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ABSTRACT 11 

The use of 2D Discrete Wavelet Transform in the Feature Enhancement phase of the 12 

Multivariate Image Analysis is discussed and implemented in a comparative way with 13 

respect to what already present in the literature. In the proposed approach, all of the 14 

resulting sub-images obtained by the Discrete Wavelet Transform decomposition are 15 

unfolded pixel-wise and mid-level datafused to a Feature Matrix which is used for the 16 

Feature Analysis phase. Congruent sub-images can be obtained either by reconstruction 17 

of each decomposition block to the original pixel dimensions, or by using the Stationary 18 

Wavelet Transform decomposition scheme. The main advantage is that all possible 19 

relationships among blocks, decomposition levels and channels are assessed in a single 20 

multivariate analysis step (Feature Analysis). This is particularly useful, in a monitoring 21 

context, when the aim is building multivariate control charts based on images. 22 

Moreover, the approach can be versatile to handle context where several images are 23 

analysed at a time as well as in the multispectral images analysis.  24 
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Both a set of simple artificial images will be used to highlight the details of the 25 

methodology and show how the wavelet transform allow extracting features that are 26 

informative of how strong, and in which direction, the texture of the image varies and a 27 

set of real images as representative of the on-line quality monitoring context. 28 

 29 

Keywords: 2D Wavelet Transform, Multivariate Image Analysis, Multi resolution, 30 

Quality monitoring  31 
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1. INTRODUCTION 32 

The use of Multivariate Analysis to evaluate images dates back to the mid-late 80’s, 33 

with the work of Esbensen and Geladi [1] who introduced the use of Principal 34 

Component Analysis for the study of multi-channel images. Multivariate Image 35 

Analysis (MIA) has soon gained boost with the application in many contexts, typically 36 

those with images of such complexity that they could benefit of a multivariate analysis 37 

approach (e.g. remote sensing2-4 and medical imaging5-9). In the 90’s, the pioneering 38 

works of MacGregor and his group made the field of process industry accessible by the 39 

MIA approach2, 10: the possibility to acquire images for on-line process monitoring 40 

purposes and effectively analyse them represents a viable, PAT-like sensor to investigate 41 

process changes in time in an environment, that is the process line, where often the 42 

room for installing and interface new “traditional” sensors is poor, not to mention the 43 

fact that often a single image can acquire simultaneously several different potential 44 

sources of variability. 45 

At present, several uses of MIA are reported in literature for different tasks11-29, all of 46 

which are characterised by being well described by the information an image can carry, 47 

i.e. textural variability (based on the “two” dimension relationship structure of pixels) 48 

and optical variation properties (based on the “third” dimension, that is the channels 49 

acquired for each pixel). The latter aspect becomes the more relevant as the number of 50 

channels increases, moving from simple binary or gray-scale images (where not much 51 

information can be given more than texture homogeneity/non homogeneity), to RGB 52 

images (where changes in colour can be related to the presence of non homogeneous 53 

texture or underlying phenomena which alter the composition), to multi-channel images 54 

and spectral images (where chemical information can effectively be acquired for each 55 
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pixel). Therefore, most image-based challenges which can be addressed with MIA 56 

approach represent the detection of product defects in quality control11-18, the 57 

monitoring of changes in process behaviour and its feed-back control16, 19-21, the 58 

prediction of product properties on the basis of the joint evaluation of texture and 59 

channel information (this latter aspect is in particular addressed to by the development 60 

of Multivariate Image Regression – MIR – methods22-23); or more recently the 61 

development of imaging biomarkers in cancer diagnosis8-9.  62 

As far as the core details of the MIA approach and its evolution in time, the MIA 63 

approach proposed by Bharati and MacGregor is based on a framework11-12 which can 64 

be summarised in two main steps: a Feature Extraction (or Enhancement) phase, in 65 

which the image (pre-processed, if necessary) is treated so that the texture information 66 

carried out by the pixels is made clearer, and a Feature Reduction (or Analysis) phase, 67 

where a suitable Multivariate Analysis method is applied (e.g. Principal Component 68 

Analysis, Partial Least Squares Regression, Partial Least Squares Discriminant 69 

Analysis) on the feature matrix obtained after the first phase. The two phases are strictly 70 

connected to each other, since the first step can strongly influence the outcome of the 71 

following analysis in a way, which is not much different from the effect of data pre-72 

processing in many other situations. However, a certain degree of freedom can be 73 

considered when choosing the feature enhancement method (whilst the feature analysis 74 

phase is more application driven): the fundamental aspect to be preserved in this case is 75 

that it is not only important to preserve the information given by the channels, for which 76 

a simple unfolding of the image structure so that each pixel becomes a sample could be 77 

sufficient, but to retain the correlation among neighbouring pixels (that is, the texture 78 

information) and, most of all, present it to the following analysis step in such a way that 79 



5 

both sources of variability (texture and channel-based properties) can be easily 80 

evaluated. In the approach proposed by Bharati and MacGregor2 the texture information 81 

is extracted by augmenting column-wise the unfolded pixel vector with a series of its 82 

copies, shifted row-wise so that each row of the generated matrix is formed by a pixel 83 

and all its surrounding neighbours. This corresponds to stacking copies of the original 84 

image shifted according to a given pace. The number of neighbours, hence of columns, 85 

of the feature matrix is (2w + 1)2, governed by the window aperture parameter w, which 86 

indicates the dimension of the window, centred on the pixel, encompassing the 87 

neighbours to be considered (typically, w = 1 or 2). In Prats-Montalbán et al.17 this 88 

augmentation is extended to each channel of the image, we will refer to this now on as 89 

colour-textural MIA (ct-MIA), while Facco et al.14 proposed a method to reduce the 90 

computation cost when operating with a larger window size, w > 2. Other approaches 91 

have been proposed and discussed, among which the most common are based on the 92 

application of a transformation of the image, again for each channel, in a different 93 

