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Abstract

The contact interaction between elastic solids is one of the most complex phenomena
in the computational mechanics research field. The solution of such problem requires
robust algorithms to treat the geometrical non-linearities characteristic of the contact
constrains. The Finite Element Method (FE) has become one of the most popular
options for the mechanical components design, including the solution of contact prob-
lems. In this method the computational cost of the generation of the discretization
(mesh generation) is directly related to the complexity of the analysis domain, namely
its boundary. This complicates the introduction in the numerical simulations of com-
plex surfaces (for example NURBS), which are being increasingly used in the CAD
industry.

This thesis is grounded on the Cartesian grid Finite Element Method (cgFEM).
In this methodology, which belongs to the family of Immersed Boundary methods,
the problem at hand is extended to an approximation domain which completely em-
beds the analysis domain, and its meshing is straightforward. The decoupling of the
boundary definition and the discretization mesh results in a great reduction of the
mesh generation’s computational cost. Is for this reason that the cgFEM is a suitable
tool for the solution of problems that require multiple geometry modifications, such
as shape optimization problems or wear simulations.

The cgFEM is also capable of automatically generating FE models from medical
images without the intermediate step of generating CAD entities. The introduction
of the contact interaction would open the possibility to consider different states of the
union between implant and living tissue for the design of optimized implants, even in
a patient-specific process.

Hence, in this thesis a formulation for solving 3D contact problems with the cgFEM
is presented, considering both frictionless and Coulomb’s friction problems. The ab-
sence of nodes along the boundary in cgFEM prevents the enforcement of the contact
constrains using the standard procedures. Thus, we develop a stabilized formulation
that makes use of a recovered stress field, which ensures the stability of the method.
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The analytical definition of the contact surfaces (by means of NURBS) has been in-
cluded in the proposed formulation in order to increase the accuracy of the solution.

In addition, the robustness of the cgFEM methodology is increased in this thesis in
two different aspects: the control of the numerical problem’s ill-conditioning by means
of a stabilized method, and the enhancement of the stress recovered field, which is
used in the error estimation procedure.

The proposed methodology has been validated through several numerical exam-
ples, showing the great potential of the cgFEM in these type of problems.
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Resumen

La interacción de contacto entre sólidos deformables es uno de los fenómenos más
complejos en el ámbito de la mecánica computacional. La resolución de este problema
requiere de algoritmos robustos para el tratamiento de no linealidades geométricas.
El Método de Elementos Finitos (MEF) es uno de los más utilizados para el diseño
de componentes mecánicos, incluyendo la solución de problemas de contacto. En
este método el coste asociado al proceso de discretización (generación de malla) está
directamente vinculado a la definición del contorno a modelar, lo cual dificulta la
introducción en la simulación de superficies complejas, como las superficies NURBS,
cada vez más utilizadas en el diseño de componentes.

Esta tesis está basada en el Cartesian grid Finite Element Method (cgFEM).
En esta metodología, encuadrada en la categoría de métodos Immersed Boundary,
se extiende el problema a un dominio de aproximación (cuyo mallado es sencillo
de generar) que contiene al dominio de análisis completamente en su interior. Al
desvincular la discretización de la definición del contorno del problema se reduce
drásticamente el coste de generación de malla. Es por ello que el método cgFEM es
una herramienta adecuada para la resolución de problemas en los que es necesario
modificar la geometría múltiples veces, como el problema de optimización de forma o
la simulación de desgaste.

El método cgFEM permite también crear de manera automática y eficiente mod-
elos de Elementos Finitos a partir de imágenes médicas. La introducción de restric-
ciones de contacto habilitaría la posibilidad de considerar los diferentes estados de
integración implante-tejido en procesos de optimización personalizada de implantes.

Así, en esta tesis se desarrolla una formulación para resolver problemas de contacto
3D con el método cgFEM, considerando tanto modelos de contacto sin fricción como
problemas con rozamiento de Coulomb. La ausencia de nodos en el contorno en
cgFEM impide la aplicación de métodos tradicionales para imponer las restricciones
de contacto, por lo que se ha desarrollado una formulación estabilizada que hace uso
de un campo de tensiones recuperado para asegurar la estabilidad del método. Para
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una mayor precisión de la solución, se ha introducido la definición analítica de las
superficies en contacto en la formulación propuesta.

Además, se propone la mejora de la robustez de la metodología cgFEM en dos
aspectos: el control del mal condicionamiento del problema numérico mediante un
método estabilizado, y la mejora del campo de tensiones recuperado, utilizado en el
proceso de estimación de error.

La metodología propuesta se ha validado a través de diversos ejemplos numéri-
cos presentados en la tesis, mostrando el gran potencial de cgFEM en este tipo de
problemas.
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Resum

La interacció de contacte entre sòlids deformables és un dels fenòmens més com-
plexos en l’àmbit de la mecànica computacional. La resolució d’este problema requerix
d’algoritmes robustos per al tractament de no linealitats geomètriques. El Mètode
dels Elements Finits (MEF) és un dels més utilitzats per al disseny de components
mecànics, incloent la solució de problemes de contacte. En este mètode el cost as-
sociat al procés de discretització (generació de malla) està directament vinculat a la
definició del contorn a modelar, la qual cosa dificulta la introducció en la simulació
de superfícies complexes, com les superfícies NURBS, cada vegada més utilitzades en
el disseny de components.

Esta tesi està basada en el Cartesian grid Finite Element Method (cgFEM). En
esta metodologia, enquadrada en la categoria de mètodes Immersed Boundary, s’estén
el problema a un domini d’aproximació (el mallat del qual és senzill de generar)
que conté al domini d’anàlisi completament en el seu interior. Al desvincular la
discretització de la definició del contorn del problema es reduïx dràsticament el cost
de generació de malla. És per això que el mètode cgFEM és una ferramenta adequada
per a la resolució de problemes en què és necessari modificar la geometria múltiples
vegades, com el problema d’optimització de forma o la simulació de desgast. El mètode
cgFEM permet també crear de manera automàtica i eficient models d’Elements Finits
a partir d’imatges mèdiques. La introducció de restriccions de contacte habilitaria la
possibilitat de considerar els diferents estats d’integració implant-teixit en processos
d’optimització personalitzada d’implants.

Així, en esta tesi es desenvolupa una formulació per a resoldre problemes de con-
tacte 3D amb el mètode cgFEM, considerant tant models de contacte sense fricció
com a problemes amb fregament de Coulomb. L’absència de nodes en el contorn en
cgFEM impedix l’aplicació de mètodes tradicionals per a imposar les restriccions de
contacte, per la qual cosa s’ha desenvolupat una formulació estabilitzada que fa ús
d’un camp de tensions recuperat per a assegurar l’estabilitat del mètode. Per a una
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millor precisió de la solució, s’ha introduït la definició analítica de les superfícies en
contacte en la formulació proposada.

A més, es proposa la millora de la robustesa de la metodologia cgFEM en dos
aspectes: el control del mal condicionament del problema numèric per mitjà d’un
mètode estabilitzat, i la millora del camp de tensions recuperat, utilitzat en el procés
d’estimació d’error.

La metodologia proposada s’ha validat a través de diversos exemples numèrics
presentats en la tesi, mostrant el gran potencial de cgFEM en este tipus de problemes.
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Part I

Thesis report





Chapter 1

Introduction

1.1. Motivation

The contact phenomenon is present in almost all mechanical or structural sys-
tems. The forces appearing when two or more solids become in contact are the
basic principles considered in many classical mechanical applications such as gear or
clutch transmissions, wheel-rail and tyre-road systems, all kinds of interference fits
(i.e. bearing-shaft), impact dynamics and wear problems. The contact interaction is
relevant not only in purely industrial applications but also in relatively new fields like
biomedical engineering. The applications in this context are very interesting because
of their potential for high impact for the society. One example of contact in this field
is the prosthetic device design strategy, where the contact interaction between living
tissues and implant can be used to analyze the performance of the implant and to
optimize its shape for a certain group of patients or even to obtain patient-specific
optimum designs.

The solution of contact problems is highly challenging due to the different non-
linearities that must be considered. First, the contact area when solids are in equilib-
rium is not known a priori and depends on the solution of the problem. Moreover, if
frictional contact is considered it is not possible to use the classical approach of min-
imizing an energy function, since the frictional contact force is non-conservative, this
is, the work of such force depends on the path followed. Finally, in contact problems
is frequent to consider other sources of non-linearity, including large displacements
and rotations, finite strains or hyperelastic and plastic material behavior. Although
there exist analytical solutions for a few academic problems, the solution of com-
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1. Introduction

plex contact problems is nowadays obtained with numerical methods such as discrete
methods, boundary elements and the finite element method. Only the latter will be
considered in this Thesis.

The Finite Element Method (FEM) [1] has become the standard method for solv-
ing mechanical problems in general, and contact problems between elastic solids in
particular. The commercial FEM implementations include a contact module for solv-
ing such problems. However, it still remains a challenge to find a robust and efficient
strategy suitable for any application. In the standard version of the method, the
same discretization is used for both the approximation of the solution and the anal-
ysis domain representation, including its boundary. An immediate consequence of
this is the fact that the complexity of the FEM mesh is directly linked to that of the
analysis domain. Furthermore, in the case of contact problems the loss of smoothness
in the discretized surfaces can affect the accuracy of the solution or compromise the
robustness of the contact algorithm.

To reduce the cost and complexity associated to the mesh generation process,
several methods, alternative to the standard FEM, have been developed in recent
years under the names of Immersed Boundary, Fictitious domain or Embedded do-
main methods [2]. All of them share a common idea: the choice of an auxiliary
domain that completely covers the analysis domain and is easier to mesh. Among
these methods we find the Cartesian grid Finite Element Method (cgFEM) presented
in [3] for 2D linear elasticity and extended to 3D problems in [4]. The method makes
use of a hierarchical data structure based on a set of Cartesian grids with h-adaptive
refinement. This structure eases the data reuse between calculations, the projection of
information through the refinement process, the introduction of parallel computation
and, in conclusion, results in a high efficiency in terms of computational cost. The
cgFEM is able to consider the CAD definition of the analysis boundary (by means of
NURBS or T-Splines) in the numerical integration, and has been also extended for the
automatic creation of FE models from medical images [5], exploiting the topological
similarities between the Cartesian grids and the voxel-based structure present in 3D
images.

These features seem promising for the solution of contact applications such as
patient specific implant-tissue interaction simulation and contact wear simulations.
The generation of the FEM model represents the bottleneck in terms of human time
in both cases, first due to the complexity involving the model generation from an
image, and second because of the need to modify the discretization when the analysis
domain changes. Furthermore, it is straightforward that the availability of the CAD
definition of the boundaries would allow more accurate measures of the gap between
bodies in contact, which is of great interest when solving contact problems.
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1.2. Objective

1.2. Objective

The aim of this thesis is to develop a methodology for the solution of 3D contact
problems within the cgFEM framework. In the context of this thesis we will consider
frictionless and frictional problems, assuming a Coulomb’s model for the latter case.
We will also take into account small and large slidings, as well as linear elastic and
hyper-elastic material behavior. Following this objective, two partial objectives are
defined:

1. Develop a formulation to solve 3D frictional contact problems using
the Cartesian grid Finite Element Method. The use of immersed bound-
ary (IB) methods entails some shortcomings, one of them being the complexity
to enforce Dirichlet boundary conditions due to the lack of nodes located on the
boundary. This also concerns the enforcing of contact constrains, thus a special
treatment of the boundary conditions is needed in the formulation. These is-
sues are addressed in papers A and B. The cgFEM enables the inclusion of the
NURBS boundaries in the definition of the contact kinematic variables such as
the gap between bodies, its implementation and influence study is presented in
papers B and C.

2. Enhance the robustness and efficiency of the 3D implementation of
the cgFEM methodology for the solution of non-linear problems using
h-adapted meshes. The robustness of the solution algorithms in contact prob-
lems is a key element due to all the different non-linearities that take part. In
the present thesis we aim to enhance the robustness and accuracy of the method-
ology in two different aspects: the reduction of the system ill-conditioning and
the enhancement of the recovered stress field.
One drawback related to IB appears when a discretization element in the mesh
contains a very small portion of material volume. This situation greatly in-
creases the ill-conditioning of the system of equations and it may cause a loss
of convergence of the solution algorithm as the mesh is refined. In paper D we
propose a stabilization strategy to keep the ill-conditioning of the system under
control.
Finally, the cgFEM includes an h-adaptive refinement strategy based on the
Zienkiewicz and Zhu error estimator and the Superconvergent Patch Recovery
technique (SPR). It is expected that the introduction of already known informa-
tion of the contact mechanics to the SPR problem might increase the accuracy
of the recovered stress field. This possibility is explored in paper E.
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1. Introduction

1.3. Outline of the thesis

This document is divided in two parts, Thesis report and Articles. Following this
brief introduction, the first part presents the state of the art in Chapter 2. A com-
plete description of the problem at hand is introduced in Chapter 3, including the
continuum and discretized contact formulation, together with some features of the
cgFEM and NURBS notation. Chapter 4 summarizes the work developed with this
Thesis, together with an illustrative application example of implant simulation. Fi-
nally, Chapter 5 contains some conclusions of the present work and proposes further
research lines.

The second part consists in a compilation of five articles that emerged from this
Thesis. Papers A, B and C have been already published in peer review journals
whereas papers D and E are currently undergoing a peer review process. All con-
tributions are presented in this document without journal editing, and each paper is
preceded by a cover page with a citation of the corresponding journal.

Paper A presents a stabilized Lagrangian formulation for 3D frictionless contact
problems. In paper B the previous contact formulation is extended to 3D frictional
contact with large sliding and finite deformations, and included in the cgFEM with
consideration of the CAD geometry through the use of NURBS. The influence of
the contact surface definition in this framework is studied in paper C. Finally, the
performance and efficiency of the developed methodology is enhanced in two different
aspects: paper D presents a stabilized method to keep the ill-conditioning of the
system of equations under control, and in paper E contact constrains are included into
the Superconvergent Patch Recovery technique to improve the accuracy of the smooth
stress field, which result in the enhancement of the error estimator and, consequently,
a more efficient h-refinement process.
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Chapter 2

State of the art

2.1. Immersed boundary FEM

The introduction of CAD tools in the design process of structural components has
allowed the use of splines, Bézier surfaces or NURBS models to define complex geome-
tries. In this context, the generation of standard body-fitted FEM meshes becomes a
critical phase of the structural analysis workflow, and it is considered to be the most
demanding task in terms of man-hours. These difficulties have encouraged part of the
scientific community to develop alternative methods in which the discretization mesh
is somehow decoupled from the analysis boundary definition.

The work by Peskin [6], related to fluid-structure interaction, is considered the
first immersed boundary approach. The first attempts in solid mechanics can be
found in the eXtended FEM (XFEM) [7,8] and the Generalized FEM (GFEM) [9]. In
both cases, enrichment functions containing already known information of the solution
are included at specific locations of the analysis domain by means of the Partition of
Unity Method (PUM) [10]. In particular, in the XFEM the cracks are embedded in the
discretization mesh and the PUM is used to add enrichment functions to numerically
represent the singular stress field around the crack tip. The main advantage of this
approach is that no re-meshing is needed when the crack tip advances.

Since then, a wide variety of methods have been developed with different names
such as Immersed Boundary, Fictitious Domain, Embedded Domain or Fixed grid
FEM. A review on these methods by Bordas et al. [2] suggests the term Finite El-
ements in ambient space to group them. Among all contributions we can cite the
Finite Cell Method (FCM) [11,12], which combines a structured cell mesh with high
order approximation basis and integration schemes to accurately capture the analysis
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2. State of the art

boundary, together with p−/hp−refinement strategies; cutFEM [13], which employs a
background mesh of tetrahedrons non-conforming with the geometry, and the Carte-
sian grid Finite Element Method (cgFEM) [3, 4] which is the basis of this thesis,
and combines the use of hierarchical structured Cartesian grids with a high order
integration scheme and low order approximation bases with h-adaptive refinement
strategies.

The common idea to all embedded domain methods is that of embedding the
analysis domain Ω in an auxiliary domain Ω

′

with a simple shape (for instance a
parallelepiped) so that its meshing is straightforward. This somehow decouples the
definition of the analysis domain from the FE discretization mesh in which the solu-
tion is approximated. The freedom in the geometry definition without increasing the
mesh complexity makes these methods very well suited for applications such as struc-
tural topology and shape optimization, where the re-meshing during the optimization
process is avoided. For example, the embedded domain approach was combined with
genetic algorithms in [14] and gradient-based algorithms in [15–17] to solve shape
optimization problems, the FCM was applied to topology optimization in [18], and in
refs. [19, 20] the cgFEM was used to solve 2D and 3D shape optimization problems.
The embedded domain methods seem also an ideal framework to solve problems in
which the geometry is given with a voxel structure, like CT scans of porous materi-
als or medical images. Applications of embedded domain methods for image-based
analysis are found in [21,22] for XFEM, using Composite Finite Elements in [23], the
FCM [24,25] and the cgFEM [5].

Since the discretization mesh is non conforming with the analysis domain, there
are some issues which are common to all embedded methods, namely the treatment
of the analysis boundary for the numerical integration and the proper enforcement
of the Dirichlet boundary conditions. The latter will be discussed in the following
section due to the similarities with the contact constrains enforcement.

Once the auxiliary domain Ω
′

is meshed, there may be elements whose nodes are
all inside the domain, thus they can be treated like standard FEM. However, the ele-
ments cut by the analysis boundaries require a special integration scheme so that only
the material part of the element is considered during the numerical integration (see
Figure 2.1). In this regard, the definition of Γ determines the quality of the geometry
approximation. There are several alternatives in the literature. The simplest method
is the construction of linear approximations using the intersections of the geometry
with the mesh edges, e.g. [13,26], which is equivalent to the isoparametric linear defi-
nition typically used in low order body-fitted meshes. A geometry error is introduced,
which can be relevant in interface problems such as contact or fluid-structure inter-
action. High order surface definitions as in [27] or the smart octrees for the FCM [28]
result in a considerably lower geometry error compared to linear approximations, at
the cost of more complex algorithms to build the integration rules. However, the
geometry error still depends on the complexity of the domain, and the consideration
of sharp features usually requires specific procedures.
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2.1. Immersed boundary FEM

Ω

Boundary element

Internal element

Ω΄

Figure 2.1: Scheme of the integration process in 2D immersed boundary methods. Internal el-
ements can be treated as standard FEM, whereas a special integration scheme is used for each
boundary element.

In recent years some standard body-fitted methods have been developed with the
aim of eliminating the geometric error associated to the mesh generation process
using the CAD definition of the analysis boundary. Among them we remark the
Isogeometric Analysis (IGA) [29] and the NURBS-enhanced Finite Element Method
(NEFEM) [30, 31]. In NEFEM the NURBS surface definition is introduced only in
the numerical integration process of the boundary elements, whereas the IGA requires
a 3D NURBS or T-Spline parametrization of the entire domain. However, the stan-
dard CAD programs used in industry only provide a parametric representation of the
boundary (B-Rep) and the 3D parametrization must be obtained by post-processing
the given model [32]. The IGA and NEFEM techniques have been combined with the
FCM [33] and cgFEM [4] respectively.

A relevant issue that is still being addressed within the IB methods is the un-
controlled ill-conditioning caused by small cuts between the discretization mesh and
the geometry, which are arbitrary [34, 35]. This problem hinders the scalability of
such methods because systems with a large number of degrees of freedom must be
solved with iterative solvers, and those solvers may lose convergence due to severe
ill-conditioning. Some works towards the reduction of the system ill-conditioning are
the penalization of the gradient jumps between boundary elements in cutFEM [13],
and the cell aggregation in [26]. In this thesis we propose a stabilized method to con-
trol the condition of the system by penalizing the solution at the nodes external to
the geometry with a smoothed displacement obtained with a local recovery technique,
while keeping the Cartesian structure of the discretization mesh. This is presented in
Paper D and section 4.3.1.

The development of accurate error estimators to assess the quality of the approx-
imated solution provided by the Finite Element method has always been a research
field of interest. In this sense, the a posteriori error estimators [36] are very useful not
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2. State of the art

only to evaluate the overall accuracy of the solution, but also to estimate the error
in quantities of interest [37] or to guide an adaptive refinement of the discretization
mesh [38].

Zienkiewicz and Zhu presented in [39] a simple error estimator (usually named ZZ-
estimator after the authors). Some adaptations of this estimator for contact problems
can be found in [40] using the global version of the ZZ-estimator and mixed with
multigrid methods in [41]. The ZZ-estimator makes use of a smooth stress field σ∗

which is usually computed using the superconvergent patch recovery technique (SPR)
[42]. After its publication, there have been attempts to increase the quality of the SPR
technique, see [43] for a detailed revision. These techniques were included in cgFEM to
guide an automatic h-adaptive refinement [44]. In section 4.3.2 and paper E we present
a modified version of the SPR technique in which the boundary equilibrium around
the contact area is weakly enforced, with the objective of increasing the accuracy of
σ∗ for contact problems solved with cgFEM.

2.2. Contact formulations with immersed

boundary methods

In the last decades contact formulations based on the mortar method [45] have
been thoroughly developed, see [46–53] to cite some. Its advantages with respect
to classical node-to-node formulations are the ability to deal with non-conforming
meshes, together with the consideration of large sliding and deformations. Further-
more, the mortar-based formulations fulfill the InfSup condition [54], thus guarantee-
ing the optimal FE convergence rate, which is the main flaw of the node-to-segment
formulations. Nevertheless, the mortar method cannot be directly implemented in the
immersed boundary framework, because the definition of a Lagrange multipliers field
that fulfills the InfSup condition is not straightforward. This problem is common for
the enforcement of both Dirichlet boundary conditions and frictionless contact con-
strains, as the latter can be seen as a non-linear variation of the first. In both cases
the weak enforcement is usually performed by means of Lagrange multipliers, but the
naive choice of the intersection points between the FE mesh and the boundary for the
multiplier space leads to non-infsup formulations, thus lacking optimal convergence
and prone to locking problems.

Regarding immersed boundary methods there are several works in the XFEM
framework. For example the frictional sliding between crack faces is combined in [55,
56] with the LATIN method [57], and ref. [58] proposes a frictionless formulation based
on the augmented Lagrange method [59] for elastic-plastic crack growth problems.
The contact problem has also been included in the finite cell method for 2D unilateral
contact [60] and 3D frictionless contact using a fictitious material [61] and regularized
penalty method in [62]. Refs. [63, 64] present a weak form for the enforcement of 3D
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frictional contact with small and large slidings. However it is stated that the InfSup
condition may be violated for some situations. The instability issue due to the InfSup
condition was described in a review by Laursen and Sanders [65] where two different
alternatives were suggested to ensure stability. The first consists in the proper choice
of the Lagrange multipliers space e.g. with the Vital Vertex method [66, 67]. There
are works for 2D large sliding contact [68] but the extension to 3D problems is still a
challenge (although Dirichlet boundary conditions were imposed in [69]). The second
alternative is the addition of stabilizing terms to the formulation. Several works in
this direction have been presented. A polynomial projection stabilization for low order
interpolations in XFEM is presented in [70]. In the context of immersed boundaries,
ref. [71] includes a global polynomial multiplier stabilization for 2D small slidings. In
[72] a similar stabilized formulation with local definition of the multipliers is developed
for frictionless contact. Similar stabilized formulations based on the Nitsche’s method
[73] have been adapted to immersed boundary methods for small sliding in 2D [74]
and 3D [75]. These stabilized formulations include the FE traction in the stabilizing
term and, as a consequence, the penalty parameter of the stabilization term may fail
the InfSup condition if is not chosen locally (e.g. a local eigenvalue problem [72] or
as a function of the surface/volume ratio in the element [74]). A major contribution
of this thesis is a stabilized formulation suitable for immersed boundary methods in
which the stability is ensured with a penalty parameter independent of the mesh.
This is presented in section 4.1 and paper A for frictionless contact and in section
4.1.3 and paper B for Coulomb’s frictional contact.

Another key aspect for the accuracy and robustness of contact algorithms is the
definition of the contact surfaces. The classical approach is the use of isoparametric
linear elements. In this case the continuity on the normal vector field is lost, and
the robustness of contact detection algorithms and convergence of the solution may
be compromised. To alleviate this problem, several smoothing techniques have been
proposed using Bézier splines, Hermite splines and NURBS interpolations [76–79] as
well as Nagata and Gregory patches ( [80] and [81] respectively). The use of IGA-
based methods represents a step further in this direction, as it allows the use of the
CAD geometry in the contact formulation (e.g. [52, 53, 82]). In the work of Corbett
and Sauer [83, 84] the isogeometric basis are introduced in the model as enrichment
functions only at the contact region, so that simple linear elements are used for the
rest of the domain. In immersed boundary methods there is a natural decoupling
of the solution and surface interpolations, so there is more freedom in the choice for
the surface definition. For instance, ref. [62] presents a modification of the marching
cubes algorithm [85] using high order triangle patches with an increased accuracy in
the simulation results. Another contribution found in this thesis is the inclusion in
the contact kinematic variables of the exact CAD boundary definition through the
use of NURBS. In section 4.2 and paper C two different alternatives are proposed,
and the quality of the solution is compared with a simple definition of the surface
with linear interpolations.
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Chapter 3

Problem description

3.1. Continuum formulation

In this section we will set the notation and the equations that govern the problem
of interest in this thesis, which is the 3D contact problem between elastic solids.
Figure 3.1 shows the scheme of two elastic bodies Ω(i) ∈ R

3; i = 1, 2 becoming in
contact. We divide the boundaries Γ(i) of each body in three non-overlapping parts:
the Dirichlet boundary ΓD, Neumann boundary ΓN and the area where contact may
occur ΓC . The initial configuration of any point in Ω(i) is depicted as X(i), and the
motion is described with the following mapping:

ϕ : Ω −→ R
3 ; x(i) = ϕ

(

X(i)
)

(3.1)

where we assume a quasi-static hypothesis. Then the displacement of a point is defined
as the difference between the deformed and the initial configuration: u = x−X. The
differential formulation of the elastic problem can be written as:

div σ + b = 0

σ = σ (ǫ)

ǫ = ǫ (u)

u (X) = ud (X) X ∈ ΓD

n · σ = t̂ X ∈ ΓN

(3.2)
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e
1

e
3

e
2

X(2)(Θ)

φ(Ω(2))

φ(Ω(1))

Ω(1)

Ω(2)

X(1)(Θ)

x(2)(Θ)

x(1)(Θ)

g
N

n(1)

Figure 3.1: Sketch of two deformable solids getting in contact.

where σ is the Cauchy stress tensor, b are the volume forces, ǫ is the strain tensor, ud

the Dirichlet boundary conditions and t̂ the prescribed traction along the Neumann
boundary. For the sake of simplicity we will assume that there are no volumetric
forces acting in Ω(i). The definition of the material constitutive relation and the
displacement-strain relation will depend on the hypothesis considered in the analysis
[86]. In this thesis we will consider elastic and hyperelastic material, together with
small and finite deformations and displacements. This problem is usually solved by
minimizing a weak form of the total potential energy Πp, so the problem is stated as
finding u as follows:

min







Πp(u) =
∑

i=1,2

(

Π(i)
e (u)−

∫

Γ
(i)
N

u · t̂ dΓ

)







subject to u = ud in ΓD

(3.3)

with Π
(i)
e being the strain energy stored in each deformed body.

Frictionless contact. Once the elasticity problem is stated we define the distance
between bodies likely to be in contact with the variable gN . To measure that distance,
a pairing between points of the bodies in contact must be established. There is not a
unique solution to this problem and there are different strategies such as the closest
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3.1. Continuum formulation

point projection [86, 87] or the ray-tracing [49, 64], which is the used in this thesis,
and is depicted in Figure 3.1. Given a point x(1) the contact pair x(2) is defined as:

x(2)
(

Θ
(2)
)

= gNn(1) + x(1); x(1) ∈ Γ(1)
c , x(2) ∈ Γ(2)

c (3.4)

where Θ(i) ≡ (ξ, η)(i) are the convective coordinates of Γ(i)
c and n(i) is the normal vec-

tor to the surface Γ(i)
C . Equation (3.4) has the unknowns Θ(2) and gN , and the method

for solving it will depend on the definition of x(2)(Θ(2)), which will be discussed in
section 4.1.1.

The condition of impenetrability between solids gN ≥ 0 transforms the formulation
(3.3) into a minimization problem with inequality constrains. Among all methods to
solve this type of problems we find the Lagrange multiplier method, used in several FE
formulations including the presented in this thesis. We define the Lagrange multiplier
as λN , an additional term is included in (3.3), and the new formulation must be
optimized, this is, minimize u and maximize λN

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ

}

subject to











gN ≥ 0

λN ≤ 0

gNλN = 0

in Γ(1)

C

(3.5)

where we find the classical Karush-Khun-Tucker contact conditions [88]. The contact

integral in (3.5) is evaluated at Γ
(1)
C , which is usually called the slave body. However,

the contact surface is not known a priori, as the gap is a function of the displacements,
which are the unknown of the contact problem itself. This non-linearity is addressed
introducing the active set strategy, in which ΓC is assumed to be known, problem
(3.5) is solved and the new contact active set is defined, until convergence is achieved.
In this thesis we will use the Newton-Raphson algorithm as the solution method for
solving the non-linear problem.

In section 4.1.2 we use the Finite Element method to solve the problem defined
in (3.5). The choice of the Lagrange multipliers field based on the intersections be-
tween the Cartesian grid and the boundary fails to fulfill the InfSup condition in the
discretized problem [67], so some modifications are needed to obtain the optimal con-
vergence rate of the FE solution. In this thesis we will explore the option of adding
extra terms to equation (3.5) to obtain the so-called "stabilized" or "perturbed" La-
grangian formulations [89].

Frictional contact. In the previous formulation we have assumed that the sliding
between bodies is not constrained, thus the surface traction has only normal compo-
nent along ΓC . To consider frictional contact we must first define the components of
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3. Problem description

the traction vector t = n · σ along ΓC as shown in Figure 3.2. The contact pressure,
denoted with the scalar pN is the projection of t on the vector normal to the surface
n, this is, pN = n · σn. Then the tangent component of the traction can be defined
as

pT = t− pN n (3.6)

We can define Tn as the projection operator onto the tangent plane at a given
point with normal vector n and the tangent pressure is rewritten as

pT = Tn · t; Tn =
(

I− n(1) ⊗ n(1)
)

(3.7)

n

n·σ

Tn

p
N 
n

TTnn

p
T

ΓC

Figure 3.2: Surface traction along the contact boundary. Decomposition in pN , pT

In the scope of this thesis we will consider a Coulomb frictional model, which
defines two different contact states: adhesion and frictional sliding. Setting µ as the
friction coefficient between bodies, if the modulus of pT is lower than µpN there
will be adhesion (stick condition), and if the tangent stress reaches that limit value
there will be a relative movement ġ between bodies without increasing that stress
value (slip condition). Details on the definition of the relative sliding are provided
in section 4.1.1. The behavior of the Coulomb’s frictional stress can be written in a
compact way using the operator PB(n,s) (x), presented in [64], which is defined as the
projection of x both on the tangent plane Tn and on a circle of radius s, this is:

PB(n,µpN ) (t) =











Tnt if ‖Tnt‖ ≤ µpN

µpN
Tnt

‖Tnt‖ if ‖Tnt‖ > µpN

(3.8)

As remarked in Chapter 1, the solution of frictional contact problems cannot be
achieved by building an energy functional to minimize, since the frictional contact
force is non-conservative. A common idea is to modify the functional obtained for
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3.2. The Cartesian grid Finite Element Method (cgFEM)

frictionless contact and include the chosen frictional model. In section 4.1.3 we present
the strategy followed in this thesis to obtain a stabilized formulation for Coulomb’s
frictional contact.

3.2. The Cartesian grid Finite Element

Method (cgFEM)

The Cartesian grid Finite Element Method (cgFEM) is an immersed boundary
method for solving the elasticity problem (first developed for 2D problems [3] and re-
cently for 3D [4]) which employs a hierarchical set of regular Cartesian grids to create
FE discretization meshes independent of the geometry. The cgFEM has been devel-
oped with the aim of providing an efficient methodology that overcomes the high cost
that standard body-fitted methods usually require in the meshing and re-meshing of
the analysis domain, especially in terms of man-hours. The process of creating a non-
conforming discretization mesh is summarized in Figure 3.3. The domain of interest
Ω is embedded in an auxiliary domain Ωh that consists in regular hexahedron. From
this reference hexahedron an octree hierarchical structure of Cartesian grids is cre-
ated. The mesh is intersected with the CAD model of the domain Ω to establish the
status of each node as inside or outside the domain. Then, we can distinguish three
different elements depending on their location with respect to Ω (Figure 3.3c): there
can be elements completely internal to Ω (for now on internal elements), elements
with all their nodes outside Ω (which will not be considered during the analysis) and
elements that are intersected by the analysis boundary Γ (boundary elements).

(a) Phys. domain

Ω (b) Discretization Ωh (c) Internal and boundary elements

Figure 3.3: Disctretization mesh of a torus in cgFEM. In green, elements internal to the domain.
In red, elements cut by the boundary (boundary elements). Elements completely outside the domain
are not considered during the analysis.
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3. Problem description

The internal elements can be treated like standard FEM elements, whereas the
boundary elements require a special integration scheme so that only the material
part of the element is considered during the numerical integration. In other words,
an auxiliary mesh (named integration mesh to differentiate it from the discretization
mesh) is built only for integration purposes at each boundary element, taking into
account the intersection between the element and the analysis boundary. Note that,
although those integration subdomains may have a significant distortion this will
never affect the quality of the method. This is because FE interpolation functions
are defined in the discretization mesh, which is built with regular hexahedrons, so the
Jacobian is kept constant.

The cgFEM also features two different strategies for the h-adaptive refinement of
the discretization mesh [44]: the first is based on the geometrical features of the CAD
model, and can be performed as a preprocessing step. The second strategy is based
on the Zienkiewicz and Zhu error estimator [39], which uses a smooth stress field σ∗

obtained with the superconvergent patch recovery technique [42].
Besides the easier mesh generation, the hierarchical structure of Cartesian grids

presents other advantages [20]. On the one hand, the nested structure of the Cartesian
grids provides a natural framework to apply a subdomain decomposition. Using that
information we can also obtain a reordering of the system of equations that reduces
the computational cost when using direct solvers. On the other hand, all relations
between elements in the different levels of the structure are known a priori, so the
projection of information between meshes is highly efficient, including the projection
of information between different domains in shape optimization processes.

3.2.1. Numerical integration: surface representation

with NURBS

One important issue the immersed boundary methods must address is the numer-
ical integration in the boundary elements. For example, in the Finite Cell Method an
octree-based subdivision is performed in each element, where the newly created sub-
domains are conforming to the geometry [28]. The procedure followed in cgFEM for
the numerical integration of boundary elements is presented in the 2D sketch of Figure
3.4. Once the location of the nodes with respect to the geometry is established, the
Marching Cubes algorithm [85] classifies all intersected elements in 16 configurations.
A decomposition in tetrahedrons and triangles for volume and surface integrals [44] is
associated to each of these configurations, and only those entities inside the material
part of each element are kept (Figure 3.4b). There may be boundary elements whose
intersection pattern has no correspondence with the Marching Cubes classification
(for example multiple surfaces inside an element). In this case a tailor-made subdivi-
sion is created.
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3.2. The Cartesian grid Finite Element Method (cgFEM)

The boundary representation or B-Rep method has been widely adopted by the
CAD industry for the definition of geometries, being NURBS and trimmed-NURBS
the most commonly used method for representing curves and surfaces. A key feature
of the cgFEM is the inclusion of the CAD definition in the numerical integration
so that the exact volume and surface inside the boundary elements is evaluated [4],
as depicted in Figure 3.4c. This technique is based on the NURBS-enhanced Finite
Element Method (NEFEM) of Sevilla et al. [30, 90]. In the NEFEM, developed for
body-fitted meshes, the NURBS description is included at the elements laying on the
boundary of the domain while the internal elements remain with the standard FE
interpolation and integration methods. This represents an advantage with respect to
the isogeometric analysis [29] in the sense that the NURBS basis functions are not
extended into the bulk of the domain, and the simplicity of the piecewise polynomial
FE interpolations is kept.

