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Abstract. A new approach for the segmentation of gland units in histo-
logical images is proposed with the aim of contributing to the improve-
ment of the prostate cancer diagnosis. Clustering methods on several
colour spaces are applied to each sample in order to generate a binary
mask of the different tissue components. From the mask of lumen candi-
dates, the Locally Constrained Watershed Transform (LCWT) is applied
as a novel gland segmentation technique never before used in this type
of images. 500 random gland candidates, both benign and pathological,
are selected to evaluate the LCWT technique providing results of Dice
coefficient of 0.85. Several shape and textural descriptors in combination
with contextual features and a fractal analysis are applied, in a novel
way, on different colour spaces achieving a total of 297 features to dis-
cern between artefacts and true glands. The most relevant features are
then selected by an exhaustive statistical analysis in terms of indepen-
dence between variables and dependence with the class. 3.200 artefacts,
3.195 benign glands and 3.000 pathological glands are obtained, from a
data set of 1468 images at 10x magnification. A careful strategy of data
partition is implemented to robustly address the classification problem
between artefacts and glands. Both linear and non-linear approaches are
considered using machine learning techniques based on Support Vector
Machines (SVM) and feedforward neural networks achieving values of
sensitivity, specificity and accuracy of 0.92, 0.97 and 0.95, respectively.

Keywords: Machine learning, multi-layer perceptron, support vector
machine, locally constrained watershed transform, gland unit identifica-
tion, histological prostate image

1 Introduction

The definitive diagnostic procedure to detect prostate cancer is the visual ex-
amination of biopsy samples stained with hematoxylin and eosin (H&E). From
these digital images, pathologists assign a score according to the Gleason clas-
sification system [1], such that Gleason grades 1 and 2 correspond to benign
samples, whereas grades 3, 4 and 5 correspond to malignant samples. Thereby,
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histological images are essential for the physicians to make a reliable and ac-
curate diagnosis of the patient. However, this manual task is time-consuming,
tedious and subjective, which results in high rates of discordance between dif-
ferent pathologists.

Several studies on computer-aided Gleason grading have been developed to
help the pathologists and to reduce the subjectivity level. The standard pro-
cedure starts by segmenting some individual glands, and then, these segmented
glands are classified into their corresponding grades through a feature extraction
step [2], [3], [4]. However, a recent study [5] claimed that to achieve significant
improvements in the Gleason score discrimination, it is essential to perform an
initial accurate segmentation of individual glandular regions like the one shown
in Fig. 1. Motivated by such statement, this paper focuses on the identification
and segmentation of each gland unit.

The proposed model to segment glands previously requires the accurate de-
tection of lumens, which can be often confused with an artefact by its white
colour. Nevertheless, an artefact is not surrounded by cytoplasm and nuclei com-
ponents [3], as can be observed in Fig. 1. In this study, all lumen candidates are
segmented, and then, a classification stage is carried out by means of different
machine learning techniques widely used in the literature [4], in order to discern
between artefacts and true glands.

Stroma

Cytoplasm

Lumen

Nuclei

Fig. 1. The left image shows examples of lumens (green) and artefacts (red). The right
image corresponds to an individual glandular region.

2 Methodology

2.1 Material

The data set used in this paper includes 854 benign and 614 grade 3 pathological
images, according to the Gleason scale, at 10x magnification with an image size of
1024 × 1024 × 3 pixels, providing a total of 3.200 artefacts, 3.195 benign glands
and 3.000 pathological glands. The samples come from a private database of the
Hospital Clinico Universitario de Valencia, and they are characterised by a high
variability both in shape and size of glands, as well as colour and sharpness of
tissues, in order to provide a robust and consistent model.
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2.2 Clustering

A clustering algorithm based on the k-means technique is carried out on several
colour spaces. In particular, it is performed in Red, Green and Blue components
from RGB colour spaces, Cyan from CMYK and Saturation from HSV, with
the aim of grouping the pixels into four clusters: lumen, stroma, cytoplasm and
nuclei, as shown in Fig. 2. In this way, each pixel is assigned to the cluster label
with the closest centroid.

Notably, the resulting image of lumen candidates provides a large quantity of
artefacts (see Fig. 2). For this reason, a filtering operation based on mathematical
morphology, area opening [6], is used to remove the connected components whose
number of pixels is smaller than a specific threshold s = 40 pixels.

The obtained masks are used as inputs in the following segmentation and
feature extraction steps to discriminate between artefacts and glands.

Fig. 2. Clustering procedure to obtain the different component masks by applying a
transformation from RGB to CMYK and HSV colour spaces.

