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Abstract. Optical coherence tomography (OCT) is a useful technique
to monitor retinal damage. We present an automatic method to accu-
rately classify rodent OCT images in healthy and pathological (before
and after 14 days of intravitreal injection of Endothelin-1, respectively)
making use of the DenseNet-201 architecture fine-tuned and a customized
top-model. We validated the performance of the method on 1912 OCT
images yielding promising results (AUC = 0.99 ± 0.01 in a P = 15
leave-P-out cross-validation). Besides, we also compared the results of
the fine-tuned network with those achieved training the network from
scratch, obtaining some interesting insights. The presented method poses
a step forward in understanding pathological rodent OCT retinal images,
as at the moment there is no known discriminating characteristic which
allows classifying this type of images accurately. The result of this work
is a very accurate and robust automatic method to distinguish between
healthy and a rodent model of glaucoma, which is the backbone of future
works dealing with human OCT images.
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1 Introduction

Optical coherence tomography (OCT) has become the most important retinal
imaging instrument in ophthalmology for the early diagnosis of pathologies as
it is high-resolution and non-invasive. The retina is organized in layers, and it
has been demonstrated that changes in this structure may imply ophtalmic,
neurodegenerative and vascular disorders [1]. Examples of these diseases are
age-related macular degeneration (AMD), diabetic macular edema (DME) or
glaucoma. Furthermore, as part of the central nervous system (CNS), the retina
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is subject to a variety of specialized immune responses similar to those happening
in the spinal cord and the brain. CNS disorders such as Alzheimer’s disease,
Parkinson’s disease, multiple sclerosis or stroke have been associated to changes
in the retinal structure [2].

Glaucoma is the second leading cause of blindness globally. The disease is
caused by increased intra-ocular pressure resulting in irreversible damage to the
optic nerve head (ONH). Systematic in depth ONH diagnostics after a positive
glaucoma screening would save 4M cases of blindness yearly worldwide but a
cost-effective test is not possible with existing technology. A leading candidate
technology is optical coherence tomography (OCT). OCT is label free and non-
invasive and can be implemented in compact and easy to handle systems with
the potential to be used worldwide as diagnostic approach. Currently even high
quality commercial systems typically achieve about 3-5 µm. However glaucoma
screening requires a very high axial resolution for the posterior segment of the
eye; perhaps as small as 1 µm. This paper is framed within the European project
GALAHAD, which aims at building a new ultra-high resolution (UHR-) OCT
system in a very cost-effective manner and developing new machine learning al-
gorithms to analyse both existing data and new UHR- and polarisation sensitive
(PS-) OCT images to identify the early stages of glaucoma.

Although the purpose of OCT is human retina imaging, rodents are some-
times utilized in research studies of ophthalmologic diseases and for treatment
evaluation which would be unfeasible in humans. However, human and rodent
retinas present significant differences mainly due to the difference in size. For
example, rodents lenses are relatively larger, they have no macula or fovea. In
addition, the thickness of rodent retinal layers is close to the resolution of stan-
dard OCT devices, which makes image processing of rodent OCT images even
more challenging. For example, while the ganglion cell layer (GCL) in human
eyes has a thickness of 20-60 µm, it is not visibly distinguishable in rodent OCT
images (about 2 µm of thickness). The contrary occurs with the inner plexiform
layer (IPL), which is relatively thick in rodent retinas (about 60 µm).

Endothelin-1 (ET-1) is a potent vasoactive peptide that causes vasoconstric-
tion of retinal vessels and subsequent ischemia, which contributes to the degen-
eration of the retinal layers. The ischemia effects are similar to those present in
glaucoma patients, which makes rat model of intravitreal injection of ET-1 suit-
able for research studies of the glaucoma disease and for testing the effectiveness
of new treatments to slow down the layer degeneration process.