(a) (b) (c)

Figure 3.4: Numerical integration for boundary elements in cgFEM. a) Boundary element and its
intersections with the mesh. b) Integration subdomains provided by the Marching Cubes algorithm.
c) The volume (green) and surface (red) quadratures account for the exact NURBS geometry.

Since the surface integration quadratures in the cgFEM can use the NURBS defi-
nition of the analysis domain we present here the notation regarding the mathematical
modelling of such surfaces. Given a 2D parametric space (ξ, η), a NURBS surface is
defined as the transformation Q : (ξ, η) −→ R

3 in the following form

Q (ξ, η) =

n
∑

i=1

m
∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1 N

(p)
i (ξ)M

(q)
j (η)wi,j

Pi,j (3.9)

Figure 3.5 shows an example of a simple NURBS geometry. The transformation
is defined by a net of n × m control points with coordinates Pi,j and weights wi,j

(the black circles in the figure), and two knot vectors of order p and q respectively,

from which the 1D basis functions N
(p)
i and M

(q)
j are built in a recursive way, see

e.g. [91] for further details. Despite the rational nature of the NURBS basis functions,
equation (3.9) can be interpreted as an interpolation of the control points Pi,j with
the basis Si,j (ξ, η), defined as:

Si,j (ξ, η) =
N

(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1 N

(p)
i (ξ)M

(q)
j (η)wi,j

(3.10)
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(a) Parametric space (ξ, η). (b) NURBS in the physical domain R
3.

Figure 3.5: Example of a surface defined with NURBS. Definition in the parametric space (a) and
its corresponding transformation into R

3.

In fact, we can rewrite this transformation in matrix form if we rearrange the
indexation of the control points from (i, j) to a unique index k:

Q (ξ, η) =
n×m
∑

k=1

Sk (ξ, η)Pk = S (ξ, η) ·P (3.11)

This compact form will be useful for the definition of the contact kinematic vari-
ables and their variation in 4.1.1.

3.2.2. Error estimation: the Superconvergent Patch

Recovery

To asses the error of the approximated FE solution of problems involving linear
elastic materials and guide an automatic h-adaptive refinement process, the cgFEM
makes use of the well-known Zienkiewicz and Zhu’s error estimator (ZZ-estimator) [39]
which is written as:

‖ees‖ =

∫

Ω

(

σ∗ − σh
)t

D−1
(

σ∗ − σh
)

dΩ (3.12)

where σ∗ is the so-called smooth stress field and D is the material constitutive relation.
Note that if σ∗ were the exact solution of the stress field, equation (3.12) would
coincide with the exact error in energy norm. The idea of the estimator is to use
as reference a stress field with better convergence properties than the FE field σh.
For this purpose, Zienkiewicz and Zhu presented the superconvergent patch recovery
technique [42] to create a smooth stress field from the FE solution.

The technique is summarized as follows. A patch Ωk
p is created (Figure 3.6) for

each node k of the discretization mesh with all the elements attached to the node
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3.2. The Cartesian grid Finite Element Method (cgFEM)

itself. Then a minimization problem, formulated in equation (3.13), is solved for each
component i of the stress tensor.

min





Ωk
p
∑

g

(

σ∗,k
i − σh

i

)2

dΩ



 (3.13)

where the subscript g denotes every quadrature point in Ωk
p. The smooth stress is

defined as a polynomial σ∗,k
i (x) = p(x) ak

i , where p(x) contains the monomials of
the same degree as the FE interpolation and ak

i are the unknown coefficients of the
problem. The sum in (3.13) implies that the information of each quadrature point
is evenly weighted. This can be somehow problematic within the cgFEM, because
the boundary elements have a higher density of quadrature points than the internal
elements due to the special numerical integration along the boundary. Instead, an
integral approach of the minimization problem (3.13) is presented in [3] so that each
quadrature point is weighted with its own integration weight. Then the problem is
rewritten as:

min

[

∫

Ωk
p

(

σ∗,k
i − σh

i

)2

dΩ

]

(3.14)

After operating, the minimization problem yields a linear system of equations per
component Mak

i = Hi with the following definitions:

Mi = 2

∫

Ωk
p

p(x)T p(x)dΩ ; Hi = 2

∫

Ωk
p

p(x)T σh
i dΩ (3.15)

k

(a)

k

(b)

Figure 3.6: 2D representation of an SPR patch Ωk
p, with the node k assembly in red. The FE

stress σh is evaluated at the elements in the patch (left) and a polynomial is fitted to obtain the
smooth stress σ∗ (right).
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Note that the size of the systems to solve is small, so the impact of this method in
the global computational cost of the analysis is relatively low. When all nodal patches
are solved, the smooth field σ∗ is evaluated at any point x ∈ Ω as:

σ∗
i (x) =

∑

j

Nj(x)σ
∗,j
i (xj) (3.16)

where the interpolation employs the FE linear shape functions Nj(x) associated to the
j vertices of the element. Instead, the cgFEM makes use of the conjoint polynomials
Enhancement technique [92], which provides an improved field by interpolating not
only the nodal patch value σ∗,j

i (xk) but the whole polynomial evaluated at x, with
the shape functions Nv

j (x) associated to the element’s vertices. This is written as:

σ∗
i (x) =

∑

j

Nv
j (x)σ

∗,j
i (x) (3.17)

A special case arises when using the SPR technique with immersed boundary
methods. Figure 3.7a shows the patch associated to a node outside the domain (in
red), whose only connected element has a low ratio between material and element
volume. This situation involves two issues: (i) the stiffness associated to the red
node is very small. This induces an ill-conditioning of the FE problem, and at a local
level the quality of the FE stress field is poor compared to that of internal elements.
This second issue is discussed in section 4.3.1 where we propose a solution to control
the ill-conditioning of the FE formulation. (ii) The available domain in the patch to
make the SPR fitting might be too small, compromising the accuracy of the fitted
smooth stress. In order to overcome this problem we propose the enlargement of
these problematic patches based on a volume ratio measure. This is, if the ratio
between material volume and element volume in the patch is below a fixed threshold
the neighbor elements are included in the new patch domain Ω

′k
p (Figure 3.7b). A

threshold value of 25% has been used in this thesis with acceptable results, although
a study of the influence of this parameter in the quality of σ∗ should be performed.

(a) Original patch (b) Enlarged patch

Figure 3.7: Example of boundary patch enhancement. The patch Ωk
p associated to the red node has

a low material/element volume ratio. Hence a bigger patch Ω
′k
p is considered with the surrounding

elements.
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The structured nature of the cgFEM can be exploited to increase the computa-
tional efficiency of the SPR technique. In h-adapted cgFEM meshes the adjacent
elements with a size difference are non conforming. Therefore, there exist hanging
nodes, and we use multi-point constraints (MPCs) [93] to ensure C0 continuity be-
tween elements. Nevertheless only one level of difference is allowed between adjacent
elements, so the range of different shapes for SPR patches Ωk

p possible in cgFEM is
(at least) finite. Indeed, the number of different patch topologies for the 2D case is
reduced to 19, shown in Figure 3.8a.

Now we recall the coefficient matrix M in (3.15). If we normalize the coordi-
nates of the integration points inside the patch with the nodal coordinates xN and a
representative size of the patch hp:

xlocal =
x− xN

hp

(3.18)

then, M only depends on the integration points distribution inside the patch. All
internal elements in cgFEM have identical quadrature rules, therefore all patches
containing only internal elements (called internal patches) with the same topology will
share the same M as well. So given a discretization mesh, we can detect all different
patch topologies, pre-compute their coefficient matrix M and, with only one matrix
inversion for each different topology, we can solve all SPR problems for the internal
patches. Finally, the patches containing boundary elements (boundary patches) are
evaluated individually because each boundary element has its specific quadrature rule.
This feature is analogous to the numerical integration of the FE stiffness matrix for
linear elasticity. Since all internal elements are affine, their stiffness matrices are
proportional with a scale factor depending on the size difference. Therefore we can
pre-compute only one stiffness matrix and scale it to obtain all the elemental matrices
in the bulk. These features somehow reduce the computational cost of the method in
one dimension, since the cost is proportional only to the elements on the boundary.

The number of possible topologies in 3D cgFEM meshes scales up to several hun-
dreds (two configurations are shown in Figure 3.8b). However, there is no need to
manually classify and code each topology. Instead we have designed an automatic
coding based on the level difference of the elements in the patch. Two examples of
this coding are given in Figure 3.9. Having fixed the order of the elements in the
patch, the biggest element is considered as level 0, and the relative level of each ele-
ment compared to the 0 level is written as a digit. Finally all digits are concatenated
and form the number associated to the patch. This numeration is not compact, but
allows to automatically search for all the different topologies existing in a 3D mesh,
and then only the matrices M belonging to those configurations are evaluated.

In section 4.3.2 we explore the introductions of additional constrains into (3.13)
to enhance the quality of the recovered stress field. This was first studied for elastic
problems in [43], and in this thesis we propose the addition of the contact boundary
equilibrium in the SPR problem.
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(a) (b)

Figure 3.8: Patch topologies that can appear in a cgFEM analysis. All possible configurations for
cgFEM 2D (a), and examples of possible configurations for cgFEM 3D (b).

Figure 3.9: 2D example of SPR patch coding. The patch on the left has code number 0110 and the
patch on the right is number 1210.
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Chapter 4

Contributions

In this Chapter a summary of the thesis contributions is presented, emphasizing the
novelties introduced in each publication. The contributions are divided in three sec-
tions, each of them focused in a different aspect of the thesis. First, the stabilized
frictional contact formulation is presented in 4.1. The aspects regarding the surface
definition in cgFEM are discussed in 4.2. Then in section 4.3 we present different
strategies to enhance the robustness and accuracy of the method. Finally an illustra-
tive example of an engineering application of this thesis is shown in section 4.4.

4.1. A stabilized augmented Lagrangian

contact formulation

The first objective of this thesis is to develop a formulation to solve 3D contact
problems using the cgFEM. A stabilized augmented Lagrangian formulation is pre-
sented in paper A for frictionless contact, and then extended to Coulomb frictional
contact in paper B. In this section we set the kinematic variables involved in the so-
lution of contact problems. Then the main features of this formulation are presented,
first for the frictionless case and finally for friction problems.
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4.1.1. Contact kinematic variables

In this section we will set the kinematic variables that take part in frictionless and
frictional contact problems, together with its variation. As it was stated in section 3.1
we use a ray-tracing scheme to determine the contact point pairs. We will name Γ

(1)
C ,

from which the normal vector is evaluated, as the slave surface, and the corresponding
contact master surface, Γ(2)

C . Now we rewrite here the relation defined in section 3.1:

x(2) (Θ) = gNn(1) + x(1); x(1) ∈ Γ(1)
c , x(2) ∈ Γ(2)

c (4.1)

where the convective coordinates of the slave surface are omitted because they remain
fixed, thus we introduce the simplified notation Θ ≡ Θ

(2). The unit normal vector
to the surface n(1) is obtained with the cross product of the tangent vectors of the
surface, which are defined as the partial derivatives of x with respect to the convective
coordinates:

n(1) =
x
(1)
,ξ × x

(1)
,η

∥

∥

∥
x
(1)
,ξ × x

(1)
,η

∥

∥

∥

; x
(1)
,ξ =

∂x(1)

∂ξ
, x(1)

,η =
∂x(1)

∂η
(4.2)

with the components of the convective coordinates written as Θ ≡ (ξ, η). If we
multiply equation (4.1) by n(1), and taking into account that n(1) · n(1) = 1, we
obtain the definition of the normal gap:

gN =
(

x(2) (Θ)− x(1)
)

· n(1) (4.3)

This will be the variable used in the formulation for frictionless problems. How-
ever, the solution of frictional contact includes an additional kinematic variable that
represents the relative velocity between bodies, which was defined as ġ dt for the con-
tinuum in section 3.1. In this thesis we will solve the frictional contact problem by
solving a sequence of quasi-static time increments. In ref. [49] the approximation ∆tg
for the FE discretization was presented for 2D problems. This incremental definition
is similar to that presented in [47], and it was proven to be frame independent in [94].
In paper B we extended this approximation to the 3D case, which we reproduce here.

Figure 4.1 shows the contact situation for a point that is sliding between time
increments t and t + 1. Let x

(1)
t be a point on the slave surface, which is in contact

with point x
(2)
t (Θt) at time t. If there is no sliding we have a sticking state and the

gap vector is simply defined as:

g = x(2) (Θ)− x(1) (4.4)

Now assume that a relative sliding between the bodies in contact occurred at time
t+ 1. This means that the contact pair on the master surface changes from Θt to a
new location Θt+1. Then the relative increment velocity is defined as:

ġ dt ≈ ∆tg =
(

x
(2)
t+1(Θt)− x

(2)
t+1(Θt+1)

)

(4.5)
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t t+ 1

u(1)

u(2)(Θt)

x
(1)
t x

(1)
t+1

gt gt+1

x
(2)
t (Θt) x

(2)
t+1(Θt)

x
(2)
t+1(Θt+1)

Figure 4.1: Sliding between bodies. At time step t, there is a pair of points
[

x
(1)
t , x

(2)
t (Θt)

]

in

adhesive contact. At time t + 1 sliding occurs, and the same point x
(1)
t+1 is now contacting with the

point x
(2)
t+1(Θt+1). The slip increment ∆tg is represented by the blue arrow.

We are interested in the projection of the relative velocity onto the tangent plane
at the current step to evaluate the tangent forces due to relative sliding. Using the
operator Tn, defined in (3.7), this is written as:

Tn∆
tg = Tn

(

x
(2)
t+1(Θt)− x

(2)
t+1(Θt+1)

)

(4.6)

Note that only Θt is needed from the previous step’s data, since all terms are
evaluated in the current configuration. An alternative definition of (4.6) is obtained
if we consider the following relation:

x
(2)
t+1(Θt+1) = x

(1)
t+1 + gt+1 (4.7)

and since gt+1 is in the direction of n(1), then Tngt+1 = 0, so:

Tn x
(2)
t+1(Θt+1) = Tn x

(1)
t+1 (4.8)

and finally we obtain:

Tn∆
tg = Tn

(

x
(2)
t+1(Θt)− x

(2)
t+1(Θt+1)

)

= Tn

(

x
(1)
t+1 − x

(2)
t+1(Θt)

)

(4.9)

The definition in 4.9 has only one term containing the convective coordinates.
Note that if there is no change in the convective coordinates in the case of adhesive
contact, then Θt+1 = Θt and adding (4.9) and (4.3) in normal direction we have:

gnn
(1) −Tn∆

tg = x(2)(Θ)− x(1) = g (4.10)
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which proves the continuity of the kinematic variables between the slip and stick
states. This relation will be useful to simplify the contact formulation for frictional
adhesion in section 4.1.3

Variation of kinematic variables. Starting with the normal gap gN , if we take
variations in equation (4.1) we have:

δx(2) (ξ, η) = δgNn(1) + gNδn(1) + δx(1) (4.11)

and projecting again on n(1), with the additional consideration δn(1) · n(1) = 0 we
obtain δgN expressed as:

δgN =
(

δx(2) (ξ, η)− δx(1)
)

· n(1) (4.12)

Now we need the variations of x(1) and x(2). Note that only the convective coordi-
nates of the master surface are involved in the variation, as the convective coordinates
of the slave body remain fixed in the ray-tracing algorithm. Therefore we write the
variations as:

δx(1) = x
(1)
,u δu

δx(2) =
(

x
(2)
,ξ δξ + x

(2)
,η δη + x

(2)
,u

)

δu
(4.13)

The definitions x,u,x,ξ,x,η depend on the surface and interpolations considered
in the FE analysis. In paper C, and section 4.2 we explore different definitions and
compare them in terms of quality of the solution and efficiency of the method. We can
build a small system of equations to find the terms δξ and δη. If we project equation
(4.11) into x

(1)
,ξ and x

(1)
,η , and considering now that x

(1)
,ξ · n

(1) = 0,x
(1)
,η · n(1) = 0 we

end up with the following system:

[

x
(2)
,ξ · x

(1)
,ξ x

(2)
,η · x

(1)
,ξ

x
(2)
,ξ · x

(1)
,η x

(2)
,η · x

(1)
,η

]{

δξ

δη

}

=

{

gNδn(1) · x
(1)
,ξ − (x

(2)
,u − x

(1)
,u ) · x

(1)
,ξ

gNδn(1) · x
(1)
,η − (x

(2)
,u − x

(1)
,u ) · x

(1)
,η

}

(4.14)

which can be solved analytically. This system includes also the variation of the normal
vector δn(1). Finally, we take variations in (4.2) and the variation of the normal gap
is completely defined:

δn(1) = n(1)
,u δu

n(1)
,u =

x
(1)
,u,ξ × x

(1)
,η + x

(1)
,ξ × x

(1)
,u,η

∥

∥

∥
n̂(1)

∥

∥

∥

−
n(1)

∥

∥

∥
n̂(1)

∥

∥

∥

[

n(1) · (x
(1)
,u,ξ × x(1)

,η + x
(1)
,ξ × x(1)

,u,η)
]

(4.15)
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The frictional contact formulation makes use of the variation of the gap vector
(4.4) for the stick case. Note that when assuming adhesion there is no change in the
contact point, so the variation is expressed as:

δg = (x(2)
,u − x(1)

,u )δu (4.16)

For this reason, and in order to keep the smooth transition between the slip and
stick states, in the case of sliding contact we will omit the terms δξ and δη for the
evaluation of δgN , then the variation will be written as:

δgN |slip = (x(2)
,u δu− x(1)

,u δu) · n(1) (4.17)

This choice ensures the smooth transition when sliding appears, at the cost of
having a non-symmetric formulation, and a certain loss of angular momentum con-
servation. However, the Coulomb’s frictional model will eventually lead to a non-
symmetric system (section4.1.3) so this definition does not imply a loss of symmetry.
Similar definitions of the term δgN can be found in [64] and [46], where some ideas
to maintain the angular momentum conservation are provided.

4.1.2. Frictionless contact

The lagrangian formulation in equation 3.5 can be solved with the Finite Element
method replacing the continuum variables {u, λN} by suitable FE approximations
uh ∈ U h and λh

N
∈M h. From now on we will omit the superscript h to denote FE

variables for the sake of simplicity. The obtained formulation may lead to a loss of
convergence of the FE solution as the mesh is refined. This is due to the increasing
number of constrains included in the system, that eventually induces oscillations
in the multipliers’ values. The main principle of the stabilized formulations is the
addition of a new term to the discretized formulation so that the multipliers’ values
are bounded. Simo, Wriggers and Taylor presented in [89] a perturbed Lagrangian
formulation which includes a stabilizing term with a penalty parameter k. However,
with this formulation the exact solution is not achieved when the mesh is refined, i.e.
the formulation is not consistent. With our proposed modification of this perturbed
Lagrangian formulation, presented in equation 4.18, the FE convergence to the exact
solution is kept for a wide range in the values of the penalty parameter.

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ−
∑

∀e

h

2Eκ

∫

Γ
(1)
C

(λN − pN)
2
dΓ

}

(4.18)

In this thesis we propose the use of the Superconvergent Patch Recovery to com-
pute the stabilizing stress: pN = n · σ∗n. This was first presented in [95] for the
weak imposition of Dirichlet conditions in immersed boundary methods. The main
idea behind this choice is that the values of pN at boundary elements with small cuts
depend more on the solution of the internal nodes than that of the external ones.
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Γ(1)

C

d

i

Figure 4.2: Patch of elements for computing the smooth stress field of node i. The internal
volume of the boundary elements depends on distance d.

Furthermore, it was proven in [95] that with this choice the L2 norm of pN can be
bounded with a constant C > 0 as:

‖pN‖
2
L2(ΓC) ≤

EC

h
‖u‖2E (4.19)

being ‖·‖E the energy norm in the bulk. We have experienced that using a constant
C ≥ 10 is enough for linear and quadratic elements and any cut element pattern. This
is crucial to ensure the stability of the method in situations with elements with very
low volume/surface ratios, e.g. the mesh depicted in Figure 4.2. The material volume
of the boundary elements in the Figure depends on the distance d whereas the surface
remains constant. In this situation, typical of the immersed boundary methods, it is
not possible to bound the L2 norm of the FE tractions on the boundary (usually used
in stabilized formulations) with the element’s energy norm when d→ 0.

To solve the contact problem defined in (4.18) we have designed the following
iterative procedure: the stabilizing stress pN is fixed while solving the contact active
set in (4.18). Then, when the contact problem has reached convergence, we update
the value of pN an solve again the problem until convergence in the stabilizing term is
also reached. Therefore, if we take variations with respect to the displacements and
multipliers we obtain the following variational form:















δΠ(u, δu) +

∫

Γ
(1)
C

λNδgN(u) dΓ = 0 ∀δu
∫

Γ
(1)
C

δλN gN(u) dΓ−
h

Eκ

∫

Γ
(1)
C

δλN (λN − pN) dΓ = 0 ∀δλN

(4.20)

Lagrange multipliers definition. We define λN at each quadrature point de-
fined for the numerical integration of surface integrals on Γ(1)

C , as first proposed in [96]
for imposing Dirichlet boundary conditions in 2D elasticity problems. Although the
contact integrals in (4.20) are defined on Γ(1)

C its contribution affects to both bodies
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in contact due to the definition of the contact gap. Therefore to evaluate the exact
integral it would be necessary to create a surface segmentation matching Γ(1)

C and Γ(2)

C ,
as in the mortar method [97]. Instead we evaluate all the integrand at the quadrature
points on Γ(1)

C , as proposed also in [48,94]. In exchange of committing an integration
error we obtain a faster and easier to implement method. At the same time we keep
the optimal convergence for linear elements with uniform refinement, because the in-
tegration error decreases linearly with mesh refinement. The convergence rate can be
compromised for quadratic elements, although the singularity that arises at the end of
contact area in some problems also limits the optimal convergence rate for quadratic
elements [98]. To reduce the integration error in the contact integrals we propose the
use of a double pass strategy likewise in the penalty method, i.e. the duplication of
the contact integrals in (4.18) also for Γ(2)

C :

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ−
h

2Eκ

∫

Γ
(1)
C

(λN − ωpN)
2
dΓ

+

∫

Γ
(2)
C

λNgN dΓ−
h

2Eκ

∫

Γ
(2)
C

(λN − (1− ω) pN)
2
dΓ

} (4.21)

Note that in this case a weighting factor ω ∈ [0, 1] multiplies the stabilizing stress
pN . This is to avoid the double imposition of such term, since each integral in (4.21)
contributes to both bodies in contact. We have considered ω = 0.5 for the numerical
examples in this thesis where the double pass strategy is followed. For the sake of
simplicity all the development of the contact formulation is presented considering only
the integration on Γ(1)

C , but the extension to a double pass strategy is straightforward.
Now we can simplify the stabilized formulation in a similar way as [99]. We

can eliminate λN at each integration point thanks to the concentrated numerical
integration, so for a given quadrature point g we obtain the following relation from
the second equation in (4.20):

λNg = pNg +
κE

h
gNg (4.22)

and substituting this relation in the first equation in (4.20) the formulation is simpli-
fied:

δΠ(u, δu) + δΠCN
(u, δu) = 0 (4.23)

where we have stated the contact contribution to the energy functional as

δΠCN
(u, δu) =

∑

g

(

κE

h
gNg + pNg

)

· δgNgJgHg (4.24)

with Hg the weight of the integration point and Jg the Jacobian of the transformation.
We have obtained a stabilized formulation of the contact problem where the only
unknowns are the displacements u, so the system of equations is smaller compared to
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the classical Lagrange multipliers method. In addition, the tangent matrix remains
positive definite, allowing the use of faster solver algorithms. Some advantages of
our proposal with respect to Nitsche-based formulations are the existence of less
integrals in the variational form (4.20) and the easiness of introducing non-linear
material behavior, since there are no terms involving the derivatives of the material
constitutive relation.

Problem solution. The choice of computing pN with a post-processing of the
solution implies the creation of an extra iterative loop in exchange, which eventu-
ally results in more problem resolutions. The proposed solution sequence for small
displacements and deformations is shown in Algorithm 1. We call the additional iter-
ation augmentation loop because of the resemblance to the Uzawa algorithm present
in the augmented Lagrange formulation [59], where the Lagrange multipliers are up-
dated with the previous iteration values. When pN and gN are computed, the contact
active set is found by minimizing the residual of equation (4.23) in the contact loop.

Algorithm 1 Small displacements frictionless contact.
Compute pN from previous step (3.13)
while Residual > Tol do Augmentation loop

λNg ← pNg +
Eκ

h
gNg

while Residual > Tol do Contact loop
Check active quadrature points: λNg < 0
Evaluate frictionless contact, δΠCN

(4.24)
Evaluate residual of (4.23)
Solve u

end while
Update pN (3.13)
Evaluate residual of (4.23)

end while

The convergence of the augmentation loop is proved in paper A. Practice has shown
that usually 2-3 iterations are enough to reach an acceptable result. This process is
similar to that presented in [95] and implemented in the cgFEM, thus the same
augmentation loop is used to update pN at both boundaries and no additional loops
are required. Finally, during an incremental load analysis the last value of pN is used
as initial guess with a considerable reduction of necessary iterations. This can also be
applied during an h-adaptive refinement analysis, where pN can be easily projected
into the new discretization mesh thanks to the hierarchical structure available in the
cgFEM.

After presenting the stabilized formulation for linear elasticity and small displace-
ments we can extend it to deal with large deformations and displacements. In this
case the contact point may change as the bodies are displaced and/or deformed, thus
the contact gap becomes a non-linear function of the displacements. Equation (4.23)
is now solved using a Newton-Raphson method, and the linearization of both terms
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with respect to the displacements is required for the solution. The new strategy is
finally presented in Algorithm 2, where the main difference with respect to a small
displacements problem is that the contact gap must be updated for each iteration.
The details on the computation of ∆δΠCN

, ∆gN and ∆δgN are shown in paper A.

Algorithm 2 Large displacements frictionless contact.
Compute pN from previous converged step (3.13)
while Residual > Tol do Augmentation loop

while Residual > Tol do N-R loop
λN ←

κE
h
gN + pN

Check active quadrature points. (λN < 0)
for all Active contact points do

Evaluate frictionless contact, ∆δΠCN

end for
Evaluate residual of (4.23)
Solve ∆u

end while
Update pN (3.13)
Evaluate residual of (4.23)

end while

This formulation has been tested through several numerical examples in papers A
and B, considering small and large deformations together with linear elastic, hypere-
lastic and elasto-plastic material behavior. The examples have been solved using the
cgFEM and also standard body fitted meshes to show the suitability for all methods.
The optimal convergence rates are obtained for linear elements, whereas the error
integration may affect the convergence rate for quadratic elements. However, the ex-
amples show that the double pass strategy allows to obtain acceptable results from
an engineering point of view.

4.1.3. Frictional contact

The stabilized formulation proposed for Coulomb’s frictional contact is derived
from a modification of the augmented Lagrangian functional presented by Alart and
Curnier [100] and Pietrzak and Curnier [101] written as:

opt

{

Π(u) +
1

2κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]2

−
− ‖λ‖2

)

dΓ+

+
1

2κ1

∫

Γ
(1)
C

‖PB(n,s) (λ− κ1ġ dt)‖2 dΓ

} (4.25)
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where we have used the projection operator PB(n,s) presented in section 3.1 and the
negative part operator, defined as:

[x]− =











−x if x ≤ 0

0 if x > 0

(4.26)

The procedure followed in paper B, similar to [64], is as follows. First, a stabiliza-
tion term is introduced in the weak form (4.25):

opt

{

Π(u) +
1

2κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]2

−
− ‖λ‖2

)

dΓ+

+
1

2κ1

∫

Γ
(1)
C

‖PB(n,s)

(

λ− κ1∆
tg
)

‖2 dΓ−
1

2κ2

∫

Γ
(1)
C

‖λ− S∗‖2dΓ

} (4.27)

The additional term (the last in (4.27)) is similar to that in (4.18), but now we con-
sider the recovered traction vector, S∗ = n·σ∗, instead of the normal pressure. A weak
form in (4.25) is derived and then the friction limit s is substituted by µ [λN + κ1gN ]−
to consider a Coulomb model. The final variational form of the problem is written as
follows:































































δΠ(u, δu)−

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
δgN + PB

(

λ− κ1∆
tg
)

δg

)

dΓ = 0, ∀δu

− 1
κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
n(1) + λ− PB

(

λ− κ1∆
tg
)

)

δλ dΓ

− 1
κ2

∫

Γ
(1)
C

(λ− S∗) δλ dΓ = 0, ∀δλ

(4.28)
where the subindices of the operator PB have been omitted for simplicity. Paper B
proved that, for the case of frictionless contact, the variations (4.20) and (4.28) are
equivalent. The Lagrange multipliers are condensed at each integration point as in
(4.22) with the correspondence κ = κ1 + κ2.

The Lagrange multipliers can also be eliminated for the frictional case using the
second equation in (4.28), however the procedure is more complex. First, we will
assume a stick state, so the projection operator takes the value PB = Tn (λ− κ1∆

tg)
and the second equation in (4.28) is now written as:

−
1

κ1

(

[

λ · n(1) + κ1gN

]

−
n(1) + λ−Tn

(

λ− κ1∆
tg
)

)

−
1

κ2
(λ − S∗) = 0 (4.29)
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We can simplify (4.29) considering that λ =
(

λ · n(1)
)

n(1) + Tnλ. Finally the
multipliers can be condensed at each quadrature point denoted by the subindex g:

λg = S∗
g + κ2

(

gNgn
(1) −Tn∆

tgg

)

(4.30)

and then substituting the multipliers in the first equation in (4.28) we obtain the
contact contribution for the stick state:

δΠCSt
(u, δu) =

∑

g

(

κE

h
gg + S∗

g

)

· δgg |Jg|Hg (4.31)

Now we will eliminate the Lagrange multipliers for the sliding case. Replacing the
operator PB with the corresponding value, the second equation in (4.28) is now:

− 1
κ1

(

[

λ · n(1) + κ1gN
]

−
n(1) + λ + µ

(

pN + κE
h
gN
) Tn(λ−κ1∆

tg)
‖Tn(λ−κ1∆tg)‖

)

− 1
κ2

(λ − S∗) = 0

(4.32)

We can now project (4.32) into n(1) and Tn to account for the normal and tan-
gential components respectively. The projection on n(1) leads to the same equation
discussed in the frictional formulation, and leads to the condensation of λN in (4.22).
The projection of (4.32) on Tn yields the condition that forces Tnλ to have the same
direction as the relative sliding vector Tn∆

tg in the first equation in (4.28). There-
fore, we choose the stabilizing pressure pT = Tn · S

∗ in the direction of Tn∆
tg, and

the following substitution is made:

Tnλ = κ2Tn∆
tg+ pT (4.33)

This choice also ensures that the transition between stick and slip is continuous.
This can be verified by comparing both sets of multipliers at the friction limit, where
the sum of equations (4.33) and (4.22) is equivalent to (4.30). Now the same procedure
is used to obtain the contact contribution for the sliding case:

δΠCSl
(u, δu) =

∑

g

[(

κE

h
gN + pN

)

δgN − µ

(

κE

h
gN + pN

)

∆tgt · δg

]

|Jg|Hg

(4.34)
where the following simplification has been included:

∆tgt =
pT −

κE
h

Tn∆
tg

‖pT −
κE
h

Tn∆tg‖
(4.35)
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Problem solution. The equation to solve can be written as in (4.23), replacing
δΠCN

by δΠCSt
or δΠCSt

depending on the contact status of each quadrature point.
The solution procedure can be obtained by including some features in Algorithm
2. First, at the beginning of each time step, in addition to projecting the values
of pN and pT from the previous converged step, all points with an active contact
condition are set to stick, and their convective coordinates from the previous step Θt

are saved. Then, for each iteration in the N-R loop the contact status is evaluated at
each quadrature point. If sliding happens, the relative displacement ∆tgt is evaluated
using Θt. The details of the linearizations ∆δΠCStick

and ∆δΠCSlip
are provided in

paper B, and the final solution procedure is shown in Algorithm 3.

Algorithm 3 Large displacements frictional contact.
Compute pN and pT from previous converged step (3.13)
Set all previous contact points to stick state.
Θt ← Θ (from previous step)
while Residual > Tol do Augmentation loop

while Residual > Tol do N-R loop
λN ←

κE
h
gN + pN

Check active quadrature points. (λN < 0)
for all Active stick points do

λT ← Tn

(

κE
h

g+ S∗
)

if ‖λT ‖ ≥ µ |λN | then
Change status to Slip

else
Evaluate stick contact, ∆δΠCSt

end if
end for
for all Active slip points do

Evaluate ∆tgt

Evaluate slip contact, ∆δΠCSl

end for
Evaluate residual of (4.23)
Solve ∆u

end while
Update pN and pT (3.13)
Evaluate residual of (4.23)

end while

We have obtained a stabilized formulation for frictional contact able to deal with
immersed boundary methods. The numerical examples in paper B show that the
method provides optimal convergence rates, and smooth transitions between adhesion
and sliding contact. A numerical result from paper B is reproduced here to show the
performance of the method. This example features the sliding contact between a
hyperelastic squared block and a sphere, the last having a higher stiffness. This is
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(a) Scheme of the ironing problem.

ESlab 100 (GPa)

νSlab 0.3

ESphere 1000 (GPa)

νSphere 0.3

∆uz -0.3 (mm)

∆uy 5 (mm)

µ 0.3

(b) Parameter data

Figure 4.3: Frictional contact example. Ironing problem.

known in the research community as an ironing problem. The dimensions, material
parameters and imposed displacements are shown in Figure 4.3.

The problem was solved using cgFEM with three different discretizations. Two
uniform coarse meshes with element size h = 0.675mm for the block and h =
0.265mm for the sphere were created with 8-nodes linear H8 and 20-nodes quadratic
H20 elements. Then, starting from the uniform H20 mesh, one element subdivision
was performed at the block’s contact surface, so the new discretization at that area
is of size h = 0.3375mm. The same problem was also solved using ANSYSrwith
two different discretizations: the first, similar to the coarse mesh in cgFEM, and an
overkilled mesh which serves as a reference, both with H20 elements. The results in
Figure 4.4 show that the reaction forces obtained with cgFEM tend to the reference
values, and for coarse discretizations the oscillations of the forces (which have a length
equal to the mesh size) are lower. This level of accuracy is achieved because, despite
the low resolution of the discretization mesh, the exact geometry is taken into account
in the numerical integration in cgFEM. The inclusion of the exact geometry in the
kinematic variables is analyzed in the following section.
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Figure 4.4: Ironing problem. Reaction forces on the lower face of the block.
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4.2. Surface definition in cgFEM

This section summarizes the study presented in paper C, where the definition of
the contact surface is analyzed. Section 4.1.1 defined the contact gap, sliding vector
and their variations, leaving the definition of the position of a point x ∈ ΓC open. In
standard isoparametric FE formulations the same discretization is used for both the
solution and the analysis domain. This means that, for linear FE interpolations the
contact surface is discretized using linear facets (usually triangles or quadrilaterals).
A linear discretization of the contact surface implies that the normal vector field
is C0 continuous, which may cause issues in the measurement of the contact gap,
influences the convergence of the search algorithms (closest projection, ray-tracing)
and eventually compromises the robustness of the contact formulation. A proof of
that is the wide range of alternatives to obtain a smooth normal field, e.g. using
interpolations with Hermite polynomials [76], Bezier splines [77, 78], NURBS [79],
Gregory patches [81], Nagata patches [80] and enrichement functions based on the
isogeometric analysis [83, 84].