domain, such as the Fourier domain (via the 2D Fourier Transform) or the wavelet 94 

domain10-12, 18, 24-29. The wavelet advantage with respect to Fourier is that it has both 95 

good frequency and spatial resolution.  96 

There may be several advantages by moving to wavelet domain in terms of image 97 

compression, background removal and denoising. Moreover, the use of wavelet 98 

transform allows a better understanding of the pixel correlation structure at different 99 

scales, since at each level of decomposition, the coefficients carry both the information 100 

pertaining to the energy which characterise a frequency range (based on the selected 101 

filter) and an indication about the orientation in which varies (according to the type of 102 

decomposition block, being it Approximation or one of the three Details blocks, namely 103 
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Horizontal, Vertical and Diagonal). In this way, the features extracted by wavelet 104 

transform can be seen as a truly enhanced visualization of how strong, and in which 105 

direction, the texture of the image varies. Literature differs in the way these features 106 

could be expressed and handled: some authors have pointed the attention to the use of 107 

global indicators to synthesise the relevant information for a given decomposition level 108 

and block, by using, e.g. the Frobenhius norm (Energy), the entropy, statistical momenta 109 

or the standard deviation of the coefficients18, 26-28, thus having a single variable which 110 

summarises the effect, while maintaining the orientation information by means of the 111 

level-block combination at which it is computed. This approach surely reduces the 112 

computational cost of the following analysis, but carries with itself the potential loss of 113 

interesting information, which goes together with an “averaging” procedure of a richer 114 

set of data. Also, since all the information of an image is compressed in a single vector 115 

of descriptors for each decomposition block and level, a somehow conspicuous set of 116 

images has to be considered to create a reference set, for example of Normal Operating 117 

Conditions (NOC), when moving to the following Feature Analysis phase. On the 118 

contrary, working at pixel level, that is considering each pixel as a sample, opens the 119 

possibility to reduce the requirements when building a reference set, often allowing the 120 

use of a single representative image only – being it a real one, or a combination of 121 

snapshots of NOC texture areas. 122 

Liu and MacGregor10 have proposed an approach where the wavelet transform is used 123 

for Feature Enhancement of images working at pixel level, i.e. the MultiResolutional 124 

Multivariate Image Analysis (MR-MIA). MR-MIA is conjugated in two frameworks 125 

that differ in the stage at which the wavelet transform is applied, i.e. before (MR-MIA I) 126 

or after (MR-MIA II) the Feature Analysis step (in this case PCA). In particular, in MR-127 
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MIA I by applying the discrete wavelet transform (2D DWT) to each channel ch of the 128 

image, each decomposition block, at a given level, can be seen as an image itself with 129 

the same number of channels, but representing a different “resolution” and texture 130 

orientation. The Feature Analysis (e.g. PCA) step is then applied to each of these 131 

images, once unfolded pixel-wise, so as many latent variable models as number of 132 

blocks per decomposition level (L) are obtained. This approach relies on the 133 

orthogonality of the wavelet decomposition blocks, thus implying that there is no 134 

interest in evaluating correlations among blocks at different scales, and the possibility to 135 

evaluate texture – channel correlations is maintained. However, the complexity aspect 136 

of this approach can be a hindrance when considering how many multivariate models 137 

one should compute and the necessity of a high-level data fusion step where all the 138 

results are combined to create a decision rule in order to e.g. decide if a new product 139 

image has to be rejected when compared to the NOC modelled one. Recently, basing on 140 

similar considerations, Juneau et al.25 proposed an approach where all sub images 141 

obtained by wavelet decomposition, once unfolded pixel-wise, are merged row-wise and 142 

analysed by a single PCA. However, they used the continuous wavelet transform 143 

(undecimated scheme, UWT) and in this way a rather large number of features is 144 

obtained, since scale and shift parameters vary continuously.  145 

The MSMIA approach proposed by Reis18 is similar to the MR-MIA I, although more 146 

images are considered at the same time as references NOC, but it differs in the way 147 

information from the Feature Analysis step (e.g. PCA) of each WT decomposition block 148 

is fused. In this approach, an index evaluating the distance to the scores distribution 149 

histogram of the reference NOC images for each decomposition block, at a given scale, 150 

is calculated in order to obtain a set of variables, which are then used for building a 151 
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monitoring chart. In addition to this, multivariate control charts based on PCA of 152 

wavelet features (e.g. standard deviation of wavelet coefficients for each decomposition 153 

block), extracted for each decomposition block, at a given scale, are also considered. 154 

The approach is effective in compressing information and for on-line implementation, 155 

however defects location requires a further step. This step, similarly to MR-MIA II, 156 

consists in building a spatial shifting feature matrix (then analysed by PCA) for each of 157 

the sub-images contributing to “out of control” observations in the preceding step. 158 

Moreover, correlation structure among textural/colour pattern at different scales is only 159 

indirectly taken into account (the information from different scales is always merged at 160 

features, not pixels level).   161 

Here we present an approach, which is named 2D WT-MIA, where the Feature 162 

Enhancement step, is similar to MR-MIA I, but as in Juneau25 all of the resulting sub-163 

images obtained by the 2D-DWT decomposition are unfolded pixel-wise and mid-level 164 

datafused to a Feature Matrix which is used for the Feature Analysis phase. In order to 165 

have congruent sub-images all decomposition blocks are reconstructed separately to the 166 

original pixel dimensions. This reconstruction step can be omitted, when the Stationary 167 

Wavelet Transform (2D-SWT) is used30-31. In this way, all possible relationships among 168 

blocks, decomposition levels and channels are assessed in a single multivariate analysis 169 

step (Feature Analysis). This is particularly useful, in a monitoring context, when the 170 

aim is building multivariate control charts based on NOC images. Thus, our proposed 171 

approach can be versatile to handle context where several images are analysed at a time 172 

as well as in the multispectral images analysis. 173 

The rest of this paper is organised as follows: in Section 2: Methods, the proposed 2D 174 