Some works have already attempted to classify retinal OCT images from
different databases in healthy and a variety of pathologies. For example, in [3]
the authors accurately detect AMD and DME using multiscale histograms of ori-
ented gradient (HOG) descriptors as feature vectors of a support vector machine
(SVM) in a database of more than 3.000 OCT images. [4] employed the VGG16
architecture to classify more than 80.000 OCT images in healthy or AMD with
an area under the curve (AUC) of 92.77%. [1] achieved 99%, 89% and 86% in
classifying healthy, AMD and DME OCT images from 45 patients by fine-tuning
the GoogLeNet architecture. As for glaucoma detection, [5] achieved 93.1% of
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accuracy on 102 patients feeding a random forest with the features extracted
by a convolutional neural network (CNN). Finally, [6] obtained an AUC = 0.88
in discriminating glaucoma from healthy in 899 patients by applying a logis-
tic regression on different features, such as retinal nerve fiber layer thickness,
inter-ocular difference or age. At the light of these results, it remains unknown
which features are enough discriminating to accurately classify glaucoma in OCT
images [7].

In this paper, an automatic method to distinguish between healthy and a
rodent model of glaucoma where damage to the inner retina is induced by in-
travitreal injection of endothelin-1 is presented. Its aim is to develop a robust
method for glaucoma modelling in rat OCT images to then adapt it to be used
with humans. Furthermore, this is a first step to better understand which fea-
tures are the most discriminating at characterizing glaucoma in OCT images.

2 Methods

2.1 Data

A set of 89 Sprague-Dawley rats were used in the study. Rat OCT images
were taken with the Micron IV equipment (Phoeanix Research Labs, Pleasan-
ton (USA), http://www.phoenixreslabs.com/products/oct2/). On average,
16 images per rat were recorded giving place to a total of 1912 rat OCT im-
ages (Fig. 1). Rats were anesthetized previously to image acquisition. Several
OCT images were acquired before and after intravitreal injection of ET-1. In
particular, a follow-up 14 days after injection was performed, when the maxi-
mum expression of retinal layer modification is produced according to the rodent
model of glaucoma induced by ET-1 injection [8].

Fig. 1: Example of a healthy rat OCT acquired with the Micron IV equipment.
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2.2 Deep Learning

Deep learning techniques have become the dominant machine learning approach
for a wide variety of problems. Differently to traditional machine learning ap-
proaches, where features employed to solve the problem are hand-crafted by a
human (feature engineering) and thus require a large amount of time and re-
sources, deep learning methods learn these features by themselves through high
amounts of data. Although it was first introduced over 20 years ago [9], it has
been over the last few years when deep learning has lead to an improvement of
the state-of-the-art in several fields of artificial intelligence and machine-learning,
such as image processing, voice processing and language processing applications.
This was possible due to the increase of computational power achieved by GPUs
and the availability of huge amounts of labeled data. Within the scope of image
processing, CNNs are the most used approach [1].

In contrast to other deep neural networks which base their learning in up-
dating the weight of their neurons, CNNs learn matrices (kernels or filters) to
convolve across inputs to extract features from 3D tensors, normally images, and
feed them to the following layer. Thus, first layers of CNNs learn to detect basic
patterns, such as edges or color blobs of different hue, while layers towards the
end of the model learn to detect more complex and problem-specific patterns.
While convolutional layers are the heart of CNNs, other kind of layers use to
be interspersed with them. Some of these layers are activation layers, such as
rectified linear units layer (ReLU), which applies a fixed activation function to
their input, pooling layers, which down-sample the spatial dimensions of data, or
batch normalization layers, which normalize each input channel across a batch
in order to speed up training and reduce the sensitivity to network initialization.
A full explanation of the layers employed in deep learning is out of the scope of
this paper.

DenseNet architecture. Many CNNs process data serially, that is, each layer
operates only upon the output of the previous layer. In contrast, the DenseNet
architecture allows each layer of the network to directly process the outputs of all
previous layers. This schema permits features extracted in the early layers of the
network to propagate across the network without being perturbed by subsequent
layers, so the later layers can use this knowledge. Moreover, the availability of
unaltered feature maps from initial layers in the final ones prevents the gradient
“vanishing” problem and makes training via back-propagation more efficient [9].

