

A MDD Strategy for developing

Context-Aware Pervasive Systems

Master Thesis – Postgraduate studies 2007/2008
“Máster en Ingeniería del Software, Métodos Formales

y Sistemas de Información”

Author: Estefanía Serral Asensio

Supervisors: Dr. Vicente Pelechano Ferragud
Dr. Pedro J. Valderas Aranda

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

2

3

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

4

5

Contents

1. Introduction ... 9

1.1 Motivation ... 10

1.2 The Problem Statement ... 11

1.3 Main Contributions ... 12

1.4 Research Methodology ... 14

1.5 Thesis Context .. 15

1.6 Master Thesis Structure .. 15

2. Background and Technical Overview ... 17

2.1 Ubiquitous Computing vs Pervasive System vs Ambient Intelligence 17

2.2 What is Context? ... 18

2.3 Model Driven Development .. 20

2.3.1 Benefits of applying MDD .. 22

2.4 Ontology, ontology languages and ontology reasoners 23

2.4.1 Web Ontology Language (OWL) .. 24

2.4.2 Semantic Web Rule Language (SWRL) ... 25

2.4.3 Pellet: an OWL-DL Reasoner ... 26

2.5 Eclipse Platform .. 26

2.5.1 Eclipse Modelling Framework (EMF) .. 27

2.5.2 ATL ... 28

2.5.3 Mofscript ... 29

2.5.4 EODM ... 29

2.6 OSGi ... 29

3. State of the Art .. 32

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

6

3.1 Research works that model Context .. 32

3.1.1 Key-Value models ... 32

3.1.2 Markup scheme models ... 33

3.1.3 Graphical models ... 33

3.1.4 Object oriented models .. 36

3.1.5 Logic based models ... 37

3.1.6 Ontology based models ... 38

3.1.7 Hybrid models ... 40

3.2 Other Studied Approaches... 41

3.3 Analysis and Conclusions ... 43

4. A MDD Method for Developing Pervasive Systems .. 47

4.1 PervML ... 47

4.2 Java Code Generation .. 50

4.2.1 Implementation Framework for Building Pervasive Systems 51

4.2.1.1 Logical Layer Implementation .. 53

4.2.1.2 Interface Layer Implementation .. 54

4.2.2 From PervML to Java Code .. 56

4.2.2.1 Mappings ... 56

4.2.2.2 Model-to-code Transformation ... 57

4.2.3 Tool Support .. 58

4.3 Conclusions ... 59

5. Supporting Context in Pervasive Systems ... 61

5.1 Context Modelling ... 61

5.1.1 The Structural Model .. 62

5.1.2 The User Model ... 64

5.1.3 The Interaction Model ... 66

5.2 The Context Ontology and the OWL Context Repository 66

7

5.2.1 The context Ontology .. 67

5.2.2 OWL Context Repository ... 70

5.2.2.1 Automatic generation of context data available at design time 72

5.3 A Framework for Managing the OWL Context Repository 75

5.3.1 Generic management of the OWL Repository 77

5.3.2 Reasoning about Context .. 80

5.3.3 Capturing Context at Runtime .. 83

5.4 Conclusions ... 87

6. User Support: Privacy and Adaptation .. 88

6.1 Privacy and Security of the system ... 88

6.1.1 An End-User Tool for managing User Information at Runtime 89

6.1.2 Interface Layer implementation .. 95

6.2 Anticipating the Next User Action .. 98

6.3 Conclusions ... 101

7. Execution Strategy .. 102

7.1 Change in the Environment ... 102

7.2 User Request ... 104

7.3 Operation Execution ... 104

7.4 Conclusions ... 106

8. Developing a Context-aware Pervasive System ... 108

8.1 The Development Phase .. 108

8.2 The Deployment Phase ... 110

8.3 Conclusions ... 111

9. A Case Study ... 112

9.1 A Pervasive System for managing a Smart Home 112

9.2 A Validation Infrastructure ... 115

9.3 Validation of Context Management at Runtime 117

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

8

9.4 Conclusions ... 120

10. Conclusions ... 121

10.1 Main Contributions ... 121

10.2 Current and Further Work ... 122

10.3 Publications ... 123

11. References ... 125

1. Introduction

The work presented in this master thesis deals with the problem of developing

context-aware pervasive systems. The term ‘pervasive’ introduced first by Weiser[1]

refers to the seamless integration of devices into the users’ everyday life. Weiser defined

pervasive systems as those that “weave themselves into the fabric of everyday life until

they are indistinguishable from it.” To make this vision a reality, systems should vanish

into the background to make the user and his actions the central focus rather than

computing devices and technical issues. One field in the wide range of pervasive

computing is the research of context-aware systems. A context-aware system “use

context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task” [2]. These systems are able to adapt to the current context,

making that user intervention is sought only when it is absolutely required. Thus, these

systems aim at increasing usability and effectiveness by taking context into account.

Several efforts have been developed in order to support context-aware pervasive

system development through software infrastructures, frameworks and models for

describing context information. However, developing such systems is still a complex task

because of the lack of adequate software abstractions, programming models,

methodologies and efficient frameworks. This master thesis proposes a methodological

approach to develop context-aware pervasive systems based on ontologies and the Model-

Driven Development (MDD) guidelines [3]. This approach makes four main

contributions: 1) a set of models to capture context at modelling time, 2) a context

ontology and an OWL context repository based on this ontology to capture context at

runtime; 3) a framework for automatically storing, managing and processing the context

information at runtime, and 4) an infrastructure for adapting the pervasive system in order

to improve user life. Additionally, we integrate our approach with a MDD method to

develop pervasive systems that has code generation capabilities. This integration

facilitates the development of a MDD method that allows us to automatically obtain

functional context-aware pervasive systems from their modelling.

The rest of this chapter is organized as follows: Section 1.1 explains the purpose of

this thesis. In Section 1.2, the problem that this thesis resolves is stated in detail. Next, the

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

10

main contributions of this thesis are summarized in Section 1.3. The research

methodology that we have followed to develop this master thesis is presented in Section

1.4. Next, Section 1.5 explains the context in which this master thesis has been

developed. Finally, Section 1.6 describes the structure of this master thesis.

1.1 Motivation

Nowadays, a number of leading technological organisations are exploring pervasive

computing; however, the solutions developed up to now are far from becoming reality the

Weiser's vision. A step further towards this vision is the research in context-aware

systems development. By improving the computer’s access to context, we increase the

richness of communication in human-computer interaction and make it possible to

produce more useful computational services [2]. Thus, Context-awareness becomes a

key issue if we want to create systems that are invisible and disappear in terms of the

user’s perception.

Context-aware systems not only must capture context information, but also they

must understand context and adapt their behaviour according to it. To achieve these

requirements, it is necessary a context model to define and store context data in a

machine processable form [4]. Different context models have been proposed until now;

for instance the projects CORTEX [5] and Hydrogen [10] propose object oriented

models, the Context Toolkit [2] proposed by Dey model context by using Key-Value

models; ContextUML [8], CML [7] and [9] are Graphical modelling languages; etc.

Several studies [4] [12] [23] state that the use of ontologies to model context is one of

the best choices. They state that this model guarantees a high degree of expressiveness,

formality and semantic richness. Ontologies also exhibit prominent advantages for

reasoning and reusing context as well as making the integration of pervasive environments

easier. Some examples of ontology-based approaches are CoBrA[13], SOCAM [14] and

COMANTO [15]. However, in spite of the numerous approaches that deal with context

modelling, the development of a flexible and useable context model that covers the wide

range of possible context information in pervasive systems is still a challenging task.

In addition, as we have said, context-aware systems, as well as having a suitable

context model, must understand context and adapt to it. To do this, they must first have

sufficient intelligence and knowledge-awareness to react appropriately according to

11

context. To achieve this goal it is not enough to acquire context that can be directly

captured via sensors, device status, user profiles, etc.; it is necessary reasoning about

context at semantic level to interpret this information and obtain knowledge from it.

According to this knowledge, the system must adapt its behaviour to meet the needs of

users within ever-changing context. This adaptation of applications requires a clear

architecture and a well founded explicit relationship between the context as a key element

and the adaptation strategy in pervasive computing. Many research efforts, such us [7],

[13] and [21], have been made to address these issues, but the solution is yet missing.

Finally, achieving the Weiser’s vision by means of the development of a context-

aware pervasive system that accomplishes the requirements explained above can be a

difficult task without a suitable methodology. However, most of current approaches to

develop context-aware pervasive systems use ad-hoc solutions in spite of modelling

context. Thus, these approaches do not usually take into account any software

engineering method. This makes that developers are more focused on solving technological

problems than on satisfying systems requirements. Besides, manual developments are error-

prone and the resulting product use to be buggy and hard to maintenance and evolve.

If we also take into account the permanent technological innovations and the

complexity and dynamism of pervasive computing systems, their manual implementation

and maintenance render impractical. Solid engineering methods are needed in order to

produce robust systems in an efficient way.

In this context, a model-driven approach seems a good choice due to several reasons

(they are further explained in Section 2.3). Since the current technology is evolving fast,

the domain knowledge is captured in models which are independent of technology and,

therefore, are not affected by platform evolution. In addition, this approach allows

developers to focus on the requirements of the system and facilitate the maintenance of

the systems developed by following it. Moreover, if a new technology appears, it is not

necessary to describe again the system, but just a specific (and reusable) generator must

be developed.

1.2 The Problem Statement

The development of Context-Aware Pervasive Systems is not a closed research

topic. The above discussion indicates that some problems still need to be considered.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

12

The work that has been done in this master thesis is an attempt to improve the

development of Context-Aware Pervasive Systems by considering these problems, which

can be stated by the following four research questions:

• Research Question 1. How should context of pervasive systems be represented at

conceptual level?

• Research Question 2. How should context information that is only available at run

time be managed by the system in order to understand and interpret it at semantic

level?

• Research Question 3. How should the system act and react according to context to

give a better support to system users?

• Research Question 4. How should context support mechanisms be included within

the development process of pervasive systems?

1.3 Main Contributions

We present in this subsection the main contributions that have been developed to

resolve the four research questions presented 1.2:

1. We propose a set of models that provides high-level abstractions to manage and handle

context information of pervasive systems at conceptual level. This contribution is

obtained by achieving the following goals:

1.1. Studying the concept of Context and identifying the context information that can

be represented at modelling time.

1.2. Studying the different approaches that are proposed to specify context

information.

1.3. Identifying the main abstractions that characterize the context information and

proposing a set of models to represent these abstractions.

2. We define a context ontology and an OWL context repository based in this ontology for

being capable of store in a machine processable language both current context

information and the historical context information. In addition, we present a Java

framework in order to manage the OWL context repository and interpret this information

at runtime. To do this, this framework automatically updates the OWL context repository

according to the changes produced in context information at runtime. Moreover, it allows

us to reason about this information at semantic level in order to interpret it and derive

13

knowledge from this information. The following goals are faced to carry out this

contribution:

2.1. Studying the existent approaches that are used to capture context at runtime.

2.2. Studying the different mechanisms that can be used to manage and understand

context at runtime.

2.3. Implement the suitable mechanisms to manage context and derive knowledge

from it at runtime.

3. We improve the effectiveness and usability of the developed system. To do this we

extend the proposed framework with mechanisms in order to anticipate the next user

action. In addition, we provide an end-user tool to manage the private user information

and mechanisms to ensure the privacy and the security of the system. This contribution is

obtained by achieving the following goals:

3.1. Studying the requirements that a context-aware system must fulfil.

3.2. Studying the different approaches that have been proposed in order to both adapt

systems to user behaviour and ensure the privacy and the security of the system.

3.3. Implementing mechanisms for both anticipating the next user action and ensure

the privacy and the security of the system.

4. We integrate our approach with a MDD method [24] previously implemented by our

research group what allows us obtain fully functional context-aware pervasive systems.

This MDD method provides us with PervML, which is a modelling language for

specifying pervasive systems, and a code generation strategy that allows us generate the

functional system from the specified models. We also define a methodological guidance

that guides developers from the description of the system by means of the models that we

propose to its deployment. To do this, the following tasks are carried out:

4.1. Studying the abstractions proposed by PervML and how they can be integrated

with the defined context models.

4.2. Implementing an automatic transformation to automatically transform the

PervML models extended with Context support into OWL.

4.2.1. Identifying the mappings between the abstractions of the PervML models

and the primitives of the OWL metamodel.

4.2.2. Defining these correspondences by using the ATL tool.

4.3. Integrating our framework with the code generation strategy of the MDD method.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

14

4.4. Defining a precise sequence steps to follow in order to develop a context-aware

pervasive system.

Finally, it is worth noting that the code generation strategy is one of the main

reasons for using the MDD method in this master thesis. Another reason for this

choice is the extensive knowledge that the research centre in which this master thesis

has been developed has about this method. This aspect has facilitated an exhaustive

analysis of the best way to carry out the integration.

1.4 Research Methodology

In order to perform the work of this master thesis, we have carried out a research

project following the design methodology for performing research in information systems

as described by [25] and [26]. Design research involves the analysis of the use and

performance of designed artefacts to understand, explain and, very frequently, to improve

on the behaviour of aspects of Information Systems [26].

The design cycle consists of 5 process steps: (1) problem statement, (2) solution

suggestion, (3) design and development, (4) evaluation, and (5) conclusion. The design

cycle is an iterative process; knowledge produced in the process by constructing and

evaluating new artefacts is used as input for a better awareness of the problem.

Following the cycle defined in the design research methodology, we started with the

statement of the problem (see step 1 of Figure 1): We identified the problem to be

resolved and we stated it clearly.

Next, we performed the second step which is comprised of the suggestion of a

solution to the problem, and comparing the improvements that this solution introduces

with already existing solutions. To do this, the most relevant approaches for developing

context-aware pervasive systems were studied in detail.

Once the solution to the problem was described, we design and developed this

solution (step 3). To do this, we design a set of models, a context ontology and the

mechanisms necessaries to give support to context. Next, we implement a context

repository based on the proposed ontology, a Java framework to mange context at

runtime, and end-user tools to support the privacy and security of the system.

developing several case studies

used to improve the proposed solution.

conclusions as well as to delimitate areas for further research (step 5).

Investigación en Métodos de Producción de Software

Valencia. The work that

context of the following research government projects:

Once the solution to the problem was developed, we validate our approach by

developing several case studies

used to improve the proposed solution.

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

1.5 Thesis Context

This Master's Thesis was developed in th

Investigación en Métodos de Producción de Software

Valencia. The work that

context of the following research government projects:

• DESTINO: Desarrollo de e

referenced as TIN2004

• SESAMO: Construcción de

referenced as TIN2007

• OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

referenced as TSI

• Atenea: Arquitectura, Middleware y Herramientas.

340503

• Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

Vias en la Interaccion Hombre

S.A

1.6 Master Thesis Structure

The rest of this thesis is org

Once the solution to the problem was developed, we validate our approach by

developing several case studies

used to improve the proposed solution.

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

Fig. 1 Research methodology followed in this

Thesis Context

This Master's Thesis was developed in th

Investigación en Métodos de Producción de Software

Valencia. The work that has made the development of this master thesis possible is in the

context of the following research government projects:

DESTINO: Desarrollo de e

referenced as TIN2004

SESAMO: Construcción de

referenced as TIN2007

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

referenced as TSI-020400

Atenea: Arquitectura, Middleware y Herramientas.

340503-2006-5.

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

Vias en la Interaccion Hombre

Master Thesis Structure

The rest of this thesis is org

Once the solution to the problem was developed, we validate our approach by

developing several case studies (step 4). The results obtained from the case studies are

used to improve the proposed solution.

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

Research methodology followed in this

Thesis Context

This Master's Thesis was developed in th

Investigación en Métodos de Producción de Software

has made the development of this master thesis possible is in the

context of the following research government projects:

DESTINO: Desarrollo de e-Servicios para la nueva sociedad digital.

referenced as TIN2004-03534.

SESAMO: Construcción de Servicios Software a partir de Modelos.

referenced as TIN2007-62894.

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

020400-2008-114.

Atenea: Arquitectura, Middleware y Herramientas.

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

Vias en la Interaccion Hombre-Má

Master Thesis Structure

The rest of this thesis is organized as follows:

Once the solution to the problem was developed, we validate our approach by

4). The results obtained from the case studies are

used to improve the proposed solution.

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

Research methodology followed in this

This Master's Thesis was developed in the context of the research centre

Investigación en Métodos de Producción de Software

has made the development of this master thesis possible is in the

context of the following research government projects:

Servicios para la nueva sociedad digital.

Servicios Software a partir de Modelos.

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

114.

Atenea: Arquitectura, Middleware y Herramientas.

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

áquina. Proyecto financiado por

Master Thesis Structure

anized as follows:

Once the solution to the problem was developed, we validate our approach by

4). The results obtained from the case studies are

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

Research methodology followed in this master

e context of the research centre

Investigación en Métodos de Producción de Software of the Technical University of

has made the development of this master thesis possible is in the

context of the following research government projects:

Servicios para la nueva sociedad digital.

Servicios Software a partir de Modelos.

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

Atenea: Arquitectura, Middleware y Herramientas. ProFIT project re

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

. Proyecto financiado por

Once the solution to the problem was developed, we validate our approach by

4). The results obtained from the case studies are

Finally, we analyzed the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

master thesis

e context of the research centre

of the Technical University of

has made the development of this master thesis possible is in the

Servicios para la nueva sociedad digital. CYCIT project

Servicios Software a partir de Modelos. CYCIT project

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

ProFIT project referenced as FIT

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

. Proyecto financiado por Care Technologies,

15

Once the solution to the problem was developed, we validate our approach by

4). The results obtained from the case studies are

Finally, we analyzed the results of our research work in order to obtain several

e context of the research centre Centro de

of the Technical University of

has made the development of this master thesis possible is in the

CYCIT project

CYCIT project

OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2 project

ferenced as FIT-

Ingenieria del Software para el Desarrollo de Sistemas Pervasivos. Explorando Nuevas

Care Technologies,

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

16

• Section 2 introduces the background and technical overview, in which the concepts

and technologies related to the work presented in this thesis are briefly explained.

• Chapter 3 presents a critical analysis of the most well-known approaches for the

development of context-aware pervasive systems. In particular, we focus on how these

approaches deal with context management. We identify the main limitations of these

techniques and conclude with a summary of the main drawbacks in context-aware

pervasive systems that should be improved. We take these drawbacks as a base in

order to develop the work of this thesis.

• Chapter 4 presents a method for developing pervasive systems. We have integrated our

approach with this method in order to develop whole context aware functional

pervasive systems

• Chapter 5 explains how we give support to Context management in pervasive systems,

both at modelling time and at runtime.

• Chapter 6 describes the adaptation that we carry out in order to according to Context in

order to satisfy the needs of users within ever-changing context.

• Chapter 7 presents the global execution strategy that is followed when a context-aware

pervasive system is put in execution.

• Chapter 8 introduces the methodological approach for the development of context-

aware pervasive systems that is proposed in this master thesis.

• Chapter 9 validates the work of this master thesis by the development of a complete

case study by following the proposed approach.

• Chapter 10 presents the conclusions and future work of this master thesis. To do this,

this Chapter first summarizes the main master thesis contributions, the publications

that this master thesis has produced are next enumerated, and the future work is

described.

17

2. Background and Technical Overview

Research in Pervasive Computing is very diverse since the field itself has not yet

been clearly defined. Researchers from different communities make efforts to understand

and improve concepts, technologies and applications for research in Pervasive

Computing. In this Chapter we try to clarify the definition of the concepts used in

context-aware pervasive computing. In order to facilitate the understanding of this master

thesis we also briefly explain the technologies used to carry out this work.

2.1 Ubiquitous Computing vs Pervasive System vs Ambient
Intelligence

Several terms are used in the published literature for talking about similar concepts.

The main differences depend on the context of use: for instance, EEUU vs Europe or

Academy vs Industry. According to Mattern [27], while Weiser saw the term ubiquitous

computing in a more academic and idealistic sense as an unobtrusive, human-centric

technology vision that will not be realized for many years yet, industry (IBM) has coined

the term pervasive computing with a slightly different slant [28][29]. In [30] is stated that

while researchers in the United States were working on the vision of ubiquitous

computing, the European Union began promoting a similar vision for its research and

development agenda. The term adopted in Europe is ambient intelligence (coined by

Emile Aarts of Philips) which has a lot in common with Weiser's ubiquitous computing

vision. This point of view is confirmed by the great number of events and research

projects that are organized and/or funded in Europe under this term whose topics clearly

matches the ones that are inside the scope of the ubiquitous computing area.

Although subtle differentiations could be done between these terms according to

their etymological meanings (nor ubiquitous implies intelligence, neither intelligence

implies pervasiveness, etc.), we can state in general that the main idea or vision behind

them is the same and, therefore, they can be equally used in this master thesis.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

18

2.2 What is Context?

The term Context is widely used in Computer Science with different meanings. The

meaning of Context depends on the work area in which it is defined. For instance:

• In Artificial Intelligence [31], it is defined as everything that affects the computation

except from the explicit input and output of the application. According to this

definition, we need to precisely determine what we consider explicit and implicit in the

system. All what is considered implicit constitute the Context. In this way, Context of a

System changes depending on the initial consideration of explicit and implicit

elements.

• In Natural Language Processing [32], it is understood as all the knowledge that

surrounds a specific statement or assertion. In this area, it is important to avoid the

danger of taking things “out of context”. Assertions true in one context might be false

in another. Thus, Context in this area is related to the meaning of one sentence with

regards to the meaning of other sentences.

• In Operating Systems [33], it defines the minimal set of data used by an operating

system task, and which need to be saved in order to allow the task to be interrupted at a

given date, and to be resumed at the point it was interrupted.

In AmI computing, the definition of Context is different from the ones presented

above. In addition, there is no a generally accepted definition. Some definitions are the

following:

• In [34], Context is characterized by the location of use, the collection of nearby people,

hosts, and accessible devices as well as such as things over time. Thus, context-aware

systems are those that are able to adapt themselves to these aspects.

• In [35], the concept of Context awareness is described as the ability of the computer to

sense and act upon information about its environment, such as location, time,

temperature, or user identity. Thus, the concept of Context is mainly centred on the

characteristics of the user location.

• In [2], the most used definition of Context in AmI systems is presented. Dey defines

Context as any information that can be used to characterize the situation of an entity.

And an entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and the application themselves.

19

• In [36], two classes of Context are identified, namely personal and environmental

Context. Examples of environmental context include: the time of the day, the opening

times of attractions and the current weather forecast. Personal Context refers to user

profiles in which information such as user’s interest, attitudes, or beliefs are

considered.

• In [37], a distinction between the user’s context and the system’s context is done. The

user’s context provides the means to determine what to observe and how to interpret

the observations. The system’s context provides a means to compose the federation of

components that observe the user’s context.

• In [12], Context is defines as the information about a location, its environmental

attributes (e.g., noise level, light intensity, temperature, and movement) and the people,

devices, objects and software agents that it contains. Context may also include: system

capabilities, services offered and sought, the activities and tasks in which people and

computing entities are engaged, and their situational roles, beliefs, and intentions.

• In [38], authors states that Context refers to the physical and social situation in which

computational devices are embedded.

As we can see, different definitions of Context are provided in the area of Ambient

Intelligence. However, all of them share some ideas about the information that must be

considered as Context. Basically, this information includes aspects related to the system

and the environment in which it is executed as well as characteristics of the users that

interact with it. More specifically, after studying the definition of Context stated by the

different authors, we define the context of pervasive systems as the following

information:

• Information about system users: name, age, address, native language, user preferences

or attitudes, etc.

• Privacy and security policies: information that indicates what actions each user can

execute.

• Space information: spatial description of the place where the system is deployed.

• System services: services that the system provides to users.

• System devices: devices deployed in the environment that are used by the system

services.

• Temporal information: date and time, holiday, working day, etc.

• Services available for a user in the current time and their state;

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

20

• User mobility: where users are and where they can go.

• User actions: what the user is doing at present moment and what the user has done in

the past. The actions performed in the past are necessary to predict the next action or to

memorize and to reproduce scenes (repetitive sequences of actions within a certain

time interval) at the opportune moment.

In the above context information two types of context information can be identified:

1. Those that are available at design time (information about users, privacy and

security policies, space information, system services and system devices);

2. Those that are only available at runtime (temporal information, available services

and their state, user mobility, and actions that users perform).

2.3 Model Driven Development

The method that we propose in this work to develop context-aware pervasive

systems applies the Model-Driven Development (MDD) guidelines [3]. Thus, the systems

developed by our method take advantage of the benefits provided by MDD.

MDD is an approach to software design and development that strongly focuses on

models and claims that these models can be refined and finally be transformed into a

technical implementation.

Interest and focus on models arise today with further emphasis due to recent

developments that resulted into the establishment of important, widely known, and

recognized standards, particularly those originated from the Object Management Group

(OMG) such as the Model-Driven Architecture (MDA) [3] initiative and the Unified

Modeling Language (UML) specification [39]; and those originated from Microsoft such

as the Software Factories [40] and the DSL tools [41].

On the one hand, MDA tries to raise de abstraction level at which main development

occurs, essentially shifting the focus from coding to modelling. In essence, fundamentally

relying on models, MDA proposes for the system development life cycle the development

of a Platform Independent Model (PIM) of the system that, free from specific platform

technological issues, details the structure and behaviour of the system by using UML,

which specifies notation and semantics for representing models. Given a chosen

technological platform, this PIM is transformed into a Platform Specific Model (PSM)

21

that incorporates all the necessary technological details inherent to the chosen

technological platform on which the system is to be implemented. From this PSM, system

code foundations are generated for the target technological platform.

This separation of concerns between PIM and PSM allows that with no further

modification to the PIM itself, other technological platforms can be easily targeted, since

the PIM still represents the desired system structure and functionality with no

contamination of technological details. These standards enable reuse of knowledge and

artefacts, tools’ specialization and interoperation.

On the other hand, a Software Factory, as defined in [40], is a software product line

that configures extensible tools, processes and content […] to automate the development

and maintenance of variants of an archetypal product by adapting, assembling and

configuring framework-based components. Thus, Software Factories (SF) focus on the

development of similar systems encouraging the reuse of architectures, components and

know-how. In order to achieve this reuse, Software Factories integrate several existing

techniques. The main activities promoted by Software Factories are:

• Building families of similar software. This activity involves the analysis and design of

a common architecture for a set of systems and the development of a framework to

support this architecture.

