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Abstract. Regular screening for the development of diabetic retinopa-
thy is imperative for an early diagnosis and a timely treatment, thus
preventing further progression of the disease. The conventional screen-
ing techniques based on manual observation by qualified physicians can
be very time consuming and prone to error. In this paper, a novel au-
tomated screening model based on deep learning for the semantic seg-
mentation of exudates in color fundus images is proposed with the im-
plementation of an end-to-end convolutional neural network built upon
U-Net architecture. This encoder-decoder network is characterized by the
combination of a contracting path and a symmetrical expansive path to
obtain precise localization with the use of context information. The pro-
posed method was validated on E-OPHTHA and DIARETDB1 public
databases achieving promising results compared to current state-of-the-
art methods.

Keywords: Semantic segmentation · deep learning · fundus images ·
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1 Introduction

According to the World Health Organization (WHO), diabetic retinopathy (DR),
a complication of diabetes manifested in the retina, is a major cause of blindness
within the working age population in the developed world. It occurs as a result
of accumulated damage to the retinal small blood vessels [1]. Due to a com-
mon absence of symptoms in early stages, this disease can go unnoticed until
the changes in the retina have progressed to a level where treatment is nearly
impossible or irreversible vision loss has occurred.

The risk of blindness in diabetic patients could be significantly reduced
through regular screening by suitably trained observers for the development of
DR, since an early detection and timely treatment can halt or reverse the pro-
gression of the disease [2]. However, the number of qualified physicians available
for direct examinations of the population at risk is limited in most countries.
Moreover, the conventional retina examination techniques based on manual ob-
servation can be highly subjective, very time consuming and prone to error.
These facts highlight the need for automated DR diagnosis techniques based on



2 C. Silva et al.

color fundus retinal photography with high accuracy and quick convergence rate
for them to be suitable for real-time applications.

One of the primary signs of DR is the development of retinal exudates
(Fig.1(a)) which consist of lipid and protein accumulations in the retina of vari-
ous shapes, locations, and sizes, according to the stage of the disease. Its accurate
detection can be seriously affected by several factors related to the acquisition
process with fundus cameras as well as retina’s anatomy. The presence of other
bright elements (drusen, optic disk, and optic nerve fibers), dust spots, random
brightness, noise presence, uneven illumination, low contrast, and color variation
represent a challenge for the task at hand, as it can be seen in Fig.1(b), making
this an extensively studied topic.

(a) (b)

Fig. 1. Fundus images. (a) Image with the presence of exudates, (b) Noisy image with
artefacts and uneven illumination.

Most of the classical approaches developed so far involve an image prepro-
cessing stage, followed by a candidate extraction step where structures with
similar characteristics as the lesion are selected. Finally, several features are
extracted for each lesion candidate and a classification algorithm (usually, a
machine learning classifier [3]) is applied to eliminate false positives. The main
implemented techniques for extracting lesion candidates can be categorized into
dynamic thresholding [4], mathematical morphology [5–7], and clustering [8]. A
hand-crafted feature extraction requires domain expertise and effort for it to
be optimized to specific problems. This process is deemed unobjective since the
researcher has to manually decide on the features to be used in a classifier with
knowledge obtained through specialized clinicians. This motivates the develop-
ment of a novel framework capable of automatically learn the most relevant
features and accurately segment exudates.

Recently, convolutional neural networks (CNNs), a branch of deep learning,
have emerged as a powerful tool for making automatic image recognition tasks
more successful. Its great performance in biomedical applications [9, 10] can be
explained through its capability of hierarchically extract features from raw image
pixel intensities by learning and formulating the appropriate filters for the task at
hand. The first attempts in CNN-based approaches for DR evaluation emerged
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in a Kaggle3 competition [11,12] where images were classified by the severity of
the disease. To the best of the author’s knowledge, only a single work has been
developed towards the segmentation of exudates by using deep neural networks.
In [13] a patch-based CNN architecture is proposed with the aim of providing
a pixel-wise classification by returning the probability of each pixel belonging
to one of two classes: exudate or non-exudate. Two fully-connected layers are
responsible for the binary classification of image pixels. The resulting map is then
combined with the output of optic disc and vessel detection procedures. Despite
the fact that the network’s input includes optic disk pixels, potentially affecting
its results, this architecture is not best suited for a pixel-level classification.