The DenseNet architecture is composed by so called Dense Blocks and Tran-
sitions. Figure 2 shows its global architecture.

Transitions consists of a batch normalization layer and an 1x1 convolutional
layer followed by a 2x2 average polling layer [9]. On the other hand, the Dense
Blocks are composed by sequences of Batch Normalization, ReLU and Convolu-
tional (BN-ReLU-Conv) layers.

In this work, we use the DenseNet-201 architecture, composed by four Dense
Blocks consisting of two BN-ReLU-Conv sequences of 1x1 and 3x3 kernel sizes.
The number of filters of each Dense Block is 6, 12, 48 and 32, respectively.
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Fig. 2: A deep DenseNet with three Dense Blocks and two transitions (Convolu-
tion + Pooling layers).

Furthermore, we added a top model consisting of 5 layers: a dense layer of 512
units with ReLU activation followed by a 30% dropout layer, a dense layer of 128
units with ReLU activation followed by a 30% dropout layer and a final dense
layer of 2 units with softmax activation, which is the one giving the predictions.

Fine tuning of existent architectures. While deep learning has revolution-
ized the field of computer vision, it is sometimes difficult to employ it due to
the lack of large datasets, as it requires tens of thousands of examples work ef-
fectively. To overcome this limitation, transfer learning [1] has been introduced,
in which a pre-trained model is employed for a different task than the one for
which it was trained.

2.3 Classification approach

Our approach for classifying the OCT images in healthy (Day 0 or before in-
jection) and pathological (Day 14 after injection) is based on the application of
the DenseNet-201 with a customized top model (explained above). Concretely,
we first train the network from scratch and then perform fine tuning to compare
their behaviour. We implement no pre-processing step, just a resizing of OCT
images to 224x224 pixels. The employed hardware is an nVidia Titan Xp GPU
with 12GB of GDDR5X memory and 3840 CUDA cores. The network was con-
figured to use the Adam optimizer [10] with a learning rate of 2 × 10−4, a batch
size of 16 images per batch and 40 epochs.

2.4 Evaluation methods and metrics

We use a leave-P-out cross-validation, where P refers to sets of rats mutually ex-
clusive (that is, a single rat appears only in one set). The reason for this kind of
cross-validation is to ensure that the training set and the test set contained im-
ages from mutually exclusive groups (i.e. there is no single rat which contributed
both the training and test set). This decision was made to prevent the network
to learn all type of images. Rats are distributed in cages and groups. Thus, a rat
labeled as C1G1 identifies the rat 1 in cage 1, the one labeled C1G5 identifies
rat 5 in cage 1, and so on. There are a total of 30 sets of rats which vary in the
number of OCT images recorded. Then, to perform the validation, 15 folds of
2 sets of rats were made, trying to keep the folds balanced (i.e. with a similar
number of healthy and pathological images). Table 1 shows the distribution of
the 15 folds performed.
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Table 1: Distribution of rat OCT images for the leave-P-out cross-validation. C
stands for Cage, G for group, h for number of healthy images, p for number of
pathological images and % for the percentage of healthy images.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
C 19 27 20 29 19 30 23 27 19 29 23 28 20 30 19 27 23 30 20 28 20 29 24 28 24 30 24 23 20 19
G 5 4 2 1 2 1 1 2 1 2 3 3 3 2 4 1 4 4 1 1 5 4 2 2 1 3 3 2 4 3
h 8 32 8 25 11 25 14 24 11 21 19 21 9 20 10 22 12 18 7 27 8 16 18 18 20 13 19 18 10 14
p 37 11 33 10 46 11 54 11 38 10 53 10 25 10 26 11 30 10 17 16 18 10 39 12 41 10 38 30 18 25
% 45.45 43.42 40.00 36.89 40.00 38.83 45.31 46.38 42.86 50.75 46.15 41.38 39.29 35.24 35.82

3 Results

In this section, we show and compare the results obtained with the network
trained from scratch and fine-tuned. All parameters were exactly the same for
both experiments, the only difference was that first the experiment were per-
formed randomly initializing the weights of the network, and then we trained
the network pre-initializing it with the ImageNet weights (i.e. we fine-tuned it).
Figure 3 shows the progress of the training of both networks in terms of vali-
dation accuracy. As can be observed, the behaviour of the fine-tuned network
is better than the one trained from scratch. The fine-tuned network achieves a
validation accuracy in the range of its final accuracy at epoch 30, whereas the
network trained from scratch does so at epoch 55 and its variability is higher.