• Assembling components. The construction of a new system implies the use, assembly

and/or configuration of the components provided by the framework.

• Developing domain specific languages and tools. Developers use this language in

order to describe the specific requirements of a member of the system family. Then,

the specific source code is automatically generated.

• Using constraint based scheduling and active guidance. All the steps of the

development project must be taken according to a well-defined process properly

adapted to the domain.

The main detected differences between MDA and SF are the following:

• SF provide a more precise design process than MDA, since SF explicitly suggests the

use of product lines, implementation frameworks, design patterns, etc.

• SF promote the use of Domain Specific Languages, whereas MDA argues the use of

UML. While SF recommend the creation of languages for providing to the developers

conceptual primitives suitable for a specific kind of systems, the OMG suggests that

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

22

UML must be the common language, using its extension capabilities (profiles) when

needed.

• MDA, unlike SF, provides languages for model management (UML, MOF, QVT,

etc.).

• MDA explicitly promotes the rise in the abstraction level of the modelling languages.

In the SF approach this possibility is also took into account, but not is a requirement.

2.3.1 Benefits of applying MDD

MDD has many benefits that are historically well known in the software engineering

community. The most important are the following:

o Productivity: The code generation tool builds code in a fraction of the time that it

takes an engineer to produce the equivalent amount of code. Furthermore, since

handwritten code tends to have a great number of syntax errors that engineers must

detect and correct a lot of time is wasted. By following a MDD strategy, code is

systematically generated free of errors by a tool.

o Quality: Large volumes of handwritten code tend to have inconsistent quality

because engineers find newer or better approaches as they work. Generated code

always increases in quality over time because, when bugs or shortcomings are found,

they can be fixed in the code generation tool and automatically applied to the next

applications.

o Adaptability: By following a MDD strategy a software product is developed

independently of implementation technologies. This software product is developed

by describing it in a model. To obtain the code for a specific technology a code

generator tool is used. If the implementation technology changes, the code generation

tool needs to be adapted. Developed applications do not need to be changed because

they are abstractly developed by means of models.

o Maintenance: The maintenance of handwritten code is frequently a very tedious task:

a very simple change in the requirements of an application requires engineers to

modify a lot of software artefacts such as user interfaces, logical classes, database

tables, documentation, etc. By following a MDD strategy, only the models need to be

changed. Changes at implementation level are automatically done.

23

2.4 Ontology, ontology languages and ontology reasoners

In this work we propose an ontology-based strategy to give support to the

development of context-aware pervasive systems.

In Philosophy, Ontology is the study of being or existence and its basic categories

and relationships. It seeks to determine what entities can be said to "exist", and how these

entities can be grouped according to similarities and differences. We have used

ontologies for millennia to understand and explain our rationale and environment.

However, only recently have ontologies become a research topic of interest in computer

and information science.

In computer science and information science, an ontology is a formal representation

of a set of concepts within a domain and the relationships between those concepts. It is

used to reason about the properties of that domain, and may be used to define the domain.

The philosopher-ontologist, in principle at least, has only one goal: to establish the truth

about reality by finding an answer to the question: what exists. In the world of

information systems, in contrast, an ontology is a software (or formal language) artefact

designed with a specific set of uses and computational environments in mind. An

ontology is often something that is ordered by a specific client in a specific context and in

relation to specific practical needs and resources. In a widely-quoted definition, an

ontology is "… a specification of a conceptualization" [42]. An ontology is a formal

representation of a set of concepts within a domain and the relationships between those

concepts. Thus, it allows a programmer to specify, in an open, meaningful, way the

concepts and relationships that collectively characterize some domain.

An ontology mainly contains the following elements:

- Classes: represents the concepts of the ontology

- Attributes: properties that objects (and classes) can have

- Relations: ways that classes and objects can be related to one another

- Individuals: instances or objects of the defined classes

The terms Abox and Tbox are also used to refer to the elements of an ontology.

These terms describe two different types of statements in ontologies. Tbox statements

describe a system in terms of controlled vocabularies, for example, a set of classes and

properties. Abox are Tbox-compliant statements about that vocabulary.Tbox statements

are sometimes associated with object-oriented classes and Abox statements associated

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

24

with instances of those classes. Together Abox and Tbox statements make up a

knowledge base (a special kind of database for knowledge management).

Thus, an ontology is an explicit, first-class description. This description can be

specified in different languages, such us RDF or OWL, and can be used by different

reasoners, such as Racer or Pellet. This is our main reason for building an ontology-based

application: we can use a reasoner to derive additional truths about the concepts that we

are modelling. There are many different styles of automated reasoner and many different

reasoning algorithms for ontologies.

2.4.1 Web Ontology Language (OWL)

Web Ontology Language (OWL) [43] is a semantic markup language for publishing

and sharing ontologies on the World Wide Web. In this work we have selected OWL to

implement the ontology proposed for context-aware pervasive systems for the following

reasons.

The OWL Web Ontology Language is designed for use by applications that need to

process the content of information instead of just presenting information to humans.

OWL facilitates greater machine interpretability of Web content than that supported by

XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a

formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite,

OWL DL, and OWL Full.

OWL DL does not permit some constructions allowed in OWL Full, and OWL Lite

has all the constraints of OWL DL plus some more. The intent for OWL Lite and OWL

DL is to make the task of reasoning with expressions in that subset more tractable.

Specifically, OWL DL is intended to be able to be processed efficiently by a description

logic reasoner. OWL Lite is intended to be amenable to processing by a variety of

reasonably simple inference algorithms, though experts in the field have challenged how

successfully this has been achieved.

We have select OWL because several reasons:

- It enables automated reasoning

- It has the capability of supporting semantic interoperability to exchange and

share context knowledge between different systems, i.e., contexts can be

exchanged and understood between different systems in various domains.

25

- It is also more expressive than other ontology languages such as RDFS

- It is an open W3C standard.

2.4.2 Semantic Web Rule Language (SWRL)

In order to enable the automatic reasoning in our ontology we have used the

Semantic Web Rule Language (SWRL) (44). SWRL is a proposal based on a

combination of the OWL DL and OWL Lite sublanguages of the OWL Web Ontology

Language with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup

Language. The proposal extends the set of OWL axioms to include Horn-like rules. It

thus enables Horn-like rules to be combined with an OWL knowledge base. A high-level

abstract syntax is provided that extends the OWL abstract syntax described in the OWL

Semantics and Abstract Syntax document.

The proposed rules are of the form of an implication between an antecedent (body)

and consequent (head). The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent must also

hold. Both the antecedent (body) and consequent (head) consist of zero or more atoms.

An empty antecedent is treated as trivially true (i.e. satisfied by every interpretation), so

the consequent must also be satisfied by every interpretation; an empty consequent is

treated as trivially false (i.e., not satisfied by any interpretation), so the antecedent must

also not be satisfied by any interpretation. Multiple atoms are treated as a conjunction.

Note that rules with conjunctive consequents could easily be transformed into multiple

rules each with an atomic consequent.

Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or

differentFrom(x,y), where C is an OWL description, P is an OWL property, and x and y

are either variables, OWL individuals or OWL data values. For instance, Fig. 2 shows at

the top an example of SWRL rule in a human readable syntax, and at the bottom, the

same rule in OWL syntax. This rule implies that if two people have the same parent, they

will be siblings.

antecedent ⇒ consequent

parent(?x,?y) ∧ parent (?z,?y) ⇒ siblings (?x,?z)
--
<swrl:Variable rdf:about="#x"/>
<swrl:Variable rdf:about="#y"/>
<swrl:Variable rdf:about="#z"/>
 <swrl:Imp rdf:about="#SiblingRule">
 <swrl:head rdf:parseType="Collection">
 <swrl:IndividualPropertyAtom>

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

26

 <swrl:propertyPredicate rdf:resource="#sibling"/>
 <swrl:argument1 rdf:resource="#x"/>
 <swrl:argument2 rdf:resource="#z"/>
 </swrl:IndividualPropertyAtom>
 </swrl:head>
 <swrl:body rdf:parseType="Collection">
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#parent"/>
 <swrl:argument1 rdf:resource="#x"/>
 <swrl:argument2 rdf:resource="#y"/>
 </swrl:IndividualPropertyAtom>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#parent"/>
 <swrl:argument1 rdf:resource="#z"/>
 <swrl:argument2 rdf:resource="#y"/>
 </swrl:IndividualPropertyAtom>
 <swrl:DifferentIndividualsAtom>
 <swrl:argument1 rdf:resource="#x"/>
 <swrl:argument2 rdf:resource="#z"/>
 </swrl:DifferentIndividualsAtom>
 </swrl:body>
</swrl:Imp>

Fig. 2 SWRL rule

2.4.3 Pellet: an OWL-DL Reasoner

In this approach, we use Pellet [45] to derive additional truths about the modelled

context information. Pellet is a complete and capable OWL-DL reasoner with acceptable

to very good performance, extensive middleware, and a number of unique features. It is

written in Java and is open source under a liberal license. It is used in a number of

projects, from pure research to industrial settings.

Pellet is the first implementation of the full decision procedure for OWL-DL

(including instances) and has extensive support for reasoning with individuals (including

conjunctive query over assertions), user-defined datatypes, and debugging ontologies. It

implements several extensions to OWL-DL including a combination formalism for OWL-

DL ontologies, a non-monotonic operator, and preliminary support for OWL/Rule hybrid

reasoning. It has proven to be a reliable tool for working with OWL-DL ontologies and

experimenting with OWL extensions.

2.5 Eclipse Platform

We have developed this work in the Eclipse Platform [46]. Eclipse is an open source

community, whose projects are focused on building an open development platform

comprised of extensible frameworks, tools and runtimes for building, deploying and

managing software across the lifecycle. A large ecosystem of major technology vendors,

27

innovative start-ups, universities, research institutions and individuals extend,

complement and support the Eclipse platform.

Eclipse has over 60 open source projects that can be conceptually organized into

seven different "pillars" or categories:

3. Enterprise Development

4. Embedded and Device Development

5. Rich Client Platform

6. Rich Internet Applications

7. Application Frameworks

8. Application Lifecycle Management (ALM)

9. Service Oriented Architecture (SOA)

Eclipse was initially the IBM IDE for Java development, which was released as free

software. Currently, it is the base platform for many other technologies and projects due

to its very powerful modular structure and its open nature. Eclipse is organized in a set of

first level thematic projects which guides the evolution of more concrete projects. Most of

the Eclipse plug-ins are related to software development, for instance, the Eclipse

Modeling Project. It is the first level project that unifies the modelling related projects by

focusing on the evolution and promotion of model-based development technologies

within the Eclipse community by providing a unified set of modelling frameworks,

tooling, and standards implementations. All the plug-ins used in this work have been

developed in this project. These are the following: the Eclipse Modelling Framework

(EMF), the ATLAS Transformation Language Project, the MOFScript Tool and the EMF

Ontology Definition Metamodel (EODM).

2.5.1 Eclipse Modelling Framework (EMF)

EMF is a modelling framework and code generation facility for building tools and

other applications based on a structured data model. From a model specification described

in XMI, EMF provides tools and runtime support to produce a set of Java classes for the

model, a set of adapter classes that enable viewing and command-based editing of the

model, and a basic editor. Models can be specified using annotated Java, XML

documents, or modelling tools like Rational Rose, then imported into EMF. Most

important of all, EMF provides the foundation for interoperability with other EMF-based

tools and applications. Thus, EMF consists of three fundamental pieces:

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

28

• EMF - The core EMF framework includes a meta model (Ecore) for describing

models and runtime support for the models including change notification, persistence

support with default XMI serialization, and a very efficient reflective API for

manipulating EMF objects generically.

• EMF.Edit - The EMF.Edit framework includes generic reusable classes for building

editors for EMF models.

• EMF.Codegen - The EMF code generation facility is capable of generating everything

needed to build a complete editor for an EMF model.

Besides, three levels of code generation are supported:

• Model - provides Java interfaces and implementation classes for all the classes in the

model, plus a factory and package implementation class.

• Adapters - generates implementation classes that adapt the model classes for editing

and display.

• Editor - produces a properly structured editor that conforms to the recommended style

for Eclipse EMF model editors and serves as a starting point from which to start

customizing.

All generators support regeneration of code while preserving user modifications.

The generators can be invoked either through the GUI or headless from a command line.

2.5.2 ATL

ATL (ATLAS Transformation Language) is a model transformation language and

toolkit developed by the ATLAS Group. In the field of Model-Driven Engineering

(MDE), ATL provides ways to produce a set of target models from a set of source

models.

Developed on top of the Eclipse platform, the ATL Integrated Environment (IDE)

provides a number of standard development tools (syntax highlighting, debugger, etc.)

that aims to ease development of ATL transformations. The ATL project includes also a

library of ATL transformations.

29

2.5.3 Mofscript

The MOFScript tool is included in the Generative ModeLling Technologies (GMT)

Eclipse project. The objective of this project is “to produce a set of research tools in the

area of MDE (Model Driven Engineering)”. In this context, the MOFScript project “aims

at developing tools and frameworks for supporting model to text transformation”. This

subproject has been developed in a development community at SINTEF, supported and

tested by the European Integrated Project MODELWARE.

The MOFScript tool is an implementation of the MOFScript model to text

transformation language. It provides mechanisms for generating text from MOF-based

models, controlling the sequence of execution, string manipulation, easy production of

files, traceability of models and generated text, etc. and it is based on the QVT standard.

2.5.4 EODM

EODM (EMF Ontology Definition Metamodel) is built on top of EMF and conforms

to the ODM (Ontology Definition Metamodel) standard of OMG (www.OMG.org). It

provides a set of programming APIs for programmers and IT specialists. User can create,

modify, and navigate RDF/OWL models using EODM, just like other programming

implementations of semantic models.

 Compared with others tools, the most important differentiation of EODM is that all

ontology objects are also EMF model objects which gives EODM the interoperability

between RDF/OWL model with other EMF supported models, including models defined

using XML Schema, Rational Rose, and annotated Java classes. All these will enable

Semantic Web Application developers to develop ontologies using their favourite

building tools, import them into EMF, and utilize the comprehensive development facility

of Eclipse and EMF. EODM includes transformers to transform between Ecore and

RDF/OWL. It also facilitates other tools to treat RDF/OWL ontology models as an EMF

model and process and store them as usual.

2.6 OSGi

The Open Services Gateway initiative (OSGi) [47] is an “independent, non-profit

corporation working to define and promote open specifications for the delivery of

managed broadband services to networks in homes, cars, and other environments”. The

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

30

OSGi specification defines standardized primitives that allow applications to be

constructed from small, reusable and collaborative components (called bundles in

OSGi). These components can be composed into an application and deployed.

The core component of the OSGi Specifications is the OSGi Framework. This

Framework is divided in four layers:

1. L0 Execution Environment: is the specification of the Java environment.

2. L1 Modules: defines the class loading policies. The OSGi Framework is a

powerful and rigidly specified class-loading model.

3. L2 Life Cycle Management: adds bundles that can be dynamically installed,

started, stopped, updated and uninstalled.

4. L3 Service Registry: provides a comprehensive model to share objects between

bundles.

Thus, this framework provides constructs and services that can support many

requirements needs for developing context-aware pervasive systems, such as the

followings:

• Discovery. OSGi relies device discovery on low-level protocols as Jini, Lonworks or

UPnP. The standard specifies the interfaces for Jini and UPnP driver services. When

the devices are discovered they can be coupled to device drivers and then used for the

system services.

• Adaptation. Adaptation is achieved through dynamic bundle loading and updating, and

service lookup. When a new device or service is registered in the framework by a

bundle, any other running service can use it. The link is done in runtime.

• Integration. The integration of the software representation of a device and the physical

environment relies on low-level technologies. Basically, OSGi uses bridges to the final

device drivers. The native device drivers are in charge of the comunication with the

physical device.

• Programming Framework. OSGi provides a well defined programming framework

around the service concept that separates service description from any possible

implementations. As OSGi is Java-based, it is operative system independent. For

complex applications, there is a proposal and implementation, of a component model

built on top of OSGi.

31

• Robustness. Dynamic coupling of services and devices is a guarantee of robustness. If

a service runs out or a device fails they can be automatically replaced by other

elements that provide the same functionality.

• Security. The framework security model is based on the Java 2 specification. OSGi

defines a standard service for permission administration. In the framework, a bundle

can have a single set of permissions. These permissions are used to verify that a bundle

is authorized to execute privileged code. For example, a FilePermission defines what

files can be used and in what way.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

32

3. State of the Art

In this Chapter, we present an analysis of the most important approaches to develop

context-aware systems that have been proposed, paying special attention to context

modelling and context management. Therefore, we present in detail those approaches that

carry out a context modelling in its development process. They are presented grouped

according to division done by Strang and Linnhoff-Popien [4] based on the type of

context model that is used in the system. We have also studied other approaches that are

not considered in this detailed analysis because they do not provide a context model.

These approaches are introduced in a schematic way in Section 3.2.

3.1 Research works that model Context

We present in this Section some of the most important research works that support

Context in Pervasive Systems by using a context modelling. We have grouped them

according to division done by Strang and Linnhoff-Popien. They divide six context

modelling approaches: key-value modelling, markup scheme modelling, graphical

modelling (UML, ER, etc.), object oriented modelling, logic-based modelling and

ontology-based modelling.

3.1.1 Key-Value models

These models represent the simplest data structure for context modelling. They are

frequently used in various service frameworks, where the key-value pairs are used to

describe the capabilities of a service. Service discovery is then applied by using matching

algorithms which use these key-value pairs. Various approaches exist where contextual

aspects are modelled in by using this type of model:

• The Context Toolkit [2] handles context in simple attribute-value-tuples, which are

encoded using XML for transmission. It takes a step towards a peer-to-peer

architecture but it still needs a centralised discoverer where distributed sensor units

(called widgets), interpreters and aggregators are registered in order to be found by

33

client applications. The toolkits object-oriented API provides a superclass called

BaseObject which offers generic communication abilities to ease the creation of own

components. The Context Toolkit has a discovery mechanism to search for and find

appropriate sensors at runtime. It also can handle information from different data

sources and offers facilities for both context aggregation and context interpretation.

The context aggregators (former called context servers) are responsible for composing

context of particular entities by subscribing to relevant widgets, context interpreters

provide the possibility of transforming context, e.g., in a simple case returning the

corresponding e-mail address to a passed name. Like widgets aggregators and

interpreters inherit communication methods from the BaseObject supperclass and

have to be registered at the discoverer in order to be found.

3.1.2 Markup scheme models

All markup based models use a hierarchical data structure consisting of markup tags

with attributes and content. Profiles represent typical markup-scheme models. CSCP [19]

(which is explained further) use this type of models. FAWIS [6] also use a markup

scheme models, however, although the context model is flexible enough to be applied to

different scenarios, its methodology is focused on the adaptation of Web-based

Information Systems via the transformation of the presentation and navigation.. This

context model specifies context by a set of profiles, each one describes an autonomous

aspect of the context itself (e.g., the user, the location, the device, etc.). A profile is

characterized by a set of simple or complex attributes, and each instantiation of a profile

has a fixed set of attributes, assuming also the presence of null values. Profiles can be

combined to represent a context at different levels of detail; however, the model does not

allow the expression of constraints between sets of attributes or set of profiles to avoid

meaningless combinations. The system mainly considers the user-profiling issues of the

context modelling problem, while leaving all the other aspects not formally described.

3.1.3 Graphical models

Graphical models as the Unified Modelling Language (UML) or the Object-Role

Modelling (ORM) are suitable for modelling context by graphical models. Various

approaches exist where contextual aspects are modelled in by using a graphical model:

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

34

• CML: (Pervasive, Autonomic, Context-aware Environments) project [7] proposes an

extension to ORM for context modelling purposes. The context model has a graphical

notation (CML): the possible contexts for a target application are rendered by a

directed graph composed by a set of entities, describing objects, and their attributes,

representing the entity properties. As Fig. 3 shows, different kinds of associations

connect an entity to its attributes or to other entities.

Fig. 3 Example of CML model

 Besides, it presents a different architecture in which context data are stored in a

database. The meta-data (temporality, quality, etc.) are added either to context data or

to relations between them. The authors indicate clearly that they did not have a look at

issues such as scalability or performance. In addition, the authors proposed a model

driven approach to develop context-aware applications based on their object-oriented

Context Modelling Language (CML). They proposed a semi-automated procedure to

map their context models to context management systems based on relational

databases.

• ContextUML [8] is a UML-based model for the specification and model-driven

development of Context-aware Web Services (CAS). It provides meta-models for

35

context, services and context-aware mechanisms that associate both with each other.

The meta-model for context information is centred around the Context class that

represents generic context information. It is further sub-classed into AtomicContext

(simple, low-level context, directly provided by a context source) and

CompositeContext (high-level context, aggregates multiple atomic or composite

contexts). The classes ContextSource, ContextService and ContextServiceCommunity

model the resources from which context information is retrieved. Context UML allows

the modelling of derivation rules, but does not include means to model user privacy.

Although this model is integrated into a complete meta-model for implementing CAS,

it is restricted to them and lacks grounding in real application scenarios.

• Ayed introduces in [9] a MDD approach for the development of Context-Aware

applications which is based on six phases that are shown in Figure 4. They propose a

UML profile that allows the designers to apply this MDD approach. The profile is

highly based on class diagram extensions and most of the stereotypes (Context,

ContextState, Optional, VariableStructure, PhysicalSensor, etc.) extend the Class meta-

class. They split up transformations according to technical concerns (a separate

transformation for each PSM) and they also recommend decompose transformations

according to non-functional concerns. Ideally, each transformation should address only

one non-functional concern. As a result, they propose a chain of transformations that

need to be applied subsequently to weave all non-functional concerns into the

application model.

Fig. 4 MDD phases for the development of Context-Aware applications proposed by Ayed et al.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

36

3.1.4 Object oriented models

Modelling context by using object-oriented techniques offers to use the full power of object

orientation (e.g., encapsulation, reusability, inheritance). Existing approaches use various

objects to represent different context types (such as temperature, location, etc.), and

encapsulate the details of context processing and representation. Access the context and the

context processing logic is provided by well-defined interfaces. Some projects that use this

model are the followings:

• Hydrogen [10]: Its context acquisition approach is specialised for mobile devices.

While the availability of a centralised component is essential in the majority of existent

distributed content-aware systems, the Hydrogen system tries to avoid this

dependency. It distinguishes between a remote and a local context. The remote context

is information that another device knows while the local context is knowledge that our

own device is aware of. When the devices are in physical proximity they are able to

exchange these contexts in a peer-to-peer manner via WLAN, Bluetooth, etc. Both

local and remote context are made up of context objects. Hydrogen cannot offer

persistent storage possibilities due to limited memory resources a peer-to-peer network

of mobile devices.

 The architecture consists of four layers which are all located on the same device:

- The Adaptor layer is responsible for retrieving raw context data by querying

sensors. This layer permits a sensor’s concurrent use by different applications.

- The Management layer makes use of the Adaptor layer to gain sensor data and

is responsible for providing and retrieving contexts.

- The Context server offers the stored information via synchronous and

asynchronous methods to the client applications.

- Application layer, where the appliance code is implemented to react on

specific context changes reported by the context manager. Due to platform

and language independency, all inter-layer communication is based on a

XML-protocol.

• The CORTEX [5] system is a context-aware middleware. The architecture is based on

the Sentient Object Model which was designed for the development of context-aware

applications in an ad-hoc mobile environment. The model special suitability for mobile

applications depends on the use of STEAM, a location-aware event-based middleware

service designed specifically for ad-hoc wireless networking environments. A sentient

37

object is an encapsulated entity consisting of three main parts, Sensory capture,

Context hierarchy and Inference engine. Via interfaces a sentient object communicates

with sensors which produce software events and actuators which consume software

events. As Figure 5 shows, sentient objects can be both producer and consumer of

another sentient object. Own sensors and actuators are programmed using STEAM.

For building sentient objects, a graphical development tool is available which allows

developers to specify relevant sensors and actuators, define fusion networks, specify

context hierarchies and production rules, without the need to write any code. Since

only one context is active at any point in time (concept of the active context) the

number of rules that have to be evaluated are limited. Thus efficiency of the inference

process is increased. The inference engine component is based on C Language

Integrated Production System (CLIPS). It is responsible for changing application

behaviour according to the current context by using conditional rules.

Fig. 5 Example of Sentient Object Model

3.1.5 Logic based models

Logic-based models have a high degree of formality. Typically, facts, expressions

and rules are used to define a context model. A logic based system is then used to manage

the aforementioned terms and allows adding, updating and removing new facts. The

inference (also called reasoning) process can be used to derive new facts based on

existing rules in the systems. The contextual information needs to be represented in a

formal way as facts. CASS is centralized middleware for small portable devices that use

logic-based models. CASS [11] offers a high-level abstraction on context sensed by

appropriate distributed low-level sensors. The middleware contains an Interpreter, a

ContextRetriever, a Rule Engine, a SensorListener and a knowledge base. By means of

these components CASS manages both time and space, taking into account the context

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

38

history. Besides, this middleware can derive high-level context basing on its rule engine

and its knowledge base. Its knowledge base contains rules that are queried by the rule

engine to find goals using the so-called forward chaining technique. As these rules are

stored in a database separated from the interpreter neither recompiling nor restarting of

components is necessary when rules change.

3.1.6 Ontology based models

Ontologies represent a description of set of concepts and the relationships among them.

Therefore, ontologies are a very promising instrument for modelling contextual

information due to their high and formal expressiveness and the possibilities for applying

ontology reasoning techniques. Some of the most relevant systems that use ontologies to

model context are the followings:

• Context Broker Architecture (CoBrA) [13] uses an own OWL-based ontology

approach, namely COBRA-Ont that extends the SOUPA ontology [12]. CoBrA is an

agent-based architecture for supporting context-aware computing in smart meeting

rooms. This Context Broker is composed by a Context Knowledge Base, a Context

Inference Engine, a Context Acquisition Module and a Privacy Management Module.

CoBrA maintains and manages a shared contextual model on the behalf of a

community of agents. These agents can be applications hosted by mobile devices that a

user carries or wears (e.g., cell phones, PDAs and headphones), services that are

provided by devices in a room (e.g., projector service, light controller and room

temperature controller) and web services that provide a web presence for people,

places and things in the physical world (e.g., services keeping track of peoples and

object whereabouts).