WT-MIA approach is described into more details and compared to colour-textural MIA 175 
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approach to highlight common and differing aspects. In Section 3: Materials, the dataset 176 

images which will be used will be presented, consisting in a set of simple artificial 177 

binary images, used to illustrate how texture is captured within the two approaches and 178 

a set of real images, and in Section 4: Results and Discussion, these images will be 179 

analysed according to the two-step MR-MIA framework, using Principal Component 180 

Analysis as Feature Analysis technique with the target of simulating a quality control 181 

task. 182 

2. METHODS 183 

The approach here described belongs to the more general framework of MultiResolution 184 

Multivariate Image Analysis, thus basing on a two-phase elaboration of the image: a 185 

first step of Feature Extraction (Enhancement) and a second step of Feature Reduction 186 

(Analysis) (Figure 1). In particular, the 2D WT-MIA (wavelet based feature 187 

enhancement) and the colour-textural MIA (spatial shifting based feature enhancement) 188 

approaches will be discussed and compared in terms of results in the present work. 189 

2.1 Spatial Shifting Feature Enhancement 190 

Colour-textural MIA17 is summarised in Figure 2. This approach to Feature 191 

Enhancement consists in capturing, for each channel ch, the pixel proximity correlation 192 

by means of a spatial shifting of neighbouring pixels with respect to each pixel of the 193 

original image, according to a selected window aperture parameter, w. In practice, 194 

starting from a pixel element of the image pi,j, a row vector is created by adding the 195 

intensity value of the channel corresponding to the closest surrounding pixels: if w = 1, 196 

the composition appears as reported in Figure 2. When this is done for all the pixels of a 197 

pixel-wise unfolded channel matrix, and the feature matrices for the different channels 198 
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are then fused, a total Feature Matrix is obtained which has as many rows as the number 199 

of pixels I = n1 × n2, and as many columns as the number of channels ch times the 200 

number of spatial shifted pixels, which is given by (2w + 1)2. This means that, 201 

regardless of the number of channels, for a window parameter w = 1 (the closest 202 

neighbours) the Feature matrix is 9 × ch, and when moving to w = 2 (the closest 203 

neighbours and the next surrounding layer), the Feature matrix is 25 × ch. This implies 204 

a fast increase of the number of variables considered in the analysis, the higher is the 205 

number of channels.  206 

Since we need, at each pixel location, to use all the neighbouring pixels until a distance 207 

w, this implies that we lack of information for all those pixels in the borders with width 208 

w. Theferore, the solution commonly adopted is to diminish the size of the image from 209 

n1×n2 to (n1-2w) × (n2-2w) 210 

2.2 2D Wavelet-based Feature Enhancement 211 

Figure 3 shows the general scheme of the Feature Enhancement step involving 2D – 212 

DWT application, through the fast Mallat algorithm32-33, on an image. For each channel 213 

ch, the low-pass and high-pass filters (which are the same as in the 1D case) are first 214 

operated row-wise on the image and then, after downsampling of the coefficients, in 215 

each of the resulting blocks column-wise. In this way four decomposition blocks are 216 

obtained: Approximations (low-pass+low-pass), namely CA; Horizontal details 217 

(low+high), namely CH; Vertical details (high+low), namely CV, and Diagonal details 218 

(high+high), namely CD. The procedure is then iterated by applying it to the 219 

Approximations, i.e. increasing the decomposition level. Downsampling is skipped 220 

when the 2D - SWT scheme is used since, instead, the filters are up-sampled26. The 221 
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maximum possible decomposition level, L, depends on the image size. The four 222 

decomposition blocks obtained from each level of decomposition (CA, CH, CV and 223 

CD) when 2D DWT is used are independently reconstructed by means of the inverse 2D 224 

– DWT so that their dimensions are the same of the original image, while they are 225 

already of the same size when 2D SWT is used (in fact, each block of coefficients at 226 

every level maintains the same size as the original image, and congruent images are 227 

obtained). This leads to a set of 4 × L images for each channel ch, which can be 228 

unfolded and column-wise merged to obtain a total Feature Matrix which has as many 229 

rows as the number of pixels I = n1 × n2, and as many columns as 4 × L × ch. If we 230 

compare this column dimension to the one obtained with the Spatial Shifting approach, 231 

which is (2w + 1)2 × ch, it might appear that there is little benefit in terms of reduction 232 

of the Feature Matrix dimensions. However, two aspects have to be underlined:  233 

i) in the spatial shifting approach the image is analysed by moving a (2w + 1)x(2w + 1) 234 

pixels  window by step of 1 in all image directions; on the other hand, with wavelet, a 235 

filter length x filter length pixels window is moved by step of 1 in all image directions, 236 

but using a larger filter does not increase the number of features, which remain always 237 

four; 238 

ii) the two approaches lead to the same number of feature descriptors if L = round[(w + 239 

½)2]. This corresponds, for e.g. a window parameter of w = 2, to a decomposition level 240 