The numerical integration procedure at the boundary elements in cgFEM allows
to account for the exact CAD definition by means of NURBS surfaces, as presented
in section 3.2.1. Therefore, in this framework, the discretization of the solution and
the contact surface are decoupled in a natural way, so, the position of a point on the
contact surface is defined as a combination of the NURBS transformation Q (ξ, η)
(equation (3.11) in section 3.2.1) and the FE interpolation of the solution:

x = Q (ξ, η) + N (ζe)u, x ∈ Γc (4.36)

Note that the decoupling of the discretization comes with two different local co-
ordinate systems: the convective coordinates of the surface (ξ, η) and the parametric
coordinates of the reference element ζe. The three different coordinate systems that
are present in equation (4.36) are put together in a 2D simplification in Figure 4.5
with the generic transformation B(Θ) (which corresponds to Q (ξ, η) if the NURBS
is considered). The only ingredient missing in that Figure is the backward mapping
from the reference configuration X = Q (ξ, η) to the reference hexaedron element
� : [−1, 1]3. Thanks to the structured mesh in the cgFEM this mapping is the affine
transformation:

ζe =
Q (ξ, η)−Xe

h/2
(4.37)
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Figure 4.5: Convective to local coordinates transformation. A point located at Θ in the surface
parametric space (a) is mapped to the reference configuration X (Θ) on the global coordinates system
(c) and then to the local element space (b) with coordinates ζe.

The variation and the linearization of the contact kinematic variables make use of
the partial derivatives of the position vector in (4.36), which are computed as:

x,u = N (ζe)

x,ξ = Q,ξ (ξ, η) + N,ζe (ζe) ∂ζe

∂ξ
u

x,u,ξ = N,ζe (ζe) ∂ζe

∂ξ

x,ξ,ξ = Q,ξ,ξ (ξ, η) + N,ζe,ζe (ζe) ∂ζe

∂ξ
∂ζe

∂ξ
u + N,ζe (ζe) ∂2ζe

∂ξ2
u

(4.38)

To complete the definitions in (4.38) we take derivatives in (4.37) with respect the
convective coordinates:

∂ζe

∂ξ
=

2

h
Q,ξ;

∂ζe

∂η
=

2

h
Q,η (4.39)

and the partial derivatives of the NURBS transformation are obtained by differenti-
ating equation (3.11):

Q,ξ =
∂S (ξ, η)

∂ξ
P; Q,η =

∂S (ξ, η)

∂η
P (4.40)

The numerical experiments in paper C proved that the inclusion of the NURBS
in the position definition has a considerable impact on the accuracy of the solution,
specially in problems involving curved surfaces with small penetration (when the
resulting stress is mainly due to the initial gap). The improved accuracy comes at the
cost of an increased computational cost, since the terms in equations (4.36), (4.38)
and the ray-tracing problem in (4.1) require more calculations than the use of linear
contact facets. In paper C we explore an alternative approach in which a NURBS
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surface is fitted to the solution of the contact problem u minimizing the following
function:

min

[

1

2

∫

ΓC

(S (ξ, η)V −N(ζe)u)
2
dξdη

]

(4.41)

where the S (ξ, η) are the NURBS basis functions used to define ΓC (equation (3.11))
and V are the unknown displacements of the NURBS control points P from equation.
Using the surface quadrature rules of cgFEM, the solution of problem (4.41) is written
as:

V = M−1Gu (4.42)

M =
∑

i

S (ξ, η)
T
i S (ξ, η)i |J|i Hi ; G =

∑

i

S (ξ, η)
T
i N(ζe

i ) |J|iHi (4.43)

We can rewrite the displacements of the control points as V = Cu, where the
transformation C = M−1G is independent of the solution, thus it can be precomputed
for each NURBS surface in ΓC . Using this approach the position vector and its partial
derivatives are written as follows:

x = S (ξ, η) (P+V) = S (ξ, η) (P+ Cu) , x ∈ Γc

x,u = S (ξ, η)C

x,ξ = S,ξ (ξ, η) (P+ Cu)

x,u,ξ = S,ξ (ξ, η)C

x,ξ,ξ = S,ξ,ξ (ξ, η) (P+ Cu)

(4.44)

With this approach the computation of the gap and the ray tracing algorithm
are simplified, since it only involves evaluations of a single NURBS surface and its
derivatives. It is worth to remark that although the position vector on the boundary is
in this case completely defined using NURBS basis we have not included the NURBS
control points as unknowns of the problem, and the standard FE interpolation is kept
inside the domain.

With the last proposed approach the computational cost is associated with the
transformation C, which is a full matrix that couples the degrees of freedom of the
elements cut by the contact surface and the control points of the NURBS defining it.
Therefore, this approach only represents an advantage with respect to the combination
of NURBS and FE interpolation in (4.36) if the size of C is small, this is, if the size
of the mesh elements and the NURBS are similar.
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4.3. Towards robust, efficient solvers for

non-linear problems based in cgFEM

The last two contributions of this thesis have been developed in the context of
the second objective (section 1.2), which is the enhancement of the robustness and
efficiency of the cgFEM methodology. We have focused in two different aspects: the
reduction of the ill-conditioning of the system to solve in cgFEM and the assessment
of the finite element error in contact problems. These contributions are presented in
sections 4.3.1 (paper D) and 4.3.2 (paper E) respectively.

4.3.1. Control of the system ill-conditioning through

a displacement-based stabilization

The stabilization terms included in cgFEM at the contact formulation in paper A
and in the imposition of Dirichlet boundary conditions [95] guarantee the finite ele-
ment solution’s convergence. However, the solution of the system of equations might
be compromised due to ill-conditioning problems. An example of a problematical
situation, common to all immersed boundary methods, is shown in Figure 4.6a. If
there are elements with a very small cut of the geometry inside (like that on the
right in Figure 4.6a) there will be nodes with a negligible associated stiffness, i.e. the
displacements at those so-called pathological nodes become unbounded.

(a) Ill-conditioning issue due to mesh-

geometry intersection.

(b) Effect of the additional term.

Figure 4.6: Example of ill-conditioning problems due to small cuts of the geometry.

This issue was already detected in [102], which introduced the ghost penalty sta-
bilizing term. However, that penalty term required to build an L2 projection of the
solution in a patch of elements in Ω to a polynomial expansion, which is not common
in FE. The aggregated unfitted finite element method [26] proposes the modification
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of the Cartesian structure by building aggregates to add stiffness at the pathological
nodes. In paper D we present a stabilization procedure using common FE proce-
dures without modifying the Cartesian structure. The proposed technique consists in
adding a term to the potential energy functional Πp(u) as follows:

Πp(u)−
αE

h2

∫

Ω̂h

(u− u∗)2 dΩ (4.45)

where Ω̂h comprises all the elements in Ωh containing at least one pathological node.
The similarity of this term with that introduced in (4.18) is clear and, now, the penalty
term features the user defined parameter α > 0. Roughly speaking, the new term in
(4.45) adds an artificial stiffness and force that are compensated in the solution and
restrict the unbounded displacement at the pathological nodes.

Having stated the additional term we proceed in the same manner as in the Dirich-
let boundary or contact stabilization procedures to obtain the problem to be solved:
the field u∗ is considered independent of the solution and is obtained with a displace-
ment recovery, which is nothing but solving the minimization problem of the SPR
technique (3.14) replacing σ∗ by u∗ and σh by uh. Note that in this case u∗ is di-
rectly obtained as the solution of (3.14) and there is no need to apply the conjoint
polynomials enhancement (3.17), since the stabilization term in (4.45) only makes use
of the nodal values. Moreover, the stabilizing term can be constructed as a lumped
mass, which is a highly efficient procedure, and the computation of u∗ is carried out
in the same augmentation loop presented in the previous solution algorithms. The
work in paper D provides the following proofs: the new stabilizing term (i) does not
affect the convergence of the FE solution, (ii) neither the Richardson iteration (aug-
mentation loop) and (iii) the condition number grows with h−2, which is the rate of
body-fitted FE formulations.

Numerical example. The contribution in paper D has been developed for the
elasticity problem and can be applied to contact problems without loss of generality,
as in the case of the following numerical example. Figure 4.7 shows two toroidal vol-
umes with major radius R = 1.5 cm and minor radius r = 0.5 cm that are becoming
in contact. A constant displacement of 0.05 cm is enforced on the orange colored
surfaces. The blue surfaces have all displacements constrained. The material prop-
erties considered in this example are E = 115GPa, ν = 0.3 and a Coulomb friction
coefficient µ = 1. Two different discretizations are considered, with uniform meshes
of size h = [0.255, 0.1275] cm respectively. For each mesh two analysis are performed,
one with the addition of the displacement-based stabilization term and another one
without it. The resulting condition number of the system is shown in Table 4.1. It
is clear that the omission of the displacement-based stabilization would make the
method unable to solve fine meshes, as the condition number scales dramatically with
the mesh refinement.

The displacement-based stabilization completes, together with the Dirichlet and
contact boundary stabilization, the set of analytical tools for a robust solver of the
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contact problem in the cgFEM. All three terms are built with the same philosophy, the
use of recovery techniques and an iteration procedure to update the recovered fields.
It is worth to remark that, although using a single augmentation loop to update all
terms, the consideration of a global convergence criterion of that loop may lead to
some issues from a numerical point of view, i.e. some of the stabilizing terms may have
not converged yet, because its contribution to the global residual is small. This issue
has been addressed in this thesis by tuning the convergence criteria. The development
of a generalized procedure to establish the criteria for the numerical convergence of
all stabilization terms is left as a future work.

Figure 4.7: Analysis of the condition number in a contact problem between toroidal volumes.
Lengths in cm. (a) Problem definition. Surfaces in blue are clamped, and a constant displacement
uy = −0.05cm is applied on the orange surfaces. (b) Discretization of the first analysis, uniform
grid with h = 0.255cm.

DOF Without stabilization With stabilization

6840 1.12× 1013 1.57× 105

37872 4.86× 1027 3.06× 105

Table 4.1: Condition number of the system matrix for the contact problem between toroidal vol-
umes.
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4.3.2. Improvement of the recovered stress field for

contact problems

Adaptivity is an essential ingredient towards an efficient FE methodology. An
optimal distribution of the degrees of freedom along the analysis domain, using h-,
p- or hp-adaptivity, allows to have an increased accuracy with a reduced computa-
tional cost. Taking into account the hierarchical Cartesian structure in cgFEM, the
implementation of h-adaptive refinement strategies seems the most convenient choice.
Section 3.2.2 presented the tools currently available in cgFEM to guide the adaptive
refinement [44], which are the ZZ-estimator [39] and the superconvergent patch recov-
ery [42]. An interesting idea to improve this technique (and consequently the error
estimator’s accuracy) is to obtain a recovered field that satisfies the equilibrium equa-
tions. The contribution in this thesis is inspired by the SPR-C technique (SPR with
constrains) [43], in which the internal, Neumann boundary equilibrium and compat-
ibility equations were introduced as additional constrains to the SPR minimization
problem. In paper E we present a modification of the SPR-C technique in which the
traction equilibrium along the contact boundary is enforced.

The superconvergent patch recovery with constrains (SPR-C). Recalling
the integral version of the SPR presented in section 3.2.2, the minimization problem
(3.14) is modified into the following:

min

[

∫

Ωk
p

(

σ∗,k − σh
)2

dΩ

]

subject to CAk = Λ

(4.46)

Two differences are observed in this re-formulation of the SPR problem: (i) the
minimization problem has now additional constrains, which contain known informa-
tion that the stress field satisfies in the exact solution, like the internal equilibrium or
the boundary equilibrium; and (ii) due to the nature of these constrains, all the com-
ponents of the stress tensor {σ∗,k

1 , ..., σ∗,k
6 } must be solved at once. This is addressed

with the following compact definitions of recovered stress field:

σ∗,k(x) = P(x)Ak (4.47)

P(x) = diag (p(x), ...,p(x)) ; Ak =
{

ak
1 , ..., a

k
6

}

(4.48)

We have to identify the terms {C,Λ} introduced in (4.46) to enforce the addi-
tional constrains. The constraint equations are obtained from the elasticity problem
defined in Chapter 3.1, particularly the first and last equations in (3.2). The inter-
nal equilibrium equation is written as ∇σ + b = 0, where b are the volume forces.
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Taking into account the definition (4.47) and identifying terms we have the following
constraint equation:

∇ ·P(x) Ak = −b(x) ⇒ Ciee = ∇ ·P(x) ; Λ
iee = −b(x); x ∈ Ωk

p

(4.49)
Now, the same procedure is followed for the boundary equilibrium, which is written

as n · σ = t̂ in the elasticity problem, with the external traction vector t̂. The
constraint equation in this case is written as:

R(x)P(x) Ak−t̂(x) = 0 ⇒ Cext = R(x)P(x) ; Λ
ext = t̂(x); x ∈ Γk

p

(4.50)
where we have included the operator R(x) which uses the normal n to transform
the vector P(x) Ak that contains the six stress tensor components into the traction
vector t. The constraint (4.49) is applied to all SPR patches in the mesh. However,
the boundary constraint (4.50) is only enforced at those boundary patches that are
cut by ΓN .

Note that the polynomial field σ∗,k cannot fulfill the introduced constrains for all
x ∈ Ωk

p in a general case. For example, a polynomial definition of degree p can only
satisfy the internal equilibrium equation for volume forces defined as polynomials
of degree p − 1. Moreover, the boundary equilibrium cannot be satisfied even for
constant enforced traction if the loaded surfaces are arbitrarily curved. In paper E we
propose the weak enforcement of the constrains by using a pseudoinverse approach.
The procedure is explained here for the boundary equilibrium and is likewise applied
to the internal equilibrium constrain. The equation (4.50) is written for every surface
quadrature point, so Cext and Λ

ext become a matrix and a column vector respectively.
The combination of linearly independent columns of that matrix (denoted by C∗ext′)
is extracted, and the set of constraint equations is obtained as:

C∗ext′CextAk = C∗ext′
Λ

ext (4.51)

Now applying the Lagrange multiplier method to solve (4.46) we obtain the fol-
lowing system in matrix form:

[

M CT

C 0

]{

Ak

λ

}

=

{

H

Λ

}

(4.52)

where the M and H are built by concatenating the terms Mi (in a block diagonal) and
Hi defined in (3.15), and the constraint terms {C,Λ} are built by concatenation of
the considered constrains. For instance, for the case of a boundary patch intersected
by ΓN the constrains are written as:

C =

{

C∗iee′Ciee

C∗ext′Cext

}

; Λ =

{

C∗iee′
Λ

iee

C∗ext′
Λ

ext

}

(4.53)
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SPR-C for contact problems. In the case of solving contact problems we can
include an additional condition that the stress field satisfies in the exact solution, this
is, the continuity of tractions along the contact surface. Let ΓC be the contact surface
in the exact solution, then for a point x ∈ ΓC the contact equilibrium is written as:

t(1)(x) + t(2)(x) = 0 , ∀x ∈ Γ
(i)d
C (4.54)

where t(1), t(2) are the traction vectors of the recovered field σ∗, and are written as:

t(i)(x) = R(i)(x)σ∗,(i)(x) = R(i)(x)P(i)(x) A(i) (4.55)

so the additional constrain for contact problems is defined as:

R(1)(x)P(1)(x) A(1) + R(2)(x)P(2)(x) A(2) = 0 (4.56)

The main difference with respect to the previously presented constrains is that
this constrain relates the recovered fields of both bodies. However, it is impossible
to establish a unique correspondence between nodes of both bodies in contact in the
framework of non-matching immersed boundary meshes. Instead, we propose the
solution of the SPR-C problem for each body in contact as follows: let’s assume that
we are solving the SPR-C problem at node k of the so-called main body (in this
example Ωk

p ∈ Ω(1)). Then we build a subdomain Ωaux
p ∈ Ω(2) in the auxiliary body

following the procedure depicted in Figure 4.8. First, we define the contact area at the
main body as a convex polygon containing all active contact points in ΓC ∩Ω

k
p, and a

projection direction is computed with the weighted average of the normal vectors of
all those quadrature points with an active contact condition. Then the contact area
is projected towards the interior of the auxiliary body and the auxiliary region Ωaux

p

is built with the boundary elements in Ω(2) that lay inside that projection.

(a) SPR patch with active

contact condition. The con-

tact area is depicted in red.

(b) Projection of the con-

tact area towards the auxil-

iary body.

(c) The boundary elements

inside the projection define

the auxiliary domain.

Figure 4.8: Definition of the auxiliary domain Ω⋆.

Once the auxiliary domain Ωaux
p is created we build another SPR-C problem re-

lated to that region, with the unknown coefficients A(2)aux. Note that the solution
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of the SPR-C problem at the auxiliary body is not related to any node of the mesh,
thus it cannot be used to compute the recovered field. Then the problem to solve is
written in the matrix system (4.57), where the blocks in red are the SPR-C system
(4.53) computed at Ωk

p ∈ Ω(1), the blocks in green represent the same problem evalu-
ated at Ωaux

p ∈ Ω(2) and the constraint blocks Ccont and λcont are obtained with the
same procedure in (4.51).
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(4.57)

With the solution of system (4.57) we obtain the coefficients A(1) to compute the
recovered field at the main body, and the coefficients A(2)aux are disregarded. After
solving all patches in Ω(1) the roles of main and auxiliary are exchanged to evaluate
the recovered field at Ω(2).

Since the solution of the SPR-C patches is performed in a decoupled manner,
there will always be a lack of equilibrium along the contact boundary at a patch level.
However, the numerical tests performed in paper E show that both the quality of σ∗

and the traction equilibrium along the contact boundary is greatly improved with the
proposed technique. The non-smooth behavior characteristic contact pressure around
the end-of-contact area is not properly captured since we use a single polynomial
to represent the recovered field. Nevertheless, the accuracy of the contact pressure
evaluated with the SPR-C technique is also higher in the end-of-contact area than
that obtained with the classic SPR technique.

Moreover, it is shown that the effectivity of the ZZ-estimator (3.12) is considerably
increased around the contact area when the SPR-C recovered field is used. This allows
to perform an accurate automatic h-adaptive refinement procedure which increases
the efficiency of the method for the solution of 3D contact problems, in the sense that
the same error level can be obtained with less degrees of freedom.

4.4. Application example: patient-specific

dental implant simulation

With the contributions presented in this Chapter we have developed a framework
for solving contact problems with cgFEM. In this section we present a conceptual
example of an engineering application in which the advantages of the cgFEM can be
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exploited: the patient-specific simulation of the interaction between living tissues and
prosthetic devices, particularly a dental implant simulation.

When the dental implant is inserted, the contact forces between the bone and the
implant hold it in place. This first stage is followed by a bone remodeling process
and a osseointegration process, accompanied by a progressive reduction of the contac
forces. The analysis of the contact stresses at this first stage is relevant for the
optimization of immediate-load dental implants, where the devices can be exposed
to the chewing forces immediately after implantation. The contact interaction also
influences the local evolution of the osseointegration and bone remodeling processes.
Hence, these contact forces are relevant for the success of the implant’s performance.
The heterogeneity of the living tissue at each patient, both in terms of geometry and
material properties, prevents the analysis of these local effects using a generalized
model of a mandible. Thus, an accurate pre-operative evaluation of the success of an
implant involves creating a patient-specific FE model from the medical image provided
by a CT scan, which usually involves a complex pre-processing segmentation phase.

Giovannelli et al. [103] presented an efficient method for the automatic creation
of such models taking advantage of the high compatibility of the cgFEM mesh and
the medical image structures. The voxels of the CT scan were directly introduced
in the structured mesh without the usual intermediate step of creating geometrical
models of the living tissue. Then the material properties were assigned to each voxel
in the image for the numerical integration. This was done using the relations found
in literature between the values of the voxel (in Hounsfield units), apparent mineral
density and, finally, Young’s modulus (see for instance [104, 105]). To avoid exces-
sive homogeneization of the material inside each element in the mesh the method
features an automatic h-adaptive refinement procedure based on the distribution of
material properties in the elements. This technique was used in [103] to model the
last phase of the process, i.e., to model the bone-implant interaction assuming a com-
plete osseointegration, and therefore, the continuity of displacements between bone
and implant. This continuity allowed the use of one single FE mesh to model bone
and implant, simply taking into account different material properties at each of them.
No remodeling was considered in this reference.

In the example shown in this thesis we will model the initial stage of the process,
where the bone-implant interaction is driven by the contact forces. This implies
considering two independent FE meshes, one for each body. Figure 4.9a shows the jaw
model used in [103], from which a region is extracted (Figure 4.9b) for the simulation
with a CAD model of a dental implant (Figure 4.10a) of titanium (E = 110GPa, ν =
0.3). The Young’s modulus considered for mandible model is a piece-wise linear
interpolations of the values in Table 4.2, and a constant Poisson’s ratio ν = 0.3
[103]. The applied boundary conditions are depicted in Figure 4.9b: all displacements
are constrained at the nodes located over the blue surfaces, and a distributed load
σyy = σzz = −2 MPa is applied on the upper surface of the implant.

Both models are meshed independently, and all the image voxels located inside
the CAD defining the implant are deactivated, i.e. its material properties are set to
zero. The challenge now is to obtain the contact point pairs between both solids, as
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the medical image does not define any explicit surface. We propose to duplicate the
NURBS entities defining the implant and associate that copy to the image, this is, the
new surface will move with the voxels in the image. We find this approach suitable
for this application in which there are small displacements, but other methods should
be explored otherwise, e.g. for the simulation of the implant insertion.

(a) CAD model (b) FE model, 36k DOF

Figure 4.9: Example of implant simulation. CAD and mesh of the implant model.

HU 0 227 228 1500 2000 4095

E [GPa] 10−4 10−4 0.5 1.5 7 30

Table 4.2: Material properties associated to the mandible model.

The contact formulation developed in this thesis allows the simulation of different
states of the integration between implant and mandible. On one hand the previous
stage to the implant’s osseointegration is modeled with a Coulomb’s friction model
with µ = 0.36. On the other hand, a simulation of complete osseointegration is per-
formed considering only adhesive contact. Figures 4.12 and 4.13 show the results
corresponding to the FE stress σh

zz and the von Mises stress of the recovered field σ∗

at the implant, respectively. Although these results cannot be interpreted from an en-
gineering point of view, there are appreciable differences on the stress field around the
contact surface depending on the assumptions made. Therefore, a unique model can
be used to analyze the initial stage (considering frictional contact interaction between
bone and implant) and the stationary regime, once osseointegration has taken place
(considering adhesive contact). Hence, we also believe that the presented method is
promising for the definition of patient-specific optimal implant designs, which maxi-
mize the long-term implant stability taking into account the contact interaction with
the living tissues.
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4. Contributions

(a) CAD model (b) FE model, 36k DOF

Figure 4.10: Example of implant simulation. CAD and mesh of the implant model.

(a) Analysis domain (b) FE model, 270k DOF

Figure 4.11: Example of implant simulation. Image and mesh of the mandible model.
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4.4. Application example: patient-specific dental implant simulation

(a) Friction contact (b) Adhesion contact

Figure 4.12: Example of implant simulation. Values of stress σh
zz corresponding to the assumptions

of frictional and adhesion contact.

(a) Friction contact (b) Adhesion contact

Figure 4.13: Example of implant simulation. Von Misses stress of the recovered field σ∗ at the
implant corresponding to the assumptions of frictional and adhesion contact.
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Chapter 5

Closure

5.1. Summary

In this thesis we have presented a framework for solving 3D frictional contact
problems within the Cartesian grid Finite Element Method (cgFEM). The main con-
tributions of this thesis are summarized as follows:

• A stabilized Lagrangian formulation for 3D frictional contact has been pre-
sented. In this formulation the stabilizing stress is computed by means of the
superconvergent patch recovery technique. The FE optimal convergence rates
are kept regardless of the arbitrary cuts between the Cartesian grids and the ge-
ometry and there are no additional unknowns in the elasticity problem. This is
achieved at the cost of including an augmentation loop in which the stabilizing
term is updated. However, the experience has shown that usually 2-3 iterations
are enough to obtain accurate results and optimal convergence.

• The NURBS definition of the contact boundary, available in cgFEM, has been
included in the kinematic variables definition. As a result, the measurement of
the contact gap is greatly improved, with an overall impact on the accuracy of
the method. In particular, it has been shown that the results obtained with
coarse meshes and NURBS are comparable to those obtained with finer meshes
and linear facets.
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5. Closure

• An alternative definition of the contact surface involving a NURBS fitting prob-
lem has been studied. With this approach the evaluation of the kinematic vari-
ables and the ray-tracing algorithm are simplified. This may be suitable for
meshes where the size of the elements is comparable to that of the surfaces.
However, as the mesh is refined there is an increasing in the coupling of degrees
of freedom, which eventually ends in an inadmissible computational cost.

• Following the same idea of the stabilizing term in the contact formulation we
have presented a technique to address the ill-conditioning problems typical of
immersed boundary methods by adding a stabilizing term for the pathological
nodes. In this case the stabilizing term is computed with a displacements recov-
ery, and the same augmentation loop of the contact iteration is used to update
the new term. The performed tests show that the proposed approach eliminates
the condition number dependence on the cuts between mesh and geometry.

• Finally, we have proposed a modification of the superconvergent patch recovery
with constrains (SPR-C) for the recovery of stresses from the FE solution that
includes the boundary equilibrium at the contact area. This modification results
in an enhanced recovered stress field around the contact area, which leads to a
better error estimation through the well known ZZ-estimator. The combination
of this estimator and the SPR-C has been successfully used to guide an h-
adaptive refinement process in contact problems with cgFEM.
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5.2. Future developments

5.2. Future developments

With this thesis we have established the basis for solving contact problems within
the cgFEM methodology. This opens some research lines where the capabilities of the
cgFEM are exploited in the context of contact problems:

• The combination between a technique that takes into account the specific fea-
tures of the patient’s bone present in the medical image and efficient shape
optimization procedures seems very promising for the development of patient-
specific optimized prosthetic devices. The contact formulation developed in this
thesis allows to simulate different stages of the implant by switching between
frictional and adhesive contact. We also believe that the osseointegration pro-
cess can be modeled with the techniques presented in this thesis. To do this it
will be necessary to develop a criterion that defines, for any given pair of points
in contact, the transition between frictional and adhesive model. Finally, the
combination of this methodology with a bone remodeling model will allow to
run the complete evolution of a patient-specific implant simulation.

• cgFEM is a suitable framework for solving problems in which multiple geometry
modifications must be performed, such as shape optimization. In this sense,
the contribution in this thesis opens the possibility to simulate contact wear
problems. For that, it is necessary to develop a strategy to modify the geometry
of the bodies in contact using the resulting contact stresses.

• Up to this moment the contact search algorithm represents one of the most
expensive tasks in terms of computational cost. A rudimentary algorithm has
been implemented, but we believe that there is room for improvement with the
combination of cgFEM’s hierarchically structured data and optimized search
algorithms currently available.
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Abstract

The aim of this work is to propose a formulation to solve both small and large
deformation contact problems using the finite element method. We consider both
standard finite elements and the so-called immersed boundary elements. The method
is derived from a stabilized Nitsche formulation. After introduction of a suitable
Lagrange multiplier discretization the method can be simplified to obtain a modified
perturbed Lagrangian formulation. The stabilizing term is iteratively computed using
a smooth stress field. The method is simple to implement and the numerical results
show that it is robust. The optimal convergence rate of the finite element solution
can be achieved for linear elements.
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1. Introduction

1. Introduction

The aim of this work is to propose a formulation to solve contact problems in the
context of large and small deformations using the finite element method. We consider
both standard finite elements and the so called immersed boundary elements in which
an underlying Cartesian grid made of regular hexahedral elements is cut by the real
geometry and integration is performed only in the internal part of the elements. In
recent years segment-to-segment formulations like the mortar method [8] have been
successfully applied to solving a wide variety of contact problems in 2D [27,35,55] and
3D [38,39], with linear and quadratic elements [28,53], in large and small deformations
including Coulomb friction [17, 18, 20, 40–42, 50] and dynamic problems [24]. The
theoretical basis of the mortar method is well known [15,28,30–32]. The compatibility
of the displacement field and the contact stresses allows the Brezzi-Babuska-InfSup
condition to be fulfilled, so the optimal convergence rate of the finite element solution
can be achieved. The above references are only a part of the bibliography on the
mortar method applied to contact problems.

In the case of immersed boundaries it is more difficult to find finite element spaces
that fulfill the InfSup condition. To our knowledge only the Vital Vertex method, first
proposed by Bechet et al. [7], can satisfy the compatibility between displacements and
multipliers. This method has been used for imposing Dirichlet boundary conditions
in 2D and 3D [2] immersed boundaries. However, its applicability to deal with large
deformation contact problems is more involved, although there are some works in
2D [37]. For this reason, other techniques based on stabilized formulations have
recently been proposed to solve contact problems. In these techniques the finite
element spaces can be freely chosen at the price of adding new stabilizing terms to
the formulation. Modifications of the Nitsche method have been applied to standard
FEM [13, 26, 29, 57], X-FEM [3, 4, 21] and interface problems [1, 2, 12, 23, 45]. Other
techniques use different stabilized formulations. For example [34] uses a polynomial
stabilization valid for linear elements or [11] penalizes the jump in the multiplier linear
elements. In other works the idea of extending the solution of internal elements to the
intersected elements was explored [14,25]. In [19] the idea of condensing the Lagrange
multipliers to obtain a simplified method for immersed boundaries was introduced. It
was also used in [51] using the quadrature points. The same ideas were applied in [5]
using a stabilizing field defined in the volume of the element instead of its surface.
For Navier-Stokes equations in [46] a stabilization term that takes into account the
jump in the derivative in the internal elements edges is used to overcome limitations
of the Nitsche method in immersed boundaries.

In this work we propose a formulation derived from the stabilized Nitsche method.
With the choice of finite element spaces, after simplifying the formulation, we obtain
a formulation of the perturbed Lagrangian formulation proposed in [47]. From our
analysis, an extra term due to contact is introduced to obtain a consistent formulation.
The correction term can be iteratively computed using a smooth stress field. The
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Figure 1: Scheme of two deformable bodies in contact.

same idea is used in [52] to impose the Dirichlet boundary conditions in immersed
boundaries. It is demonstrated that the optimal convergence rate of the finite element
solution can be achieved for linear and quadratic elements. This paper is organized
as follows: Section 2 describes the formulation of the contact problem using Lagrange
multipliers. In Section 3 we propose a stabilized formulation based on the Nitsche
method. We propose an iterative method to solve the problem. In Section 4, the
convergence of the iterative method is analyzed. In Section 5 the formulation is
simplified and expressed as a modified penalty formulation with a suitable choice of
the Lagrange multiplier field. We provide some details of the linearization for solving
large deformation problems. In the last section some numerical examples are solved.

2. Contact problem formulation

In this part we introduce the contact problem formulation for small deformations.
In Section 5 we will extend the formulation to deal with large deformations and large
sliding problems. Fig. 1 shows a schematic representation of two deformable bodies
labeled (1) and (2) that occupy volumes Ω(1) and Ω(2), respectively. The boundary of
each body Γ(i) is divided into three non-overlapping surfaces, Γ(i)

D on which Dirichlet
boundary conditions are imposed, Γ(i)

N , the Neumann boundary, and Γ(i)

C the surface
of the bodies on which contact can occur. We assume a linear elastic behavior of
the materials and small deformations. With this setting, the contact problem can be
formulated as a minimization of a functional [33,54], the total potential energy, under
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2. Contact problem formulation

the contact constraints, i.e.:

min







Πp(u) =
∑

i=1,2

(

∫

Ω(i)

σ(u) : ǫ(u) dΩ−

∫

Γ
(i)
N

u · t̂ dΓ

)







subject to gN ≥ 0 in Γ(1)

C

(1)

where σ is the stress tensor, ǫ linear strain tensor and t̂ are the tractions imposed
at the Neumann boundary. The normal gap between the two contact surfaces is gN .
Here we assume that the contact constraint is satisfied for surface Γ(1)

C . The gap is
computed as the distance between the surface point x(1) and the intersection of the
other contact surface Γ(2)

C with the line emanating from the first point in the direction
of the normal vector n(1),

gN =
(

x(2)
(

ξ(2)
)

− x(1)
)

· n(1) (2)

where ξ(2) is the local coordinate of the intersection point on surface Γ(2)

C (in 3D it
has 2 components). The position can be written as the sum of the initial position
and the displacement, i.e. x(i) = x(i)

0 + u(i). In small deformations we assume that
the contact point denoted by the surface coordinate ξ(2) remains the same despite the
deformation of the solids, i.e. it can be computed for the initial undeformed position.
We can therefore write:

gN =
(

u(2)
(

ξ(2)
)

− u(1)
)

· n(1) +
(

x(2)

0

(

ξ(2)
)

− x(1)

0

)

· n(1)

=
(

u(2)
(

ξ(2)
)

− u(1)
)

· n(1) + gN0

(3)

The minimization problem under inequality constraints (1) can be solved using the
Lagrange multiplier method, which is the basis of many finite element formulations
for contact problems. A new variable, the Lagrange multiplier field λN is introduced
and the following functional must be minimized with respect to the displacements
and maximized with respect to the multipliers

opt







∑

i=1,2

∫

Ω(i)

σ(u) : ǫ(u) dΩ−

∫

Γ
(i)
N

u · t̂ dΓ +

∫

Γ
(1)
C

λNgN dΓ







subject to λN ≤ 0

(4)

With this formulation the inequality constraint affects the multiplier λN . This restric-
tion can be resolved by an active set strategy, assuming that the real contact surface
is known, solving the problem and modifying the contact surface. From now onwards,
for the analysis of convergence, we assume that the real contact surface is known and
denoted as Γ(1)

C . In Section 5 we provide details of the algorithm used to update the
real contact surface.

As pointed out above, Equation (4) can be used to obtain a finite element formu-
lation of the contact problem. The displacement and multiplier fields are replaced by
a suitable finite element approximation uh ∈ U h and λh

N
∈M h.
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Figure 2: Cartesian grid finite elements in contact. The thick lines are the contact sur-
faces that follow the deformation of the boundary elements. Thin lines represent the
subtriangulation of the boundary elements performed only for integration purposes.

In this work we use both 3D standard hexahedral finite elements and the so-called
immersed boundary method with 8-node linear elements H8 and 20-node quadratic
elements H20. Here we only describe the basic aspects of the immersed boundary
method. A more detailed description can be found in [36, 49], for example. In the
immersed boundary method, sometimes referred to as the Cartesian grid method, the
underlying mesh consists of regular hexahedrals and this will be used in this work.
Figure 2 schematically shows the Cartesian grids of two bodies that can come into
contact. The thick lines represent the contact surface, which in general does not
coincide with the edges of the elements. The shaded area represents the real domain
of the bodies. For the boundary elements (elements cut by the real geometry of the
problem) the integration is performed only in the part of the elements lying within the
problem domain. Thus, a linear sub-triangulation of the internal part of the elements
is defined only for integration purposes and the contact surface is approximately
represented with straight segments, as depicted in Figure 2. Analogously, in the 3D
case, the boundary elements are subdivided into tetrahedrals for integration and the
contact surface is approximately represented by linear triangles.

The contact interaction between Cartesian meshes follows the same definition as
the gap given in Equation (2) using the local coordinate in the contact surface ξ(1) and
normal vector n(1). The position of the contact surface in the deformed configuration
is defined by standard finite element interpolation using all the nodes of the boundary
elements and not only the boundary nodes.

It is well known that in mixed formulations such as that of equation 4 a careful
choice must be made of the discretization spaces for displacements and multipliers to
achieve the optimal convergence rate. There are two conditions [9,10] the ElKer and
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3. Stabilized formulation

the InfSup. As a solution for the compatibility of the spaces of Lagrange multipliers
and displacements we find the mortar method, which has been successfully applied to
2D and 3D, large and small deformation contact problems using linear or quadratic
elements, as pointed out in the Introduction. For immersed boundary methods the
Vital Vertex method has been defined to fulfill the InfSup condition in the case of a
Dirichlet boundary in 2D [7] and 3D [2].

The InfSup condition introduces many constraints in the case of immersed bound-
aries and it is by no means straightforward to derive a contact formulation that fulfills
this condition. Stabilized methods can be used obtain greater freedom to choose the
Lagrange multiplier space. This will be introduced in the following section and will
form the basis of the proposed formulation.