• The SOCAM (Service-oriented Context-Aware Middleware) project introduced by Gu

et al. [14] is an architecture for building context-aware mobile services. The SOCAM

authors divide a pervasive computing domain into several sub-domains and then define

each sub-domain in OWL to reduce the complexity of context processing. The richness

and flexibility of this model is not complemented by a proper constraining mechanism;

the model does not offer explicit ways to limit the number of expressible contexts. The

context-aware mobile services are located on top of the architecture, thus, they make

use of the different levels of context and adapt their behaviour according to the current

context. SOCAM has also implemented a context reasoning engine that reasons over

39

the knowledge base. The tasks of engine include inferring deduced contexts, resolving

context conflicts and maintaining the consistency of the context knowledge base.

Different inference rules used by the reasoning engine can be specified.

• CoDaMoS [15]: The CoDaMoS propose a extremely general ontology-based context

model. Sets of extensible ontologies are exploited to express contextual information

about user, environment and platform in both systems. CoDaMos adds also support for

service description. As SOCAM, the richness and flexibility of this model is not

complemented by a proper constraining mechanism; the model does not offer explicit

ways to limit the number of expressible contexts.

• U-Learn3 [16]: this ontology-based context-model is focused on the support of

learning. The learner and the learning content are described by two ontologies (learner

ontology and content metadata) and a rule-based system provides a content-to-learner

matching mechanism. The content can be a service or a set of data. The data can be

enriched by adding content metadata, the user’s context described by the learner

ontology and the matching can be used to select the relevant data depending on the

context. Yet, the system seems at an early stage of development, and the formalization

not complete: the learner and learning-content ontologies seem very general and not

clearly specified, while the matching rules are not described in the available papers.

The authors claim to support sensor integration without providing enough details to

actually evaluate the contribution.

• The Context Managing Framework presented by Korpipää et al. [17] is comprised in

four main functional entities: the context manager, the resource servers, the context

recognition services and the application. Whereas the resource servers and the context

recognition services are distributed components, the context manager represents a

centralised server managing a blackboard. It stores context data and provides this

information to the client applications. This framework also offers various processing

facilities. The resource servers’ tasks are complex. First they gather raw context

information by connecting to various data sources. After the preprocessing and feature

abstraction crip limits and fuzzy sets are used for quantisation. But now the data are

delivered by posting it to the context manager’s blackboard. The context recognition

services are used by the context manager to create higher-level context object out of

context atoms. In this vein new recognition services are easy to add.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

40

3.1.7 Hybrid models

The hybrid models use more than one of the above presented models.

• The Gaia project [18] is a middleware infrastructure that extends typical operating

system concepts to include context-awareness. Thus, it is designed to facilitate the

construction of applications for smart spaces, such as smart homes and meeting rooms.

In Gaia, the context is represented in a special manner, namely through 4-ary

predicates (<ContextType>, <Subject>, <Relater>, <Object>) written in DAML+OIL.

Besides, the Gaia’s context is processed by performing first-order logic operations. It

aims at supporting the development and execution of portable applications for active

spaces. Gaia exports services to query and utilize existing resources to access and use

current context. It consists of a set of core services and a framework for building

distributed context-aware applications. Gaia’s event manager service enables

applications to be developed as loosely coupled components, and can provide basic

fault tolerance by allowing failed event producers to be automatically replaced. Gaia’s

remaining four services support various forms of context-awareness, and include: (i) a

context service, which allows applications to find providers for the context information

they require, (ii) a presence service, which monitors the entities entering and leaving a

smart space (including people as well as hardware and software components), (iii) a

space repository, which maintains descriptions of hardware and software components,

and (iv) a context file system, which associates files with relevant context information

and dynamically constructs virtual directory hierarchies according to the current

context. Heterogeneity, mobility and component configuration can all be supported by

Gaia in limited forms; however, privacy is not addressed by any of the basic services.

• CSCP [19] model the context by a Markup scheme model. In CSCP the authors

present a Mobility Portal: a web portal providing an adaptive web interface, reacting to

user channel, device and user profile. The context model represents profile sessions

and is based on RDF; it does not impose any fixed hierarchical structure for the context

notion, thus inherits the full flexibility and expressive power of RDF. The instantiation

of the model allows one to represent a single structured session profile (i.e., a point in

the space of possible contexts) with information about the device, the network, and the

user of the considered session.

• COMANTO [20]: the authors propose a hybrid context modelling approach to handle

context objects and context knowledge. For the first purpose, a location-based context

41

model is formalized for considering both fixed (e.g., regions, streets, etc.) and mobile

location data (e.g., people, vehicles). For the second purpose the general COMANTO

ontology is proposed as a public context semantic vocabulary supporting efficient

reasoning on contextual concepts (such as users, activities, tools, etc.) and their

associations. The ontology is used to collect a structured semantic representation about

generic context information and is not domain-, or application-oriented. COMANTO

provides a general purpose and very expressive formal model, although lacking the

possibility to discard useless contexts.

3.2 Other Studied Approaches

In order to perform the detailed analysis presented in this chapter, we have studied

other approaches that do not consider context modelling in their development process.

These approaches are mainly focused on developing context-aware pervasive systems by

using ad-hoc solutions. From these approaches it is worth mentioning the following ones:

• The AMIGO project [21] aims to develop open, standardized, interoperable

middleware for pervasive systems, restricting the focus solely to the networked home

environment. This project seeks to combine multi-agent techniques with semantic web

services to create a system that can adapt to the user’s current context. The project

proposes that groups of agents may join in a context-aware service composition

process. The project follows the paradigm of Service Orientation, which allows

developing software as services that are delivered and consumed on demand. The

components in the Amigo Open Source Software can be divided into three main parts:

- The Base Middleware contains the functionality that is needed to facilitate a

networked environment. It provides independence for existing hard- and

software, and allows that new services can be discovered and composed

- The Intelligent User Services provide services for users, context information,

combine multiple sources of information and make pattern-based predictions.

This part allows that information is tailored to user profiles and adapts to the

user's situation and changes in the context.

- The Programming and Deployment Framework contains modules that

facilitate the development of Amigo-aware services.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

42

• The MavHome project [22] is focused on creating a home that acts as an intelligent

agent. The MavHome architecture is designed with modular components and has four

cooperating layers: The decision layer, information layer, communication and physical

layer. The decision layer is in charge of selecting actions to take based on information

it receives from other layers. The information layer works to collect, maintain, and

generate information useful for decision making. The communication layer exists to

route communications between the users and the house and the house and external

resources. Finally, the physical layer is the actual hardware devices in the house.

Together, these layers work to create a proactive smart environment. The most

common data source is low-level sensor information. The project suggests the role of

prediction algorithms based on the inhabitant actions in order to automatically perform

repetitive tasks for the inhabitant.

These methods use ad-hoc solutions for managing context information. None of them

propose solutions of a high level of abstraction to model context. In addition, these

approaches neither provide mechanisms for reasoning about the context information obtained

at runtime nor deduce new context information.

43

3.3 Analysis and Conclusions

In the literature several definitions of the term context can be found [34, 36, 35, 12,

37, 38] and several context-aware systems have been designed and implemented. From

them, we have established a set of requirements that every context-aware systems must

fulfil in order to compare the presented approaches with our approach. These

requirements are the followings:

• Context management: indicates the capture and store of context to later retrieval.

• Context reasoning: indicates whether the context model enables reasoning on context

data to infer properties or more abstract context information (e.g., deduce user activity

combining sensor readings).

• Automatic Learning and service execution: the system, by observing the user

behaviour, individual experiences of past interactions with others, or the environment,

can derive and anticipate to the next actions that a user want execute.

• Context history: is the history of previous contexts part of (relevant for) the context

itself, i.e., the current context state depends on previous ones, or is the context a pure

snapshot of the user’s current environment.

• Privacy and security: protection of the privacy of users by establishing and enforcing

user defined policies, in such a way that a user can only execute the services allowed

by its policy.

• Support for heterogeneity: support for hardware components ranging from resource-

poor sensors, actuators and mobile client devices to high-performance servers, and a

variety of networking interfaces and programming languages.

• Service Discovery: the system is capable of discovering new services that are adding to

the system.

• Ease of deployment and configuration: The hardware and software components of the

context- aware system are easily deployed and configured to meet user and

environmental requirements, potentially by non-experts (for example, in “smart home”

environments).

• Methodological guidance: provide a precise and efficient sequence of well-defined

steps to deploy a context-aware pervasive system.

Table 1 shows a resume of all the approaches that have been presented in this

chapter. We also distinguish in this table the approaches that only give support to context

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

44

and those that also give support to development of functional Context-aware Pervasive

Systems. In addition, we indicate in this table the context model that each approach use,

in other words, the class of the conceptual tool used to capture the context (key-value-,

mark-up scheme-, logic-, graph-, ontology-based).

First of all, as we can see in Table 1, almost all the current approaches to develop

context-aware systems permit context management, however, only in a few cases they

provide facilities to derive or interpret knowledge from context and automatic learning to

execute tasks without explicit user request.

In addition, only a few of them provides support for the privacy of context and the

security of the system neither the services discovery in context-aware system, that are

both important requirements in this type of systems.

Furthermore, very few of the presented approaches provide methodological

guidance to develop a system by following that approach neither to deploy and put into

operation the developed system, and only our approach provides a precise and detailed

method for both developing and deploying a functional context-aware pervasive system.

Our proposal tries to cover the whole process of development of a full context-aware

pervasive system, from its description to its deployment. To achieve this, we present in

this work a hybrid approach to develop full functional context-aware pervasive systems.

We propose a set of graphical OO1 models for capturing the requirements of the system

and its context available at modelling time, and a context ontology for managing context

at runtime. Thus, on the one hand, we provide to developers with an intuitive model to

specify the requirements of the system at a high level of abstraction; on the other hand,

we provide one of the best choices to model context, because ontologies guarantee a high

degree of expressiveness, formality and semantic richness, as well as facilitate reasoning,

interoperability and reusing context [12, 4]. In addition, we provide a transformation engine

to automatically obtain an OWL context repository based on this ontology from the models

specified by developers. Lastly, we provide an infrastructure that, by using this repository,

automatically manages context, derives knowledge from it and anticipates the next user

action. This infrastructure is also in charge of ensuring the privacy and security of the

system.

1 The models that we propose are object oriented and also graphical. Thus, we have classified these hybrid

models as graphical OO.

45

 C
o

n
te

x
t

M
o

d
el

C
o

n
te

x
t

M
a

n
a

g
em

en
t

C
o

n
te

x
t

R
ea

so
n

in
g

A
u

to
m

a
ti

c
S

er
v

ic
e

E
x

ec
u

ti
o

n

C
o

n
te

x
t

h
is

to
ry

P
ri

v
a

cy
 &

 S
ec

u
ri

ty

S
u

p
p

o
rt

 f
o

r

h
et

er
o

g
en

ei
ty

S
er

v
ic

e
d

is
co

v
er

y

m
et

h
o

d
o

lo
g

ic
a

l

d
ev

el
o

p
m

en
t

g
u

id
a

n
ce

E
a

sy
 t

o
 d

ep
lo

y
 a

sy
st

em
 –

 g
u

id
a

n
ce

F
u

ll
 f

u
n

ct
io

n
a

l
sy

st
em

(F
)/

 o
n

ly
 c

o
n

te
x

t
(C

)

Context
Toolkit

Key-value × × × × C

FAWIS Markup × × × × ×
C

CML Graphic × ×
C

Context
UML

Graphic × × ×
C

Ayed Graphic × × ×
C

Hydrogen OO × × × × × ×
C

CORTEX OO × × × ×
C

CASS Logic × × ×
C

CoBrA Ontologies × ×
C

SOCAM Ontologies × × × ×
C

CoDaMoS Ontologies × × × × ×
C

COMANTO Ontologies × × × × × ×
C

U-Learn3 Ontologies × × × × × × ×
C

Context
Managing

Framework

Ontologies × × × × ×
C

Gaia
Key-value

& Logic × ×
F

CSCP
Markup&

Ontologies × × × × × ×
C

Amigo No model × × ×
F

MavHome No model × × ×
F

Our
approach

Graphic,

OO &

Ontologies
 F

Table 1. Summary of Requirements to support context-aware pervasive systems

(Key: = comprehensive, = partial, × = none)

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

46

Furthermore, the integration of our approach with the method developed in our

research centre provides us with a MDD strategy that allows generating the functional

system from the specified models. This strategy provides us with technological

independence and automatic service discovery. Finally, we define a precise

methodological guidance to carry out the whole process, from the specification of the

models to the put into operation of the functional system. This guidance is easy to follow

by developers because to develop the system they only have to specify it by using the

models and then we automatically transform these models into the corresponding context-

aware functional pervasive system.

In conclusion, as we can see in Table 1, none of the presented approaches fulfil all

the enumerated requirements; our approach, however, allow us to fulfil all these

requirements.

47

4. A MDD Method for Developing

Pervasive Systems

The work developed in this master thesis proposes an approach to develop context-

aware pervasive systems. In particular, this work proposes a hybrid modelling approach

and an infrastructure to give support to context in pervasive systems. In addition, this

work has been integrated with a MDD method [24] for developing pervasive systems that

has been proposed in our research centre. The main reasons for this are both our extensive

knowledge of this method and the code generation capacities that this method provides.

These capacities allow us to automatically obtain an implementation of the pervasive

system in Java code. This MDD method also proposes a Pervasive Modelling Language

(PervML) for specifying pervasive systems. This language allows us to specify the

services and the devices of the system. Thus, to understand our approach, we explain this

method in this chapter. To do this, we first introduce PervML and next we explain the

code generation strategy to obtain the code of the specified system.

4.1 PervML

PervML is a domain-specific modelling language for specifying pervasive systems

using conceptual primitives (Service, Trigger, Interaction, etc.) that are suitable for this

domain. This language allows us to specify context-aware pervasive systems in a

platform and technology independent way.

As Fig. 6 shows, PervML promotes the separation of roles in Pervasive System

Analysts and Pervasive System Architects. On the one hand, System Analysts capture

system requirements and describe the pervasive system using the service metaphor as the

main conceptual primitive. They specify three models which are shown in Fig. 6: the

Services Model, the Structural Model, and the Interaction Model.

An MDD Strategy for developing

Context

The

The diagram that represents this model in Fig.

for controlling the lighting, for managing the security, etc. Additionally to the information

shown in Fig.

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

invoked in a speci

behaviour of the services).

The

which are provided

Interaction

An MDD Strategy for developing

Context-Aware Pervasive Systems

The Services Model

The diagram that represents this model in Fig.

for controlling the lighting, for managing the security, etc. Additionally to the information

shown in Fig. 7, the descripti

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

invoked in a specific moment), and (3) triggers (which allow specifying the proactive

behaviour of the services).

The Structural Model

which are provided

Interaction Model

An MDD Strategy for developing

Aware Pervasive Systems

Services Model describes the kinds of

The diagram that represents this model in Fig.

for controlling the lighting, for managing the security, etc. Additionally to the information

, the description of a kind of service includes (1)

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

behaviour of the services).

Fig. 7 A partial view of the System Analyst models

Structural Model is used to indicate the instances of every

which are provided in each locatio

Fig. 6 PervML models

describes the kinds of

The diagram that represents this model in Fig.

for controlling the lighting, for managing the security, etc. Additionally to the information

on of a kind of service includes (1)

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

A partial view of the System Analyst models

is used to indicate the instances of every

in each location of the environment

Structural Model

PervML models

describes the kinds of services that are provided in the system.

The diagram that represents this model in Fig. 7 shows that the

for controlling the lighting, for managing the security, etc. Additionally to the information

on of a kind of service includes (1)

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

A partial view of the System Analyst models

is used to indicate the instances of every

n of the environment by the system.

Model

Master thesis of Estefanía Serral

services that are provided in the system.

shows that the system

for controlling the lighting, for managing the security, etc. Additionally to the information

on of a kind of service includes (1) the operation and

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

A partial view of the System Analyst models

is used to indicate the instances of every

by the system.

Services Model

Master thesis of Estefanía Serral

services that are provided in the system.

system provides services

for controlling the lighting, for managing the security, etc. Additionally to the information

the operation and pre and

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

is used to indicate the instances of every type of service

by the system. We call to these

Model

Master thesis of Estefanía Serral

48

services that are provided in the system.

provides services

for controlling the lighting, for managing the security, etc. Additionally to the information

pre and

post conditions (which are expressed using the Object Constraint Language (OCL)) for

every operation, (2) a Protocol State Machine (which indicates the operations that can be

fic moment), and (3) triggers (which allow specifying the proactive

service

We call to these

49

instances Components because they are represented as UML 2.0 components and the type

of service that each one provides is depicted as an interface. For example, Fig. 7 shows

the SittingRoomBlind Component that provides the BlindManagement service.

Dependency relationships between components can be included to specify that one

component uses the functionality provided by another. In order to not overload this figure

only the sitting room components are shown. For instance, we have defined several

components such as the SittingRoomLightingControl which uses the functionality

provided by the SittingRoomPresenceDetection and the SittingRoomLighting

components, defined in the model too.

The Interaction Model specifies the communication that is produced as a reaction

to some system event. Every interaction is described by a set of UML 2.0 sequence

diagrams. Thus, analyst identifies the components of the Structural Model that participate

in the interaction, defines the messages that the components must interchange and

specifies the condition that triggers the interaction by using OCL. The actions described

in the diagram will be executed when the condition is satisfied. Fig. 7 shows the

interaction that is in charge of opening the blinds and switching on the water heater when

the alarm clock goes off at 7.00 a.m.

Fig. 8 A partial view of the System Architect models

On the other hand, System Architects specify which devices and/or existing software

systems support the system services. We refer to these elements (devices and software

systems), as binding providers because they bind the pervasive system with its physical or

logical environment. System Architects specify three models (the Binding Providers

SittingRoomBlind
void open()
if _ST_B1.getPosition() = “CLOSED” then

_ST_B1.up()

_ST_B1.up()

else

if _ST_B1.getPosition() = “MIDDELPOSITION” then

_ST_B1.up()

Endif

Binding Provider ModelComponent Structure Model

Functional Model

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

50

Model, the Component Structure Model, and the Functional Model) which are shown in

Fig. 8.

The Binding Providers Model describes the different kind of devices that are used

in the system. Fig. 8 shows some of the binding providers for our smart home. For

instance, the diagram specifies that the MovementDetector sensor provides an operation

to know if it detects some movement.

The Component Structure Model is used to assign devices and software systems to

the system components. For instance, the SittingRoomLighting uses the ST_GL1 and

ST_GL2 devices that are instances of the GradualLamp Binding Provider. Besides, the

same device can be used for different components.

The Functional Model specifies the actions that are executed when an operation of

a service is invoked. These actions are specified using the Action Semantics Language

(ASL) of UML. Every operation provided for every component must have associated a

functional specification. Fig. 8 shows the actions that are executed when the open

operation of the SittingRoomBlind Component is invoked.

4.2 Java Code Generation

In order to automatically generate an implementation of the system specified by

using PervML, a model to Java code transformation was defined and implemented.

Following the MDD guidelines, different transformation approaches can be selected

to achieve this goal. One key point of these approaches is the number and nature of

intermediate models (refined PIMs or PSMs) that must be produced while executing the

transformation. In this work, it was selected a straight approach where a PervML model is

directly transformed into OSGi bundles in source code format (Java code and Manifest

files) that constitute the pervasive system. This approach provides us with some

advantages because only one model-to-text transformation is carried out. The advantages

are:

1. There are fewer assets (just one) to update and keep synchronized than in other

approaches with intermediary models. Therefore, the potential modifications are

isolated and completely focused. This characteristic implies that the debugging

task is easier than with other approaches.

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

followed

increases the abstraction level of the target technology

ab

PervML. Next, this specification is transformed automatically into the java code that

conforms the syste

OSGi middleware.

since it has bridges to many of the technologies used in home automation systems and

provides high

fill the abstraction gap between the domain

implementation technology.

Howe

first.

platform by providing similar

the PervML models. Moreover, the framework encapsulates the common functionality

2. The overall development time of the transformation is considerably reduced,

since fewer assets need to be created and maintained.

3. The resulting transformation is faster than the approaches t

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

followed. An implementation framework (which is explained in the next

increases the abstraction level of the target technology

abstraction gap was considerably reduced

Thus, as

PervML. Next, this specification is transformed automatically into the java code that

conforms the syste

OSGi middleware.

since it has bridges to many of the technologies used in home automation systems and

provides high

fill the abstraction gap between the domain

implementation technology.

Next, we explain how the system java code is obtained from PervML models.

However, since the obtained code extends the implementation framework, we present it

first.

4.2.1 Implementation Framework for Building P

The proposed implementation framework raises the abstraction level of the target

platform by providing similar

the PervML models. Moreover, the framework encapsulates the common functionality

The overall development time of the transformation is considerably reduced,

since fewer assets need to be created and maintained.

The resulting transformation is faster than the approaches t

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

n implementation framework (which is explained in the next

increases the abstraction level of the target technology

straction gap was considerably reduced

Thus, as Fig. 9 shows,

PervML. Next, this specification is transformed automatically into the java code that

conforms the system and that extends the implementation framework code

OSGi middleware. The OSGi middleware

since it has bridges to many of the technologies used in home automation systems and

provides high-level implementation constructs. This middleware help us significantly to

fill the abstraction gap between the domain

implementation technology.

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

Implementation Framework for Building P

The proposed implementation framework raises the abstraction level of the target

platform by providing similar

the PervML models. Moreover, the framework encapsulates the common functionality

The overall development time of the transformation is considerably reduced,

since fewer assets need to be created and maintained.

The resulting transformation is faster than the approaches t

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

n implementation framework (which is explained in the next

increases the abstraction level of the target technology

straction gap was considerably reduced

Fig. 9 Our transformation approach

shows, in this approach, first t

PervML. Next, this specification is transformed automatically into the java code that

m and that extends the implementation framework code

he OSGi middleware

since it has bridges to many of the technologies used in home automation systems and

evel implementation constructs. This middleware help us significantly to

fill the abstraction gap between the domain

implementation technology.

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

Implementation Framework for Building P

The proposed implementation framework raises the abstraction level of the target

platform by providing similar constructs to those defined by the primitives proposed in

the PervML models. Moreover, the framework encapsulates the common functionality

The overall development time of the transformation is considerably reduced,

since fewer assets need to be created and maintained.

The resulting transformation is faster than the approaches t

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

n implementation framework (which is explained in the next

increases the abstraction level of the target technology

straction gap was considerably reduced.

Our transformation approach

approach, first t

PervML. Next, this specification is transformed automatically into the java code that

m and that extends the implementation framework code

he OSGi middleware was selected

since it has bridges to many of the technologies used in home automation systems and

evel implementation constructs. This middleware help us significantly to

fill the abstraction gap between the domain-

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

Implementation Framework for Building P

The proposed implementation framework raises the abstraction level of the target

constructs to those defined by the primitives proposed in

the PervML models. Moreover, the framework encapsulates the common functionality

The overall development time of the transformation is considerably reduced,

since fewer assets need to be created and maintained.

The resulting transformation is faster than the approaches t

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

n implementation framework (which is explained in the next

increases the abstraction level of the target technology, was developed

Our transformation approach

approach, first the system must be specified using

PervML. Next, this specification is transformed automatically into the java code that

m and that extends the implementation framework code

was selected as the implementation technology

since it has bridges to many of the technologies used in home automation systems and

evel implementation constructs. This middleware help us significantly to

-specific language and the target

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

Implementation Framework for Building Pervasive

The proposed implementation framework raises the abstraction level of the target

constructs to those defined by the primitives proposed in

the PervML models. Moreover, the framework encapsulates the common functionality

The overall development time of the transformation is considerably reduced,

The resulting transformation is faster than the approaches that use PSMs since

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines

n implementation framework (which is explained in the next section

was developed. T

he system must be specified using

PervML. Next, this specification is transformed automatically into the java code that

m and that extends the implementation framework code built on top of the

as the implementation technology

since it has bridges to many of the technologies used in home automation systems and

evel implementation constructs. This middleware help us significantly to

specific language and the target

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

ervasive Systems

The proposed implementation framework raises the abstraction level of the target

constructs to those defined by the primitives proposed in

the PervML models. Moreover, the framework encapsulates the common functionality

51

The overall development time of the transformation is considerably reduced,

hat use PSMs since

this approach does not uses intermediate steps or intermediate products.

However, the selected approach has one main drawback, too. The drawback is that

the abstraction gap is deal with only one step, so the transformation could be quite

complex if the gap is wide. To solve this, the Software Factories guidelines were

section), that

Thereby, the

he system must be specified using

PervML. Next, this specification is transformed automatically into the java code that

built on top of the

as the implementation technology

since it has bridges to many of the technologies used in home automation systems and

evel implementation constructs. This middleware help us significantly to

specific language and the target

Next, we explain how the system java code is obtained from PervML models.

ver, since the obtained code extends the implementation framework, we present it

ystems

The proposed implementation framework raises the abstraction level of the target

constructs to those defined by the primitives proposed in

the PervML models. Moreover, the framework encapsulates the common functionality

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

52

and structure of the elements that are generated by the development method. Therefore,

the amount of code that must be generated is significantly reduced.

The framework applies the Layers Architectural Pattern [48], which allows us to

organize the system elements in layers with well defined responsibilities. Hence, in order

to provide facilities for integrating several technologies (EIB networks, web services,

etc.) and for supporting multiple user interfaces, the framework architecture has been

designed in three layers (see Fig. 10):

• The Driver Layer, which is in charge of managing the access to the devices and

external software. In order to achieve the goals of this layer, drivers should be

manually developed for dealing with manufacturer-dependent issues. Following this

strategy, the drivers adapt the specific mechanisms for using the binding providers (the

drivers or APIs supplied by the manufacturers), so a common interface is provided for

every kind of binding provider.

• The Logical Layer, which is in charge of giving support to the generation of the system

logic code. It was subdivided into two sub layers: the Communications sub-layer,

which gives support to code generation about binding providers; and the Services sub-

layer, which provides the functionality that is required.

• The Interface Layer, which manages the access to the system by any kind of client.