The main contribution of this paper is a novel deep learning-based approach
for the automatic semantic segmentation of exudates in color fundus images. An
encoder-decoder CNN built on top of the U-Net architecture [14] is implemented
for this application. The model uses labelled pixels to learn the connection be-
tween local features and the associated specific classes, and then classify each
pixel based on which class presents the highest probability for that pixel. Com-
pared to most exudate segmentation methods, the algorithm undertaken in this
work is more robust due to the fact that it is end-to-end, in other words, it is
almost entirely trainable and free of hand designed and fixed modules. To the
best of the author’s knowledge, this is the first attempt of adapting an encoder-
decoder CNN architecture to retinal images’ semantic segmentation.

2 Methods

CNNs have been successfully applied to semantic segmentation [15], specifically
fully convolutional networks (FCNs) which follow the encoder-decoder architec-
ture. This image-to-image structure emerged as a solution for pixel-wise pre-
dictions since it outputs high resolution segmentation maps with localization as
well as semantics information, performing very well in biomedical image seg-
mentations [16, 17]. Following these nets, a novel neural network structure was
introduced in [14], the so-called “U-Net” for its U-shaped architecture. It dif-
fers from FCNs in its extended decoding branch by taking into account useful
global context information in higher resolution layers, being able to work with
small sets of training images and still provide more precise segmentations. It
has proven its effectiveness in biomedical image segmentations [14, 18, 19] as it
outperforms existing methods on biomedical challenges. In this paper, a CNN is
built on top of U-Net for the semantic segmentation of retinal images, as shown
in Fig.2.

2.1 Image pre-processing

Due to fundus images heterogeneity, they aren’t adequate to be used directly
as input to the network. First of all, images belonging to the same dataset

3 https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 2. Architecture of the proposed network built upon U-Net.

often present different resolutions. A standardized image resolution is required
by the developed framework. Thus, a spatial normalization is performed using a
reference image as a size invariant to resize all images in the dataset.

To reduce memory consumption and training time, a conversion from RGB
to grayscale images is performed. This is done by extracting the green channel
which is commonly used to segment the lesions [20]. While the red channel is
often saturated and with low contrast and the blue channel usually very noisy
and with poor dynamic range, the green channel shows the maximum contrast
between lesions and background.

Fundus images commonly suffer from non-uniform illumination and poor
contrast caused by different lightning conditions in the acquisition rooms as well
as retina’s anatomical variability. To solve this problem, an image contrast en-
hancement is carried out by performing a contrast limited adaptive histogram
equalization (CLAHE). This window-based technique provides a uniform distri-
bution of grey values across an established 8× 8 pixels-sized window, improving
local contrast and, thus, raising the visibility of some hidden features.

To prevent the network from learning retinal images’ inherent background
noise, a 5 × 5 median filter is applied. This filter smooths image data by per-
forming a spatial filtering on each pixel using the grey level values present in a
square window surrounding that pixel. Finally, the intensity values of the images
are scaled to [0,1].

2.2 Network architecture

The core element of this method is the convolutional neural network built upon
U-Net architecture [14]. Unlike the usual CNN architectures with only contract-
ing layers for image classification, U-Net is an image-to-image framework as it
takes an image as input and returns a probability map as output. This is possible
thanks to the addition of an expansive path (decoder) symmetrical to the typical
CNNs contracting path (encoder) to obtain pixel-wise labeling. Precise localiza-
tion with the use of context is achieved in this model through the combination of
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high resolution feature maps from the contracting path with upsampled outputs
from the expansive path.