L = 6, which in terms of multiresolution means to have gone very deep in the analysis of 241 

coarse and smooth aspects of the image. In other words, such a decomposition level (if 242 

allowed by the nature of the chosen wavelet) usually leads to the possibility of 243 

evaluating correlations and high distance relationships among pixels to an extent, which 244 

is superior to the use of a moving window of fixed size.  245 
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When applying the wavelet transform, the selection of the most appropriate wavelet 246 

filter is considered a critical issue and a limiting step in implementation of routine 247 

applications (i.e. which wavelet family and which filter length, to analyse the specific 248 

characteristics of the images at hand). This issue has been dealt in literature by 249 

analysing the different properties of the decomposition filter in terms of texture 250 

description capability in order to propose general criteria34 or focusing on goodness of 251 

image reconstruction33, or proposing a design of experiments approach36. We recently 252 

proposed37 a methodology based on N-way modelling to provide a range of possible 253 

wavelet choices (in terms of families, filters, and decomposition levels), for each image 254 

and problem at hand. Any of these strategies requires a preliminary analysis step to be 255 

conducted by experienced people in the field, although this step is only required once in 256 

model building. However, some considerations, based on our experience can be drawn: 257 

i) there is in general a relation between the decomposition level and the filter length, i.e. 258 

by using a larger filter a lower decomposition level is required to capture the different 259 

image aspects (coarse and smooth) and ii) taking into account the wavelet families 260 

characteristics, such as for degree of symmetry or regularity, number of vanishing 261 

moments38-39 it is possible to focus on a small number of wavelet filters to test, by 262 

choosing a representative one for each type of property. 263 

 264 

3. MATERIALS 265 

3.1 Artificial Images datasets 266 

These sets are used to illustrate how the colour-textural MIA and 2D WT-MIA 267 

approaches analyse texture and their capability to detect faulty pixels. These images are 268 
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characterized by two main features: a particularly limited pixel size, so that 269 

computational time is not a relevant benchmark property at this stage, and a simple, yet 270 

well defined, pattern. Also, the differences between “normal”, i.e. reference image, and 271 

“defective”, i.e. image (or images) for which a perturbation of the pattern was created, 272 

are well controlled, in the sense that the number and position of pixels which have been 273 

changed is known, and the entity of the disturb is enough to obtain simulated test 274 

images which are not too similar to their reference image. In spite of the simplicity of 275 

this simulated case, the information which can be acquired from the analysis with both 276 

approaches is interesting to better understand how the two methods under comparison 277 

work, and the conclusions which can be drawn are helpful and can be extended, as 278 

shown in the next section where real images are presented and dealt with, to cases of 279 

higher complexity. 280 

The set is composed by three binary images, as reported in Figure 4, of pixel size 32 × 281 

32. Figure 4 “SimSetA” reports the “normal” (reference) image, on the basis of which 282 

an alternation pattern has been generated. In this case, the squares which alternate in 283 

both image directions to give a chequered pattern have a dimension of 8 × 8 pixels: 284 

starting from upper left corner and moving over columns dimension, a white (1’s) 8 × 8 285 

pixel square is alternated to a black (0’s) 8 × 8 pixel square, and the same alternated 286 

pattern is repeated over the rows dimension. Starting from this image, two changes in 287 

pattern were produced, leading to two “defective” (test) images. Figure 4 “SimSetB” 288 

shows an overlying irregular shape which extends from the diagonal to the lower left 289 

part of the image: for this figure, a total of 55 pixels have been inverted in value (from 1 290 

to 0 or from 0 to 1) over the total of 32 × 32 = 1024 pixels. Figure 4 “SimSetC” shows 291 

another change in the pattern, this time according to a regular shape which is applied on 292 
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top of each of the 8 × 8 pixel squares: for each of these squares, starting from the second 293 

diagonal element, a single pixel every fourth has been modified both in the rows and in 294 

the columns, thus resulting in a change of four pixels for each of the squares. For this 295 

figure, a total of 64 pixels have been inverted in value (from 1 to 0 or from 0 to 1) over 296 

the total of 32 × 32 = 1024 pixels.  297 

3.2 Real Images datasets  298 

To further explore the performance of the method proposed in this work and compare it 299 

to the results of the ct-MIA approach, additional datasets have been taken into account, 300 

belonging to different applicative contexts, tiles and bread production, respectively. In 301 

both cases, the control of the final product undergoes visual inspection, while the 302 

datasets differ as for image dimensions and number of channels.  303 

3.2.1 Tiles  304 

These datasets come from a production of tiles of marble-like materials for surface 305 

coverage: all the cases share a common issue, that is presenting product samples which 306 

do not comply to a strict definition of “normal” images, characterized, for instance, by a 307 

precise colour shade or by the absence of defects such as spots and scratches. Therefore, 308 

it is necessary to develop a method, complementary or alternative to visual inspection, 309 

which is able to: a) recognize the presence of a defectiveness when a new tile is 310 

compared to the reference one(s); b) indicate the kind of defectiveness (e.g. colour 311 

shade and/or presence of unwanted changes in surface pattern); c) locate on the surface 312 

the position of the defect in order to obtain an enhanced perception of the same, so that 313 

its visualization and recognition by the operator is made easier. Samples from two 314 

different products were considered with different degree of irregularity of the pattern in 315 
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the defective tiles. They both consists of RGB images of dimensions are 256 × 256 316 

pixels (Figure 5).  Figure 5a reports dataset 1: Blanco Zeus, from now on referred to as 317 

BZdataset, which is composed by three reference images (BZN01, BZN02 and BZN03), 318 

and three images of tiles showing defects (BZD01, BZD02, and BZD03). This kind of 319 

tile shows a mostly homogeneous shade of gray all over its surface, so that defects (as 320 

for instance white or dark spots and scratches) do not usually present particularly high 321 

difficulty of detection also by visual inspection. Figure 5b reports dataset 2: Blanco 322 