Next we explain in detail the last two layers, since the first one has to be manually

implemented to allow the technology independence.

Fig. 10 Architecture of the Implementation Framework

53

4.2.1.1 Logical Layer Implementation

The logical layer provides the set of classes that facilitates the generation of the

logic of the system. To do this, these classes provide us with constructors that are similar

to the PervML concepts such as service, binding provider, component, user, etc. These

classes are extended in order to generate the final system. These classes define the

attributes that must take value when the framework is instantiated and implement the

execution strategies of each element using the Template Method pattern [48].

Fig. 11 shows a partial view of the classes of the logical layer as well as the different

relationships among them. Classes in this layer can be classified in three functional

groups:

• Classes for mapping the PervML conceptual primitives. This functional group is

composed of five classes. The PervMLInteraction, PervMLService, and BProvider

classes provide support to the Communication and Services sub-layers. For instance,

they provide support to implement the different binding providers that communicate

the system with the physical devices.

• Classes for encapsulating OSGi-related functionality. The goal of this group is to

isolate some OSGi-related functionality that is inherited by the classes in the previous

functional group. Classes in this group provide facilities for logging events (Logger),

for search services in the OSGi framework (FrameworkSearcher) and for participating

in the event notification mechanism supplied by OSGi (WireParticipant).

• Classes for dealing with the system life-cycle. This functional group is composed of

the InteractionActivator, ServiceActivator and BProviderActivator classes. An

activator is an OSGi concept which describes the class that is in charge of registering

and unregistering the services in the OSGi framework when a bundle is started or

stopped. In our case, the mechanisms for notifying and receiving notification of

changes in the OSGi services (Wires in OSGi terminology) are created, too. Most of

the functionality supplied by the activators is shared by five elements, so an abstract

class (FrameworkActivator) has been implemented.

An MDD Strategy for developing

Context

4.2.1.2

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model

pattern [48

with the system.

 By following this strategy, the components of the

Model; the

and for each supported

implement

An MDD Strategy for developing

Context-Aware Pervasive Systems

Fig. 11

4.2.1.2 Interface Layer

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model

pattern [48], which provides us with support for having different interfaces to interact

with the system.

By following this strategy, the components of the

; the Controller

and for each supported

implementing the Controller

An MDD Strategy for developing

Aware Pervasive Systems

Fig. 11 Design classes for the syst

rface Layer Implementation

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model

], which provides us with support for having different interfaces to interact

By following this strategy, the components of the

Controller class, which is reusable for

and for each supported Interface, specific views have to be implemented. T

Controller class, we have implemented some views, for example, the

Design classes for the syst

mplementation

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model

], which provides us with support for having different interfaces to interact

By following this strategy, the components of the

class, which is reusable for

, specific views have to be implemented. T

class, we have implemented some views, for example, the

Design classes for the system logic layer of the framework

mplementation

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model

], which provides us with support for having different interfaces to interact

By following this strategy, the components of the Services Layer

class, which is reusable for every interface,

, specific views have to be implemented. T

class, we have implemented some views, for example, the

Master thesis of Estefanía Serral

em logic layer of the framework

The Interface Layer gives support to the presentation of information and services to

users. In order to implement this layer, we have used the Model-View-

], which provides us with support for having different interfaces to interact

Services Layer

every interface, has to

, specific views have to be implemented. T

class, we have implemented some views, for example, the

Master thesis of Estefanía Serral

em logic layer of the framework

The Interface Layer gives support to the presentation of information and services to

-Controller (MVC)

], which provides us with support for having different interfaces to interact

Services Layer correspond to the

has to be implemented

, specific views have to be implemented. Thus, as well as

class, we have implemented some views, for example, the

Master thesis of Estefanía Serral

54

The Interface Layer gives support to the presentation of information and services to

ntroller (MVC)

], which provides us with support for having different interfaces to interact

correspond to the

be implemented;

hus, as well as

class, we have implemented some views, for example, the

55

corresponding to a Web Interface for access from desktop web browsers. Fig. 12 shows

the Controller class and the classes that implement this Web interface.

The Controller class provides methods that allow users: (1) To select the component that

is the specific service with which the user wants to interact. For instance, the method

getServicesFromLocation (String location) returns all the services that are available for a user

in a specific location. (2) To interact (get information and request functionality) with a single

component. For instance, ManageOperation(String ComponentPID, String Operation, Object

[]parameters) is in charge of executing a Component operation using Java reflection

capacities.

Fig. 12 Web Interface

Fig. 12 also shows the ServicesListingServlet and the ServicesUIServlet classes that

implement Java Servlets. These classes provide the view of the web interface and invoke the

Controller operations in order to generate the web pages that will be shown to users. The

ServicesListingServlet class invokes the first set of methods, whereas the ServicesUIServlet

class invokes the second set of methods. It is worth to noting that every class in Figure 12 is a

concrete class. This means that classes do not need to be extended. In addition, these elements

are reusable for all the pervasive systems that are developed using the proposed approach.

This feature is feasible since (1) every Service implements an interface that is known by the

Controller and (2) the Java reflection capabilities have been used to invoke previously

unknown methods.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

56

4.2.2 From PervML to Java Code

In this section, the transformation to obtain the system java code is explained. The

input of the transformation must be a PervML model, which is composed by the models

described in Section 4.1 (each of them describes a view of the system), and the output

must be OSGi bundles in source code format (Java code and Manifest files), which

extend the framework code and follow its guidelines. Although the input of the

transformation is the PervML model (which is composed by both the models from the

Analyst view and the models from the Architect view), we only focus on the models from

the Analyst view because the context information is described in these models. First we

describe the mappings between PervML and the Java/OSGi code that must be generated,

in an intuitive way. Then we explain how to automate these mappings, which are done in

the same way for each model of PervML.

4.2.2.1 Mappings

The mappings between the PervML models and the code that had to be generated

from the models were described in an intuitive way by defining the outputs produced

from each PervML model. These outputs are the followings:

• From the Services Model: Every type of service produces an abstract class that

implements methods that contain the information that is specified for that type; for

instance, methods for checking the pre and post conditions of every type of service

operation. This abstract class extends the PervMLService class of the framework). The

state machine is implemented as a set of linked classes for dealing with every state and

every transition. Triggers are also implemented in specific classes with methods for

checking the triggering condition and executing the actions.

• From the Structural Model: Every component from the component diagram

produces a concrete class that extends an abstract class that was produced from the

Services Model (depending on the type of service that the component implements).

This class is in charge of implementing the operations that were defined in the Services

Model. It maintains links with the components that it uses, and it provides mechanisms

for reacting to changes.

• From the Interaction Model: Every interaction produces a concrete class that extends

the abstract PervMLInteraction class of the framework. This concrete class

57

implements methods to check the triggering condition and to execute the actions that

are specified in the sequence diagram.

• From the Binding Providers Model: Every kind of binding provider produces a

concrete class in the Communications Layer that is in charge of disseminating to upper

layers the drivers notifications and requesting the drivers the execution of operations

that are required by the components. During the initialization, the system creates as

much instances of these classes as binding providers are in the system of every type.

Some configuration is required to set-up the link between the binding provider and its

corresponding driver (usually it consists on specifying the driver identifier).

• From the Component Structural Specification: The information in this model is

used to establish the links between the classes that implement the components in the

Services Layer and the classes that implement the binding providers in the

Communication Layer. This link is defined, by one side, as a listening subscription

from the component to binding provider’s modifications.

• From the Component Functional Specification: The information in this model is

used to fill the methods of the classes that implement the components.

4.2.2.2 Model-to-code Transformation

A model-to-code transformation was carried out in order to automate the presented

mappings. To do this, a set of rules was implemented by using the MOFScript tool. Using

MOFScript, the mappings described above by means of model-to-code rules that generate

Java code from the PervML models were implemented. Figure 13 partially shows an example

of these rule. This rule generates the Java-OSGi code of a Component.

import "SharedRules.m2t"

texttransformation Component(in pervml:
"http:///org/oomethod/pervml.ecore") {
pervml.Component::generateComponent(){
var idCounter:Integer = 1

<%package org.pervml.application.components.%>
self.alias <%;import org.osgi.framework.BundleContext;%>
self.genetareDependencyImports()

<%public class Component extends org.pervml.application.services.%>
self.serviceProvided.name<%.GenericComponent {
public Component(BundleContext c, String componentPid){
super(c,componentPid);%>

self.ComponentTrigger->forEach(trig:pervml.Trigger) {
 …
}
<%}

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

58

public void initializeProperties(){
this.serviceName="%>
self.alias<%";
this.location="%>self.getLocation() <%";
}%> //End initializeProperties()

self.ComponentFunctionalSpecification.Method
->forEach(me:pervml.Method) {
print("\t protected ")
me.ServiceOperation.generateOperation("Implementation_")println("{")
…
}
<%}%> //End class Component
}//End generateComponent()
}

Fig. 13 A Mofscript rule

The final code generated by these rules is java files, which are based on the OSGi

platform and a set of manifest files.

4.2.3 Tool Support

Model driven methods must be supported by tools in order to be applicable in an

effective way. Thus, the PervML Generative Tool (PervGT) was developed for giving

support to the method presented in this section. The tool allows pervasive systems

developers the creation of graphical diagrams and the automatic translation of these diagrams

into the final implementation code using a transformation engine.

PervGT is based on the Eclipse platform .Three plug-ins have been mainly used to

develop it: the Eclipse Modelling Framework (EMF) plug-in, the Graphical Modelling

Framework (GMF) and the Mofscript tool.

By using these plug-ins, PervGT gives support to the most relevant aspects of a

model-driven generative tool:

• Model management: EMF provides us from the PervML metamodel with: 1) A set of

Java classes representing each one of the PervML metamodel concepts; these Java

classes provide methods to modify PervML models according to the PervML

metamodel. 2) A basic tree editor that facilitates the development of PervML models

according to the metamodel.

 Thus, PervGT allows us manipulated (create / edit / save / load) the PervML models

conforming to the PervML metamodel. Furthermore, models should be stored

according to any standard in order to improve the interoperability with others tools.

• Graphical model edition: GMF provides an editor to specify graphical editors in a

declarative way, and also provides a runtime where common functionality related to

59

graphical editors is already implemented, like model printing or automatic layout

algorithms.

 Thus, PervGT provides a graphical editor for each PervML model. For instance,

Fig. 14 shows the graphical editor for the state transition diagram of the Service

Model.

• Code generation: By using the rules implemented with the Mofscript tool (see the

previous section), PervGT allows us to generate from the PervML models, the Java-

OSGi code that constitute the source code of the pervasive system specified in the

PervML models.

Fig. 14 The graphical editor for the State Transition Diagram

4.3 Conclusions

In this chapter we have explained the MDD method with which the approach

propose in this master thesis has been integrated. To understand this integration, we have

explained the two big contributions that this method provides us: a modelling language to

capture the requirements of a pervasive system and a code generation strategy that allows

us to automatically generate a functional pervasive system in Java code. This last

contribution is one of the main reasons to carry out this integration. The other important

reason is the extensive knowledge that the research group in which this master thesis has

been developed has about this method.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

60

61

5. Supporting Context in Pervasive

Systems

In this chapter, we propose an infrastructure to properly capture, manage and

understand context in MDD environments. As we have explained in Chapter 4 we have

integrated our approach with the MDD method presented in this chapter. MDD is an

approach to software design and development that strongly focuses on models. Thus, in

order to support context in the MDD method we propose a set of models to properly

capture context at modelling time. These models are explained in detail in Section 5.1.

However, it is not enough to properly supporting context because context is

continuously changing at runtime. Therefore, we also propose an OWL context

repository, which is based on a context ontology, for persistently storing context in a

machine interpretable language. This is explained in detail in Section 5.2. Furthermore,

we propose a framework that contains the necessary mechanisms to manage context at

runtime and interpret it at a semantic level by using this repository. This is explained in

detail in Section 5.3. We also integrate all of these contributions with the MDD method

presented in the previous chapter; however, they can be easily used in other approaches as

it will be explained further.

5.1 Context Modelling

In this section, we present a set of models to capture context at modelling time. The

information that must be captured by these models is the following: information about

users, privacy and security policies, space information, system services and system

devices.

These models have been defined with the purpose of incorporating Context support

into the PervML conceptual schema. PervML (see Chapter 4) only captures the system

services with the location name where they are provided (in the models of the Pervasive

Analyst view) and the system devices (in the models of the Pervasive Architect view).

PervML does not allow us either capture information about space information, or system

An MDD Strategy for developing

Context

users, or privacy and security policies.

Model

where services can be deployed; and

a Policy diagram, which specifies the security policies

system users will have access

specify the system users.

specification.

Thus,

aware pervasive systems.

5.1.1

T

and the services that this system will provide.

from two elements:

•

An MDD Strategy for developing

Context-Aware Pervasive Systems

users, or privacy and security policies.

Model a location diagram, which properly specifies the locations where users can be or

where services can be deployed; and

a Policy diagram, which specifies the security policies

system users will have access

specify the system users.

specification. Next, we explain

Thus, Fig. 15 shows the models that the language

aware pervasive systems.

5.1.1 The Structural Model

The Structural Model

and the services that this system will provide.

from two elements:

A Location Diagram

environment where the system will be deployed.

system users can move or where services can be located. This is specified by means of

an UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

are next to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

model allows us to infer information such as transitive relations

An MDD Strategy for developing

Aware Pervasive Systems

users, or privacy and security policies.

a location diagram, which properly specifies the locations where users can be or

where services can be deployed; and

a Policy diagram, which specifies the security policies

system users will have access, and a set of

specify the system users. We have also impro

Next, we explain in detail the

shows the models that the language

aware pervasive systems.

Fig. 15

The Structural Model

he Structural Model describes the environment where the system will be deployed

and the services that this system will provide.

A Location Diagram, which describes the different areas

environment where the system will be deployed.

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

llows us to infer information such as transitive relations

users, or privacy and security policies. For this reason, we have added

a location diagram, which properly specifies the locations where users can be or

where services can be deployed; and we have pr

a Policy diagram, which specifies the security policies

, and a set of

We have also impro

in detail these

shows the models that the language

Fig. 15 PervML models (* optional)

The Structural Model

describes the environment where the system will be deployed

and the services that this system will provide.

, which describes the different areas

environment where the system will be deployed.

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

llows us to infer information such as transitive relations

For this reason, we have added

a location diagram, which properly specifies the locations where users can be or

we have proposed a user model

a Policy diagram, which specifies the security policies that limit the services to which

, and a set of User Characterization Templates, which

We have also improved the Interaction Model to facilitate its

 models.

shows the models that the language provide

PervML models (* optional)

describes the environment where the system will be deployed

and the services that this system will provide. To do this, the structural model is defined

, which describes the different areas

environment where the system will be deployed. These areas represent

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

llows us to infer information such as transitive relations

Master thesis of Estefanía Serral

For this reason, we have added

a location diagram, which properly specifies the locations where users can be or

a user model that

that limit the services to which

User Characterization Templates, which

ved the Interaction Model to facilitate its

provides now to specify context

PervML models (* optional)

describes the environment where the system will be deployed

To do this, the structural model is defined

, which describes the different areas that co

These areas represent

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

llows us to infer information such as transitive relations or find out the way to

Master thesis of Estefanía Serral

For this reason, we have added in the Structural

a location diagram, which properly specifies the locations where users can be or

that is composed by

that limit the services to which

User Characterization Templates, which

ved the Interaction Model to facilitate its

to specify context

describes the environment where the system will be deployed

To do this, the structural model is defined

that constitute the

These areas represent where

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierar

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

or find out the way to

Master thesis of Estefanía Serral

62

in the Structural

a location diagram, which properly specifies the locations where users can be or

is composed by

that limit the services to which

User Characterization Templates, which

ved the Interaction Model to facilitate its

to specify context-

describes the environment where the system will be deployed

To do this, the structural model is defined

nstitute the

where the

can move or where services can be located. This is specified by means of

UML package diagram. Each package represents a certain area, and the hierarchy

between packages symbolizes the space hierarchy between the areas represented by

those packages. Also, two types of associations can exist between the areas or

packages: adjacency and mobility (or accessibility). Adjacency means that the areas

to each other, whereas mobility is the possibility to go from one area to

another. Adjacency is represented by a line between two areas. Since mobility implies

adjacency, it is represented by adding arrows to the line between two areas. Thus, this

or find out the way to

arrive to certain area

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

 Fig.

running example. It has seven areas:

ChildRoom

Bathroom ar

and the

 We use a UML package diagram for representing locatio

intuitive for the analyst, as

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

by simply delimiting areas and relate them intuitively.

• A UML 2.0 component diagram,

each physical location

service

are associated to package that represents the location where they are deployed. The

service that provid

relationships between components indicate a relation of use, in other words, the source

component uses the functionality of the target component.

arrive to certain area

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

g. 16 shows an example of the Location Diagram. It models the locations of the

running example. It has seven areas:

ChildRoom and ParentsRoom

Bathroom are adjacent, but a user can not go from one to another. In contrast, the

and the LivingRoom

Fig. 16

We use a UML package diagram for representing locatio

intuitive for the analyst, as

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

by simply delimiting areas and relate them intuitively.

UML 2.0 component diagram,

each physical location

service. To do this, the

are associated to package that represents the location where they are deployed. The

service that provid

relationships between components indicate a relation of use, in other words, the source

component uses the functionality of the target component.

arrive to certain area. For example, if we can go to the corridor from the kitchen and to

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

shows an example of the Location Diagram. It models the locations of the

running example. It has seven areas:

ParentsRoom. This figure shows that, for instance, the

e adjacent, but a user can not go from one to another. In contrast, the

 are adjacent and

Fig. 16 Location Diagram of the running example

We use a UML package diagram for representing locatio

intuitive for the analyst, as Fig. 16

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

by simply delimiting areas and relate them intuitively.

UML 2.0 component diagram,

each physical location as well as indicating

. To do this, the services are represented by means of UML 2.0 components and

are associated to package that represents the location where they are deployed. The

service that provides each component is depicted as a UML interface. Also,

relationships between components indicate a relation of use, in other words, the source

component uses the functionality of the target component.

. For example, if we can go to the corridor from the kitchen and to

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

shows an example of the Location Diagram. It models the locations of the

running example. It has seven areas: Hall, LivingRoom, Kitchen, Corridor, Bathroom,

. This figure shows that, for instance, the

e adjacent, but a user can not go from one to another. In contrast, the

are adjacent and a user can

Location Diagram of the running example

We use a UML package diagram for representing locatio

16 shows, packages can contain other packages like

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

by simply delimiting areas and relate them intuitively.

UML 2.0 component diagram, which represents the

indicating the type of service that is provided by each

are represented by means of UML 2.0 components and

are associated to package that represents the location where they are deployed. The

es each component is depicted as a UML interface. Also,

relationships between components indicate a relation of use, in other words, the source

component uses the functionality of the target component.

. For example, if we can go to the corridor from the kitchen and to

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

shows an example of the Location Diagram. It models the locations of the

Hall, LivingRoom, Kitchen, Corridor, Bathroom,

. This figure shows that, for instance, the

e adjacent, but a user can not go from one to another. In contrast, the

a user can also go from one to another.

Location Diagram of the running example

We use a UML package diagram for representing locatio

shows, packages can contain other packages like

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

by simply delimiting areas and relate them intuitively.

which represents the services

the type of service that is provided by each

are represented by means of UML 2.0 components and

are associated to package that represents the location where they are deployed. The

es each component is depicted as a UML interface. Also,

relationships between components indicate a relation of use, in other words, the source

component uses the functionality of the target component.

. For example, if we can go to the corridor from the kitchen and to

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

shows an example of the Location Diagram. It models the locations of the

Hall, LivingRoom, Kitchen, Corridor, Bathroom,

. This figure shows that, for instance, the Hall

e adjacent, but a user can not go from one to another. In contrast, the

go from one to another.

Location Diagram of the running example

We use a UML package diagram for representing locations because it is very

shows, packages can contain other packages like

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, lik

services, which are provided in locations. This allows us to describe any space easily

services that are deployed in

the type of service that is provided by each

are represented by means of UML 2.0 components and

are associated to package that represents the location where they are deployed. The

es each component is depicted as a UML interface. Also,

relationships between components indicate a relation of use, in other words, the source

63

. For example, if we can go to the corridor from the kitchen and to

the bathroom from the corridor, then we can go to the bathroom from the kitchen.

shows an example of the Location Diagram. It models the locations of the

Hall, LivingRoom, Kitchen, Corridor, Bathroom,

Hall and the

e adjacent, but a user can not go from one to another. In contrast, the Hall

go from one to another.

ns because it is very

shows, packages can contain other packages like

locations can contain other locations. Also, UML components (which represent

services as the following diagram shows), are deployed in packages, like the real

services, which are provided in locations. This allows us to describe any space easily

that are deployed in

the type of service that is provided by each

are represented by means of UML 2.0 components and

are associated to package that represents the location where they are deployed. The

es each component is depicted as a UML interface. Also,

relationships between components indicate a relation of use, in other words, the source

An MDD Strategy for developing

Context

BlindManagement

5.1.2

T

information related with the system users

•

An MDD Strategy for developing

Context-Aware Pervasive Systems

 Fig. 17 sho

shows the components associated to the

components such as the

used by the

BlindManagement

5.1.2 The User Model

The User Model is used to specify

information related with the system users

A Policy Diag

describes a type of user by defining its allowed operations. Thus, a policy is associated

with users (as Fig

means that these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

allowed); 2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

(then this operation of this component will be permitted).

 Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

policy as a basis. This can be done in tw

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

An MDD Strategy for developing

Aware Pervasive Systems

Fig. 17

shows a partial view of the Structural Model for the running example. It

shows the components associated to the

components such as the ParentsLighting

used by the ParenstLightin

BlindManagement service.

The User Model

he User Model is used to specify

information related with the system users

Policy Diagram, which

describes a type of user by defining its allowed operations. Thus, a policy is associated

(as Fig. 18 shows the

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

eration of this component will be permitted).

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

policy as a basis. This can be done in tw

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

A partial view of the component diagram

ws a partial view of the Structural Model for the running example. It

shows the components associated to the

ParentsLighting

ParenstLightingControl; and the

he User Model is used to specify the security

information related with the system users. It is defined from two elements:

, which is used to specify the policies of the system.

describes a type of user by defining its allowed operations. Thus, a policy is associated

shows the Father policy is associated with the

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

eration of this component will be permitted).

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

policy as a basis. This can be done in tw

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

A partial view of the component diagram

ws a partial view of the Structural Model for the running example. It

shows the components associated to the ParentsRoom

ParentsLighting that provides the

; and the ParentsBlind

the security policies

. It is defined from two elements:

is used to specify the policies of the system.

describes a type of user by defining its allowed operations. Thus, a policy is associated

policy is associated with the

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

eration of this component will be permitted).

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

policy as a basis. This can be done in two ways: 1)

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

Master thesis of Estefanía Serral

A partial view of the component diagram

ws a partial view of the Structural Model for the running example. It

ParentsRoom. We have defined several

that provides the Lighting

ParentsBlind

policies of the system and the

. It is defined from two elements:

is used to specify the policies of the system.

describes a type of user by defining its allowed operations. Thus, a policy is associated

policy is associated with the

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

eration of this component will be permitted).

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

o ways: 1) By adding new capacities to

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

Master thesis of Estefanía Serral

A partial view of the component diagram

ws a partial view of the Structural Model for the running example. It

. We have defined several

Lighting service, which is

 that provides the

of the system and the

. It is defined from two elements:

is used to specify the policies of the system. A policy

describes a type of user by defining its allowed operations. Thus, a policy is associated

policy is associated with the Peter user), which

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

By adding new capacities to

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

Master thesis of Estefanía Serral

64

ws a partial view of the Structural Model for the running example. It

. We have defined several

service, which is

that provides the

of the system and the

A policy

describes a type of user by defining its allowed operations. Thus, a policy is associated

user), which

these users can perform the operations specified in the policy. Then, in

order to associate the allowed operations to each policy, the analyst can: 1) associate a

service (then every operation of every component that provide that service will be

2) associate a component (then every operation of this component will be

allowed); 3) associate a service operation (then this operation will be permitted for

every component that provides this service); or 4) associate a component operation

Furthermore, inheritance relations can also be established in this model. These

relations allow us to define capacities of a policy taking the capacities of a defined

By adding new capacities to

capacities of the parent policy. This is used if the child policy can execute more

operations than the parent policy. The actions that the child can execute but the parent

views of the system, since users will be able to see and execute only system actions that

they are authorized to use. On the other

The model must be defined only in the case that a personalized system behaviour must be

provided

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

can not are denoted by “+”. 2) By removing ca

used if the child can execute fewer operations than the parent. The actions that the

parent can execute but the child can not are denoted by “

 For instance, in the example of

the Lighting

the same operation except the operations of the

• A set of

Pervasive System Analysts must indicate the following information for each user:

o

o

o

o

Fig. 18 A Policy diagram on the left and a User Characterization Template on the right

 Both Personal and

users. We allow analysts to add new properties if required.

of User Characterization Templates. This example represents the

system, whose policy is

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

they are authorized to use. On the other

The model must be defined only in the case that a personalized system behaviour must be

provided. If Pervasive System Analysts do not create this model,

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

can not are denoted by “+”. 2) By removing ca

used if the child can execute fewer operations than the parent. The actions that the

parent can execute but the child can not are denoted by “

For instance, in the example of

Lighting, GradualLighting

the same operation except the operations of the

A set of User Characterization Templates

asive System Analysts must indicate the following information for each user:

 The policy associated to the user, which has been previously specified in the

Policy Diagram.

 The following personal data: name, surname, gender, date of birth and marital

status.

 The following contact data: email, telephone number, mobile phone and

address.

 Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Both Personal and

users. We allow analysts to add new properties if required.

of User Characterization Templates. This example represents the

system, whose policy is

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

they are authorized to use. On the other

The model must be defined only in the case that a personalized system behaviour must be

. If Pervasive System Analysts do not create this model,

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

can not are denoted by “+”. 2) By removing ca

used if the child can execute fewer operations than the parent. The actions that the

parent can execute but the child can not are denoted by “

For instance, in the example of

GradualLighting and

the same operation except the operations of the

User Characterization Templates

asive System Analysts must indicate the following information for each user:

The policy associated to the user, which has been previously specified in the

Policy Diagram.