In similarity to the original U-Net, each contracting block of the architecture
implemented in this work (see Fig.2) is composed by two 3×3 convolution, each
followed by a rectified linear unit (ReLu) activation function (f(x) = max(0,x)).
Afterwards, 2 × 2 max pooling is applied, reducing image resolution by 2. At
each block, the number of filters is doubled. On the other hand, in the expansive
path, the opposite happens. The same pair of convolutional layers are applied
in each block, preceded by an “up-convolution”, that is, an up-sampling of the
feature map (increasing image resolution by 2) followed by a 2 × 2 convolution.
Then, the resulting feature map is concatenated with the corresponding feature
map from the contracting path, size-wise. Finally, a 1 × 1 convolution and a
pixel-wise softmax activation function are applied to obtain the desired number
of classes and final probabilities for each pixel.

The modifications carried out in this implementation involve the addition of a
dropout layer between two consecutive convolutional layers to avoid overfitting
and the reduction of filters for all convolutional layers along the network to
simplify the architecture and reduce training time while maintaining the same
level of performance. Moreover, all convolutions are implemented with zero-
padding to preserve the spatial size of the input image. Therefore, it becomes
unnecessary to crop the feature maps from the contracting path for them to
be concatenated with the feature maps from the expansive path, as established
in [14], since they already present the same resolution.

2.3 Training and Testing

Like any other deep learning approach, this work involves training the network
first, and then test the resulting model on new images. In most cases, lesions
compose less than one percent of the total number of pixels in a retinal image.
For this reason, the network computes the probability of a pixel being an exudate
using local features in a square window centered on the pixel itself. Moreover,
this patch-based approach is carried out to substantially increase the amount of
training data, improving model’s performance.

Each time the network is trained, input images are subjected to the afore-
mentioned preprocessing techniques and split into patches using a square sliding
window with overlap. While the sliding window goes through the full images,
patches partially or completely outside the FOV or containing optic disk pixels,
previously detected by means of [21], are excluded. Still, the resulting patches
present unbalanced classes, that is, the number of patches classified as healthy
is substantially higher than the ones classified as pathological in a retinal im-
age, which can overwhelm the net and result in overfitting to the majority class.
Given N pathological patches and M healthy patches where M >> N , a random
selection of N healthy patches is applied to balance the classes.

At testing phase, to improve performance and obtain smoother predictions,
consecutive overlapping patches with a stride of 8 pixels are used to obtain
the lesion probability of each pixel by averaging probabilities over all predicted



6 C. Silva et al.

patches covering that pixel. Once again, patches partially or completely outside
the FOV or containing optic disk pixels are excluded. Hence, once the predictions
are generated, the resulting overlapped patches are recomposed considering the
missing patches and the overlapping technique, and the final probability maps
are obtained as images in the original resolution. These images can then be used
for further performance evaluation.

3 Experiments

The proposed model was trained and validated on E-OPHTHA [22] public
database which contains two subsets, depending on the lesion type. The sub-
set selected to be used in this implementation contains forty-seven retinal im-
ages with the presence of exudates. These lesions are manually annotated by
ophthalmologists at a pixel level. The dataset presents four different image res-
olutions, ranging from 1440 × 960 pixels to 2544 × 1696 pixels. After the first
pre-processing technique where a spatial normalization is performed, the images
were scaled down to a final resolution of 1440 × 960 pixels.

3.1 Implementation details

The framework was developed using Python 3.5 and OpenCV 3.0, from the
pre-processing techniques to the attainment of output probability maps. The
resizing of the images as well as the model evaluation were performed using
Matlab R©R2016a. An Intel Core i7-7700K@4.20GHz processor with 32GB of
RAM and Ubuntu 16.04 LTS as operating system was used throughout the
all process. A NVIDIA GeForce R©TITAN Xp with 12GB of GDDR5X RAM was
the GPU used. The CNN model was designed recurring to Keras framework with
Theano as backend.

3.2 Training parameters

The framework’s design allows a fast and easy adjustment of parameters and
datasets to be used for training and testing. Several tests were performed in
which tunable parameters were adjusted according to its impact in the model’s
performance. In order to obtain predictions for all the images in the dataset and,
thus, provide robustness to the proposed method, cross-validation was applied.
For this purpose, the forty-seven images were randomly partitioned into k = 5
folds. In each fold iteration, out of the k partitions, a single partition is retained
to test the model, while the remaining k−1 partitions are used as training data.

