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CHAPTER 1 
1. INTRODUCTION 

 

 

The work presented in this thesis of master is an approach that takes advantage of the Mode-

Driven Development approach for developing complex software systems. This approach 

improves the software quality and reduces the time and cost invested in its development and 

maintenance processes. It is supported by the results obtained in the thesis of Pérez [Per06c]: a 

model, a language, a methodology, and a Computer-Aided Software Engineering (CASE) tool 

prototype. The model and the tool defined in this work are called PRISMA and PRISMA 

CASE, respectively. The PRISMA model combines two approaches to define software 

architectures: the Component-Based Software Development (CBSD) and the Aspect-Oriented 

Software Development (AOSD). The main contributions of the model are the way that it 

integrates both approaches to take their advantages as well as the definition of a formal Aspect-

Oriented Architecture Description Language (AOADL). The AOADL is independent of 

technology and is based on a formal language and formalisms that preserve non-ambiguity for 

applying code generation techniques.  

In this thesis of master, a step forward on the work of [Per06c] is done. A complete MDD 

support for the PRISMA approach is defined. It follows the Paradigm of Automatic 

Programming [Bal85] by applying the Model-Driven Development (MDD) approach. In 

addition to the code generation, the MDD approach defined in this thesis of master defines 
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verification and reusability properties associated to the MDD process of aspect-oriented 

software architecture.  

The structure of this chapter is as follows: Section 1 introduces the motivation of this work. 

Section 2 explains the main goals of this thesis of master, section 3 presents the research 

methodology that has been followed during the development of the thesis, and section 4 

summarizes the structure of the thesis. 

1.1.  MOTIVATION 
Complex structures, non-functional requirements, heterogeneity, scalability, traceability, 

reusability and maintainability are leading properties that current software systems need to deal 

with. In the last few years, these properties have increased the time and the staff invested in the 

development and maintenance processes of software. As a result, there is greater interest in 

research areas to reduce the time and the cost invested in these software system processes. In 

order to achieve the milestones of software products and to overcome the competitiveness of 

the market, models for the software development, techniques to improve reusability and 

processes to support automation, traceability and maintainability of software have been 

proposed. 

Some new approaches have recently emerged in order to improve software development. 

They try to improve the early stages of the software life cycle by automating their activities as 

much as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD 

is a software development paradigm that is based on models that use automatic generation 

techniques in order to obtain the software product. MDD is included within Model–Driven 

Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be 

represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The 

use of models to develop software provides solutions that are independent of technology, 

whose source code can be obtained by means of automatic code generation techniques for 

different technologies and programming languages. The high level of abstraction that models 

provide permits working with metamodels in the same way as with specific models or domain-

specific models.  



Introduction 

17 

 

The complexity, heterogeneity, scalability and reusability properties of current software 

systems have led to considering the analysis of the software structure as an important phase of 

the software life cycle. As a result, in the last two decades, a new research area called Software 

Architectures has emerged. Software architectures are presented as a solution for the design and 

development of complex software systems.  

The Component-Based Software Development (CBSD) approach is used in the field of 

software architectures. This approach decomposes the software system into reusable entities 

called components. Components provide services to the rest of the system by encapsulating 

their functionality (black boxes). As a result, software architectures can be described preserving 

the reusability of their components. 

 The reusability of software allows the same software artefact to be used in different places 

of the same application or in different applications. The artefact is only programmed one time 

and can be used more than once. This reusability reduces the development time of software 

systems. Also, reused software artefacts guarantee their quality and suitable functionality 

because they have been tested and used before. As a consequence, the COTS (Commercial 

Off-The-Shelf) importation has acquired relevance, because tools that allow the reuse of their 

components and the COTS importation achieve the highest reuse and quality code. 

Another approach that has emerged to improve reusability is the Aspect-Oriented Software 

Development (AOSD) approach. This approach allows for the separation of concerns by 

modularizing crosscutting concerns into a separate entity called aspect. As a result, the same 

aspect can be reused by different software artefacts, which are usually, objects. 

The automatic code generation from models reduces the cost and time of the development 

process as well. Nowadays, there are many CASE tools that are able to generate applications 

following the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are 

widely-known as model compilers. They automatically generate the application code and the 

database schema from the conceptual schema of a software system. The automatic generation 

can be complete as in Oblog Case [Ser94], OlivaNova (OO-Method/CASE [Pas97]), or it 

can be partial, as in Rational Rose [RAT07], System Architect [SYS07], Together [TOG07] 
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and others. However, since these model compilers follow the Object-Oriented Paradigm, the 

need for developing model compilers that follow the CBSD and/or AOSD approaches has 

emerged. The combination of the CBSD and AOSD reusability and the automatic code 

generation achieves higher reduction in the time and cost of the development process than 

using only one of these approaches. 

In the software life cycle, the maintenance process is as important as the development 

process due to the fact that the requirements of software systems are continuously evolving. 

The sources of these changes can be caused by several factors. First of all, the requirements 

specifications are inaccurate and ambiguous and these deficiencies promote misunderstandings 

from the very beginning of the software life cycle. An incorrect requirements specification can 

be produced by an inexperienced analyst, by a lack of accuracy in the presentation of the 

customer’s needs or by a misunderstanding between the analyst and the customer because of 

the semantic gap in their vocabularies. This means that the software product will require 

continuous changes until the software that the customer really wanted is finally produced. The 

traceability among the different stages of the software life cycle must be preserved in order to 

ensure quality maintenance of software products. 

An important challenge in the software engineering area is the integration of software 

architectures, CBSD, AOSD and MDD in a unique approach in order to support the 

development and maintenance of complex software systems in an efficient way. 

1.2. OBJECTIVES OF THE THESIS  
The main goal of this thesis is to provide a complete support for the development of PRISMA 

models following the MDD approach, i.e., the support for the development of technology-

independent aspect-oriented software architectures. In addition, the PRISMA CASE must 

make this software development support feasible. 

The main goal of the thesis can be divided into several specific objectives: 

 To extend the related works presented in [Per06c] of the proposals that integrate the 

aspect-orientation approach and ADLs in order to take into account  in this comparison the 

MDD support that these proposals provide. 
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 To analyze, define and formalize a coordination model that improves the reusability, 

maintainability and traceability of aspect-oriented software architectures. 

 To define the MDD process of the PRISMA approach 

 To define a verification process associated to the proposed MDD process. This verification 

process must be flexible and intuitive in order to be an important help for the user during 

the modelling stage of the MDD process. 

 To introduce the use of COTS in the PRISMA MDD process. This introduction must 

preserve the PRISMA properties to be compliant with the PRISMA model and to 

maintain the PRISMA advantages. 

 To define a methodology to follow the proposed MDD and verification processes and to 

provide support for the use of COTS. 

 To modify and extend the PRISMA CASE Tool in order to support the PRISMA MDD 

process, its methodology, verification and the use of COTS. 

1.3. RESEARCH METHODOLOGY OF THE THESIS  
The research methodology that has been applied in order to fulfil the objectives proposed in this 

thesis follows a classical methodological strategy often called the “feasibility research strategy”. 

This methodology departs from a generic and conceptual hypothesis that is presented as a 

contribution in the area in which the thesis is developed. This hypothesis is based on a previous 

analysis of the state of art where the contribution of the thesis is justified. This thesis departs 

from the following hypothesis: Is it possible to define and implement software aspect-oriented 

software architectures following a Model-Driven Development Process?. In addition, the thesis 

departs from the results previously obtained from the thesis [Per06c] and the set of objectives 

that have been established in order to answer this question. From this starting point, the main 

goal of this thesis is to reach to a software engineering solution that copes with the set of 

specific objectives that have been established in section 1.2 . 
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1.4. STRUCTURE OF THE THESIS  
The remainder of this thesis is organized in the following chapters:  

 Chapter 2: Preliminaries  

This chapter provides an introduction to the role of software architectures in the software 

life cycle and their main concepts. It also establishes a conceptual base for the aspect-

oriented paradigm. Finally, it is introduced the case study that has been chosen to illustrate 

the contributions of this thesis. 

 

 Chapter 3: State of the Art 

This chapter extends the analysis of [Per06c] of the most relevant approaches that integrate 

aspects in software architectures. It includes the MDD support as part of the set of 

desirable properties that aspect-oriented software architecture approaches should fulfil. 

 

 Chapter 4: PRISMA Background 

This chapter introduce the PRISMA model and metamodel as the basis of the rest of the 

thesis of master. Therefore, this thesis is self-content. 

 

 Chapter 5: Coordination 

This chapter discuss the interest of using aspect-oriented connectors in detail, justifying the 

relevance of the PRISMA model and its merits with regard to other proposals, especially 

to provide a complete MDD support. It is described the concrete structure of connectors in 

PRISMA, and it is also defined the formalization of the relevant PRISMA concepts for 

coordination. 

 

 Chapter 6: Model-Driven Development 

This chapter presents the MDD proposal for the PRISMA approach and how to be 

supported by PRISMA CASE Tool. 
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 Chapter 7: Verification 

This chapter presents how the PRISMA approach provides a complete support for the 

verification of aspect-oriented architectural models following the MDD approach. The 

verification proposal and how PRISMA CASE makes feasible this verification are 

presented in detail. 

 

 Chapter 8: Commercial Off-The Self 

This chapter presents a proposal for integrating COTS into aspect-oriented architectural 

models that are developed and maintained following the Model-Driven Development 

(MDD) approach. In addition, this chapter presents how PRISMA CASE supports the use 

of COTS in the PRISMA model. 

 

 Chapter 9: The PRISMA MDD Methodology 

This chapter presents the PRISMA methodology in order to develop aspect-oriented 

software architectures following the PRISMA MDD process. This methodology takes 

advantage of the PRISMA reusability properties (coordination model, modelling and 

reusability facilities, the use of COTS), the graphical specification of PRISMA models, 

and the verification process proposed by the PRISMA approach. 

 

 Chapter 10: Conclusions and Further Research 

This chapter presents the main contributions of the thesis and future research work. 

 

 Appendix A: PRISMA CODE-GENERATION PATTERNS 

This appendix presents the patterns that allow the transformation from models to C# code. 
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CHAPTER 2 
2. PRELIMINARIES 

 

 

 

Nowadays, software systems are becoming more and more difficult to develop due to their 

complex structures, non-functional requirements and distributed and dynamic nature. Two 

approaches of software development have emerged to overcome these needs: software 

architectures and Aspect-Oriented Software Development. This thesis of master is focused in 

the development of applications that combine these two approaches by following the MDD 

approach.  

In this chapter, the basis that is necessary to understand the rest of the chapters is provided. As a 

result, an introduction about software architectures and AOSD is presented; as well as the 

explanation of the main concepts of both approaches. In addition, the case study that is used to 

illustrate the contributions of this thesis is presented.  

2.1. SOFTWARE ARCHITECTURES  
The complexity of current software systems has led computer community to recognize the 

analysis of software structure as an important phase of the software life cycle. As a result in the 

last decades, a new research area called Software Architecture has emerged to deal specifically 

with this phase. The software architecture discipline has emerged due to the natural increase in 

size and complexity of current software systems. An inaccurate architectural design leads to the 

failure of large software systems. For this reason, the design, specification, and analysis of the 
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structure of these software systems have become critical issues in software development 

[Gar01].  

Software architectures are presented as a solution for the design and development of large, 

complex software systems. They allow us to describe the structure of a software system by 

hiding the low-level details and abstracting the high level important features [Per92]. This 

structure is usually represented in terms of computational elements and their interactions. As a 

result, software architectures make software systems simpler and more understandable 

[Gar95a]. 

The software architecture discipline is capable of performing the following functions: 

analyze and describe the properties of systems at a high level of abstraction; validate software 

requirements; estimate the cost of the development and maintenance processes; reuse software, 

and establish the bases and guides for the design of large complex software systems [Per92]. At 

the same time, software architectures should be adaptable and should provide support for the 

reuse of architectural elements and of partial or complete software architecture descriptions in 

the new software architecture specifications. Thus, new designs are not started from scratch and 

only the specific features of the new systems are created from the beginning [Per92].  

However, despite the attempt of the IEEE to standardize the software architecture discipline 

[IEE00], there is no consensus about the definition of software architecture and the different 

concepts and approaches to be used in this field. The main drawback of this deficiency is the 

fact that the concept of software architecture is used in different ways and sometimes, it is 

really difficult to know what the exact meaning is. As a result, it is common to refer to several 

definitions in order to provide a complete notion of the concept of software architecture.  

There are some definitions of software architecture that are general and non-exclusive; 

however at the same time, they are incomplete, non-explicit, and imprecise definitions. An 

early definition that was defined by Perry and Wolf is: 

 

<< A software architecture is a set of architectural (or, if you will, design) 

elements that have a particular form.>>  

Dewayne Perry and Alex Wolf [Per92] 
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Another modern definition that it is typically used to define software architecture is the 

definition presented by Bass, Clements and Kazman.  

 

<<The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them.>>  

           Len Bass, Paul Clements and Rick Kazman [Bass03] 

 

However, this definition is also imprecise and incomplete because of a lot of questions 

emerge from this definition: For example, What is a structure?, What is an external visible 

property?, and so forth. 

The definition of Garlan and Perry is also used to define software architecture; in fact, this is 

the definition proposed by the Software Engineering Institute (SEI).  

 

<<The structure of the components of a program/system, their interrelationships, 

and principles and guidelines governing their design and evolution over time.>>  

            David Garlan and Dewayne Perry [Gar95a] 

 

The definition that is recommended by the ANSI/IEEE Std 1471-2000 is in essence a small 

variation of Garlan and Perry’s definition.  

 

<<Architecture is defined by the recommended practice as the fundamental 

organization of a system, embodied in its components, their relationships to each 

other and the environment, and the principles governing its design and evolution.>>  

                                                                                 ANSI/IEEE Std 1471-2000 [IEE00] 

There are other proposals that are not exactly definitions of software architecture but which 

are more specific and address the issues of the software architecture discipline. Some of them 

are the following: 
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<< Beyond algorithms and data structures of the computation; designing and 

specifying the overall system structure emerge as a new kind of problem. Structural 

issues include gross organization and global control structure; protocols for 

communication, synchronization, and data access; assignment of functionality to 

design elements; physical distribution; composition of design elements; scaling and 

performance; and selection among design alternatives.>>  

               David Garlan and Mary Shaw [Gar93] 

 

<< An architecture is the set of significant decisions about the organization of a 

software system, the selection of the structural elements and their interfaces by which 

the system is composed, together with their behaviour as specified in the 

collaborations among those elements, the composition of these structural and 

behavioural elements into progressively larger subsystems, and the architectural style 

that guides this organization---these elements and their interfaces, their 

collaborations, and their composition>>  

                                                              Jan Booch, Rumbaugh and Jacobson [Boo99] 

 

From all these different definitions, it is possible to conclude that there are two principle 

kinds of definitions: those that define the concept of software architecture and those that define 

the specification of software architectures. The former are characterized by being general and 

non-specific and the latter are characterized by being an enumeration of issues related to the 

description of software architectures. However, there is a common concept in both kinds of 

definitions; they are both concerned with the notion of structure and how to organize software. 

Software architecture descriptions are specified in a formal way using ADLs. Despite the 

diversity of the different ADLs that have been proposed to date, all of them share a common 

conceptual basis. They have a common set of elements to design the structure of software 

systems. The elements that provide a common foundation for software architecture 

descriptions are introduced in this section.  
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2.1.1. Component 
The concept of component is the basis of software architecture and the concept that ADLs 

share par excellence. A component is a computational element that permits users to structure 

the functionality of software systems. It has a high level of encapsulation and it is only possible 

to interact with it by means of its interfaces. Most ADLs permit the definition of more than one 

interface for each component. The interface or multiple interfaces of a component define the 

functionality that the component requires and provides. In this sense, components are 

considered as black boxes. 

The concept of component is not only used in the field of software architecture. For this 

reason, it is sometimes difficult to know the exact meaning of the concept, and there is no 

consensus about the definition of component and how to identify the components that make up 

a software system. There are two tendencies: one is implementation-oriented and the other is 

more generic. The first one covers definitions that are related to the fact that a component is a 

package of code [DSo99]; whereas the second one defines a component as an artefact that has 

been developed to be reused. This second definition is abstract and generic, and a component 

could be a use case, a class or another element that emerges during the development process. 

The definition of component in the software architecture field is also in this category. There are 

a lot of definitions for component; the most widely used definition in the software architecture 

field is the one proposed by Szyperski. 

 

<< A software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only. A software component can be 

deployed independently and is subject to composition by third parties>>  

                             Clemens Szyperski [Szy98] 

 

Another well-known definition is the one of Meyer based on the “seven criteria”: 

 

<<A component is a software element that: 

1. May be used by other software elements  
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2.  May be used by clients without the intervention of the component’s developer  

3. Include a specification of all dependencies  

4. Include a specification of the functionality it offers  

5. Is usable on the sole basis of its specifications  

6. Is composable with other components  

7. Can be integrated into a system quickly and smoothly>>  

                       Bertran Meyer[MEY07] [Szy00] 

This “seven criteria” definition of component has been refined over time by the following 

one: 

<<A component is a software element (modular unit) satisfying the following 

three conditions: 

1. It can be used by other software elements, its“clients”. 

2.  It possesses an official usage description, which is sufficient for a client author 

to use it. 

3.  It is not tied to any fixed set of clients. >>  

                             Bertran Meyer [Mey03] 

 

Despite the fact that D’Souza advocates the module of code notion for the definition of 

component, he also provides a generic definition for component: 

 

<<A component is a coherent package of software artefacts that can be 

independently developed and delivered as a unit and that can be composed, 

unchanged, with other components to build something larger>> 

           Desmond D’Souza[DSo99] 

2.1.2. Connector 
The concept of connector emerges from the need to separate the interaction from the 

computation in order to obtain more reusable and modularized components and to improve the 

level of abstraction of software architecture descriptions.  
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Connectors represent the interactions of software systems. They define the coordination 

process among components, that is, the rules that govern the interaction of components. 

Interfaces are the way to interact with them and these interfaces represent the roles that each 

one of the components plays in the coordination process. 

Mary Shaw [Sha94] defines the notion of connector as follows: 

 

<<Connectors are the locus of relations among components. They mediate 

interactions but are not “things” to be hooked up (they are, rather, the hookers-up). 

Each connector has a protocol specification that defines its properties. These 

properties include rules about the types of interfaces it is able to mediate for, 

assurances about properties of the interaction, rules about the order in which things 

happen, and commitments about the interaction such as ordering, performance, 

etc.>> 

              Mary Shaw [Sha94] 

2.1.3. Port 
The concept of port is related to architectural elements, components, and connectors. Ports are 

the points through which architectural elements can interact with the rest of a software 

architecture. They are the parts into which the interface of an architectural element is divided.  

Their main function is to preserve the black box view of architectural elements and to 

publish the behaviour offered and required by architectural elements. They have been used in 

different ways; some approaches consider a port as a service and other approaches as a process 

with several services. This last way of defining ports, not only defines the services of ports, but 

also the conditions of how and when they can be required and provided. 

Different names have been used to refer to this concept. Some of them use the name of port 

to refer to ports of architectural elements, while other approaches use the name of port to refer 

to the ports of components and the name of role for ports of connectors. Other less frequently 

used names are players or name of interfaces.  
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In this thesis, it will be used the generic name of port to refer to both component and 

connectors ports. 

2.1.4. Connection 
Connections are used to constrain the “placement" of architectural elements; that is, they 

constrain how the different elements may interact and how they are organized with respect to 

each other in the architecture [Per92]. 

They establish the communication channels among architectural elements. They connect a 

component port with a connector port or with a port of another component [Luc95a], 

depending on whether the connectors are considered first-order citizens or not, respectively. In 

this thesis, since connectors are considered first-order citizens, a connection is established 

between a component port and a connector port. These connections are usually called 

attachments. 

2.1.5. System 
Most architectural approaches need to provide abstraction mechanisms. These mechanisms 

permit definition of elements of higher granularity and increase the modularity, composition, 

and reuse of software systems. Software composition provides flexible support and a reduction 

in complexity for the development process of software systems [Nie95].  

These needs and advantages have led to a wide variety of architectural models and their 

ADLs to provide the concept of complex component. A complex component is a component 

that is composed by other architectural elements. Systems represent architectural configurations 

that are made up of connectors and components that can be built in a hierarchical way. For this 

reason, a system can be composed of other subsystems [And03].  

2.1.6. Composition Relationship 
Compositional relationships emerge with systems due to the fact that it is necessary for systems 

to communicate with their architectural elements. These connections are different from 

attachments because they are used to connect architectural elements of different levels of 

granularity. As a result, the semantics of these connections is compositional, whereas 
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attachments have a communication semantics that is not compositional (the same level of 

granularity). These relationships are usually called Bindings. 

Bindings establish the mappings between the internal and external interfaces of a system 

[Gar01]. As a result, bindings establish a connection between a system port and a port of one of 

its architectural elements. 

2.2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 
The nature of current software systems has led to software being more complex, its modularity 

is an essential feature in being more understandable, reusable and maintainable. In addition, 

non-functional requirements of software systems are acquiring as much relevance as functional 

requirements. As a result, the support of software modularity and non-functional requirements 

are essential challenges to be faced in software development. The application of Software 

Engineering principles is necessary in order to cope with these challenges. A consolidated 

principle of Software Engineering is Separation of Concerns (SoC), which was introduced in 

[Par72].  

The SoC principle promotes dealing with the different concerns of a software system 

individually. [Dij76] demonstrated that this division provides better results and offers many 

advantages. A suitable application of SoC provides a reduction in software complexity and an 

improvement in the modularity, reuse and maintenance of software artefacts.  

In the last decade, Aspect-Oriented Programming (AOP) has emerged as an innovative 

way of applying SoC in software development [Kiz97], [Elr01]. Its proposal is different from 

previous ones (packages, modules, classes, interfaces, patterns, etc). The concerns that are dealt 

with individually in AOP are those that crosscut a software system, instead of those that can be 

perfectly located as software units of a system. As a result, AOP introduces a new notion of 

concern. The IEEE defines concerns as: 

<<…those interests which pertain to the system’s development, its operation or 

any other aspects that are critical or otherwise important to one or more 

stakeholders>>  

                      ANSI/IEEE Std 1471-2000 [IEE00] 
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Tarr et al. define concern as a predicate over software units [Tar99]. The crosscutting-

concerns concept comes from this notion of concern. Software systems are usually crosscut by 

common concerns of a domain system. These crosscutting-concerns are spread throughout the 

software units of the system. As a result, the crosscutting-concerns are repeated in all the 

software units that they affect, and these concerns are tangled with the other concerns that also 

modify the same software unit. The repetition of crosscutting-concerns throughout software 

systems increases the volume of code and complicates the maintenance that preserves the 

consistency of changes. Furthermore, tangled concerns make the maintenance of a specific 

concern more costly because it is so difficult to locate the correct place to introduce the 

changes. As a result, AOP proposes the separation of the crosscutting-concerns of software 

systems into separate entities, which are called aspects. This separation avoids the tangled code 

of software and allows the reuse of the same aspect in different software units (objects, 

components, modules, etc.).  

