± 1.7; low = 64.4% ± 2). High and medium self-

regulated learners relied most heavily on self-evaluation and transforming records 

strategies, whereas low self-regulated learners relied on reviewing records (Figure 2). 

Table 1: Characteristics of students clustered into high, medium, and low self-regulated 

learners. SEM = standard error of the mean, ML = Meta-learning task, M = mastery goals, P = 

performance goals, n.s. = non-significant. 

 
Low (1) Medium (2) High (3) Significance 

Overall exam mark (mean  SEM) 64.4  2 64.6  1.7 71.4  2.3 3>1,2* 

ML word count (mean  SEM) 62.9  3.4 81.7  3.6 95.8  4.9 3>1, 2; 2>1* 

ML submission time (mean hrs  

SEM) 
60.1  7 73.1  5.9 79.5  8.8 n.s. 

Students completing all ML tasks 65% 100% 98% 2,3>1+ 

Goal type 

75% M only 

11% P only 

14% M+P 

1% M only 

29% P only 

70% M+P 

60% M only 

12% P only 

28% M+P 

M only = 1,3>2; 

M+P = 2>1,3+ 

Strategies for exam (mean #  

SEM) 
2.1  0.1 2.9  0.1 3.8  0.2 3 >1,2; 2>1* 

New strategies (mean #  SEM) 1.1  0.1 1.6  0.1 1.5  0.1 2,3>1* 

Statistical signifcance between low (1) medium (2) and high (3) self-regulated learners was determined using 

*ANOVA with Tukey‟s post hoc test or + chi-square test. 

4. Discussion 

In this study, a two-step cluster analysis was used to categories students based on their 

engagement with online meta-learning tasks, their self-regulated learning behavior and 

academic achievement. Three groups of students were identified – low, medium and high 
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self-regulated learners. The LMS data used to measure engagement with the meta-learning 

tasks included average word count for each meta-learning question, submission time for the 

meta-learning tasks and completion rate of the tasks. Word count and completion rate 

varied between clusters; however, submission time did not. Only 65% of low self-regulated 

learners completed all meta-learning tasks, whereas almost all medium and high self-

regulated learners had a 100% completion rate. In addition, high self-regulated learners 

wrote more words on average for each question than medium self-regulated learners, who 

in turn wrote more than low self-regulated learners. As medium and low self-regulated 

learners had similar exam scores, these results suggest that engagement with the online 

meta-learning tasks does not relate to academic performance. In contrast, other studies have 

shown a correlation between LMS data, such as task submission time (Colthorpe et al., 

2015) and assignment completion rate (Macfadyen & Dawson, 2010), with academic 

performance. As the meta-learning tasks in the current study were designed to prompt 

students to think about their learning, the high and medium self-regulated learners may 

have been more interested in the tasks, and completed them more thoroughly compared to 

low self-regulated learners. Future studies could include additional LMS data, such as 

completion of formative assessment (Tempelaar et al., 2018) or discussion board use 

(Macfadyen & Dawson, 2010) to facilitate the identification of non-engaged and low 

performing students. 
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Figure 2: Self-regulated learning strategies used by students clustered as high (black bars), medium (dark grey 

bars) or low (light grey bars) self-regulated learners. Data represents the average number of strategies used by 

students in each cluster  SEM. Asterisk indicates significant difference from low self-regulated learners using 

Welch’s ANOVA with Games-Howell post hoc test. 

Although low and medium self-regulated learners had similar academic achievement, they 

differed in their self-regulated learning strategies. High and medium self-regulated learners 

used more strategies than low self-regulated learners, a trait that has been associated with 

higher academic performance (Kitsantas, 2002). In particular, high and medium self-

regulated learners used more strategies involving transforming records (E.g. Summaries, 

diagrams and flow charts) and self-evaluation (E.g. Practice tests and group study) 

compared to low self-regulated learners. These strategy categories have been identified as 

deep strategies, which are effective for learning (Hattie & Donoghue, 2016; Nota et al., 

2004). Both high and medium self-regulated learners were also more likely to seek help 

either from social sources (seeking social assistance) or non-social sources (seeking 

information) respectively. High self-regulated learners were more likely to use planning 

and environmental restructuring than medium or low self-regulated learners. Although 

planning has been associated with high academic achievement (Hattie & Donoghue, 2016; 

Kitsantas, 2002), managing the environment is less effective (Hattie & Donoghue, 2016). 
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If the medium self-regulated learners used more strategies overall, and more deep strategies 

than low self-regulated learners, why was there no difference in their academic 

achievement? Perhaps the medium self-regulated learners were actively attempting to 

improve their learning approach, but had not yet achieved an improvement in grades. In 

support of this hypothesis, medium self-regulated learners incorporated more new strategies 

during semester compared to low self-regulated learners, suggesting that they were 

experimenting with their learning approach. The students in the current study were in their 

first year at university, and may need time to identify learning strategies that work well for 

them. In a study by Colthorpe et al. (2018), second year students who adapted learning 

strategies during semester had lower overall academic performance compared to students 

who did not adapt, but also demonstrated an improvement in grades over time. Together, 

these results suggest that incorporating new strategies can improve academic performance, 

but it might take multiple semesters for students to find approaches that work best for them. 

In the current study, medium self-regulated learners also set both mastery and performance 

goals, suggesting that they were attempting to improve both their understanding of the 

course content, and their course grades. 

Learning analytics can be a powerful tool for monitoring student success and identifying 

students in need of support (Macfadyen & Dawson, 2010).  In the current study, 

dispositional learning analytics was used to characterize students based on self-regulated 

learning behavior; however, the procedure was less successful at identifying students at 

different levels of academic achievement. Potentially, the medium and low self-regulated 

learners identified in this study reflect differences between clusters of students who are 

aware of their learning processes and are actively attempting to improve and students who 

are not (Ainscough et al. 2018). Examining the performance of these students at later stages 

of their program may provide evidence of the effectiveness of their approaches. 
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