2.3 Gland candidates segmentation

Unlike the work presented in [2], where the gland boundaries are defined by the
limits of the cytoplasm structures, in this paper a gland unit is described by
its epithelial nuclei layer, similarly to the studies presented in [3] and [7] and
according to the medical literature exposed in them. The three aforementioned
segmentation approaches are shown in Fig. 3 to compare them.
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(a) (b) (c)

Fig. 3. Comparison of segmentation approaches proposed by different authors, where
the blue line delimits the lumen; and the black line, the gland. (a) Example of segmented
gland published in [2]. (b) Segmented gland with the code that the author proposes in
[3]. (c) Same segmented gland with the method proposed in this study.

The most remarkable novelty of this paper lies in the development of a robust
segmentation method, based on the Locally Constrained Watershed Transform
(LCWT), able to address the delimitation of prostate glands in spite of its fron-
tier (nuclei) remain open. [8]. LCWT requires as inputs parameters: 1) internal
markers, defined by the lumen candidates mask; 2) external markers, described
by the pixels associated to the stroma mask; 3) input image, defined by the
nuclei mask; and 4) Structurant Elements (SE) for both markers, which speci-
fies the step size. The algorithm is based on the fact that each marker analyses
the pixels of its neighbourhood trying to incorporate them into its region. The
progress in the search for the integration of new pixels is carried out such that
the higher the SE is, the more pixels are incorporated. On the other hand, the
nuclei (input image) act as a restriction to the markers progress. Specifically, the
expansion of a marker stops when the size of its SE is greater than the distance
between adjacent nuclei. In that case, the external marker can not progress and
a closed line of segmentation is defined by the distance between adjacent nuclei
when both markers get into contact. Thus, the segmentation is performed over
the nuclei epithelial layer around the gland (See Fig. 4).

Fig. 4. Illustrative example to explain visually the performance of LCWT technique.
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The detailed process is applied to the images under study of 1024× 1024× 3
pixels to obtain the segmentation of each gland candidate. (See Fig 5).

Internal 
marker

External 
marker

Input 
image(a) (b)

(c) (d)

Fig. 5. (a) Original image. (b) Input parameters to the LCWT algorithm. (c) Image of
1024 × 1024 × 3 pixels where all possible glands (black line) have been segmented from
each lumen candidate (blue line). (d) All gland candidates automatically segmented
by means the LCWT technique.

2.4 Extraction and selection of features

Once all candidates to gland are segmented, it is necessary to implement a
classification stage in order to discard the artefacts. In this way, a future grading
Gleason could be more efficient because the extraction and selection of features
would be carried out from well-defined glands. Therefore, in this work, several
descriptors are computed in order to distinguish between artefacts and glands.

On the one hand, shape descriptors are used to extract the structural and
morphological information of the different components relative to the gland units
and to the lumen, nuclei and cytoplasm structures. This approach was applied
in some studies that also focused on the artefacts detection [7]. The metrics
computed for the gland units and the lumens are: area, compactness, convex
area, convex hull, eccentricity, ellipsoid diameter, extent, orientation, perimeter,
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roundness and solidity. The features related to the nuclei and the cytoplasm
structures make reference to the density of pixels present in the segmented region.

On the other hand, in the same way that in [9], textural descriptors related to
the grey-level co-occurrence matrix (GLCM) and Local Binary Patterns (LBP)
are applied in order to extract the local texture information in the images. The
computed metrics from the GLCM are: contrast, correlation, energy, homogene-
ity, mean and standard deviation. Regarding LBP, local histograms are used as
feature vectors. In particular, 10-bin LBP riu2

P,R histograms uniformly invariant

to rotation transforms [10] and 10-bin LBP riu2
P,R histograms invariant against to

local changes of contrast (V ARP,R) [11].

Regarding the fractal analysis, in [12] the fractal dimension (FD) is used to
analyse intensity and texture variations in certain regions of interest. In this
work, the Hurst exponent is extracted over five directions (0o, 30o, 45o, 60o and
90o) with the aim of determining whether the data follow random or similar
patterns. With the Hurst exponent, it is possible to analyse the complexity and
the roughness character of the elements.

Finally, contextual features are also computed, similarly to [7] to consider
the information around each gland candidate. In this way, relations of distances,
shapes and other similarities between the individual gland and its context are
taken into account.

It is important to remark that the textural descriptors and features based on
fractals are applied to three colour spaces: cyan, hematoxylin and eosin. The two
last channels are obtained from a method known as “colour deconvolution” that
allows to separate the contributions of each staining in the H&E histopatholog-
ical images [13].

From the 297 variables that compose a learning instance, an in-depth statis-
tical analysis is performed with the aim of selecting the most relevant features.
This process ensures both the discriminatory ability of the automatic models and
the independence between features. First, a Kolmogorov-Smirnov test is used to
check the normality of variables. A comparison of means using the Student’s t-
test method or a comparison of medians using the Mann-Whitney U test method
is performed depending on whether the variable under study follows a normal
distribution N(0,σ) or not. Thus, the independence of each variable concerning
the class allows to determine the discriminatory capability of the variables. On
the other hand, the independence between variables is assessed by calculating
the correlation coefficient (R) to discard those variables with p-value < 0.0001
and |R| > 0.95. In this way, redundant information is avoided and finally, a total
of 117 variables is obtained after the feature selection step.