AOP applies the notion of aspect to cleanly structure software systems in order to easily 

develop, understand, customize, evolve, and maintain software systems. It was introduced to 

the research community by the works of Gregor Kizcales [Kiz97], [Kiz01].  

AOP separates the crosscutting concerns into aspects. It introduces the existence of two 

kinds of software units: components and aspects. These are clearly defined in [Kiz97] from the 

point of view of a non-aspect-oriented programming language: 

<< A component, if it can be cleanly encapsulated in a generalized procedure 

(i.e. object, method, procedure, API). By cleanly, we mean well localized, and easily 

accessed and composed as necessary. Components tend to be units of the system’s 

functional decomposition, such as image filters, bank accounts and GUI widgets. 

An aspect, if it can not be cleanly encapsulated in a generalized procedure. 

Aspects tend not to be units of the system’s functional decomposition, but rather to be 

properties that affect the performance or semantics of the components in systemic 

ways. Examples of aspects include memory access patterns and synchronization of 

concurrent objects and so forth. >> 
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                                    Kizcales et al. [Kiz97] 

 

The origin of AOP is the programming language AspectJ [ASP07a]. AspectJ is currently 

the most widely used language for aspect-oriented programming. But, crosscutting-concerns 

arise throughout the software life cycle. For this reason, despite the fact that AOP emerged 

from the implementation level, its use is being extended to all the stages of the software life 

cycle. As a result, Aspect-Oriented Software Development (AOSD) has emerged to gain the 

advantages that aspects provide in every stage of software development.  

AOP introduces a set of new concepts that are essential for correctly understanding this new 

paradigm. These concepts are introduced in this section to establish a conceptual basis for 

aspect-oriented programming.  

2.2.1. Base Code 
AOP introduces a clear differentiation between the base and aspect codes. The base code is 

composed of the software units (modules, objects, components) of an application, which have 

been obtained as a result of a functional decomposition. However, the aspect code is composed 

of the aspects that have been implemented to encapsulate the crosscutting-concerns of the same 

application. 

2.2.2. Join Point 
Join points are situated in the base code of an application. A join point is a semantic concept 

that defines a well-defined point of the execution of a base code. This point can extend the base 

code with the aspect code, thereby altering the execution flow of the original application. As a 

result, join points allow us to suitably coordinate the base code with the aspect code. 

In the AOP taxonomy defined by [Dou05], two approaches for specifying join points are 

detected: one approach marks the join points using labels [Wal03], [Dan04], and the other one 

uses the language constructors [Col00], [Dou01], [Dou2a], [Dou02b], [Dou04a], [Dou04b]. 

The former introduces a pre-processing procedure that slows the code injection process down 

at run-time. The latter is the most widely used way of defining join points. Consequently, this is 

the approach that has been adopted for defining join point in this thesis. This approach usually 
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matches join points with method calls. The different kinds of join points that this approach uses 

are presented and classified in [Kiz01]. 

As [Kiz97] defines, a join point is not an explicit language constructor, it is the semantics of 

the language constructor. In other words, the join point is associated to a language constructor; 

however, the different instantiations of this constructor will be different join points at run-time. 

A clear example is a joint point that is associated to a method call. The different invocations of 

this method are different join points with different semantics. The semantics is different 

because it depends on the object that has invoked the method, on the instantiation of its 

arguments, and so forth. 

2.2.3. Pointcut 
From the previous section, it can be deduced that an application has a large quantity of join 

points in its base code. However, not all join points of the application are interesting or relevant 

for injecting aspect code. As a result, the relevant join points for this injection of aspect code 

must be selected. The mechanism that permits this selection is the pointcut. 

A pointcut is a set of join points, which are candidates for injecting aspect code into base 

code at run-time, and their multiple instantiations. Pointcuts perform the weaving between the 

base code and the aspect code by capturing joinpoints.  

The most widely used pointcut model is the AspectJ model [Dan04],  [Jag06a], [Jag06b], 

[Läm02], [Wal03], [Wan04]. There are also other pointcut models that use more general 

execution patterns, such as stack of events, tree of events, sequence of events, etc [Col00], 

[Dou2a], [Dou04a], [Mas03]. 

2.2.4. Advice 
An advice defines the code that should be executed at the join points of a specific pointcut. 

Advices define additional code for the join points that have been selected by pointcuts. As 

[Bru04] cites, the advice code is the profiling code of an aspect-oriented program and the 

compiler profiles the join points by executing the advice code at run-time. This process by the 

compiler consists of inserting or replacing the base program code is called weaving. The 

execution of code depends on the kind of advice. There are three main kinds of advice: 
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 Before: The before advice adds code to the base program before the join point. As a result, 

the code of the advice is executed before the code of the join point. 

 Around: The around advice substitutes the code of the join point. As a result, the code of 

the advice is executed instead of the code of the join point. 

 After: The after advice adds code to the base program after the join point. As a result, the 

code of the advice is executed after the code of the join point. 

o After returning: This kind of after advice is executed when the execution of 

the join point finishes correctly.  

o After throwing: This kind of after advice is executed when the join point 

throws an exception. As a result, the code of the advice is executed after the 

throwing of the join point.  

As [Wan04] concludes, an aspect-oriented program is composed of a base program and 

some advices. 

2.2.5. Aspect 
An aspect is a language constructor that encapsulates a crosscutting-concern. An aspect is 

linked to one or more methods of the base code by means of pointcuts. For this reason, an 

aspect is composed of pointcuts and an advice. As a result, aspects specify whether their 

execution will be before, after or around a method of the base code by means of the advice that 

is associated to pointcuts. Despite the fact that aspects are usually pairs of pointcuts and 

advices, they can have their own state [Dou05]. The definition of aspect proposed by Kizcales 

is the following: 

<< Aspects are units of modular crosscutting implementation, composed of 

pointcuts, advice, and ordinary Java member declarations. >> 

            Gregor Kizcales et al. [Kiz01] 

2.3. TELE-OPERATED SYSTEMS: THE TEACHMOVER 
ROBOT  

There is a wide variety of domains that can take advantage of the PRISMA approach for 

developing software systems. PRISMA has been put into practice in the tele-operation domain, 
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which unlike academic examples, provides real problems that must be solved in real industrial 

systems. This domain has been chosen because it offers a framework for applying software 

engineering techniques.  

The main purpose of this section is to provide an introduction to the tele-operation domain 

as well as to present the suitability of tele-operation systems to apply an aspect-oriented 

software architecture approach following the MDD paradigm. In addition, the specific robot 

that has been completely developed using PRISMA MDD proposal is presented. This robot is 

used throughout the thesis in order to illustrate the PRISMA MDD approach and its main 

concepts. 

2.3.1. The Tele-operation Domain  
Tele-operation systems are control systems that depend on software to perform their 

operations. Designing these systems is a difficult task that must integrate mechanical and 

electrical elements with software components in the same system. They are used for tele-

operating mechanisms (robots, vehicles, and tools) that handle inspection and maintenance 

tasks. This thesis focuses specifically on robotic tele-operated systems. Tele-operated robots are 

software intensive systems that are used to perform tasks that human operators cannot carry out 

due to the dangerous nature of the tasks or the hostile nature of the working environment. 

The importance of considering the software architecture in robotic tele-operated systems is 

well known [Cos00]. However, despite the fact that robotic tele-operated systems usually have 

many common requirements in their definition and many common components in their 

implementation, it is impossible for a single architecture to be flexible enough to cope with all 

the variability of the domain. Therefore, a further step is needed to provide a flexible and 

extensible architectural framework to develop systems with different requirements and 

commonalities. There have been numerous efforts to provide developers with frameworks such 

as [Bru02], [Sch01] and [Vol01].  All of them make very valuable contributions that simplify 

the development of systems. However, the way that the component-oriented approach has been 

applied may reduce some of its benefits. These frameworks are object-oriented or component-

oriented frameworks that rely on object-oriented technologies and that highly depend on a 
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given infrastructure (Linux O.S. and the C++ language). As a result, a technology-independent 

framework that will follow MDD is necessary. This framework should provide mechanisms to 

define abstract software architectures that can be mapped into specific software architectures as 

well as mechanisms to dynamically evolve the interaction patterns among components. In 

addition, tele-operated systems have a wide range of common concerns in their domain. These 

concerns can be modelled as aspects in order to take advantage of AOSD. Some of these 

candidate aspects of the tele-operation domain are distribution, safety, mobility, security, 

coordination, etc. 

Most robotic tele-operated system has strong requirements in terms of adaptability to 

different devices, operator safety, response time, dynamic reconfiguration, etc. As a result, 

PRISMA has been applied to these kinds of systems in order to cope with these requirements. 

A complete development of a small-scale robot has been done. This robot is called 

TeachMover [TEA07].  

2.3.2. The TeachMover Robot  
The TeachMover robot is a robotic arm that is frequently used to teach the fundamentals of 

robotics (see Figure 1). This robot was specially designed for the purpose of simulating the 

behaviour of large and heavy industrial robots. 

 

 
Figure 1. The TeachMover Robot 

 

2.3.2.1. The morphology of the TeachMover Robot 
The TeachMover is formed by a set of joints that permit the movement of the robot. These 

joints are: Base, Shoulder, Elbow and Wrist. In addition, it has a Tool to perform different tasks 
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(see Figure 2). The movements that the robot is able to perform are: the rotation of the robot 

using the base, the articulation of the elbow and shoulder joints, and the rotation of the wrist. In 

this case, the Tool is a gripper, whose open and close actions allow the robot to pick up and 

deposit objects. 

 

 
Figure 2. Joints of the TeachMover robot 

 

The robot has six electric step motors for driving the direction of the movements of each 

joint.  These motors perform the movements through gears that are joined by a cable system. 

The TeachMover can be moved at a specific speed by means of half-steps or inverse 

cinematics. A half-step movement moves the robot using the number of teeth that a gear of a 

joint must be moved as a measure. And, an inverse cinematic movement moves the robot using 

a specific point in the space as a measure. These features, together with the features of the 

gripper, allow the robot to move objects from an initial position to a final one.  

In addition, safety directives of the robot require its movements to be checked to make sure 

that they are safe for the robot and the environment that surrounds it. The internal safety of the 

robot is preserved by establishing a set of constraints that forbid certain movements that will 

break the gears of the robot due to the position of the gears inside the robot. These constraints 

are defined by establishing minimum and maximum values for the movements of each joint. 

These values are specified in degrees as follows: 
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 Base: ± 90° 

 Shoulder: + 144°, - 35° 

 Elbow: + 0° , -149° 

 Gradient of the Wrist: ± 90° 

 Rotation of the Wrist: ± 180° 

 Opening of the gripper: 0 inches, + 3 inches (7,62 cm.) 

The robot has a sensor to pick up objects without breaking them. The weight of the objects 

that the robot is able to carry when its arm is stretched out is 450 grammes. Furthermore, the 

gripper presses the objects with a maximum pressure of 14 Newtons. Finally, the speed of 

movements fluctuates between 0 or 7 inches per second (178 mm/s) depending on the load that 

the robot carries when the movement is performed. 

It is important to mention that the movements of the robot are commanded by an operator 

from a computer. This communication between the computer and the robot is possible by 

means of the serial/RS232C port. In order to stop the robot in situations of emergency, the 

robot has an interruption mechanism for disconnecting the power of the robot by means of 

software. This is possible because this interruption mechanism is connected to the parallel port 

of the computer.   

All these features allow the TeachMover robot to simulate the movements of most of the 

industrial tele-operated robots that are currently in use. This robot allows the testing and 

verification of new solutions to be applied to more complex robotic systems in the future. 

2.3.2.2. The Software Architecture of the TeachMover Robot 
The TeachMover architecture has different levels of abstraction for its components, connectors 

and the interactions among them. The lowest abstraction level of the robot architecture has 

sensors and actuators as basic components, which are communicated with the hardware joints 

of the robot. The functionality of the actuators and sensors are the following: 

 Actuator: An actuator sends commands to a joint of the robot. These commands are 

performed by the joint or the tool.  
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 Sensor: A sensor reads the results of the commands in order to know whether or not they 

have been performed successfully. 

 

 
Figure 3. Architectural Elements of the TeachMover Software Architecture 

 

An actuator and a sensor are coordinated by means of a connector. These three architectural 

elements (actuator, sensor, and SUCconnector) are encapsulated inside a complex component 

called the Simple Unit Controller (SUC) (see Figure 3). However, two special SUCs have been 

identified in order to take into account the peculiarities of the wrist joint and the tool. The SUC, 

the Wrist SUC and the Tool SUC must be composed and coordinated in order to form the 
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complete structure and functionality of a tele-operated robot. This composition generates 

different levels of granularity (see Figure 3): 

 Mechanism Unit Controllers (MUCs): This architectural element type represents the 

arm of the robot, which is composed of the SUC and Wrist SUC coordinated by means of 

a connector.  

 Robot Unit Controllers (RUCs): This architectural element represents the robot, which is 

composed of MUCs and Tool SUCs coordinated by means of a connector. 

 The Architectural Model: This level represents the interactions between operators and 

robots through a connector.  

2.4. CONCLUSIONS 
This chapter has detailed the preliminary notions of this thesis of master. The origins of AOP 

and software architectures and their main concepts have been presented. This introduction is 

necessary in order to understand the PRISMA approach, and as a consequence, the MDD 

process of PRISMA that is proposed in this thesis.  

In addition, the robotic tele-operated systems are presented. Robotic tele-operated systems 

have been chosen as application domain for the PRISMA MDD approach, since these provide 

real systems that need real solutions for their development and maintenance processes. 

Specifically, PRISMA has been applied to the TeachMover tele-operated robot, which is also 

used in this thesis to illustrate the PRISMA MDD approach as well as its methodology. 
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The relevance that non-functional requirements have acquired in current software systems has 

led to the emergence of crosscutting concerns in software architectures. These crosscutting-

concerns are spread throughout software architectures.  

There is a wide variety of ADLs that have been proposed in order to specify software 

architectures, such as ACME [Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99], 

Darwin [Mag95], [Mag96], MetaH [Bin96], [Ves96][Bin96], Rapide [Luc95b], [Luc95a], 

SADL [Mor95], [Mor97], UniCon [Sha95] [Sha96], Weaves [Gor91], [Gor94]and Wright 

[All97a],[All97b]. An interesting comparison with respect to these ADLs is presented in 

[Med00]. In addition to this work by Medvidovic and Taylor, there are other interesting 

surveys on ADLs such as the ones presented in the PhD. Thesis by Cuesta [Cue02], which 

covers the analysis of other ADLs such as Conic [Kram85], [Mag89], DURRA [Bar01], AML 

[Wyd01], and Armani [Mon98]. It is also important to mention other approaches that are 

especially prepared to support evolution in software architectures, such as CommUnity 

[And03], [Fia04], LEDA [Can00], Pilar [Cue02], GUARANA [Oli98] or R-RIO [Loq00]. 

These ADLs do not explicitly distinguish the conventional architectural elements from 

concerns that crosscut multiple architectural elements of software architectures. One of the few 

approaches that deals with the separation of concerns is the work by Jose Fiadeiro. This work 

addresses the separation of distribution, mobility [Fia04], contex-awareness [Lop05] and 

coordination [And03] in software architectures. However, none of these original ADLs 

supports the separation of concerns by means of the aspect-orientated approach at the 



Model-Driven Development of Aspect-Oriented Software Architectures 

44 

architectural level. For this reason, several approaches have emerged to cover this need either 

by extending original ADLs or by creating new ADLs from scratch. 

There some approaches that extend MDD by providing AOSD mechanisms during their 

different stages [Aks05], [Kul03]. Other works that are related to the development of aspect-

oriented applications following MDD are [Sim05] and [Ama05]. However, none of these 

aspect-oriented approaches take into account software architectures. 

The combination of AOSD and software architectures has created two new challenges: 

how to define the concept of aspect at the architectural level and how to integrate aspects and 

architectural elements in a suitable way. A few of these approaches that combine AOSD and 

software architectures give support for a complete development of software. In fact, they do not 

provide a complete MDD support for developing aspect-oriented software architectures. 

In this chapter, the analysis presented in [Per06c] is extended by taking into account the 

MDD support  that provide the most relevant approaches that deal with AOSD and Software 

Architectures. In this case, the analysis is also made by starting from the premise that an aspect-

oriented software architecture approach should completely support the development and 

maintenance processes of software following the MDD approach. As a result, the set of 

desirable properties that aspect-oriented software architecture approaches should fulfil are also 

extended by introducing the MDD property.  Finally, the comparison of these approaches using 

these new properties is presented and discussed. 

3.1. ASPECT-ORIENTED APPROACHES AT THE 
ARCHITECTURAL LEVEL 

The incorporation of aspects at the architectural level implies considering what an aspect is at 

this level. An aspect is a new entity for modularizing and encapsulating specifications in 

software architectures. As a result, it is necessary to define how aspects are related to the rest of 

the main concepts of software architectures, especially to components and connectors. It is also 

necessary to define the kind of relationships (reference, connection, composition, etc) that they 

have with these elements. 
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In this section, the most important works of the area are analyzed paying special attention to 

the way that they introduce the notion of aspect in software architectures, how they coordinate 

aspects and architectural elements, their MDD support and their main properties. Due to the 

fact that there has not been much work done at the architectural level, not only are ADL 

extensions analyzed, but also aspect-oriented component models that could be applied at the 

architectural level. 

3.1.1. PCS: The Perspectival Concern-Space Framework  
The Perspectival Concern-Space (PCS) [Kan03] approach is based on the MDSOC model 

[Har03] and IEEE-Std-1471. It uses UML for modelling concerns at the architectural level.  

PCS describes concerns by means of architectural views. These views consist of one or more 

models and one or more diagrams. A perspective in PCS is defined as “a way of looking” at a 

multidimensional space of concerns from a specific viewpoint. As a result, this approach 

defines a perspectival concern-space as a projection of a concern-space that involves a set of 

related concerns, their reifications into models, and the realization of these models (see Figure 

4).  

 

 
Figure 4. A Perspectival Concern-Space in Overview [Kan03] 

 

The PCS approach uses UML to specify aspect-oriented software architectures, and it 

extends UML by defining a profile that supports the modelling of aspects and components. The 
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profile simulates aspects by means of architectural connectors based on the idea that aspects act 

as coordinators among components to intercept their interactions and then replace or add 

behaviour either before or after them [Kan02b]. As a result, PCS is based on an original ADL 

without connectors, whose aspect-oriented behaviour is introduced by means of connectors. 

Components and aspects are modelled by means of UML classes that have been profiled in 

order to have ports through publishing services. In addition, aspect classes are distinguished by 

component classes by means of the <<aspect>> stereotype [Kan02a]. A disadvantage of this 

combination of aspects and software architectures is the loss of the advantages that connectors 

provide to ADLS and the opportunity to specify how concerns crosscut the coordination rules 

of connectors. 

The PCS approach is supported by the ConcernBase tool [Kan03]. This tool provides 

mechanisms for modelling software systems, and it also allows the translation from UML 

models to the SADL language [Mor97]. 

Technological independence is a clear advantage that this approach offers. Yet, at the same 

time, it is a drawback of PCS because it does not provide support to translate its models to a 

programming language or to trace from models to implementation. As a result, PCS supports 

MDD in a partial way. It provides mechanisms for modelling software systems, and it also 

allows the translation from UML models to the SADL language, but it does not translate its 

models to a programming language in order to be executed on a technological platform. 

3.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented 
Platform  

CAM/DAOP is an approach that supports the separation of concerns from the design to the 

implementation stages of the software life cycle. It is composed of the CAM model, the DAOP 

-ADL [Pin03], and the DAOP platform [Pin05]. 

The CAM model extends UML in order to specify the components, the aspects and the 

mechanisms that compose components and aspects. Components are the core functionality that 

is crosscut by non-functional concerns, which are specified as aspects. In CAM, aspects are 

presented as special components, which are differentiated from the original ones by means of 

the <<aspect>> stereotype. Specifically, since its component model does not have the notion of 
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connector (see section 2.1.2), CAM introduces aspects as special connectors among 

components. The coordination of these connectors is performed by intercepting the services 

that arrive to or depart from components and by adding behaviour before, after or instead of 

their services. As a result, CAM does not introduce a new concept in software architectures for 

modelling aspects; it uses a refined version of the connector concept in order to simulate the 

behaviour of aspects and the composition of aspects and components. One of the advantages of 

this model is the fact that the weaving process between aspects and components is defined by 

means of interfaces. As a result, the encapsulation and reusability of components and aspects 

are preserved. In addition, this allows CAM to define the weaving process using the interfaces 

and also to execute it dynamically [Fue05]. However, the model does not provide original 

connectors to specify the architecture of the system. As a result, the model loses the advantages 

that connectors provide to ADLS and the opportunity to specify how concerns crosscut the 

coordination rules of connectors. Finally, it is important to emphasize the local or remote 

instantiation of components and the four kinds of instantiation that the CAM model provides 

for aspects: a single instance for each aspect, one aspect instance for each user of the system, 

one aspect instance for all the components that play the same role, and one aspect instance for 

each instance of a component. 

CAM specifies aspect-oriented software architectures using its DAOP-ADL. This ADL 

uses XML to describe components, aspects, and their interactions. On one hand, this is an 

advantage because it is a standard of data exchange between tools, it is widely extended and 

there are other languages that support query and management mechanisms for XML 

documents. On the other hand, this is a disadvantage because XML is not a formal language, 

and it can involve problems of correctness, accuracy, inconsistency, etc. In addition, it 

introduces limitations such as mechanisms to validate properties, to automatically generate 

code without ambiguity, etc. Finally, with regard to the DAOP-ADL, it is important to 

emphasize that it is independent of technology. As a result, their specifications do not introduce 

expressions or syntaxes of specific programming languages or technologies. 

The DAOP platform has been implemented in Java, and it provides a middleware in order 

to support the execution of aspects, components, and the dynamic weaving between them over 
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the Java technology. The platform and the DAOP-ADL specifications are integrated because 

the input of the DAOP platform is the XML document that contains the specification of the 

architectural model in XML. As a result, the middleware can perform the dynamic weaving 

since it knows all the information about the architectural model and knows the weavings that 

can be executed by each one of the aspects. The middleware performs the weaving by 

intercepting service requests and determining which aspect must be executed. In addition, the 

XML document contains the information needed to instantiate components and aspects. For 

this reason, when the document is loaded by the DAOP platform, the instantiation of 

components and aspects starts taking into account the instantiation information defined in the 

document. 