3. Stabilized formulation

The difficulty in solving equation 4 by finite elements usually arises when the space
of the multipliers is too rich, i.e. there are too many constraints in relation to the
displacement degrees of freedom as the mesh is refined. Even though the problem can
be solved, the convergence rate of the solution may be compromised. As the number
of constraints increases, the constraint equations become more dependent and the
value of the multiplier is unbounded. The idea of the stabilized formulations is to
add a new term to the functional 4 that would prevent the multiplier from taking
unbounded values.

In order to simplify the notation, from now on, we assume that the finite element
variables are denoted without superscript h, i.e. u = uh and λN = λh

N
.

The ideas of stabilizing the solution were used in [47]. Simo, Wriggers and Tay-
lor proposed a perturbed Lagrangian formulation to solve contact problems as the
optimization of the following functional

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ−
1

2k

∫

Γ
(1)
C

λ2
N
dΓ

}

(5)

The last integral in the functional is a penalty stabilizing term that allows the values
of the multipliers to be bounded. As pointed out in [47], this penalized method is not
consistent, in the sense that the exact solution of the contact problem is a solution
of the above functional only at the limit, when the parameter k → ∞, which is
impossible in practice. In [47], after some simplifications, a structure of the problem
as a pure penalty method was obtained in which the contact constraints are imposed
in an average sense.

In this work we propose a new method that includes a modification of the per-
turbed Lagrangian formulation to make the formulation consistent, i.e. the finite
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element solution converges to the exact solution as the mesh is refined for a wide
range of bounded values of the penalty parameter k.

In what follows, we first introduce (Subsection 3.1) the modified functional used
to stabilize the problem and analyze the similarities of the proposed formulation with
the Nitsche method. In subsection 3.2 we introduce the stabilization field used in
this work and show that the proposed field overcomes some limitations of the Nitsche
method, particularly for immersed boundary meshes. The proof of convergence of
the proposed formulation will be analyzed in Section 5 after introducing the iterative
solution method.

3.1. Proposed stabilized functional

The proposed formulation can be derived from a modified version of the Barbosa-
Hughes stabilization [6] in which the stabilizing term is replaced by a smooth stress
field. Stenberg [48] demonstrated that the Barbosa-Hughes stabilization was equiva-
lent to the Nitsche method, so that the proposed formulation can also be considered
as a modified version of the Nitsche method. The functional reads as:

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ−
∑

∀e

h

2Eκ

∫

Γ
(1)
C

(λN − pN)
2
dΓ

}

(6)

where E is the Young modulus, κ a user-defined penalty parameter that will be defined
in the following sections and pN is the stabilizing stress. The difference is found in
the definition of the stabilizing stress pN .

The last integral in Equation 6 is computed for each contact segment, as defined
in the following section. The constant multiplying the stabilizing term includes E
and a representative measure of the element size h. The former is needed to obtain a
physical meaning of energy, since we have the product of stress multiplied by stress in
the integral. Thus, dividing by E transforms the term into energy. The latter, h, is
included to give the stabilizing term the same order of magnitude as the strain energy.
As the element size is reduced, the variation of the element strains and stresses inside
the element is also reduced. We can think on the limit as being constant in the
entire element. Thus, the strain energy will be proportional to h3, as it is a volume
integral. The stabilizing term is a surface integral so it will be proportional to h2.
The additional h constant is introduced to have the same order of magnitude, as we
need to bound the stabilizing term with the strain energy to achieve the convergence
of the method (see following Section).

In the case of the Nitsche method pN is the contact traction computed from the
finite element solution, i.e. pN = n ·σ(u)n. This has been applied in [26,29] to derive
the formulations to solve contact problems. With the same choice for pN , the value
of the constant can be adapted to deal with X-FEM problems [1, 3, 4, 45].

The negative sign before the last integral is necessary, as the optimization of the
functional is a maximization with respect to the multipliers. However, as the problem
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Γ(1)

C

Boundary element

d

i

Figure 3: Patch of elements for computing the smooth stress field of node i. The
internal volume of the boundary elements depends on distance d.

is a minimization with respect to the displacements and n · σ(u)n linearly depends
on this field, the negative sign may cause a non desired behavior of the stabilization
term. A possible solution with standard finite elements is to bound this term by
taking a sufficiently large value for κ so that this integral can be bounded by the strain
energy [51]. In the case of immersed boundary elements there are some difficulties
involved in bounding this term, particularly in meshes with cut elements that have a
very small volume/surface ratio, as pointed out in [25].

To illustrate this problem two boundary elements with small internal volumes are
shown in Figure 3. In general the L2 norm of the stress on the boundary cannot
be bounded by the energy norm of the element as its volume depends on distance d
which can be very close to zero. Therefore, the stress n ·σ(u)n can only be bounded
with very large values of the constant κ up to a geometric tolerance (see also [2,
45]). This can affect the convergence of the Nitsche method in this context, although
from the engineering point of view, the results obtained using the tolerance seem
to be acceptable. Appropriate choices for the stabilizing constant are proposed in
the γ−Nitsche method [1, 45] for X-FEM applications. Schott and Wall [46] recently
proposed an additional stabilization term that penalizes the jump in the derivative
along internal element edges for fluid problems.

3.2. Smooth stress field

In this work we propose to define pN as a smooth stress field obtained from the
finite element solution, following the ideas introduced in [52] to apply Dirichlet bound-
ary conditions in immersed boundaries. This choice is motivated from the observation
that any variable having good convergence properties to the exact contact traction
can be used as stabilizing term pN in equation 6. The smooth stress field depends
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not only on the solution of the boundary elements but also on the internal elements,
where stresses are better estimated. The idea is close to that used in [14, 25], where
the displacements of the internal elements are extended to the boundary cut elements.
In [46] the solution of the internal elements is also used to stabilize the variables in
the boundary elements.

The smooth stress field is based on the SPR (Superconvergent Patch Recovery)
first proposed in [59] and improved in [43] to include constraint equations that must
be fulfilled by the exact solution. Here we recall the main features of the smooth
stress field calculation. The smooth stress field Si = {1 x y xy ...} ai is defined as a
polynomial associated to each node i whose coefficients ai are computed solving the
following minimization problem:

ai = argmin

{

∫

Ωpatch

i

(σ(u)− Si) · (σ(u)− Si) dΩ

}

(7)

where σ(u) is the stress field computed from the finite element solution. The integral
is extended in the volume of a so-called nodal patch Ωpatch

i . This volume includes all
internal elements that contain node i and the internal volume of boundary elements
that contain this node. For example, Figure 3 shows the patch of node i in a 2D
case, that contains two internal and two boundary elements. With this choice, small-
volume boundary elements (d close to zero, in which the finite element stress is poorly
estimated, i.e. it has a large error) contribute less than the internal elements to the
computation of the smooth stress field.

The stabilization term is computed as the normal traction of the smooth stress in
the contact surface pN = n · Sn. With this definition it can be proved that the L2

norm of pN in the contact surface can be bounded with the energy norm [52], with a
bounded positive constant C as follows

‖S‖2L2(ΓC) ≤
EC

h
‖u‖2E (8)

where h is a representative measure of the element size and ‖ · ‖E is the energy norm
in the volume. The value of C depends on the order of the interpolation and the
nodal patches. For immersed boundaries the worst case appears for nodes whose
elements are cut and have very small volume. Even in that case, as the smooth stress
field depends on the solution of the internal elements, the constant C is bounded. In
practice we found that we can use C ≥ 10 for linear and quadratic elements.

4. Iterative solution method

The stabilization term pN depends on the finite element solution u. However, it is
somewhat cumbersome to obtain an explicit formula for it, as its computation derives
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from equation (7). Following the ideas presented in [52], we propose an iterative
process to solve the optimization problem 6 in which the stabilization term pN is
assumed to be constant. After solving the problem, pN is updated from the finite
element solution, and problem 6 is solved again. The process begins with pN = 0 and
runs until convergence is achieved.

Assuming that the stabilization term pN is known, we solve problem (6) taking
variations with respect to the displacements and the multipliers to obtain a following
variational equation. We have to find the iteration k solution, [uk, λk

N
], solving the

following system

∑

i=1,2

G(i)

int(u
k, δu) +

∫

Γ
(1)
C

λNδgN(u
k) dΓ =

∑

i=1,2

G(i)

ext(δu) ∀δu

∫

Γ
(1)
C

δλk
N
gN(u

k) dΓ−
h

Eκ

∫

Γ
(1)
C

δλN λk
N
dΓ = −

h

Eκ

∫

Γ
(1)
C

δλN pN(u
k−1) dΓ ∀δλN

(9)

G(i)

int and G(i)

ext are the virtual work of internal and external forces of body i, respec-
tively. The contact integral in the first equation is the virtual work of contact forces,
and δgN is the virtual gap computed by taking variations in equation (3). The smooth
pressure is written as pN(u

k−1) to emphasize the dependence of this variable on the
solution of a previous iteration k − 1. In the second equation, the first integral con-
tains the constraints imposed to fulfill the non-penetrability condition of contact. The
other two integral terms in the second equation prevent the contact constraints from
being exactly fulfilled but tend to compensate each other as the mesh is refined. At
the limit, when the element size tends to zero, λN = pN and the exact constraint will
be enforced.

Note that, compared with the Nitsche method used in [26], the proposed formu-
lation has a lower number of integrals that need to be evaluate to obtain the tangent
matrix of the system. In particular, all the terms of the Nitsche method that derive
from the variation of the stabilization term pN (which is here a function of u) are
avoided in the proposed formulation, at the cost of an iterative solution process. It
is necessary to verify the conditions under which the iterative method converges to
the solution and to check the stability of the system. This is done in the following
Section after defining the Lagrange multiplier finite element space.

5. Lagrange multiplier interpolation:

Penalty method

The stabilized formulation (9) gives greater freedom than the Lagrange formula-
tion to choose the Lagrange multiplier finite element space. The displacement field
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Γ(1)

C

Γ(2)

C

Figure 4: Concentrated inexact numerical integration. The integrands are only eval-
uated at the quadrature points (shown as x) defined in each contact slave surface
segment. The circles are the nodes and the squares are the corresponding contact
points on the master surface. Normal vectors are independently defined for each slave
segment.

is defined in uh ∈ H1(Ω) and the multiplier space λh
N
∈ L2(ΓC). We choose for the

displacement field linear 8-node H8 or quadratic 20-node H20 hexahedral elements,
having degree of interpolation p = 1 and p = 2, respectively. As pointed out above,
we deal with standard or cut (immersed boundary) elements.

The only requirement for the Lagrange multiplier space is that it must have ade-
quate approximation properties. Stenberg [48] analyzes the approximation properties
of the multiplier space used to impose the Dirichlet boundary conditions using the
Nitsche method. From this analysis, if the solution is regular enough, the optimal
convergence rate can be achieved [52] if the Lagrange multiplier space is at least a
piecewise constant, not necessarily continuous, interpolation for linear elements H8

and a piecewise linear, not necessarily continuous, interpolation for quadratic elements
H20.

In [51] an implicit definition of the multiplier field was introduced for 2D elements,
based on the value of the multiplier at the quadrature points of the surface used to
numerically evaluate the boundary integrals. The Dirichlet boundary conditions in
immersed boundary elements problem was analyzed in this work. For 2D problems,
the Dirichlet boundary was divided into segments defined in each cut element. It has
been stated that npg = 2 quadrature points for linear elements define a piecewise linear
interpolation for the multiplier q = 1 and can exactly integrate polynomials of degree
3. As the product of the multiplier and the displacement has degree 2, it is enough
to exactly evaluate integrals with constant Jacobian. Similarly, in 2D for quadratic
elements npg = 3 allows exact integration and good approximation properties of the
multiplier field.

In the case of contact problems, the boundary integrals on the contact surface are
more complex because they involve functions defined in the two bodies in contact.
Exact evaluation of the contact surface integrals would need a segmentation of the
surface, as proposed for the mortar method in [39,40,56]. Instead of looking for exact
integration, in this work we use the same strategy proposed in [18,22,50] and depicted
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5. Lagrange multiplier interpolation: Penalty method

in Figure 4. The approximate integration is performed evaluating the integrand at
the quadrature points defined on the surface Γ(1)

C regardless of whether the integrand
belongs to one or other body. Despite the inexact integration, this method has certain
advantages. First, the evaluation has a lower computational cost and is easy to
implement. Also, the optimal convergence rate of the finite element solution error
can be achieved for linear elements if a uniform refinement is performed. The reason
is that the error in the contact integral computation will decrease linearly as the mesh
is refined.

The main drawback of this integration is that for quadratic elements the theoretical
rate of convergence p+1 in energy norm is lost when the mesh is refined. The problem
can be alleviated by increasing the number of quadrature points, so that the level of
the integration error is reduced. Even though the rate is not improved, the optimal
rates of convergence of the finite element error could be achieved for the first meshes
when the discretization error is much higher than the integration error. Therefore,
from the engineering point of view, the method is suitable for achieving an accurate
finite element solution with a reasonable amount of degrees of freedom. It must be
pointed out that in some contact problems the regularity of the solution itself limits
the theoretical rate of convergence that could be achieved with quadratic elements.

Another alternative that is explored in the numerical examples in the present paper
is to impose the contact constraints on both contact boundaries Γ(1)

C , Γ(2)

C at the same
time, which is possible due to the stabilized formulation. It can be seen as the double
pass strategy defined in the classical penalty method. As the stabilization stress pN

(1)

and pN

(2) are acting at the same time in the two bodies, λN = pN

(1) + pN

(2) must be
fulfilled. Any weight factor can be defined between 0 and 1 for the two pressures. In
the examples we choose pN

(1) = pN

(2) = λN/2.

5.1. Penalty method

Once the Lagrange multiplier field is defined, the iterative method of equation
(9) can be simplified by eliminating the Lagrange multipliers. As the interpolation
is defined as a piecewise discontinuous function, the multiplier can be condensed
element by element before the assembly. Indeed, due to the concentrated numerical
integration, they can also be eliminated for every quadrature point. The value of the
Lagrange multiplier at each quadrature point is:

λk
Ng = pN(u

k−1) +
Eκ

h
gNg (10)

where the subindex g is used to denote the value of the variable at the quadrature
point.

Formally, we proceed as in [48, 52] to obtain a simplified stabilized problem. We
can take the variation of the multiplier as the projection in L2 of an appropriate
displacement field in the second equation of the problem (9) to condense the multiplier
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and then substitute in the first equation to obtain:

∑

i=1,2

G(i)

int(u
k, δu)+

Eκ

h

∫

Γ
(1)
C

gN(u
k) δgN dΓ =

∑

i=1,2

G(i)

ext(δu)−

∫

Γ
(1)
C

δgN pN(u
k−1) dΓ

(11)

Here we find a close similarity between the proposed formulation and the perturbed
Lagrangian formulation [47]. In the first iteration, when pN = 0, the formulation is a
pure penalty method, but computed in a distributed sense. This coincides with the
formulation in [47]. As far as the integral can be exactly evaluated, the penalty term
in equation (11) is like a distributed spring that joins the two bodies in contact. As
has been pointed out above, the number of quadrature points can be freely chosen,
provided that they define a suitable interpolation of sufficient degree. Increasing
the number of points only affects the numerical integration error. Although the
number of constraints in the formulation (9) is increased, as we condense the Lagrange
multipliers, the number of equations remains the same for the simplified formulation
(11). On the right hand side of Equation (11) the smooth stress field has the effect
of compensating the error introduced by the penalty method. This term is computed
iteratively from the finite element solution (see Subsection 5.3). Another alternative
followed in the literature in order to find stable contact formulations using springs
without stabilizing terms (penalty formulation) is to properly choose the number of
quadrature points and define a distributed integration [16, 58].

The system of Equation (11) can be written in matrix form using the standard
finite element procedure to define the following residual:

rk =

(

K+
Eκ

h
M

)

dk − f− Sdk−1 = 0 (12)

where dk is the nodal displacements vector in the iteration k, K is the stiffness matrix
and f is the external force vector. For clarity of presentation we assume that the initial
gap gN0 is zero. Matrix M is computed from the second integral of Equation (11)
using the numerical integration presented above and the gap definition. Although, in
general, h is included in the integral of each element for meshes with different element
sizes, here we leave the factor to emphasize the dependence of this term on the element
size. Matrix S is derived from the last integral of Equation (11) and points out the
linear dependence of the smooth stress field with respect to the displacement field. In
practice, this term is computed as the additional contact force vector fk−1

N depending
on the previous displacement field and S is not explicitly obtained.

5.2. Large deformations

The formulation proposed above for small deformations can be extended to deal
with large deformations and large sliding problems. The virtual work of internal and
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external forces can be evaluated in the standard way for all type of material behavior,
including hyper-elasticity and plasticity. In addition to the contact iterations, another
non-linear behavior due to contact has to be considered, i.e. the change of the contact
point as the bodies deform. This makes the gap and the virtual gap, to be non-linear
functions of the displacements. Equation (11) is now the residual of a non-linear
equation that can be solved using a semi-smooth Newton method. After numerical
integration the residual can be expressed as:

δu · rk = δu ·
(

fint(u
k)− fext

)

+
∑

∀g

Hg

(

Eκ

h
gNg(u

k) + pNg(u
k−1)

)

δgNgJg (13)

where Hg is the weight of the quadrature point and Jg the Jacobian of the trans-
formation. Here the sum is extended to the active quadrature points that will be
discussed in the following subsection.

Here any definition found in the literature of the contact variables gN and δgN

at the quadrature points could be used (based on closest point projection [33, 54] for
example) although the aim of this paper is not to deal with the computation details of
these contact variables for large deformation problems. We have chosen the definition
given in a previous paper [50], to which we refer for details of linearizations. Also, we
neglect the linearization of the Jacobian because it leads to a non-symmetric tangent
matrix. An additional term could be included in the functional of the formulation to
recover symmetry [17] and perform a consistent linearization. In practice, the conver-
gence obtained without consistent linearization in the numerical problems analyzed
seems to be acceptable.

We use the definition of the gap based on the ray tracing, so we follow the for-
mulation proposed in [50] also used in [24] for 2D problems, but extended to 3D. We
recall here the main steps of the derivation. Taking variations in expression (2), we
have

δgN = (δu(2) − δu(1)) · n(1) + s(2)

ξ · n
(1) δξ + s(2)

η · n
(1) δη (14)

where δξ and δη are the variations of the contact point local coordinates and s(2)

ξ and
s(2)
η are the tangent vectors. The variations of the contact point can be computed

using the same procedure as in [50] to obtain the following system (2), we have
[

s(1)

ξ · s
(2)

ξ s(1)

ξ · s
(2)
η

s(1)
η · s

(2)

ξ s(1)
η · s

(2)
η

]{

δξ

δη

}

=

{

(δx(2) − δx(1)) · s(1)

ξ + gNδn
(1) · s(1)

ξ

(δx(2) − δx(1)) · s(1)
η + gNδn

(1) · s(1)
η

}

(15)

The tangent matrix is obtained taking the derivative with respect to the displace-
ments. As pointed out above, we neglect the derivative of the Jacobian. The tangent
matrix used in the numerical examples is:

KT = K+
∑

∀g

Hg

Eκ

h
∆gNg(u

k) δgNgJg

+
∑

∀g

Hg

(

Eκ

h
gNg(u

k) + pNg(u
k−1)

)

∆δgNgJg

(16)
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where K is the directional derivative of the work of internal forces with respect to the
displacements. For the derivative of the virtual gap ∆δgN the procedure described
above can be followed.

5.3. Solution algorithm

Algorithm 5.1: ()

Compute pN from previous step (Subsection 3.2)

λNg ← pNg +
Eκ

h
gNg

while residual > Tol : Augmentation loop

do







































while residual > Tol : Contact loop

do











Check active quadrature points: λNg < 0

Solve system of Equation (11)

Check residual. Equation (12)

Update pN

Check residual. Equation (12)

The proposed method has certain similarities with the Uzawa algorithm used in
the augmented Lagrangian formulation, in which updating the Lagrange multiplier
is called augmentation. We use the same term for the updating performed in (10),
using the smooth stress field. It also resembles the method used in [1] to solve contact
problems. The algorithm for small deformation problems is shown in Table 5.1. For
every load step, the smooth stress field pNg and the gap gNg are first obtained for
each quadrature contact point from the previous solution.

In addition to the augmentation iterations, another iterative process is defined
to resolve the contact surface, i.e. to determine which part of the potential contact
surface is active and will be used to impose the impenetrability constraints. The
contact check is performed at each quadrature point, using the value of the multiplier
defined in Equation (10), so that λNg ≤ 0. It can be seen that the contact iterations
are performed with a constant value of the smooth stress pN , which acts as an ex-
ternal pressure on the contact surface, so that the contact iterations are similar to a
pure penalty method. The contact iterations run until the active contact points are
unchanged. In this work this is directly checked with the residual of Equation (12).

For large deformation problems, the structure of the algorithm is the same, the
only changes being the computation of the residual, which is now defined in Equation
(13), and the solution of the system of equations by a Newton method.
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In terms of computational cost, the proposed method is equivalent to an aug-
mented Lagrange formulation implemented by the Uzawa algorithm. The advantage
of the proposed method is the freedom to choose the number of quadrature points
at which the contact constraints are imposed as the method is stabilized. Compared
with the Lagrange multiplier formulation (or augmented Lagrange in which the mul-
tipliers remain as variables of the system), in the proposed method the system of
equations to be solved in each iteration is smaller in size. Another advantage is that
the system matrix is positive definite, which usually reduces the solution time. On
the other hand, the number of iterations is in general greater as there is a nested loop.

5.4. Convergence of the iterative method

The iterative process for augmentations defined above in Equation (12) can be
viewed as the Richardson method of solving a system of equations. This system can
be rewritten as:

(

K +
Eκ

h
M

)

dk = Sdk−1 + f (17)

The convergence [44, 52] is then verified if the spectral radius of the iteration matrix
(

K+
Eκ

h
M

)−1

S is lower than 1 (equivalently, the modulus of any eigenvalue α is

lower than 1), even if the set of active quadrature points changes from one iteration
to another.

To prove this, we start with the definition of the eigenvalue problem. Any eigen-
vector v∗ associated with an eigenvalue α of the iteration matrix fulfils

Sv∗ = α

(

K+
Eκ

h
M

)

v∗ (18)

On the other hand, if the following equation is satisfied for any nodal displacement
vector v :

vTSv < vT

(

K+
Eκ

h
M

)

v ∀v (19)

then the modulus of α is necessarily lower than 1 and the convergence is proven.
To check Equation (19), we use the definition of the stabilization term Sv:

∣

∣vTSv
∣

∣ =

∣

∣

∣

∣

∣

∫

Γ
(1)
C

gN(v) pN(v) dΓ

∣

∣

∣

∣

∣

.
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Applying the Cauchy-Schwarz inequality, using Equation (8), and taking into account
that for two positive numbers x, y , it holds that 2 x y ≤ x2 + y2, we have:

∣

∣vTSv
∣

∣ =

∣

∣

∣

∣

∣

∫

Γ
(1)
C

gN(v) pN(v) dΓ

∣

∣

∣

∣

∣

≤ ‖gN(v)‖L2,Γ
(1)
C

‖pN(v)‖L2,Γ
(1)
C

≤

‖gN(v)‖L2,Γ
(1)
C

√

EC

h
‖v‖E ≤

EC

4h
‖gN(v)‖

2

L2,Γ
(1)
C

+ ‖v‖2E

(20)

Now, taking κ > C/4 we obtain the bound of the stabilization term and the iterative
process will converge.

Remark: The stabilization term is only computed on the active contact zone of
the current iteration, even if the size of the contact surface Γ(1)

C has been modified.
This ensures that Equation 20 is verified even in this case.

6. Numerical examples

Some academic examples have been solved to test the performance of the proposed
formulation. We used standard finite elements and immersed boundary elements
with linear H8 and quadratic H20 interpolation and different number of quadrature
points. In the case of standard linear elements we tried npg = 2 × 2, npg = 3 × 3
and npg = 16 × 16. For quadratic elements we tried npg = 3x3 and npg = 16 × 16.
For immersed boundary elements the number of quadrature points is based on the
triangulation of the surface due to the intersection of the real geometry with the
element. For integration purposes, we divide the hexahedral into tetrahedral and
use the quadrature formulas for the surface triangles of the tetrahedral whose face
coincides approximately with the contact surface.

6.1. Hollow sphere under internal pressure

The first example to be tested is a problem with an exact solution, so that the
discretization error can be exactly computed. The problem is a hollow sphere under
internal pressure. We define two volumes that are discretized using non-conforming
meshes as depicted in Figure 5. A sequence of uniformly refined meshes is obtained
by element subdivision. In this problem all the quadrature points of the potential
contact surface are in contact, so there are no iterations due to changes in contact
conditions.

The first test was performed to check the influence of the constant κ in the finite
element solution using standard linear (L) and quadratic (Q) elements. In Figure 6 the
energy norm error and the L2 norm error of the finite element solution are plotted
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Mesh 1 Mesh 2

Figure 5: First two meshes of the sequence used to solve the problem of a hollow
sphere under internal pressure. The hollow sphere is discretized into two volumes
using non-conforming meshes.
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Figure 6: Hollow sphere under internal pressure problem. Analysis of the influence
of parameter κ. Energy norm (left) and L2 norm (right) error of the solution as a
function of the element size.
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Figure 7: Analysis of the influence of the integration error for the hollow sphere
under internal pressure problem. Energy norm (left) and L2 norm (right) error of the
solution as a function of the element size.

as a function of a representative element size. The triangles show the theoretical
convergence rate that can be achieved in every case. These test were performed using
npg = 16x16 quadrature points both for H8 and H20 elements to keep the integration
error as small as possible. The theoretical convergence rate is obtained in all cases,
at least for this level of error. The results show that the influence of the parameter κ
is negligible in this example, as the curves for different values of κ perfectly overlap.

As pointed out above, it is not expected that the quadratic elements can achieve
the theoretical rate of convergence of the finite element solution because of the integra-
tion error. However, if the meshes are not very refined (for example, the meshes shown
in Figure 5), the level of the discretization error is much higher than the integration
error. Despite the lower rate of convergence of the latter, the optimal convergence
rate can be achieved. To test the influence of the integration error we solved the same
problem using different number of quadrature points and different types of integra-
tion. For H8 linear elements we used npg = 2× 2, npg = 3× 3 and npg = 16× 16. For
H20 quadratic elements we used npg = 3×3, npg = 3×3 with double pass integration
(i.e. the surfaces of both bodies are considered at the same time as contact surfaces
where the numerical integration is performed), and npg = 16× 16. The discretization
error is shown in Figure 7 in energy and L2 norms. The triangles show the theoretical
rate of convergence. Optimal convergence is achieved for linear elements. However,
for quadratic elements using npg = 3 × 3 quadrature points, the integration error
seems to affect the solution for the more refined meshes and the convergence rate is
reduced. To alleviate this effect, using both a double pass strategy and more quadra-
ture points seems to reduce the integration error and allows the optimal rate to be
recovered in this case and for these element sizes.

92



6. Numerical examples

1 2 3 4 5 6

10−11

10−8

10−5

10−2

101

Iteration

N
or

m
al

iz
ed

re
si

du
al

no
rm

Linear elements

k = 10 k = 100 k = 1000

k = 100, DP

1 2 3 4 5 6

10−9

10−7

10−5

10−3

10−1

Iteration

N
or

m
al

iz
ed

re
si

du
al

no
rm

Quadratic elements

k = 10 k = 100 k = 1000

k = 100, DP

Figure 8: Hollow sphere under internal pressure problem. Convergence of the Richard-
son iteration of the system. The normalized norm of the residual is shown for linear
and quadratic elements.

This linear example was used to test the convergence of the Richardson iterations
of the system and the influence of parameter κ. In Figure 8 the normalized norm of
the residual (equation (11)) is shown as a function of the number of iterations. The
results are shown for linear H8 and quadratic H20 elements and different values of
the parameter κ. Convergence is achieved between 4 and 6 iterations. This behavior
is representative of all the tests ran for other numerical examples. In this case, the
best convergence is achieved with a double pass strategy and κ = 100.

6.2. Rigid sphere in contact with a deformable block

In the second example a contact problem between a rigid sphere and an elastic
solid is solved using an immerse boundary mesh. The geometry of the elastic solid is
shown in Figure 9. It is a modified block with dimensions 2 × 2 × 2 units of length,
in which the upper face is a parabolic surface. The highest point of the parabolic
surface is at 2.5 units of length. As it can be observed the elastic solid geometry
is embedded in a uniform Cartesian Grid. The boundary elements are cut by the
geometry and integration is only performed in the internal part of these elements. A
sub-triangulation of the boundary elements using linear tetraedral is performed only
for integration purposes. The number of quadrature points on the contact surface
also depends on this sub-triangulation (7 quadrature points for each triangle).

The sphere is located above the curved surface of the block, and contact occurs
at this curved face (see Figure 10). A rigid body motion towards the elastic solid is
applied to the sphere causing a maximum theoretical penetration of Dz = 0.15 or
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Geometry Cartesian Grid

Figure 9: Model of the rigid sphere contact with an immersed boundary mesh.

Dz = 0.3 units of length. The radius of the sphere is 2 units of length. Figure 10
shows the deformed configuration of the elastic block. The colormap values are related
to the modulus of the displacement field. The contact traction at each quadrature
point of the surface is also shown in the same figure. The convergence of the contact
iterations and the augmentations is shown in Table 1 for different initial penetration
Dz and penalty parameter κ values. We use a tolerance of 10−8 to determine if the
solution has converged, both for the contact and Richardson iterations.

Figure 10: Contact traction of the rigid sphere contact with an immersed boundary
mesh.
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Table 1: Rigid sphere in contact with an immersed boundary mesh. Convergence of
the contact and Richardson iterations. Normalized norm of the residual. The mark
indicates that the stabilizing stress pN was updated in the previous iteration.

Iter Dz = −0.15, κ = 10 Dz = −0.3, κ = 10 Dz = −0.3, κ = 100

2 1.71E-01 1.16E-02 5.88E-03

3 5.68E-02 4.09E-03 1.75E-03

4 3.19E-02 2.03E-03 1.83E-03

5 2.22E-02 1.53E-03 4.56E-04

6 1.07E-02 4.00E-04 2.91E-04

7 3.16E-16 3.49E-16 7.21E-05

8 ∗1.48E-02 ∗1.38E-02 1.05E-05

9 3.11E-04 3.97E-16 1.50E-06

10 3.64E-16 ∗2.90E-04 1.06E-16

11 ∗2.79E-04 3.38E-16 ∗5.12E-04

12 4.80E-16 ∗6.01E-06 1.55E-05

13 ∗5.72E-06 3.38E-16 1.03E-16

14 2.98E-16 ∗1.42E-07 ∗1.20E-06

15 ∗1.23E-07 3.12E-16 1.15E-16

16 3.97E-16 ∗3.89E-09 ∗2.85E-09

17 ∗2.76E-09

6.3. Deformable ring in contact with a deformable

block

The third example is a large deformation and large sliding contact problem. A
scheme of the example is shown in Figure 11. The upper body consists of two joined
rings of equal thickness but different Neo-Hookean hyperelastic material properties.
The material parameters are E = 105 and υ = 0.3 for the inner ring and E = 103 and
υ = 0.3 for the outer ring. The problem is 3D, with symmetry boundary condition
applied to the frontal plane. The ring thickness is 40 units of length and the block
thickness is 50 units of length. The block is linear elastic with material parameters
E = 1000 and υ = 0.3. We solved the problem assuming two materials for the
block: a pure elastic behavior and plasticity with yielding limit Sy = 50 and plastic
hardening H = 50. A downward displacement of Dy = 90 is applied to the elastic
ring. The displacement is applied in 20 steps in the elastic case and 40 steps in the
plastic case, with the time ranging from t = 0 to t = 1. Linear elements were used
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Figure 11: Initial configuration of the elastic ring contact problem.

in the simulation and the number of quadrature points was npg = 4 × 4. The block
contact surface was taken as slave surface where the integration is performed.

Figures 12 and 13 shown some snapshots of the deformed configuration and contact
pressure with elastic and plastic behavior of the block. In the first time steps, the
deformation of the block is pure elastic and both examples show the same deformed
configuration. From t = 0.65 plastic deformation occurs in the second case that causes
a different deformation of the ring and contact pressure distribution. This effect can
also be noticed in Figure 14, where the reaction force is plotted versus the time step
for both cases (elastic and elasto-plastic).

In Table 2 we show the convergence of the contact and Richardson iterations for
different time steps and both elastic (EL) and elasto-plastic (PL) behavior of the
block. The normalized norm of the residual (equation 13) is shown as a function
of the iterations. A mark is shown when an augmentation is performed, i.e. the
stabilizing stress pN is updated. The tolerance of the relative error of the residual is
set at 1 · 10−8. As in the linear Example 1 shown above, after 3 or 4 Richardson’s
iterations the solution has almost converged and the changes in the displacement or
contact stresses are very small.

6.4. Bicycle inner tube

The last example is depicted in Figure 15 and shows a quarter of the inner tube of
a bicycle tire that is submitted to increasing internal pressure. As the tube deforms, a
contact occurs with the tire and the rim. The rim is an elastic material with properties
E = 108 and υ = 0.3, the inner tube and the casing are hyper-elastic materials with
E = 1000 and υ = 0.3. The pressure is increased from 0 to p = 40 units of pressure.
A variable time step increment is applied from t = 0 to t = 1 in 40 steps. In the
front plane of the casing there is a crack that allow the inner tube to escape. The
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t = 0.4

t = 0.6

t = 0.7

t = 0.9

Figure 12: Deformable ring in contact with an elastic block. Deformation and contact
pressure for different time steps of the simulation.
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t = 0.4

t = 0.6

t = 0.7

t = 0.9

Figure 13: Deformable ring in contact with an elasto-plastic block. Deformation and
contact pressure for different time steps of the simulation.
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Table 2: Elastic rings in contact with a block. Convergence of the non-linear contact
and Richardson iterations. The mark indicates that an augmentation is performed,
so the stabilizing stress pN is updated. The normalized norm of the residual is shown.

Iter t = 0.5, EL t = 0.6, EL t = 0.7, EL t = 0.5, PL t = 0.6, PL t = 0.7, PL

2 8.07E-02 8.74E-02 1.00E-01 4.17E-02 4.44E-02 4.84E-02

3 1.15E-03 9.02E-04 1.89E-03 7.38E-04 7.44E-04 5.19E-03

4 4.58E-05 1.91E-04 5.99E-04 1.63E-05 5.15E-04 1.54E-04

5 1.42E-07 2.32E-06 1.52E-04 4.70E-07 6.99E-06 6.70E-06

6 3.23E-10 1.27E-08 4.11E-05 6.26E-10 3.97E-07 6.39E-08

7 ∗3.29E-04 4.39E-11 5.59E-06 ∗4.25E-04 1.01E-09 4.05E-10

8 1.53E-06 ∗4.68E-04 3.16E-10 4.75E-07 ∗8.62E-04 ∗1.53E-03

9 3.40E-09 4.09E-06 ∗5.88E-04 2.07E-09 1.49E-06 6.09E-06

10 ∗1.58E-06 1.08E-08 2.77E-06 ∗2.14E-06 1.38E-08 5.81E-08

11 2.20E-09 4.84E-11 2.49E-08 2.85E-09 4.50E-11 3.19E-10

12 ∗9.25E-09 ∗2.33E-06 1.92E-10 ∗1.39E-08 ∗5.48E-06 ∗1.17E-05

13 5.33E-09 ∗3.58E-06 2.36E-11 9.60E-09 5.36E-08

14 ∗1.48E-08 1.29E-08 ∗1.11E-10 1.94E-11 2.88E-10

15 4.11E-11 8.92E-11 ∗4.07E-08 ∗1.02E-07

16 1.13E-10 ∗2.17E-08 8.48E-11 3.40E-10

17 8.45E-11 ∗3.76E-10 ∗8.22E-10

18 ∗1.36E-10
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Figure 14: Elastic ring in contact with a block. Reaction force in the ring as a function
of the time step.
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Figure 15: Model of the bicycle tire contact problem. The inner tube is shown in
yellow (light grey), the rim in blue (dark grey) and the casing in white.

number of elements in the casing at this plane is 65. The casing is subdivided in 65
equal segments corresponding to the element edge and the crack ranges as depicted
in Figure 15. The value of the penalty constant was κ = 10. The problem was solved
using both a double pass and single pass strategies. The deformed configuration is
shown in figure 16 for different time steps using the double pass contact. In table 3
a comparison of the residual convergence is shown. In this example, similar behavior
is found for both strategies.