The following personal data: name, surname, gender, date of birth and marital

The following contact data: email, telephone number, mobile phone and

Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Both Personal and Contact data are those proposed by SOUPA to characterize

users. We allow analysts to add new properties if required.

of User Characterization Templates. This example represents the

system, whose policy is Father.

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

they are authorized to use. On the other

The model must be defined only in the case that a personalized system behaviour must be

. If Pervasive System Analysts do not create this model,

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

can not are denoted by “+”. 2) By removing ca

used if the child can execute fewer operations than the parent. The actions that the

parent can execute but the child can not are denoted by “

For instance, in the example of Fig. 18, the parent

and BlindManagement

the same operation except the operations of the

User Characterization Templates, which

asive System Analysts must indicate the following information for each user:

The policy associated to the user, which has been previously specified in the

The following personal data: name, surname, gender, date of birth and marital

The following contact data: email, telephone number, mobile phone and

Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Contact data are those proposed by SOUPA to characterize

users. We allow analysts to add new properties if required.

of User Characterization Templates. This example represents the

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

they are authorized to use. On the other side, the construction of this model i

The model must be defined only in the case that a personalized system behaviour must be

. If Pervasive System Analysts do not create this model,

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

can not are denoted by “+”. 2) By removing capacities of the parent policy. This is

used if the child can execute fewer operations than the parent. The actions that the

parent can execute but the child can not are denoted by “-”.

the parent can execute operat

BlindManagement services. The child can execute

the same operation except the operations of the BlindManagement

, which specify the users of the system.

asive System Analysts must indicate the following information for each user:

The policy associated to the user, which has been previously specified in the

The following personal data: name, surname, gender, date of birth and marital

The following contact data: email, telephone number, mobile phone and

Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Contact data are those proposed by SOUPA to characterize

users. We allow analysts to add new properties if required. Fig. 18

of User Characterization Templates. This example represents the

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

, the construction of this model i

The model must be defined only in the case that a personalized system behaviour must be

. If Pervasive System Analysts do not create this model,

defined (with a default user for each one): (1) the administrator, who c

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

pacities of the parent policy. This is

used if the child can execute fewer operations than the parent. The actions that the

can execute operations related to

services. The child can execute

BlindManagement service.

specify the users of the system.

asive System Analysts must indicate the following information for each user:

The policy associated to the user, which has been previously specified in the

The following personal data: name, surname, gender, date of birth and marital

The following contact data: email, telephone number, mobile phone and

Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Contact data are those proposed by SOUPA to characterize

Fig. 18 shows an example

of User Characterization Templates. This example represents the Peter

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

, the construction of this model i

The model must be defined only in the case that a personalized system behaviour must be

. If Pervasive System Analysts do not create this model, three policies are

defined (with a default user for each one): (1) the administrator, who can execute all the

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

65

pacities of the parent policy. This is

used if the child can execute fewer operations than the parent. The actions that the

ions related to

services. The child can execute

specify the users of the system.

asive System Analysts must indicate the following information for each user:

The policy associated to the user, which has been previously specified in the

The following personal data: name, surname, gender, date of birth and marital

The following contact data: email, telephone number, mobile phone and

Social relations, i.e., information related to people that the user knows.

A Policy diagram on the left and a User Characterization Template on the right

Contact data are those proposed by SOUPA to characterize

shows an example

Peter user in the

Finally, note that this model provides support for the privacy, the security and the

views of the system, since users will be able to see and execute only system actions that

, the construction of this model is optional.

The model must be defined only in the case that a personalized system behaviour must be

three policies are

an execute all the

operations available in the system including configuration operations; (2) the limited user,

who is able to execute all the operations available, except configuration operations; and

An MDD Strategy for developing

Context

(3) the guest, who can only consult the state of the s

that modifies it.

5.1.3

This model has been also modified to facilitate its specification

scalability

as a reaction to a system event. An interaction is a communication between components

to provide a specific functionality.

Thus, S

that provides a type of service. In this case,

that the object that receives the action is a

instead of

interaction that is in charge of lowering every

stopping the sprinklers

the actions specified in an interaction are not executed as an explicit user request, but are

invoked as a reaction to a sit

Fig. 19

5.2

Previous

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

order to properly adapt itself accordingly.

An MDD Strategy for developing

Context-Aware Pervasive Systems

(3) the guest, who can only consult the state of the s

that modifies it.

5.1.3 The Interaction Model

This model has been also modified to facilitate its specification

scalability. The Interaction Model

eaction to a system event. An interaction is a communication between components

to provide a specific functionality.

Thus, Systems Analyst

that provides a type of service. In this case,

that the object that receives the action is a

instead of having to indicate

interaction that is in charge of lowering every

stopping the sprinklers

the actions specified in an interaction are not executed as an explicit user request, but are

invoked as a reaction to a sit

Fig. 19 An interaction that lowers every blind, winds up every awning and stops the garden

5.2 The Context

Previous chapter

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

order to properly adapt itself accordingly.

An MDD Strategy for developing

Aware Pervasive Systems

(3) the guest, who can only consult the state of the s

The Interaction Model

This model has been also modified to facilitate its specification

The Interaction Model

eaction to a system event. An interaction is a communication between components

to provide a specific functionality.

ystems Analysts may want

that provides a type of service. In this case,

that the object that receives the action is a

having to indicate every

interaction that is in charge of lowering every

stopping the sprinklers of the garden

the actions specified in an interaction are not executed as an explicit user request, but are

invoked as a reaction to a situation.

An interaction that lowers every blind, winds up every awning and stops the garden

sprinklers when it is raining

Context Ontology and

chapter explains how Context can be captured at modelling time. However

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

order to properly adapt itself accordingly.

(3) the guest, who can only consult the state of the s

The Interaction Model

This model has been also modified to facilitate its specification

The Interaction Model is used to describe the communication that is produced

eaction to a system event. An interaction is a communication between components

to provide a specific functionality.

may want that

that provides a type of service. In this case,

that the object that receives the action is a type of

every component

interaction that is in charge of lowering every

of the garden when it starts to rain. It is also important to note that

the actions specified in an interaction are not executed as an explicit user request, but are

uation.

An interaction that lowers every blind, winds up every awning and stops the garden

sprinklers when it is raining

Ontology and

explains how Context can be captured at modelling time. However

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

order to properly adapt itself accordingly.

(3) the guest, who can only consult the state of the system, but not execute any operation

This model has been also modified to facilitate its specification

is used to describe the communication that is produced

eaction to a system event. An interaction is a communication between components

that the action is

that provides a type of service. In this case, we have allowe

type of service, with the label <<Service>>,

component that provided

interaction that is in charge of lowering every blind, winding up every awning and

when it starts to rain. It is also important to note that

the actions specified in an interaction are not executed as an explicit user request, but are

An interaction that lowers every blind, winds up every awning and stops the garden

sprinklers when it is raining

Ontology and the OWL

explains how Context can be captured at modelling time. However

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

Master thesis of Estefanía Serral

ystem, but not execute any operation

This model has been also modified to facilitate its specification

is used to describe the communication that is produced

eaction to a system event. An interaction is a communication between components

is ordered to every Component

we have allowed that Analyst

service, with the label <<Service>>,

that provided that type.

blind, winding up every awning and

when it starts to rain. It is also important to note that

the actions specified in an interaction are not executed as an explicit user request, but are

An interaction that lowers every blind, winds up every awning and stops the garden

OWL Context

explains how Context can be captured at modelling time. However

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at

Master thesis of Estefanía Serral

ystem, but not execute any operation

This model has been also modified to facilitate its specification and improve its

is used to describe the communication that is produced

eaction to a system event. An interaction is a communication between components

ordered to every Component

Analysts can indicate

service, with the label <<Service>>,

 Fig. 19 shows the

blind, winding up every awning and

when it starts to rain. It is also important to note that

the actions specified in an interaction are not executed as an explicit user request, but are

An interaction that lowers every blind, winds up every awning and stops the garden

Context Repository

explains how Context can be captured at modelling time. However

describing Context information in models is not enough for properly develop a Context

aware system since all this information need to be managed by the system at runtime in

Master thesis of Estefanía Serral

66

ystem, but not execute any operation

and improve its

is used to describe the communication that is produced

eaction to a system event. An interaction is a communication between components

ordered to every Component

can indicate

service, with the label <<Service>>,

shows the

blind, winding up every awning and

when it starts to rain. It is also important to note that

the actions specified in an interaction are not executed as an explicit user request, but are

An interaction that lowers every blind, winds up every awning and stops the garden

Repository

explains how Context can be captured at modelling time. However,

describing Context information in models is not enough for properly develop a Context-

time in

67

In order to store the context information and support its management at runtime we

propose an OWL Repository. This repository is based on an ontology that we propose for

modelling Context in AmI environments. Whereas the ontology provides concepts and

relationships between concepts that allow us to represent the Context at a high level of

abstraction, the repository allows us to store, according to this ontology, the specific

context information of a pervasive system. In addition, the use of an ontology for

representing Context at run time facilitate the understanding of Context information at the

semantic level.

5.2.1 The context Ontology

We have defined an ontology [57] to represent the concepts and relationships

between concepts that allow us to describe Context at a high level of abstraction. This

ontology is based, above all, on the SOUPA ontology [12], where the information

considered by different context-aware proposals have been gathered and placed in

common. The SOUPA ontology is expressed using the OWL language and includes

modular component vocabularies to represent intelligent users with associated beliefs,

desires, and intentions, time, space, events, user profiles, actions, and policies for security

and privacy.

However, the ontology proposed in our approach differs from others such as

SOUPA in the fact that we propose a set of concepts of a higher abstraction level. This

aspect facilitates the reasoning about this information at the semantic level and the

deduction of new Context data from the existent one. For instance, we propose concepts

to define locations such as Bedroom or Kitchen and propose relationships such as

includes or adjacency to relate this locations (instead of relating locations by means of

coordinates such as longitude, latitude and altitude as it is proposed in SOUPA). In

addition, we also include other concepts such as Service or Operation in our ontology.

These concepts provide the ontology with a greater semantic richness in order to express

how the system provides services to users and how users interact with these services (user

behaviour). For instance, we can relate services that are available for users with the

locations of the AmI environment in which they are provided; we can also relate actions

performed by users with the service operations that are activated with these actions. This

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

68

information helps the system to study the behaviour of users in more detail to properly

adapt itself to it.

Next, we explain all these concepts and the relationships among them in detail.

Additionally, we show their in Figure 20 using the approach presented by Al-Muhammed

et al [49]. We have modified this approach to differentiate between the context

information that can be updated at runtime. Thus, two kinds of concepts can be defined:

non lexical concepts (enclosed in solid rectangles), that represent the ontology classes;

and called lexical concepts (enclosed in solid ellipses), that represent the properties of

each class. Figure 20 also shows a set of relationships among concepts, represented by

connecting lines, such as isExecutedIn from the Action class that indicates in which

location the action has been executed. The arrow connection represents a one-to-one

relationship or many-to-one relationship (the arrow indicates a cardinality of one) and the

non-arrow connection represents a many-to-many relationship. On other hand, a small

circle near the source or the target of a connection represents an optional relationship.

Thus, Figure 20 shows the principal concepts, properties and relationships of our

ontology. The main conceptual primitive of this ontology is the service metaphor. It

describes the services of the system for the AmI ecosystem. A service is an entity that

provides a coherent set of functionality which is defined in terms of atomic operations.

The first concept that we can see is Service, which represents the services that are

available in the AmI environment (e.g. Lighting, Video Player, Alarm, etc). A service is

characterized by a name and a ServiceCategory (e.g. illumination, multimedia, security,

etc). Each service category is characterized by a name and can belong to another

category. This aspect allows us to define hierarchies of categories. Services can be related

to each other by means of two relationships: parent and uses. On the one hand, the parent

relationship allows us to indicate hierarchies of services by defining parent and child

services (e.g. we can define the Gradual Lighting service as a child of the Lighting

service). This relationship is use with inheritance purpose in order to indicate that a

service presents all the characteristics of another service plus some additional ones. On

the other hand, the use relationship indicates that a service needs to use another service in

order to be properly executed (e.g. the Alarm service needs to use a Presence Detection

service in order to be activated when someone is detected a specific location). The

behaviour of each service is characterized by its Operations which are described with a

69

name (e.g. the operations of a service Video Player may be play, stop, forward, review,

etc). Finally, each service is located in a specific Location.

The Services Operations can be also related by interactions. An Interaction allows a

set of services to communicate among them as reaction to an event. It is describe by

means of a condition, which represents the trigger condition of the interaction, and a set

of messages that indicate the operations of the services that have to be executed. For

instance, an interaction could be the increase in the illumination intensity when it gets

dark.

The concept Location represents the different areas of the AmI environment (e.g.

Kitchen, Bedroom, Garden, etc.). It is characterized by a name. Locations can be related

to each other by means of three types of relationships: made up, adjacency and mobility.

The made up relationship indicates that a location consists of other locations (e.g. the

location First Floor is made up of the locations Kitchen, Hall and Living Room). The

adjacency relationship indicates that two locations are physically together (e.g. the Parent

Bedroom and the Children Bedroom are adjacent). The mobility relationship indicates the

same as the adjacency relationship plus the fact that there is a way for persons to go from

one location to the other (e.g. the Hall and the Living Room are adjacent and the Hall has

a door to go to the Living Room).

Fig. 20 A partial view of the Context ontology for AmI systems

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

70

Another important concept in the ontology is Person, which represents the users of

the AmI system. Each person is characterized by some personal data such as the name

and some contact data such as the email. More lexical concepts are associated to Person

in order to properly define the personal and the contact data. However, they have been

omitted to not overload Figure 20. Each person performs Actions that are characterized

by the time and the date in which they are performed. The fact that a person performs an

action implies that an operation of a service is activated as a consequence of the action.

Thus, Actions are related to Operations as well as to the location where the action is

performed. Furthermore, persons may be related to each other by means of the

relationship knowns. This relationship allows us to indicate which the friends of a specific

person are. With regard to the location in which persons are, it can be described by means

of the relationship currentPosition. Another relationship is defined in order to indicate the

locations where users can go from its current position (as we will see Section 5.3, this is

information derived from the current position of the user and the different mobility

relationships defined among locations).

Persons are also associated to Policies. Each Policy restricts or guides the operations

that its associated persons can perform (e.g. we can create a policy for children that does

not allow them to activate the security service or the heating service). A Policy is

characterized by its creator (a Person), and its creation time and date.

To conclude this section, note that the most important contributions of our ontology

are both the high level of abstraction that present its concepts and the great semantic

richness that the relationships between these concepts have. These aspects facilitate the

analysis and reasoning about Context in order to support the adaptation and anticipation

aspects. Finally, it is worth noting that this section presents a partial view of the ontology

(only the classification scheme). In addition, some concepts such as those that describe

characteristics of a Person, or those that describe aspects related to preferences or beliefs

have been omitted to not overload the section.

5.2.2 OWL Context Repository

We store all the context information related with a pervasive system in an OWL

repository based on our ontology. Thus, we have the system specification in a machine

interpretable language what facilitates the automated reasoning about context

information. Furthermore, there are several reasoners or inference engine such as

71

Racer[50] or Pellet[45] that allow us to infer knowledge from OWL. Additionally, the

OWL specification provides us with persistence support since OWL allows us to store

both information available at modelling time and information available at runtime.

The strategy that we have followed to create an OWL Context repository (see Figure

23) of an AmI system presents two main steps:

1. First, the concepts and the relationships between concepts of the ontology are

described by means of OWL classes and properties (we have used the EODM

plug-in for this purpose). This description is common to every AmI systems, so it

only needs to be created once. After its initial creation, it can be reused in the

development of other AmI systems. To create the OWL description of our

ontology the following guides are given:

o Non-lexical concepts of the ontology are defined as OWL classes. For

instance, we have created the OWL class Service to represent the non-lexical

concept Service.

o Lexical concepts are defined as properties. The domain of these properties is

the class created from the non-lexical concepts to which the lexical concept is

associated. The range of these properties is defined from specific DataType.

For instance, we have created the OWL property Name to represent the lexical

concept name, which appears in the ontology several times. Its domain is

defined from all the non-lexical concepts to which it is associated (Service,

ServiceCategory, Person, Location and Operation). Its range is defined from

the string DataType.

o Each relationship between Non-Lexical Concepts is defined by means of an

object property. The domain and range of this property is defined from the two

associated non-lexical concepts. Developers must analyze the relationship

semantics to select which concept is the domain, and which is the range.

Optionally, if developers consider it opportune, a second object property can

be defined as the inverse of the created one (whose domain and range is

defined from the same concepts but in an inverse way).

For instance, the relationship isLocated between the concepts Service and

Location is supported by creating the property isLocated whose domain is

Service and whose range is Location. This property allows us to indicate the

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

72

location in which a service is deployed. If we need to indicate also the services

that are deployed in a location the inverse property can be created.

2. Second, the concepts of the ontology are instantiated for each specific AmI

system. To do this, the corresponding individuals have to be created. For

instance, if an AmI system must support a Lighting service in the kitchen, the

Lighting individual (instantiation of the Service concept) and the Kitchen

individual (instantiation of the Location concept) have to be created. The relation

between these two individuals is defined by creating the isLocated property in the

Lighting individual and making this property refers to the Kitchen individual.

Note that there two types of individuals that need to be created in the OWL

Context repository: (1) those that are available in design time (such as the

location of the environment or the services provided by the system) and (2) those

that are only available at run time (such as the user actions). The first type of

individuals is created by an automatic model-to-model transformation that we

explain in next section. How the last type of individuals is created will be

explained further.

5.2.2.1 Automatic generation of context data available at design time

In this section, we explain the automatic transformation that we have implemented

to generate the individuals that represent the information available at design time in the

Context Repository. As we have integrated our approach with the method presented in

Chapter 4, the information available at design time is represented in the PervML models.

Thus, this transformation takes as input a PervML model (which is composed of the

models described in Section 4.1 and Section 5.1) and the OWL repository obtained in the

first step (which contains the concepts and the relationships between concepts of the

ontology by means of OWL classes and properties); and obtains as output the OWL

context repository with all the information contained that was represented in the PervML

model of input.

To carry out the transformation, we first describe the mapping between the input and

the output in an intuitive way, and then we explain how to automate these mappings.

Mappings

73

We describe the mappings in an intuitive way defining the outputs produced from

each input. On the one hand, the output from the PervML Ontology is one to one, in other

words, the output and the input are the same. On the other hand the outputs produced

from each PervML element are the followings:

• From every instance of a class C of the PervML metamodel, an individual of the OWL

class that represent the PervML metamodel class C is produced. For instance, the

individual Lighting of the Service OWL class is produced from the service Lighting in

the PervML Service Model.

• From every instance of a PervML metamodel class attribute A, an instantiation of the

corresponding OWL property is obtained. For instance, from the attribute name of the

GradualLighting service whose value is GradualLighting, the datatype property name

in the GradualLighting individual is instantiated with the value GradualLighting.

• From every PervML metamodel relationship between an instance of a class A and an

instance of a class B, the OWL object properties of the individuals that represent these

instances are instantiated. This is, the object property defined in the class A to represent

the relationship with the class B, is instantiated with the individual that represents the

instance of the class B; and the object property defined in the class B to represent the

relationship with the class A, is instantiated with the individual that represents the

instance of the class A. For instance, from the child attribute of the GradualLighting

service whose value is the Lighting service instance, the child object property of the

GradualLighting individual is instantiated with the Lighting service individual.

Model-to-Model transformation

In order to automate the transformation we have implemented the corresponding

rules based on the mappings. To do this, we have used the ATL plug-in and the EODM

plug-in (which has been explained in Section 2.5). Figure 21 shows a global vision of the

transformation where we can see the input and the output and the metamodels to which

they are conformed. Using ATL, we have implemented the mappings described above by

means of model-to-model rules that generate the Context Repository with the

corresponding OWL individuals (defined according to the OWL metamodel provided by

EODM). Examples of these rules are shown in Fig. 22. The first rule is part of the set of

rules that copy the input context repository in the output context repository. This rule

particularly copies the OWL classes from the input to the output. The second rule is part

of the set of rules that transform the information contained in the PervML models into the

An MDD Strategy for developing

Context

corresponding individuals in the output context repository

transforms the locations

Structural Model

O

automatically

Using the EODM plug

this plug

1º. From OWL

rule

 from

 to

2º. From l

class

rule

 from

 to

An MDD Strategy for developing

Context-Aware Pervasive Systems

corresponding individuals in the output context repository

transforms the locations

Structural Model) in OWL individuals of the

Fig. 21

Once the PervML models have been specif

automatically obtain

Using the EODM plug

this plug-in or in OWL source code.

1º. From OWL classes to OWL classes (Copy Rule)

rule OWLClass2OWLClass {

from c : OWL!OWLClass

to oc : OWL!OWLClass (

subClassOf <

uriRef <

label <

namespace <

ownedProperty <

2º. From locations defined in PervML to OWL individuals of the Location

rule PervMLLocation2OWLIndividual {

from l : PervML!Location

to i : OWL!Individual (

uriRef <

label <

type

 label

 u: OWL!URIReference (fragmentIdentifier <

 n: OWL!LocalName (name <

 uri: OWL!UniformResourceIdentifier (name <

An MDD Strategy for developing

Aware Pervasive Systems

corresponding individuals in the output context repository

transforms the locations defined in PervML (to be precise in the

in OWL individuals of the

Fig. 21 Transformation to obtain the system OWL specification

nce the PervML models have been specif

obtain in OWL the information

Using the EODM plug-in we can see the result with either the tree editor that provides

in or in OWL source code.

classes to OWL classes (Copy Rule)

OWLClass2OWLClass {

c : OWL!OWLClass

oc : OWL!OWLClass (

subClassOf <-

uriRef <- c.uriRef,

label <- c.label,

namespace <- c.namespace,

ownedProperty <

ocations defined in PervML to OWL individuals of the Location

PervMLLocation2OWLIndividual {

l : PervML!Location

i : OWL!Individual (

uriRef <- u,

label <- label,

type<-OWL!OWLClass.allInstances()

label: OWL!PlainLiteral (lexicalForm <

u: OWL!URIReference (fragmentIdentifier <

n: OWL!LocalName (name <

uri: OWL!UniformResourceIdentifier (name <

corresponding individuals in the output context repository

defined in PervML (to be precise in the

in OWL individuals of the Location

Transformation to obtain the system OWL specification

nce the PervML models have been specif

the information

in we can see the result with either the tree editor that provides

in or in OWL source code.

classes to OWL classes (Copy Rule)

oc : OWL!OWLClass (

 c.subClassOf,

c.uriRef,

c.label,

c.namespace,

ownedProperty <- c. ownedProperty

ocations defined in PervML to OWL individuals of the Location

PervMLLocation2OWLIndividual {

l : PervML!Location

i : OWL!Individual (

label,

OWL!OWLClass.allInstances()

: OWL!PlainLiteral (lexicalForm <

u: OWL!URIReference (fragmentIdentifier <

n: OWL!LocalName (name <- l.name),

uri: OWL!UniformResourceIdentifier (name <

Fig. 22 ATL rules

corresponding individuals in the output context repository

defined in PervML (to be precise in the

Location Class.

Transformation to obtain the system OWL specification

nce the PervML models have been specified, we can apply the ATL rules to

the information of the system

in we can see the result with either the tree editor that provides

classes to OWL classes (Copy Rule)

c.subClassOf,

c. ownedProperty)}

ocations defined in PervML to OWL individuals of the Location

OWL!OWLClass.allInstances()->select(c|

 c.label.name=

: OWL!PlainLiteral (lexicalForm <

u: OWL!URIReference (fragmentIdentifier <

l.name),

uri: OWL!UniformResourceIdentifier (name <

ATL rules

Master thesis of Estefanía Serral

corresponding individuals in the output context repository. This rule pa

defined in PervML (to be precise in the Location Diagram of the

Class.

Transformation to obtain the system OWL specification

ied, we can apply the ATL rules to

the system available at design time

in we can see the result with either the tree editor that provides

ocations defined in PervML to OWL individuals of the Location

>select(c|

c.label.name='Location'

: OWL!PlainLiteral (lexicalForm <- l.name),

u: OWL!URIReference (fragmentIdentifier <- n, uri <

uri: OWL!UniformResourceIdentifier (name <- l.name)}

Master thesis of Estefanía Serral

. This rule particularly

Location Diagram of the

Transformation to obtain the system OWL specification

ied, we can apply the ATL rules to

available at design time

in we can see the result with either the tree editor that provides

ocations defined in PervML to OWL individuals of the Location

Location')),

n, uri <- uri),

l.name)}

Master thesis of Estefanía Serral

74

rticularly

Location Diagram of the

ied, we can apply the ATL rules to

available at design time.

in we can see the result with either the tree editor that provides

ocations defined in PervML to OWL individuals of the Location

)),

75

Finally, Figure 23 shows a representative example of the OWL Context repository.

This figure shows the OWL description of the non-lexical concepts Service and Location

including the lexical concept name and the isLocated relationship. Some instantiations of

these concepts are also shown.

1. DESCRIPTION OF ONTOLOGY’S CONCEPTS
// Non-Lexical Concepts: Location and Service
<owl:Class rdf:about="#Location">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#Service">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

// Lexical Concept: name
<owl:DatatypeProperty rdf:about="#name">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="#Service "/>
 <rdf:Description rdf:about="#Location"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>
// Relationship: isLocated
<owl:ObjectProperty rdf:about="#isLocated">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Location"/>
</owl:ObjectProperty>

2. INSTANTIATION OF CONCEPTS
<Location rdf:about="#Kitchen">
 <name rdf:datatype="&xsd;string">Kitchen</name>
 <mobility rdf:resource="#Kitchen"/>
 <mobility rdf:resource="#Corridor"/>
 <adjacency rdf:resource="#Corridor"/>
 <adjacency rdf:resource="#ChildrenRoom"/>
</Location>
<Service rdf:ID="Lighting">
 <name rdf:datatype="string">Lighting</name>
 <isLocated rdf:resource="#Kitchen"/>
</Service>
<Person rdf:ID="Peter">
 <name rdf:datatype="string">Peter</name>
 <email rdf:datatype="string">pvalderas@dsic.upv.es</email>
 <currentPosition rdf:resource="#Kitchen"/>
 <canGo rdf:resource="#Corridor "/>
 <canGo df:resource="#Kitchen "/>
</Person>

Fig. 23 Example of simple OWL description based on our Ontology

5.3 A Framework for Managing the OWL Context
Repository

In this section, we introduce a Java framework to manage the OWL Context

repository presented in the previous subsection. This framework allows us to at runtime

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

76

capture and manage the context information that can be directly obtained from the

pervasive system (e.g. through sensors). Moreover, it allows us to derive from this

directly captured information all the information at semantic level that we required to

carry out the system adaptation.