The work [Fue03] of CAM/DAOP is a first step to support MDD in the DAOP platform, 

however a complete support using code generation techniques for the development is not 

provided. They use MDA to show the different views of the models that are specified in the 

platform. 

3.1.3. Superimposition  
The work of Sihman and Katz proposes the use of superimposition for incorporating aspects 

into object-oriented programs. The generic operation of superimposition consists of applying a 

concept on top of another one. In this approach, aspects are superimposed on top of base 

applications. This approach creates the SuperJ constructor in order to pre-process aspect-

oriented superimpositions over AspectJ.  

A superimposition consists of a set of aspects and new classes that represent the extension 

of an application. A SuperJ implements an algorithm to apply a superimposition to a base 

application. Base applications do not reference superimpositions, and superimpositions can also 

be defined and compiled independently of base applications. However, when a 

superimposition is connected to a base application using the SuperJ constructor, the code of the 

superimposition makes reference to the state of the base application and it is not independent 

(see Figure 5). In fact, the needed advices and pointcuts are defined inside the aspects of a 

superimposition. As a result, the behaviour of the aspect and its connections to the base 
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program are not defined separately. Despite the fact that the specification of an aspect is done at 

a high abstraction level, the specification of advices and pointcuts inside aspects reduces the 

capabilities of aspect reuse of the approach. In addition, superimposition allows the 

specification of conditions of applicability or the definition of desired results for the process of 

applying a superimposition to a base application.  

 

 
Figure 5. Superimposition [Sih03] 

 

This approach allows us to combine superimpositions and to check the constraints that have 

been defined in a superimposition. It has been implemented using Java, and it uses AspectJ in 

order to apply this technique over Java base applications. As a result, the Java implementation 

of the SuperJ makes this model dependent on technology and it is closer to object-oriented 

programming languages than ADLs. 

3.1.4. TRANSAT  
Transat [Bar04b] is an approach for managing the evolution of software architecture 

specifications using aspect-oriented programming principles. The approach starts from a core 

architectural model that either needs to be extended during its development process or needs to 

be evolved during its maintenance process. The mechanisms of extension and evolution are 

provided using AOP techniques. As a result, this approach incrementally obtains a complete 

software architecture with business and technical concerns from a business software 

architecture.  

This approach is supported by a framework that allows the evolution of software 

architectures by integrating new technical concerns. The framework guides the separated 

definition of technical and business concerns. Business concerns are the core architectural 



Model-Driven Development of Aspect-Oriented Software Architectures 

50 

model, and technical concerns are the aspects that extend the basic functionality of the system. 

The framework provides aspect-oriented mechanisms to weave both.  

The core architectural model is defined using its component model, SafArchie [Bar03]. 

This model is a hierarchical component model that defines software architecture by means of 

composition relationships. The new technical concerns such as persistence, security, or 

transaction management are modelled as components. Finally, the weavings between business 

components and aspect components are defined by means of adapters and weavers. Adapters 

define the integration rules between technical components and business components, and 

weavers define the coordination rules between them. In other words, adapters and weavers 

materialize the integration of the core architecture and their extensions by identifying the join 

points in the core architecture and by defining the pointcuts at adapters and weavers. 

The Transat framework consists of a tool called SafArchie Studio [Bar04a]. This tool is an 

extension of ArgoUML, which offers several views of the evolution process depending on the 

kind of user. 

One of the main advantages of this approach is that it is based on ADL for defining the core 

architectural model. As a result, the formal definition of software architecture and its 

independence from a technological platform are guaranteed.  

Another advantage is the way that evolution is supported. The integration of new 

requirements does not break the consistency of the original software architecture. In addition, 

the application of AOP principles to this integration ensures both the separation of concerns in 

the software architecture extension and better management if new requirements for these 

concerns arise. Finally, this extension mechanism allows analysts to easily identify where the 

original software architecture has been modified; they only need to find the adapters and 

weavers of the complete architecture. 

A great limitation of this approach is the constraint of starting the development from a core 

architectural model without considering concerns from the beginning. Also, the fact that 

concerns are only technical and not more generic is another drawback. As a result, aspects in 

this approach are not introduced as a new concept for modelling software architectures. 
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Software architectures are defined using a pure compositional ADL, and aspects only appear as 

an extension or evolution mechanism of software architectures. 

Since Transat is only focused on the evolution and maintenance stages of software, it does 

not provide a complete MDD support. Its tool only allows to analyze the evolution of the 

software architecture, and not to develop the aspect-oriented software architecture application 

following MDD. 

3.1.5. ASAAM: Aspectual Software Architecture Analysis Method  
ASAAM [Tek04] is the approach that introduces aspect-orientation techniques to the SAAM 

approach, which introduces three perspectives to analyze software architecture specifications: 

functionality, structure and allocation. As a result, ASAAM is an extension and refinement of 

SAAM. The steps of ASAAM are the following: 

1. Develop a candidate architecture: A candidate architecture is generated taking into 

account quality attributes and potential aspects. 

2. Develop scenarios: The scenarios that define the business rules of the system and 

possible future changes are created. 

3. Perform scenario evaluations: The scenarios are evaluated and categorized, and 

potential aspects are identified for each scenario. 

4. Assess scenario interaction and classify components: The separation of concerns is 

assessed for both crosscutting-concerns and non-crosscutting concerns. 

5. Refactor the architecture: A refactorization of the architecture is proposed using 

conventional techniques and aspect-oriented techniques. 

This evaluation method of aspect-oriented software architectures has been implemented as 

an Eclipse add-in called ASAAM-T [Tek05]. The main difference between this approach and 

the others is the fact that the purpose of ASAAM is to assess an aspect-oriented software 

architecture instead of specifying and implementing a software architecture. As a result, this 

approach is a valuable contribution to the field for evaluating if an aspect-oriented software 

architecture has considered the correct aspects, and if the aspects are factorized in a proper way. 
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3.1.6. AVA: Architectural Views of Aspects  
AVA is an approach where aspects are introduced in software architectures as views [Kat03]. 

The notion of aspect in software architectures is simulated by the architectural view concept. 

This facilitates the comprehensibility of the model for the software architecture community. 

However, an aspect is not semantically a view because an aspect has its own behaviour 

independently of the architectural elements that it affects. Furthermore, this approach constrains 

the notion of architectural view to an aspect, losing other viewpoints for defining views such as 

kinds of users, models, level of abstraction, features, etc.  

In AVA, an aspect is a module that encapsulates a set of components and their connections 

that are crosscut by this aspect. As a component can be crosscut by more than one aspect, the 

dependencies between different aspects must be explicitly specified in order not to lose the 

consistency of the software architecture. Since it is possible to define several aspects for the 

same concern in AVA, aspect modules (S,O) can be composed to form a single concern 

module (C) (see Figure 6). This aspect composition is performed using superimposition, which 

is an asymmetric operation in which one aspect is applied on top of another one [Kat02]. As a 

result, the software architecture is completely remodularized in different modules that represent 

aspects or concerns, depending on the level of abstraction. This modularization distributes 

components into different modules taking into account the aspects that affect them. The main 

disadvantage of this remodularization is the loss of the complete software architecture view. 

However, this concern and remodularization structure of modules allows analysts to easily 

locate where to introduce new changes, taking into account the concerns that should be 

modified. 

The AVA model has been created by defining a UML profile. As a result, the definition of 

AVA software architectures is really intuitive because these architectures use the OMG 

standard. In addition, the use of UML allows analysts to specify software architectures 

independently of technology and in a graphical way. In the AVA profile, the aspect is a 

stereotype of the package UML metaclass, and the concern diagram is an extension of the 

component diagram.  
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Figure 6. Concern Diagram of AVA [Kat03] 

 

The AVA approach has also been applied to the definition and documentation of pattern 

systems [Ham05], and the MADE tool has been developed to support it [Ham04]. This tool 

shows the different views of the architecture, but it does not provide a complete MDD support. 

3.1.7. AspectLEDA  
AspectLeda is an approach that extends the LEDA ADL [Can00][Can99] with aspect-oriented 

concepts [Nav05]. This approach consists of two steps: the definition of an initial architectural 

model and the addition of aspects. The initial architectural model is defined using the LEDA 

ADL in order to have the advantages of a formal basis, to validate the software architecture by 

executing a prototype, and to be independent of technology. Once the initial architecture has 

been defined, the new requirements that emerge during the development and maintenance 

processes are incorporated in the architecture such as aspects. This is a clear drawback of this 

approach because it does not give the analyst the chance to introduce aspects at the beginning 

of the software development process. Aspects are only used at the maintenance stage or at 

refinement processes of the development stage. In addition, it is important to take into account 

that not all new requirements of a system are aspects. However, AspectLEDA forces the 

analyst to introduce new requirements into the model as new aspects without taking into 

account whether they are aspects or not. 

In AspectLEDA, aspects are specified in the way as components because LEDA is an 

ADL without connectors. However, aspect components and components of the initial software 
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architecture are defined in different levels. Since AspectLEDA does not have architectural 

connectors, it cannot specify the concerns that crosscut connectors, and it loses the advantages 

that connectors provide to ADLs. However, AspectLEDA introduces the notion of coordinator 

to define the weaving process that synchronizes aspects and components and coordinates both 

levels. This coordinator preserves the reusability and encapsulation of aspects because the 

coordination of aspects and components is specified outside aspects. 

Finally, it is important to emphasize that this approach is still only a proposal. It does not 

have a tool to support for its methodology, and it is not able to compile its aspect-oriented 

software architecture into any technological platform. 

3.1.8. AOCE: Aspect-Oriented Component Engineering  
The Aspect-Oriented Component Engineering approach (AOCE) is based on AOREC 

(Aspect-Oriented Requierements for Component-Based Systems). AOREC uses the notion of 

aspect in order to suitably define and categorize the requirements of components in terms of 

what they provide or require through their services. In AOREC, an aspect is a characteristic of a 

system for which components provide and/or require services. This approach takes into 

account some aspects such as user interface, collaboration, persistence, distribution, and 

configuration. As a result, AOREC uses aspects in order to attain multiple perspectives of the 

components in order to better understand and reason about the behaviour and semantics of 

these components.  

Since AOCE is the step after AOREC in the development process, AOCE defines aspects 

in the same way that AOREC does; aspects are specified as components. The definition of an 

aspect component is done separately from the component specification in order to be 

independent and reusable. However, an AspectManager must be introduced in order to 

coordinate aspect components and components. Despite the fact that this approach does not 

have connectors (because is a component-based approach), it still must introduce a connector 

called AspectManager to weave aspects and components at run-time.  

Apart from not having the notion of connector and not classifying the interfaces of 

connectors in terms of aspects, the main disadvantage of this approach is the fact that the design 
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language of AOCE is based on a specific component-based platform, the JViews [Grun98] 

AOP implementation platform, which is not independent of technology. 

Finally, it is important to mention that AOREC and AOCE have a tool to support their 

methodology. They have extended the tool of JViews to support aspects. This tool is called 

JComposer [Grun98]. It is an implementation framework used by developers; it only provides 

support for programming. As a result, it does not support for MDD. 

3.1.9. Component Views  
The component views approach [Sto02] is not really an approach to specify aspects of software 

architectures. The component views approach is an extension of component-based models to 

define views using concerns as viewpoints. As a result, this approach decomposes the 

architecture taking into account which components and connections among them are affected 

by a specific concern. The result of this decomposition is that each view of a concern contains 

the components and relationships affected by this concern. This approach defines a UML 

profile to support the definition of these views for software architectures. However, this 

approach does not introduce new concepts or simulates the notion of aspect because it does not 

support this notion. It only works with concerns which are only used to analyze component-

based models. Their specification is made using a UML profile. The purpose is not to execute 

an aspect-oriented component-based model, it is simply to analyze component models. 

3.1.10. Aspectual Components  
Aspectual Components are proposed as a new kind of component by the work of Lieberherr 

[Lie99]. They are defined using a generic data model called a participant graph. This graph is 

then refined to deploy aspects as normal components.  

This approach proposes adding a new dimension to aspects over the organization of an 

object-oriented application. As a result, the first task of the software development process is to 

decompose software into aspects. The second one is to decompose each aspect into classes 

following the object-oriented approach. The result of this process is an aspectual component 

composed of object-oriented classes. However, these aspectual components should be 

composed with the application base. In other words, the new dimension of aspects must be 
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communicated to the bottom dimension of the application. This communication is achieved by 

means of connectors that coordinate both dimensions. 

Aspectual components can be programmed using Java programming language because this 

approach does not introduce a new programming constructor; instead, aspectual components 

are implemented as normal components. However, this approach does not offer a tool to 

support work with this model. 

3.1.11. Caesar  
Caesar is a model for aspect-oriented programming [Mez03] with its own programming 

language. This model is characterized by being technology-dependent and by developing a 

higher-level module to develop aspects independently of the mechanisms for join point 

interceptions. 

Caesar specifies the implementation of aspects and their weaving relationships in a separate 

way in order to reuse the aspect independently of what the aspect is related to. The main feature 

that distinguishes Caesar from other aspect-programming models is the concept of Aspect 

Collaboration Interface (ACI). An aspect is specified by means of an ACI. An ACI decouples 

the implementation and weavings of aspects. An ACI is composed of two different interrelated 

modules: an implementation aspect module and a binding aspect module. The former 

implements the methods that the aspect provides, independently of the context. The latter 

implements the required methods from a specific context by means of pointcuts and advices. In 

addition, an ACI can be composed of other ACIs, which provide a complete level of 

composition in order to define aspects over the base code.  

Caesar defines an instantiation mechanism for its ACIs. To instantiate ACIS, the 

implementation and a specific binding for the aspects must be composed in the same unit; this 

unit is called weavelet. A weavelet is a class that is composed of the interface that provides and 

requires. Once, the weavelets are defined; they can be instantiated in a static or dynamic way. 

This mechanism of instantiation allows several instances of the same weavelet to be defined. It 

also provides a choice of different weavelets using aspectual polymorphism. 
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3.1.12. JASCO  
JAsCo is originally an aspect-oriented programming language for the Java Beans component 

model [Suv03]; however, a prototype for .NET platform is currently being developed [Ver03]. 

As a result, JAsCo is a programming language that is dependent on technology. It introduces 

three new concepts to extend Java to support aspect-oriented programming, which include 

aspects, hooks, and connectors. 

In JAsCo, aspects are composed of a set of hooks that define how to link an aspect to a 

specific context. A hook consists of two parts: the pointcut (when the hook is activated) and the 

advice (what is going to be executed as a result of the activation). Finally, connectors allow the 

definition of the mappings between a hook and one or more elements of the base code 

(joinpoint and pointcut correspondence). 

The JAsCo execution model is very flexible and provides many advantages. It supports 

aspectual polymorphism, which is the weaving between aspects and code. This is dynamic 

because aspects can be added and removed at run-time. However, the referential nature of the 

dynamic weaving requires an execution platform to intercept the application and insert it into 

the aspects at execution time. In addition, aspects can be combined to form complex structures 

by means of inheritance and aggregation relationships. 

Finally, it important to mention that there are a pair of tools that support the JAsCo 

approach. One of them transforms a Java bean into a JAsCo bean, and the other one is the 

integration of JAsCo into the PacoSuite [Van01], [Wyd01], which allows modelling 

component models at a high abstraction level and also allows generating one or more JAsCo 

connectors from its models. 

These tools are implementation frameworks used by developers. As a result, they provide 

support for programming and not for MDD.  

3.1.13. FUSEJ  
FuseJ is a programming language for component-based software architectures onto the Java 

Beans component model [Suv05b]. This language asserts that there are no aspects and these 

services can be implemented as a component. It is a platform dependent language that does not 

make distinctions between normal components and aspect components. It is based on the 



Model-Driven Development of Aspect-Oriented Software Architectures 

58 

component architecture presented in Figure 7. Each concern and component is programmed as 

a component of the Component Layer. The provided and required services of components are 

sent through the gates of the Gate Layer by preserving the encapsulation of components (black 

box view). Finally, the coordination among the gates is programmed using connectors of the 

Connector Layer. However, this connector must be implemented in different ways depending 

on whether two normal components are being coordinated or a component and an aspect 

component are being coordinated. In this last case, the coordination is performed using the 

aspect-oriented primitives to define the pointcuts and advices (to specifying the weaving 

process). 

 

 
Figure 7. Unified Component Architecture [Suv05b] 

 

With regard to instantiation, aspects are instantiated as regular components; each aspect can 

have more than one instance. Finally, it is important to emphasize that the tool support for 

FuseJ is currently being developed. 

3.1.14. JAC  
JAC is a framework to develop aspect-oriented distributed applications in Java programming 

language [Paw04]. The main contribution of the programming model of JAC is the fact that 

aspects can be distributed. They also have a dynamic nature, which means they can be added 

and removed at run-time.  
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JAC provides a set of classes and methods that are extended when a new JAC application is 

developed. JAC provides two different levels of aspect-oriented programming: the 

programming level and the configuration level. The former is used when new aspects are 

programmed from scratch. The latter is used when existing aspects are customized for new 

requirements. 

Since JAC packages normal components inside containers, it also defines aspects as 

components that are inside containers. The components that define aspects are called aspect 

components. These containers are remote servers that can represent normal or aspect 

components. JAC aspect components crosscut normal components that are not necessarily in 

the same location as the aspect components. As a result, JAC gives support to distributed 

weaving processes. This need emerges because aspects are treated as components and the 

weaving process (the pointcuts and advices) are defined inside the aspect. If the weaving 

process were defined in a different entity of the aspect such as a connector, this distribution 

need would not arise, because the distributed communication is supported by components and 

connectors. The main drawback is not the effort needed to support distributed communication 

in pointcuts, it is the fact that the behaviour of the aspect cannot be reused. JAC loses the 

reusability of aspects because the relationships for applying the aspect to a specific context are 

defined inside it.  

3.1.15. JIAZZI  
Jiazzi is an aspect-programming model that extends Java by means of encapsulated code 

modules called units [McD03]. They are separately compiled and are externally linked code 

modules that are introduced into a Java program. These units were originally created to obtain 

higher modularity of code. However, they are currently being used to add aspects to non-

aspect-oriented Java programs in a non-invasive way. This is possible because JIAZZI also 

provides linking units like connectors to specify the connections of units and a base Java 

program.  

Jiazzi units are composed of Java classes that implement the behaviour of a specific 

concern. They are compiled independently of linking units and base code; as well as the type 
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checking is also performed internally. In addition, an external compilation is needed to perform 

the connection between base code and units by means of linking units. In this compilation 

process, the types of connections must also be checked.  

Jiazzi does not extend the syntax of the Java programming language because it introduces 

aspects as externally linked Java modules. Jiazzi and its interaction with Java are implemented 

using Java, and it runs perfectly on this technology. Its main drawback is the fact that it is a 

technology-dependent model and the pre-compilation and encapsulation of its modules before 

its integration reduces the flexibility to evolve aspects at run-time. 

3.2. COMPARISON OF ASPECT-ORIENTED SOFTWARE 
ARCHITECTURES  

There are several features that are essential for analyzing and to comparing the different 

approaches that have been presented in the previous section. The features that have been used 

as comparison criteria have been selected starting from the premise that an aspect-oriented 

software architecture approach should completely support the development and maintenance 

processes of software. It is important to mention that there are important features, such as the 

instantiation mechanisms and the types checking, that have not been used to compare the 

different approaches because the proposal does not usually give very much information about 

these features.  The analysis of these features is included in their descriptions above for those 

approaches that provide information about them. 

Next, it is detailed the features of comparison and the reasons because they have been 

considered as a classification criteria of aspect-oriented architectural models.  

 Aspect-oriented model: This feature defines the kind of aspect-oriented model that is 

integrated with the software architectural model. The four kinds are: asymmetric or 

symmetric [Har02], multidimensional [Oss01, [Oss00], and composition filters [Ber01], 

[Ber94]. This characteristic is important because the integration is completely different 

depending on the aspect-oriented model. 
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 Architectural model: This feature determines whether an architectural model provides 

connectors for modelling software architectures or not. Those that have connectors provide 

features that improve the structure and maintenance of software architecture (see section 

2.1.2 for details).  

 Definition of Aspects: The most distinguishable feature of aspect-oriented architectural 

models is how they integrate aspects and software architectures. There are two ways of 

doing this: by simulating the notion of aspect by means of another architectural concept or 

by defining a new concept in software architecture for aspects. The first way refines the 

architectural concepts varying their original semantics; and the second one requires 

understanding a new concept to model software architectures. 

 Definition of Weavings: This is an important feature of aspect-oriented models, and of 

aspect-oriented architectural models. The definition of weavings feature specifies where 

the weaving process between aspects and architectural elements is defined. If the pointcuts 

and advices are defined inside the aspect, the aspect is dependent on the context that the 

aspect is connected to. However, if they are defined outside the aspect, the behaviour of the 

aspect can be reused independently of where they will be connected. 

 ADL: Another feature that is necessary to take into account when comparing architectural 

models is whether the ADL is a formal language or not. The formal nature of an ADL is 

an indispensable property of architectural models if the purpose of the approach is to 

generate code without ambiguity, to verify properties, to validate behaviour, to trace the 

different levels of abstraction in a suitable way, to evolve software architectures preserving 

the consistency of the system and so forth. 

 Aspect-Oriented Evolution: The evolution of aspect support is an important feature that 

can improve the evolution and run-time evolution of software architectures. As a result, an 

approach that provides mechanisms for adding or removing aspects is a great advantage. 

 Purpose: The purpose of the approach is an essential feature to be able to compare 

models. There are aspect-oriented architectural models that give complete support during 

the development process, others that analyze or evolve models, and still others that fulfil 

several purposes. 
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 Technology: This is an important feature that distinguishes the wide variety of aspect-

oriented architectural models that exists. An aspect-oriented architectural model should be 

specified in an abstract way by means of an ADL. As a result, the same specification can 

be applied to different platforms and different programming languages. However, if the 

model depends on a specific platform and/or programming language, its application and 

flexibility are considerably reduced. 

 Graphical support: The graphical specification of aspect-oriented software architectures 

is a necessary feature to avoid the complexity of using ADLs. The graphical support is 

achieved by defining the graphical metaphor of ADLs by means of a new language or by 

extending a well-known graphical language. 

 Tool support: A significant feature of the aspect-oriented architectural models is its 

support by means of a framework that guides the analyst during the development and 

maintenance processes. A framework can provide a wide variety of facilities such as 

modelling support, ADL generation, code generation, code execution, validation, 

verification, evolution, run-time evolution, etc.  

 MDD support: A significant feature of an approach that should completely support the 

development and maintenance processes of software following the MDD approach is the 

MDD support that it offers. The complete MDD support should consist of automatically 

generating the code from models and to guide the analyst during all the stages by 

providing mechanisms to facilitate the tasks. Some of these mechanisms are: verification 

techniques, reusability mechanisms, integration facilities, code generation mechanism, etc. 