Table 3: Inner tube contact problem. Convergence of the non-linear contact and
Richardson iterations. The mark indicates that an augmentation was performed in
the previous iteration. The normalized norm of the residual is shown.

Iter DP SP

2 2.83E-02 2.82E-02

3 4.68E-04 5.17E-04

4 1.34E-08 1.48E-08

5 ∗3.86E-03 ∗7.72E-03

6 2.03E-08 4.36E-08

7 ∗1.34E-06 8.55E-11

8 8.70E-11 ∗5.36E-06

9 ∗1.34E-09 1.26E-10

10 ∗ 9.99E-09
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t = 0.275

t = 0.5

t = 0.75

t = 1.0

Figure 16: Inner tube contact problem. Comparison of the deformed configuration for
different time steps. The colormap is proportional to the modulus of the displacement.
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7. Conclusions

This paper proposes a new method for solving contact problems. The formulation
is based on the stabilized Nitsche method and after simplifying the equations by con-
densing the multipliers, a modified penalty formulation is obtained. The method has
similarities with the perturbed Lagrangian formulation [47], but with the addition of
an extra term that can be computed iteratively and makes the formulation consistent.
The proposed method was effectively applied to solving large and small deformation
problems implemented with 3D standard 8-node linear and 20-node quadratic ele-
ments and with immersed boundary elements in which a Cartesian grid is cut by the
real geometry. The method was also tested for materials with elastic, elasto-plastic
and hyperelastic behavior. The formulation is robust and simple and can converge to
the exact solution with optimal convergence rates.

The results show an optimal convergence rate of the finite element solution for
linear elements. For quadratic elements, the integration error can reduce the optimal
convergence rate. To overcome this problem, the use of more quadrature points or
a double pass strategy has been shown to be effective from the engineering point of
view. The method has a user-dependent parameter κ to be defined. In the numerical
examples we analyzed a wide range of variation of κ from 10 to 1000 and similar
discretization errors and convergence of the iterations were obtained.

A double iterative process is defined to solve contact problems. The first loop is the
contact iteration in which the stabilization stress is kept constant and the formulation
is a pure penalty method, with κ as penalty constant. The convergence analysis of
the method show that a relatively high value of the penalty parameter is needed to
guarantee convergence. This value prevents the use of very large time step increments
in which the initial penetration of the unconverged solution is very large, and can be
considered as a limitation of the method.
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Abstract

This paper proposes a method of solving 3D large deformation frictional contact
problems with the Cartesian Grid Finite Element Method (cgFEM). A stabilized
augmented Lagrangian contact formulation is developed using a smooth stress field as
stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery.
The parametric definition of the CAD surfaces (usually NURBS) is considered in the
definition of the contact kinematics in order to obtain an enhanced measure of the
contact gap. The numerical examples show the performance of the method.
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1. Introduction

1. Introduction

The so-called immersed boundary Finite Element (FE) methods have recently
acquired notable relevance in the computational mechanics field. The benefits of
these methods include: virtually automatic domain discretization, suitability for effi-
cient structural shape optimization and simplicity performing multigrid analysis. The
present paper is based on the Cartesian grids Finite Element Method (cgFEM) [1],
in which the domain is discretized by Cartesian grids independent of the geometry.
The distinguishing feature of cgFEM is its ability to take into account the exact CAD
definition of the geometry, given by NURBS. The development of a suitable contact
formulation for the immersed boundary framework could be of interest for efficiently
solving a number of different problems, e.g. wear simulation or fretting fatigue. In [2]
the cgFEM is applied to directly create FE models from medical images. The simula-
tion of the contact interaction between CAD defined prostheses and living tissue, of
great interest to the scientific community, can also be solved within this framework. In
this work a formulation for solving 3D frictional contact problems under large defor-
mations is proposed, using an immersed boundary method based on Cartesian grids.
The novelties of the present work are the use of a smooth stress field to iteratively
evaluate the stabilizing term and the inclusion of the NURBS surface in the contact
kinematics. The work presented in this paper represents an extension of a previous
work [3], in which a stabilized formulation for solving frictionless contact problems
was introduced and applied to body-fitted Finite Element meshes.

In the standard Finite Element Method (FEM) the mesh is conforming to the
geometry. This means that the boundary is approximated by element faces defined
from nodes lying on the boundary. Therefore, the geometry is approximated using
the FE approximation (FE interpolation functions) used to define the solution. This
provides a simple method of describing the domain in which the accuracy of the
surface definition will depend on the level of refinement of the mesh. In this case the
normal field is discontinuous between elements, which is an issue to consider when it
comes to solving contact problems, as the measures of the gap between contact bodies
are strongly influenced by the accuracy of the definition of the surfaces [4, 5]. Some
studies have tried to improve the quality of the contact kinematics description using
various approaches, such as an averaged normal field [6,7], the construction of smooth
surfaces to evaluate the contact gap [4, 5], and the application of the isogeometric
analysis [8] to solve contact problems (see e.g. [9–11]). In this paper we include
the NURBS surfaces in the contact kinematics to describe the reference configuration
and enhance the accuracy of the gap measurements, while keeping the standard Finite
Element interpolation for the solution of the problem.

The mortar method [12] has been used to successfully solve large deformation fric-
tional contact problems [6, 7, 9–11, 13–15]. Its main advantage over node-to-segment
formulations is that the finite element optimal convergence rate of the solution is
guaranteed, as the Brezzi-Babuska InfSup condition is fulfilled. However, the mortar
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method cannot be directly applied to deal with immersed boundary methods because
it is cumbersome to find an appropriate Lagrange multipliers field that fulfills the
InfSup condition [16]. The Vital Vertex method [17] can be used to find compati-
ble displacement and stress fields, and was applied to 2D large sliding contact with
XFEM in [18]. Other attempts to solve frictional contact using immersed boundary
methods were in the context of simulating crack propagation with the eXtended Finite
Element Method (X-FEM) [19–22]. Stabilized formulations are another alternative
to overcoming this problem. Several works on this topic have been published, start-
ing with stabilized Lagrange multipliers formulations for body-fitted meshes to solve
small sliding 2D contact [23,24] and large deformation contact [25,26] in 2D and 3D.

Stabilized formulations have been recently adapted to embedded domains. In [27]
a stabilized augmented Lagrange formulation is developed for frictionless contact. A
stabilized formulation based on the Nitsche method is presented in [28, 29] for small
sliding contact in 2D and 3D respectively. In both formulations the stabilizing term
involves the finite element tractions. All these contributions indicate that developing
contact formulations for immersed boundary methods is an active research field. To
the authors’ knowledge no previous work has considered 3D CAD geometries and large
deformation frictional contact for immersed boundary methods. A relevant difference
between the proposed formulation and other works is its use of a smooth stress field
(σ∗) as stabilizing term, calculated by the Zienckiewicz and Zhu Superconvergent
Patch Recovery [30, 31]. With this choice there are fewer terms to evaluate in the
tangent matrix, the formulation is displacement-based and the optimal convergence
rate is maintained. It also eases the introduction of plasticity into the problem, as
the finite element stress is not involved in the formulation (see [32]). The proposed
formulation consists of two nested loops, similar to an Uzawa algorithm: the inner
loop evaluates the contact active set and the stabilizing term is updated in an external
loop.

The paper is organized as follows: Section 2 describes the continuum formulation
to solve the contact problem. The contact kinematics and its features regarding
the cgFEM is described in Section 3. The FE stabilized formulation is obtained in
Section 4. In Section 5 we propose an iterative scheme to solve the contact problem.
Finally, some numerical examples are shown in Section 6. Appendices A and B provide
with details of the variation and linearization of some auxiliar terms of the problem
formulation.

2. Continuum formulation

Here we describe the continuum formulation of the frictional contact problem and
introduce all the notation used through the paper. The basic scheme of the contact
between two elastic bodies, is shown in Figure 1. We divide the boundary of each
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body Γ(i), into the Dirichlet boundary Γ
(i)
D , the Neumann boundary Γ

(i)
N and the area

of the boundary where contact may occur, Γ(i)
C .

t̂
(1)

t̂
(2)

Ω(1)
Ω(2)

x(1)

x(2)

Γ(1)

DΓ(2)

D

Γ(1)

N

Γ(2)

N

Γ(1)

CΓ(2)

C

R
3

gN

n(1)

s(1)

Figure 1: Scheme of two deformable bodies in contact. The red and blue lines depict
the contact boundaries Γ(i)

2.1. Continuum contact kinematics

Let x(1) be the position of any point in the so called slave contact surface, Γ(1)
C .

We use a ray-tracing technique [14, 26] to define the contact point pairs, i.e. we
intersect the master contact surface Γ

(2)
C at x(2) with a line emanating from x(1) in

the direction of the normal vector to the slave surface n(1). Then the normal contact
gap can be defined as

gN =
(

x(2) − x(1)
)

· n(1) (1)

In order to enforce frictional contact constraints it is also necessary to define an
appropriate relative velocity, from which the increment of the relative movement ġ dt
is obtained [33, 34] between the bodies in contact. Details of the calculation are not
shown here, as it will be explained in Section 3.3 for the FE discretization using
cgFEM.
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2.2. Weak formulation for frictional contact

The weak formulation of the Tresca frictional problem can be derived from the
augmented Lagrangian functional [24, 26], first proposed by Alart and Curnier [35]
and Pietrzak and Curnier [36]:

opt

{

Π(u) +
1

2κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]2

−
− ‖λ‖2

)

dΓ+

+
1

2κ1

∫

Γ
(1)
C

‖PB(n,s) (λ− κ1ġ dt)‖2 dΓ

} (2)

where u is the displacement field and λ is the Lagrange multiplier vectorial field. We
assume a hyperelastic material behavior so Π(u) represents the potential energy of
the bodies, including the external forces applied. κ1 > 0 is a penalty constant that
keeps the problem solution unchanged. We define the projection operator onto the
tangent plane with normal n(1) as:

Tn =
(

I− n(1) ⊗ n(1)
)

(3)

We also use the negative part operator

[x]− =











−x if x ≤ 0

0 if x > 0

(4)

and the projection operator PB(n,s) (x) which is defined as the projection of x both
on the tangent plane Tn and on a circle of radius s:

PB(n,s) (x) =











Tnx if ‖Tnx‖ ≤ s

s Tnx
‖Tnx‖ if ‖Tnx‖ > s

(5)

The stabilized Coulomb frictional contact formulation proposed in this work will
be obtained by modifying the functional in 2. Taking variations in this equation
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and assuming a Tresca friction model (i.e. s is constant) we obtain the following
expression:



































δΠ(u, δu)−

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
δgN + PB(n,s) (λ− κ1ġ dt) δg

)

dΓ = 0, ∀δu

− 1
κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
n(1) + λ− PB(n,s) (λ− κ1ġ dt)

)

δλ dΓ = 0, ∀δλ

(6)
where the variations of g, ġdt, and gN are a function of δu. The first term in the upper
equation is the virtual work of the internal and external forces, so the formulation in
(6) can be applied to a general class of material behaviour. The contact integral in
the first equation in (6) is the virtual work of the contact forces. The second equation
contains the Karush-Kuhn-Tucker conditions in normal direction, and the frictional
contact behaviour in the tangent plane. We can now modify the projection PB to
consider Coulomb friction, i.e. replacing the friction limit s with µ [λN + κ1gN ]−, as
done in [26].

After defining the weak form of the continuum problem, we replace the displace-
ment and the Lagrange multiplier fields by appropriate finite element approximations,
uh ∈ U h and λh ∈M h, to obtain a numerical solution. U h is the space of piecewise
polynomials of degree p = 1 or p = 2 in our case. Details on the selection of the
Lagrange multiplier approximation space are given in Section 4. For the sake of sim-
plicity of the notation we will omit the superscript h when denoting the finite element
variables from now on.

3. Finite Element contact kinematics

In this section we will define all the kinematic variables involved in the solution of
the contact problem in the cgFEM, the normal contact gap gN , the relative displace-
ment ġ dt and the gap vector g, and their respective variations.

In the cgFEM [1,37] the analysis domain Ω is fully embedded in a regular cuboid
Ωh which is much easier to mesh than Ω, see Figure 2. This domain Ωh is meshed
with a sequence of regular Cartesian grids. There will be elements completely inside
the domain and elements intersected by the boundary. The elements external to the
domain are not considered in the analysis.

The geometry is defined by NURBS surfaces. Figure 3 shows the undeformed
configuration of an element intersected by an arbitrary NURBS surface. Three dif-
ferent reference systems appear in the Figure: these are the global reference system
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Figure 2: Mesh creation with cgFEM. The analysis domain Ω (left) is embedded in
a Cartesian grid Ωh (right). Elements external to the geometry are not considered in
the analysis.

X0 ≡ {x0, y0, z0}, the parametric reference system of the NURBS surface ξ ≡ {ξ, η}
and the local reference system of the finite element ζe ≡ [ζe1 , ζ

e
2 , ζ

e
3 ].

Due to the regularity of all the elements in the mesh, the transformation from
global coordinates in the undeformed configuration X0 to element local coordinates
ζe of any point is performed with the following affine transformation:

ζe =
X0 −Xe

h/2
(7)

where Xe are global coordinates of the centroid of the element in the initial configu-
ration and h is the size of the element.

We define the position vector x(i) for any point in Ω(i) as in equation (8), where

X
(i)
0 represents the undeformed configuration and the displacement field u(i) is eval-

uated using the finite element interpolation.

x(i) = X
(i)
0 + u(i) (8)

Equation (8) is valid for the whole domain, including the particular case of the

contact surface, Γ(i)
c . In this work we are interested in enhancing the definition of Γ(i)

c

using the CAD geometry. We therefore use the NURBS definition of the boundary
for the undeformed position for any point located at Γ

(i)
c . NURBS surfaces [38, 39]

are rational functions defined in their own parametric space of coordinates [ξ, η] as

S(i) (ξ, η) =

n
∑

i=1

m
∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1 N

(p)
i (ξ)M

(q)
j (η)wi,j

Pi,j (9)

These functions are a result of a tensor product between one-dimensional basis
functions of order p and q (N

(p)
i ,M

(q)
j ). The basis functions are defined along two

knot vectors with (n×m) control points and Pi,j coordinates.
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x
y z

ζe1 ζe2

ζe3
ξ
η

Figure 3: Scheme of the different reference systems involved in the definition of the
contact kinematics. The hexahedra represents a finite element cut by an arbitrary
NURBS surface.

Finally, the definition of the position vector for any point x(i) located at Γ
(i)
c

results in:

x(i) = S(i) (ξ, η) +
∑

j

Nj(ζ
e)u

(i)
j , x(i) ∈ Γ(i)

c (10)

where Nj (ζ
e) are the finite element shape functions and u

(i)
j are the nodal displace-

ments of the discretization.

3.1. Normal gap

We recall here the definition of the normal gap gN , where the position vectors
have already been defined in (10):

gN =
(

x(2)(ξ(2))− x(1)
)

· n(1) (11)

A ray-tracing technique is used to find the contact point ξ(2), i.e., given a certain
point x(1) and its surface normal vector n(1), we solve (11), rearranged as:

x(1) + gNn(1) = S(2)(ξ(2)) +
∑

j

Nj(ζ
e)u

(2)
j (12)

This non-linear equation is solved using a Newton-Raphson scheme where the
unknowns are ξ(2) and gN . This solver uses the derivative of (12) with respect to the
NURBS local coordinates. The relation between the surface parametric coordinates
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and the element local coordinates is obtained considering that for a point located on
Γ
(i)
c , X

(i)
0 ≡ S(i) (ξ, η), and substituting (9) into (7)

ζe =
S(i) (ξ, η)−Xe

h/2
(13)

and taking derivatives with respect to the NURBS local coordinates ξ ≡ {ξ, η} we
obtain:

∂ζe

∂ξ
=

2

h

∂S(i) (ξ, η)

∂ξ
;

∂ζe

∂η
=

2

h

∂S(i) (ξ, η)

∂η
(14)

The calculation of the first derivatives of the NURBS follows a simple procedure
(see [39] for example). The first derivatives have a similar definition to (9) with
a lower order basis functions. Therefore the surface derivatives can be treated as
auxiliary NURBS surfaces, and the evaluation of the NURBS derivatives is reduced
to a standard NURBS surface evaluation. The normal vector n(1) is constructed using
the tangent vectors to the surface, s

(1)
ξ and s

(1)
η (equations (15), (16) and (17)).

n(1) =
n̂
(1)

‖n̂(1)‖
; n̂

(1) = s
(1)
ξ × s(1)η (15)

s
(1)
ξ =

∂x(1)

∂ξ
=

∂S(i) (ξ, η)

∂ξ
+
∑

j

(

∂Nj

∂ζe1

∂ζe1
∂ξ

+
∂Nj

∂ζe2

∂ζe2
∂ξ

+
∂Nj

∂ζe3

∂ζe3
∂ξ

)

u
(1)
j (16)

s(1)η =
∂x(1)

∂η
=

∂S(i) (ξ, η)

∂η
+
∑

j

(

∂Nj

∂ζe1

∂ζe1
∂η

+
∂Nj

∂ζe2

∂ζe2
∂η

+
∂Nj

∂ζe3

∂ζe3
∂η

)

u
(1)
j (17)

3.2. Variation of the normal gap

The contact problem formulation in (6) needs the definition of the normal gap
variation. Instead of using the exact variation obtained from (11) we use an approxi-
mation which was also used in [6] and [26], and can be written as

δgN =
(

δu(2) − δu(1)
)

· n(1) (18)

where for simplicity the following notation has been introduced:

δu(i) =
∑

j

Nj(ζ
e)δu

(i)
j (19)

The exact variation of δgN also requires the derivatives δξ, δη, which will be
omitted for the evaluation of the contact force. However, the exact derivative of
gN will be evaluated for the linearization of the problem. The loss of symmetry
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and angular momentum conservation that this choice implies is also discussed in
references [6, 26].

3.3. Tangent contact

Figure 4 schematically shows the evolution of two bodies in sliding contact from
step t to step t+1. At time t the slave point x

(1)
t is in contact with point x

(2)
t (ξt). Since

sliding has occurred at time t + 1 the contact point pair changes from the previous
ξt to the new location ξt+1. At that moment the position of the previous and the

current master points are x
(2)
t+1(ξt) and x

(2)
t+1(ξt+1) respectively. This variation of the

position is defined as ∆tg, which is depicted by the thick blue arrow in Figure 4:

ġ dt ≈ ∆tg =
(

x
(2)
t+1(ξt)− x

(2)
t+1(ξt+1)

)

(20)

This incremental definition of the relative velocity was first proposed in [14] for the
2D case and here we extend the details of its computation for 3D frictional problems
and Cartesian grids. Although we skip the h index, this variable is defined for the
finite element discretization and can only approximate the continuum variable ġ dt,
since the time step increments used for the solution are not necessarily small. This
definition is objective (frame independent), as proven in [40], and is similar to the one
proposed in [7]. For the frictional contact problem we only consider the projection of
this relative velocity onto the tangent plane in the current step Tn. We can use the
following relation:

x
(2)
t+1(ξt+1) = x

(1)
t+1 + gt+1 (21)

and gt+1 is normal to the tangent plane, so:

Tn x
(2)
t+1(ξt+1) = Tn x

(1)
t+1 (22)

With this consideration we can use the alternative definition of the projected
relative velocity as:

Tn∆
tg = Tn

(

x
(2)
t+1(ξt)− x

(2)
t+1(ξt+1)

)

= Tn

(

x
(1)
t+1 − x

(2)
t+1(ξt)

)

(23)

This definition will provide us with a simpler linearization as it is shown in Ap-
pendix B. It is worth noting that, despite using the previous contact coordinates ξt
to evaluate the relative velocity, only the current configuration is taken into account.
Note that in the case of sticking between the solids there is no change of the contact
coordinates, then ξt+1 = ξt and we can combine the normal gap and the tangent
relative velocity:

gnn
(1) −Tn∆

tg = x(2)(ξ)− x(1) = g (24)

This simplification will be useful for the stick contact formulation.
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replacemen

t t+ 1

u(1)

u(2)(ξt)

x
(1)
t x

(1)
t+1

gt gt+1

x
(2)
t (ξt) x

(2)
t+1(ξt) x

(2)
t+1(ξt+1)

Figure 4: Sliding kinematics scheme. In the configuration t, a point x
(1)
t is in contact

with a point with local surface coordinates ξt. After sliding occurs, the same point

x
(1)
t+1 will be contacting with a point x

(2)
t+1(ξt+1).

The variation of the gap vector is also used in the frictional contact formulation
for the stick case, and defined with the simple expression:

δg = δu(2)(ξ)− δu(1) (25)

Again the derivatives δξ, δη will be omitted for the evaluation of the contact force,
but will be considered for the linearization of the problem.

4. Finite Element stabilized contact

formulation

It is difficult to find a Lagrange multiplier field that fulfills the inf-sup condition
in the immersed boundary framework [41]. The different methods of overcoming
this problem include new formulations of the contact problem, such as modifications
of the Nitsche method and stabilized Lagrangian formulations [27, 42, 43]. Here we
extend the frictionless contact formulation first proposed in [3] to deal with frictional
contact problems. Our proposed solution combines a stabilized augmented Lagrange
formulation with the use of a smooth stress field T∗ = σ∗ ·n(1) in the stabilizing term.
The smooth stress field used to stabilize the formulation must fulfill the following
property [32, 44] in order to obtain an optimal FE formulation:

∫

Γ
(1)
C

‖T∗‖ ≤ C

∫

Ω

‖σ∗‖2 (26)
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4. Finite Element stabilized contact formulation

with C independent of the mesh size. This condition states that the norm of the
tractions on the boundary must be bounded by the norm of the stress field on the
domain. We use the field proposed in [14], which is based on the Zienckiewicz and
Zhu Superconvergent Patch Recovery [30, 31]. With this technique a smooth stress
field is obtained by solving a small minimization problem at each node of the mesh.
Once the displacements are known, the information of the solution at all the elements
attached to the node is used to obtain σ∗. As the stabilizing term has information not
only from the boundary elements but also from the surrounding interior elements, it
can be proven that the optimal convergence rate for the FE solution is achieved, even
if there are elements cut by the boundary with a low ratio between the intersected
material volume and the whole element volume. This definition requires an iterative
procedure to solve the problem, which will be detailed in Section 5. We modify the
augmented Lagrangian functional (2) with the addition of a stabilizing term (the last
integral in (27)).

opt

{

Π(u) +
1

2κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]2

−
− ‖λ‖2

)

dΓ+

+
1

2κ1

∫

Γ
(1)
C

‖PB

(

λ− κ1∆
tg
)

‖2 dΓ−
1

2κ2

∫

Γ
(1)
C

‖λ−T∗‖2dΓ

} (27)

where the simplification PB(x) ≡ P
B(n(1),µ[λN+κ1gN ]

−
)(x) is introduced. This extra

term penalizes the difference between the multiplier λ and the stress field using a
penalty constant κ2 > 0. In [32] the penalty constant is defined as κ2 = C/h with h
being the mesh size and C a positive constant. It was proved for Dirichlet boundary
conditions that, for C greater than a certain value depending only on the material
properties and the degree of discretization, the problem is stable and the optimal
convergence is reached.

Assuming that T∗ is known, the variation of (27) is now written as:































































δΠ(u, δu)−

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
δgN + PB

(

λ− κ1∆
tg
)

δg

)

dΓ = 0, ∀δu

− 1
κ1

∫

Γ
(1)
C

(

[

λ · n(1) + κ1gN

]

−
n(1) + λ− PB

(

λ− κ1∆
tg
)

)

δλ dΓ

− 1
κ2

∫

Γ
(1)
C

(λ−T∗) δλ dΓ = 0, ∀δλ

(28)
Remark: In this paper we will enforce the contact constraint only on surface

Γ
(1)
C for the sake of simplicity. However, [3] shows how to use a double pass strategy
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to enforce the contact constraint on both surfaces Γ
(1)
C and Γ

(2)
C without additional

complexity.

4.1. Lagrange multiplier interpolation

The requirements for the multiplier space to reach optimal convergence is that λh

be a piecewise interpolation in the element of degree at least p − 1, where p is the
interpolation degree used to define uh. As there is no need to define a continuous
piecewise interpolation, we define a multiplier for each of the quadrature points used
for the numerical integration. The Lagrange multipliers can the be condensed element
by element as described in [3] (or even for every quadrature point), similar to the
procedure followed in [45]. This elimination has some advantages: a) the number
of degrees of freedom of the problem does not increase, and b) the system remains
positive definite.

Remark: The contact integrals over Γ
(1)
C are numerically calculated on the inte-

gration points where the Lagrange multipliers are defined. This introduces an inte-
gration error, which is small if the number of integration points is high enough.

4.2. Frictionless contact formulation

The variational form for the Coulomb frictional contact in (28) can be simplified
for the particular case of frictionless contact, yielding the following form:























δΠ(u, δu)−

∫

Γ
(1)
C

[λN + κ1gN ]− δgN dΓ = 0, ∀δu

− 1
κ1

∫

Γ
(1)
C

(

[λN + κ1gN ]− + λN

)

δλN dΓ−
1

κ2

∫

Γ
(1)
C

(λN − pN ) δλN dΓ = 0, ∀δλN

(29)
where we have introduced the normal stabilizing stress pN =

(

T∗ · n(1)
)

·n(1). Taking
into account the numerical integration, we have one equation for every quadrature
point, depicted with the subindex g. Then, the following result can be obtained if we
condense the Lagrange multipliers in the second equation in (29):

λNg =











κ2gNg + pNg if
[

λNg + κ1gNg

]

−
≤ 0

0 if
[

λNg + κ1gNg

]

−
> 0

(30)
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4. Finite Element stabilized contact formulation

Substituting the Lagrange multiplier in (29) we will have the following equation
to solve the normal contact problem.

δΠ(u, δu)−
∑

g

(

pNg +
κE
h
gNg

)

δgNg |Jg|Hg = 0, if
[

pNg +
κE
h
gNg

]

−
≤ 0

δΠ(u, δu) = 0, if
[

pNg +
κE
h
gNg

]

−
> 0

(31)
where Hg and |Jg| are the respective quadrature weight and Jacobian of the trans-
formation, and κE

h
= (κ1 + κ2) with E being the Young’s modulus and h the mesh

size. This result is similar to the one obtained in [27] with the advantage of having
less integrals to evaluate as no derivatives of the stabilizing traction are involved in
the formulation. Further discussion on the values of the stabilizing term can be found
in [3].

4.3. Frictional contact formulation

Here we extend the stabilized formulation to the Coulomb frictional contact case
with large deformations. We assume that

[

pN + κE
h
gN

]

−
≤ 0, i.e. the contact condi-

tion is active, otherwise the problem equation would remain as the second equation
in (31). We can again substitute the value at the quadrature points of λN obtained
in (30), so that the Coulomb friction limit is written as µ

[

pN + κE
h
gN

]

−
. It is also

possible to condense element-wise the Lagrange multipliers using the second equation
in (28). In order to do that, we will distinguish between the different states during
frictional contact, the sticking case and the sliding case.

Starting with the stick state, we can substitute in the second equation in (28) the
corresponding value PB = Tn (λ− κ1∆

tg) :

−
1

κ1

(

[

λ · n(1) + κ1gN

]

−
n(1) + λ −Tn

(

λ− κ1∆
tg
)

)

−
1

κ2
(λ−T∗) = 0 (32)

Hence, (32) can be simplified taking into account that λ =
(

λ · n(1)
)

n(1) + Tnλ.
Therefore, the Lagrange multiplier can be substituted at each integration point by:

λg = T∗
g + κ2

(

gNgn
(1) −Tn∆

tgg

)

(33)

After substituting the value in the first equation of (28), and taking into account
the simplification of (24) g = gNn(1)−Tn∆

tg valid only for the stick case, the contact
contribution to the problem in the case of stick is written as:

δΠCSt
(u, δu) =

∑

g

(

κE

h
gg + T∗

g

)

· δgg |Jg|Hg (34)
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The elimination of the Lagrange multipliers in the frictionless and stick cases allows
the problem to be transformed into a modified penalty method, with the advantages
mentioned above. However, the elimination of the multipliers for the sliding case is
cumbersome, as in this case the second equation in (28) reads as:

− 1
κ1

(

[

λ · n(1) + κ1gN
]

−
n(1) + λ + µ

(

pN + κE
h
gN

) Tn(λ−κ1∆
tg)

‖Tn(λ−κ1∆tg)‖

)

− 1
κ2

(λ −T∗) = 0

(35)

We can project this equation on the normal direction n(1) and the tangent plane
Tn. The first projection yields the the same equation that was discussed in the
frictionless case (30). The projection on the tangent plane leads to the following
equation:

−
1

κ1

(

Tnλ+ µ

(

pN +
κE

h
gN

)

Tn (λ− κ1∆
tg)

‖Tn (λ− κ1∆tg)‖

)

−
1

κ2
Tn (λ−T∗) = 0 (36)

This is the slip condition that, roughly speaking, (neglecting the stabilizing term,
λ = T∗) forces the tangent projection of the multiplier to have a modulus µ

(

pN + κE
h
gN

)

and the direction of Tn∆
tg. The addition of the stabilization term, if pT = Tn ·T

∗

is chosen in the direction of Tn∆
tg and modulus µpN , becomes again the same con-

straint, so the equation is redundant.
Only the direction of Tnλ is involved in the first equation in (28). We formulate

an alternative approach for the sliding problem that will lead to the same solution by
modifying this equation. We consider that the direction of Tnλ is the same as the
direction of κ2Tn∆

tg + pT , which also has the direction of Tn∆
tg in the problem

solution. In order to avoid convergence problems, the transition between stick and
slip has to be continuous. This is achieved with the following substitution:

Tnλ = κ2Tn∆
tg+ pT (37)

Introducing this substitution into the first equation in (28) we obtain the final
equation to solve the sliding problem:

δΠCSl
(u, δu) =

∑

g

[(

κE

h
gN + pN

)

δgN−

µ

(

κE

h
gN + pN

)

pT −
κE
h

Tn∆
tg

‖pT −
κE
h

Tn∆tg‖
· δg

]

|Jg|Hg

(38)

This approximation means the sliding problem can be formulated with a modified
penalty method similar to those obtained for the frictionless and sticking cases. The
numerical examples in Section 6 show that the convergence is still achieved.
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5. Problem solution

The stabilizing smooth stress field pN and pT are considered independent of the
solution u in the linearization step. The values are iteratively updated in the problem
solution as shown in the next Section.

5. Problem solution

The formulation obtained to solve the frictional contact problem can be summarized
as:











































































































if
[

pNg +
κE
h
gNg

]

−
> 0

δΠ(u, δu) = 0

otherwise

if ‖Tn

(

T∗
g +

κE
h

gg

)

‖ ≤ µ
(

pNg +
κE
h
gNg

)

δΠ(u, δu) + δΠCSt
(u, δu) = 0,

if ‖Tn

(

T∗
g +

κE
h

gg

)

‖ > µ
(

pNg +
κE
h
gNg

)

δΠ(u, δu) + δΠCSl
(u, δu) = 0

(39)

The first equation corresponds to the case of no active contact condition. The
evaluation of δΠCSt

is found in (34), whereas δΠCSl
is defined in (38).

5.1. Solution algorithm

The choice of the stabilizing term T∗ requires an iterative process to solve (39).
The proposed procedure, first introduced in [3] is shown in Algorihm 1. During the
N-R loop the contact status for each integration point on the contact boundary Γ

(1)
C

is evaluated. When any integration point becomes active, it is set to stick contact for
its first iteration. After that, the slip condition is evaluated and the relative velocity
is calculated for the sliding integration points. An additional loop is needed for the
solution of the problem to update the stabilizing stress field. Here it is called aug-
mentation loop because of the similarities with the augmented Lagrange multipliers
approach. Our experience shows that the number of augmentations is usually low, so
the computational cost of the solution is not substantially increased.
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Algorithm 1 Problem resolution scheme
Update boundary conditions
Update pN and pT from previous converged step
Set all previous contact points to stick state.
ξt ← previous step’s ξ

while Residual > Tol do Augmentation loop
while ‖r‖/‖fint‖ > Tol do N-R loop

λN ←
κE
h
gN + pN

Check active quadrature points. (λN < 0)
for all Active stick points do

λT ← Tn

(

κE
h

g+ T∗
)

if ‖λT ‖ ≥ µ |λN | then

Change status to Slip
else

Evaluate contact using (34) (Stick)
end if

end for

for all Active slip points do

Evaluate ∆tgt

Evaluate contact using (38) (Slip)
end for

Evaluate residual of (39)
Solve ∆u in (39)

end while

Update pN and pT

Evaluate residual of (39)
end while

5.2. Linearization

The Newton-Raphson solver needs the linearization of the equations that solve
the contact problem. This work will only describe the linearization of δΠC for both
stick and slip cases. The linearization of the contact contribution in the stick case is

∆δΠCStick
=

∑

g

[

κE

h
∆g · δg

]

|Jg|Hg (40)

The definition of the linearization ∆g is in this case equivalent to its variation (25),
as there is no change of contact coordinates during the stick state. The linearization
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of the contact contribution in the slip state is shown in (42). For the sake of simplicity,
the following definition has been included in the linearization:

∆tgt =
pT −

κE
h

Tn∆
tg

‖pT −
κE
h

Tn∆tg‖
(41)

∆δΠCSlip
=

∑

g

[

κE

h
∆gN · δgN +

(

κE

h
gN + pN

)

∆δgN−

−µ
κE

h
∆gN

(

∆tgt · δg
)

− µ

(

κE

h
gN + pN

)

(

∆∆tgt · δg
)

−

−µ

(

κE

h
gN + pN

)

(

∆tgt ·∆δg
)

]

|Jg|Hg

(42)

In this case ∆gN , ∆δgN , ∆∆tgt and ∆δg have to be evaluated. As stated in
Section 3.1, the exact derivative must be calculated for the linearization terms. To
evaluate ∆gN we rearrange (1) and take variations:

x(2)(ξ(2)) = x(1) + gNn(1) (43)

∆u(2) +
∂x(2)(ξ(2))

∂ξ
∆ξ +

∂x(2)(ξ(2))

∂η
∆η = ∆u(1) +∆gNn(1) + gN∆n(1) (44)

Note that as we are using a ray-tracing scheme to define the contact point pairs,
the fixed point is located on the slave body, and the coordinates of the master body
are variable. This is contrary to the case of using a closest projection scheme to
define the contact point pairs. As n(1) is a unit vector, then ∆n(1) · n(1) = 0 and
n(1) · n(1) = 1. Therefore, if we multiply (44) by n(1)

∆gN = (∆u(2) −∆u(1)) · n(1) + s
(2)
ξ · n

(1)∆ξ + s(2)η · n
(1)∆η (45)

where the variables ∆ξ and ∆η can be calculated solving the linear system of equations
(46) resulting from multiplying (44) by vectors s

(1)
ξ and s

(1)
η , taking into account that

s
(1)
ξ · n

(1) = 0, s
(1)
η · n(1) = 0.