The structure of this framework is basically defined by three main classes (see

Figure 24):

• CommunicationWithOWL: This class is in charge of supporting generic access to the

OWL Context repository. This class provides two methods, one for add any individual

to the OWL Context repository at runtime and other for delete any individual of the

OWL Context repository at runtime.

• Reasoning: This class is in charge of reasoning about Context information. To do this,

it retrieves the Context information and the SWRL rules and uses an OWL reasoner to

analyze them and derive additional one. If new information is derived, this class adds

this to the Context Repository.

• PervMLService: This class has been explained in Section 4.1, but has been modified in

order to also capture the context information that is only available at runtime. To do

this, when an action is successfully executed, this class creates the corresponding

individual of the Action class and adds it to the context repository by using the

CommunicationWithOWL class. In addition, this class updates the derived information

(user mobility, services state, etc.) from this action by using the Reasoning class.

Fig. 24 General schema of the Java Framework Classes

77

In order to better understand the classes of the framework we explain how we use

them in the following subsections.

5.3.1 Generic management of the OWL Repository

The fact that context continuously changes creates the necessity of updating the

Context repository or accessing to it at runtime. It implies to add, modify, delete, or

access to individuals in the OWL Context repository. To do this, we have created the

CommunicationWithOWL class that encapsulate these operations. Therefore, we can

change the technology in which the repository is implemented by only modifying this

class.

Thus, the CommunicationWithOWL class presents four methods that generalize

these operations in order to be able to be used for every OWL individual: addIndividual,

modifyIndividual, deleteIndividual and getIndividual. These methods have generic

parameters that every individual has. The first two methods have as parameters: the class

of the individual, the name that identify the individual, the set of its attributes or

properties and the set of its relationships; and the last two methods have parameters: the

class of the individual and the name that identify the individual

Implementation Aspects. In order to implement the generic mechanisms that allow

the CommunicationWithOWL class to manipulate the OWL Context repository we have

used the OWL API 2.1.1 [51]. This API is an open source project that is available as a set

of JAR packages. These packages can be imported in any software implemented in Java.

Figure 25 shows an example of how this API is used. It shows part of the code that

implements the method addIndividual. This code does the following:

1. First, it loads the OWL Context repository through the OWLManager class and

defines an OWLDataFactory object for creating OWL elements. These classes

belong to the OWL API.

2. Next, it creates the new individual assertion axiom of the corresponding class and

adds it to our ontology. As we can see in Figure 25, the identifier of the class and

the individual are passed as parameters.

3. Next, it creates the different properties of the newly created individual. To do this

it:

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

78

a. gets the properties of the individual passed as parameter (the name of this

parameter is attributes);

b. forms the data properties of the individual;

c. and adds the axioms to our ontology.

4. Next, it creates the relationships of the newly created individual. To do this, it:

a. gets the relationships of the individual passed as parameter (the name of

this parameter is relations);

b. form the object properties of the new individual;

c. and adds the axioms to our ontology.

5. Finally, both the individual and its properties are saved in the OWL Context

repository.

79

Fig. 25 AddIndividual method from the CommunicationWithOWL class

An MDD Strategy for developing

Context

5.3.2

Reasoning about Context c

derive Context from the existing one

position of a user and the different mobility relationships defined for the AmI

environment (those that relat

another), we can derive all the locations

position.

In order to define these derivations, we use SWRL rules

in Section 2.

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

read as: whenever th

conditions specified in the consequent must also hold.

Figure

can go b

do this, we have defined an antecedent (body) that defines a

currentPosition

hand,

property is relating. On the other hand,

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

An MDD Strategy for developing

Context-Aware Pervasive Systems

5.3.2 Reasoning about Context

Reasoning about Context c

derive Context from the existing one

position of a user and the different mobility relationships defined for the AmI

environment (those that relat

another), we can derive all the locations

position.

In order to define these derivations, we use SWRL rules

in Section 2.4.2). SWRL extends OWL with Horn

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

read as: whenever th

conditions specified in the consequent must also hold.

Figure 26 shows an example of S

can go by analyzing its current position and the mobility relationship among locations. To

do this, we have defined an antecedent (body) that defines a

currentPosition property. For each property, two variables have been defined. On the one

hand, location1 and

property is relating. On the other hand,

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

An MDD Strategy for developing

Aware Pervasive Systems

Reasoning about Context

Reasoning about Context consists in analyzing the repository of Context in order to

derive Context from the existing one

position of a user and the different mobility relationships defined for the AmI

environment (those that relate locations indicating that persons can pass from one to

another), we can derive all the locations

In order to define these derivations, we use SWRL rules

WRL extends OWL with Horn

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

read as: whenever the conditions specified in the antecedent hold (is "true"), then the

conditions specified in the consequent must also hold.

Fig. 26 Reasoning example by means of SWRL rules

shows an example of S

y analyzing its current position and the mobility relationship among locations. To

do this, we have defined an antecedent (body) that defines a

property. For each property, two variables have been defined. On the one

and location2

property is relating. On the other hand,

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

Reasoning about Context

onsists in analyzing the repository of Context in order to

derive Context from the existing one at semantic level

position of a user and the different mobility relationships defined for the AmI

e locations indicating that persons can pass from one to

another), we can derive all the locations to which

In order to define these derivations, we use SWRL rules

WRL extends OWL with Horn

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

e conditions specified in the antecedent hold (is "true"), then the

conditions specified in the consequent must also hold.

Reasoning example by means of SWRL rules

shows an example of SWRL rule. This rule tells the system where a user

y analyzing its current position and the mobility relationship among locations. To

do this, we have defined an antecedent (body) that defines a

property. For each property, two variables have been defined. On the one

 are instantiated with the locations that the mobility

property is relating. On the other hand, person

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

onsists in analyzing the repository of Context in order to

at semantic level. For instance, given the current

position of a user and the different mobility relationships defined for the AmI

e locations indicating that persons can pass from one to

to which the user can

In order to define these derivations, we use SWRL rules

WRL extends OWL with Horn-like rules. It enables Horn

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

e conditions specified in the antecedent hold (is "true"), then the

conditions specified in the consequent must also hold.

Reasoning example by means of SWRL rules

L rule. This rule tells the system where a user

y analyzing its current position and the mobility relationship among locations. To

do this, we have defined an antecedent (body) that defines a

property. For each property, two variables have been defined. On the one

are instantiated with the locations that the mobility

person and location1

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

Master thesis of Estefanía Serral

onsists in analyzing the repository of Context in order to

. For instance, given the current

position of a user and the different mobility relationships defined for the AmI

e locations indicating that persons can pass from one to

the user can pass

In order to define these derivations, we use SWRL rules (which ha

like rules. It enables Horn

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

e conditions specified in the antecedent hold (is "true"), then the

Reasoning example by means of SWRL rules

L rule. This rule tells the system where a user

y analyzing its current position and the mobility relationship among locations. To

do this, we have defined an antecedent (body) that defines a mobility

property. For each property, two variables have been defined. On the one

are instantiated with the locations that the mobility

location1 are instantiated with a user

and the location where s/he currently is. Note that the current location of the

instantiated in the same variable that is used to instantiate a location related by the

Master thesis of Estefanía Serral

onsists in analyzing the repository of Context in order to

. For instance, given the current

position of a user and the different mobility relationships defined for the AmI

e locations indicating that persons can pass from one to

pass from its current

(which have been explained

like rules. It enables Horn-like rules to

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

e conditions specified in the antecedent hold (is "true"), then the

L rule. This rule tells the system where a user

y analyzing its current position and the mobility relationship among locations. To

mobility property and a

property. For each property, two variables have been defined. On the one

are instantiated with the locations that the mobility

are instantiated with a user

and the location where s/he currently is. Note that the current location of the user is

instantiated in the same variable that is used to instantiate a location related by the

Master thesis of Estefanía Serral

80

onsists in analyzing the repository of Context in order to

. For instance, given the current

position of a user and the different mobility relationships defined for the AmI

e locations indicating that persons can pass from one to

from its current

ve been explained

like rules to

be combined with an OWL knowledge base. These rules are of the form of an implication

between an antecedent (body) and a consequent (head). The intended meaning can be

e conditions specified in the antecedent hold (is "true"), then the

L rule. This rule tells the system where a user

y analyzing its current position and the mobility relationship among locations. To

property and a

property. For each property, two variables have been defined. On the one

are instantiated with the locations that the mobility

are instantiated with a user

user is

instantiated in the same variable that is used to instantiate a location related by the

81

mobility relationship (location1). This means that this antecedent is true only when

location1 is both the location where the user is, and a location that is related to other

location. The consequent of this rule indicates that a canGo property must exist. This

property establishes that the person instantiated by the antecedent in the variable Person

can go to the location instantiated in the variable location2.

Note that this rule is defined by using the high-level concepts defined in our

ontology. Thus, we are reasoning about Context in a high level of abstraction, by using

notions close to the real environment such as person, location and the possibilities of

mobility.

Fig. 27 Reasoning about Context

In order to include SWRL rules into the AmI system we have created a rule

repository (also based on OWL), and we have implemented the Reasoning class, which is

in charge of applying these rules into the OWL Context repository. To do this, every time

that the OWL Context repository is modified, a method from the Reasoning class is

invoked. This method receives as parameters the source of the context repository and the

rules repository, and performs the following actions (see Figure 27):

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

82

1. It create the corresponding ontologies from the source files of the Context

repository and the rules repository:

2. It loads in the Reasoner object the ontologies that contains the context

information and the SWRL rules.

3. It obtains the inferred information by the reasoner when the Context information

is analyzed by considering the SRWL rules.

4. It adds the inferred information to the ontology. For instance, Figure 27 shows an

example where a relationship (canGo) is updated by means of the SWRL rule

presented above. According to this figure, Peter is initially in the Hall and then

the canGo property reference to the location LivingRoom. When Peter goes to the

LivingRoom and SWRL rules are applied to the new Context information, the

canGo property references to the locations Hall, Kitchen and Corridor.

Finally, note that the Reasoning class provides us with:

• Independency from the used reasoner. If we want to use a reasoner different from

Pellet, modification efforts are all focused on updating the Reasoning class. The rest of

the system does not need to be modified.

• Flexibility for extending the system with new rules, even when the system is deployed

and being executed. To do this, we just need to include the new rules into the rule

repository. The next time that rules will be recovered from the repository in order to be

applied the new rules will be considered.

• Flexibility for doing an exhaustive processing of the inferred information before it is

added to the repository. This processing would be done in the Reasoning class before

adding the inferred axioms.

Implementation Aspects. As we have introduced above, the reasoning about

Context is supported by the reasoner Pellet 1.5.2 and the OWL API 2.1.1. Pellet is an

open source OWL reasoner in Java that is provided as a set of JAR packages. The use of

this reasoner is controlled by the Reasoning class. Thus, this class import the Pellet

packages and use the provided OWL API in order to communicate with Pellet. Figure 28

shows part of the code that infers the corresponding context information:

1. We create an OWLManager object in order to create the OWL Context repository

and the SWRL rules repository ontologies from their source files.

2. We create an object of the Pellet OWLReasoner and load the OWL Context

repository ontology together with the SWRL rules ontology into it.

83

3. We get the inferred information about individuals after the application of the

SWRL rules by using the reasoner.

4. We update the OWL Context repository with the values obtained from the

reasoner.

Fig. 28 Example of use of the Pellet Reasoner

5.3.3 Capturing Context at Runtime

To deal with capturing all the changes in the context information produced at

runtime, our approach registers the information about every interaction in the OWL

specification, since every change in the context information is produced by an interaction.

This makes the approach is flexible and powerful enough to facilitate the management

and the processing of the context information. So, an interaction with the system can be

due to:

1. A change in the environment. This interaction is detected by the sensors of the

system. In this case, it is not the user who executes the operation, but the

environment. For instance, when a user goes into the parents’ room, a state

change of the presence detection sensor of the parents’ room is produced. As a

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

84

consequence, the driver that controls this sensor informs to PresenceDetection

service that uses it and then, this service checks its state by executing the

corresponding operation (in this case, the presenceDetected operation).

2. An explicit request by a user. This interaction is produced when a user executes a

specific operation of a service (for example, the open operation of the Blind

service of the parents’ room) through the user interfaces that the system provides.

An interaction in terms of the ontology is an action; thus, when an interaction is

produced, the corresponding instance of the Action Class is created and is added to the

Context Repository. To do this, we have used the addIndividual method of the

CommunicationWithOWL class.

Finally, when an action is added, we use the Reasoning class in order to derive

information from the executed actions, such as user mobility (from the presence detector

services and the identification services) or service state (from state machine of the system

services and executed actions). To allow this derivation of information we have added to

the SWRL rules repository the corresponding SWRL rules. Thus, we can deduce every

information that we need at semantic level, since every context information that we can

directly obtain from the pervasive system is stored in the repository; we only need to add

the appropriate rules to deduce the corresponding information.

As a representative example, Figure 29 illustrates how user actions are stored in the

OWL Context repository. In particular, this figure shows how the service Lighting

located in the Kitchen is activated, and how the corresponding user action is registered in

the OWL Context repository. According to this figure:

1. First, a user activates the switch of the kitchen in order to turn lights on.

2. This fact activates the On operation of the Lighting service, which is

implemented in an OSGi server. This operation executes code that switches the

lamps of the kitchen on.

3. Next, for inheritance from the PervMLService class, the Lighting service checks

if the operation has been successfully executed and if so the service:

a. analyzes who and when the action has been executed;

b. creates the corresponding individual;

c. adds this action to the context repository by using the

CommunicationWithOWL class;

85

d. finally, it an object of the Reasoning class in order to derive relevant

context information from the executed actions.

Fig. 29 Extending the OWL Context Repository at runtime

In order to integrate our approach with the method presented in Chapter 4, the step 3

is carried out in the PervMLService class (see Section 4.2). If we wanted to integrate our

approach with other method, we would only have to carried out this step in the

corresponding class.

Implementation Aspects. In order to capture every operation that is executed in the

system, we have used the PervMLService class of the implementation framework

explained in Section 4.2. This class is an abstract class from which every service inherits.

If a change is occurred in any service, the manageUpdate method of the PervMLService

is executed. This method checks if the service state has change, and if so, it realizes a set

of actions. The last action of this set of actions is the invocation of the method

captureContextInformation that we have implemented in order to add the corresponding

action to the OWL Context Repository. This method performs the following actions (see

Figure 30):

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

86

1. First, it gets the system user that has executed the action and the current date and

time.

2. Next, it forms the parameters that the addIndividual method of the

CommunicationWithOWL class needs to add the corresponding individual to the

context repository. To do this, it creates the different properties of the newly

created individual. In this example, we only show the creation of the property that

indicates the user that has performed the action. The rest of properties are

analogously created.

3. Next, the individual with all its properties are saved in the OWL Context

repository by using the addIndividual method of the CommunicationWithOWL

class.

4. Finally, the method invokes the saveInferredIndividuals of the Reasoning class in

order to infer the corresponding new context information from the new added

action.

Fig. 30 Code for extending the owl context repository

87

5.4 Conclusions

We have described in this Chapter a set of models to properly capture context at

modelling time. We have also defined a context ontology and an OWL context repository,

which is based on this ontology, for persistently storing context in a machine interpretable

language. Furthermore, we have proposed a framework that contains the necessary

mechanisms to manage context at runtime and interpret it at a semantic level by using this

repository. Finally, we have integrated all of these contributions with the MDD method

presented in the previous Chapter and explained how they could be easily integrated with

other similar approaches.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

88

6. User Support: Privacy and Adaptation

We have presented in the previous chapter an infrastructure to properly capture,

manage and understand context in order to systems possess sufficient intelligence and

knowledge-awareness to react appropriately according to context. However, a context-

aware pervasive system not only has to know its context, but also it must react and act

according to it in order to increase usability and effectiveness of the services that the

system provides. To achieve this we focus on two requirements that every context-aware

system must fulfil [12, 52, 7]: ensuring the privacy and security of the system and

adapting the system to user behaviour by automatically performing user actions when

needed without explicit user intervention.

6.1 Privacy and Security of the system

Context information, by its nature, can contain very private and personal data,

what introduces privacy and security concerns that must be faced by every context-aware

system by means of establishing and enforcing user defined policies.

Both contact and personal user information, and security policies of the system are

specified at design time by using the User Model (see Chapter 5). However, this

information has to be usually modified after the system is put into operation by the

system end-users themselves. Thus, we must also provide tools to update this information

but ensuring at the same time the privacy of this information.

There are numerous the changes that this information can have: the number of users

can increase or decrease; the information of a user can change or a user can want

complete or modified his/her information; if some services are added to the system, users

can want create or modified some policies; etc. In addition, it would be very inefficient

and annoying having to inform the analyst and the architects of the system in order to

specify and generate again the code of the system, stop the current system, and install and

put into operation the new system, every time that users or policies change. Therefore, it

89

would be the most desirable that this information could be updated at runtime and by end

users, in an intuitive and easy way. For this reason, we develop an end-user tool, which is

explained in detail in Section 6.1.1. This tool allows system users update its personal and

contact information when required; and also allow users with the corresponding

permissions to modify the security policies. This tool provides a web interface, an

interface very intuitive for the users of AmI systems.

Furthermore, user interfaces must also adapt to user information in order to only the

users that are registered in the system can access to it and a user only can use the services

that its policy allows. To do this, we have extended the interface layer provided by the

method presented in Chapter 4. Thus we get ensuring the security and privacy of the

system. We explain this extension in detail in Section 6.1.2.

6.1.1 An End-User Tool for managing User Information at Runtime

User information must be able to be managed by the system end-users as any service

of the system, in such a way that these services are available for the users whose policy

has permission to manage this information (e.g. only users with the Administrator policy

will be able to change the policies of system users and each user will be able to change

only its own private information). To allow this, we have developed an end-user tool for

managing this information. This tool has been developed by following the philosophy of

the proposed method.

Thus, we have specified, by using the PervML models, and generated, by using the

generation tool provided by the PervML method (Section 4.2.7), two new services: the

UserManagement service and the PolicyManagement service. These services will be

available for every system, developed or generated by following our method or not, by

using the interfaces that our method provides to control the system. In addition, we plan

in further work developing a tool to give support to the whole development of context-

aware pervasive systems; this tool will have specified these services by default in the

corresponding models of PervML.

As we have said, to develop these services, our approach allows us to automatically

generate their code from their specification by using the proposed models. However, the

drivers that use these services have to be manually implemented. These drivers will be in

charge of managing the information in the OWL repository. Thus, our approach provides

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

90

us with technology independence, in such a way that if we changed the repository for

using another technology instead of OWL, we would only have to change the

implemented drivers, because the rest of the code would be the same.

 Therefore, in order to create these services by following our approach, we have

followed the following steps:

1. Specify the type of service by using the Services Model. To do this, we specify

two new services in this model by indicating: the operations that it will have and

the pre and post conditions of each operation; and the state machine of the

service. Fig. 31 shows the specification of these type of services by using the

tool presented in Section 4.2.3. As we can see in this figure, we have specified

the UserManagement and the PolicyManagement as UML classes. Each one of

these classes contains the operations that each service provides. In addition, Fig.

31 shows at the bottom the state machine of each service. Both of them are very

similar, with an only state, the Created state, and with four operations whose

execution returns the service to this state.

Fig. 31 A partial view of the Services Model for the user and policy management

91

2. Specify the service by using the UML Component diagram of the Structural

Model. To do this, we specify two new components by indicating the type of

service that they provide and the location where it will be deployed. Fig. 32

shows the specification of these services by using the tool presented in Section

4.2.3. As we can see in this figure we have specified two components, the

UserManagementComponent and the PolicyManagementComponent. These

components respectively provide the UserManagement and PolicyManagement

services, and are located in the smart home.

Fig. 32 The UML Component Diagram for the user and policy management

3. Specify the driver interfaces by using the Binding Provider Model. To do this,

we only have to specify the methods that each driver must have. Fig. 33 shows

the specification of binding providers by using the tool presented in Section

4.5.2. As we can see in this figure, we have specified the UserManagementBP

and the PolicyManagementBP as UML classes. Each one of these classes

contains the operations that each interface has.

An MDD Strategy for developing

Context

4.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Fig. 33 The

4. Apply the automatic code transformations that translate the above specified

models into

section 4.2.3

models and also shows a partial view of the code of the

service.

An MDD Strategy for developing

Aware Pervasive Systems

The Binding Provider Model for the user and policy management

Apply the automatic code transformations that translate the above specified

models into Java-OSGi code

2.3. Fig. 34 shows

models and also shows a partial view of the code of the

Binding Provider Model for the user and policy management

Apply the automatic code transformations that translate the above specified

OSGi code. To do this, we have also used the tool presen

shows brought out some of the projects generated from the

models and also shows a partial view of the code of the

Binding Provider Model for the user and policy management

Apply the automatic code transformations that translate the above specified

. To do this, we have also used the tool presen

brought out some of the projects generated from the

models and also shows a partial view of the code of the

Master thesis of Estefanía Serral

Binding Provider Model for the user and policy management

Apply the automatic code transformations that translate the above specified

. To do this, we have also used the tool presen

brought out some of the projects generated from the

models and also shows a partial view of the code of the

Master thesis of Estefanía Serral

Binding Provider Model for the user and policy management

Apply the automatic code transformations that translate the above specified

. To do this, we have also used the tool presented in

brought out some of the projects generated from the

models and also shows a partial view of the code of the UserManagement

Master thesis of Estefanía Serral

92

Apply the automatic code transformations that translate the above specified

ted in

brought out some of the projects generated from the

UserManagement

93

Fig. 34 A screen shot that shows part of the generated code from the specification of the User and

Policy Management

5. Implement the drivers that respectively manage the users and policies of the

system. To do this, we have implemented a driver for each service. These

drivers implement the methods defined in their interfaces, which provide the

functionality required by the UserManagementComponent and the

PolicyManagementComponent services. These methods use the

CommunicationWithOWL class to add, modify, delete and get the individuals of

users or policies. For instance, Fig. 35 shows the method that add a new user. As

we can see in this figure, it forms the attributes that the addIndividual method of

the CommunicationWithOWL class needs to add the corresponding individual to

the context repository. To do this, 1) it indicates the name of the class (Person)

and the name of the individual; 2) it creates the different properties of the newly

user individual; 3) it creates the different relationships with other individuals;

and 4) it calls the addIndividual method of the CommunicationWithOWL class to

add the new user. We only show in Figure 35 the creation of a few properties

and relationships; the rest of properties and relationships are analogously

created.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

94

Fig. 35 Method from the UserManagement Driver to add a new user to the OWL Context

Repository

6. Finally, we export as jars the generated code (step 4) and the drivers (step 5) and

install them in an OSGi server in order to provide the services to users. As we

have modelled the management of users and policies like PervML services, the

web interface that was provided by the method to develop pervasive systems

(Chapter 4) provides us with a web user interface by default for these services.

For instance, Fig. 36 shows the user interface to add a user to the system.

public void addUser(User user){

String clase="Person";

String ind=user.login;

//Preparation of the attributes (Personal data, Contact data, etc.)

HashMap <String,Tupla> attributes = new HashMap<String,Tupla>();

 List <Tupla> type_value = new ArrayList();

Tupla email_tupla=new Tupla("http://www.w3.org/2001/XMLSchema#string",

user.contactData.get("email"));

type_value.add(email_tupla);

attributes.put("email", email_tupla);

Tupla disability_tupla=new

Tupla("http://www.w3.org/2001/XMLSchema#string",

user.personalData.get("disability"));

type_value.add(disability_tupla);

attributes.put("disability", disability_tupla);

…

// Preparation of the relations (Relationships with other users and policy)

HashMap<String, List> relations= new HashMap<String, List>();

Set knownPeople_set=user.knownPeople.keySet();

Iterator knownPeople_it=knownPeople_set.iterator();

List<String> individuals = new ArrayList<String>();//null;

String related_person;

String relation_with;

while(knownPeople_it.hasNext()){

related_person=(String)knownPeople_it.next();

relation_with=(String)user.knownPeople.get(related_person);

individuals.add(related_person+"_"+ relation_with);

}

relations.put("isRelatedWith", individuals);

List<String> policy = new ArrayList<String>();

policy.add(user.namePolicy);

relations.put("apply", policy);

CommunicationWithOWL.insertarIndividual(clase, ind, attributes, relations);

}

1

2

3

4

95

Fig. 36 Screen shot of the web interface to add a new user to the system

6.1.2 Interface Layer implementation

So that system interfaces adapt according to user information, we have extended the

Interface Layer of the framework presented in Section 4.2.1. This layer is in charge of

giving support to the presentation of information and services to users. It also provides

facilities for supporting multiple user interfaces by using the Model-View-Controller

(MVC) pattern [48].

The controller class of the MVD pattern is in charge of processing the incoming

events from the User Interface and, by consulting the information of the Model, the

invoking the appropriate View which displays the required output. The models are the

PervML models, which information is stored in our context repository. And the views of

the web interface are provided by a set of java servlets that invoke the Controller operations to

generate the web pages that are shown to users. Thus, to ensure the security and privacy of

the system, we have extended the Controller class with a set of methods for consulting the

information related with system users and their policies; and we have implemented the

LoginUserServlet class, which implements a new Java Servlet, to check the user

autentification.

On the one hand, the Controller class provided us with methods that allow users: (1)

To select the component that is the specific service with which the user wants to interact;

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

96

(2) To interact (get information and request functionality) with a single component.

Therefore, we have added a set of methods to ensure the security and privacy in the

System. The goal of this set of methods is to provide functionality for checking the user

identification and to only show to user the services and the operations for which the user

has permission (according to its policy). In order to support this objective, the following

methods are provided:

• List list_usersLogin(): This method returns a list that contains all the logins of the

system users that are currently registered in the pervasive system.

• Boolean exist_the_login(String login): This method checks if the login passed as

parameter belongs to any user currently registered in the pervasive system. If this login

exists, the method returns true, else returns false.