 

 

A comparison table has been developed from the features and the approaches analyzed in 

the above section.  This table is divided into two separate tables due to the limitation of the page 

dimensions. Blank cells indicate that no information was available. 
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 Aspect-oriented 
model 

Architectural 
model 

Definition of 
Aspects 

Definition of 
Weavings 

ADL 

PCS Multidimensional 
and symmetric 

Without 
connectors 

Aspects like 
connectors 

Inside aspects SADL: 
Formal 

compositional 
ADL 

CAM/DAOP Asymmetric Without 
connectors 

Aspects like 
connectors 

Outside aspects 
using 

communication 
between 
interfaces 

DAOP –
ADL: Not 

formal, based 
on XML 

Superimposition Asymmetric: 
Two levels: 
aspects and 
architectures 

 Java Classes 
inside a 

superimposition 
layer 

Inside aspects  

TRANSAT Asymmetric. 
Only technical 

aspects 

Without 
connectors 

Aspects like 
components. 

Aspect 
components 

Outside 
aspects. Using 

adapters or 
weavers ≅ 
connectors 

SafArchie 
component 

model 

ASAAM Asymmetric Not fixed Scenarios Outside 
Aspects 

Not fixed 

AVA Asymmetric Not fixed Aspects as views Outside 
Aspects 

Not fixed 

AspectLEDA Asymmetric: 
Two levels: 
Aspects and  
architectures 

Without 
connectors 

Aspects as 
components 

Outside aspects 
using 

coordinators ≅ 
connectors 

Leda: Formal 
Compositional 

ADL 

AOCE Asymmetric Without 
connectors 

Aspects as 
components 

Outside aspects 
using aspect 
managers ≅ 
connectors 

 

Component 
Views 

Asymmetric  Not aspects. 
Concerns as 

viewpoints for 
defining 

architectural 
views  

  

Aspectual 
Components 

Asymmetric: 
Two levels: 
Aspects and 

object-oriented 
applications 

 Aspects as 
components:  

Aspectual 
components 

Outside aspects 
with 

connectors 
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Caesar Asymmetric  Aspect 
Collaboration 

Interface (ACI) 

Separation of 
ACI modules 

into 
implementation 
and interaction 

of aspects 

 

JASCO Asymmetric   Aspects Hooks and 
connectors 

 

FUSEJ  With 
Connectors 

Without Aspects: 
Components 

Connectors  

JAC Asymmetric  Aspects as 
components: 

aspectcomponents 
 

Inside aspects  

JIAZZI Asymmetric: 
Two levels: 
Aspects and 

object-oriented 
applications 

 Units  Linking units  

Table 1. First comparison of aspect-oriented software architecture 
approaches 

 
 
 
 
 
 

 Aspect-
Oriented 
Evolution 

Purpose Technology Graphi
cal 

support 

Tool support MDD 
support 

PCS  Development of  
AO Software 
Architecture 

Independent UML 
profile: 
Aspect 

is a 
stereoty
pe of a 
UML 
class 

ConcernBase 
tool: modelling 
support, ADL 

generation 
from UML, no 

code 
generation, no 

execution 

Partial: 
Modelling 
techniques 

 
 
 

CAM/DAOP 

 
Dynamic 
weaving 
but not 

adding and 
removing 
aspects at 
run-time 

 

 
Development of  

AO Software 
Architecture 

 
Independent 

 
UML 
profile 

 
DAOP 

platform: Java 
Technology, 
modelling 
support,  
DAOP 

middleware for 
code execution  

 
Partial: 

Multiple 
views of 
analysis 
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Superimposition  Programming 
aspect-oriented 

Java applications 
and verifying 
properties of 

aspect-oriented 
superimposition 

Dependent 
on Java 

technology 

   

TRANSAT  Only evolution 
support, the 

initial aspect-
oriented 

specification is 
not supported. 

Independent UML 
profile 

SafArchie 
Studio. 

Extension of 
ArgoUML 

Partial: 
Models to 
analyze 

evolution 
and 

maintenanc
e 

ASAAM  Analysis of 
Software 

Architectures 

Independent UML 
profile: 
scenario

s 

ASAAM-T  

AVA  Development of  
AO Software 
Architecture 

Independent UML 
profile: 
aspect is 

an 
stereoty
pe of a 
UML 

package 
that 

contains 
an 

extensio
n of 

compon
ent 

diagram 

MADE tool: 
modelling 
support 

Partial: 
Multiple 
views of 
analysis 

AspectLEDA  Development of  
AO Software 
Architecture 

Independent    

 
AOCE 

 
 
 

Dynamic 
weaving 

Development of  
AO Software 
Architecture 

Dependent 
on JViews 

 JComposer: 
An extension 
of the JViews 

tool 

Not 
supported: 
developme

nt 
framework 

 
Component 

Views 

  
Analysis of 
software 
architectures 
 

 
Independent 

 
UML 
profile 
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Aspectual 
Components 

 

 
 
 

 
Programming 
aspect-oriented 

Java applications 

 
Dependent 

on Java 
technology 

 
 
 

 
 
 

 

Caesar  Programming 
aspect-oriented 

Caesar 
applications 

Dependent 
on Caesar 

programming 
language 

 Programming 
framework 

Not 
supported: 
developme

nt 
framework 

JASCO Dynamic 
weaving 

and 
support for 
adding and 
removing 
aspects at 
run-time 

Programming 
aspect-oriented 

application 

Dependent 
on Java or 

.Net 
technology 

 Programming 
framework 

Not 
supported: 
developme

nt 
framework 

FUSEJ  Programming 
aspect-oriented 

applications onto 
Java Beans 

Dependent 
on the Java 

Beans 
component 

model 

   

JAC  Programming 
aspect-oriented 

Java applications 

Dependent 
on Java 

technology 

   

JIAZZI  Programming 
aspect-oriented 

Java applications 

Dependent 
on Java 

technology 

   

Table 2. Second comparison of aspect-oriented software architecture 
approaches 

3.3. CONCLUSIONS 
After the analysis and comparison of different approaches for aspect-oriented software 

architecture, it is possible to conclude that these proposals at the architectural level usually 

extend ADLs without connectors and mainly follow an asymmetric model by considering 

functionality as architectural components. Despite the fact that there has been a lot of work 

done, these proposals are only focused on a single specific purpose: the analysis, evolution or 

development of software architectures. They do not pursue several purposes simultaneously to 

provide a complete development and maintenance support. Furthermore, they always introduce 

the notion of aspect by using original architectural concepts, despite the fact that they do not 
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provide the suitable semantics for aspects. And finally, the most important conclusion for this 

thesis, they do not provide a complete support for MDD. As a result, it is necessary to provide 

an aspect-oriented model for symmetric aspect-oriented models and ADLs with connectors, 

whose development will follow the MDD paradigm. This model should include: 

  A suitable semantics for the aspect concept  

 A graphical modelling metaphor 

 Analysis and evolution capabilities 

 Technological support in order to execute the aspect-oriented architectural models that 

have been defined independently of technology 

 A guided support during the development and maintenance processes of software 

following MDD: Reusability, Verification, Code generation, Maintenance, Evolution, etc. 

The PRISMA approach has been defined to fulfil these needs. In particular, in this thesis the 

main properties to facilitate and provide mechanism to give a complete MDD support in 

PRISMA are defined. As a result, this thesis is a step forward in the previous PRISMA work. 
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CHAPTER 4 
4. PRISMA BACKGROUND 

 

 

 

PRISMA provides a model for the definition of complex software systems [Per05a]. Its main 

contributions are the way in which it integrates elements from aspect-oriented software 

development and software architecture approaches, as well as the advantages that this 

integration provides to software development. The PRISMA model introduces the notion of 

aspect following an architectural model with connectors and a symmetrical aspect-oriented 

model.  

Since the PRISMA model is a technology-independent model, the PRISMA approach also 

follows the MDD paradigm to obtain its advantages during the development and maintenance 

processes of PRISMA architectures. The main goal of the PRISMA approach is to give a 

complete support for the development of technology-independent aspect-oriented software 

architectures, which could be compiled for different technological platforms and languages 

using automatic code generation techniques. 

The purpose of this chapter is to present the main properties of the PRISMA model and to 

explain in detail the PRISMA metamodel. The PRISMA metamodel is the starting point to 

apply the MDD to the development of PRISMA applications. 

4.1.  THE PRISMA MODEL 
PRISMA provides a model for the description of software architectures of complex and large 

systems. It introduces aspects as first-order citizens of software architectures. This means that, 
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in PRISMA, aspects are not simulated through other architectural concepts such as connectors, 

views or similar mechanisms as in other approaches. PRISMA creates a new concept for 

modelling concerns called aspects. As a result, PRISMA specifies different characteristics 

(distribution, safety, context-awareness, coordination, etc.) of an architectural element 

(component, connector) using aspects. As a result, PRISMA preserves the meaning of the 

component and aspect concepts. 

  From the aspect-oriented point of view, PRISMA is a symmetrical model that does not 

distinguish a kernel or core entity to encapsulate functionality; functionality is also defined as 

an aspect. One concern can be specified by several aspects of a software architecture, whereas a 

PRISMA aspect represents a concern that crosscuts the software architecture. This crosscutting 

is due to the fact that the same aspect can be imported by more than one architectural element 

of a software architecture. In this sense, aspects crosscut those elements of the architecture that 

import their behaviour (see Figure 8).  

 

 
Figure 8. Crosscutting-concerns in PRISMA architectures 

 
The fact that PRISMA is a symmetrical model is an advantage. This facilitates the 

construction of software architectures since the model does not manage two different concepts 
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(class or component, and aspect) in different ways. In addition, the reusability of functional 

properties is independent of the architectural element that imports it because the functionality is 

specified as an aspect. However, if this functionality were implemented as a kernel class of the 

architectural element, the reuse of the functionality would only be achieved by reusing the full 

architectural element. Consequently, a more uniform model is obtained because of the 

homogeneity of the concepts that build an architectural element. 

A PRISMA architectural element can be seen from two different views: internal and 

external. In the external view, architectural elements encapsulate their functionality as black 

boxes and publish a set of services that they offer to other architectural elements (see Figure 9). 

These services are grouped into interfaces to be published through the ports of architectural 

elements. Each port has an associated interface that contains the services that are provided and 

requested through the port. As a result, ports are the interaction points of architectural elements. 

 
Figure 9. Black box view of an architectural element 

 

The internal view shows an architectural element as a prism (white box view). Each side of 

the prism is an aspect that the architectural element imports. In this way, architectural elements 

are represented as a set of aspects (see Figure 10 ) and the weaving relationships among 

aspects.  

 
Figure 10. White box view of an architectural element 
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Since PRISMA is a symmetrical aspect-oriented model that it is applied at the architectural 

level, the weaving process does not define the pointcuts between the base code and the aspect 

code and their corresponding advices. In PRISMA, there is no base code; all behaviour of the 

system is defined as an aspect. As a result, the weaving process is composed of a set of 

weavings, and a weaving indicates that the execution of an aspect service can trigger the 

execution of services in other aspects. From the AOP point of view PRISMA weavings can be 

defined as follows: every service of an aspect is a join point , the services that  trigger a weaving 

are the pointcuts, and the services that are executed as a consequence of weavings are the 

advices. In PRISMA, in order to preserve the independence of the aspect specification from 

other aspects and weavings, weavings are specified outside aspects and inside architectural 

elements. As a result, aspects are reusable and independent of the context of application and 

weavings weave the different aspects that form an architectural element. This way of 

specifying weavings achieves not only the reusability of the aspects in different architectural 

elements, but also the flexibility of specifying different behaviours of an architectural element 

by importing the same aspects and defining different weavings. A weaving is defined by means 

of operators that describe the order in which services are executed. A weaving that relates 

service s1 of aspect A1 and service s2 of aspect A2 can be specified using the following 

operators: after, before, instead, afterif (Boolean condition), beforeif(Boolean condition, and 

insteadif(Boolean condition).  

The communications between the white box and black box views is possible by means of 

interfaces; which are associated to ports and are used by aspects (see Figure 11). Consequently, 

a request for a service that arrives to a port of an architectural element is processed by an aspect 

that uses the same interface that is used by this port. 

PRISMA has three kinds of architectural elements: components, connectors, and systems. 

Components and connectors are simple, but systems are complex components. A component is 

an architectural element that captures the functionality of software systems and does not act as a 

coordinator among other architectural elements; whereas, a connector is an architectural 

element that acts as a coordinator among other architectural elements. 
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Figure 11. Communication between the white box and the black box views 

 

Connectors provide the separation of component interactions thereby achieving a higher 

level of abstraction, modularity, and a greater architectural view of the system [Sha94]. For this 

reason, PRISMA connectors are first-class citizens of the ADL. Connectors do not have the 

references of the components that they connect and vice versa. Thus, architectural elements are 

reusable and unaware of each other. This is possible due to the fact that the channels defined 

between components and connectors have their references (attachments) instead of 

architectural elements. Attachments are the channels that enable the communication between 

components and connectors. Each attachment is defined by attaching a component port with a 

connector port. 

 

 
Figure 12. Attachments 

 

PRISMA components can be simple or complex. The complex ones are called systems. A 

PRISMA system is a component that includes a set of architectural elements (connectors, 

components and other systems) that are correctly attached. In addition, a system can have its 

own aspects and weavings as components and connectors. Since a system is composed by 
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other architectural elements, the composition relationships among them must be defined. These 

composition relationships are called bindings. Bindings establish the connection among the 

ports of the complex component (the system) and the ports of the architectural elements that a 

system contains (see Figure 13). 

In PRISMA, the dynamics of aspect-oriented architectures are treated at the meta-level. The 

meta-level contains the elements that define the PRISMA concepts as data. They can be 

created, modified and destroyed through the execution of the services of the meta-level. In this 

way, the execution of services is reflected in the architecture by updating this data (the concept 

of reflection). As a result, the PRISMA meta-level allows for the creation, destruction and 

evolution of architectural elements and aspects as well as the dynamic reconfiguration of 

software architectures. The PRISMA meta-level is represented by means of a metamodel that 

contains one metaclass for each PRISMA concept. These metaclasses define a set of properties 

and services for each concept considered in the model (see section 4.2). 

 

 
Figure 13. Systems 

 

In PRISMA, the complete view of the software architecture is not lost because of the use of 

aspect, that is, the use of the view notion is not required to define aspects in the PRISMA 
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software architectures. But, it is possible to define an aspect-oriented view of the software 

architecture by considering all the architectural elements that import a specific aspect, and also 

another view by considering all the architectural elements that import a kind of aspect concern. 

For example, this allows the definition of the view of all the architectural elements of the 

TeachMover robot that import a safety concern. 

The PRISMA model takes advantage of the notion of aspect from the beginning of the 

system definition by specifying the aspects that are found in the requirements specifications. 

These aspects are reusable and can be used during the rest of the development process as well 

as in the maintenance process of the PRISMA software architectures.  Thus, PRISMA does not 

require an initial architectural specification of the system in order to introduce aspects. 

Moreover, the change of a property only requires the change of the aspect that defines it, and 

then, each architectural element that imports the changed aspect is also updated 

4.2.  THE PRISMA METAMODEL 
Metamodels define models and establish their properties in a precise way. In addition, 

metamodels facilitate the automation and maintenance of software development thanks to the 

support that modelling tools currently offer for these tasks and the MDD paradigm. In order to 

take advantage of these properties, the PRISMA meta-level is represented by means of a 

metamodel that contains a set of metaclasses that are related to each other. These metaclasses 

define a set of properties and services for each concept considered in the model. The 

metaclasses and their relationships define the structure and the information that is necessary to 

describe PRISMA architectural models.  In addition, the PRISMA metamodel defines the 

constraints that must be satisfied by a PRISMA architectural model. These constraints guide 

the methodology for modelling PRISMA architectural models. At the end of the modelling 

process, all of them must be satisfied in order to ensure that an architectural model is correct.  

The PRISMA metamodel has been specified using the class diagram of the Unified 

Modelling Language (UML) 1.5. and the Object Constraint Language (OCL) 2.0 [UML07]. 

UML has been used to model the metaclasses and their relationships, attributes and services. 

OCL has been used to specify the constraints of the metamodel. The choice of these languages 
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over others is based on the fact that they are standards and are widely extended languages. As a 

result, they facilitate the comprehension of the model by new users.  

The PRISMA metamodel is composed of three main packages: Types, Architecture 

Specification, and Common (see Figure 14 ).  

 

 

 

 

Figure 14. Main packages of the PRISMA metamodel 
 

 

 

 

 

Figure 15. The package Types of the PRISMA metamodel 
 

The package Types contains the packages Interfaces, Aspects, Architectural Elements and 

Attachments of the PRISMA model (see Figure 15). These packages define the properties of 

PRISMA types. 
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The package Architecture Specification defines the elements that form an architectural 

model using the types that are defined in the package Types. This package provides the 

mechanisms to build an architectural model. 

The package Common defines the utilities that are necessary to develop any kind of model. 

It provides mechanisms to define data types, parameters, constant values, formulae of different 

kinds and complex process [Per06c]. 

4.2.1. THE PACKAGE “TYPES” 

4.2.1.1. The Package “Interfaces” 
An interface publishes a set of services. This set of services is composed of at least one service, 

and there is no limit to the number of services that can be specified (see Figure 16). The 

services that make up an interface are called InterfaceServices. These services are defined in an 

abstract way, without specifying whether they are going to be provided (in), requested (out), or 

provided and requested (in/out) by architectural elements. An InterfaceService only specifies its 

signature. 

 

 
Figure 16. The package Interfaces of the PRISMA metamodel 

 

The signature of a service specifies its name and parameters. The parameters are defined in 

a specific order. The data type and kind (input/output) of parameters are also defined (see 

Figure 17). 
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Figure 17. The package SignatureOfService of the PRISMA metamodel 

 

The metaclass InterfaceService inherits its properties from the metaclass 

ServiceDescription. This class allows the creation of services using the service newService, 

whose parameter defines the name of the service that is created. The attribute name stores the 

value of the ServName parameter of newService. The service addParameter adds parameters 

to services. 

The metaclass Interface creates interfaces. The service newInterface creates a new interface, 

whose parameter defines the name of the interface that is created. The service addService adds 

a service to the interface, whose parameter provides the InterfaceService that is added to the 

interface. 

4.2.1.2. The package “Aspects” 
An aspect defines structure and behaviour of a specific concern of the software system. The 

Aspects package includes all the metaclasses that are necessary to specify an aspect. The 

structure and the behaviour of aspects are defined by attributes, services, preconditions, 

valuations, constraints, played_roles and protocols. These concepts are sub-packages of the 

Aspects package (see Figure 18).  

The metaclass Aspect (see Figure 19) has two attributes, name and concern. These 

attributes store the name of the aspect and the concern that the aspect belongs to, respectively. 

The service newAspect creates a new aspect, whose parameters define the name, the concern 

and the protocol of the aspect.  
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Figure 18. The sub-packages of the package Aspects of the PRISMA 
metamodel 

 

 
Figure 19. The metaclass Aspect of the package Aspects of the PRISMA 

metamodel 
 

Aspects may need to store information to successfully perform their computation. For this 

reason, the Aspect metaclass has an aggregation relationship with the Attribute metaclass . This 
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relationship aggregates the attributes that an aspect is composed of (see the describe 

aggregation relationship in Figure 19). This aggregation is established by invoking the 

addAttribute service. This service adds attributes to an aspect through its Attr parameter by 

providing the attribute that is added to the aspect. Aspects may need to constrain the value of 

attributes. For this reason, an aspect can be composed of constraints that determine the value of 

aspect attributes (see the satisfy aggregation relationship in Figure 19). 

Aspects must be composed of three or more services. The three services that are required 

are the following: The services begin and end to start and finish the execution of the aspect, and 

at least one service to perform the necessary computations of an aspect (see the belongsTo 

aggregation relationship in Figure 19). Aspect services can be private or public. Public services 

of an aspect are those that are published by an interface whose semantics is defined by the 

aspect. As a result, aspects import the interfaces whose semantics they define (see the using 

association relationship in Figure 18). In order to associate interfaces and services to aspects, 

the aspect metaclass provides the addInterface and addService services, whose Inter and Serv 

parameters provide the interface and the service that are added to aspects.  

In order to define the semantics of aspect services, aspects are composed of preconditions, 

valuations, played_roles and a protocol (see the aggregation relationships condition, include, 

play and executes in Figure 19). For this reason, the Aspect metaclass has three services to 

associate preconditions, valuations, and played_roles to aspects. These services are 

addPrecondition, addValuation, and addPlayedRole, respectively. 

In addition to these attributes, services, and relationships, the metaclass Aspect has an 

associated set of constraints to completely model its properties (see Figure 20). 

These constraints correspond to the OCL rules shown in Figure 20. They specify the 

following: 

<<Every aspect has a “begin” service>> 

<<Every aspect service must participate in the protocol of the aspect>> 

<<Every aspect has an “end” service>> 

<<For each interface that an aspect imports, the aspect must define at least a played_role 

associated to this interface>> 
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<<Every service of an interface that is imported by an aspect must be a service of the 

aspect>> 

 

 
Figure 20. Constraints of the metaclass Aspect 

 

- The package “Attributes” 
Attributes store a value of a specific data type. Therefore, each aspect attribute must be 

associated to a data type (see Figure 21). 

 
Figure 21. The package Attributes of the PRISMA metamodel 
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The metaclass Attribute has two attributes, name and default. The attribute name stores the 

name of the aspect and the attribute default stores the default value of the attribute when 

necessary. The service newAttribute creates a new attribute, whose parameters define the name 

and the default value of the attribute.  

 
Figure 22. The package KindsOfAttributes of the PRISMA metamodel 

 

In PRISMA, it is possible to define different kinds of attributes. The semantics of each kind 

is defined in the kindsofAttributes sub-package of the Attributes package. Attributes can be 

classified into derived and non-derived attributes (see Figure 22). Derived attributes calculate 

their values on demand by applying a derivation rule. The derivation rule is associated to the 

derived attribute (see Figure 23).  Non-derived attributes store their values, and it is possible to 

constrain the fact that they must contain a value by means of the notNull attribute (see the 

NonDerivedAttribute metaclass in Figure 22). If notNull is true, the attributes must contain a 

value; if notNull is false, no value is required. In order to correctly define the semantics of non-
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derived attributes, there are two constraints associated to the NonDerivedAttribute metaclass. 