Norte, from now on referred to as BNdataset, which is composed by three reference 323 

images (BNN01, BNN02 and BNN03), and three images of tiles showing defects 324 

(BND01, BND02, and BND03). In this case, the tile main colour is gray, but the surface 325 

is characterized by an inhomogeneous distribution of darker spots, in a grainy structure, 326 

which makes quite difficult to detect the presence of defectiveness, both when 327 

represented by darker and paler areas. 328 

3.2.2 Bread 329 

This data set comes from industrial production of bun bread, where a digital scanner is 330 

already used to automatically assess defects concerning mainly bun dimensions, while 331 

surface defectiveness, such as dark spots, blisters, and pale areas is still evaluated by 332 

visual inspection of expert personnel. These defects arise from different causes, some of 333 

which not perfectly known, and are also often difficult to be detected by RGB online 334 

cameras. Thus, a feasibility study has been undertaken29 by acquiring offline 335 

multispectral images, covering the UV-visible range (from 430 to 700 nm, 10 channels) 336 

and the short-wavelength NIR range (from 850 to 970 nm, 8 channels), which can 337 

improve the acquisition of information on bread quality, combining spectral (NIR may 338 

represent also a “chemical signature”) and textural information. The whole data set has 339 
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been analysed by WT-MIA (DWT scheme) approach and described in detail in ref. 33 340 

while here a subset of images has been analysed in order to discuss comparatively the 341 

performance of WT-MIA (DWT and SWT) and ct-MIA . 342 

The raw images were cropped to remove the distortion effect of the round bun shape, 343 

and background and noise were removed via preliminary wavelet analysis29, finally 344 

giving images of dimensions of about 387 x 420 pixels for 18 channels. Here two non-345 

defective images (N01, used as reference, and N02) and two defective ones (D04 and 346 

D07) are analysed, shown in Figure 6. 347 

 348 

4. RESULTS AND DISCUSSION 349 

4.1 Artificial Images datasets 350 

All the three images (SimSetA, SimSetB and SimSetC) have been treated according to 351 

the same Feature Enhancement step, by considering: 352 

- Spatial Shifting, colour-textural MIA (ct-MIA) with window size parameter w = 353 

1 354 

- Wavelet Decomposition (WT-MIA) by using a Daubechies 1 (db1) at 355 

decomposition level L = 1, both DWT and SWT.  356 

The Feature Enhancement step gave a Feature Matrix of dimensions I = 900 rows 357 

(reduction from 32 x 32 to 30 x 30 is necessary to cope with borders) and 9 columns for 358 

the ct-MIA approach and I = 1024 rows x 4 columns for the WT-MIA approaches.  359 

SimSetA was used as the reference set, upon which for the ct-MIA approach a Principal 360 

Component Analysis model was obtained after mean centring of the Feature Matrix. 361 
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Figure 7 reports the PCA results from left to right in the order scores image SimSetA, 362 

loadings, projected scores images SimSetB and SimSetC (in the order PC1 to PC4 from 363 

top to bottom). PC1 captures, for the reference (“normal”) image both the difference in 364 

grey intensity value (colour) and the variation in pattern (texture) when passing from the 365 

pixels having zero value to pixels with value one, i.e. it shows the change of value when 366 

moving along the borders from one square to another, where pixel values invert, leading 367 

to a “blurring” effect of the borders. This is the expected effect since ct-MIA window of 368 

one (which is actually 3 × 3 pixels) moves pixel by pixel on the image structure, which 369 

is made of 16 squares of dimensions 8 × 8.   All features contribute similarly to the PC1 370 

loadings since the pattern change takes place in all directions. Thus, PC1 works as an 371 

average grey scale image, which in fact extracts out the spectral information (we have 372 

no other source of spectral info that a single gray scale channel). The following PCs 373 

capture only the borders effects, i.e. only the frame around the squares are visible in the 374 

scores images, and by inspecting the loadings it is possible to understand the directions 375 

of the pattern variation, e.g. to PC4 the features accounting for diagonal shift do not 376 

contribute.  377 

When the Feature Matrix corresponding to SimSetB and SimSetC are projected onto 378 

this model, the same chequered pattern is correctly reproduced (Figure 7), but the 379 

changes in pixel correlations due to the small scale modifications of its regularity 380 

produce a large blurred area, which roughly encompasses the whole shape of the 381 

differences but extends further with respect to the faulty pixels, i.e. an area of about 3×3 382 

pixels around each defective pixel as it is detailed in the following text. This is due to 383 

the fact that the perturbation, although being well defined (in particular for SimSetC) to 384 
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a small number of pixels, influences the neighbouring correlation structure of all the 385 

pixels, which are contained by the moving window.  386 

In a monitoring context the defective images with respect to the reference one/s can be 387 

identified by the Hotelling-T2 and squared residuals (RSS, SPE or Q) multivariate 388 

control charts by using the percentage of pixels beyond control limits16. However, in 389 

this case being the images binary simply the pixel by pixel difference of the residuals 390 

sum of squares (RSS) of the test images with respect to the reference image (NOC) can 391 

be used. Both the RSS from a one or a four components PCA model are suitable to 392 

depict the faulty pixels for SimSetB and SimSetC, but also an area of about 3 x 3 393 

around each faulty pixel will show up differing in RSS values with respect to NOC 394 

(Figure S2, supplementary material). This can be expected on the basis of the 395 

considerations made above on the neighbouring pixels correlation structure. 396 

In the WT-MIA both decomposition scheme DWT and SWT have been applied, 397 

considering the simulated pattern, i.e. inversion of the binary value of some not 398 

consecutive pixels, db1 seems an appropriate filter. The feature matrix, holding the four 399 

decomposition blocks CA, CH, CV and CD (reconstructed only in DWT case), already 400 

captures the texture pattern, as highlighted in Figure 8 (DWT) and Figure 9 (SWT) 401 

where the sub-images corresponding to each block of the DWT and SWT 402 

decomposition of SimSetA and SimSetB are reported. This is a first difference with 403 

respect to ct-MIA approach where the feature matrix holds just the shifted version of the 404 

raw image in all possible neighbouring direction (as shown in Figure S1, supplementary 405 

material) and thus PCA (in general a multivariate decomposition technique) is needed to 406 

reveal the texture pattern. Further, in this case with only one reference image and one 407 
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channel the feature analysis step by PCA is not needed at all (the decomposition blocks 408 

are orthogonal).  409 

In the DWT the Approximation Block is the only one which carries the structural 410 

information of image SimSetA (Figure 8, top). This is explainable by considering that 411 

the db1 filter is of length two, thus operates like a window of pixel size 2 × 2 which 412 

moves at steps of one, and due to the down-sampling scheme of DWT only one 413 

coefficient every two is retained. Thus, since the binary values change every 8 x 8 414 

pixels, there is no blurring effect at the squares edges; also the coefficients in all the 415 

other decomposition blocks are zeros (Figure 8, top). On the contrary, the presence of 416 

deviations in the two test images, related to “sharper” structures i.e. alternating by one 417 

pixel, is well captured by all decomposition blocks (Figure 8, middle). In particular 418 