• Boolean login_password (String login, String password): This method checks if the

login passed as parameter belongs to any user currently registered in the pervasive

system by calling to the exist_the_login method, and checks if the password passed as

parameter is the password of this login.

• List list_policiesName():This method returns a list that contains all the policies that are

currently created in the pervasive system.

• String getPolicyOfAUser(String user): This method returns identifier of the policy of

the user.

• Boolean exist_the_policy(String policy): This method checks if the policy passed as

parameter is currently created in the pervasive system. If this policy exists, the method

returns true, else returns false.

• List getServicesOfAPolicy(String policy): This method checks if the policy passed as

parameter is currently created in the pervasive system by calling to the exist_the_policy

method, and if so, this method returns a list that contains all the services that the policy

has allowed.

97

Fig. 37 Extended Layer Interface and Web Interface

On the other hand, the LoginUserServlet class provides the view of the web interface

for making the logging of a user (as further work we incorporate new technologies for

making the logging, as identification chips or fingerprint recognition), which is shown in

Figure 37, and invokes the Controller operations in order to generate the web pages

ensuring that each user only can see and execute the operations for which the user has

permission. For instance, when a user select to show the services of the system:

1. First, the LoginUserServlet gets the user login of the web page, if it is not found;

the class shows the logging web page.

2. Next, this servlet gets the list that contains the services related with the policy of

the user that has the corresponding login. To do this, this servlet uses the

getPolicyOfAUser and getServicesOfAPolicy methods of the Controller class.

3. Finally, according to the search type (by location, by kind of service, etc.), the

servlet shows the corresponding services that are also in the list obtained in the

second step.

Figure 37 shows, as well as the Controller class, all the implemented classes to

generate the web user interface and the logging web page which is the first web page that

this interface shows. It is worth to noting that every class in this figure can be reusable for

all the pervasive systems that are developed using the proposed approach. This feature is

feasible since (1) every PervML service implements an interface that is known by the

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

98

Controller and (2) the Java reflection capabilities have been used to invoke previously

unknown methods.

6.2 Anticipating the Next User Action

In this section, we explain how system can adapt itself according to user behaviour.

To give support this adaptation we have implemented the Adaptation class in the

framework presented in Chapter 4. This class is in charge of asking the adaptations when

they are needed if the opportune conditions are satisfied. This class has been implemented

to support different types of adaptations such as the adaptation to specific weather

conditions, the consideration of user’s habits, or the anticipation of the next user action.

Up to now, we have developed the last one and are working to make the other

adaptations. Thus, in this section, we present how we carry out the anticipation of the

next user action.

Anticipating the next user action implies to execute a specific service operation (e.g.

turns lights on) when the user need it and before the user explicitly requests its execution

(e.g. before users activates the switch). To do this, we propose a strategy based on the use

of machine learning algorithms. There are several proposals of machine learning

algorithms that can be used to predict user actions [22, 53, 54]. Basically, these

algorithms take the last performed user action as source, and try to identify patterns of

actions that include this action along a given sequence of actions. In these patterns of

actions, the source action must appear before the last position. Once a significant number

of these patterns are identified, these algorithms select the pattern that is most frequently

performed in the current state of the system. Then, they return the action of the pattern

that appears after the executed action as the predicted action. The probability of the

predicted action performing by the user is also returned. This probability is calculated

from both the frequency in which the pattern of actions appears along the whole sequence

of actions and the length of the pattern.

Our objective is to provide an implementation infrastructure that makes the use of

any existing machine learning algorithms independent from the rest of the system. This

infrastructure is based on the Adaptation class, which is in charge of controlling the

whole process of prediction. However, it is complemented with three additional elements

(see Figure 38):

99

• A class which implements the selected prediction algorithm.

• The interface NextActionPrediction, which describe the methods that an

implementation of a prediction algorithm must have.

• The class ActionExecution, which gives support to execute the predicted action.

Note, that this way of implementing and using machine learning algorithms provides

us with a great flexibility to change them, even when the system is already deployed. To

use these algorithms they must be implemented according to an interface. Thus, any of

these implementations present the same behaviour (i.e. the same methods) and then, the

Adaptation class must always do the same method invocations (independently from the

implemented algorithm). Therefore, the Adaptation class does not need to be modified

although the machine learning algorithm changes.

In order to predict the next user action, an Adaptation object is created when the

system is started up. Then, every time that an action is added to the OWL Context

repository, this object performs the following actions (see Figure 38):

1. It gets the whole list of user actions through the CommunicationWithOWL object

by using the GetIndividuals method. Applying the corresponding filters, we first

get the last action performed in order to know the user that executed it, and we

next get all the actions performed by this user.

2. The Adaptation object creates an object of the class that implements the machine

learning algorithm and passes to it the list of user actions and the last action

performed by the user.

3. The prediction algorithm is applied and the Adaptation object obtains the

predicted user action and the probability of being performed.

4. If this probability is greater than a given threshold, the Adaptation object creates

an ActionExecution object and passes the predicted action to it in order to be

executed. This execution is performed by interacting with the framework

presented in Section 4.2.1.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

100

Fig. 38 Predicting the Next User Action

Implementation Aspects. We have implemented a prediction algorithm based on

the SHIP algorithm presented in [22]. This implementation has been done according to

the NextActionPrediction interface. This interface basically indicates that three methods

must be implemented: (1) setUserActions, which establishes the sequence of user actions

to be analyzed, (2) predictAction, which receive as parameter the last user action and

apply the machine learning algorithm, and (3) getPrediction, which returns the predicted

action and its associated probability. Figure 39 shows an example of code where the

scenario illustrated in Figure 38 is implemented. First, (1) the set of user actions and the

last user action is obtained through the CommunicationWithOWL object. Next, (2) we

pass this sequence to the machine learning algorithm and (3) we execute this algorithm

for the last user action. Finally, (4) we obtain the prediction and (5) if the associated

probability is greater than the 80% we pass the action to an object ActionExecution,

which execute it. To perform this execution, we have integrated our framework with the

method presented in Chapter 4 by using its OSGi-Java based framework. Thus, the

ActionExecution object uses the FrameworkSearcher class that this framework provides

us in order to search and gets the corresponding system service and then uses the Java

reflection capabilities in order to invoke the corresponding method of this service. As

further work, we will evaluate and consider the effect of an automatically executed action

that the user did not want to execute.

CommunicationWithOWL

OWL

REPOSITORY

OWL

REPOSITORY

Passes User Actions

and Last Action

implemented

according to

4

Adaptation
Machine Learning

algorithm

Obtains Predicted Action

and Probability

reads

2

NextActionPrediction

If probability > threshold

Forces the execution of the

Predicted Action

interface

1

3

OSGi Server

Implementation Class

ActionExecution
Interacts with

getIndividuals of

User Actions

to both ensure the privacy and security of the system, and adapting the system to user

b

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

action.

6.3 Conclusions

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

behaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

action.

Fig. 39 Example of Java code for predicting the next user action

Conclusions

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

Example of Java code for predicting the next user action

Conclusions

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

Example of Java code for predicting the next user action

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

Example of Java code for predicting the next user action

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

Example of Java code for predicting the next user action

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

intervention. As for the first requirement we have developed an end-user tool to properly

manage context information and adaptive interfaces that are in charge of establish

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

101

We have explained in this chapter the mechanisms that we have developed in order

to both ensure the privacy and security of the system, and adapting the system to user

ehaviour by automatically performing user actions when needed without explicit user

user tool to properly

manage context information and adaptive interfaces that are in charge of establishing and

enforcing user defined policies. As for the second requirement, we have extend the

framework presented in the previous chapter to allow the anticipation of the next user

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

102

7. Execution Strategy

Once our approach has been introduced, a brief description of the global execution

strategy is needed in order to understand how the developed pervasive system works. The

execution strategy is the rules that define the sequence of actions which are carried out

when the system is running.

According the proposed architectural style, as we have said, two kind of events can

start a sequence of actions in the pervasive system:

1. A driver notifies a change on the (physical or logical) environment.

2. A user requests the execution of an operation by means of a user interface.

Both situations could derive into the invocation of a component operation, where a

very important part of the PervML execution strategy is embedded. Therefore, next

sections introduce the sequences of action that are carried out in these three situations (1)

a driver notifies of a change in the environment, (2) a user requests a functionality by

means of a user interface and (3) a component operation is invoked.

7.1 Change in the Environment

When a Driver notifies a BindingProvider that a change in the environment has been

detected, the BindingProvider informs about this event to the Components that make use

of it. These Components must evaluate their Triggers, since now some condition may

hold. Moreover, they also must notify to their related Components and Interactions

because their triggering condition may also hold with the new situation.

In detail, the following steps are carried out:

1. A Driver notifies to its related BindingProvider that a change in the environment

has been detected.

2. The BindingProvider notifies to all the Components that make use of it about the

change. Of course, it does not inform about what has changed.

103

3. The Component checks is its state has changed (e.g. the lighting was off and after

execution of the operation lighting was on) by means of the execution of its

operations for consulting its state, in other words, those operations which return a

value and do not receive parameters; for instance: “int getIntensity()” or “boolean

isLighting()).

a. If the returning values do not changed from the last check:

i. The sequence of action ends.

b. If the returning value has changed from the last check:

i. Store the new values.

ii. Continue with the next steps.

4. The Component creates and stores an individual of the executed action in the

OWL Context Repository. It also activates the reasoning in order to derive the

corresponding context information from the new added individual.

5. The Component checks the conditions of its Triggers. When evaluating these

condition expressions, Components invoke operations from other Components or

from its own interface, which could call to functionality provided by the

BindingProviders, including the BindingProvider that detected the environment

change.

6. The Component informs that a change in any of its operations has happened to

the elements that are listening to its change notifications.

a. The Adaptation class is subscribed to all components, thus, it always

receive the notification. When it happens:

i. The Adaptation class uses the implementation of the machine

learning algorithm to predict the next action.

ii. If the probability of the prediction is higher than 80%, the

Adaptation Class uses the ActionExecution class to execute the

predicted action.

b. Also, other Components or Interactions can be listened to its change.

When they receive the notifications, they evaluate their triggering

conditions, which imply invoking some operation from the Component

that notified the change.

7. Occasionally, as a result of the steps 3 or 6, an operation of a Component is

invoked or an Interaction is initiated.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

104

7.2 User Request

When a user wishes to request a functionality that is provided by a service of the

pervasive system, he or she uses a user interface (he presses a button, passes the point by

a screen region, says a voice command, etc.). That interface interacts with the controller

element, which redirects the invocation to the suitable Component.

In detail, the following steps are carried out:

1. The User interacts with a user interface (a View) for requesting a functionality

that is provided by service of the pervasive system. The View is the responsible

of gathering the arguments of the operation using the mechanisms more adequate

according it its characteristics.

2. The View sends to the Controller element a request for invoking an operation

over a Component with a list of arguments.

3. The Controller searches the Component in the OSGi environment and, if the

request operation is enabled in that moment, it invokes the operation using the

Java reflection mechanisms.

7.3 Operation Execution

The execution strategy of the Components operations embeds a critical part of the

overall execution strategy, since it uses most of the system elements. In short, it must

ensure that all the constraints that were specified (pre, post-conditions and state machine)

are satisfied and suitably updated. The algorithm presented in Fig. 40 in pseudo code

summarizes the rationale that has been applied.

IF precondition hold and
 the operation is the trigger of an outgoing transition from the
 current active state
DO

disable change notifications
execute operation actions
IF postcondition hold DO
 update state machine
ELSE
 log error
 stop
ENDIF
enable change notifications
IF component state has changed DO
 notify listeners
ENDIF

ELSE
log error

ENDIF

105

Fig. 40 Algorithm followed to execute an operation

In detail, the following steps are carried out:

1. First of all two checks are done:

a. The precondition of the operation is evaluated to check if it holds. This

could imply invoke other Component operations or operations of related

Components. If the precondition expression is not satisfied, the failure is

logged and notified to the user, and the execution of the operation is

stopped.

b. The state machine is checked to see if the operation is the trigger of an

outgoing transition from the current active state. If there is not any

outgoing transition, the operation cannot be invoked and, therefore, the

corresponding errors are logged and notified to the user, and the

execution of the operation is stopped.

2. The mechanism of changes in the system environment is paused, since

interruptions during the following steps could cause system inconsistencies. Note

that the following step is executing the operation actions. Imagine that an action

could switch on the lights in a room and a lighting sensor may detect this event. If

this event is received and managed before the lighting Component updates its

state to switch on, some system element may infer that is the daylight who is

lighting the room.

3. The actions that implement the operation functionality are executed. In order to

carry out this step, the following strategy is applied:

a. The methods that implement the operation functionality are invoked and

the required computations are executed. If any execution occurs, the error

is logged and the execution is stopped. If the operation returns a value, it

is stored in a variable called returnValue.

b. If the operation returns a value, the returnValue variable is returned.

4. The postcondition of the operation is evaluated to check if it holds. This could

imply invoke other Component operations or operations of related Components.

If the postcondition expression is not satisfied, the failure is logged and notified

to the user. If it holds the state machine must be updated.

5. The mechanism of changes in the system environment is re-activated.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

106

6. Provided that the executed operation is not an operation of the component to

check its state, the Component calculates its state by using the operations which

return a value and do not receive parameters; for instance: “int getIntensity()”,

“boolean isLighting()). If any value has changed from that last check, the

following steps are done:

a. The new values are stored.

b. The Component creates and stores an individual of the executed action in

the OWL Context Repository. It also activates the reasoning in order to

derive the corresponding context information from the new added

individual.

c. Finally, the subscribed elements are notified about a change.

i. The Adaptation class is subscribed to all components, thus, it

always receive the notification. When it happens:

1. The Adaptation class uses the implementation of the

machine learning algorithm to predict the next action.

2. If the probability of the prediction is higher than 80%,

the Adaptation Class uses the ActionExecution class to

execute the predicted action.

ii. Also, other Components or Interactions can be listened to its

change. When they receive the notifications, they evaluate their

triggering conditions, which imply invoking some operation

from the Component that notified the change.

d. Since the Adaptation class is subscribed to all components, :

i. It uses the implementation of the machine learning algorithm to

predict the next action.

ii. If the probability of the prediction is higher than 80%, the

Adaptation Class uses ActionExecution to execute the predicted

action.

7.4 Conclusions

We have specified in this chapter the global execution strategy that the context-

aware pervasive systems developed by using our approach follow when are running. The

107

execution strategy is defined for the two kind of events that can start a sequence of

actions in these systems.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

108

8. Developing a Context-aware Pervasive

System

Along this work, we have introduce both an MDD approach that allow us to capture

Context at modelling time and an ontology-based repository with a high level

implementation framework that allows to capture and managing Context information at

runtime. In addition, we have also explained that these contributions have been integrated

into the PervML method in order to provide a complete MDD method to develop context-

aware pervasive systems. In this section, we explain the steps that must be followed in

order to develop a context-aware pervasive system by using this method.

The proposed method divides the development of a context-aware pervasive system

into two main phases: the development phase and the deployment phase. Next, we explain

each of these phases in detail.

8.1 The Development Phase

The development phase obtains the code to put the system into operation. This phase,

which is shown in Fig. 41 consists in the following three steps:

1. Conceptual modelling. On the one hand, pervasive system analysts specify the

system requirements by using the service conceptual primitive. To do this,

pervasive system analysts specify in this order: The Services Model (which has

been explained in Section 4.1) and the Structural Model, the Interaction Model,

and the User Model that we propose (which have been explain in Section 5.1). By

means of these models, analysts respectively describe (1) the kind of services

available on the system, (2) the locations of the environment and the number of

services which are available in every location, (3) how they interact when some

condition holds and (4) privacy policies as well as information of each system

user.

109

On the other hand pervasive system architects select the kind and number

of devices or software systems that are more suitable in order to provide the

services specified by the analyst. The selection could have into account

economical reasons or constraints in the system physical environment. System

Architects use other three models that have to be specified in this order: The

Binding Provider Model, the Component Structure Model and the Functional

Model. By means of these models, architects respectively describe (1) the kind of

devices or software systems that are used for providing the system services, (2)

the specific elements that are going to implement every service and (3) the

actions that the device or software systems must carry out for providing every

service operation.

2. Code Generation. From the specified PervML models, two model

transformations are executed in order to translate them into both Java code and

the OWL Context Repository.

The first transformation engine automatically transforms the specified

models into Java code. This Java code consists of Java files and Manifest files

that implement the functionality that supports the system services. This code is

based on the implementation framework explained in Section 4.1.1 that provides

a common architecture for all the systems that are developed by using the

method. This transformation has been explained in detail in Section 4.2.2.

The second transformation automatically transforms the models into the

OWL Context Repository, which describes the context aware pervasive system

that is available at design time by using concepts of our ontology. OWL Context

Repository will be continually updated at runtime by the framework for the

adaptation according to the changes produced in the system.

3. Driver implementation. Finally, drivers for managing the selected devices or

software systems have to be implemented by an OSGi developer. Drivers must be

developed by hand, since they deal with technology-dependent issues. However,

if any device or external software system has been used in a previous system, the

same driver can be reused; thus, we can have a driver repository and only

implement the drivers for the devices or software systems that have not been used

before. Moreover, in a previous work we implemented a European Installation

Bus (EIB) driver generator [55] to generate the EIB driver code from a simple

description.

An MDD Strategy for developing

Context

8.2

The development phase provides us with all the context

code. In order to start up the system it i

shown in Fig. 42

1.

2.

3.

An MDD Strategy for developing

Context-Aware Pervasive Systems

8.2 The Deployment Phase

The development phase provides us with all the context

code. In order to start up the system it i

shown in Fig. 42:

 Configuration

associated with the selected drivers. To do this, we just need to set up the driver

identifiers.

 Bundle installati

transformation are compiled, packaged into bundles (JAR files) and deployed in

an OSGi server along with the framework and the drivers.

implementation framework, which has been explained in Sect

the system adaptation is

Context Repository must be

located.

 Starting Bundles:

Thus, the services are already available to users who can execute

the interfaces [24

explained in Section 6.

An MDD Strategy for developing

Aware Pervasive Systems

Fig. 41

The Deployment Phase

The development phase provides us with all the context

code. In order to start up the system it i

Configuration: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

Bundle installation: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

OSGi server along with the framework and the drivers.

implementation framework, which has been explained in Sect

the system adaptation is

Context Repository must be

Starting Bundles: Finally, the installed bundles are started in the OSGi server.

us, the services are already available to users who can execute

the interfaces [24] that are provided by the implementation framework (as

explained in Section 6.1).

Fig. 42

Fig. 41 The development phase

The Deployment Phase

The development phase provides us with all the context

code. In order to start up the system it is only necessary the following steps

: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

OSGi server along with the framework and the drivers.

implementation framework, which has been explained in Sect

the system adaptation is deployed in the OSGi server.

Context Repository must be copied in the carpet where the OSGi server is

Finally, the installed bundles are started in the OSGi server.

us, the services are already available to users who can execute

] that are provided by the implementation framework (as

).

Fig. 42 The deployment phase

The development phase

The development phase provides us with all the context

s only necessary the following steps

: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

OSGi server along with the framework and the drivers.

implementation framework, which has been explained in Sect

deployed in the OSGi server.

copied in the carpet where the OSGi server is

Finally, the installed bundles are started in the OSGi server.

us, the services are already available to users who can execute

] that are provided by the implementation framework (as

The deployment phase

Master thesis of Estefanía Serral

The development phase

The development phase provides us with all the context-aware pervasive system

s only necessary the following steps

: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

OSGi server along with the framework and the drivers.

implementation framework, which has been explained in Sect

deployed in the OSGi server. The generated OWL

copied in the carpet where the OSGi server is

Finally, the installed bundles are started in the OSGi server.

us, the services are already available to users who can execute

] that are provided by the implementation framework (as

The deployment phase

Master thesis of Estefanía Serral

aware pervasive system

s only necessary the following steps, which are

: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

OSGi server along with the framework and the drivers. Also the

implementation framework, which has been explained in Section 5.3 to support

The generated OWL

copied in the carpet where the OSGi server is

Finally, the installed bundles are started in the OSGi server.

us, the services are already available to users who can execute them through

] that are provided by the implementation framework (as

Master thesis of Estefanía Serral

110

aware pervasive system

, which are

: The Java files that use the manually implemented drivers are

associated with the selected drivers. To do this, we just need to set up the driver

: The files generated from the PervML to Java code

transformation are compiled, packaged into bundles (JAR files) and deployed in

Also the

to support

The generated OWL

copied in the carpet where the OSGi server is

Finally, the installed bundles are started in the OSGi server.

them through

] that are provided by the implementation framework (as

111

8.3 Conclusions

We have described in this Chapter a methodological guidance that can be used to

develop context-aware pervasive systems by following the approach presented in this

master thesis. This guidance has been specified by precisely enumerating a sequence of

the well-defined steps that guide developers since the description of the system until its

put into operation.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

112

9. A Case Study

In this chapter, we present a case study that we have implemented in order to

validate our work.

9.1 A Pervasive System for managing a Smart Home

In order to validate our work, we have implemented a context-aware pervasive

system for a smart home. This system has been used as running example along the whole

paper. The main goal of this system is to improve everyday life by addressing all vital

user aspects such as home care and safety, comfort, entertainment, etc. In particular, the

services that we have been implemented for this case study are the following:

• Multimedia Management: this service provides inhabitants with support to store,

manage and reproduce multimedia archives.

• Intelligent lighting: controls the lighting according to both user presence and light

intensity. For instance, the intensity of the lighting is increased as the outside light is

decreased.

• Air conditioning: is in charge of achieving the optimum temperature.

• Security: this service controls the security of the home. It can be activated or

deactivated. If the presence of someone is detected when it is activated, an alarm starts

to ring; the system starts to record, informs users and, if necessary, sends a warning to

the alarm central.

• Blind Management: allows inhabitants to control the blinds of the home.

• Cooking: this service allows inhabitants to control and program kitchen’s electrical

appliance in order to cook meals. It also controls the amount of feeds that there must be

always in the home to satisfy the inhabitants’ preferences.

• Alarm Clock: this service manages the way in which inhabitants wants to wake up.

As we have explain in Chapter 8 , to obtain the functionality associated to each one

of these services, they have to be specified by means of the proposed models and next we

the Java-OSGi code and the OWL Context Repository are automatically generated from

113

these models. However, as we have said, in order to allow users to take advantage of

these services they need to be supported by the proper hardware devices which must be

deployed in the proper locations of the home.

Fig. 43 Smart Home for the Case Study

The home for which we have implemented the context-aware pervasive system is

made up of the following locations with the following devices (see Figure 43):

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

114

• A hall: in this location, an Intelligent Lighting service is supported by a Lamp and a

Movement Detector. This detector is also used by a Security Service (which is defined

for the whole home) in order to detect presence. There is also a Switch that allows

users to interact with this service in order to manually activate or deactivate the lamp.

With regard to the Security service, an Alarm is also situated in this location to be

activated when intruders are detected. The System Control Panel is also situated in the

Hall.

• A living room: In this location, there are two Gradual Lamps that are controlled by an

Intelligent Lighting service. To allow users to control these Lamps, three Switches are

situated around the Living room. As happens in the Hall, there is a Movement Detector

that is used by the Intelligent Lighting service of this location and the Security service.

Also the Intelligent Lighting service uses an illumination sensor to adapt to the

illumination intensity level. A Video Player and a Multimedia Store that give support

to the Multimedia Management service (which is created for the whole home). Finally,

there is an Air-conditioning service which is supported by combining a Temperature

Sensor, an Air-conditioning device and a Blind Management service which controls the

two Blinds of the room. Users can also interact with this service through a Blind

Activator.

• A kitchen: In this location, there are two Lamps that are controlled by an Intelligent

Lighting service and a Switch that is used by inhabitants to control this service. There

is a Movement Detector that is used by the Lighting service of this location and the

Security service. There is also a Video Player and a Multimedia Store that support the

Multimedia Management service. Finally, there is an Air-conditioning service which

controls the temperature of the kitchen by using an Air-conditioning device and a Blind

Management service which controls a Blind, which can be manually control by using a

Blind Activator.

• A corridor and a bathroom: In these locations, there are a Lamp and a Switch that

give support to the Intelligent Lighting service of each location. There is also a

Movement Detector that is used by each Intelligent Lighting service and the Security

service.

• Two bedrooms: In these locations, there are a Lamp and a Switch that give support to

the Intelligent Lighting service of each bedroom. There is also a Movement Detector

that is used by the Intelligent Lighting service and the Security service. Also, in each

location there is an Alarm clock service which is supported by the Multimedia

115

Management service and the system clock. A Blind and a Blind Activator gives

support to the Blind Management service of each of these locations. Finally, an Air-

conditioning service maintains the optimum temperature in the bedrooms by

combining a Temperature Sensor, an Air-conditioning device and a Blind Management

service.

Furthermore, note that a System Control Panel is also situated in the Hall. This

control panel is used to configure the AmI system. For instance, it is used to query the

system state, to create users, to set the alarm clock up, to introduce user’s preferences, to

activate or deactivate the security service, etc.

9.2 A Validation Infrastructure

It is clear that the best way of validating the proposed case study is to deploy it in a

real Home such as the one shown in Figure 43. However, the empirical validation is not

easy to be performed within the academic environment in which this research work has

been done. Thus, in order to execute the proposed case study and validate our work, we

have developed an execution environment that allows us to emulate these real scenarios.

This execution environment is shown in Figure 44 and it has been defined as follows:

• On the one hand, we have created a hardware infrastructure from a set of EIB devices

such as switches, lamps, alarms, movement detectors, etc. EIB (European Installation

Bus) is a network communications protocol for intelligent buildings, and currently, we

can find a great variety of EIB devices that support the developing of AmI systems.

The hardware infrastructure [55] that we have built is shown at the left side of Figure

44. The devices included in this infrastructure allow us to emulate the Intelligent

Lighting services of the Hall and the Living Room, and the Security service. This

infrastructure includes:

o A Lamp and a dimmer to emulate the gradual lamps of the Living Room and a

Switch to emulate the switches of this location. It also includes a movement

detector that emulates the Living Room’s Movement Detector. It is used by

the Intelligent Lighting service of this location as well as the Security service.

o Another Lamp to emulate the lamp of the Hall and a Switch to emulate the

switch of this location. It also includes a movement detector that emulates the

Hall’s Movement Detector.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

116

o A Red lamp and an Alarm Device to be used by the Security service.

o A programmer with RS232 interface is also deployed in this infrastructure in

order to connect these devices with the AmI system.

o Finally, there is also a weather station which allows us to detect specific

whether conditions. This device is not used for the purpose of this work. It will

be used to validate further work related to the adaptation to weather

conditions.