These constraints correspond to the OCL rules shown in Figure 22. They specify the following: 

<<For each non-derived attribute that cannot contain a null value, there is a postcondition 

of the begin service valuation that must provide a value to the attribute >> 

<<The ”notNull” attribute of a constant attribute is always true>> 

Non-derived attributes can be constant or variable. Constant attributes store values that 

cannot change; i.e., they cannot be modified during the execution of the aspect. Also, variable 

attributes store values that can be modified during the execution of the aspect. 

 

 
Figure 23. The package Derivations of the PRISMA metamodel 

 

- The package “Services” 
The metaclass Service is a specialization of the metaclass InterfaceService (see Figure 24). As a 

result, it inherits all its properties and services. The metaclass Service defines that every service 

of an aspect must be characterized by the behaviour that it offers in the context of the aspect. 

This means that the service can either be provided, requested or both by the aspect. This 

characteristic is specified by the type attribute of the metaclass. The type values are in, out and 

in/out to define the behaviour of a server (provide), a client (request), or both a server and a 

client (provide and request), respectively. A service of an aspect can also have an alias. An alias 

permits changing the name of an InterfaceService inside the aspect. This metaclass stores the 

alias name and provides the newAlias service to change the name. The parameters of newAlias 

are the service whose name is going to be changed and the new alias.  

There are two kinds of services: simple services and transactions (see Figure 25). A 

transaction is a complex service that it is composed of more than one service and is executed in 

a transactional way (all or nothing) (see the composedService aggregation in Figure 25). A 

transaction describes a process, which models how and when the different services that 
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compose the transaction are executed. As a result, a transaction is a specialization of the 

Process metaclass. 

 

 
Figure 24. The package Services of the PRISMA metamodel 

 

 
Figure 25. The package KindsOfServices of the PRISMA metamodel 
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- The package “Constraints” 
Constraints are formulae that establish conditions on the state of the aspect that they belong to. 

As a result, each time that a service execution is finished, the value of each attribute must 

satisfy the aspect constraints. There are two kinds of constraints: static and dynamic (see Figure 

26).  

 
Figure 26. The package Constraints of the PRISMA metamodel 

 
The metaclass Constraint is an abstract class that has only one attribute, the name of the 

constraint. This metaclass is specialized into two metaclasses: StaticConstraint and 

DynamicConstraint. Each one of them provides a constructor service to create instances of 

static and dynamic constraints, respectively. The service newStaticConstraint creates a new 

static constraint giving the name and the condition of the constraint as parameters. The service 

newDynamicConstraint creates a new dynamic constraint, whose parameters define the name 

of the constraint and a condition that uses a temporal. 

- The package “Preconditions” 
Preconditions establish the condition that must be satisfied to execute an aspect service. 

Therefore, the metaclass Precondition has the aggregation relationship establishCondition and 

aggregation relationship constrains with the metaclasses Condition and Service, respectively 

(see Figure 27). The first aggregation establishes that a precondition must define the service that 

it affects. The second aggregation establishes the condition that must be satisfied to execute the 

service. 
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Figure 27. The package Preconditions of the PRISMA metamodel 

 
The metaclass Precondition only has one attribute, the name of the precondition. The 

service newPrecondition creates a new precondition, whose parameters define the name, the 

condition that must be satisfied, and the service that will only be executed if the condition is 

satisfied. In addition, the metaclass Precondition has an associated constraint in order to ensure 

that the aspect execution is not conditioned by a precondition. This constraint corresponds to 

the OCL rule shown in Figure 27. It specifies the following: 

<<A service begin does not have preconditions associated to it since the start of the aspect 

execution cannot be conditioned by the aspect itself>> 

This constraint is necessary because preconditions are used to define the business logic of 

the software system and not to define the mechanisms of creating, destroying or executing 

instances. 

- The package “Valuations” 
Valuations establish how the service executions affect the aspect state. This semantics is 

specified by means of two conditions: one that must be satisfied before the service execution 

and another that must be satisfied after the service execution. For this reason, the metaclass 

Valuation has three aggregation relationships with the metaclasses Condition, Service and 

Postcondition (see Figure 28).  
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Figure 28. The package Valuations of the PRISMA metamodel 

 

The metaclass Condition defines the condition that specifies the state of the aspect before 

the service execution. This condition is optional, this means it does not have to be specified 

when the state before the execution is not relevant to the state change (see the conditioned 

aggregation in Figure 28). However, the specification of the condition after the service 

execution is mandatory. The postcondition must be satisfied after the service execution. Since 

the metaclass Postcondition defines the change in one attribute or parameter and a valuation 

can affect several attributes or parameters, a valuation can have more than one postcondition 

associated to it in order to model the service changes in several attributes and/or parameters (see 

the evaluate aggregation in Figure 28). 

The metaclass Valuation has only one attribute, the name of the valuation. The service 

newValuation creates a new valuation, whose parameters define the name, the service that 

produces the change of state, and the condition that must be satisfied after the service execution. 

Moreover, it has two services addCondition and addPostCondition. The addCondition adds a 

condition to the valuation. This condition must be satisfied before the service execution. The 

addPostCondition adds more that one postcondition when the valuation affects several 

attributes or parameters.  

- The package “PlayedRoles” 
PlayedRoles establish how the services of an interface can be executed. As a result, a 

played_role defines a process that orchestrates the service execution of a specific interface. 
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Since the metaclass Played_Role defines a process, it inherits the properties of the metaclass 

Process.  

 
Figure 29. The package PlayedRoles of the PRISMA metamodel 

 

The metaclass Played_Role has two association relationships with the metaclasses Interface 

and Service (see Figure 29). A played_role defines the behaviour of only one interface (see the 

the for association in Figure 29) and describes the execution process of more than one service 

(see the order association in Figure 29). However, the played_role cannot be related to any 

interface or service of the software system. As a result, these relationships are constrained by 

three constraints. These constraints correspond to the OCL rules shown in Figure 29. They 

specify the following: 

<<Every interface that an aspect imports must have associated a played_role>> 

<<The interface of a played_role is one of the interfaces that imports the aspect that the 

played_role belongs to>> 

<<Every service that participate in a played_role must be a service of the played_role 

interface>> 
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The metaclass Played_Role has one attribute, the name of the played_role. The service 

newPlayedRole creates a new played_role, whose parameters define the name and the 

interface. The behaviour of this interface is defined by the played_role. 

- The package “Protocols” 
A protocol establishes how the services of an aspect can be executed. As a result, a protocol 

defines a process that coordinates the private and public services of an aspect. Since the 

metaclass Protocol defines a process, it inherits the properties of the metaclass Process.   

 
Figure 30. The package Protocols of the PRISMA metamodel 

 

A service can be private or public and only belongs to one aspect. For this reason, a service 

can only participate in one protocol: the protocol of the aspect that it belongs to (see the 

privateandpublicsynch association Figure 30). In addition, each service of the aspect must 

participate in its protocol (see the constraint in the Aspect package in Figure 20).These services 

can be either private or public services, but there must be at least three: the begin and end 

services of an aspect, and one service to perform the computation of the aspect (see the 

privateandpublicsynch association in Figure 30). 

A protocol is the glue of the played_roles and the private services of the aspect. As a result, 

the protocol coordinates the many different played_roles that have been defined in the aspect 

that it belongs to. However, a played_role is only coordinated one protocol, its aspect protocol 
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(see the coordinates association in Figure 30). Played_roles are specified using the public 

services of an aspect. Since aspect services can be private or public, those that are private are 

not related to played_roles (see the order association in Figure 30). 

The metaclass Protocol has one attribute, the name of the protocol. The service 

newProtocol creates a new protocol by providing the name of the protocol as a parameter. 

4.2.1.3. The package “ArchitecturalElements” 
In PRISMA, there are three kinds of architectural elements: components, connectors, and 

systems (see Figure 31). The package ArchitecturalElements defines the metaclass 

ArchitecturalElement. It is an abstract metaclass that specifies the commonalities of the three 

kinds of PRISMA architectural elements. In addition, it includes all subpackages that define the 

concepts required to specify PRISMA architectural elements. 

The metaclass ArchitecturalElement has two aggregation relationships with the 

metaclassess Port and Weaving, and one association relationship with the metaclass Aspect (see 

Figure 32). An architectural element has at least one port; the port is part of the architectural 

element and does not have its own entity without the architectural element. In other words, the 

aggregation between the port and the architectural element is inclusive (see the has aggregation 

in Figure 32). An architectural element imports at least one aspect and an aspect can be 

imported by one or more architectural elements of the software system (see the imports 

association in Figure 32). In addition, an architectural element can include a set of weavings to 

synchronize its aspects. These Weavings are related to the architectural element by means of an 

inclusive aggregation (see the weaves aggregation in Figure 32).  

The metaclass ArchitecturalElement has one attribute, the name of the architectural 

element. In addition, it has three services addAspect, addPort, addWeaving to associate aspects, 

ports, and weavings to the architectural element, respectively (see Figure 32). It is important to 

emphasize that this metaclass does not have a constructor (new service) because it is an abstract 

class that cannot be instantiated. 
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Figure 31. The subpackages of the package ArchitecturalElements of the 
PRISMA metamodel 

 
The metaclass ArchitecturalElement has two constraints associated to it in order to 

completely define its properties. These constraints correspond to the OCL rules shown in 

Figure 32. They specify the following: 

<<There are no two ports of an architectural model that have the same interface and the 

same played_role associated >> 

<<An architectural element cannot import more than one aspect of the same concern>> 

The package KindsOfArchitecturalElements is a subpackage of the package 

ArchitecturalElements, and it classifies architectural elements into components and connectors. 

As a result, this package specifies that components and connectors inherit the properties of the 

ArchitecturalElement metaclass, and it also contains the packages that define components and 

connectors. 
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Figure 32. The package ArchitecturalElements of the PRISMA metamodel 

 

 

 
Figure 33. The package KindsOfArchitecturalElements of the PRISMA 

metamodel 

4.2.1.4. The package “Weaver” 
The package Weaver defines the weavings of architectural elements. It contains the metaclass 

weaving which is formed by two aspect services. One of the services, the pointcut service, 

triggers the execution of the weaving; the other service, the advice service, is executed as a 

consequence of the weaving. The relationships between the weaving and these two services are 

modelled in the metamodel by means of two aggregations (see Figure 34). In addition, if the 

weaving is conditional, it has a condition associated to it. 
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There are certain constraints that must be satisfied in order to associate the appropriate 

services to a weaving definition. As a result, the metaclass Weaving has constraints associated 

to it. These constraints correspond to the OCL rules shown in Figure 35. They specify the 

following: 

<<The services that participate in the weaving must belong to aspects that are imported by 

the architectural element in which the weaving is defined>> 

<<If the weaving uses a conditional operator, it must have a condition associated to it. 

However, if the weaving does not use a conditional operator, it cannot have a condition 

associated to it>> 

<<The services that participate in a weaving must belong to different aspects>> 

<<The aspects of the services that participate in a weaving must define different 

concerns>> 

 
Figure 34. The package Weaver of the PRISMA metamodel 

 

The metaclass Weaving has two attributes, name and operator (see Figure 34). These store 

the name of the aspect and the operator that the weaving applies to the service execution, 

respectively. The service newWeaving creates a new aspect; whose parameters define the 

name, the operator of the weaving, and the two services that participate in the weaving. In 

addition, the metaclass provides a service for adding a condition to a weaving when it uses a 

conditional operator. This service is called addCondition. 
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Figure 35. Constraints of the metaclass Weaving 

 

4.2.1.5. The package “Components” 
The package Components defines simple and complex components (see Figure 36). Since 

components cannot be coordinators of the software system, there is a constraint that specifies 

that a component cannot import an aspect whose concern is coordination.  

The metaclass Component provides a service to create components. This service is called 

newComponent, and its parameter is the name of the component that is created as a result of the 

service execution. 

 
Figure 36. The package Components of the PRISMA metamodel 



The PRISMA Background 

95 

 
Since systems are complex components, they inherit all the properties of components. For 

this reason, the package that defines a system is a subpackage of the Component metaclass. 

4.2.1.6. The package “Connectors” 
The package Connectors defines the connector architectural element (see Figure 37). Since 

connectors act as coordinators of components, the metaclass Connector has an associated 

constraint that specifies that a connector must import an aspect whose concern is coordination 

(see the first constraint that appears in Figure 37).  

 
Figure 37. The package Connectors of the PRISMA metamodel 

Morevover, the metaclass Connector has another constraint associated to it that specifies 

the following: 

<<A connector must have at least two attachments associated to it, and each attachment 

must connect the connector to two different components>> 

The metaclass Connector provides a service to create connectors. This service is called 

newConnector, and its parameter is the name of the connector that is created as a result of the 

service execution 
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4.2.1.7. The package “Attachments” 
Attachments define types of communication channels between the ports of a component and 

the port of a connector. As a result, the metaclass Attachment is related to the metaclass Port by 

means of an association relationship (see Figure 42). This relationship establishes that the 

attachment must be related to two ports. However, it is necessary to constrain this association 

with a constraint in order to establish that one of the ports must belong to a component and that 

the other one must belong to a connector. 

 
Figure 38. The package Attachments of the PRISMA metamodel 

 

In addition to the attachment name for storing the name of the attachment, the metaclass 

Attachment has four more attributes to specify the attachment communication pattern, i.e., the 

instantiation pattern of the attachment. It is necessary to constrain how many instances of the 

attachment can be attached to the port of the component instance and the port of the connector 

instance. The attribute card_min_port_component specifies the minimum number of 

attachment instances that must be connected to one instance of this component through the 

port. The attribute card_max_port_component specifies the maximum number of attachment 

instances that must be connected to one instance of this component through the port. The 

attribute card_min_port_connector specifies the minimum number of attachment instances that 

must be connected to one instance of this connector through the port. The attribute 
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card_max_port_connector specifies the maximum number of attachment instances that must 

be connected to one instance of this connector through the port. 

Moreover, the metaclass Attachment has the service newAttachment to create a new 

attachment. Its parameters are the name of the attachment that is created as a result of the 

service execution, the component port and the connector port that it connects, and the 

minimum and maximum cardinalities for each one of the ports. 

4.2.1.8. The package “Systems” 
The package Systems defines complex components (see Figure 39). Systems are complex 

components that are composed of a set of architectural elements and their attachments. For this 

reason, the metaclass System has an aggregation with each one of the metaclasses Component, 

Connector and Attachment.  

The architectural elements that compose a system can be directly related to other elements 

or their access can only be possible through the system. These two kinds of composition are 

referential and inclusive, respectively. The analyst can model any of these compositions for the 

architectural elements of the system, depending on the requirements of the system. However, 

the definition of an inclusive composition between a system and an architectural element 

requires the definition of a channel between a system port and a port of the architectural 

element. This channel is required to resend the provided and requested services of the 

architectural element through the system port. These channels are called bindings. Therefore, 

the metaclass System has an aggregation relationship with the metaclass Binding. Bindings are 

defined in the Bindings subpackage of the System package.  

The metaclass System must be related to at least one component in order to be complex (see 

the containsComp aggregation in Figure 39). In addition, it has an associated constraint that 

ensures a correct composition. It specifies the following: 

<<If a system does not import any aspect, the system must have at least one binding 

associated to it >> 
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Figure 39. The package Systems of the PRISMA metamodel 

 

The metaclass System has four services. The service newSystem creates a new system by 

providing the name of the system as a parameter. In addition, the services addComponent, 

addConnector, addAttachment and addBinding add components, connectors, attachments and 

bindings, respectively, to the system. 

4.2.1.9. The package “Bindings” 
The metaclass Binding is related to the metaclass Port by means of two association 

relationships (see Figure 42). These associations establish that the binding must be related to a 

system port and an architectural element port. However, the architectural element that the port 

belongs to must be one of the architectural elements of the system. This constraint is applied 

not only at the types level, but also at the configuration level (instances). For this reason, the 

metaclass Binding has an associated constraint that specifies this requirement. 

In addition to the attribute name for storing the name of the binding, the metaclass Binding 

has four more attributes to specify the communication pattern of the binding. As a result, the 

attribute card_min_port_AR specifies the minimum number of binding instances that must be 

connected to one instance of this architectural element through the port. The attribute 

card_max_port_AR specifies the maximum number of binding instances that must be 
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connected to one instance of this architectural element through the port. The attribute 

card_min_port_Sys specifies the minimum number of binding instances that must be 

connected to one instance of this system through the port. The attribute card_max_port_Syst 

specifies the maximum number of binding instances that must be connected to one instance of 

this system through the port. 

 
Figure 40. The package Bindings of the PRISMA metamodel 

 

Moreover, the metaclass Binding has the service newBinding to create a new binding. Its 

parameters are the name of the binding that is created as a result of the service execution, the 

system port and architectural element port that it connects, and the minimum and maximum 

cardinalities for each one of the ports. 

4.2.1.10. The package “Ports” 
Ports publish the services of an interface and constrain how these services can be provided or 

requested by means of a played_role. For this reason, the metaclass Port has two aggregation 

relationships with the metaclasses Interface and Played_Role (see Figure 41). 
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Figure 41. The package Ports of the PRISMA metamodel 

 

 
Figure 42. Constraints of the metaclass Port 

 

However, ports cannot be related to any interface or played_role of the software system. As 

a result, these relationships are constrained by the following two constraints that correspond to 

the two that appear in Figure 42: 
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<<If the architectural element that the port belongs to is not a system, the played_role of 

the port must be defined for one of the aspects that the architectural element imports. In 

addition, the interface of the played_role must be the same one as the interface of the port>> 

 

<<If the architectural element that the port belongs to is a system, there are two possible 

options: 1) either the played_role of the port is defined for one of the aspects that the system 

imports, and the interface of the played_role is the same as the interface of the port; 2) or the 

port has the same interface and played_role as one port of the architectural element of the 

system>> 

 
The metaclass Port has one attribute, the name of the port. The service newPort creates a 

new port by providing the name of the port, the interface and the played_role as parameters. 

4.2.2. THE PACKAGE “ARCHITECTURE SPECIFICATION” 
The package Architecture Specification defines how a PRISMA architecture can be defined 

using the types defined in the package Types. The metaclass PRISMAArchitecture has five 

aggregation relationships with each one of the first-order citizens of the PRISMA model. They 

are components, connectors, aspects, interfaces, and attachments. Since components, 

connectors, interfaces, and aspects are reusable, they can be used by more than one 

architectural element (see Figure 43).  

The metaclass PRISMAArchitecture has one attribute, the name of the architectural model. 

The service newArchitecture creates a new architectural model by providing its name as a 

parameter. In addition, the metaclass provides five services to add attachments, components, 

connectors, interfaces and aspects to the architectural model. In order to ensure that a model is 

correctly defined, the metaclass PRISMAArchitecture has a set of constraints associated to it 

(see Figure 43). Their meaning is the following:  

<<An architectural model must include every aspect that is imported by its components 

and/or connectors>> 

<<An architectural model must include every interface that is used by its aspects >> 
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Figure 43. The package Architecture Specification of the PRISMA 

metamodel 
 

4.3. CONCLUSIONS 
The PRISMA model has been presented in this chapter. This model allows us to describe 

software architectures of complex and large systems and to improve their reusability and 

maintainability. This is possible because the application of aspect-oriented software 

development to software architectures provides different levels of reusability and maintenance: 

the concern level (aspects) and the functional level (architectural elements).  

 The concern level places the properties of a concern inside an aspect. As a result, the 

modification of a concern is easily found in the aspects of this concern, and the aspects of a 

concern can be reused by any architectural element that needs their properties. 
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 The functional level places functional or coordination processes of the business rules of the 

software system in components and connectors, respectively. These can be easily found in 

order to be reused or modified.  

Another important property of this model is the fact that the weavings between aspects and 

the relationships among architectural elements are defined outside aspects, which improves 

their reusability and maintenance.  

Instead of using a kernel or core entity to encapsulate functionality, aspects to define non-

functional requirements and their weavings, this model only uses aspects and weavings to 

define architectural elements. The symmetrical way in which aspects are introduced in 

PRISMA software architectures provides homogeneity to the model and a clean and novel way 

of modelling software architectures. In PRISMA, architectural elements and aspects are used as 

it they were pieces of a puzzle that fit together to form a software architecture. This way of 

specifying PRISMA software architectures is presented in detail in chapter.  

This chapter also has presented the PRISMA metamodel. This metamodel permits the 

creation of PRISMA architectural models in a correct way and the accurate definition of their 

properties following the MDD paradigm. In addition, it facilitates the integration of the 

PRISMA model into modelling tools that support the incorporation of new metamodels. 

The PRISMA metamodel defines the required metaclasses, their properties and services, 

and their relationships with each other. In addition, the metamodel specifies the constraints to 

ensure that the definition of an architectural model is correct.  

The metamodel is the repository structure that stores PRISMA architectural models, 

preserving the reusability of interfaces, architectural elements and aspects. In addition, the 

metamodel introduces a methodology to follow during the MDD process when a PRISMA 

architectural model is specified by means of constraints. This is supported by verification rules 

that are associated to the MDD process.  

The PRISMA metamodel has been defined to be able to support evolution at run-time in 

the future. This evolution could be supported at different levels of granularity by adding the 

evolution services to the different metaclasses of the metamodel.  This would consist of adding 

or removing architectural elements of the model, or adding or removing properties of an aspect 
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(attributes, services, etc). In addition to adding evolution services to the metamodel, a 

mechanism to invoke these services at run-time should be provided to support run-time 

evolution. 
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CHAPTER 5 
5. COORDINATION 

 

 

 

Coordination has become a key concept in the modelling process  of industrial systems as it 

leads to a better understanding of the interactions that take place in complex and distributed 

systems. In the last few years, coordination has been introduced in two important fields of 

Software Engineering: Software Architectures, through the notion of connector, and Aspect-

Oriented Software Development, through the notion of weaving and by considering 

coordination as an aspect. The separation of coordination from functionality is a key concept in 

order to provide a better reusability and maintenance during the MDD process.  

In this chapter the interest of using aspect-oriented connectors is discussed in detail, 

justifying the relevance of the PRISMA model and its merits with regard to other proposals, 

especially to provide a complete MDD support. Once this interest has been stated, the concrete 

structure of connectors in PRISMA is described in detail, and the formalization of the relevant 

PRISMA concepts is provided and explained. The notion of weavings is described with special 

care. In addition, a discussion of the proposal is done by comparing it with other works and 

highlighting the advantages of the PRISMA proposal. Finally, the chapter concludes by 

summarizing the results and the directions of further work about PRISMA coordination 

processes. 
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5.1.  INTRODUCTION 
Currently, there is a great interest in coordination. Coordination orchestrates processes in order 

to achieve the correct functionality of software products. Good coordination management is 

essential and is a risk factor for the synchronization of difficult tasks that industrial systems 

must perform. As a result, several software development approaches have taken coordination 

into account. Two widely used are Component-Based Software Development (CBSD) 

[Szy98]and Aspect-Oriented Software Development (AOSD) [Kiz97]. 