Approximation (CA) shows both intensity change and texture, while Detail blocks 419 

capture horizontal (CH), vertical (CV) and diagonal (CD) neighbouring pixels 420 

alternation of binary values. Thinking of a monitoring context, in this case the defects 421 

can be depicted by the difference between the decomposition sub-images of the 422 

reference and test image, as shown in Figure 8, bottom; to this aim, considering the 423 

specific pattern of the defects in SimSetB CA and CD are the most suitable blocks. 424 

Figure 9 shows the results of the SWT decomposition. Similar considerations can be 425 

drawn. The only difference is that now the effect of the variation in the binary values of 426 

the pixels at the edges of the 8 x 8 pixels squares are visible (similarly to ct-MIA). This 427 

is well explainable by the fact that in SWT down-sampling of the coefficients is not 428 

operated (to be noticed that the window size and the moving step remain the same). 429 

Analogous considerations hold for SimSetC decomposition (figure not shown for sake 430 

of brevity). 431 
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The behaviour of a larger filter, i.e. Daubechies 2 (db2) of length 4, has been also 432 

inspected by using the SWT scheme on SimSetB (Figure S3, supplementary materials). 433 

The db2 operates as a 4 × 4 window moving at steps of one pixel: the result is similar to 434 

the one obtained by ct-MIA, leading to a blurring of the borders among squares and 435 

around the area (of wideness about 3 x 3) which is interested by the defect.  436 

Finally in Figure 10 the performance of ct-MIA and WT-MIA (SWT, db1) are compared 437 

in terms of capability of detection and localization of the faulty pixels for SimSetB 438 

(Figure 10a) and SimSetC (Figure 10b), respectively. The detection is good in both 439 

approaches being all the faulty pixels correctly identified, the difference is in the 440 

blurring area, which is strictly connected to the wideness of the analysing window, i.e. 3 441 

x 3 for ct-MIA and 2 x 2 for db1. This is a general known advantage of WT of being 442 

more efficient for feature enhancement because of the availability of several filter 443 

shapes and length compared to spatial shifting approach. 444 

 445 

4.2 Real Images datasets  446 

4.2.1 Tiles  447 

Several wavelet filters, belonging to Daubechies (filter length from 1 to 5), Symlet 448 

(filter length from 1 to 5), Coiflet (filter length form1 to 3) and biorthogonal (1.3 and 449 

1.5) families were tested (decomposition levels from 1 to maximum), by using an 450 

approach as described in ref. 30.  For both BZdataset and BNdataset Daubechies filter 451 

length 1 (db1 or Haar) resulted among the best performing wavelet filter and we report 452 

results relative to this filter, at decomposition level L = 3. While for the ct-MIA 453 

approach window size 1 and 2 were considered, better performance was obtained with w 454 
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= 1 for BZdataset and w = 2 for BNdataset. This lead, considering the three RGB 455 

channels, to an unfolded feature matrix of size 65536 × 27 (w = 1), or 65536 x 75 (w = 456 

2) in the ct-MIA case, and 65536 × 36 in the WT-MIA case.  457 

In both datasets, a single reference image has been used to calibrate the PCA models 458 

and build the Hotelling’s T2 and Q statistics (control charts). Autoscaling pretreatment 459 

gave for both datasets and approaches the best results. 460 

The choice of model dimensionality, i.e. number of principal components, in this 461 

context cannot be automated, i.e. assessed on the basis of a priori fixed criterion, since it 462 

is problem dependent40. General guidelines that we adopted in this work, is to inspect 463 

how spatial features of the image are accounted for in scores images, and to scree-plot 464 

to ensure the systematic variation is modelled. Further, when enough defects images are 465 

available, to preserve some for model validation, few can be used to see which are the 466 

components that maximize detection capacity. It is worth noticing that minimizing the 467 

squared prediction error in cross validation, as most used in PCA modelling, is not 468 

appropriate in this context, because it is not necessarily related to the capability of fault 469 

detection which is the objective pursued in process monitoring. 470 

Image BZN01 has been used as reference NOC image for BZdataset. The PCA model 471 

dimensionalities were 4 PC’s for both approaches ct-MIA (captured variance 77%) and 472 

WT-MIA (captured variance 44%), which correspond to a number of components each 473 

explaining more than 1% variance (ct-MIA) and to the first minimum in the scree-plot, 474 

i.e. number of components vs. eigenvalues plot, (WT-MIA), respectively. All the 475 

remaining images of the dataset were projected onto the models and distances were 476 

calculated. Table 1 reports the results in terms of percentage of pixels scoring above the 477 
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critical limits, which were chosen on the basis of the reference image by obtaining the 478 

99th percentile values of its distances distributions. Both models are able to accept as 479 

normal behaving images BZN02 and BZN03, which are actually defectless, and 480 

indicate, especially in terms of T2 distance, the presence of anomalies on all of the three 481 

defective tiles, BZD01, BZD02 and BZD03; albeit the results are quite similar, a higher 482 

percentage of pixels above the critical limits is detected by the WT-MIA approach. Both 483 

approaches show similar results, although the WT-MIA identification of defects appears 484 

better defined, especially for image BZD02 where more clusters of pixels are identified, 485 

which are in particular connected to the presence of darker spots on the surface of the 486 

tile, especially when using SWT (Figure S4, supplementary Material). SWT monitoring 487 

results are also shown on Table 1 and are very close to DWT one. 488 

Interpretation of the features enhancement step can be gathered by loadings analysis:  489 

ct-MIA loadings are shown in Figure 11 (left) both as bar plot (top left) and refolded 490 