Fig. 44 Execution Environment

• On the other hand, we have used a Device Simulator developed in our research group

that allows us to simulate the behaviour of the rest of devices by software. This

simulator has been presented in [56]. It allows us to define virtual devices and to

manage them by means of an intuitive user interface. It also provides mechanisms that

allow OSGi-based code to control the virtual devices trough real EIB device drivers.

 Finally, to control all these devices (both real and virtual), we have installed the

AmI system (i.e. the OSGi-based code together with the OWL context repository and

our framework for the system adaptation), with the Device Simulator, into a barebone

Pentium IV with 1Gb RAM and with a Windows XP Professional Edition. This

barebone has connectivity by Ethernet 802.g (which is used to connect it to the device

Red Lamp

Wheather

Station

Living Room’s Lamp

Living Room’s

Movement

Detector

Hall’s Lamp

Hall’s Movement

Detector
Living Room’s

Switch
Hall’s Switch

Prosysts + AmI System

EIB Infrastructure

Device Simulator

Ethernet 802.g
RS232

Barebone

Control Panel

Alarm

Device

Programmer Living Room’s

dimmer

117

simulator) and two RS232 ports (which are used to connect it to the EIB

infrastructure). We have also included a Prosyst Embedded Server 5.2 in the barebone.

Prosyst is a commercial OSGi server implementation. It is in charge of executing

OSGi-based code in order to manage the devices. It also provides mechanisms to

communicate with external networks and define Java APIs and several standard

services like Logging, HTTP Server, Device Management, etc. Finally, we have also

included in the barebone the Web interface that we have extended (Section 6.1) that

plays the role of System Control Panel. By means of this interface we can execute

operations provided by the system services, manage the information about the users

and the policies of the system, etc.

9.3 Validation of Context Management at Runtime

 In order to validate our work we have developed the case study presented in Section

9.1 and we have deployed it in the infrastructure introduced in Section 9.2.

 Once the developed AmI system has been deployed in the validation infrastructure

we have performed the following validations:

1. Managing User information: We have checked that user information is properly

stored in the OWL Context Repository when it is managed at runtime. This

implies to store properly the new created users or polices, as well as their

association (each user is related with a policy); to correctly modify in the

repository these information when it be required; and delete a user or a policy

when it be required. To do this, we have used the Control Panel (the Web

application executed in the barebone) to create several users such as, for instance,

Fani and Peter, and the policies Parents and AdminUser, which are associated to

the users. As result, the corresponding individuals of the concepts Person and

Policy have been successfully created in the repository. We can see in Figure 45

how we have added the Fani user (whose login is Gwen) and the information that

this web page adds to the OWL repository. As we can see, the web also shows a

confirmation when the user is successfully added. In addition we have modified

each property and relationship of the Fani user and the AdminUser policy and we

have created and delete to John and Parents individuals.

An MDD Strategy for developing

Context

2.

3.

An MDD Strategy for developing

Context-Aware Pervasive Systems

 Extending context information

added to the repository. In order to validate

of action that can

we can produce a change in the environment

infrastructure or

user: a user

first activated

have opened

media file by using the Device Simulator

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

have moved to

that the red lamp has blinked.

In all these interactions the corresponding individual of the concept Action

has been correctly

 Derived Context Information:

applied at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Context information is derived.

An MDD Strategy for developing

Aware Pervasive Systems

Fig. 45

Extending context information

added to the repository. In order to validate

that can be execute

we can produce a change in the environment

infrastructure or with de Device Simulator

user: a user interact with the s

activated and deactivat

ed/closed blinds

by using the Device Simulator

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

moved to activate the living room’s movement detecto

the red lamp has blinked.

In all these interactions the corresponding individual of the concept Action

correctly created in the repository.

Derived Context Information:

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Context information is derived.

Fig. 45 Web interface to add a new user

Extending context information: We have checked that user actions are properly

added to the repository. In order to validate

executed: 1) those

we can produce a change in the environment

de Device Simulator

with the system

and deactivated the switches

blinds and used th

by using the Device Simulator

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

the living room’s movement detecto

the red lamp has blinked.

In all these interactions the corresponding individual of the concept Action

created in the repository.

Derived Context Information: We have checked that SWRL rules are correctly

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Context information is derived.

Web interface to add a new user

We have checked that user actions are properly

added to the repository. In order to validate this, we have considering every type

those produced by a change in the environment:

we can produce a change in the environment

de Device Simulator; and 2)

ystem by using the web interface. Thus,

switches of the EIB infra

the media player in order to play and

by using the Device Simulator. Finally,

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

the living room’s movement detecto

In all these interactions the corresponding individual of the concept Action

created in the repository.

We have checked that SWRL rules are correctly

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Master thesis of Estefanía Serral

Web interface to add a new user

We have checked that user actions are properly

we have considering every type

produced by a change in the environment:

we can produce a change in the environment by interacting

2) those directly required by a

by using the web interface. Thus,

of the EIB infrastructure

e media player in order to play and

ly, we have controlled the lighting

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

the living room’s movement detector, what has produced

In all these interactions the corresponding individual of the concept Action

We have checked that SWRL rules are correctly

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Master thesis of Estefanía Serral

We have checked that user actions are properly

we have considering every type

produced by a change in the environment:

by interacting with the EIB

directly required by a

by using the web interface. Thus, we have

structure. Next, w

e media player in order to play and stop a

we have controlled the lighting

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

, what has produced

In all these interactions the corresponding individual of the concept Action

We have checked that SWRL rules are correctly

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

Master thesis of Estefanía Serral

118

We have checked that user actions are properly

we have considering every type

produced by a change in the environment:

with the EIB

directly required by a

we have

Next, we

stop a

we have controlled the lighting

intensity by interacting with the Intelligent Lighting service by using the web

interface. In addition we have activated the Security service by using the web, we

, what has produced

In all these interactions the corresponding individual of the concept Action

We have checked that SWRL rules are correctly

ed at run time. To do this, we have interacted with the evaluation

infrastructure in order to make each rule to be applied and check that the proper

119

For instance, we have check that when the current position of a user changes,

the location where he or she can go are updated (rule presented in Section 5.3.2).

In order to update the currentPosition of a user we also have a SWRL rule. It is

due to our limited infrastructure. In order to properly manage the location of each

user we would need that each user had an identification device (e.g. a Radio

Frequency Identification (RFID) bracelet) to be identified by the proper sensors.

However, our validation infrastructure only includes movement detectors and

they cannot identify users (just the presence of someone anonymous). Thus, we

consider an only one user (e.g. Peter) in such a way that if any time a movement

detector is activated, Peter is in its associated location. Therefore, we have in the

rules repository a SWRL rule for updating Peter’s user location by considering

which movement detector is activated.

Thus, in order to validate that the current location of Peter and the locations

where he can go are correctly updated, we have activated the movement sensor of

different locations by following the mobility relationships defined among the

locations (graphically described by the doors specified in the blue print of Figure

43). To activate the movement sensors we have used the Device Simulator and

one of the movement detectors installed in the EIB infrastructure. For instance,

we have activated first the Living Room’s movement sensor (from the EIB

infrastructure), next the corridor’s movement sensor (from the Device Simulator),

and next the Kitchen’s movement sensor (from the Device Simulator). Each time

that a movement sensor has been activated, the object properties currentLocation

and canGo of the individual Peter have been correctly updated to reference the

proper locations.

4. Prediction of the Next User Action: We have checked that the next user action

is correctly predicted. In this validation, we have established the prediction

threshold in 80%. To perform this validation we needed to have a significant

history of user actions in order to allow the algorithm to predict the next action

with the specified probability. In addition, this history had to include sets of

actions performed repetitively. In a real scenario, this history would be

progressively created by the user behaviour. However, in this validation scenario

we have needed to create it manually.

To do this, we have first defined possible sets of actions that a common user

could execute (e.g. in the morning, the user turn the alarm clock of the bedroom

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

120

off and then s/he activate the coffee maker to prepare a coffee). Second, we have

implemented a program that creates a significant history of actions where these

sets of actions appear among other random set of actions. After the execution of

this program we have manually performed the first action of the predefined sets

of actions (e.g. we have turned the alarm clock off by means of the Device

Simulator) and we have checked that the system has automatically executed the

second action of the set. In all the cases checked, the action has been correctly

anticipated when the prediction probability has been greater than the established

one.

9.4 Conclusions

This chapter describes a full case study for a smart home in order to validate

the approach presented in this master thesis to develop context-aware pervasive

systems. In addition, this chapter describes the infrastructure and the tasks that

have been carried out by using the developed case study in order to validate the

contributions provided in this work.

121

10. Conclusions

In this last chapter, we introduce the conclusions of the work presented in this

master thesis. First, we list the main contributions of this master thesis in the area of

Context-Aware Pervasive Systems. Next, we explain the work that is currently being

performed as well as future work. Finally, we enumerate the publications that have been

obtained from the work of this master thesis.

10.1 Main Contributions

In this work, we have presented a hybrid approach to develop full functional

context-aware pervasive systems. We have proposed a set of graphical OO models for

capturing the requirements of the system and its context available at modelling time. We

have also proposed a context ontology for managing context at runtime. In addition, we

have provided a transformation engine to automatically obtain an OWL context repository

based on this ontology from the models specified by developers. Lastly, we have provided

an infrastructure that, by using this repository, automatically manages context, derives

knowledge from it and anticipates the next user action. This infrastructure is also in charge

of ensuring the privacy and security of the system.

Furthermore, we have integrated our approach with a method developed in our

research centre that allows generating functional system from the conceptual models.

This strategy also provides us with technological independence and automatic service

discovery.

To sum up, the proposed approach provides us with:

1. A set of models that provides high-level abstractions to manage and handle

context information of pervasive systems at modelling time.

2. A context ontology and an OWL context repository based in this ontology for

being capable of store in a machine processable language both current context

information and historical context information.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

122

3. A transformation engine to automatically translate the proposed context models

into the OWL Context repository.

4. A framework for managing the OWL context repository, interpreting this

information at runtime and adapting the system to user behaviour. To do this, this

framework automatically updates the OWL context repository according to the

changes produced in context information at runtime. Moreover, it allows us

reason about this information at semantic level in order to interpret it and derive

knowledge from this information. Lastly, this framework provides mechanisms to

anticipate the next user action when needed.

5. An end-user tool to manage the private user information and preliminary

mechanisms to ensure the privacy and the security of the system.

6. The integration of our approach with a MDD method previously implemented by

our research centre what allows us to obtain functional context-aware pervasive

systems.

7. A methodological guidance that guides developers from the description of the

context-aware pervasive system by means of the models that we propose to its

deployment.

10.2 Current and Further Work

This master thesis is not a closed work and many research efforts can still be done in

this research area. The main research activities that are currently underway and that we

plan to face are the following:

1. Studying and selecting the suitable learning machine algorithms to extract

behaviour patterns in order to be able to automatically execute them. By using the

Adaptation class of the proposed framework we aim for automating not only the

next user action, but also sets of actions that always occur at a regular time

interval. Once identified the patterns, we will update the system to add an

interaction that will be triggered at the right time. In addition, we will evaluate

and consider the effect of automatically executing actions that the user did not

want to execute in order to undo the corresponding actions if needed.

2. Generating the SWRL rules from models. Nowadays the reasoner rules have to be

manually specified in SWRL in the rules repository. In further work we want to

123

propose a model to specify these rules by using high-level abstractions and

transform this model into SWRL code by a model-to-code transformation.

3. Studying user preferences and the approaches propose to model them in order to

adapt system behaviour according to these preferences. We also want to extend our

interfaces in order to show the corresponding information taking into account user

preferences.

4. Extending the conceptual models with mechanisms that allow us to specify services

whose adaptation can be configured by end-users.

5. Developing more case studies for context-aware pervasive systems in order to

properly validate our approach. We are currently developing two case studies, one for

a car and another one for a researcher department.

6. Developing a tool to give support to the whole process of developing a context-aware

pervasive system by following the presented approach.

7. Improving the security system mechanisms that have been proposed in this work by

using more modern techniques (such as identification chips, Bluetooth, etc), in

order to automatically carry out the authentication.

10.3 Publications

The work that has been carried out during the master thesis development has been

published in the following scientific workshops, conferences and books:

• Estefanía Serral, Pedro Valderas, Vicente Pelechano. Towards the Model Driven

Development of Context-Aware Pervasive. Special Issue of Pervasive and Mobile

Computing Journal on Context Modelling, Reasoning and Management. Submitted

• Estefanía Serral, Pedro Valderas, Vicente Pelechano. A Model Driven Development

Method for developing Context-Aware Pervasive Systems. In Springer Berlin /

Heidelberg editor. Ubiquitous Intelligence and Computing (UIC-08). Volume

5061/2008 of Lecture Notes in Computer Science. pp. 662-676. ISBN 978-3-540-

69292-8

• Estefanía Serral, Pedro Valderas, Javier Muñoz, and Vicente Pelechano. Towards a

Model Driven Development of Context-aware Systems for AmI Environments. In

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

124

Springer Paris editor, Proceedings of the International Conference on Ambient

Intelligence Developments (AmI.d'07)/, pages 114-124, 2007. ISBN/ISSN: 978-2-287-

78543-6

• Estefanía Serral, Carlos Cetina, Javier Muñoz, and Vicente Pelechano. PervGT:

Herramienta CASE para la Generación Automática de Sistemas Pervasivos. Tool

demostration in XII Jornadas de Ingeniería del Software y Bases de Datos (JISBD

2007), Zaragoza (Spain), Sept 2007. ISBN/ISSN: 978-84-9732-595-0

• Carlos Cetina, Estefanía Serral, Javier Muñoz, and Vicente Pelechano. Tool Support

for Model Driven Development of Pervasive Systems. In 4th International Workshop

on Model-based Methodologies for Pervasive and Embedded Software (MOMPES

2007), pages 33-41, Los Alamitos, CA, USA, March 2007. ISBN: 0-7695-2769-8.

IEEE Computer Society.

• Javier Muñoz, Vicente Pelechano, Estefanía Serral. Aplicación del Desarrollo

Dirigido por Modelos a los Sistemas Pervasivos: Un Caso de Estudio. II Congreso

IberoAmericano sobre Computación Ubicua (CICU 2006), Alcalá de Henares (Spain),

7-9 June 2006, pp. 171-178, ISBN: 84-8138-703-7

• Javier Muñoz, Estefanía Serral, Carlos Cetina and Vicente Pelechano. Applying a

Model-Driven Method to the Development of a Pervasive Meeting Room. ERCIM

News, April 2006, vol. 65, pp. 44-45, ISSN: 0926-4981

• Javier Muñoz, Carlos Cetina, Estefanía Serral, Vicente Pelechado. Un Framework

basado en OSGi para el Desarrollo de Sistemas Pervasivos. 9 Workshop

Iberoamericano de Ingenieria de Requisitos y Ambientes Software (IDEAS2006), La

Plata (Argentina), 24 - 28, Apr 2006 pp. 257 – 270. ISBN-10: 950-34-0360-X

• Javier Muñoz, Vicente Pelechano, Estefanía Serral. Providing platforms for

developing pervasive systems with MDA. An OSGi metamodel. X Jornadas de

Ingeniería de Software y Base de Datos (JISBD), Granada (Spain). September 2005,

pp. 19 - 26, ISBN: 84-9732-434-X

125

11. References

[1] Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3):94–

104.

[2] Dey, Anind K. (2001). "Understanding and Using Context". Personal Ubiquitous

Computing

[3] Object Management Group. Model Driven Architecture Guide, 2003.

[4] Strang, T. and Linnhoff-Popien, C. (2004). A context modeling survey. In First

International Workshop on Advanced Context Modelling, Reasoning And Management,

UbiComp 2004.

[5] Biegel, G. and Cahill, V. (2004). “A framework for developing mobile, context-aware

applications”. In Proceedings of the 2nd IEEE Conference on Pervasive Computing and

Communication, pp.361–365

[6] R. De Virgilio, R. Torlone, and G.-J. Houben. A rule-based approach to content delivery

adaptation in web information systems. In Proc. 7th IEEE/ACM Int. Conf. on Mobile

Data Management, page 21, 2006

[7] McFadden, T., Henricksen, K., Indulska, J. (2004). Automating context-aware

application development. In Jadwiga Indulska & David De Roure (eds) 1st

International Workshop on Advanced Context Modelling, Reasoning and Management,

in conjunction with the Sixth International Conference on Ubiquitous Computing,

Tokyo, Japan, 2004. (pp. 90-95)

[8] Sheng, Q.Z. and Benatallah, B. ContextUML: a UML-based modelling language for

model-driven development of context-aware web services. Proceedings of the

International Conference on Mobile Business (ICMB’05),pp.206–212.

[9] Dhouha Ayed, Didier Delanote, and Yolande Berbers. Mdd approach for the

development of context-aware applications. In Boicho Kokinov, Daniel C. Richardson,

Thomas R. Roth-Berghofer, and Laure Vieu, editors, Modeling and Using Context - 6th

International and Interdisciplinary Conference, CONTEXT'07, Roskilde, Denmark,

Lecture Notes in Computer Science 4635, pages 15-28. Springer-Verlag Berlin

Heidelberg, 2007.

[10] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., and Altmann, J. (2002).

Context-awareness on mobile devices – the hydrogen approach. In Proceedings of the

36th Annual Hawaii International Conference on System Sciences, pages 292–302.

[11] Fahy, P. and Clarke, S. (2004). “CASS – a middleware for mobile context-aware

applications”. In Workshop on Context-awareness, MobiSys 2004.

[12] Chen, H., Finin, T., and Joshi, A. (2004). “An ontology for context-aware pervasive

computing environments”. Special Issue on Ontologies for Distributed Systems,

Knowledge Engineering Review, 18(3):197–207.

[13] H. Chen, T. Finin, and A. Joshi. A context broker for building smart meeting rooms. In

Proceedings of the Knowledge Representation and Ontology for Autonomous Systems

Symposium, 2004 AAAI Spring Symposium.

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

126

[14] T. Gu, H. K. Pung, and D. Q. Zhang. A service-oriented middleware for building context-

aware services. Journal of Network and Computer Applications, 28(1):1–18, 2005

[15] D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx, Y.

Berbers, K. Coninx, V. Jonckers, and K. D. Bosschere. Towards an extensible context

ontology for ambient intelligence. In Proc. 2nd European Symp. Ambient Intelligence,

LNCS 3295, pages 148–159, 2004

[16] S. J. H. Yang, A. Huang, R. Chen, S.-S. Tseng, and Y.-S. Shen. Context model and

context acquisition for ubiquitous content access in ulearning environments. In IEEE Int.

Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, volume 2, pages 78–83,

2006

[17] Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., and Malm, E.-J. (2003). “Managing

context information in mobile devices”. IEEE Pervasive Computing.

[18] Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., and Nahrstedt, K.

(2002). A middleware infrastructure for active spaces. IEEE Pervasive Computing. ->Gaia

[19] S. Buchholz, T. Hamann, and G. Hübsch. Comprehensive structured context profiles

(CSCP): Design and experiences. In Proc. 2nd IEEE Conf. on Pervasive Computing and

Communications Workshops, pages 43–47, 2004

[20] M. Strimpakou, I. Roussaki, and M. E. Anagnostou. A context ontology for pervasive

service provision. In 20th Int. Conf. on Advanced Information Networking and

Applications, pages 775–779, 2006

[21] Vallée M, Ramparany F, Vercouter L. A multi-agent system for dynamic service

composition in ambient intelligence environments. Pervasive 2005

[22] Diane J. Cook, G. Michael Youngblood, Edwin O. Heierman III, Karthik Gopalratnam,

Sira Rao, Andrey, Litvin, Farhan Khawaja. MavHome: An Agent-Based Smart Home.

PerCom 2003

[23] M. Baldauf, S. Dustdar, F. Rosenberg. A survey on context aware systems. International

Journal of Ad Hoc and Ubiquitous Computing, forthcoming.

[24] Javier Muñoz and Vicente Pelechano. Building a Software Factory for Pervasive Systems

Development. In CAiSE 2005, Porto, Portugal, June 13-17, volume 3520 of LNCS, pages

329–343, May 2005.

[25] March S and Smith G. Design and Natural Science. Research on Information

Technology. Decision Support Systems 15, 251 - 266. DOI: 10.1016/0167-

9236(94)00041-2. 1995.

[26] Vaishnavi, V. and Kuechler, W. 2004. Design Research in Information Systems.

[27] Friedemann Mattern. Ubiquitous Computing: Scenarios from an informatised world,

pages 145_163. Springer-Verlag, 2005

[28] Jochen Burkhardt, Thomas Schaeck, Horst Henn, Stefan Hepper, and Klaus Rindtor.

Pervasive Computing: Technology and Architecture of Mobile Internet Applications.

Addison-Wesley, April 2002

[29] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober. Pervasive

Computing Handbook. Springer-Verlag, 2001

[30] David Wright, Elena Vildjiounaite, Ioannis Maghiros, Michael Friedewald, Michiel

Verlinden, Petteri Alahuhta, Sabine Delaitre, Serge Gutwirth, Wim Schreurs, and Yves

Punie. Safeguards in a world of ambient intelligence (swami) deliverable d1. The brave

new world of ambient intelligence: A state-of-the-art review, June 2005. A report of the

SWAMI consortium to the European Commission under contract 006507

127

[31] Lieberman, H. & Selker, T. (2000). Out of Context: Computer Systems That Adapt To,

and Learn From, Context. IBM Systems Journal, 39(3&4), 617-631.

[32] Lenat, D. (1998) The Dimensions of Context Space. Technical report, CYCorp, October

1998. Invited talk at the conference Context 99. Retrieved 18 July, 2008 from

http://www.cyc.com/doc/context-space.pdf.

[33] Stalling, W. (2000) Operating Systems: Internals and Design Principles. Prentice Hall.

[34] Schilit, W. N., Adams, N. I. & Want, R. (1994). Context-aware Computing Applications.

In Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications,

Santa Cruz, CA, USA, 1994. (pp. 85-90). Washington, DC: IEEE Computer Society.

[35] Ryan, N.S., Pascoe, J., Morse, D. R. (1998). Enhanced Reality Fieldwork: the Context-

aware Archaeological Assisstant. In V. Gaffney, M. van Leusen & S. Exxon (eds.)

Computer Applications in Archaeology, British Archaeological Reports, Oxford, October

1998. Tempus Reparatum. Retrieved 18 July, 2008 from

http://www.cs.kent.ac.uk/pubs/1998/616/content.html

[36] Mitchell, K. (2002). Supporting the Development of Mobile Context-Aware Computing.

Ph.D. Thesis, Department of Computing, Lancaster University, Lancaster, UK.

[37] Crowley, J. L., Coutaz, J., Rey, G., Reignier, P. (2002). Perceptual Components for

Context Aware Computing. In Proceedings of the International Conference on Ubiquitous

Computing, Goteborg, Sweden, September 2002. (pp. 117-134). London: Springer

Verlag.

[38] Bardram, J. E. (2005). The Java context awareness framework (JCAF) - a service

infrastructure and programming framework for context-aware applications. In

Proceedings of the Third International Conference on Pervasive Computing, Munich,

Germany, 2005. (pp 98–115). London: Springer Verlag.

[39] OMG UML 2.0 Specifications, http://www.uml.org/

[40] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories. Wiley

Publishing Inc., 2004.

[41] http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

[42] Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition.

[43] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P.F.

Patel-Schneider, L. A. Stein. Web Ontology Language (OWL) W3C Reference version

1.0, 18 August 2003. At http://www.w3.org/TR/2002/WD-owl-ref-20021112.

[44] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet S., Grosof, B. & Dean, M. (2004).

SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Retrieved 18 July,

2008 from http://www.w3.org/Submission/SWRL/

[45] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur and Yarden Katz.

Pellet: A practical OWL-DL reasoner, Journal of Web Semantics, 5(2), 2007.

[46] www.eclipse.org

[47] http://www.osgi.org/

[48] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading, MA, 1994.

[49] AL-Muhammed, M., Embley, D.W., and Liddle, S. Conceptual Model Based Semantic

Web Services. In ER 2005, volume 3716 of LNCS. Springer.

[50] http://www.sts.tu-harburg.de/~r.f.moeller/racer/

An MDD Strategy for developing

Context-Aware Pervasive Systems

Master thesis of Estefanía Serral

128

[51] http://sourceforge.net/projects/owlapi

[52] Maria Ebling, Guerney Hunt, and Hui Lei. Issues for Context Services for Pervasive

Computing. In Proceedings of Middleware’01, Advanced Workshop on Middleware for

Mobile Computing, Heidelberg, Germany, November 2001

[53] Byun, H., & Cheverst, K. (2004). Utilizing Context History to Provide Dynamic

Adaptations. Journal on Applied Artificial Intelligence 18(6), 533-548.

[54] Verpoorten, K. & Karin-Coninx, K.L. (2007). Mixed Initiative Ambient Environments: A

Self-Learning System to Support User Tasks in Interactive Environments. In Proceedings

of Third Workshop on Context Awareness for Proactive Systems, Guildford, United

Kingdom, June 2007. Retrieved 18 July, 2008 from

http://owlapi.sourceforge.net/publications.html

[55] http://oomethod.dsic.upv.es/labs/

[56] Javier Muñoz, Idoia Ruiz, Vicente Pelechano, and Carlos Cetina. Un framework para la

simulación de sistemas pervasivos. In Simposio sobre Computación Ubicua e

Inteligencia Ambiental (UCAmI'05), pages 181-190, Granada, Spain, September 2005.

[57] Estefanía Serral, Pedro Valderas, Javier Muñoz, and Vicente Pelechano. Towards a

Model Driven Development of Context-aware Systems for AmI Environments. In

Springer Paris editor, Proceedings of the International Conference on Ambient

Intelligence Developments (AmI.d'07)/, pages 114-124, 2007. ISBN/ISSN: 978-2-287-

78543-6