On the one hand, coordination is an important topic in CBSD and, by extension, in 

Software Architectures since it can be used to synchronize the components that form a specific 

architecture. In fact, as it is presented in chapter 3, Architecture Description Languages (ADLs) 

[Med00] could be classified according to the importance they give to coordination. Some of 

these ADLs have introduced the notion of connector, which is an architectural element that acts 

as a coordinator among other architectural elements (either connectors or components) 

[All97a], [Cue05], [Med00]. However, other ADLs do not include connectors [Can99], 

[Mag95]. Those that use the notion of connector give more relevance to coordination because 

they provide a specific architectural element to define it. In addition, they offer an architectural 

view of systems; whereas, an ADL without connectors has a more compositional view, as in 

object-oriented models [Luc95b], [Mag95]. As a result, an ADL should provide connectors in 

order to separate coordination from computation and to provide an architectural view instead of 

a compositional view. 

On the other hand, AOSD allows the separation of cross-cutting concerns of software 

systems in a modular entity called aspect. Among the different crosscutting concerns that can 

be identified in software systems, coordination is perhaps one of the most common. But in 

addition to this characterization as a concern, coordination has also emerged as an important 

feature within AOSD itself, because the different aspects of a software system must also be 

synchronized. The need for aspect coordination has been identified as a key feature in this 

approach [Kiz01]. 

The main contribution of this chapter is the formalization and definition of aspect-oriented 

connectors in order to define their coordination process in a formal way and thus, to avoid 
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ambiguity in the code generation process. In addition, its definition must provide reusability 

and avoid the replication of specification to facilitate the development and maintenance of 

software following the MDD paradigm. 

Since PRISMA connectors are observable processes that have state and behaviour, the 

formalisms which are used to formalize the PRISMA model are a variant of a Modal Logic of 

Actions [Sti92], and a extension of the π-calculus [Mil93] which provides priorities. The π-

calculus is a process algebra which is used to specify and formalize the processes of the 

PRISMA model, and the Modal Logic of Actions is used to formalize the way in which the 

execution of these processes affects the state of architectural elements. More detail about these 

formalisms can be found in [Per06c]. 

5.2. ASPECT ORIENTED CONNECTORS 
It is important to keep in mind that current software systems perform complex coordination 

processes that have to take into account not only the coordination concern, but also other 

concerns such as: safety, distribution, security, etc. These other concerns are necessary in order 

to provide a correct coordination process. For example: The connectors that coordinate the 

actuators and sensors of tele-operated robots need to check that the movement is safe for the 

robot before sending the movement to the actuator. PRISMA aspect-oriented connectors are 

presented as a solution for the specification of these complex coordination processes by 

improving the reusability and maintenance of software during the MDD process. This 

improvement has been achieved by overcoming the disadvantages of the rest of ADLs. Current 

ADLs can be classified into three different kinds: non-aspect-oriented ADLs without 

connectors, non-aspect-oriented ADLs with connectors, and aspect-oriented ADLs. Next, it is 

presented how they specify complex coordination processes that have to take into account 

several concerns. 

5.2.1. Non-Aspect-Oriented, connector less ADLs 
There are ADLs that prefer the absence of connectors because they distort the compositional 

nature of soft ware architectures. Some ADLs, such as Darwin [Mag95], [Mag96]Leda 

[Can01], [Can00], and Rapide [Luc95b], [Luc95a], [Ken95] do not consider connectors as 
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first-class citizens. However, these ADLs make difficult the reusability of components because 

they have the coordination process tangled with the computation inside them, and they are 

aware of the coordination process that has to happen in order to communicate with the rest. The 

notion of connector emerges from the need to separate the interaction from the computation in 

order to obtain more reusable and modularized components and to improve the level of 

abstraction of software architecture descriptions. Mary Shaw [Sha94]presents the need for 

connectors due to the fact that the specification of software systems with complex coordination 

protocols is very difficult without the notion of connector. From her experience in the software 

architecture field, she demonstrates that the connector provides not only a high level of 

abstraction and modularity to software architectures, but also an architectural view of the 

system instead of the object-oriented view of compositional approaches. She also defends the 

idea of considering connectors as first-order citizens of ADLs. Figure 44 illustrates how two 

components (actuator and sensor) are communicated using an ADL without connectors. The 

coordination process is encapsulated in the components and tangled with the computation and 

other concerns. 

 

 
Figure 44. Sensor-Actuator coordination by using a Connector-less ADL 

 

5.2.2. Non-Aspect-Oriented ADLs with connectors 
Most ADLs provide connectors as a first order citizens of the language such as: ACME 

[Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99], SADL [Mor95], [Mor97], UniCon 

[Sha95], [Sha96], Wright [All97a], [All97b], CommUnity [Lop05], [And03], [Fia04][9], Pilar 

[Cue02], [Cue04], ArchWare π-ADL [Oqu04a], [Oqu04b], etc. All of these languages go a 

step forward with regard to the previous kind of ADLs. They improve the reusability of 

components and connectors by separating computation from coordination. However, their 

connectors are non-aspect-oriented and they specify their coordination processes by tangling 

the code inside them. For example: the coordination process between an actuator and a sensor 
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of a robot will imply the specification of a connector with tangled concerns of coordination and 

safety (see Figure 45). 

 

 
Figure 45. Sensor-Actuator coordination by using an ADL with Connectors 

 

5.2.3. Aspect-Oriented, connector-less ADLs 
Most aspect-oriented approaches applied to software architectures and their ADLs are based on 

an original ADL without connectors such as: PCS [Kan02b][Kan02a][Kan03], DAOP-ADL 

[Pin03][Pin05], AspectLEDA [Nav05], AOCE [Gru00], etc. These ADLs introduce the 

aspect-oriented behaviour by means of connectors, i.e., aspects are connectors among 

components. However, when there are two components that are coordinated by several 

connectors (aspects), the connectors cannot be synchronized among them (weavings among 

aspects). And in those ADLs that could try to solve this problem by connecting both connectors 

they will lose the reusability of the concerns of those connectors, because they will be 

dependent to the connector (aspect) that are connected to. Figure 46 illustrates how two 

components are communicated using an aspect oriented ADL without connectors. 

 
Figure 46. Sensor-Actuator coordination by using a connector-less Aspect-

Oriented ADL (AOADL) 
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5.2.4. Aspect-Oriented ADLs with connectors 
However, in PRISMA a new kind of ADLs is introduced, namely aspect-oriented ADLs with 

connectors. PRISMA is based on an ADL with connectors, and aspects are introduced as a 

new concept in software architectures for concerns called aspects. As a result, each concern is 

specified in its aspect and the coordination rules among the different aspects are inside the 

connector being aspects reusable and independent one to each other. Figure 47 presents how 

PRISMA coordinates the sensor and the actuator by separating the concerns or computation, 

safety and coordination. As a result, they are not scattered through the architecture and they are 

not repeated. These properties are the base to improve the reusability and maintenance of 

software during the Model-Driven Development of aspect-oriented software architectures. 

 

 
Figure 47. Sensor-Actuator coordination by using the PRISMA ADL  

 
In addition, Figure 47 shows that the coordination process among components, connectors 

and aspect is very complex. For this reason, this coordination process must be very well 

defined and formalized in order to guarantee that it coordinates all the pieces of software 

successfully. The formalization of this coordination process is presented in detail along the next 

section. 
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5.3. CONNECTORS IN PRISMA 
A connector is an architectural element that acts as a coordinator between other architectural 

elements. As such, connectors have a coordination aspect. An example is the connector that 

synchronizes the Actuator and the Sensor of a robot joint. This connector imports a safety 

aspect and a coordination aspect to coordinate the movements of the robot in a safe way for the 

joint, the robot and the environment that surrounds it. 

5.3.1. Architectural Element 
Since a connector is an architectural element, a connector is formalized as an architectural 

element. An architectural element is formed by a set of aspects, their weaving relationships, and 

one or more ports. These ports represent interaction points among architectural elements. 

- Formalization: Architectural Element 
An architectural element AE is built by composing a set of aspects A1, A2, …An, which are 

conceived as the smallest modules in our approach, and will be defined in section 5.3.3. The 

resulting element AE is in turn defined itself by the 4-tuple (A, X, Φ, Π), as follows: 

 

 A: the set of attributes in aspects A1, A2, …An 

  X: the set of the services in aspects A1, A2, …An (see Definition 1 in section 5.3.4) 

 Φ: the set of formulae (in Modal Logic of Actions) providing constraints for aspects 

A1…An 

 Π: the process PAE defined as follows: 

PAE ::= PP1 ||…|| PPm || PA1 || …|| PAn || PW 
 

This means that the processes of the ports, weavings and aspects of the architectural 

element are executed concurrently. For this reason, PAR is defined as their parallel 

composition, and therefore their dependencies are expressed and solved just as concurrency 

conflicts. 
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  Fig. 49 (a). The black box representation 

 

 
                                               Fig. 49 (b). PRISMA specification 

 
Figure 48. The RobotConnector Connector 

 
A brief comment about the role of the Modal Logic of Actions in PRISMA is relevant here. 

Basically, the formulae in Φ are used for implementing obligations, prohibitions, and 

permissions, providing the concurrent equivalent of a deontic logic. As a result, it permits the 

Connector CnctJoint 

 

  Coordination Aspect Import CProcessSuc; 

   Safety Aspect Import SMotion; 

  

   Weavings 

 SMotion. DANGEROUSCHECKING(NewSteps, Speed, Secure) 

 beforeif (Safe = true)  

       CProcessSuc.movejoint(NewSteps, Speed); 

 

   End_Weavings;   

  

   Ports 

      PAct : IMotionJoint, 

       Played_Role CProcessSuc.ACT; 

      PSen : IRead, 

       Played_Role CProcessSuc.SEN; 

      PJoint : IJoint, 

             Played_Role CProcessSuc.JOINT; 

      PPos : IPosition, 

       Played_Role CProcessSuc.POS; 

   End_Ports 

 

   … … 

End Connector CnctJoint; 
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analysis and formulation of assertions about processes that change the execution environment. 

A formula of this Modal Logic of Actions is written following the structure ψ [a] ϕ, where ψ 

and ϕ  are well-formed formulae (wff) in conventional first-order logic, which characterize the 

state before or after the execution of the action a, respectively. As usual in modal logics, the 

construct [] represents the necessity operator, and a represents an action. As a result, the 

meaning of formulae which are constructed following this pattern (ψ [a] ϕ) is the following: “if  

ψ is satisfied before the execution of a, ϕ must be satisfied after the execution of a”. To 

conclude, an example for an architectural element (and particularly of a connector) is provided, 

namely the RobotConnector in charge of synchronizing the Actuator and the Sensor of a robot 

(see Figure 47). This connector imports the SMotion safety aspect and the CoordJoint 

coordination aspect as mentioned above and is formed by the follow set of ports and weavings 

(see Figure 48). 

The formalization of this connector is therefore given by the following composite π-

process: 

PAE ::= PP1 ||…|| PPm || PA1 || …|| PAn || PW 

5.3.2. Ports 
Ports are the interaction points of architectural elements (components and connectors). Every 

port has associated a process, which establishes the services that publishes, and how and when 

they can be executed. 

- Formalization: Ports 
Let P be a port of an architectural element, such that its behaviour is specified by a process 

PR1. Then its semantics are given by the process PP , defined simply as follows: 

PP ::= PR1 
 

An example is the port PAct in the RobotConnector example (see Figure 48), which has its 

behaviour specified as a process PPAct, which in turn refers to the generic definition of another 

process ACT. 

PPAct ::= ACT 
 



Model-Driven Development of Aspect-Oriented Software Architectures 
 

120 

5.3.3. Aspect 
An aspect defines the structure and the behaviour of a specific concern of the software system. 

Examples of concerns are functionality, coordination, safety, distribution, among others. 

Structure is defined by a set of attributes, each of which has a value in every state. The state 

of the aspect at any given moment is determined by the value of its attributes. An aspect defines 

a semantics for its services. This semantics captures when the services cannot be executed, how 

the execution of services changes the state of the aspect, and the order in which they can be 

executed. The behaviour of an aspect is defined by means of a protocol. The protocol describes 

how the different services of the aspect are coordinated. 

- Formalization: Aspects 
An aspect is defined by the tuple (A, X, Φ, Π): 

 A: a set of attributes 

  X: a set of services (see section 5.3.4) 

 Φ: a set of formulae in modal logic of actions 

 Π: a set of terms in π-calculus; this is, a set of concurrent terms describing partial processes 

in the π-calculus.  

The contents of the set Π are therefore a set of π-calculus processes. For instance, let α be 

an aspect whose behaviour is specified by the PRT1 protocol. Then its semantics is the process 

Pα defined as follows: 

Pα::= PRT1 
 

Again, in the RobotConnector example of Figure 48, the SMotion aspect is similarly 

defined as: 

PSMotion::= SMotionProtocol 
 

The dialect that is used to describe terms in the Π set is a syntactic variant of the polyadic π-

calculus. It also includes an extension to include priorities, which are not describe nor use here. 

But apart from this extension, the language is largely standard, even in the choice of derived 
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operators (such as if . . . then). The main syntactic differences are the use of the arrow ( ) as 

the prefix operator to define a sequence of actions, instead of the dot (.), which is used here with 

its usual meaning at the programming level, to indicate scope nesting. Finally, the dialect 

provides also support for vector-like tuples of channels, which are simply indicated as 
>−

v . It is 

assumed an implicit indexing operator in this kind of vectors, so the name v1 will refer to the 

first channel in the vector 
>−

v . This should be considered just as syntactic sugar. 

5.3.4. Weavings 
A weaving specification defines how the execution of a service of an aspect can trigger the 

execution of a service of another aspect. Of course, the same service can be involved in several 

weavings. In order to preserve the independence of the aspect specification from other aspects 

and weavings, weavings in PRISMA are specified outside aspects and inside architectural 

elements, including connectors. As a result, weavings specified inside connectors are the ones 

which coordinate the different aspects that a connector imports. 

A weaving is defined by means of operators that describe the order in which services are 

executed. A weaving that relates service s1 of aspect A1 and service s2 of aspect A2 can be 

specified using the following operators. Note the use of the dot (.) operator to indicate scope 

nesting, as indicated above. 

 A2.s2 after A1.s1. A2.s2 is executed after A1.s1. 

 A2.s2 before A1.s1. A2.s2 is executed before A1.s1 

 A2.s2 instead A1.s1. A2.s2 is executed instead of A1.s1 

 A2.s2 afterif (Boolean condition) A1.s1. A2.s2 is executed after A1.s1 if the condition is 

satisfied. 

 A2.s2 beforeif (Boolean condition) A1.s1. If the condition is satisfied, A2.s2 is executed 

followed by A1.s1; otherwise, only A2.s2 is executed. 

 A2.s2 insteadif (Boolean condition) A1.s1. A2.s2 is executed instead of A1.s1 if the 

condition is satisfied. 
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The invocation of A1.s1, the second argument of the weaving, triggers the execution of 

weaving (pointcut). When a weaving is specified, the operator is chosen from the trigger 

service point of view; depending on whether the trigger service needs the execution of a service 

before, after, or instead of it (advice). Therefore the before and after weaving modifiers are not 

directly interchangeable. 

- Formalization: Weavings 
The semantics of a weaving is a coordination process that intercepts the invocation of a 

service A1.s1 and either replaces it with, or executes it in relation to, another service A2.s2. 

A1.s1 and A2.s2 belong to different aspects. 

The weaving must be executed each time that A1.s1 is invoked, upon which it executes 

either A2.s2 instead of A1.s1 or A1.s1 and A2.s2 in the correct order. This means that the 

invocation of a service does not automatically trigger the execution of its associated process. 

Taking into account that the formalization of a service in PRISMA is the following: 

 

 DEFINITION 1. (Service) A service is a process that executes a set of actions to produce a 

result. 

Let S be a service. The semantics of S is a process in the polyadic π-calculus called PS. 

This process has a channel CS through which it is able to interact; or, conversely, it can be 

invoked for execution (see Figure 49). It is possible to see immediately that services are not 

invoked directly by other processes, but only through weavings that coordinate execution of 

services within architectural elements.  

 
Figure 49. Formalization of a Service 

 

Let's start by defining a service invocation. This will make much easier to understand later 

the way in which it is defined the internal behaviour of a service. 
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 DEFINITION 2. (Service Invocation) Let 
>−

x  = x1, …,xn be the input parameters for a 

service S, and y = y1 : : : ym be its output parameters. The invocation of S is formalized by 

means of a message sent through channel CS. Moreover, each output parameter yi must 

have a return channel ryi, which is dynamically created for each invocation using the π-

calculus restriction operator (υ). These channels are used to send the results of S and to 

indicate and acknowledge termination of the execution of S. All this considered, a service 

invocation is described as the following process. 

(υ yr
>−

) (CS !( 
>−

x , yr
>−

)  ry1?(y1)…rym?(ym)) 
 

The structure of this process defines the different ways in which a service is able to interact; 

so, it is now possible to define the behaviour of a service as a set of π-calculus processes, as 

indicated by the following definition. 

 

 DEFINITION 3. (Service Process) The behaviour of a process PS of a service S can be 

divided in three kinds of actions: 

o Request Reception. The first action of PS must be the reception of the 

messages that come through CS. This reception is specified as follows. 

     CS? (
>−

x , yr
>−

) 
 

o Service Execution. The execution of the service internal behaviour consists 

of processing a set of internal actions. The output parameters (
>−

y  = y1, …, 

ym) are created, and it is assumed that internal actions bind them with some 

useful value. Then this internal execution is specified as follows. 

      (υ 
>−

y ) (τ) 
o Termination. The last action in PS is always the sending of the output 

parameters (
>−

y  = y1, …, ym) through return channels ( yr
>−

= ry1…rym). This 
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way, the invoker is confirmed that execution of S has ended. This 

termination is therefore specified as follows. 

ry1!(y1)… rym!(ym) 
As a result, the complete formalization of PS is the replicated sequence of 

these three actions. 

PS::= *( CS? (
>−

x , yr
>−

)   (υ 
>−

y ) ((τ)  ry1!(y1)… rym!(ym))) 
 

This replication allows us to execute the service as many times as it is necessary. In terms of 

our formalization in the π-calculus, and given a service S which is being controlled by the 

weaving, this means that the weaving process PW interacts with PS via the channel CS defined in 

DEFINITION 1. To do so, it must provide a channel CWS which other processes can use to 

invoke S (see Figure 50). 

 
Figure 50. Formalization of a service controlled by a weaving 

 
Considering these two channels, the invocation of S by other processes is defined as the 

following π-term: 

(υ yr
>−

) (CwS ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 
And then the invocation of S by the weaving process is therefore as follows: 

(υ yr
>−

)(CS !( 
>−

x , yr
>−

)  ry1?(y1)…rym?(ym)) 

 
After that, each weaving operator defines a different process with a specific behaviour, to 

provide the required semantics for each one of them. As an example, let's consider the process 

for the beforeif weaving operator, which involves two services belonging to two different 

aspects. 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 
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PBWIF::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)   

                rS21?(s21)… rS2m?(s2m))  
               if (boolean_condition = true) then 

                    (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))   
                    ry1 ! (s11)… rym ! (s1m))            
               else 
                    ry1 ! (s21)… rym ! (s2m))            
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

Table 3. Translation set of π-processes for beforeif weaving pattern 
 
 
 

 
Figure 51. Translation for beforeif weaving patterns 

 
A2:s2 beforeif (Boolean condition) A1:s1 

 
According to PRISMA formal semantics, this weaving pattern will be translated to the ¼-

calculus as a compound process PBWIF , which has the context depicted in Figure 51. This 

means that PBWIF receives the invocation of A1.s1 from another process (P1…n) through CWA1_S1. 

As BWIF is a “before" weaving, PBWIF starts by invoking A2.s2 using CA2_s2. Then, PA2_s2 

receives the invocation, executes a set of internal actions, sends the results, and notifies the 
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weaving that execution has finished. Next, if the Boolean condition in BWIF is true, the first 

service of the weaving is executed; otherwise PBWIF sends the results of A2.s2 to the process 

that invoked A1.s1. In the first case, when the condition is satisfied, PBWIF invokes A1.s1 using 

CA1_s1 and PA1_s1 receives the invocation upon which it executes a set of internal actions, sends 

the results, and notifies the weaving that the execution has finished. Finally, PBWIF sends the 

results of A1.s1 to the process that invoked A1.s1. 

The semantics of the set of weavings defined inside a connector is therefore translated as 

the PW process, the parallel composition of every individual weaving process. 

PW ::= PAW1 || …|| PAWn || PBW1 || …|| PBWn || PIW1  || …|| 
PIWn || PAWIF1 || …|| PAWIFn || PBWIF1 || …|| 

PBWIFn || PIWIF1|| …|| PIWIFn 
 

This means that the weavings are executed concurrently, interacting as specified. In 

addition, the same service can be involved in several weavings of the same architectural 

element and there is an order for processing the different weavings that a service triggers. This 

ordering establishes that weavings are executed from more restrictive to less restrictive. The 

precedence is as follows: InsteadIf, Instead, BeforeIf, Before, After, AfterIf. Deadlocks and 

infinite loops that could appear when using these operators are avoided at the specification 

time. 

An example of a weaving appears in the RobotConnector case study. This connector 

imports the SMotion safety aspect and the CoordJoint coordination aspect. The need for a 

weaving emerges due to the fact that the robot is moved only after the connector is sure that a 

movement is safe. The invocation of the moveJoint service (the second argument of the 

weaving) of the CoordJoint triggers the execution of the weaving (see the process 

PBWIFSMotionCoordJoint in Figure 12). Specifically, the weaving of the connector receives the 

invocation of the moveJoint service (the term CWCoordJoint_moveJoint?(newsteps, speed, yr
>−

) in the 

process) and afterwards it specifies that the DANGEROUSCHECK service of SMotion has to 

be executed, and it must answer before the moveJoint service of CoordJoint is even invoked, 
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hence the term (υ 2Sr
>−

) (CSMotion_DANGER ! (newsteps, rs21)   rs21?(safe)) in the process. Then 

the condition guarantees that the execution of the moveJoint service is only performed if the 

safe return parameter of the DangerousCheck service is set to true (hence the if/then/else 

construct in Figure 12, which encloses the invocation of the moveJoint service through the 

CCoordJoint_moveJoint channel). On the other hand, the processes defining the behaviour of each one 

of the services, which are in turn defined within the aspects, are ready to be invoked by the 

weaving at any time (see the definition for both PCoordJoint_moveJoint and PSMotion_DANGER as replicated, 

hence permanent, processes in the Figure). 