(bottom left) in the corresponding position of neighbours window (the central pixel is 491 

the pixel itself). As usual  PC1 is gathering an (approximately) average colour effect (all 492 

loadings have the same sign). Moreover, it can be observed that colour intensity varies 493 

left to right for red and blue channels, while green is more uniform; similarly does PC1 494 

of WT-MIA (bar plot, top right, and decomposition sub-images, bottom right), to which 495 

contribute the Approximations of all levels and channels (Approximations in fact act as 496 

an averaging tool at each decomposition level, hence extracting out the same 497 

phenomenon as ct-MIA).  From the WT-MIA Approximations sub-images (Figure 11, 498 

bottom right) it is also evident the varying intensity left to right, especially for 499 

decomposition levels two and three (the green channel is uniform at level 1). This effect 500 

may be due to illumination and eventually (but was not the aim here) it could be easily 501 
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removed in WT domain, e.g. by suppressing level 2 or 3 approximations as data pre-502 

treatment29. 503 

PC2 and PC3 show the main contrast in horizontal and vertical directions, respectively 504 

both for ct-MIA and WT-MIA (for PC2, the Horizontal details of level 3 for all channels 505 

are the most relevant, and for PC3 the vertical details, level 1 opposite to level 3). PC4 506 

shows a mixed pattern, loadings sign and values vary in all direction for ct-MIA and for 507 

PC4 in WT-MIA the vertical detail of level 2 is the most relevant. 508 

It can be noticed that the possibility to analyse the images at different resolution (the 509 

different decomposition levels) enhances the color-textural pattern recovery, with 510 

respect to ct-MIA where only the neighbouring window size can be varied (that in WT-511 

MIA can roughly corresponds to the filter length/family) 512 

Table 1 to be inserted about here 513 

As reference NOC image for BNdataset, image BNN01 has been used, the PCA model 514 

dimensionalities were 2 PC’s for both approaches ct-MIA (variance captured 39%) and 515 

WT-MIA (variance captured 26%), which correspond to the first minimum in the scree-516 

plot. All the remaining images of the dataset were projected onto the models and 517 

distances were calculated. Table 2 reports the results in terms of percentage of pixels 518 

scoring above the critical limits, which were chosen on the basis of the reference image 519 

by obtaining the 95th percentile values of its distances distributions. 520 

 Table 2 to be inserted about here 521 

Neither of the models does not appear particularly satisfactory, since the normal 522 

behaving images BNN02 and BNN03, which are defectless, appear to have Q distances 523 

higher than 5%. The defective tiles, BND01 and BND03 appear above limits for both 524 
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models, according to T2 distance statistic. On the contrary, defective BND02 is only 525 

detected by WT-MIA, T2 distance, albeit close to the limit. 526 

By considering the T2 distance values reshaped in the original pixel domain it is 527 

possible to identify the groups of pixels which correspond to the passing of the critical 528 

values. Figure 12a) and 12b) shows the comparison of defective images and the normal 529 

images, with the corresponding distance images for ct-MIA and WT-MIA (DWT). The 530 

WT-MIA identification of defects appears better defined, while ct-MIA seems to find 531 

less clusters of pixels and more darker, well separated, spots all over the surface. 532 

In a monitoring context, the results of Table 2 would indicate products BNN02 and 533 

BNN03 as defective (false negatives) and shed doubt on rejecting or not product 534 

BND02. On the other hand the possibility to look at above limits T2 distance images (or 535 

in general to the images corresponding to the above limit statistic) may clarify if defects 536 

are present or not. In particular, this is a case were the defects are mainly due to a non 537 

uniform distribution of pixels with a given colour content and texture that if normally 538 

distributed on the image, as in the case of BNN01, BNN02 and BNN03, would be 539 

acceptable. In this situation, it may be useful to calculate and represent the local 540 

entropy41 of the scores images, were the defective area are region of low entropy 541 

encircled by high entropy values, as shown in Figure 13. 542 

WT-MIA model based on SWT in this case yielded lower performance. 543 

 544 

4.2.2 Bread 545 

The Daubechies 2 (db2) wavelet filter was used up to decomposition level 5 and both 546 

DWT and SWT decomposition schemes. The feature data matrix results of dimension 547 
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Ipixels x 360 (4 blocks x 5 levels x 18 channels) is obtained. In ct-MIA both a window 548 

size of 1 (162 features) and 2 (450 features) were tested. Since results were similar we 549 

will discuss the ones corresponding to w = 1, which gave a better defects localization. 550 

The reference PCA model for non-defective image has been calculated by considering 551 

as feature matrix the one obtained for N01 image (Figure 6). The PCA model refers to 552 

mean centred data and model dimensionalities were 6 PC’s for both approaches ct-MIA 553 

(variance captured 66%) and WT-MIA (variance captured 52%), which correspond to 554 

reaching the plateau in the scree-plot. We tested also a model made on two NOC images 555 

but the results were analogous. Then, Q and T2 statistics were computed, and the critical 556 

limits for each of the two statistics were computed on the basis of the 99th percentile. 557 

The total percentage of pixels exceeding the critical limits is reported in Table 3. For all 558 

approaches a clear detection of the two defective images can be obtained, with relevant 559 

percentages of pixels above the critical limits for both distances, as well as N02 being 560 

defectless.  561 

However, when the Q and T2
 values above the reference limits are refolded to the 562 

original pixel x pixel domain to locate the defective areas on the image (Figure 14), 563 

differences among the approaches emerge. ct-MIA is less efficient to detect the 564 

defective area for D07 and for D04, it is also worth noticing that ct-MIA provides these 565 

results when applied on the pretreated images, i.e. after denoising and background 566 

removal with WT; otherwise it detects as faulty only pixels on the borders of the image. 567 