(a) No fine-tuning (b) Fine-tuning

Fig. 3: Progress of the accuracy obtained in the validation set during training
for each of the 15 folds.

As for the test set, Figure 4 shows the ROC curve and Table 2 presents the
sensitivity, specificity, accuracy and area under the curve (AUC) of the 15 folds
performed for the test set.
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(a) No fine-tuning (b) Fine-tuning

Fig. 4: ROC curve for each of the 15 folds.

Table 2: Metrics of the test set for the 15 folds performed, mean and standard
deviation. The metrics presented include: area under the curve (AUC), accuracy
(Acc.), sensitivity (Sn), specificity (Sp) and F1-score (F1).

No fine-tuning Fine-tuning
AUC Acc. Sn Sp F1 AUC Acc. Sn Sp F1

F1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F2 1.0000 0.9342 1.0000 0.8958 0.9180 1.0000 0.9737 1.0000 0.9556 0.9688

F3 0.9722 0.9889 1.0000 0.9818 0.9859 0.9985 0.9778 0.9722 0.9815 0.9722

F4 0.9753 0.9709 0.9730 0.9697 0.9600 0.9623 0.7476 0.5968 0.9756 0.7400

F5 1.0000 0.9875 0.9697 1.0000 0.9846 1.0000 1.0000 1.0000 1.0000 1.0000

F6 0.9706 0.7670 0.6333 0.9535 0.7600 0.9893 0.9320 0.8511 1.0000 0.9195

F7 1.0000 0.9062 1.0000 0.8537 0.8846 1.0000 0.9062 1.0000 0.8537 0.8846

F8 1.0000 0.9710 0.9412 1.0000 0.9697 1.0000 0.9710 0.9412 1.000 0.9697

F9 0.9925 0.9571 0.9655 0.9515 0.9492 1.0000 0.9714 0.9375 1.0000 0.9677

F10 0.9955 0.9104 1.0000 0.8462 0.9032 1.0000 1.0000 1.0000 1.0000 1.0000

F11 0.9479 0.9423 1.0000 0.9032 0.9333 0.9658 0.9423 1.0000 0.9032 0.9333

F12 0.9684 0.8506 0.7447 0.9750 0.8434 0.9924 0.9080 0.8333 0.9778 0.8974

F13 1.0000 0.9524 0.8919 1.0000 0.9429 1.0000 1.0000 1.0000 1.0000 1.0000

F14 1.0000 0.9905 0.9737 1.0000 0.9867 1.0000 0.9810 0.9487 1.0000 0.9737

F15 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

µ 0.9882 0.9419 0.9395 0.9553 0.9348 0.9939 0.9541 0.9387 0.9765 0.9485

σ 0.0162 0.0615 0.1044 0.0528 0.0638 0.0121 0.0635 0.1055 0.0415 0.0668

4 Conclusions

We have presented a method to accurately classify rodent OCT images in healthy
or glaucomatous by using the DenseNet-201 architecture and a customized top-
model. As can be observed in Figure 3, the fine-tuned approach is faster to
converge and has less variability. We achieve a mean AUC = 0.9939, with 0.9387
of sensitivity and 0.9765 of specificity. Although this work has been performed on
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rodent OCT images, this is a first step to a very promising human OCT screening
system, since rodent OCT images are more challenging than human’s due to their
characteristics and resolution. In future works, we will study the activation of
the layers in the network to better understand what characteristics allow it to
be accurate, which will suppose important insights in glaucoma understanding.
Furthermore, we will try to improve the system by applying some pre-processing
steps to the images. Finally, the system will be modified to work with humans.
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