[

s
(2)
ξ · s

(1)
ξ s

(2)
η · s

(1)
ξ

s
(2)
ξ · s

(1)
η s

(2)
η · s

(1)
η

]{

∆ξ

∆η

}

=

{

gNs
(1)
ξ ·∆n(1) − (∆u(2) −∆u(1)) · s

(1)
ξ

gNs
(1)
η ·∆n(1) − (∆u(2) −∆u(1)) · s

(1)
η

}

(46)

The terms ∆ξ, ∆η are considered for the calculation of ∆δgN and ∆δg. Therefore,
starting from (18) and (25) these increments are respectively written as

∆δgN = (δs
(2)
ξ · n

(1))∆ξ + (δs(2)η · n
(1))∆η + (δu(2) − δu(1)) ·∆n(1) (47)

∆δg = (δs
(2)
ξ · n

(1))∆ξ + (δs(2)η · n
(1))∆η + (δu(2) − δu(1)) ·∆n(1) (48)
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The details of the calculation of δs
(2)
ξ , δs

(2)
η and ∆n(1) and ∆tgt are shown in

Appendices A and B. The linearization of the Jacobian is also considered, but not
shown in this paper as they are standard terms. Its calculation can be easily performed
using the tools developed in Appendix A.

6. Numerical examples

6.1. Contact between plane surfaces

Figure 5 left shows a 2D sketch of the first numerical example, which is the contact
simulation between plane surfaces, represented by two elastic cubes. The orientation
of the reference system is also shown in the figure, x being the out of plane direction.
The separation in the sketch is only for the sake of clarity, as the contact surfaces are
overlapping at the initial configuration. A vertical displacement d = −1.6 · 10−6m
is applied on the upper face of body 2. The displacements along y direction are
constrained on the upper face of body 2 and on the lower face of body 1. Finally,
symmetry conditions are applied to the faces parallel to the yz plane, i.e. this problem
can also be analyzed as a plane strain problem. The values of the pressure applied on
two lateral faces of body 1 are py = 4 · 1011(0.01− z)z Pa and pz = 10 · 1011(0.01−
z)z Pa. Material properties are common for both bodies, the Young modulus being
E = 115GPa and the Poisson coefficient ν = 0.3.

First we will test the convergence of the solution solving a frictionless contact case.
Although there is no analytical solution for this problem, we will use the solution of
a 2D overkill mesh from [14] as a reference to measure the discretization error. Non-
conforming Cartesian grids are used on both bodies. Figure 6 shows some of the
meshes used for the analysis. The initial mesh consists in a 3 × 3 × 3 grid for the
upper body and a 4× 4× 4 grid for the lower body. In order to avoid nodes over the
boundary for this test, the initial grids are built adding a small offset to the cubes.
A set of uniformly h-refined meshes is then built by subdividing each element into
8 new elements. Figure 7 shows the relative error in energy norm for a sequence of
5 meshes using linear elements, H8, and 3 meshes using quadratic elements , H20.
The results show that the theoretical convergence rate of the error in energy norm,
represented by the triangles, is achieved both for H8 and H20 elements.

The recovered contact stress pN is shown in Figure 8 for the solution of the finest
mesh. In this figure, positive values of stresses represent compression. The graph on
the right shows the evolution of the contact stress on the yz plane (this profile remains
constant along the x direction) for meshes 2 to 5. The results show that the values
of the contact pressure appropriately converge to the reference solution from [14].

Now the same problem is solved considering frictional contact with a friction
coefficient µ = 1.0. In this case we have used non-conforming manually h-adapted

132



6. Numerical examples

d

0
.0
1
m

0
.0
1
m

0.01m

Ω(1)

Ω(2)

y

z

p
=

(p
y
,−

p
z
)

p
=

(−
p
y
,−

p
z
)

Figure 5: Example 1. Sketch of the contact problem between two elastic cubes in
contact.

Figure 6: Example 1. Refinement process for the study of the convergence of the
solution. Meshes 1 to 3 are shown from left to right.
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Figure 7: Example 1: Evolution of the error in the energy norm as a function of
the element size for the frictionless contact case. Analysis of the convergence of the
solution. The element size is referred to the lower body.
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Figure 8: Example 1. Frictionless contact. Left: Normal stress on the contact area
(positive values of the stress stand for compression). Right: Evolution of values of
the normal stress, along a path that follows the y direction, with mesh refinement.

134



6. Numerical examples

Figure 9: Example 1. Frictional contact h-adapted mesh. The image on the right
shows a detail of the refinement of the mesh along the contact surface of the bottom
body.

meshes for both bodies, as depicted in Figure 9. Starting with the initial mesh
of Figure 5, we refined the elements over the contact surface multiple times. The
surrounding elements were refined as well to keep the difference of the refinement
level between adjacent elements below or equal to one.

The results of this problem are shown in Figure 10. The graph on the left shows
the values of the multipliers λN = pN + κE

h
gN and λT = pT + κE

h
gT . The blue

dashed line represents the values of −λN . We can observe the slip and stick areas,
with ‖λT ‖ = µ |λN | over the sliding area and ‖λT ‖ ≤ µ |λN | over the adhesion area.
All these results are similar to those obtained in [14]. The values of the smoothed
stress field pN and ‖pT ‖ are represented in the graph on the right. This smoothed
field is evaluated without taking into account any constraint, hence the differences
between the multiplier values. The imposition of the contact constraints to evaluate
this smoothed field to get a better solution using the SPR-C technique [31] will be
considered in future work.
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Figure 10: Example 1. Frictional contact along a path that follows the y direction.
Left: values of the augmented Lagrange multipliers. Right: smoothed stress field
recovered using SPR.

6.2. Hollow sphere under internal pressure

The second example consists of a hollow sphere under internal pressure, which
is divided into two independent volumes. In this problem we have curved contact
surfaces. We can exactly evaluate the discretization error, as there is an analytical
solution. It is easy to express the analytical solution of the problem in spherical
coordinates (r, θ, φ). The transformation from Cartesian to spherical coordinates is
as follows:

r =
√

x2 + y2 + z2

θ = arccos
z

r

φ = arctan
y

x

(49)

Then, the analytical stress field corresponding to this problem is:

σr = −P
a3

b3 − a3

(

b3

r3
− 1

)

σθ = σφ = P
a3

b3 − a3

(

b3

2r3
+ 1

) (50)

P being the value of the compression load applied to the internal surface of the
sphere, a the inner radius and b the outer radius of the complete hollow sphere. For
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Figure 11: Example 2. First calculation meshes. The sphere is divided into two
volumes, which are discretized using non-conforming Cartesian grids.

this example the smaller sphere has an inner radius a = 5, the outer radius of the
bigger sphere is b = 20 and the contact interface is located at radius c = 15. One
eighth of the hollow spheres with the appropriate symmetry conditions has been used
to create the analysis model, as shown in Figure 11. The material properties chosen
for the problem are E = 1000, ν = 0.3. The applied internal pressure is P = 1.

Following the procedure used in the previous example, a series of non-conforming,
uniformly h-refined meshes were solved to test the convergence of the solution. The
first calculation mesh is shown in Figure 11. Figure 12 shows the evolution of the
relative exact error in energy norm of the solution with H8 and H20 elements. The
optimal convergence rate, depicted by the triangles in the graph, is again achieved for
both element types.
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Figure 12: Example 2. Energy norm error of the solution as a function of the element
size. Analysis of the convergence of the solution. The optimal convergence rates are
depicted by the triangles below the curves.
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6.3. Frictional contact under large deformations

The last example in this paper is an ironing problem under large deformations,
similar to the ones solved in [14] and [40]. Figure 13 shows the dimensions of the
bodies in contact. Material properties and displacements of the problem are shown
in Table 1. The ironing block consists of a sphere modelled by four surfaces. The
upper surfaces of the sphere are moved towards the slab in 5 time steps, after which a
motion along the y direction is applied using 80 time steps. We used a Neo-Hookean
material model [46] to consider large deformations of the solids.

x

yz

a
=

5
m
m

b = 5mm
l =

10m
m

Θ = 2mm

Figure 13: Example 3. Scheme of the ironing problem.

Young modulus of the slab ESlab 100 (GPa)

Poisson coefficient of the slab νSlab 0.3

Young modulus of the sphere ESphere 1000 (GPa)

Poisson coefficient of the sphere νSphere 0.3

Vertical displacement of the sphere ∆uz -0.3 (mm)

Horizontal displacement of the sphere ∆uy 5 (mm)

Friction coefficient µ 0.3

Table 1: Parameters of the ironing problem

This problem was solved with three different meshes. Figure 14 shows the mesh
for the first two analyses on the left, with H8 elements for the first analysis and
H20 elements for the second. A manual h-adaptive refinement was performed on the
contact surface of the slab to create the third analysis mesh (Figure 14 right), using
only H8 elements this time. Two different meshes with H8 elements were solved using
ANSYSr [47] in order to compare the results. The first of the meshes was created
using a discretization similar to the one used in the first mesh in Figure 14. The
second was an overkilled mesh which served as a reference.
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Figure 14: Example 3. Calculation meshes of the ironing problem. Left: uniform
initial meshes. Right: manually adapted mesh on the lower body.

Figure 15 shows the sum of the vertical and horizontal reaction forces measured on
the lower face of the slab for all the analyses. The results are similar to those obtained
with ANSYSr, with the values of the reaction forces tending to the reference value
with refinement of the mesh. It should be noted that the use of a coarse mesh with
H20 elements provides a smooth evolution of the reaction forces, close to the reference
values. This is thanks to the definition of the exact geometry, which is independent
of the resolution of the mesh. In all cases the wave lengths of the oscillations that
appear in the reaction forces are equal to the size of the mesh and are caused by
the interaction of the discretized surfaces, which vary with the element size. The
deformed configuration for two different load steps is represented in Figure 16.

7. Conclusions

This paper has extended the formulation first proposed in [3] to the case of large
deformation frictional contact. In this method a stabilization term that is iteratively
computed is added to an augmented Lagrangian formulation, after which the Lagrange
multipliers are condensed for the stick and slide case, ensuring a smooth transition
between both states.

The formulation was implemented within the three dimensional version of the
Cartesian grid Finite Element Method (cgFEM). For this purpose the deformed con-
figuration was defined as a combination of the NURBS surface definition and the
finite element displacement field, which allows the exact definition of the boundaries
to be taken into account, an important factor in defining the contact kinematics.
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Figure 15: Example 3. Reaction forces on the lower face of the block.

Some numerical examples were solved to test the method, using linear 8-node
and quadratic 20-node elements. The results show that the appropriate convergence
rates are achieved, and the transition between sticking and sliding states is sufficiently
smooth. Although the present work may not outperform the more established body-
fitted contact formulations in terms of precision or efficiency, it allows solving large
sliding contact problems within the embedded domain framework and would be of
interest for the solution of problems like contact wear simulation, fretting fatigue or
prosthesis-tissue interaction.
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A. Variation of normal and tangent vectors

Figure 16: Example 3. Deformed configuration and vertical displacements uz for the
ironing problem for different load steps. On the top, the last load step with only
vertical displacement is represented. On the bottom, results from load step 45. These
results correspond to the analysis of a coarse mesh using quadratic H20 elements.
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A. Variation of normal and tangent vectors

We recall here (15) for the calculation of δn(1).

n(1) =
n̂
(1)

‖n̂(1)‖
; n̂

(1) = s
(1)
ξ × s(1)η (51)

δn(1) =
δs

(1)
ξ × s

(1)
η + s

(1)
ξ × δs

(1)
η

∥

∥

∥
n̂
(1)

∥

∥

∥

−
n(1)

∥

∥

∥
n̂
(1)

∥

∥

∥

[

n(1) · (δs
(1)
ξ × s(1)η + s

(1)
ξ × δs(1)η )

]

(52)

For the calculation of the variation of the tangent vectors s
(1)
ξ and s

(1)
η we start

from (16). We will only describe the calculation of δs(1)ξ as the other term, δs(1)η , has
an identical procedure:

s
(1)
ξ =

∂x(1)

∂ξ
=

∂S(ξ, η)

∂ξ
+
∑

j

(

∂Nj

∂ζe1

∂ζe1
∂ξ

+
∂Nj

∂ζe2

∂ζe2
∂ξ

+
∂Nj

∂ζe3

∂ζe3
∂ξ

)

u
(1)
j (53)

δs
(1)
ξ = δ

(

∂x(1)

∂ξ

)

=
∂δu(1)

∂ξ
=

∑

j

(

∂Nj

∂ζe1

∂ζe1
∂ξ

+
∂Nj

∂ζe2

∂ζe2
∂ξ

+
∂Nj

∂ζe3

∂ζe3
∂ξ

)

δu
(1)
j (54)

The linearization of all these variables has the same structure as the variation,
so the variations δn(1), δs(1)ξ and δs

(1)
η can be directly substituted for the increments

∆n(1) , ∆s
(1)
ξ and ∆s

(1)
η .

B. Linearization of ∆tg
t

We recall the definition of ∆tgt here:

∆tgt =
pT −

κE
h

Tn

(

x(1) − x(2) (ξt)
)

∥

∥pT −
κE
h

Tn

(

x(1) − x(2) (ξt)
)
∥

∥

(55)

If we use the simplification of (56), the linearization of ∆tgt can be expressed as
in (57)

∆tgt =
d̂

‖d̂‖
; d̂ = pT +

κE

h
Tn

(

x(2) (ξt)− x(1)
)

(56)
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∆∆tgt =
∆d̂
∥

∥

∥
d̂

∥

∥

∥

−
∆tgt
∥

∥

∥
d̂

∥

∥

∥

[

∆tgt ·∆d̂
]

(57)

Finally, for the linearization of d̂ we can rearrange equation (56) as:

d̂ = pT +
κE

h

{(

x(2) − x(1)
)

−
[(

x(2) − x(1)
)

· n(1)
]

n(1)
}

(58)

With this definition we have a clearer linearization term, which is the following:

∆d̂ =
κE

h

{

∆u−
[

∆u · n(1) +
(

x(2) − x(1)
)

·∆n(1)
]

n(1)+
[(

x(2) − x(1)
)

· n(1)
]

∆n(1)
}

(59)

where ∆u = ∆u(2) (ξt)−∆u(1). Notice that the local coordinates of the master body
are not unknowns, but the coordinates from the last converged step.
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Abstract

The definition of the surface plays an important role in the solution of contact
problems, as the evaluation of the contact force is based on the measure of the gap
between the solids. In this work three different methods to define the surface are pro-
posed for the solution of contact problems within the framework of the 3D Cartesian
grid finite element method. A stabilized formulation is used to solve the contact prob-
lem and details of the kinematic description for each surface definition are provided.
The three methods are compared solving some numerical tests involving frictionless
contact with finite and small deformations.
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1. Introduction

1. Introduction

In recent years some alternatives to standard Finite Element methods have been
developed under the category of immersed boundary methods [1–3], also known as
fictitious or embedded domain methods. The common idea in these methods is that
the FE mesh is obtained by discretizing a simple domain (usually cuboid) which fully
embeds the analysis domain, but is independent of the analysis boundaries, which may
be complex. Within this category is the Cartesian grid finite element method (cgFEM)
for solving elasticity problems in 2D [4] and 3D [5]. The main differentiating features
of cgFEM with respect to other immersed boundary methods are that the cgFEM
is able to consider the CAD geometry (represented by NURBS) for the numerical
integration and the use of a stabilized Lagrange multiplier method for the imposition
of Dirichlet boundary conditions (see [5] and [6] for further details).

In order to solve the contact problem with cgFEM we use a stabilized Lagrangian
formulation first presented in [7]. The method has similarities with Nitsche-based for-
mulations proposed in [8–11] with a relevant difference in the stabilizing stress field.
In our case we use a smooth field calculated with the Zienkiewicz and Zhu Supercon-
vergent Patch Recovery (SPR) technique [12–14]. In a first approach, the developed
contact formulation was applied to cgFEM considering a linear facet discretization of
the boundary, based on the intersections between the Cartesian grid with the CAD
geometry.

Several attempts to enhance the definition of the contact boundaries have been
developed in the framework of body-fitted meshes, usually known as surface smooth-
ing, using diverse techniques such as Hermite, Bezier spline and NURBS interpola-
tions [15–18], Gregory patches [19] or Nagata patches [20]. It is proven in these works
that the enhancement of the contact surfaces results in more accurate solutions and
increased robustness of the contact algorithm. A relevant contribution in the consid-
eration of CAD geometries is the Isogeometric Analysis [21] (and its applications in
contact simulation, e.g. [22, 23]), in which the basis functions for the approximation
of the solution are the same used for the CAD definition. There are also NURBS-
enriched formulations as in [24, 25], where isogeometric basis functions are included
only in the contact elements.

As the cgFEM is able to consider the CAD geometry, it seems appropriate to use
this surface definition to improve the gap measure. In [26] the deformed surface is
defined as a combination of the undeformed CAD geometry and the finite element
displacement field. This paper can be considered as an extension of [26], where
we study the effect of the surface definition (hence the contact gap) when solving
frictionless contact problems with cgFEM. In addition to the previous approaches,
linear facets and a combination of FE solution and NURBS surface, in this work we
propose a new method in which the deformed configuration is defined as a NURBS
surface, i.e., the control points of the original CAD surface are updated such that the
new configuration fits the finite element displacement field of the contact surface.
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The paper is structured as follows: in section 2 the kinematic variables of the
problem are stated. The different alternatives to define the contact surface are pre-
sented in section 3. The formulation used to solve the contact problem is described
in section 4. Finally the different methods are compared with some numerical tests
in section 5.

2. Contact kinematics

Figure 1 shows the undeformed and deformed configurations of two solids Ω(i)

coming in contact. The indexes (1), (2) represent the so-called slave and master bodies
respectively. Γ

(i)
c is the part of body (i) that can interact with the other body. Let

X be the initial configuration of a given material point in Ω(i), i = 1, 2. We describe
the motion of Ω(i) with the mapping ϕ : Ω −→ R

3. Therefore x
(i) = ϕ

(

X
(i), t

)

for a given point at time t. Since we are solving quasi-static problems, we will omit
the time variable and assume that the load increments are small enough. Then, the
position vector for any point in Ω(i) is given as

x
(i) = ϕ

(

X
(i)
)

(1)

To enforce the contact constrain, a pair of points x
(1), x(2) is defined such that

the following equation is fulfilled:

x
(2)

(

Θ
(2)

)

= gNn
(1) + x

(1)
(

Θ
(1)

)

; x
(1) ∈ Γ(1)

c , x
(2) ∈ Γ(2)

c (2)

where Θ
(i) ≡ (ξ, η)

(i) are the convective coordinates of Γ
(i)
c and gN is the contact

normal gap. The normal vector to the surface is obtained from the tangent vectors
to the surface x,ξ and x,η:

n
(i) =

x
(i)
,ξ × x

(i)
,η

∥

∥

∥
x
(i)
,ξ × x

(i)
,η

∥

∥

∥

; x
(i)
,ξ =

∂x(i)

∂ξ
, x

(i)
,η =

∂x(i)

∂η
(3)

We use a ray-tracing scheme to build the contact pair, so, x(1) remains fixed and
equation (2) has the unknowns Θ

(2) and gN . The method for solving this equation
depends on the parametric transformation x

(2)(Θ(2)). Equation (2) can be directly
solved for linear facets. However, if the surface is defined using rational transforma-
tions (e.g. NURBS) (2) becomes non-linear, so we use a Newton-Raphson scheme.

From now onwards we assume that (ξ, η)
(2)

≡ (ξ, η). We can now take variations
in (2):

δx(2) (ξ, η) = δgNn
(1) + gNδn(1) + δx(1) (4)
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e
1

e
3

e
2
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φ(Ω(2))

φ(Ω(1))

Ω(1)

Ω(2)

X(1)(Θ)

x(2)(Θ)

x(1)(Θ)

g
N

n(1)

Figure 1: Sketch of two deformable solids getting in contact.

Taking into account that δn(1) · n(1) = 0,n(1) · n(1) = 1 and projecting equation
(4) into n

(1) we obtain the variation of the normal gap:

δgN =
(

δx(2) (ξ, η)− δx(1)
)

· n(1) (5)

3. Discretization of contact kinematics

The finite element (FE) approximation of these continuum variables introduces
two important sources of error. One is related to the discretization of the analysis
domain Ωh which usually differs from the original Ω. The approximation of the
continuum displacement with the FE variable u

h introduces the discretization error.
We define this field from the nodal value u using linear shape functions, uh = Nkuk,
where uk is the displacement of node k.

In this work we want to assess the performance of three different alternatives for
the definition of ϕ. In the first alternative we will consider a linear approximation
of Ω. The second alternative, first introduced in [7], includes the CAD definition

of Γ
(i)
c in the reference configuration, combined with the FE approximation of the
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(a) Phys. domain Ω (b) Discretization Ωh (c) Internal and boundary elements

Figure 2: Disctretization mesh of a torus in cgFEM. In green, elements internal to
the domain. In red, elements cut by the boundary (boundary elements). Elements
completely outside the domain are not considered during the analysis.

displacements. Finally we present an alternative in which the CAD surface is deformed
such that it fits the FE solution.

3.1. Previous considerations regarding cgFEM

3.1.1. Surface topology with the Marching cubes algorithm

In body-fitted contact FEM formulations the discretized domain Ωh is created so
that there are nodes located at Γ(i) and the surface segments are directly faces of the
elements in Ωh. In cgFEM [4,5] Ωh is a regular cuboid in which the analysis domain
Ω is completely embedded. This embedding domain can be easily meshed with a
sequence of regular Cartesian grids (Fig. 2b). Thus, there are no nodes located
on Γ(i) and there exist elements cut by the boundary, depicted in red in Figure 2c.
The consideration of the boundary within these elements is implicitly achieved by only
integrating the material part of the intersected element. A 2D sketch of the numerical
integration construction procedure for an element cut by the boundary is shown in
Figure 3. Given the inside-outside status of the nodes (Fig. 3a), the Marching Cubes
algorithm [27] classifies the intersected pattern into 16 unique configurations. Then
a tetrahedron (triangles in 2D) topology is created for each configuration. Only
the subdomains in the material side are kept (Fig. 3b) for numerical integration.
Instead of creating linear surface and volume segments using this topology, cgFEM
is able to take into account the NURBS definition of Γc, as explained in [5], using a
technique based on the work of Sevilla et al. [28]. With this procedure the points used
for surface numerical integration are located over the actual CAD definition of the
boundary (Fig. 3c), and the volume subdomains account for the actual intersected
volume in the element. Other specific methods to obtain the volume and surface
subdomains and quadratures for particular cases, such as multiple surfaces within a
boundary element, can be found in [5].
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(a) (b) (c)

Figure 3: Surface and volume discretization using the Marching Cubes algorithm
and cgFEM. a) Inside-outside test of nodes using intersections data. b) Marching
Cubes topology. c) Volume (green) and surface (red) quadratures considering CAD
geometry.

3.1.2. Convective to local coordinates transformation

It is worth to remark that for the case of a point lying on Γ(i) the reference con-
figuration mapping is described using the surface convective coordinates, whereas the
FE solution u

h is defined with the shape functions of the elements, which are inde-
pendent of the geometry. Figure 4 shows the coordinate transformations involved in
the evaluation of the displacement field for a surface point with convective coordi-
nates Θ, where B (Θ) represents the surface parametric transformation to the global
space, X = B (Θ). The reference and deformed configurations are shown in the Fig-
ure with coordinates X and x, and the reference element used to define the shape
functions N(ζe) is depicted on the left. As all the elements in cgFEM are regular
hexahedrons the backward mapping from the global space to the local element space
ζe is straightforward. For a given point with coordinates X = B (Θ) we have:

ζe =
B (Θ)−Xe

h/2
(6)

where Xe is the center and h the size of the element. The partial derivatives of this
mapping with respect to the convective coordinates are involved in the kinematic
variables definition and can be formulated as:

∂ζe

∂ξ
=

2

h
B,ξ;

∂ζe

∂η
=

2

h
B,η (7)
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(a)
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Θ
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Figure 4: Convective to local coordinates transformation. A point located at Θ in the
surface parametric space (a) is mapped to the reference configuration X (Θ) on the
global coordinates system (c) and then to the local element space (b) with coordinates
ζe.

3.2. Variation of kinematic variables

In this work we use the exact variation of x(1) and x
(2), which ensures the sym-

metry of the formulation and the conservation of the angular momentum. Therefore
the variation of the position vector for each body is formulated as:

δx(1) = x
(1)
,u δu

δx(2) =
(

x
(2)
,ξ δξ + x

(2)
,η δη + x

(2)
,u

)

δu
(8)

The variations δξ and δη in equation (8) are obtained by projecting equation (4) into

x
(1)
,ξ and x

(1)
,η . Considering that x

(1)
,ξ · n(1) = 0,x

(1)
,η · n(1) = 0, the following system is

presented:

[

x
(2)
,ξ · x

(1)
,ξ x

(2)
,η · x

(1)
,ξ

x
(2)
,ξ · x

(1)
,η x

(2)
,η · x

(1)
,η

]{

δξ

δη

}

=

{

gNδn(1) · x
(1)
,ξ − (x

(2)
,u − x

(1)
,u ) · x

(1)
,ξ

gNδn(1) · x
(1)
,η − (x

(2)
,u − x

(1)
,u ) · x

(1)
,η

}

(9)

where the last term to calculate is the variation of the normal gap. Starting from (3),
the variation is evaluated as:

δn(1) = n
(1)
,u δu

n
(1)
,u =

x
(1)
,u,ξ × x

(1)
,η + x

(1)
,ξ × x

(1)
,u,η

∥

∥n̂(1)
∥

∥

−
n
(1)

∥

∥n̂(1)
∥

∥

[

n
(1) · (x

(1)
,u,ξ × x

(1)
,η + x

(1)
,ξ × x

(1)
,u,η)

]

(10)
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3.3. Surface definition using linear facets

Having the surface segments topology provided by the Marching Cubes algorithm
we define a linear mapping B

l(Θ) from the unit triangle to the segment in the initial
configuration, X = B

l(Θ). Therefore the position vector in the deformed configura-
tion and its derivatives are defined as:

x = B
l(Θ) +N (ζe)u, x ∈ Γc

x,u = N (ζe)

x,ξ = B
l
,ξ(Θ) +N,ζe (ζe) ∂ζe

∂ξ
u

x,u,ξ = N,ζe (ζe) ∂ζe

∂ξ

x,ξ,ξ = N,ζe,ζe (ζe) ∂ζe

∂ξ
∂ζe

∂ξ
u+N,ζe (ζe) ∂2ζe

∂ξ2
u

(11)

where N (ζe), N,ζe (ζe) and N,ζe,ζe (ζe) are the FE shape functions and its respective
derivatives, and ζe is evaluated as a function of Θ from (6). The partial derivatives
with respect to η are evaluated similarly to the terms x,ξ, x,u,ξ and x,ξ,ξ. As the
contact segments are linear, the tangent vectors x,ξ, x,η (and consequently the normal
vector n(1)) are constant in a segment, and discontinuous between adjacent segments.
This fact can produce a loss of convergence in the search of the contact active set,
especially for coarse discretizations of the solids.

3.4. Surface definition using NURBS and FE

displacements

In the cgFEM framework it is possible to eliminate the geometry discretization
error thanks to the independence between the approximation mesh and the analysis
domain. The surface and volume subdomains can be created considering the exact
geometry of the domain (Figure 5), provided that it is defined by NURBS surfaces,
which is nowadays a standard among the CAD industry. NURBS surfaces are rational
functions defined in their own parametric space of coordinates (ξ, η) as

Q (ξ, η) =

n
∑

i=1

m
∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1 N

(p)
i (ξ)M

(q)
j (η)wi,j

Pi,j (12)

where N (p)
i and M

(q)
j are one-dimensional basis functions of order p and q respectively,

each one defined along two knot vectors with n and m control points. Pi,j are the
coordinates of the n×m control points of the surface. Equation (12) can be simplified
for further developments as:

Q (ξ, η) =

n
∑

i=1

m
∑

j=1

Si,j (ξ, η)Pi,j (13)
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where the term Si,j (ξ, η) is the NURBS basis function associated to the control point
(i, j):

Si,j (ξ, η) =
N

(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1 N

(p)
i (ξ)M

(q)
j (η)wi,j

(14)

We can carefully rearrange the indexation of the control points from (i, j) to
the unique index k , hence, we can rewrite the NURBS surface as a vector-matrix
multiplication:

Q (ξ, η) =

n×m
∑

k=1

Sk (ξ, η)Pk = S (ξ, η) ·P (15)

where S (ξ, η) is a row vector containing the n×m NURBS basis functions, and P is
a (n×m)× 3 matrix with the coordinates of all the control points of the surface. If

we use the NURBS to define the reference configuration of Γ(i)
c (1) and its derivatives

are rewritten as

x = Q (ξ, η) +N (ζe)u, x ∈ Γc

x,u = N (ζe)

x,ξ = Q,ξ (ξ, η) +N,ζe (ζe) ∂ζe

∂ξ
u

x,u,ξ = N,ζe (ζe) ∂ζe

∂ξ

x,ξ,ξ = Q,ξ,ξ (ξ, η) +N,ζe,ζe (ζe) ∂ζe

∂ξ
∂ζe

∂ξ
u+N,ζe (ζe) ∂2ζe

∂ξ2
u

(16)

Differentiating (12) we can obtain the NURBS derivatives:

Q,ξ =
∂S (ξ, η)

∂ξ
P; Q,η =

∂S (ξ, η)

∂η
P (17)

3.5. Displacement of the NURBS surface matching

the FE solution

The last alternative is a step further in the use of NURBS surfaces to define
the position of a point laying on Γc. Let u be the FE displacements obtained for
the current iteration during the solution process. Then the following least squares
problem is proposed to fit the contact surface (equation (15)) to the solution u

h:

min

[

1

2

∫

Γ
(i)
c

(S (ξ, η)V −N(ζe)u)
2
dξdη

]

(18)

where V are the displacements of control points P such as the NURBS surface matches
the displacement field given by the FE solution. Figure 6 illustrates this idea with a
simple example. The boundary Γc is represented in Figure 6a, with the control points
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3. Discretization of contact kinematics

(a) (b)

Figure 5: Surface segments of a regular torus in cgFEM using the same approximation
mesh. a) linear facets, b) NURBS surface segments.

(a) NURBS definition of Γc (b) FE solution u
h (c) NURBS fitting to u

h

Figure 6: Example of NURBS fitting to the FE solution.

net depicted in red. Assuming the solution u
h evaluated over this surface is as in

Figure 6b the NURBS is fitted to that solution (Figure 6c). It is straightforward that
the quality of this fitting will strongly depend on the "flexibility" of the surface, this
is, the degree and number of knots of the NURBS. To overcome this issue there exist
degree elevation and knot insertion algorithms which increase the degrees of freedom
without changing the original surface.

The least squares problem in (18) can be solved using numerical integration over
Γc:

V = M
−1

Gu (19)

where

M =
∑

i

S (ξ, η)Ti S (ξ, η)i |J|iHi ; G =
∑

i

S (ξ, η)Ti N(ζe
i ) |J|i Hi (20)
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If the contact surface is modified such that the FE solution is implicitly included,
the position of a given point of Γc can be expressed using only the modified NURBS
definition:

x = S (ξ, η) (P+V) = S (ξ, η) (P+Cu) , x ∈ Γc (21)

with C = M
−1

G. Note that C is a constant matrix which is defined for each dif-
ferent NURBS surface in Γ

(i)
c . These matrices can be calculated once previously and

then used during the solving algorithm saving computational cost. For this case the
derivatives of the position vector are expressed as:

x,u = S (ξ, η)C

x,ξ = S,ξ (ξ, η) (P+Cu)

x,u,ξ = S,ξ (ξ, η)C

x,ξ,ξ = S,ξ,ξ (ξ, η) (P+Cu)

(22)

The evaluations of the position vector and all its derivatives becomes considerably
easier thanks to the use of a unique NURBS in comparison with a mixed definition
using the NURBS and the FE solution. The intersection procedure is also faster,
since only surface evaluations must be computed. However, matrix C couples all the
elements in the mesh that contain the same surface, making this method non-viable
in terms of computational cost for refined meshes.

Note that in both proposed alternatives the NURBS surface is implicitly consid-
ered through the numerical integration, and in the last one the nodes of the Cartesian
grid are coupled with the control points of the contact NURBS through the gap def-
inition. However, no additional degrees of freedom are included over the boundary
and, in contrast with NURBS-enriched contact formulations as [24], the standard FE
interpolation is kept inside the domain.

4. Stabilized Lagrangian contact formulation

This study is focused on the solution of frictionless 3D contact problems using the
cgFEM, so we recall the stabilized Lagrange functional presented in [7]. The solution
of the contact problem is the displacement field u and the Lagrange multipliers field
λN that optimizes the following stabilized Lagrangian:

opt

{

Π(u) +
1

2κ1

∫

Γ
(1)
c

(

[λN + κ1gN ]2− − |λN |2
)

dΓ−
1

2κ2

∫

Γ
(1)
c

(λN − pN )2 dΓ

}

(23)
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with Π(u) containing all the terms related to the finite strain elasticity, κ1, κ2 are
penalty constants, and we use the negative part operator which is defined as:

[x]− =











−x if x ≤ 0

0 if x > 0

(24)

We introduce the normal stabilizing stress pN = n
(1)·σ∗·n(1), where σ∗ is a smooth

field evaluated using the Zienkiewicz and Zhu Superconvergent Patch Recovery (SPR)
technique [12,13]. This term is considered independent of the solution, and an external
loop is introduced to re-evaluate it. We experienced that the number of iterations is
usually only between 2-4. Taking variations in equation (23) we can assume that σ∗

is constant and we obtain the following system:























δΠ(u, δu)−

∫

Γ
(1)
c

[λN + κ1gN ]− δgN dΓ = 0, ∀δu

−
1

κ1

∫

Γ
(1)
c

(

[λN + κ1gN ]− + λN

)

δλN dΓ−
1

κ2

∫

Γ
(1)
c

(λN − pN ) δλN dΓ = 0, ∀δλN

(25)
The Lagrange multipliers in the second equation in (25) can be condensed element-

wise [7] when considering the numerical integration, obtaining the following result:

λNg =











κ2gNg + pNg if
(

λNg + κ1gNg

)

≤ 0

0 if
(

λNg + κ1gNg

)

> 0

(26)

This is defined for each quadrature point depicted by sub-index g. The substitution
of λN in the numerical integration of (25) yields the following equation:

δΠ(u, δu) −
∑

g

(

pNg +
κE
h
gNg

)

δgNg |J |g Hg = 0, if
(

pNg +
κE
h
gNg

)

≤ 0

δΠ(u, δu) = 0, if
(

pNg +
κE
h
gNg

)

> 0

(27)
where κE

h
= (κ1 + κ2) is the penalty term, E is the elastic modulus, h is the mesh

size, Hg is the quadrature weight and, |J |g is the Jacobian of the transformation.

4.1. Linearization of kinematic variables

The formulation used above is solved using the Newton-Raphson method, there-
fore, the linearizations of the kinematic variables in equation (27), i.e., ∆gN and ∆δgN
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are needed. The same process performed in (5) can be used to obtain ∆gN . For the
linearization ∆δgN we start from (4) and obtain the following expression:

∆δx(2) (ξ, η) = ∆δgNn
(1) + δgN∆n

(1) +∆gNδn(1) + gN∆δn(1) +∆δx(1) (28)

which, after multiplying by n
(1), results in:

∆δgN =
(

∆δx(2) (ξ, η)−∆δx(1)
)

· n(1) − gN∆δn(1) · n(1) (29)

We can now obtain the linearizations ∆δx(1), ∆δx(2) from equation (8):

∆δx(2) = δu
[

x
(2)
,ξ,ξ∆ξδξ + x

(2)
,η,η∆ηδη + x

(2)
,ξ,η (∆ξδη + δξ∆η) + x

(2)
,u,ξδξ+

+x
(2)
,u,ξ∆ξ + x

(2)
,u,ηδη + x

(2)
,u,η∆η + x

(2)
,ξ ∆δξ + x

(2)
,η ∆δη

]

∆u

∆δx(1) = 0

(30)

Finally, multiplying (28) by x
(1)
,ξ and x

(1)
,η a system of equations similar to (9) is

obtained to compute the variables ∆δξ and ∆δη.