2.5 Classification strategy

An exhaustive data partition process is carried out in order to build robust
models and to provide reliable results. To the best of the author knowledge’s,
this work is the first that implements a type of data separation taking into
account the medical history of the patient. In this study, all gland candidates
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that belong to a certain medical history must be contained in the same data set.
Thereby, different samples of a certain patient can only be used to train or to
test the models, but never for both in the same iteration. Taking into account
these conditions, an external cross-validation technique with k = 5 folds is used
to divide the samples into a test set and a training set. Moreover, the training
set is subdivided into train and validation sets using an internal cross-validation
with v = 10 folds. Thereby, the method to separate the data guarantees that
in each of the five external iterations, the models are evaluated with samples
belonging to new patients never “seen” before for the models.

Once the samples are divided into their corresponding folds, the classifica-
tion problem is addressed from both linear and non-linear approaches applying
popular machine learning methods such as Support Vector Machines (SVMs)
with linear (LSVM) and quadratic (QSVM) kernels. SVMs are non-parametric
binary classifiers that build a hyperplane to divide the input space maximising
the distance of the support vectors from the different classes [11]. On the other
hand, an alternative parametric approach is also considered in this work by us-
ing a Feedforward Neural Network (FNN), a.k.a. multilayer perceptron (MLP),
with one hidden layer and fifteen neurons.

3 Results and discussion

Regarding the segmentation problem, 500 random glands are manually seg-
mented in order to evaluate the LCWT automatic segmentation technique by
means of similarity measures, such as the Dice and Jaccard coefficients. Some
qualitative results are shown in Fig. 6. The hypothesis is that the results achieved
from 500 glands can be inferred for all population (6.195 glands in this case).

Fig. 6. Examples of benign and pathological glands of different sizes, manually and
automatically segmented in green and blue, respectively.

Attending to quantitative results, the LCWT method provides a Dice coef-
ficient of 0.849 and a Jaccard coefficient of 0.738, from 500 randomly selected
glands. The Jaccard index is compared with the results provided by other au-
thors in the state of the art that also consider the problem of artefacts (see Table
1). Note the data set of images used to compare is different, so the results of the
segmentation can’t definitively determine the best method.
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Table 1. Comparison of segmentation methods with respect to the state of the art.

Naik et al. [2] Nguyen et al. [7] LCWT method

Jaccard
coefficient

0.43 0.66 0.74

Results of the classification problem are provided to determine whether, from
the segmented gland candidates with the LCWT method, it is possible to suc-
cessfully discern between artefacts and glands, based on the features detailed
in Section 2.4. Different figures of merit to evaluate the robustness of the three
learned models are shown in Table 2.

Table 2. Mean and standard deviation of the classification results. (PPV: Positive
Predictive Value, NPV: Negative Predictive Value; AUC: Area Under the ROC Curve).

LSVM QSVM MLP

Sensitivity 0.919 ± 0.012 0.932 ± 0.013 0.923 ± 0.019
Specificity 0.968 ± 0.027 0.956 ± 0.033 0.970 ± 0.034

PPV 0.939 ± 0.045 0.921 ± 0.059 0.941 ± 0.042
NPV 0.956 ± 0.013 0.963 ± 0.010 0.959 ± 0.013

F1Score 0.929 ± 0.028 0.926 ± 0.034 0.932 ± 0.029
Accuracy 0.951 ± 0.021 0.949 ± 0.024 0.954 ± 0.021

AUC 0.988 ± 0.008 0.988 ± 0.009 0.989 ± 0.008

In general, all classifiers present a similar behaviour, but MLP provides a
slight outperforming over the rest. Even though it is not possible to carry out a
direct comparison, MLP results are examined in contrast to other studies of the
state of the art as shows Table 3.

Table 3. Comparison of classification results with respect to the state of the art.

Naik et al. [2] Nguyen et al. [7] MLP Classifier

Classification
accuracy

0.78 ± 0.09 0.93 ± 0.04 0.95 ± 0.02

4 Conclusions and future work

In this paper, a new method of individual glands segmentation is proposed in
order to accurately detect the relevant information about the regions of interest.
Several kinds of features are extracted to identify the characteristic patterns of
the true glands. Finally, a classification stage is carried out to demonstrate that,
from the segmented gland candidates through the LCWT method, it is possible
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to discern between artefacts and true glands. The main future research line is
to address the grading Gleason by means of the characterisation of the true
glands extracted from the LCWT segmentation method and after performing
the proposed artefact removal.
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