The retinal input images and their corresponding labelled segmentations were
used to train the network with the employment of stochastic gradient descent for
optimization and a cross-entropy loss function. The network was trained with
a momentum of 0.9, a weight decay of 1e−6 and a fixed learning rate of 1e−3.
It was set to continue its training for 2000 epochs with a batch size of 32. The
input of the net were 32 × 32 pixels patches which were extracted with a stride
of 16 pixels for both width and height.
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3.3 Results

In order to obtain binary segmentation maps from the probability maps, the
optimal threshold for each fold was determined by computing the best trade-off
between sensitivity and specificity. At this stage, five performance evaluation
metrics - accuracy (Acc), sensitivity (Sen), specificity (Spe), area under the
ROC curve (AUC), and Standard Deviation (Std) - based on the number of
true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) pixels, were used to quantify segmentation results taking into account the
labelled pixels from the ground-truth provided by experts.

A pixel-level segmentation of exudates could only be accurately validated on
E-OPHTHA, since it is the first public database to provide pixel-level annota-
tions by experts. For this reason, a comparison between the proposed method
and existing classical methods which carried out a validation of their pixel-level
classification on this database is shown in Table 1.

Accuracy Sensitivity Specificity AUC

Haloi et al. [5] - 0.9582 - 0.9620
Imani et al. [4] - 0.8032 0.9983 0.9370

Proposed 0.9936 0.8941 0.9931 0.9927

Table 1. Comparative exudate segmentation results for the validation of different
methods at pixel-level on E-OPHTHA database.

To further evaluate the model’s ability to generalize to heterogeneous fundus
images with different acquisition methods, the proposed model was also validated
on DIARETDB1 public database. This database consists of 89 retinal images
acquired with the same 50◦FOV digital fundus camera and, consequently, with
a fixed resolution of 1500 × 1152 pixels. A spatial normalization revealed to be
unnecessary since retinal structures are fairly comparable. Because this database
contains images with the presence or absence of exudates, a subset of 42 images
containing this type of lesion was selected for this experiment. Exudates are,
once again, manually annotated by experts but not at a pixel-level which is
equivalent to a wide amount of false positives around the lesions. For this reason,
this database isn’t suitable for a semantic segmentation validation. However, this
test was performed specifically to validate the model’s performance in different
databases and a wider set of images.

In Table 2, the proposed method (tested in both DIARETDB1 (dtdb) and E-
OPHTHA (eoph) databases) is compared with several algorithms which present
measurements for their performance at the pixel-level on private datasets or re-
curring to private ground-truth annotations for public databases. Even though
these works don’t use a common dataset or segmentation approach, this com-
parison is made to show the advantages of the proposed method in terms of the
aforementioned measurements.
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Accuracy Sensitivity Specificity AUC

Welfer et al. [6] - 0.7048 0.9884 -
Sopharak et al [8] 0.9910 0.8720 0.9920 -
Sopharak et al [3] 0.9841 0.9228 0.9852 -
Harangi et al. [7] - 0.86 - -

Prentasic̀ et al. [13] - 0.78 - -
Proposed (dtdb) 0.9701 0.8451 0.9809 0.9535
Proposed (eoph) 0.9936 0.8941 0.9931 0.9927

Table 2. Comparative exudate segmentation results for the validation at pixel-level of
different methods on distinct datasets.

As it can be seen in Tables 1 and 2, the proposed method outperforms ex-
isting algorithms in most evaluation metrics. Haloi et al. [5] and Imani et al. [4]
present higher values for sensitivity and specificity, respectively, on E-OPHTHA
database, while Sopharak et al. [3] exceeds sensitivity values on a private dataset.
Even though the proposed model’s performance on DIARETDB1 isn’t higher
than most methods, it is still a great outcome taking into consideration the
nature of this database, as it was previously explained.

(a) (b) (c) (d) (e)

Fig. 3. Qualitative results of the exudate semantic segmentation. First row: original
images; Second row: ground-truth annotations from experts; Third row: resulting seg-
mentation maps from the proposed method.