PW ::= PBWIFSMotionCoordJoint 

PBWIFSMotionCoordJoint::=*(CwCoordJoint_movejoint? (newsteps, speed, yr
>−

)     

                                           (υ 2sr
>−

) (CSMotion_DANGER! (newsteps, rS21)  rS21?(safe))  
       if (safe = true) then 

                (υ 1sr
>−

) (CCoordJoint_movejoint! ( newsteps, speed, 1sr
>−

)   
                         rs11?( s11))    ry1 ! (s11))            

                                                  else 
                     ry1 ! (s21))            

 

PCoordJoint_movejoint::= *(CCoordJoint_movejoint? (newsteps, speed, 1sr
>−

)  (υ 1

>−

s ) ((τ)   
                                 rs11!(s11))) 

PSMotion_DANGER::= *(CSMotion_DANGER? (newsteps, rs21)  ( (τ)  rs21!(safe))) 
 

Figure 52. Translation for the weaving in the RobotConnector example 
 

5.4.  ANALYSIS OF THE PROPOSAL 
Both coordination and architecture are generic high-level abstractions of a software system; 

they provide different approaches to close concerns, and both have long and separate research 

traditions. At the same time, there is an obvious relationship between them. Both notions try to 

identify highlevel patterns in the system, though their perspectives are slightly different. 

Architecture identifies structural patterns defined by inner interaction within a (mostly) 
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compositional configuration, while coordination defines high-level interaction patterns shown 

by the resulting structure. 

However when the relationship between them is considered, even their relative ordering has 

not always been clear. Different authors have considered their relationship in different ways, 

and this is the best proof of their intertwining and the intrinsic difficulty of their separation. For 

instance, Andrade et al. [And02a], [And02b] consider that configurations are built on top of a 

coordination layer which guarantees a shared behaviour. On the contrary, Eisenbach and 

Radestock [Eis98] conceive coordination as the higher level abstraction, which is built on top 

of a configuration layer, which guarantees a substrate for shared interaction. At the same time, 

many authors present these two abstractions at the same level and provide a common support 

for it; in particular, many coordination languages have also been presented as ADLs, provided 

that their particular abstractions are equally good for describing both [Mag95], [Pap01]. In 

particular, connectors and special-purpose components bear many similarities to some 

constructs in several control-driven coordination proposals. 

Probably among the most important reasons for the success of the architectural approach is 

the implicit separation of concerns it provides; the designer is just concerned with the 

functionality of components (and possibly some relevant non-functional requirements), but he 

is now relieved of describing compositional and coordination issues, which have become the 

architect's responsibility. Though connectors are not the only way in which an ADL can 

describe interaction and coordination abstractions, their existence and the emphasis on them is 

probably the reason why these languages are so apt in specifying these issues. And once they 

have been separated, the relevant high-level linguistic constructs in different approaches are 

similar. 

It is possible to conclude that coordination is an emergent property of some architectures; an 

architecture-level description has the means for providing the coordination concern, but of 

course it can also describe non-coordinated systems. In summary, architectures describe 

interaction structures; and coordination can be described as a higher-level abstraction on 

interaction, therefore supported by architecture [Cue06]. 
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Connectors alone do not provide a global coordination policy, but only local coordination 

groups; therefore the use of connectors (as discussed in section 5.2 and above) eases the 

description of a coordinated system, but it is not a sufficient condition. Shaw's original 

identification of connectors [Sha94] tried not to provide a coordination, but an interaction 

abstraction. However, subsequent work has defined ever more complex connectors, which 

were grouped in types and categories, tending towards the definition of much more complex 

abstractions, even higher-order connectors [Lop03]. Mehta provided an initial taxonomy for 

connectors [Meh00], which could have provided a basis for later developments in this 

direction, but this thread has not had continuity. 

The locality of the connector approach justifies still the definition of generic coordination 

language proposals, which provide the means to describe general policies. However an aspect-

oriented alternative is also possible. Instead of providing a complete language from scratch, it is 

also possible to define an aspect-oriented extension of some existing language. More than that, 

this would ease the integration of this “coordination aspect" with other concerns in the 

architecture. Consider also that earlier proposals for aspect-orientation [Kiz97] defined specific-

purpose languages to deal with aspects, rather than aspectual extensions, so this evolution 

towards an architectural extension is also within the tradition in the field. 

Therefore it is possible to provide coordination by means of pure compositional ADLs, but 

connectors make it easier. Then, a specific coordination language provides general policies, but 

an aspect-oriented extension makes integration easier. Thus, providing an aspect-oriented, 

connector-based ADL would gather the benefits of different proposals. The reader is again 

referred to section 5.2 for a detailed discussion of the different approaches for providing 

coordination in ADLs, including connector-based and aspect-oriented alternatives. 

The reflective ADL PiLar has explored the way in which a very general architecture 

language is able to describe coordination as a separate concern, i.e. as an architectural aspect. In 

[Cue04] this was made by exploiting the reflective capabilities, thus proving that this is indeed 

possible, but very complex. Later research has explored also an aspect-oriented approach 

which makes a non-explicit use of these reflective capabilities in PiLar, providing an aspectual 

layer and showing how coordination can be independently managed as an aspect [Cue06]; but 
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the relationship between this aspect and others, though possible, was complex, and is not 

explored in detail. 

And this is the main benefit of the PRISMA approach, as highlighted in previous 

discussion. The aspect-oriented structure of the language itself, and the symmetry of its model, 

provide the basis to be able to relate coordination to other concerns, such as safety. The notion 

of weaving, which is required by the aspect model, provides also the means to reconcile the 

conflicts between aspects, whenever they appear. This, combined to the benefits of both 

connectors and aspects themselves for coordination, defines PRISMA as one of the most 

complete proposals in the field, gathering all the benefits provided by other approaches in a 

single, consistent and rigorous conceptual model. Thus, PRISMA coordination model proposal 

provides a suitable framework to develop aspect-oriented software architecures following the 

MDD proposal. 

5.5. CONCLUSIONS 
In this chapter, the advantages of combining software architectures and AOSD to define 

coordination have been presented. In addition, a detailed analysis about how to take more 

advantage of this combination has been done. From this analysis, this chapter defines and 

formalizes PRISMA aspect-oriented connectors. They are specified in an elegant and novel 

way through the combination of AOSD and Software Architectures. As a result, PRISMA 

presents a coordination process that provides the following advantages: 

1. Connectors to coordinate components: Reusability and maintenance of components 

and connector is improved by separating coordination from computation. Components and 

connectors can be used during the MDD process as building blocks of the modelling 

process and they can be reused throughout all their stages. 

 

2. Aspects to specify the coordination process of connectors: Reusability and 

maintenance of different concerns is improved by separating coordination from other 

concerns that are necessary for the coordination process (safety, security, distribution, 

mobility, etc.). There are no tangled concerns inside complex connectors. Aspects can be 
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used during the MDD process as building blocks of the modelling process and they can be 

reused throughout all their stages. 

 

3. Weavings are inside connectors to coordinate their aspects: Reusability and 

maintenance of different aspect is improved by not specifying weavings inside aspects. 

 

4. Formalization of the coordination processes among aspects (weavings) and 

architectural elements. Thus, non-ambiguity and proper execution of the different 

coordination processes is guaranteed. The code generation of coordination models is 

improved during the MDD process. 

 

The work presented in this chapter has been published in the following publication: 
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CHAPTER 6 
6. MODEL-DRIVEN DEVELOPMENT 

 
 

This chapter presents how PRISMA gives a complete support for the development of 

technology-independent aspect-oriented software architectures following the MDD approach, 

and the PRISMA CASE, which is the tool that makes this software development support 

feasible. PRISMA has been applied to several case studies: banking systems, electronic 

auctions, robotic tele-operated systems such as the TeachMover robot, etc. The MDD support 

of PRISMA CASE is going to be illustrated using these case studies. 

6.1. INTRODUCTION 
Some new approaches have recently emerged in order to improve software development. They 

try to improve the early stages of the software life cycle by automating their activities as much 

as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD is a 

software development paradigm that is based on models that use automatic generation 

techniques in order to obtain the software product. MDD is included within Model–Driven 

Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be 

represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The 

use of models to develop software provides solutions that are independent of technology, 

whose source code can be obtained by means of automatic code generation techniques for 

different technologies and programming languages. The high level of abstraction that models 
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provide permits working with metamodels in the same way as with specific models or domain-

specific models.  

Aspect-Oriented Models propose the separation of the crosscutting concerns of software 

systems into separate entities called aspects [Kiz97]. Despite the fact that the aspect-oriented 

paradigm emerged from the implementation level, its use is being extended to all stages of the 

software life cycle. As a result, Aspect-Oriented Software Development (AOSD) has emerged 

in order to extend the advantages that aspects provide to every stage of the software life cycle 

[Kiz01]. One interesting stage where AOSD is being introduced is the software architecture 

stage.  

Software architectures [Per92] make software systems simpler and more understandable. 

Some proposals for the integration of software architecture and AOSD have emerged to take 

advantage of both approaches [Chi05], [Cue05], [Nav05], [Pin05], [Pin03], [Kat03], etc.  

The automatic code generation from models reduces the cost and time of the development 

process. Nowadays, there are many CASE tools that are able to generate applications following 

the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are widely-

known as model compilers. They automatically generate the application code from the 

conceptual schema of a software system. The automatic generation can be complete as in 

Oblog Case [Ser94], or it can be partial, as in Rational Rose [RAT07], Together [TOG07] and 

others. However, since these model compilers follow the Object-Oriented Paradigm, the need 

for developing model compilers that follow the Software Architectures and/or AOSD 

approaches has emerged. The combination of the Software Architectures and AOSD 

reusability and the automatic code generation achieves higher reduction in the time and cost of 

the development process than using only one of these approaches. As a result, an important 

challenge in the software engineering area is the integration of software architectures and 

AOSD approaches, and automatic code generation and traceability techniques in a unique 

approach in order to support the development and maintenance of complex software systems in 

an efficient way. 

PRISMA is an approach that integrates software architecture and AOSD in order to take 

advantage of both. The PRISMA approach is based on its meta-model [Per05a] and its formal 
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Aspect-Oriented Architecture Description Language (AOADL) [Per06d]. Since the PRISMA 

model is a technology-independent model, the PRISMA approach also follows the MDD 

paradigm to obtain its advantages during the development and maintenance processes of 

PRISMA architectures. The main goal of the PRISMA approach is to give a complete support 

for the development of technology-independent aspect-oriented software architectures, which 

could be compiled for different technological platforms and languages using automatic code 

generation techniques. A PRISMA CASE has been developed in order to cope with the 

challenge of developing aspect-oriented software architectures following the MDD paradigm. 

The PRISMA Aspect-Oriented Architecture Description Language is a formal language 

that is based on a Modal Logic of Actions [Sti92]and a dialect of polyadic π-calculus 

[Mil93][Mil99]. It is important to emphasize that most ADLs only permit the specification of 

the skeleton of architectures and the services that are interchanged among their different 

architectural elements. The PRISMA AOADL has greater expressive power and can specify 

more features and requirements using aspects. This complete specification of the system 

requirements, and the fact that the PRISMA AOADL is a formal technology independent 

language, facilitates the automatic code generation and the validation of architectural and aspect 

features of the system. 

6.2. THE MDD SUPPORT OF PRISMA 
The PRISMA approach follows the MDD paradigm. There are two main approaches that 

apply this paradigm. They are the Model-Driven Architecture (MDA) approach proposed by 

the OMG [MDA07], and the Software Factories approach proposed by Microsoft [Gre04]. 

MDA deals with the lack of software system adaptation to different technologies and 

programming languages by proposing four levels of abstraction: CIM (Computation 

Independent Model), PIM (Platform Independent Model), PSM (Platform Specific Model), 

and the final application. Software Factories leads to the reuse of architectures, software 

components, techniques and tools to improve software development. 

PRISMA follows MDD in the general sense, that is, it is not focused on MDA or Software 

Factories. PRISMA MDD support is not constrained to the definition of a specific number of 
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levels of abstraction or techniques because it can vary depending on the needs of each software 

system. In this way, this provides us the opportunity of extending the MDD support of 

PRISMA in future works. PRISMA follows the MDD approach by providing the software 

architect models, which allow for completely developing aspect-oriented software 

architectures. Since the level of abstraction of models is higher than programming languages 

and the code is automatically generated from models, the tasks of the software architect are 

facilitated. In addition, the use of code generation techniques improves the development and 

maintenance processes of software.    

6.2.1. PRISMA in MOF 
In order to present PRISMA model specifications and how they follow the MDD approach, the 

OMG Meta-Object Facility (MOF) specification is going to be used [MOF02]. MOF allows us 

to clearly present in this thesis the differences between types and instances and their 

correspondent models.  

MOF defines a four-level “architecture” and its main purpose is the management of model 

descriptions at different levels of abstraction and their static modification. The upper layer is the 

most abstract one (see the M3 layer, Figure 53). This layer defines the abstract language used to 

describe the next lower layer, which contains metamodels (the M2 layer). The MOF 

specification proposes the MOF Model as the abstract language for defining all kinds of 

metamodels, such as UML or PRISMA. 

The metamodel layer defines the structure and semantics of the models defined at the next 

lower layer (the M1 layer). The PRISMA metamodel is defined at the M2 level. It defines the 

properties that the interface, aspect, architectural element, and connection primitives have (see 

the system package of the PRISMA metamodel in the M2 layer, Figure 53).  

The M1 layer comprises the models that describe a software system. These models are 

defined using the primitives and relationships that are described in the metamodel layer (M2). 

PRISMA models are defined using the interface, aspect, architectural element, and connection 

primitives that are defined in the previous level (M2). As a result, PRISMA types that are 

placed in the M1 layer satisfy the properties established at the M2 layer. An example is the 
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VirtualBank type that has been defined using the PRISMA system primitive (see M1 layer, 

Figure 53). PRISMA system types are defined as architectural patterns, which are not 

specifically configured until a particular instantiation is performed.  

The lowest level is the information layer (M0 layer), which contains the data, that is, the 

instances of a specific model. In PRISMA, these data are particular system instantiations (see 

myVirtualBank, M0 layer, Figure 53), which behave as described in the system type.  

 

 

Figure 53. Meta-Object Facility (MOF) layers and PRISMA models 
 

6.2.2. PRISMA transformations 
The PRISMA AOADL [Per06d] defines the architectural elements at different levels of 

abstraction: the type definition level and the configuration level. The type definition level 

defines architectural types with a high abstraction level in order to be reused by other types or 

specific architectures. The configuration level designs the architecture of software systems by 

creating and interconnecting instances of the defined architectural elements in the type 

definition level. In other words, it specifies the topology of a specific architectural model. These 
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two levels of abstraction also appear in PRISMA models: PRISMA type models and PRISMA 

configuration models. 

 

 
Figure 54. MDD from the PRISMA Metamodel to Applications 

 

The PRISMA model is a metamodel that permits the definition of PRISMA type models 

whose instantiation defines PRISMA configuration models. PRISMA configuration models 

define specific systems. PRISMA applies MDD to define type models from its metamodel (see 

step A, Figure 54), and to define configuration models from type models (see step B, Figure 

54). In addition, PRISMA approach has created a set of transformation patterns to transform 

PRISMA models into its AOADL specifications and into C# code (see steps 1 and 2, Figure 

54). PRISMA applies these transformation patterns during the development process in order to 

automatically generate applications from its PRISMA architectural models and to show the 

formal specification of its models.  

This MDD process together with the models and the generation patterns are provided by 

PRISMA CASE. This CASE tool supports the PRISMA approach and it is presented in detail 

in the following section. 
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6.3.  FOLLOWING MDD WITH PRISMA CASE 
PRISMA CASE currently supports the generation C# code that is executable on .NET 

technology from its aspect-oriented architectural models. The PRISMA CASE is composed of 

the PRISMA metamodel, a graphical modelling tool, a model compiler, a middleware and a 

generic graphical user interface to execute the generated code (see Figure 55).  

The PRISMA metamodel is part of  the PRISMA CASE since the metaclasses that allow 

the creation of PRISMA aspect-oriented software architectures, as well the constraints of the 

PRISMA metamodel, must be available in the CASE tool. They are necessary to be able to 

model PRISMA architectural models and to make sure that they satisfy the PRISMA 

constraints. 

The PRISMA AOADL is a formal language [Per06d]. Even though the use of a formal 

language clearly provides advantageous characteristics, the use of a formal language is really 

difficult. For this reason, PRISMA CASE provides a graphical language [Per06a], [Per06b] 

and a graphical modelling tool to model PRISMA software architectures using an intuitive and 

friendly graphical AOADL. This PRISMA graphical modelling tool is divided into two 

modelling tools following the MDD process presented in the previous section: the PRISMA 

Type Modelling Tool and the PRISMA Configuration Modelling tool. 

Since PRISMA CASE must generate executable C# code in .NET technology and the 

.NET framework does not provide support for the Aspect-Oriented approach, a PRISMANET 

middleware has been developed to provide a solution [Per05b]. PRISMANET extends the 

.NET technology through the execution of aspects on the .NET platform in accordance with 

the PRISMA model. 

Finally, the PRISMA model compiler has been developed to automatically generate 

PRISMA AOADL specifications and C# code from the PRISMA architectural models, and a 

generic GUI is provided to assist the user in checking the behaviour of the architecture. 
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Figure 55. PRISMA CASE 
 

6.3.1. PRISMA CASE development: Domain Specific Language Tools 
(DSL Tools) 

 Since there are a lot of tools in the market that provides mechanisms to follow the MDD, 

PRISMA CASE has been developed using one of them instead of developing a tool from 

scratch. This decision is taken in order to reduce the time and cost invested in the 

implementation of this MDD support. Following this same criteria, since the PRISMANET 

middleware was previously developed using the Visual Studio framework, the Domain 

Specific Languages Tools (DSL Tools) [DSL07] was chosen among the different tools of the 

market to develop PRISMA CASE. 

DSL Tools is a set of tools for creating, editing, visualizing, and using domain-specific 

models to automate and improve the software development process. This set of tools is 

integrated into the Visual Studio 2005 framework to define domain models with their 

customized graphical representations. 



Model-Driven Development 

141 

DSL tools have been created to model specific models such as the model of a web page, a 

banking system, a tele-operated system, etc. DSL Tools allows for the definition of domain 

specific models and their customized graphical representations. From these two projects, DSL 

tools is able to generate domain-specific tools for these specific models. These specific and 

customized tools are then used to define specific applications of web pages, banks systems, 

tele-operated systems with domain-specific tool boxes and concepts. 

The generated tool not only provides a customized modelling tool, it also provides Code 

Generation Templates, which automatically generate code using a set of code generators. 

These templates help users to define a model compiler in an easy way by browsing through the 

concepts that have been modelled and stored in the domain specific model. The DSL code 

generators take the templates, the domain specific model definition and its XML document as 

inputs of the code generation process. The output of this process is generated by the code 

generators following the defined templates and substituting the parameters for the concepts 

stored in the model.  

6.3.2. The PRISMA Type Modelling Tool: A) From the PRISMA 
Metamodel to the PRISMA Type Models 

In order to develop PRISMA CASE, every metaclass and relationship of the PRISMA 

metamodel have been introduced in the DSL Tools using the primitives that DSL provides (see 

Figure 56). For example, Figure 57 shows the definition of the architectural element and aspect 

metaclasses in DSL Tools. 

 
Figure 56. Toolbox of DSL Tools  
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(a)  Architectural Element 

 

(b) Aspect 

Figure 57. Definition of Architectural Elements and Aspects in the 
DomainModel of DSL 
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All the classes of the PRISMA metamodel are translated by DSL to partial C# classes in 

order to access and update value properties, to navigate across relationships, and to enable an 

object to participate in a relationship. In addition, they can be used to add new behaviour to the 

model, such as to include verification rules (see  section 7.3). 

In addition, the graphical metaphor to each metaclass of the PRISMA metamodel has been 

defined. DSL tools stores the graphical representations selected for the PRISMA concepts. As 

a result of this definition, the PRISMA graphical modelling tool provides a tool box that 

permits the graphical modelling of PRISMA models by dragging and dropping the shapes to 

the drawing sheet (see Figure 6). In PRISMA, only the main concepts and their relationships 

are graphically represented; the rest of the concepts are specified using the AOADL and are 

included in the definition of the corresponding shapes. 

 

 
Figure 58. PRISMA ToolBox 
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Figure 59. The Visual Studio Project of PRISMA 

 

 

Figure 60. PRISMA Type Modelling Tool 
 

Finally, it is important to mention that a setup for the PRISMA CASE has been defined in 

DSL Tools. As a result, PRISMA CASE can be provided to the software architect as an 

independent project of the PRISMA CASE implementation. When the software architect 

executes the setup, it creates a new kind of project for Visual Studio 2005 called PRISMACase 
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(see Figure 59). The creation of a PRISMA CASE project consists of launching PRISMA 

CASE and starting the development process. 

The PRISMA Type Modelling Tool is generated from the PRISMA metamodel, its 

graphical representions and its partial C# classes (see step A, Figure 54). The modelling tool is 

composed of a toolbox, a drawing sheet, a model explorer, a window of properties and a 

PRISMA menu (see Figure 60). 

6.3.3. The PRISMA Model Compiler for Types: 1)Transformation: Code 
and AOADL generation patterns for types 

The PRISMA Type Modelling Tool also provides a set of templates to automatically generate 

the code from the models that have been graphically modelled. The templates for generating 

the AOADL specification and the C# code are already available (see step 1 in Figure 54). They 

can be extended to generate the code for other languages.  The templates and the command to 

execute the generators that produce the result are provided by the window Solution Explorer of 

PRISMA CASE. This command is called Transform All Templates. Its execution calls the 

code generators that execute the code generation templates of PRISMA by substituting the 

parameters for the elements that have been modelled. The PRISMA templates are stored in two 

different folders: ADLCodeGeneration and CSharpCodeGeneration. These folders contain the 

templates to generate each PRISMA type and the file that contains the result of the last 

Transform All Templates execution (see Figure 61). 

The ADLCodeGeneration folder contains the formal specification of the software 

architecture that has been modelled following the PRISMA AOADL [Per06d]. Despite the fact 

that the specifications are introduced in the graphical shapes using the PRISMA AOADL, the 

AOADL generation permits the user to see the complete textual specification of the model. 

The CSharpCodeGeneration folder contains the C# code generation, which allows the 

execution of the specified software architecture on the PRISMANET. The implementation of a 

specific PRISMA software architecture is performed by extending the classes provided by 

PRISMANET. In order to develop these code generation templates, a set of patterns has been 

identified and defined to generate the C# code for each one the PRISMA concepts to be 

executed over PRISMANET (see appendix A). Next, a simplified example of a component 
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pattern is presented by using the Actuator component of the TeachMover Robot case 

study(Pattern 15 of the catalogue).  