5. Numerical examples

5.1. Contact between plane surfaces

In this example, similar to [29,30], a simple analysis of contact between plane surfaces
is solved to test the convergence of the FE solution using the different surface defi-
nitions described in this paper. The 2D sketch of the solids in contact is depicted in
Figure 7, where x is the out-of-plane direction. Both solids have common elastic ma-
terial properties, E = 115GPa and ν = 0.3. At the initial configuration, the contact
surfaces are overlapping and vertical displacement d = −1.6 · 10−6m is applied on the
upper face of the upper body. Displacements along y direction are constrained on the
upper face of body 2 and on the lower face of body 1. We use a 2D plane strain overkill
solution from [30] as a reference for the discretization error evaluation, so symmetry
conditions are applied to the faces parallel to the yz plane. The lateral faces of body
1 are loaded with py = 4 · 1011(0.01− z)z Pa and pz = 10 · 1011(0.01− z)z Pa.

Non-conforming Cartesian grids are used on both bodies. Figure 8 shows some of
the uniformly refined meshes used for the analysis. Starting with the first discretiza-
tion in Figure 8 each element is subdivided into 8 new elements to build the following
mesh. The convergence of the relative error in energy norm is shown in Figure 9 for
a sequence of 4 meshes using linear elements, H8. The results show that, for all the
surface definitions, optimal convergence rate of the error in energy norm (represented
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Figure 7: Example 1. Contact between plane surfaces. Sketch of problem.

by the triangle) is achieved. Only two meshes were solved with the fitting NURBS
definition due to the high amounts of nodes coupled in the following meshes.

Figure 8: Example 1. Refinement process for the study of the convergence of the
solution. Meshes 1 to 3 are shown from left to right.

The original surface definitions consist in linear NURBS for both solids. The de-
gree of the contact surfaces was modified in order to increase the flexibility of the
surfaces when performing the NURBS fitting. Figure 10 shows the vertical displace-
ments uh

y along a line located on the top surface of the lower solid for the cases of
linear facets and fitting NURBS definitions, which are very similar. The line in red
represents the NURBS surface resulting from the fitting problem (equation (18)).
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Figure 9: Example 1: Evolution of the
error in energy norm with the element
size of the lower body. Convergence of
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0 0.2 0.4 0.6 0.8 1

·10
−2

−2

−1.8

−1.6

−1.4

−1.2

·10
−6

y(m)

u
z
(m

)

Displacements at the contact surface

Linear facets u
h NURBS u

h NURBS fitting

Figure 10: Example 1: FE displace-
ments u

h over the top surface of the
lower solid considering linear facets
and NURBS fitting definitions. The
curve in red depicts the solution of the
NURBS fitting problem.

When the contact occurs between planar surfaces there is practically no difference
in the definition of the surfaces using the three presented methods, and the gap
measurement is trivial. Therefore, as expected, all methods have results with a similar
precision.

5.2. Contact between curved surfaces, finite

deformations

The second example considers the contact interaction between elastic solids with
a toroidal shape with major radius R = 2cm and minor radius r = 0.5cm. Figure 11
shows the initial position of the bodies in contact. A positive displacement is imposed
along the y direction over the purple surfaces in 5 incremental steps of 0.1cm. All the
DOFs are constrained over the blue surfaces. A Neo-Hookean material is used with
E = 116GPa and ν = 0.3. Three different discretizations have been considered in this
case, using the same uniform refinement process described in the previous example.
Figure 12 shows the analysis meshes for one of the solids. No results were obtained
when using linear facets with the first of the meshes due to loss of convergence caused
by the surface discretization being extremely coarse. However, the same coarse mesh
had no convergence problems using the other two surface definitions, thanks to the
consideration of the exact geometry. The last mesh was not solved using the NURBS
displacement method due to the high amount of nodes coupled by each surface, which
results in non-viable computational cost.
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Figure 11: Example 2. Contact simulation between curved surfaces. A positive
displacement along the y direction is imposed over the purple surfaces. All the DOFs
are constrained over the blue surfaces.

(a) 216 nodes (b) 1052 nodes (c) 5268 nodes

Figure 12: Example 2. Refinement process for the analysis of contact between curved
surfaces. Meshes 1 to 3 are shown from left to right. Both solids are meshed with a
similar discretization.

Figure 13 shows the evolution of the reaction forces over the constrained surfaces
during the load for each analysis. Note that although all analyses have similar results,
the reaction forces when solving mesh 2 with linear facets is clearly lower than the rest
of the analyses, including the results obtained with NURBS+FE and NURBS fitting
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for the coarse mesh. This is mainly due to the lower precision in the gap measurement
with linear facets.
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Linear facets, mesh 2 Linear facets, mesh 3 NURBS disp., mesh 1

NURBS disp., mesh 2

Figure 13: Example 2. Reaction forces on the Dirichlet constrained surfaces during
the load.

The values of σy at the final load step for all the performed analyses is shown in
Figure 15. The results are similar for the different methods, with the maximum stress
value increasing with the refinement of the mesh.

The same problem was solved using a Neo-Hookean material with E = 7MPa,
ν = 0.45, and 15 displacement increments of 0.1cm along the y direction. Two
methods are compared in this test, first the linear facets definition with mesh number
2 (Figure 12b) and the NURBS + FE method with the coarse mesh (Figure 12a).
The deformed configuration of the solids for the last load step is shown in Figure 14.
It can be seen that despite the use of a coarser discretization, the results with the
NURBS + FE method are similar to those obtained with linear facets and a finer
mesh.

(a) 1052 nodes (b) 216 nodes (c) Contact area

Figure 14: Example 2. Finite deformations with Neo-Hookean material. Deformed
shape using a) Linear facets, b) NURBS + FE solution. The color map represents
values of ‖uh‖.
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(a) Linear, mesh 1* (b) Linear, mesh 2 (c) Linear, mesh 3

(d) NURBS + FE, 1 (e) NURBS + FE, 2 (f) NURBS + FE, 3

(g) NURBS disp., 1 (h) NURBS disp., 2

Figure 15: Example 2.Values of σy (Pa) at final load step for all the analyses. *The
image in a) shows the coarse surface discretization which led to loss of convergence.
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5.3. Contact between curved surfaces, small

deformations

The last example consists in a small deformations contact simulation between
three torus. The geometric parameters are the same as in the previous example. For
this problem a linear elastic material has been considered, with E = 115GPa and
ν = 0.3, and only one increment of 0.05cm has been applied in the y direction over
the purple surfaces, shown in Figure 16. The problem was solved using linear facets
and NURBS + FE definition, with the meshes in Figure 12b and 12a respectively.

Figure 16: Example 3. Small deformations contact between curved surfaces. A
positive displacement along the y direction is imposed over the purple surfaces. All
the DOFs are constrained over the blue surfaces.

Figure 17 shows the resulting Von Mises stress at the central solid for both cases.
A substantial difference between the maximum stress values can be appreciated in
this cases. As the deformations in this problem are small, the stress is mainly due
to the contact interaction, and the initial gap measure becomes crucial. With convex
contact surfaces the linear facets definition estimates less penetration than the actual
geometries have, thus producing lower values of stress, even with a higher number of
degrees of freedom than in the case of NURBS contact surfaces.
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(a) Facets, 216 nodes (b) Facets, 1052 nodes

Figure 17: Example 3. Small deformations contact between three torus. Von Mises
stress for the central torus (Pa) with exact geometry consideration and linear facets.

6. Conclusions

Three different alternatives have been presented to define the contact surfaces
within the Cartesian grid finite element method: a linear facet representation, a
combination of NURBS surface and FE displacements and the fitting of a NURBS
surface to the FE displacements. The first option, is the most simple and fastest of all
three in terms of procedure and implementation. The surface integration quadratures
are based on linear triangles whose rules are well known. The ray-tracing algorithm
becomes a linear equation, thus having an analytical solution. Therefore the gap is
easily computed. In terms of implementation, the normal vector is constant along
a surface subdomain (triangle) reducing the number of terms in the calculation of
the kinematic variables. On the other hand, this method has lower precision in the
gap measure, which can affect the robustness of the method, specially with coarse
discretizations.

The use of NURBS surfaces combined with FE solution provides with better results
compared with linear facets, as the actual CAD geometry is considered regardless of
the used discretization. In all the tests analysed the precision of the solution computed
in terms of energy error or stresses is always greater or equal than that obtained with
linear facets. This is specially true for coarse discretizations, due to the enhanced gap
measure. Some drawbacks of this method are related to the computational cost of the
quadrature rules creation [5] and the solution of the ray-tracing algorithm (non-linear
equation). In terms of implementation, more terms are involved in the evaluation of
the kinematic variables and its variations. However, the total computational cost is
not compromised, as the results obtained with NURBS surfaces and coarse meshes
have a similar quality as those obtained with finer meshes and linear facets.
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From an analytical point of view, the NURBS fitting definition has interesting
features with respect to the mixed NURBS and FE definition. The evaluation of the
kinematic variables and the ray-tracing solution are simpler as there is only a NURBS
involved. However, the high coupling of degrees of freedom for fine discretizations
should be addressed, as the computational cost grows exponentially. For these reasons,
the combination of NURBS and FE solution seems to be the most versatile and robust
option to define the contact surfaces in the framework of the cgFEM.
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Abstract

Fictitious Domain Methods, like the cartesian grid Finite Element Method (cgFEM),
are based on the intersection of an octree-mesh with the geometry. This may yield
to ill-conditioned system of equations since the stiffness associated to a node could
be small, thus poorly contributing to the energy of the problem. This issue makes
the use of iterative solvers for large problems difficult. In this work we present a
new stabilization technique which preserves the cartesian structure of the mesh. The
formulation consists in penalizing the free movement of those nodes by an smooth
extension of the solution from the interior of the domain, by means of a post-process
of the solution via a displacement recovery technique. The numerical results show an
improvement of the condition number and a decrease in the number of iterations of
the iterative solver while preserving the problem accuracy and improving the accuracy
of the tractions on the Neumann boundaries.
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1. Introduction

1. Introduction

During the last decades of the XXth century, a parallel concept to the Finite El-
ement Method (FEM) emerged, the Fictitious Domain Method (FDM). According
to [1], a wide amount of variants have been developed since VK Saul’ev published, in
Russian, the paper Solution of certain boundary-value problems on high-speed com-
puters by the fictitious-domain method (Sibirsk. Mat.Z. 1963.4:912-925). In the FEM
framework the geometry of the component to be analysed is conformingly meshed.
Therefore, the mesh generation complexity is directly related with the complexity of
the geometry. Besides the existence of advanced and automated mesh generators al-
gorithms [2,3], the meshing process is one of the most tedious during the FE analysis.
On the contrary, the FDM is based on embedding the problem domain into a fictitius
domain, i.e. a square, which is easy to mesh. Then the FDM completely separates
the mesh used for solving the Finite Element (FE) problem from the geometry of the
component. Therefore the component geometrical complexity is completely unrelated
with the mesh generation process, which, in fact, is usually octree-based. Since the FE
mesh is not related with the geometry, an special treatment of the geometry is needed
in the FDM. This important issue is usually the key ingredient which differentiate the
different approaches of the FDM.

Recently the FDM has recovered the interest since problems without a CAD ge-
ometry are arising in numerical simulations. This sort of problems embrace, among
others, those coming from medical images. In that sense the Finite Cell Method [4,5]
and the Cartesian Grid Finite Element Method (cgFEM) [6, 7] have demonstrated
their capabilities in these problems [8, 9].

Independently of the approach used, most of these methods fails in similar aspects:
i.e. imposing the Dirichlet boundary conditions, numerical conditioning, accuracy
over the boundary... CutFEM [10] proposes a robust methodology to guarantee the
stability when Dirichlet boundaries cut the mesh resulting in very small element
sub-regions. cgFEM [11, 12] also uses stabilization methods for imposing Dirichlet
boundary conditions guaranteeing the coercivity of the problem. These stabilization
procedures are able to guarantee the solvability of the problem at hand for direct
solvers. However, when iterative solvers are needed, not only the solvability must be
guaranteed but also that the condition number of the system of equations is under
control in order improve the performance of the iterative solver. In this sense, Badía
et. al. [13] implemented a technique that makes aggregates in order to increase the
stiffness associated to nodes outside the problem domain.

Since in the FDM framework elements are intersected by the geometry, there are
situations in which the nodes are far from the boundary, having a small influence on
the energy of the solution. In other words, the value of the solution at these nodes
is not relevant in the minimization of the potential energy and therefore elevating
the condition number of the system of equations. In this manuscript we propose a
technique able to keep under control the solution of these nodes, while keeping the
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right convergence rate and accuracy of the solution. This will allow to efficiently use
iterative solvers for large problems in the FDM framework. Additionally, the accuracy
of the stress field near the boundary will be improved as a direct consequence of the
proposed technique.

This paper is structured as follows: after this introduction, the problem model
and the formulation of the proposed stabilization terms are introduced in section
2. Section 3 is devoted to recall the recovery procedures used for the stabilization
terms and Section 4 contains a convergence analysis of the proposed stabilization
terms. Finally the numerical results and final conclusions are in Sections 5 and 6,
respectively.

2. Problem Statement

This paper is devoted to solve the 3D linear elasticity problem by means of the
cgFEM. The notation used all along the contribution is settled at this point. The
Cauchy stress field is denoted as σ, the displacement field as u, and the strain field as
ε, all these fields being defined over the domain Ω ⊂ R

3, with boundary denoted by
∂Ω. Prescribed tractions denoted by t are imposed over the part ΓN of the boundary,
while displacements denoted by ū are prescribed over the complementary part ΓD of
the boundary. Body loads are denoted as b.

The linear elasticity problem takes the primal variational form:

Find u ∈ (VΩ + {w}) : ∀v ∈ VΩ

a(u,v)Ω = l(v)Ω where

a(u,v)Ω =

∫

Ω

ε(u) : σ(v) dΩ

l(v)Ω =

∫

Ω

b · v dΩ +

∫

ΓN

t · v dΓ,

(1)

where VΩ = {v | v ∈
[

H1(Ω)
]3

,v|ΓD
= 0}, w is a particular displacement field

satisfying the Dirichlet boundary conditions and σ(v) = D : ε(v), being D the fourth
order tensor relating the stress tensor with the strain tensor, defined as the symmetric
gradient of the displacement field. Equation (1) settles the linear elasticity problem
for the standard FEM. However, in the cgFEM framework an additional domain,
embedding Ω as shown in figure 1, should be introduced: Ω⋆.
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Figure 1: Representation of a problem domain Ω and the embedding domain Ω⋆ in
the cgFEM framework.

This modification of the problem domain leads to a formal modification of the
problem (1) in the following way:

Find u ∈ (V + {w}) : ∀v ∈ V

a(u,v) = l(v) where

a(u,v) =

∫

Ω⋆

ε(u) : σ(v) dΩ

l(v) =

∫

Ω⋆

b · v dΩ +

∫

ΓN

t · v dΓ,

(2)

where V = {v | v ∈
[

H1(Ω⋆)
]3

,v|ΓD
= 0}. Note that a(u,v) = a(u,v)Ω and

l(v) = l(v)Ω since D ≡ 0 and b ≡ 0 outside the domain Ω.

2.1. Boundary conditions in cgFEM

When using the cgFEM for numerically solving the problem (2), we find out that
the Dirichlet boundary conditions cannot be directly applied as in the standard FEM
since, in general, there are not any nodes over the boundary, as can be appreciated
in figure 1. As problem (2) is a constrained optimization problem the Lagrange
Multipliers technique can be applied. In order to do that, a Lagrange multipliers
discretization over the Dirichlet boundaries is needed. The choice of the Lagrange
multipliers space is crucial for the well behaviour of the proposed method. This
method is well known in the standard FE and the stabilized version [14, 15] was
shown to be equivalent to the Nitsche method. In the FDM, other authors [16, 17]
propose the Vital Vertex Method which a prioiri defines an appropriate discretization
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for the Lagrange multiplier space; however this procedure is not trivial for the 3D
case. One alternative to the right selection of the Lagrange Multipliers space is the
use of stabilized methods such as the ones proposed by Hansbo et. al. [18] and
Burman and Hansbo [19] which are an adaptation of the Nitsche’s method to the
FDM framework, using the element traction jumps for stabilization purposes. In the
context of the Finite Cell Method, the authors propose the use of a Nitsche’s based
approach for imposing the essential boundary conditions [9]. More recently Tur et.
al. [11] propose a stabilization technique which makes use of recovery procedures
easing the implementation of the method specially for the 3D case. This last method
is adopted in this contribution. To impose the Dirichlet boundary conditions in a
weak sense via a mortar method implies the use of Lagrange multipliers. Therefore
solving problem (2) is equivalent to solve the following problem:

L0(v
h,µh) =

1

2
a(vh,uh) + b(µh,vh − ū)− l(vh), (3)

where v
h ∈ V h is the discrete counterpart of the space V , µh ∈ Mh is a suitable

discretized space for the Lagrange multipliers and

b(µh,vh) =

∫

ΓD

µh · vh dΓ. (4)

Note that, in general, the appropriate Lagrange multipliers space is not easy to find
since it is problem-dependent and it also depends on the way the mesh and geometry
intersect. We follow the approach first presented in [20] which introduces a Lagrange
multiplier at each integration point of the surface defining a polynomial approximation
(piece-wise discontinuous polynomial approximation). This discretization does not
fulfill the Ladyzhenskaya-Babuška-Brezzi (LBB) condition in general, therefore an
additional stabilization term is added:

LS(v
h,µh) = L0(v

h,µh)−
h

k1

∫

ΓD

µh · (λh −T(ûh)) dΓ, (5)

where k1 is a parameter defined by the user, h is the characteristic mesh size and
T(ûh) is a smooth stress field depending on the FE solution û

h that will be defined
at Section3.1. The interested reader is addressed to [11] for further details.

Expression (5) is similar to the one used in the Nitsche’s method in which the
operator T(ûh) represents the tractions over the Dirichlet boundary. Because of
that, Nitsche’s method results hard to implement. In the proposed approach, the
operator T(ûh) is a postprocess of the solution, guaranteeing the correct convergence
of the method [11]. Further details about the evaluation of this operator are given in
section 3.1. Problem (5) is already solvable since essential boundary conditions are
properly imposed, thanks to the proper stabilization of the Lagrange multipliers field.

However, depending on how the mesh and geometry intersect, it could happen that
the problem becomes ill-conditioned. For small problems, this is not an important
issue since direct solvers are able to solve them without major difficulties. In the
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case of larger problems, iterative solvers are used and their convergence is strongly
affected by the condition number of the system to solve [21]. In the case of FDM in
general, and in particular in the case of cgFEM, there are some mesh configurations in
which the position of the geometry boundary with respect to the nodes, specially the
external nodes, causes ill-conditioning issues, preventing the use of iterative solvers,
of special interest for large problems. Figure 2a shows an example in which the
numerical problem is likely to be ill-conditioned. If the stiffness associated to the
nodes outside the domain is small it leads to an ill-conditioning of the system of
equations. This is because the solution of those pathological nodes does not affect
to the energy of the problem. That is, the global energy remains practically the
same regardless of the solution at those nodes. In other words, the sensibility of the
energy to the variation of the solution of those nodes is small. Burman [22] found
similar issues and addressed them adding an extra term, the ghost penalty, which
stabilizes the solution of the pathological nodes by defining a polynomial expansion
over a patch containing a sufficient number of elements into the physical domain Ω.
However, this effective methodology requires to construct an additional operator build
as the L2 projection of the solution in the patch to a polynomial expansion, which
is no standard in the FE set. More recently, Badía et. al. [13] propose a method in
which they also add stiffness to those external nodes by generating aggregates; i.e.
modifying the Cartesian structure of the mesh.

In this contribution we pretend to introduce a new technique based on the use
of recovered fields with the aim of, at least, solve the issue, common for the FDM,
with the minimal interference on the Cartesian structure of the mesh and avoiding
the construction of non-usual operators in the FE set. The proposed technique adds
an additional term to the formulation according to equation (6):

(a) Ill-conditioning issue due to mesh-
geometry intersection.

(b) Effect of the additional term.

Figure 2: Scheme of an element subjected to ill-conditioning issues. The stiffness of
the nodes far from the domain (in grey) is small.
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L (vh,µh) = L0(v
h,µh)−

h

k1

∫

ΓD

µh · (λh −T(ûh)) dΓ− S (vh,uh), (6)

where

S (vh,uh) =
κ2E

h2

∫

Ω̂⋆

v
h · (uh − S(ûh)) dΓ, (7)

where E is the Young’s modulus, k1 = κ1E and κ2 > 0 is also a user defined parameter
(for the numerical examples κ2 = 10−3). Note that Ω̂⋆ =

⋃

pΩp ∩ Ω⋆, being Ωp

the domain of an element p containing at least one pathological node, i.e. a node
with a small stiffness associated. The additional term, S (vh,uh), in equation (6)
penalises the “free" displacement of those pathological nodes. In fact, it introduces
and artificial stiffness which is compensated with an artificial force as shown in figure
2b. In this term, the integration domain Ω̂⋆ corresponds to the elements containing
pathological nodes, not to the surface but to the volume. Thus, the integration domain
now considers also the part of the element falling outside the problem domain. The
operator S(ûh) corresponds to a displacements field obtained as a postprocess of the
FE solution u

h. Further details of operator S are in Section 3.2. Note that one of the
most important benefits of the method is that the additional term can be constructed
as a lumped mass matrix, standard in the FE set.

2.2. Iterative solver

Note that for solving problem (6) an iterative process is required since operators
T and S depends on the current solution. In this contribution the Richardson’s
method is implemented, considering T = S = 0 for the first iteration. Once the first
iteration is obtained, the operators T and S are obtained as explained in Section 3,
considering û

h the solution obtained in the previous iteration step. The convergence
of this iterative process is demonstrated in Section 4.2.

3. Recovery techniques

Recovery procedures arise from error indicators techniques developed during the
last decades [23–29], just to cite some. Among them we can highlight the Super-
convergent Patch Recovery technique developed by Zienkiewicz and Zhu [24] which
provides a robust, efficient and easy-to-implement error indicator. The recovery pro-
cedure used in this error indicator proposed by Zienkiewicz and Zhu is at the base
of the recovery techniques proposed in this contribution for the evaluation of the
operators S and T used in Section 2 for the stabilization terms. In this section we
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3. Recovery techniques

will introduce the proposed technique and the construction of the operators T and S

introduced in Section 2.
The recovered field of an arbitrary vector field Υ at each patch of elements i, Υ̂i,

is obtained by minimizing the following functional:

Fi(Υ̂i) =

∫

Ω̂i

(Υh − Υ̂i)
2 dΩ, (8)

where the field Υ
h is a given FE interpolation of the field Υ (i.e. displacements,

strains, stresses, ...) and the field Υ̂i is a polynomial expansion of a higher order
than the FE interpolation (usually one order higher). A patch of elements Ω̂i consists
of the elements attached to the node i, also called assembly node. Note that in this
case the domain of the patch Ω̂i is not restricted to the physical domain Ω since it
may include the part of the element falling outside the physical domain. Additionally,
we can also add extra terms which improve the quality of the recovered field at each
patch, depending on the needs such as static admissibility for the error estimator case,
see for instance [26, 30] or [31] for error upper bounds.

After obtaining the recovered field at each patch of elements, valid only in the patch
surrounding the node i, the recovered field in the whole domain Ω⋆ is obtained by
using the Conjoint Polynomial Enhancement [25], which is nothing but the weighted
sum of the contribution of each patch at a given position x ∈ Ω⋆:

Υ̂ =

Nvn
∑

j=1

N(x)jΥ̂j(x), (9)

where Nvn is the number of vertex nodes in a element and the weighting functions
are the linear shape functions of the elements.

3.1. Operator T

The operator T is the projection of the recovered stress field to the boundary.
That is, Υh = σh, Υ̂i = σ̂i and Υ̂ = σ̂. Therefore:

T(uh) = σ̂ · n. (10)

Note that operator T is only considered along the Dirichlet boundaries (5). This
implies that the reconstruction of the stress field via the minimization of the functional
(8) and the use of the Conjoint Polynomial Enhancement (9) is only required at
patches cut by the boundary, which has a reduced computational cost.

3.2. Operator S

The operator S corresponds to the recovered displacement field obtained with
the minimization of the functional (8), where in this case Υ

h = u
h and Υ̂i = ûi.
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Therefore:
S(uh) = ûi. (11)

In this case the operator S is only required along the part of the boundary influenced
by pathological nodes, which makes possible to consider this procedure computation-
ally inexpensive. In contrast with operator T, operator S is evaluated at each node i
(only the nodal value is retained), thus avoiding the use of the Conjoint Polynomial
Enhancement (9).

4. Convergence study

In this section we study the different aspects of the convergence to the exact
solution of the proposed approach. First we study the a priori error estimates to
demonstrate the right convergence of all the operators involved. Then, we demon-
strate the convergence of the iterative algorithm for the resolution of the problem and
finally the improvement of the condition number thanks to the addition of the term
S (vh,uh).

4.1. A priori error estimates

In this section we show that the additional term defined in equation (7) does not
affect the convergence of the approximated solution to the exact solution as the mesh
is uniformly refined, i.e. it has at least the same convergence rate than the strain
energy [32], according to the following proposition.

Proposition 1. The term defined in equation (7) vanishes with h2p as the mesh is
refined, being p the order of the polynomial interpolation, that is:

κ2E

h2

∫

Ω̂⋆

e
h · (eh − S(êh)) dΓ ≈ O(h2p), (12)

with e
h = u− u

h, being u the exact solution.

Proof. The additional term can be bounded by using the Cauchy-Schwarz inequality:

κ2E

h2

∫

Ω̂⋆

e
h · (eh − S(êh)) dΓ . h−2‖eh‖

L2(Ω̂⋆)‖e
h − S(êh)‖

L2(Ω̂⋆), (13)

with symbol . indicating that the inequality holds up to a certain positive constant.
Using the triangular inequality for the last norm in equation (13):

‖eh − S(êh)‖L2(Ω̂⋆) .

(

‖eh‖L2(Ω̂⋆) + ‖S(êh)‖L(Ω̂⋆)

)

. (14)
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Finally combining equation (14) in (13) we obtain that:

κ2E

h2

∫

Ω̂⋆

e
h · (eh − S(êh)) dΓ . h−2‖eh‖L2(Ω̂⋆)

(

‖eh‖L2(Ω̂⋆) + ‖S(êh)‖L2(Ω̂⋆)

)

. (15)

In order to check the convergence, we pay attention to the term ‖S(êh)‖
L2(Ω̂⋆).

This term is built as the L2−projection to a local and richer space, i.e. a higher
order polynomial space, thus the convergence of ‖S(êh)‖

L2(Ω̂⋆) is the same as the

convergence of ‖eh‖
L2(Ω̂⋆), then:

κ2E

h2

∫

Ω̂⋆

e
h · (eh − S(êh)) dΓ . h−2‖eh‖2

L2(Ω̂⋆)
≈ O(h2p). (16)

4.2. Iterative solver convergence

As observed in equation (6), the RHS of the system of equations depends on the
solution of the same system. Then, the Richardson’s method is used for solving linear
system of equations.

In matrix notation, equation (6) can be expressed as follows:

Ad
i = c+Bd

i−1 (17)

being d
i the solution at iteration i. The matrix A is obtained from:

a(vh,vh) +
κ1E

h

∫

ΓD

v
h · vh dΓ +

κ2E

h2

∫

Ω̂⋆

v
h · vh dΓ, (18)

and matrix B is obtained from
∫

ΓD

v
h ·T(v̂h) dΓ +

κ2E

h2

∫

Ω̂⋆

v
h · S(v̂h) dΓ, (19)

which in practice will never be assembled, where v̂
h is the solution of iteration

i − 1. The Richardon’s method is proved to converge if the spectral radius of the
matrix A

−1
B is smaller than one.

Proposition 2. The spectral radius of A−1
B is smaller than 1, that is ρ(A−1

B) ≤ 1,
for appropriate values of κ1 and κ2, independent of h.

Proof. In this case, any eigenvalue λ fulfills:

A
−1

Bd = λd. (20)
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Moving matrix A
−1 to the RHS and pre-multiplying both sides by d

T we obtain:

d
T
Bd = λdT

Ad. (21)

It can be appreciated that the LHS of equation (21) corresponds to the stabilization
terms for a given field v

h, then:

d
T
Bd =

∫

ΓD

v
h ·T(vh) dΓ +

k2
h2

∫

Ω̂⋆

v
h · S(vh) dΓ. (22)

In the same way:

d
T
Ad = a(vh,vh) +

κ1

h

∫

ΓD

v
h · vh dΓ +

k2
h2

∫

Ω̂⋆

v
h · vh dΓ (23)

Then, after some algebra and applying the Cauchy-Schwarz inequality, we obtain:

λdT
Ad = d

T
Bd ≤ ‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) +

k2
h2

‖vh‖L2(Ω⋆)‖S(v
h
)‖L2(Ω⋆) (24)

According to [11], the term ‖T(vh)‖L2(ΓD) can be bounded by the energy norm
of the problem, thus the first term of the RHS in equation (24) can be bounded by
the energy norm as follows:

‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) ≤ ‖vh‖L2(ΓD)

(

CECpCr

h

)
1
2

‖vh‖E. (25)

where ‖vh‖E stands for the energy norm, CE = E
1+2ν , Cp stands for the Poincaré

inequality and Cr is the constant relating a recovered field with the FE field into a
bounded domain, i.e. ‖T(vh)‖2

L2(·) ≤ Cr‖σ(v
h)‖2

L2(·). We remark that CE , Cp and
Cr are independent of the mesh size. For the interested reader, further details on
these constants can be found in [11].

Finally, applying the triangular inequality (2xy ≤ x2

2 + y2

2 ) we obtain:

‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) ≤ ‖vh‖2E +
CECpCr

4h
‖vh‖2L2(ΓD). (26)

On the other hand, we also need to bound the second term of the RHS in equation
(24). Considering the relation between a recovered solution and the corresponding FE

solution is ‖Υ̂
h

i ‖
2
L2(·) ≤ ‖Υh‖2

L2(·), due to the orthogonality between the both fields,
we can write:

‖vh‖
L2(Ω̂⋆)‖S(v

h)‖
L2(Ω̂⋆) ≤ ‖vh‖2

L2(Ω̂⋆)
(27)

Finally, substituting (26) and (27) in (24) we can write:

λdT
Ad ≤ ‖vh‖2E +

CECpCr

4h
‖vh‖2L2(ΓD) +

k2
h2

‖vh‖2
L2(Ω̂⋆)

(28)

194



4. Convergence study

Considering that:

d
T
Ad = ‖vh‖2E +

k1
h
‖vh‖2L2(ΓD) +

k2
h2

‖vh‖
L2(Ω̂⋆), (29)

it suffices in taking k1 >
CECpCr

4h for any value of k2 to ensure that λ < 1.

4.3. Improvement of the condition number

In the standard, conforming, Finite Element set, the condition number grows with
h−2. Therefore, in this section we show that the proposed method provides a condition
number which grows in the same way than in the standard FE case.

Proposition 3. The condition number of the system of equations resulting from
equation (6) grows with h−2.

Proof. The condition number is the ratio between λmin and λmax, being the smaller
and higher eigenvalues, κ = λmax

λmin
, . In this case we need to proof i) λmin > 0

independently of h and ii) λmax is proportional to h−2.
i) λmin > 0 independently of h
For this part of the proof we need to check the coercivity, i.e. there exists C1 > 0,

independent of h, such that:

C1‖v
h‖2L2(K) ≤ h2

(

aK∩Ω(v
h,vh) +

k1
h

∫

∂K∩ΓD

v
h · vh dΓ +

k2
h2

∫

K

v
h · vh dΓ

)

(30)
where K ∈ Ω⋆ represents a single finite element of size h. Equation (30) follows
from the mesh-dependent norm definition, see lemma 4.5.3 in [33]. Under the cgFEM
framework, the effective domain falling into one element (K ∩Ω) does not depend on
h but on the way the geometry intersects the mesh. Therefore the effective domain
is bounded above by K and bounded below by ∅, i.e. ∅ ⊆ K ∩Ω ⊆ K, then:

aK∩Ω(v
h,vh), and

k1
h

∫

∂K∩ΓD

v
h · vh dΓ (31)

can eventually tend to zero. That would prevent from fulfilling the coercivity
property. However, by taking use of the last term in equation (30), since it does not
depend on the physical domain Ω (i.e. it does not depend on how the mesh and
geometry intersect), in the eventual case that the two first terms are close to zero,
there will be possible to find a proper constant C1 > 0 which ensures the coercivity.
Since the problem is coercive, the norm of the minimum eigenvalue is higher than 0,
λmin > 0.
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ii) λmax ∝ h−2

On the other hand, according to the lemma 4.5.3 in [33] and summing up all the
elements we have:

a(vh,vh) +
k1
h

∫

ΓD

v
h · vh dΓ +

k2E

h2

∫

Ω̂⋆

v
h · vh dΓ ≤ C2h

−2‖vh‖2L2(Ω⋆). (32)

According to the definition of spectral radius we have that λmax ∝ C2h
−2. Finally,

combining the two results: λmin > 0 and λmax ∝ C2h
−2 we have that:

κ =
λmax

λmin

∝ h−2 (33)

5. Numerical results

In this section a series of numerical test are carried out in order to check the
improvements on the condition number and in the solution when using the proposed
approach, and therefore, in the performance of the cgFEM. Additionally we also give
some details about the algorithm used for obtaining the numerical solution when
combined the Richardson’s method and the iterative solver.

5.1. Solution algorithm

In each one of the iterations of the Richardson’s method, for a given field û
h the

linear system of equations obtained from (6) must be solved. We assume that at
Richardson’s iteration i, ûh

i−1 is known, then we proceed as follows:

1. Evaluate the stabilization terms for û
h
i−1.

2. Solve problem (6).

3. Evaluate the new û
h
i .

4. Evaluate ǫRi = ||ûh
i − û

h
i−1||2

5. If ǫRi < Tol stop the iterations, else go to step 1.
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5. Numerical results

This Richardson’s method is initialized with û
h
0 = 0. Note that step 3 implies

the to solve several times a system of equations with the same coefficient matrix,
allowing use to factorize it in order to speed up the computations. For large system of
equations, when iterative solvers are required, the iterative method uses the solution of
the previous Richardson’s iteration and the tolerance of the iterative solver decreases
proportionally to ǫRi , i.e. ǫIi ∝ ǫRi . This nested procedure for both iterative method
will increase the performance of the solver.

5.2. Numerical example 1

The first numerical example consists in a 3D model of an infinite plate under
traction at the infinite with a central hole. The analytical solution for the plane
strain case is known (34). The aim of using this problem is to show the convergence
of the proposed approach to a non-polynomial analytical solution. Using a cylindrical
reference system (r, θ), centred in the hole, the stress field is described by the following
expressions:























































σxx(r, θ) = σ0

(

1−
(a

r

)2

(1.5 cos(2θ) + cos(4θ)) + 1.5
(a

r

)4

cos(4θ)

)

σyy(t, θ) = σ0

(

−
(a

r

)2

(0.5 cos(2α)− cos(4α))− 1.5
(a

r

)4

cos(4α)

)

σzz(t, θ) = ν (σxx(t, θ) + σyy(t, θ))

τxy(r, θ) = σ0

(

−
(a

r

)2

(0.5 sin(2α) + sin(4α)) + 1.5
(a

r

)4

sin(4α)

)

τxz(r, θ) = τyz(r, θ) = 0

(34)

where ν = 0.3 is the Poisson’s ratio, σ0 = 1 units of pressure is the traction at the
infinite and the Young’s modulus considered is E = 1000 units of pressure. The 3D
model is represented in figure 3 with an example of a mesh of level 6 (26 divisions per
direction in the octree-mesh) provided by the cgFEM. Three symmetry conditions
are considered (rear, left and bottom planes), and appropriate Neumann boundary
conditions are applied following (34) on the rest of the surface. For this problem Q8
linear elements are considered.