Fig.3 illustrates the qualitative segmentation results on E-OPHTHA. The
validation approach presents some drawbacks due to the nature of its perfor-
mance evaluation method. Manual segmentation performed by humans at a
pixel-level is prone to small-scale errors. In Fig.3(e) it is noticeable that ground-
truth annotations can be slightly misleading, originating a considerable amount
of FP pixels which are, in fact, TP pixels. The remaining pixels misclassified as
exudates are caused by the presence of noise and bright reflections along the main
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retinal vessels. There might be also some ambiguous regions where faint exudates
are not considered by experts but accurately identified by the network. Further-
more, quantitative results are severely penalized in a pixel-level classification due
to the small amount of pixels that are labelled as exudates in a retinal image.
This means that the ratio between FN and TP pixels is inevitably lower, de-
creasing sensitivity values significantly. Nevertheless, the resulting segmentation
maps are overall extremely similar to the expert’s annotations, demonstrating
the model’s ability to accurately segment exudates, even in challenging situa-
tions such as in Fig.3(e), where the image presents a lot of noise and uneven
illumination. Prediction time is alongside segmentation accuracy when it comes
to the major requirements for automated screening methods. Note that segmen-
tation map takes around 36 s to be computed, allowing real-time feedback in
clinical use.

4 Conclusions

In this work, a novel end-to-end network built on top of U-Net for semantic
segmentation of exudates in fundus images is proposed. The preliminary ex-
perimental results show clear advantages of the proposed method over classical
exudate segmentation algorithms.

In future work, bright reflections along the main retinal vessels will be the
subject of post-processing techniques to reduce noise in segmentation results.
In addition, grayscale images will be replaced by RGB images as input to the
model. Finally, the proposed method will be applied to the detection of other
kinds of DR related lesions.

Acknowledgements. This paper was supported by the the European Union’s
Horizon 2020 research and innovation programme under the Project GALA-
HAD [H2020-ICT-2016-2017, 732613]. The work of Adrián Colomer has been
supported by the Spanish Government under a FPI Grant [BES-2014-067889].
We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the Titan Xp GPU used for this research.

References

1. World Health Organization: Diabetes Fact sheet. Science of total environment 20,
(2011)

2. Verma, L., Prakash, G., Tewari: Diabetic retinopathy: time for action. No compla-
cency please!. Bulletin of the World Health Organization 80(5), 419–419 (2002)

3. Sopharak, A., Dailey, M. N., Uyyanonvara, B., Barman, S., Williamson, T., Nwe,
K. T., Moe, Y. A.: Machine learning approach to automatic exudate detection
in retinal images from diabetic patients. Journal of Modern optics textbf57(2),
124–135 (2010)

4. Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using
signal separation algorithm. Computer Methods and Programs in Biomedicine 133,
195–205 (2016)



10 C. Silva et al.

5. Haloi, M., Dandapat, S., Sinha, R.: A Gaussian Scale Space Approach For Exudates
Detection, Classification And Severity Prediction. arXiv preprint arXiv:1505.00737
(2015)

6. Welfer, D., S., Jacob, Marinho, D. R.: A coarse-to-fine strategy for automatically
detecting exudates in color eye fundus images. Computerized Medical Imaging and
Graphics textbf34(3), 228–235 (2010)

7. Harangi, B., Hajdu, A.: Automatic exudate detection by fusing multiple active
contours and regionwise classification. Computers in biology and medicine textbf54,
156–171 (2014)

8. Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from
non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering.
Sensors textbf9(3), 2148–2161 (2009)

9. Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with
Deep Neural Networks. Medical Image Analysis 35, 18–31 (2017)

10. Liskowski, P., Krawiec, K.: Segmenting Retinal Blood Vessels with Deep Neural
Networks. IEEE Transactions on Medical Imaging 35(11), 2369–2380 (2016)

11. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P.: Convolutional Neural Net-
works for Diabetic Retinopathy. Procedia Computer Science, 200–205 (2016)

12. Gulshan, V., Peng, L., Coram, M., et al.: Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Pho-
tographs. JAMA 316(22), 2402–2410 (2016)
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