DWT seems more efficient than SWT to locate the faulty pixels, notwithstanding the 568 

same wavelet filter and resolution has been used.  569 

Now focusing on the WT-MIA DWT results, it is worth noticing that both stains, which 570 

are also easy to detect visually, but as well blisters and tiny scratches could be detected. 571 
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Moreover, we can assess which features are responsible of the defects by inspecting the 572 

T2-contributions, which can be interpreted in terms of the spectral channels. In 573 

particular, Figure 15 shows the T2-contributions for some of the blisters. To make the 574 

representation clearer distinct plots are made for each decomposition block, and each 575 

decomposition level is represented as a distinct line, so that the x-axis reports just the 576 

channels (wavelengths): the main contributions are from approximations decomposition 577 

levels 1-3, interestingly besides the visible channels some of the NIR ones (11th to 18th 578 

corresponding to the range from 850 to 970 nm at 20 nm resolution) contribute, which 579 

point to carbohydrate, fat and water bands. This may indicate a segregation of some of 580 

the ingredients on surface spots where blisters appear. 581 

 582 

CONCLUSIONS 583 

The artificial image datasets allowed highlighting the distinct way in which textural 584 

information can be recovered by the ct-MIA and WT-MIA approaches, both are efficient 585 

in depicting the salient pattern of the images and the area were the defects are located. 586 

The main distinctive characteristics of the two methods are: 587 

 i) the feature matrix obtained by ct-MIA holds just the shifted version of the raw image 588 

thus always requires coupling to a multivariate decomposition technique to highlight 589 

textural patterns while the feature matrix obtained by WT-MIA already capture it; 590 

ii) in general WT-MIA is more efficient for feature enhancement because of the 591 

availability of several filter shapes and length compared to the spatial shifting approach 592 

where only the window size can be varied. 593 
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The analysis of the tiles data sets reveals a similar behaviour of the two considered 594 

approaches although identification of defects appears better defined with the WT-MIA 595 

approach. Also both decomposition schemes DWT and SWT show similar performance. 596 

In a monitoring context it is worth noticing that when the defects are due to a non 597 

uniform distribution of pixels, whose colour content and texture if normally distributed 598 

on the image would be instead acceptable, further image analysis tools (e.g. local 599 

entropy or any other to assess homogeneity or heterogeneity of pixels distribution), on 600 

the beyond Q or T2 limits images, are required to avoid false negative to be detected. 601 

In the analysis of multispectral images (bread data set) the WT-MIA approach 602 

performed better and it was possible to highlight the full benefit of the proposed 603 

approach from both points of view of correct defects identification/location and 604 

interpretation in terms of spectral features. 605 

A further remark is that the proposed WT-MIA approach is rather straightforward 606 

requiring only the Feature Extraction (Enhancement) and Reduction (Analysis) steps, as 607 

in ct-MIA; one or more NOC images can be analysed at the same time and assembled in 608 

the same WT features matrix which is organized pixels wise, thus allowing defect 609 

localization directly. Images denoising and background removal can be as well 610 

accomplished at WT decomposition stage.  611 

The proposed WT-MIA approach can be as well applied to hyperspectral images, the 612 

bread data set is an example limited to eighteen channels. However, the computational 613 

costs will be a limiting factor and further strategies could be considered to render it 614 

more efficient, work is in progress in this direction.  615 

  616 
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Table 1. BZDataset. Percentage of pixels above Hotelling’s T2 and Residuals Q 720 

distances critical limits based on normal image BZN01 99th percentile 721 

 722 

  723 

 
ct-MIA 

 w = 1, 4 PCs 

WT-MIA  (DWT) 

Daubechies 1, level = 3  

4 PCs  

WT-MIA (SWT) 

Daubechies 1, level = 3  

4 PCs 

 T2 distance Q distance T2 distance Q distance T2 distance Q distance 

BZN01 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 

BZN02 0.6% 0.6% 0.6% 0.7% 0.7% 0.6% 

BZN03 0.9% 0.9% 0.8% 0.7% 0.8% 0.7% 

BZD01 3.6% 1.9% 5.1% 2.8% 4.1% 3.0% 

BZD02 1.6% 0.7% 2.5% 0.7% 1.9% 0.9% 

BZD03 1.9% 0.9% 2.4% 0.7% 2.1% 0.8% 
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Table 2. BNDataset. Percentage of pixels above Hotelling’s T2 and Residuals Q 724 

distances critical limits based on normal image BNN01 95th percentile 725 

 
ct-MIA  

w = 2, 2 PCs 

WT-MIA (DWT) 

Daubechies 1, level = 3  

2 PCs 

 T2 distance Q distance T2 distance Q distance 

BNN01 5.0% 5.0% 5.0% 5.0% 

BNN02 5.0% 6.0% 4.9% 5.7% 

BNN03 4.9% 6.6% 4.4% 6.5% 

BND01 6.2% 3.8% 6.6% 4.1% 

BND02 4.5% 2.5% 5.3% 2.5% 

BND03 5.2% 4.3% 6.3% 4.7% 

 726 

 727 

 728 

  729 
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Table 3.  Bread Dataset. Percentage of pixels above Hotelling’s T2 and Residuals Q 730 

distances critical limits based on normal image N01 99th percentile 731 

 
ct-MIA  

w = 1, 6 PCs 

WT-MIA (DWT) 

Daubechies 2, level = 5  

6 PCs 

WT-MIA (SWT) 

Daubechies 2, level = 5  

6 PCs 

 T2 distance Q distance T2 distance Q distance T2 distance Q distance 

N01 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 

N02 0.6% 1.0% 0.5% 0.7% 0.9% 0.2% 

D04 2.7% 3.4% 3.3% 3.2% 11.9% 11.4% 

D07 4.3% 3.0% 4.6% 4.3% 15.7% 14.3% 

 732 

 733 

 734 

 735 