The first study consists in the analysis of the convergence of the iterative solver,
considering both situations: with and without the new stabilization term (7) intro-
duced in this publication. The iterative solver is the PCG solver implemented in
Matlab R© configured with a null initialization solution and an incomplete Cholesky
factorization as preconditioner, with the same configuration in both cases. As it can
be observed in figure 4a, the number of iterations required when the proposed sta-
bilization term is not used is always higher. This fact is strongly influenced by the
condition number, which in this case for the mesh of 65058 degrees of freedom is
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Figure 3: Domain and mesh example for problem 1.

5.55 ·108 when no stabilization is considered and 2.19 ·105 when it is considered. Note
that for this problem there is not an important difference on the condition number
(only two orders of magnitude) since the geometry is mainly built with flat surfaces
and the intersection patterns do not yield many pathological nodes. Additionally,
figure 4b shows that the the relative exact error in energy norm during the uniform
refinement process for both cases. It can be observed that the convergence remains
unadulterated keeping a convergence rate of 1

3 , the theoretical one for linear elements.
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Figure 4: Numerical example 1. Convergence analysis.
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5.3. Numerical example 2

In the second example a toroidal volume is analysed. The curvatures in this
shape provide with a variety of cutting patterns between the analysis domain and the
discretization mesh. Figure 5 shows the toroidal volume on the left, with major and
minor radius of R = 1.5, r = 0.5 length units respectively and the meshed model with
mesh level 6 at the right. The material model for this problem is the same as in the
previous example.

Figure 5: Domain and mesh example for numerical example 2. All displacements are
constrained on the blue patches. Neumann boundary conditions are applied on the
rest of the surface.

The analytical displacement field for this problem is defined in expression (35).
The corresponding stress field and body forces field can be easy derived by using
the analytical elasticity equations. For the numerical analysis the coloured octant
in figure 5 is under Dirichlet boundary conditions dictated by (35), while the rest of
the boundary is under the corresponding Neumann boundary conditions also derived
from (35). Finally the required body forces are also applied.











u(x, y, z) = x4 + 3yx3 − 2xz2 + yxz

v(x, y, z) = 7x2y + y4 − 2zy3

w(x, y, z) = −3x2z2 + 2yxz + z3
(35)

In this case the arbitrary cutting patterns easily generates ill-conditioning prob-
lems in the system of equations. This fact is clearly observed in the condition number
of the system of equations for the mesh of Q8 linear elements of level 6 with 118020
degrees of freedom. When the proposed term is not utilized, the condition number is
5.67 ·1025, but when the proposed stabilization term is used this number decreases to
5.69 · 105, similar to that of the previous example for a similar mesh.
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First, we analyse the performance of cgFEM regarding the behaviour of the PCG
iterative solver. Figure 6a shows that the number of iterations are always consider-
ably lower due to the improvement of the condition number and the increase on the
number of iterations when the proposed stabilization is not used increase faster with
the number of degrees of freedom. Additionally, figure 6 shows the savings in the
computational time for each resolution of the iterative solver.
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Figure 6: Numerical example 2. Analysis of the convergence of the iterative solver.

Figure 7 shows the convergence to the exact solution of the error in energy norm.
As you can observe the convergence rate remains unaltered for Q8 elements and the
convergence rate when the asymptotic rate is achieves is around 1

3 , the theoretical
one for linear elements.
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Figure 7: Numerical example 2. Convergence to the exact solution.
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6. Conclusions

6. Conclusions

This contribution tries to address the common issue of the FDM, in particular
the cgFEM, when mesh-geometry cutting patters yields to ill-conditioned system of
equations. The proposed approach is naturally included during the solving loop and
the evaluation of the additional terms is inexpensive since only requires a post-process
of the solution along the boundary, while preserving the Cartesian structure of the
cgFEM framework. The results show a independence of the condition number with
respect to the mesh-geometry intersection, yielding, speeding up the solving process
while preserving the consistency of the formulation.
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Abstract

The Superconvergent Patch Recovery technique with constraints (SPR-C) consists
in improving the accuracy of the recovered stresses obtained with the original SPR
technique by considering known information about the exact solution, like the internal
equilibrium equation, the compatibility equation or the boundary equilibrium, during
the recovery process. In this paper the SPR-C is extended to consider the boundary
equilibrium around the contact area when solving contact problems with the Cartesian
grid Finite Element Method (cgFEM). In the method presented, the Finite Element
stress fields of both bodies in contact are considered during the recovery process and
the boundary equilibrium is enforced by means of the continuity of tractions along
the contact surface.

Key words

Superconvergent Patch Recovery; Contact; Cartesian grid; Immersed boundary
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1. Introduction

1. Introduction

The mechanical contact problem is present in several classical industrial applica-
tions such as tyre-road, wheel-rail interactions, pin-on-disc wear or fretting. The con-
tact problem is also being introduced in novel research areas like the patient specific
study of the interaction between living tissue and prosthetic devices. The formulation
of the problem at hand, the contact between two linear elastic domains Ω(i), i = 1, 2,
can be written as follows:

div σ + b = 0

σ = σ (ǫ)

ǫ = ǫ (u)

u (x) = ud (x) x ∈ ΓD

n · σ = t̂ x ∈ ΓN

gN ≥ 0 x ∈ ΓC

(1)

where the displacements are represented by u, the strain and stress tensors are ǫ,σ
respectively, D is the linear elasticity constitutive relation and b denotes the volume
forces. The boundaries of the analysis domains are divided in three non-overlapping
regions {ΓD,ΓN ,ΓC} where the Dirichlet, Neumann and contact constrains are im-
posed. The last constrain in (1) only accounts for the non-penetrability condition.
Sliding contact can also be considered using frictional laws as the Coulomb model [1].

The use of the Finite Element method to obtain an approximated solution of (1)
has become a standard. In this framework the a posteriori error estimation of the
approximated solution can be very useful in different aspects like error-driven mesh
adaptation or error estimations in quantities of interest. A complete study of such
methods can be found in [2]. The first developments in a posteriori error estimators
for contact problems were in the context of node-to-node formulations. For example,
an h-adaptive refinement strategy was guided by a residual based estimator in [3]
and a stress recovery estimator in [4]. A posteriori errors have also been developed
to guide hp-adatpive refinements as in [5]. Since then, several error estimators have
been proposed for contact problems involving non-matching meshes [6], using locally
equilibrated fluxes [7] and mixed formulations [8] to cite some.

Zienkiewicz and Zhu [9] proposed the ZZ error estimator to estimate the disc-
tretization error in energy norm, which is widely used within the FE community. The
ZZ estimator can be formulated as:

‖ees‖ =

∫

Ω

(

σ∗ − σh
)t

D−1
(

σ∗ − σh
)

dΩ (2)

where Ω can be the whole analysis domain or a subdomain of it, σh is the FE stress
field and σ∗ is usually named as smooth stress or recovered stress field. The most
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extended method to evaluate this field is the Superconvergent Patch Recovery, also
developed by Zienkiewicz and Zhu [10], which is simple, robust and requires a con-
siderably low computational cost. The ZZ estimator has been adapted to contact
problems with different approaches. Some works in this direction are the use of the
global version of the ZZ estimator for Coulomb’s frictional contact [11] and the com-
bination with multigrid methods in [12].

The Cartesian grid Finite Element Method (cgFEM) [13,14] is an immersed bound-
ary method developed for solving 2D [13] and 3D [14] elasticity problems. The main
characteristic of the method is the use of approximation meshes with regular quadri-
laterals (2D) or hexaedrons (3D) that are independent of the domain. The cgFEM
features an efficient hierarchical data structure based on the use of nested Cartesian
grids together with a special numerical integration procedure that enables to capture
the exact boundary definition through the use of NURBS. This method has been
recently extended to solve 3D frictional contact problems [15] with a stabilized La-
grangian formulation in which the stabilization term is calculated with the SPR stress
field. Moreover, the cgFEM features an h-adaptive refinement strategy based on the
ZZ estimator and the SPR technique [16]. The accuracy of the ZZ estimator relies
directly on that of the smooth field σ∗ [9]. Therefore, in this work we aim to improve
the accuracy of the smooth field σ∗ for contact problems to serve as stabilization
stress and to efficiently guide the h-adaptive refinement.

Upon the publication of the SPR technique, several attempts to enhance the ac-
curacy of the recovered field were proposed. A thorough revision of the different
modifications of the SPR is presented in [17]. The same work proposes the SPR with
constrains (SPR-C), which is based in the enforcement of known equilibrium equa-
tions of the 2D elasticity problem at a patch level. This work represents an extension
of the SPR-C technique in which the contact constrain is weakly imposed for 3D elas-
tic contact problems. The paper is structured as follows: section 2 features a brief
review of the SPR and SPR-C methods, and some special features regarding the use
of cgFEM are presented. In section 3 the contact condition constrain is included in
the SPR-C. Finally, section 4 shows how the performance of the technique with some
numerical examples.

2. Superconvergent Patch Recovery with

constrains: SPR-C

The idea behind the Superconvergent Patch Recovery [10] for computing the
smooth field σ∗ is the following: having a FE mesh, a recovery patch Ωk

p is defined for
each node k in the mesh, which is composed by all the elements containing the given
node. Then, for each FE stress component σh

i a polynomial field σ∗,k
i (x) = p(x) ak

i

is fitted at Ωk
p. The polynomial expansion p(x) = {1, x, y, z, ...} is usually of the
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same degree as the FE interpolation and the coefficients ak
i are obtained solving a

minimization problem:

min





Ωk
p

∑

g

(

σ∗,k
i (xg)− σh

i (xg)
)2



 (3)

where g stands for all the integration points in Ωk
p. After having all patches in the

mesh solved, a smooth field σ∗ is evaluated by the FE interpolation of the nodal
recovered values σ∗,j

i (xj) using the shape functions Nj(x) associated to the j nodes
of the element:

σ∗
i (x) =

∑

j

Nj(x)σ
∗,j
i (xj) (4)

A straight-forward idea to enhance the accuracy of σ∗,k consists in considering
known information of the exact solution of the elasticity problem in equation (3). Fol-
lowing this idea, the Superconvergent Patch Recovery with constrains (SPR-C, [17])
is a modified version where the fulfillment of the internal and boundary equilibrium,
are enforced at each patch by means of adding constrains to equation (3). As these
equations involve the six components of the stress tensor {σ∗,k

1 , ..., σ∗,k
6 } this version

requires the simultaneous solving of all stress components. Therefore the smooth
stress field is now defined with the block matrix P(x) and the column vector Ak,
which are written as:

σ∗,k(x) = P(x)Ak

P(x) = diag (p(x), ...,p(x)) ; Ak =
{

ak
1 , ..., a

k
6

}

(5)

Instead of the discrete approach of the standard SPR, an adaptation of the SPR-C
technique to the X-FEM framework [18] considered a continuous formulation of the
minimization problem (3). This approach provides better results for patches with
different quadrature point densities in the elements, which is the case both in X-FEM
and cgFEM [14], as the values at integration points are weighted [19]. Therefore, the
modified minimization problem is the following:

min

[

∫

Ωk
p

(

P(x)Ak − σh
)2

dΩ

]

subject to CAk = Λ

(6)
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where the additional constraints (to be defined later) have been included using a
generic equation. Solving this problem applying Lagrange Multipliers we obtain the
following linear system of equations expressed in matrix form:

[

M CT

C 0

]{

Ak

λ

}

=

{

H

Λ

}

(7)

where

M = 2

∫

Ωk
p

P(x)T P(x)dΩ ; H = 2

∫

Ωk
p

P(x)T σhdΩ (8)

A numerical integration scheme is used to evaluate the SPR coefficient matrix
and vector defined in equation (8), using the integration quadratures built for the
FE analysis. Now we will define the constrain terms {C,Λ} for the fulfillment of the
internal equilibrium equation and the Neumann boundary equilibrium. The details
of the Lagrange multipliers enforcement will be discussed in section 2.1.3 and the
contact constrain will be presented in section 3.

The internal equilibrium equation corresponds to the first equation in (1), and
identifying terms we obtain:

∇ ·P(x) Ak = −b(x) ⇒ Ciee = ∇ ·P(x) ; Λ
iee = −b(x); x ∈ Ωk

p

(9)
The SPR-C is also able to enforce the tractions equilibrium at patches containing

any loaded or free boundary Γk
p. In case of enforcing the boundary equilibrium,

the following constraint contributions to matrix C and vector Λ are added to problem
(7):

R(x)P(x) Ak−t(x) = 0 ⇒ Cext = R(x)P(x) ; Λ
ext = t(x); x ∈ Γk

p

(10)
where R(x) is an operator that obtains the tractions vector from the stress com-
ponents using the normal vector to the surface, and t(x) are the applied tractions
(t(x) = 0 for free surfaces).

Finally, the computation of σ∗ is now performed by means of the conjoint polyno-
mials technique proposed in [20]. This method, instead of interpolating the recovered
nodal values, computes the recovered magnitude at any point x in an element by
interpolating each SPR polynomial σ∗,j

i (x) of the vertex nodes using the linear shape
functions Nv

j (x) associated to these nodes, such that:

σ∗
i (x) =

∑

j

Nv
j (x)σ

∗,j
i (x) (11)
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Note that although obtaining local internal and boundary equilibrium in each
patch, the process of interpolating a global smooth stress field introduces a lack of
equilibrium of these constrains. As shown in ref. [21], if we evaluate the internal
equilibrium for the smooth field σ∗ taking into account equation (11) we obtain:

∇σ∗(x) =
∑

j

∇Nv
j (x)σ

∗
j +

∑

j

Nv
j (x)∇σ∗

j (12)

Considering the constraint in equation (9) and the partition of unity property of the
shape functions, the second sum in equation (12) is equivalent to the volumetric forces
b(x). Therefore the internal equilibrium of the smooth field results in:

∇σ∗(x) + b(x) = S(x) 6= 0 (13)

where S(x) 6= 0 represents the lack of equilibrium. Ref. [22] proved that this term
can be used to obtain accurate asymptotic upper error bounds of the FE solution
using recovery techniques. It is straight forward to obtain a similar term related to
the boundary equilibrium in equation (10).

2.1. cgFEM 3D features regarding SPR-C

In the cgFEM the mesh is independent of the domain. Thus, there are some nodes
outside the domain at the elements cut by the geometry (called boundary elements
from now on) as well as elements completely inside the domain (internal elements).
We can also distinguish between internal and boundary patches: internal patches
contain only internal elements whereas boundary patches are those containing at least
one boundary element. The internal equilibrium constrain will be enforced at both
internal and boundary patches. Boundary patches cut by the Neumann boundary
will also include the boundary equilibrium constrain. In this section we will detail the
enforcement of such constrains and show some features that improve the efficiency of
the SPR technique within the cgFEM.

2.1.1. Boundary patch enlargement

The arbitrary intersection between the Cartesian grids and the analysis domain
may produce some elements with a low volume of material inside, as in the example
shown in Figure 1a. In that case the stiffness associated to the external node colored in
red becomes very small, which results in an ill-conditioning of the FE formulation [23]
and also a poor quality of the FE stress field computed at those pathological elements.
In the classical SPR procedure the patch Ωk

p associated to the red node in Figure 1a
would consist only in that pathological element. So, the smooth field σ∗ would,
eventually, have a lower quality in that region. In order to avoid these situations
we measure the ratio between material and element volume for each boundary patch
(all internal patches will have a 100% ratio). If the patch volume ratio is under a
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certain threshold, the patch is enlarged by including the adjacent elements, as shown
in Figure 1b. All the tests in this paper were carried out with a threshold value of
25%, with acceptable results.

(a) Original patch (b) Enlarged patch

Figure 1: Example of boundary patch enlargement. The patch Ωk
p associated to the

red node has a low material/element volume ratio. Hence a bigger patch Ω
′k
p that

also includes the surrounding elements is considered.

2.1.2. Patch coding

In order to reduce numerical problems while solving equation (7) a normalized
local coordinate system centred at the patch node is used instead. Therefore, for a
given node with coordinates xN , the local coordinate system built for its recovery
patch is defined as:

xlocal =
x − xN

hp

(14)

where hp is a representative size of the patch, e.g. the biggest element size in the
patch. Taking into account this variable change, the coefficient matrix M in equation
(7) only depends on the relative position of the integration points inside the patch.
This implies that patches with the same shape will share the coefficient matrix, and
only one matrix inversion for each different patch topology is needed to calculate the
SPR coefficients.

Only one level difference is allowed between adjacent elements in cgFEM h-adapted
meshes. Hence, since all the elements in the cgFEM are quadrilaterals/hexahedrons
there is a finite number of internal patch topologies. Figure 2a shows all possible
patch configurations that exist in a 2D cgFEM mesh.

However, there are still hundreds of possible patch topologies in a cgFEM 3D
mesh (some examples are shown in Figure 2b). Instead of manually coding all the
configurations we have designed an efficient automatic coding of the patches based on
the relative size of the elements within the patch. Then, given a FE mesh, all internal
patch topologies in the mesh are detected, and the coefficient matrix M is evaluated
and inverted once only for the present topologies. Figure 3 shows an example of
the automatic coding for 2D patches. The bigger element in the patch is defined as
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(a) (b)

Figure 2: Patch topologies that can appear in a cgFEM analysis. All 19 possible
configurations for cgFEM 2D (a), and examples of possible configurations for cgFEM
3D (b).

Figure 3: 2D example of SPR patch coding. The patch on the left has code number
0110 and the patch on the right is number 1210.

level 0 and smaller elements have increasing values. A decimal number for the patch
topology is obtained by concatenating all levels in the patch (4 digits for 2D patches,
8 digits for 3D patches).

Despite not being compact, this coding avoids manual classification and coding
of all possible 3D patches that may exist in a cgFEM 3D analysis. With this pro-
cedure the computational cost of the recovery process for the internal patches can
be neglected if compared with the evaluation at boundary patches, as these must be
solved individually. This could be seen as a (d − 1)-dimensional computational cost
associated to the recovery procedure.

2.1.3. SPR-C constraints enforcement

The recovered field σ∗ cannot satisfy the enforced equilibrium equations for all
points in the domain (or boundary) in the general case. For instance, if σ∗ is a
polynomial of degree 2 the internal equilibrium equation (9) is only fulfilled for linear
volumetric forces b(x). Similarly, it is not possible to strongly enforce the boundary
equilibrium for generic tractions and/or curved boundaries. A possible alternative is
the strong enforcement of the constrain equations at a set of points in the patch to
provide a number of linearly independent equations equal to the number of constrains.
However, the location of such points in 3D results to be arbitrary and cumbersome.
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We propose the weak enforcement of the equilibrium constrains using a pseudoin-
verse approach. For the case of the internal equilibrium, equation (9) is now written
as the following numerical integration, where the subscript g denotes each quadrature
point:

∑

g

∇ · P(xg)wgA
k = −

∑

g

b(xg)wg (15)

with the quadrature weights wg. Matrix Ciee and a vector Λ
iee are built such

that each row represents the enforced constrain (15) written as Ciee
g Ak = Λ

iee
g for

each quadrature point xg ∈ Ωk
p. Then the set of linearly independent columns C∗iee

is selected from the constraint matrix, and the constrain block of equations included
in problem (6) is:

C∗iee′CieeAk = C∗iee′
Λ

iee (16)

This generic approach is applied independently for any type of constrain included
in problem (6), then the resulting blocks of constrain equations are concatenated to
form C,Λ in the system (7). For example, a boundary patch that contains a loaded
surface will have the following blocks of constrain equations:

C =

{

C∗iee′Ciee

C∗ext′Cext

}

; Λ =

{

C∗iee′
Λ

iee

C∗ext′
Λ

ext

}

(17)

3. Contact condition constrain

Consider two elastic bodies Ω(1) and Ω(2) becoming in contact, and let Γ
(i)
C ≡

∂Ω(i), i = 1, 2 be the fraction of the boundary that is likely to come into contact.
When both solids are in equilibrium the deformed boundary Γ

(i)d
C will comprise all

point pairs from both bodies that are actually in contact. The stress distribution
corresponding to the exact solution must fulfil the equilibrium equation over the
contact boundary Γ

(i)d
C , this is:

t(1)(x) + t(2)(x) = 0 (18)

where, similarly to the boundary equilibrium, t(i)(x) are given by

R(i)(x)P(i)(x) A(i) = t(i)(x) , ∀x ∈ Γ
(i)d
C , i = 1, 2 (19)

therefore we can rewrite the equilibrium equation at the contact boundary as:

R(1)(x)P(1)(x) A(1) + R(2)(x)P(2)(x) A(2) = 0 (20)
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3. Contact condition constrain

Note that the coefficients A(i) of the SPR are defined at nodes of each FE mesh.
However, the meshes are non-conforming when solving the contact problem within the
cgFEM, and the association between the nodes of both bodies in contact is unclear.
Our approach is the following: we define a main body (e.g Ω(1)) where the SPR-C
will be performed, and the auxiliary body in contact (e.g. Ω(2)). For a patch at the
main body with active contact points in it we associate a region of the auxiliary body,
we define another SPR-C problem at the auxiliary region and couple both problems
with equation (20). Finally the system of equations that will be solved for a patch at
the main body is an expansion of equation (7):
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(21)

where the block in red corresponds to the stress field at the main body, the green block
corresponds to the stress field at the auxiliary domain, and the contact constraint
Ccont enforces the continuity of both fields over the contact interface. As the problem
considered for the auxiliary body is not associated with a particular node of its mesh,
the coefficients A∗(2) cannot be used to create a recovered stress field. Therefore, when
solving the system in (21) we obtain two sets of coefficients, A(1) and A∗(2), but only
those regarding the main body are considered for the evaluation of the smooth stress
field. An analogous procedure exchanging the main and auxiliary roles is followed to
obtain the coefficients A(2). With these considerations the recovered stress fields will
not fulfill equation (20) at each patch, which we find assumable since the calculation
of the smooth stress σ∗ already introduces a lack of equilibrium (shown in section 2).

Once the equilibrium equation at the contact surface has been presented, we need
to define a procedure to assign an auxiliary domain within the auxiliary body to
each patch of the main body. One possible approach is shown in Figure 4. The
contact zone is defined over the main body, which is approximated by means of the
minimum-area convex polygon that encompasses all the contact points in the patch
(Figure 4a). The auxiliary region is obtained projecting that contact area towards the
interior of the auxiliary body following the normal direction to the deformed surface.
This direction is calculated as the weighted arithmetic mean of the normal vector to
the deformed surface at the active contact points (Figure 4b). The values used to
weight the vectors are those of the surface numerical integration. Finally, we must
establish the depth of the auxiliary region. In this regard, we extend the projection
considering the volume of the auxiliary body included in the contour elements (Figure
4c). With this procedure we obtain an auxiliary region with enough information to
get a representative stress distribution after applying the smoothing technique.

Let us consider a contact problem in 2D solved with Cartesian elements having 4
vertex nodes like that presented in Figure 5. The procedure to obtain the recovered
stress fields at a given element K located on this contour involves solving four different
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(a) SPR patch with ac-
tive contact condition.
The contact area is de-
picted in red.

(b) Projection of the con-
tact area towards the
supporting body follow-
ing an averaged normal
vector.

(c) The boundary ele-
ments inside the projec-
tion define the auxiliary
domain.

Figure 4: Definition of the auxiliary domain for the evaluation of the recovered stress
field.

patches. All of them contain points in contact and, therefore, an auxiliary region must
be associated for the solution of SPR-C patches i1, ..., i4. These auxiliary domains
depend only on the boundary elements contained in each patch and, since each element
is usually contained in several patches, the auxiliary domains will be overlapped. To
eliminate redundant calculations, we propose an alternative approach which splits
the procedure to define the auxiliary domains into two stages. First, we evaluate the
portion of the auxiliary body associated to each element cut by the contact zone.
Then, the auxiliary domain of the patch is built as the union of the auxiliary domains
of the elements in the patch.

4. Numerical examples

In this section three contact problems are solved to test the proposed recovery
procedure. The quality of the presented SPR-C with contact constrains is evaluated
in different aspects like the equilibrium of the contact tractions between bodies, the
effectivity of the error estimator and the suitability for h-adaptive refinement.

4.1. Example 1. Contact test between elastic solids

An analysis of the differences between the recovered field calculation with and
without contact constrains is performed in the following problem of two elastic solids
in contact. A 2D sketch of the problem is shown in Figure 6 left. At the initial
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(a) Assignment of auxiliary regions at element level

(b) Auxiliary regions associated to the vertex nodes of the element K

Figure 5: Auxiliary region assignment for SPR-C patches.

configuration both contact surfaces are overlapping (there is no such space between
solids), and vertical displacement d = −1.6 · 10−6m is applied on the upper face
of body 2. Symmetry conditions are applied to the faces parallel to the yz plane,
and displacements along y direction are constrained in a point to avoid rigid body
motions. Two lateral faces of body 1 are loaded with py = 4 · 1011(0.01 − z)z Pa
and pz = 10 · 1011(0.01 − z)z Pa. The material properties, common for both solids,
are E = 115GPa and ν = 0.3. Three non-conforming uniformly h-refined meshes
(Figure 6) were solved in the analysis, using the standard recovery technique (SPR)
and the constrained version including contact constrains (SPR-C). We also considered
a reference solution coming from a 2D overkilled mesh analysis.

The contact pressure pN = n · σ∗ · n evaluated at a path along x direction is
shown in Figure 7a for the upper solid. An improvement of the recovered field can be
appreciated in two different aspects. First, the maximum contact pressure estimation
is much closer to the reference values. Furthermore, the enforcement of boundary
equilibrium also ensures null normal tractions over non-contact regions. The results
show that both effects have a higher impact on the recovered field as the mesh is
coarser.

As a consequence of these improvements, it might be seen that there is a better
estimation of the end-of-contact area. However, is not possible to provide with accu-
rate estimates of the end-of-contact point (line in 3D) using regular polynomials for
the recovered stress field given the regularity of the exact solution. Although there
is a considerably enhanced estimation of the stress gradient, the location of this area
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Figure 6: Example 1. Sketch of the problem and two analysis meshes. A third mesh
obtained by dividing the right-most mesh was also used in the analysis.

is still highly influenced by the mesh. This is illustrated with the results shown in
Figure 7b. The contact pressure is evaluated at both bodies and the difference is
normalized with respect to the maximum contact pressure obtained at the reference
solution (9.49MPa). The vertical discontinuous lines represent the end-of-contact
points for the reference solution. Note that the addition of contact constrains in the
SPR-C results in a considerably lower lack of equilibrium inside the contact area.
However, there is no such improvement in the end-of-contact area. As the analysis
meshes are non-conforming the recovery process estimates these areas at a different
location for each body, thus locally increasing the lack of equilibrium. The results
also show that this local error is alleviated with the h-refinement of the meshes.

Note that the ZZ-estimator (2) becomes the exact error in energy norm ‖eex‖ if the
considered problem had an analytical solution (which is usually not available). In that
case, we can define the effectivity index Θ of the error estimator as Θ = ‖ees‖ / ‖eex‖.
A good error estimator should converge to Θ = 1 as the mesh is refined. Figure
8 shows the effectivity of the ZZ-estimator in this problem using the standard SPR
and the proposed SPR-C, assuming the overkilled solution as reference. Although
the error estimator is evaluated at all the domain there is a substantial improvement
in the effectivity values, especially for coarse meshes. In order to evaluate the local
improvement of the estimator around the contact area, the integrand of equation
(2) is evaluated at the quadrature points on the contact surface of the lower body
calculating the smooth field σ∗ with SPR, SPR-C and the reference solution. This
comparison allows to qualitatively evaluate the accuracy of the recovered field on
the contact area. Results show that the SPR-C estimator detects error due to the
end-of-contact and free surface areas, whereas the SPR based estimator is not able to
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FEM SPR SPRC
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(a) Distribution of the normal stress evaluated
at the upper body. Positive values of the stress
stand for compression.
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(b) Contact stress difference between the two
bodies (σ2
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1). Values are normalized

with the reference maximum contact stress.
The contact area lies between the vertical dis-
continuous lines.

Figure 7: Example 1. Evolution of the different magnitudes along a path that follows
the y direction
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Figure 8: Example 1. Effectivity of the error estimation using SPR and SPR-C taking
the overkilled mesh solution as reference.

capture those errors. It can also be seen that the error in the end-of-contact area is
underestimated by the SPR-C.

(a) σ∗

SPR
− σh (b) σ∗

SPR−C
− σh (c) σ − σh

Figure 9: Example 1. Evaluation of the error estimation integrand
(

σ∗ − σh
)

D−1
(

σ∗ − σh
)

over the contact surface at the lower body using differ-
ent stress fields. Results correspond to the first analysis mesh.

4.2. Example 2. Cylinder-plane contact

In the second example a block with cylindrical surface becomes in contact with a
plain block. The geometric model of the problem is depicted in Figure 10a, with the
dimensions L = 4mm and R = 50mm. A linear elastic material is used for both bodies
with properties E = 115GPa and ν = 0.32. A vertical displacement d = −1.77e− 05
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Figure 10: Example 2. (a) Geometry model for the cylinder-plane contact problem.
(b) Initial analysis mesh, containing 8262 degrees of freedom.

is applied on the upper face of the cylindric body and vertical displacements are
constrained on the lower face of the plain block.

Symmetry conditions are applied on the surfaces perpendicular to the z axis and
rigid body motions are properly constrained along x. Both bodies are initially meshed
with non-conforming uniform grids of size h ≈ 0.5mm as shown in Figure 10b. Two
different analysis are compared in this example. First a sequence of three uniformly h-
refined are solved, with the finest containing 135045 degrees of freedom. In the second
test an automatic h-adaptive refinement procedure based on the ZZ-error estimator
is used [24], and the SPR-C presented in this work is used as the smooth stress field.
Figure 11 shows the sequence of meshes obtained with this procedure for the cylinder
body. Similar meshes are obtained on the other body in the analysis. It is worth
to remark that the refinement algorithm automatically adapts the mesh around the
end-of-contact area, where the highest gradient of the solution arises. A 2D overkilled
solution has been solved again to serve as a reference and compare the error of both
strategies. Tho conclusions can be extracted from the results of Figure 12. First, the
optimal convergence rate is obtained for the uniform refinement analysis, and secondly
the automatic adaptive refinement strategy is more efficient in the sense that it can
provide similar accuracy results with approximately a quarter of the DOFs in this
particular problem.

Finally, the effectivity of the ZZ-error estimator is compared again between the
use of SPR and SPR-C. The effectivity index Θ presented in the previous example
can also be calculated element-by-element to have for a local assesment of the quality
of the estimator. However, this index does not provide clear representations of the
recovery performance because the values are not balanced, this is, "underestimation"
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(a) 15468 DOF (b) 46140 DOF (c) 135045 DOF

Figure 11: Example 2. Sequence of three meshes obtained through error-based h-
adaptive refinement. Detail of body 2. For each mesh the DOF number of the
complete problem is shown.
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Figure 12: Example 2. Comparison of the error in energy norm with uniform and
adaptive h-refinement using SPR-C in the ZZ-estimator.
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efficiencies range between (0, 1] and "overestimation" efficiencies are in the (1,+∞]
range. To overcome this issue, the local effectivity index is defined as:







D = Θ− 1 ; Θ ≥ 1

D = 1−
1

Θ
; Θ < 1

(22)

Using the last mesh of the adaptive refinement sequence we have compared the
accuracy of the SPR and SPR-C by means of the local effectivity index D. This
index is evaluated in Figure 13 at the elements cut by the cylinder surface, where
we can distinguish the contact area where the elements are more refined. In the
color map a red color denotes overestimation of the error and blue colors indicate
underestimation of the error. It is clearly seen that the SPR without constrains
underestimates the error around the end-of-contact area, whereas the SPR-C has an
overall better performance on the contact area. It is also worth to remark that the
performance of the estimator is considerably deteriorated far from the contact zone
because the discretization is coarser, and the discretization is coarse due to the low
strain energy in the area.

(a) (b)

Figure 13: Example 2. Color map of the local effectivity D evaluated at the contact
surface for the finest h-adapted mesh using SPR (a) and SPR-C (b).
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4.3. Example 3. Frictional contact between curved

surfaces

In this example a frictional contact problem involving curved surfaces is solved.
Both solids have a toroidal shape with the same geometrical parameters, major and
minor radius of R = 1.5cm and r = 0.5cm respectively. The initial configuration of
the problem is shown in Figure 14a, where the blue colored surfaces are clamped and
a constant displacement along y direction of 0.05cm is applied on the orange colored
surfaces. The problem is solved considering a Coulomb frictional model with a friction
coefficient of µ = 1 and linear elastic material with E = 115GPa, ν = 0.3. We have
conducted again two different h-refinement strategies in this example, the uniform and
the automatic adaptive using the ZZ-error estimator and the SPR-C smoothed stress.
The error estimation results, presented in Figure 15, show that the FE convergence
rate is kept once again for the unform refinement and that the adaptive strategy is
more efficient in terms of computational cost for a prescribed error.

(a) Problem scheme (b) Analysis mesh

Figure 14: Example 3. Model of the contact problem between curved solids. Lengths
in cm. Surfaces in blue are clamped, and a constant displacement uy = −0.05cm is
applied on the orange surfaces. The initial mesh is a non-conforming uniform grid
with element size of h ≈ 0.25cm for both bodies.

Figure 16 shows a detail around the contact area in one of the bodies for all the dis-
cretization meshes in the refinement sequence. In order to highlight the discretization
of the surface, only the intersection cuts between the Cartesian grid and the surface
are shown. Note that the mesh is again automatically refined around the contact
area, which in this case has a circular shape. The contact area can be distinguished
in Figure 16, which represents the values of the normal component of the surface
tractions, (n ·σ)n, using the FE stress field and the smooth stress obtained with the
SPR-C. The negative values represent compression stress, and the color map has been
modified so that positive values of normal traction, which are physically unfeasible
since the surfaces are not loaded, are represented in black. It can be seen that be-
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sides smoothing the FE stress field, which is discontinuous, the positive tractions are
removed on the recovered solution thanks to the additional constrains of the SPR-C.
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Figure 15: Example 3. Comparison of the error in energy norm with uniform and
adaptive h-refinement using the ZZ-estimator and the SPR-C smooth stress field.

(a) 6840 DOF (b) 15555 DOF (c) 42333 DOF

(d) 123306 DOF (e) 223743 DOF

Figure 16: Example 3. Sequence of five meshes obtained through error-based h-
adaptive refinement. Detail of the intersection between the discretization mesh and
geometry around the contact area.
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Figure 17: Example 3. Surface normal tractions (n ·σ)n using the FE solution (left)
and the smooth stress obtained with the SPR-C (right) for the last h-adapted mesh.
Negative values represent compression stress. Positive values (physically unfeasible)
are colored in black.

5. Conclusions

We have presented a modified version of the constrained Superconvergent Patch
Recovery (SPR-C) that includes the boundary equilibrium at the contact area for
frictionless and friction problems. For each patch containing active contact points,
an auxiliary SPR problem with information of both contacting bodies is used. The
constrains are enforced in a weak sense to avoid ill-conditioning of the systems to
solve at each SPR patch. The non-conforming nature of the meshes in the cgFEM
prevents the direct coupling of SPR patches between bodies in contact. However, the
results show that the contact pressure equilibrium is greatly improved with the SPR-
C, especially inside those elements completely contained within the contact zone.
The use of polynomials to build the recovered stress field prevents to capture the
pressure discontinuity that appears at the end of the contact area. Nevertheless,
the accuracy of the resulting contact stress distribution is clearly enhanced when the
SPR-C technique is considered.

The numerical examples show that the definition of the smooth field σ∗ and the
effectivity of the ZZ estimator are clearly improved when including the contact bound-
ary equilibrium in the SPR-C. Finally, we have combined the ZZ estimator with an
automatic h-adaptive refinement procedure that increases the efficiency of 3D con-
tact problems resolution requiring fewer degrees of freedom to reach a prescribed
error level. The h-adaptive procedure guided by the accurate recovery-based error
estimator is able to locate the limit of the contact area and adequately refine the
mesh in these regions, providing a better spatial discretisation to capture the end of
the contact zone.
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