 

 
Figure 61. PRISMA Code Generation Templates 

 
 
 
 

Pattern 15: Simple Architectural Elements 
PRISMA metamodel in DSL Tools Graphical Metaphor 
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Transformation  
Description 
This pattern details how to generate the C# code from a simple architectural 
element. Specifically, it only generates the structure of the architectural model, the 
internal code of this structure, that is, ports, aspects and weaving, is generated by 
other patterns related to it.  
Template 

 
 

... 
using System; 
using System.Reflection; 
 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace <#=this.Model.Name#> 
{ 
<# 
foreach (ArchitecturalElement architecturalElement in 
this.Model.ArchitecturalElements) 
{ 
  if (architecturalElement is Component || architecturalElement is Connector) 
  { 
#> 
  [Serializable] 
  public class <#=architecturalElement.Name#> : ComponentBase  
<# 
     if (architecturalElement is Connector)  
     {  
#> 
     , IConnector  
<#  
     }  
#>  
  { 
    public <#=architecturalElement.Name#> 
     (string name<#=ArchitecturalElementArguments(architecturalElement)#> ) : 
base(name) 
    {    
<# 

/* Aspects */ 
/* Weavings */ 
/* Ports */ 

#> 
    } 
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  } 
<# 
  }/* endif (architecturalElement is Component || architecturalElement is 
Connector)*/ 

... 
 

Case Study 
Description 
 
     This pattern is illustrated using the component Actuator of the TeachMover case 
study. The representation of the Actuator in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
 
Graphical representation  

 

          

 
 

Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
 [Serializable] 
 public class Actuator : ComponentBase   
 { 
  public Actuator(string name ) : base(name) 
  {    
                 /* Aspects */ 
                 /* Weavings */ 
                 /* Ports */  
  } 
 } 
} 

... 
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Related Patterns 
Pattern 16, Pattern 17 and Pattern 18. 
 

 

 
 
 

 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
 [Serializable] 
 public class Actuator : ComponentBase   
 { 
  public Actuator(string name ) : base(name) 
  {    
                 /* Aspects */ 
                AddAspect(new RS232 ()); 
                 /* Weavings */ 
                 /* Ports */  
                 InPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE); 
                 OutPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE); 
                 InPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE); 
                 OutPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE); 
 
  } 
 } 
} 

 

Figure 62. The generated AOADL and C# code of the component Actuator 

Component Actuator 

   Integration Aspect Import RS232; 

 

   Ports 

      PCoord : IMotionJoint, 

              Played_Role RS232. INTMOVE; 

      PSENSOT : IMotionJoint, 

              Played_Role RS232. OUTMOVE; 

 

   End_Ports; 

   new(){RS232.begin(); 

   destroy(){RS232.end();} 

EEnd_Component Actuator; 
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All the patterns are not presented due to space limitations. But, the results of the complete 

C# and AOADL transformations of the component pattern for the Actuator are presented in 

Figure 13. As it can be seen in the C# code presented in Figure 13, a component is 

implemented as a serializable C# class. This class is serializable in order to enable mobility in 

future versions of PRISMA CASE [Ali06]. This class inherits from the ComponentBase class 

of PRISMANET, which implements the component of the PRISMA model. The component 

name is the same as the one in the PRISMA specification. The set of ports and aspects that 

make up a component are included by invoking the constructors of the port and aspect 

PRISMANET classes. Both classes implement the port and aspect elements of the PRISMA 

model. 

6.3.4. The PRISMA Configuration Modelling Tool: B)From PRISMA 
Type Models to PRISMA Configuration Models 

The PRISMA metamodel that has been introduced in DSL, and the modelling tool that has 

been developed from this model provide us mechanisms to specify PRISMA aspect-oriented 

software architectures. However, it is necessary to instantiate and to configure these 

architectures into specific ones and provide the software architecture mechanisms to do so. In 

order to cope with these needs, PRISMA CASE automatically generates a domain specific 

graphical modelling tool to configure the software architectures that have been defined using 

PRISMA Type modelling tool. A PRISMA Configuration Modelling Tool is generated for each 

PRISMA software architecture that is modelled using the PRISMA Type Modelling Tool. The 

PRISMA Configuration Modelling Tool is used to develop specific software architectures using 

the PRISMA types defined in the PRISMA Type Modelling Tool as modelling primitives.  

The capacity to store all the information needed to automatically generate a domain-specific 

tool permits the use of PRISMA architecture as a domain specific language in other model 

specifications. It also permits the generation of the specification of the configuration language. 

This information is generated using the code generators of DSL and is stored in the persistence 

and configuration language folders of PRISMA type modelling tool (see Figure 63). The 
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information of these folders is the input for creating the new modelling tool for the domain-

specific PRISMA software architecture that has been defined. 

 

 

 

 

 
Figure 63. Model Persistence and Configuration Language Information 

 

The automatic generation of a tool for modelling configurations of a PRISMA software 

architectures is performed by executing the PRISMA Model Configuration option of the menu 

PRISMA after the transformation of all templates has been done (see step 1, Figure 64). Next, a 

new project is automatically created and can be used as a Configuration Modelling Tool. Step 2 

of Figure 64 shows how the Actuator and Sensor component types of the TeachMover robot 

defined in step 1, Figure 64 appear in the tool box of the Configuration Modelling Tool as 

shapes for modelling. It shows how these types have been dragged and dropped on the drawing 

sheet generating two instances. In Figure 64 example, the base joint of the TeachMover robot is 

modelled by defining its actuator and sensor component instances: Actuator_BASE and 

Sensor_BASE. 
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(1) PRISMA Type Modelling Tool 

 
(2) PRISMA Configuration Modelling Tool 

 
Figure 64. Generation and Execution of the PRISMA Modelling 

Configuration Tool  
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6.3.5. PRISMA Model Compiler Instances: 2) Transformation: Code and 
AOADL generation patterns for instances 

In addition, the configuration modelling tool provides a command to transform its templates to 

obtain the AOADL specification that corresponds to the configuration that has been defined 

using the tool, and to instantiate the code, that has been generated in step 1, with the instances 

that are in the configuration model. In order to allow this transformation process, the 

information of the configuration model is stored in a XML document. Figure 65 shows the 

structure of this XML store simple components: 

Finally, this tool permits the execution of the generated code by launching the defined 

instances. In order to do this, the PRISMA menu offers the option PRISMANET, which 

executes the middleware PRISMANET and instantiates the defined configuration (see the 

menu PRISMATools, step 2, Figure 64). As a result of this execution, a generic GUI is 

launched to interact with the architecture by invoking its services and checking the value of its 

attributes (see Figure 66). The main purpose of the generic GUI is to assist the user in checking 

the behaviour of the architecture without having to worry about aesthetic details and without 

forcing the user to define a GUI in order to obtain a result.  
<?xml version="1.0" encoding="utf-8"?> 
<ConfigurationModel name = "_operation"> 
  …… 
 
  <Components> 
    <Component name = "" type = ""> 
 <Properties> 
   <Property name = ""                       
                  type = "" value = ""> 
   </Property> 
 </Properties> 
 
      <SystemRef name = ""> 
 </SystemRef> 
 
    </Component> 
  </Components> 
… … 
</ConfigurationModel> 

Figure 65. XML document for storing instances 
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Figure 66. Generic GUI of PRISMA Applications 

 

However, it is important to mention that the use of this interface is not mandatory. In other 

words, if the users prefer to define their own specialized forms, they can do so.  

6.4. CONCLUSIONS 
In this chapter, the PRISMA approach is presented as an important advance in the combination 

of the aspect-oriented paradigm and software architectures due to the fact that it completely 

supports the development process of these systems by applying the MDD paradigm. In 

addition, the PRISMA CASE that supports this approach has been presented in this chapter.  

PRISMA CASE is a framework that provides complete support for the PRISMA approach. 

It is composed of a set of tools that is suitably integrated to provide a unique framework that 

gives support for the user throughout the software life cycle. This integration also provides top-

down traceability during the different stages of the software life cycle and facilitates the 

maintenance of the developed software products. 

 This set of tools includes the PRISMA Type Modelling Tool with its code generation 

patterns, the PRISMA Configuration Modelling Tool with its code generation patterns, the 

generic Graphical User Interface for PRISMA applications, and the middleware 

PRISMANET. 
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The PRISMA Types and Configuration Modelling Tools give support for the development 

of PRISMA software architectures following the MDD approach and using the PRISMA 

AOADL [Per06d] in a graphical way [Per06a], [Per06b]. As a result, PRISMA offers 

mechanisms to develop software architectures in a more intuitive and friendly way and 

mechanisms to verify their models. In addition, the code generation patterns that PRISMA 

modelling tools offer allow automatically generate executable C# code on PRISMANET from 

the specified graphical models. Thus, PRISMA CASE deals with the traceability between 

software architectures and implementation and reduces the time and cost invested in the 

development and maintenance processes. 

PRISMA CASE provides a generic Graphical User Interface to execute software 

architectures. This is an important advantage because it is a simple way of validating that 

software architectures provide the behaviour expected by the user without having to develop a 

customized graphical user interface. 

This chapter demonstrates that all the tools and mechanisms that PRISMA CASE provides 

make PRISMA a well-supported approach for developing aspect-oriented software 

architectures following the MDD approach. The demonstrations of the PRISMA CASE and its 

download are available in the [PRI07]. 

The work presented in this chapter has been submitted to the following publication: 
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CHAPTER 7 
7. VERIFICATION 

 

 

 

Most mistakes that are made during the software production come from the first stages of the 

software life cycle. For this reason, there is an increase in the number of proposals that try to 

deal with the problems that appear in these first stages. They usually improve the user help 

during the modelling process. A fundamental mechanism that must be provided to guide the 

user during the modelling process is the verification of models. The verification of models 

allows the detection of modelling mistakes and avoids that these mistakes will be spread 

throughout the rest of stages.  

This chapter presents how the PRISMA approach provides a complete support for the 

verification of aspect-oriented architectural models following the MDD approach. The 

verification proposal and how PRISMA CASE makes feasible this verification are presented in 

detail. 

7.1. INTRODUCTION 
Nowadays, to provide software production with properties such as reliability, quality and easy 

maintenance is one of the challenges of software engineering. Most mistakes that are made 

during the software production come from the first stages of the software life cycle. Since these 

mistakes grow in an exponential way as projects progress, it is necessary to focus on the 

improvement of these first stages instead of postponing the solution for late stages. Thus, most 

proposals that try to solve these problems improve the software development by automatizing 
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the first stages of the software life cycle following the Model Driven Development Paradigm 

(MDD) [Am04], [Bey05]. 

The use of models to develop software provides important advantages such as the high 

level of abstraction and the technology independence. The high level of abstraction that models 

provide permits working with metamodels in the same way as with specific models or domain-

specific models. Whereas the solutions that are independent of technology can generate the 

application code by means of automatic code generation techniques for different technologies 

and programming languages.  

The automatic code generation avoids the mistakes of correspondence between the 

semantics of the model and the application code. However, it dos not prevent the modelling 

mistakes that the user makes. In order to prevent these modelling mistakes, it is necessary to 

provide user help in order to guide the user during the modelling process. This guidance 

mechanism must be well-supported by the approach and its corresponding tool. 

The verification and the validation of software are not only possible to be performed in the 

testing stage of the classic software life cycle by means of black-box and white-box testing for 

the application code. The verification and validation can be also performed in the modelling 

stage in order to detect modelling mistakes. These modelling mistakes can be related to the 

structure and/or the behaviour of the model. As a result, the verification and validation of 

models should be part of the software development process, and they should be integrated into 

those processes that try to improve the development of the first stages of the software life cycle. 

On the one hand, the verification of models allows us to know if a model satisfies or not the 

constraints that its metamodel defines. If a model satisfies every constraint of its metamodel, it 

is possible to state that the model is correct. On the other hand, the validation of models allows 

us to know if the behaviour of a model is the one that the user expected and if a model satisfies 

certain quality properties. The validation of properties and model is performed by using 

prototyping techniques and model checking. 

This chapter is focused in the verification of PRISMA models in order to avoid the code 

generation from incorrect models. In addition, this verification of models allows us to 

propagate these modelling mistakes to the following stage, i.e., the code generation stage. The 
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PRISMA metamodel defines a set of constraints that every PRISMA architectural model must 

satisfy (see section 4.2). This is made feasible by the verification process of the PRISMA 

CASE tool, which assists the user the whole time. 

7.2. VERIFICATION IN PRISMA 
The MDD process of PRISMA is based on the hierarchy of levels that MOF (Meta-Object 

Facility) [MOF02] proposes (see section 6.2.1 ). This hierarchy of PRISMA models implies 

that there are two kinds of model verification in PRISMA: verification of architectural models 

and verification of architectural configurations. 

The verification of architectural models consists in checking that PRISMA type 

architectural models satisfy the properties and constraints that are defined in the PRISMA 

metamodel. Whereas, the verification of architectural configurations consists in checking that a 

configuration of instances satisfies the architectural model that it is instance of, i.e., 

interconnections and compositions among instances are compliant with the interaction and 

composition patterns of the architectural model. This chapter is focused on the verification of 

architectural models from the PRISMA metamodel. 

7.2.1. Verification from the PRISMA metamodel 
The PRISMA metamodel defines the properties of PRISMA models in a precise way by 

means of metaclasses, relationships among metaclasses and constrains. These metaclasses 

define a set of properties and services for each concept considered in the model. The 

metaclasses and their relationships define the structure and the information that is necessary to 

describe PRISMA architectural models.  In addition, the PRISMA metamodel defines the 

constraints that cannot be specified using the structure or the information of the metamodel. 

These constraints are associated to a metaclass of the metamodel, specifically the metaclass that 

is affected by the constraint. The structure, information and constraints of the PRISMA 

metamodel must be satisfied by PRISMA architectural models in order to ensure that an 

architectural model is correct.  

The verification process of the PRISMA architerural models exactly consist in checking 

that the models satisfy the following properties: (1) the types of model contain all the 
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information that their metaclasses establishes, (2) the relationships of the model connect the 

types in suitable way, (3) the number or relationships between types is correct, and (4) the 

constrains of the metamodel are satisfied. This verification process must be always applied to 

the modelling process of PRISMA architectural models and must guide the software architect 

the whole moment. 

7.2.2. Kinds of constraints 
Any metamodel have two kinds of constraints: hardconstraints and weakconstraints. These two 

kinds of constraints also appear in the PRISMA metamodel (see section 4.2). 

7.2.2.1. Hardconstraints 
Hardconstraints are those that must always be satisfied without taking into account the 

modelling process situation. An example of hardconstraint is the relationship between aspects 

and attributes. An attribute must always be associated to the aspect concept, it will never be 

associated to another concept (see section 4.2.1.2). This is a hardconstraint of the PRISMA 

metamodel because if an attribute would be associated to another concept of the architectural 

model, it would violate the PRISMA model. Another example is the fact that a component 

cannot import a coordination aspect (see section 4.2.1.5). If an architect associates a 

coordination aspect to a component, the resulting model would violate the PRISMA model. 

7.2.2.2. Weakconstraints 
Weakconstraints are those that can be violate during the modelling process, but once the 

architectural model will be finished, all of them must be satisfied. 

Architectural models have a lot of weakconstraints associated to them. For example: an 

architectural element must import one aspect at least and must have one port at least (see 

section 4.2.1.3). This is an example of a weakconstraint of the PRISMA metamodel because it 

is possible to define an architectural element without establishing its ports and/or aspect, and to 

establish them later. 

Weakconstraints are necessary in any modelling process due to the fact that the definition of 

hardconstraint dependencies among two concepts implies that none of them can be modelled. 

For example, if a constraint establishes that any port must be associated to an architectural 
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element and another constraint establishes that any architectural element must have a port, none 

of them could be created. The creation of an architectural element will require the previous 

existence of a port and vice versa.  

7.2.3. Kinds of verification 
Weakconstraints provides more flexibility to modelling process. The fact that there are 

weakconstraints that are not satisfied means that the modelling process has not finished. 

However, it is possible that there can be parts of the architectural model that are finished and 

the architect want to verify them. 

7.2.3.1. Partial Verification 
The partial verification consists in only applying those constraints that affect the elements, 

concepts or parts of the model that have been selected by the architect for their verification. 

This kind of verification allows the architect to verify the model in an incremental way, as well 

as to verify elements of the model for their later storage in repositories and/or reuse in other 

models. For example, in PRISMA, the verification of a specific component would consists in 

verifying that it has all the needed relationships that the metaclasses ArchitecturalElement and 

Component establish, and it satisfies all the OCL rules of both metaclasses. 

7.2.3.2. Complete Verification 
The complete verification is the verification that is applied to the complete architectural 

model. As a result, the complete verification consists in verifying all the constraints that must 

satisfy a model. In PRISMA, this process implies that all the restrictions of the PRISMA 

metamodel are checked. 

7.3. VERIFICATION IN PRISMA CASE 
The PRISMA approach is supported by PRISMA CASE, a development framework for 

aspect-oriented software architectures that follows the MDD proposal. This CASE tool guides 

the user during the development process and facilitates his/her task by providing: (1) The use of 

graphical modelling [Per06a], [Per06b] to specify the models instead of using a formal ADL 

[Per06d], (2) Support for the partial and complete verification of architectural models, (3) C# 



Model-Driven Development of Aspect-Oriented Software Architectures 
 

162 

code and formal AOADL automatic generation, and (4) the behaviour validation by means of 

the execution of the generated code and the interaction with the final application. This section 

presents in detail how PRISMA CASE supports the hard and weak constraints of the PRISMA 

metamodel, and the partial and complete verification of PRISMA architectural models. In this 

way, PRISMA CASE guides the user throughout the MDD process. 

The verification process defined for PRISMA has been included in PRISMA CASE. It is 

based on the PRISMA metamodel, which is also part of the PRISMA CASE tool (see 6.3.2). 

7.3.1. Hardconstraints in PRISMA CASE 
Hardconstraints are part of the graphical modelling behaviour of the tool. As a result, those 

relationships that violate hardconstraints cannot be drawn. The hardconstraints have been 

defined by means of: (1) the specification of the PRISMA metamodel in DSL Tools and the 

corresponding graphical representations of its concepts, and (2) the development of the 

graphical constraints for each metaclass of the PRISMA metamodel. 

Since the PRISMA CASE tool is generated from the PRISMA metamodel and its 

graphical metaphor that have been introduced in DSL Tools, the dependency and association 

relationships among the metamodel metaclasses are inherently satisfied by the PRISMA 

CASE tool. As a result, the graphical metaphor of each metaclass embodies the inclusion 

relationships by defining graphical representations that group a set of concepts. For example, 

the metaclass Aspect has an associated graphical metaphor that is a container of other concepts, 

the Aspect has an inclusion relationship with them. Figure 67 shows the graphical 

representation of the coordination aspect CProcessSUC of the TeachMover architectural 

model, and how the attribute TempHalfSteps, which stores the current position of the robot’s 

joint, is included as part of the graphical representation of the aspect. As a result, the itself 

graphical representation satisfies the constraint: <<An attribute does not have its own entity, it 

can only be defined inside an aspect.>>. The rest of concepts that are necessary to specify an 

aspect have the same constraint (see section 4.2.1.2).  
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Figure 67. Graphical representation of an aspect in PRISMA CASE 
 

 

 
Figure 68. Relationship verification using graphical modelling primitives 
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In addition, the referential relationships are also satisfied in an inherent way. Therefore, the 

modelling tool guides the architect by only allowing the connections of those elements that 

have a referential relationship between them in the PRISMA metamodel. Each connection has 

an associated graphical metaphor. For example, the relationship between the concept 

architectural element and the concept aspect corresponds with the modelling primitive 

ArchitecturalElementHasAspect, whose graphical representation is an arrow. It allows the 

connection between an architectural elements and an aspect. If the architect used this primitive 

to connect an architectural element with, e.g. an interface, a forbidden sign would appear to 

denote that it is impossible to link these two concepts using this graphical primitive (see Figure 

68). 

As it has been explained in section 7.2.1, the PRISMA metamodel defines the constraints 

that cannot be specified using the structure or the information of the metamodel. They are OCL 

rules that are associated to the metaclasses. These constrains have been introduced in PRISMA 

CASE by extending the partial classes of PRISMA metaclasess that have constraints associated 

(see section 6.3.2). Thus, the constraints of the PRIMA metamodel are verified during the 

modelling process. DSL tools also distinguishes between two kinds of verification: verification 

rules that must always be satisfied (hardconstraints), and verification rules that must be 

satisfied once the model has been completely finished (verification rules). They are PRISMA 

hardconstraints and PRISMA weakconstraints, respectively.  

On the one hand, Verification rules are not verified while the user is modelling. They are 

related to the concept of the metamodel, and are verified when it is explicitly requested by the 

user or when the model is saved. These Verification rules act as warnings during the modelling 

process. These warnings must be rectified before the model is finished so that, it is compliant 

with the PRISMA metamodel. 

On the other hand, Hardconstraints are verified while the user is modelling. They are 

related to the graphical metaphor and they do not permit links between certain graphical 

entities, compositions of certain entities, changes of name, etc.  
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Figure 69 show the partial C# class of the relationship between the metaclasses 

ArchitecturalElement and Aspect. This partial C# class is associated to the graphical metaphor 

of the relationship, and it has been extended to check the hardconstraints that are related to the 

fact that architectural elements import aspects. Specifically, this partial class checks the 

following OCL rules: <<An architectural element cannot import more than one aspect of the 

same concern>> (see section 4.2.1.3), and <<A component cannot import an aspect whose 

concern is coordination>> (see section 4.2.1.5). These constraints are checked by means of the 

method CanCreateConnection of the partial class ArchitecturalElementHasAspect. 

 

 
Figure 69. The partial C# class of the relationship 

ArchitecturalElementHasAspect 
 

As a result, each time that an architect imports an aspect from an architectural element, the 

method CanCreateConnection is executed and both constraints are checked. The source code 

shows that if the constraints are not satisfied, a graphical connection error is launched. This 

error has an associated text message that is shown to the user together with a forbidden sign. 

From this example, it is possible to conclude that hardconstraints are part of the graphical 

metaphor and they are checked without being requested by the architect. 
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7.3.2. Weakconstraints in PRISMA CASE 
Since weakcostraints are implemented using Verification rules, that are associated to the 

concept instead of the graphical metaphor. They are only checked when the architect requests 

their execution, the architectural model is saved, or once the architectural model has been 

finished and the C# code generation is launched. 

 

 
Figure 70. The partial C# class of the metaclass Component 

 
 

Figure 70 shows the partial C# class of the metaclass Conmponent, whose method 

ValidateComponentHasAspect checks if a component imports one aspect at least. The source 

code of the method shows that if the constraint is not satisfied, the error is saved in a Log file 

together the rest of errors that have been identified in the verification process instead of being 

immediately shown as hardconstraints do. Then, when the verification process is requested by 

the user, the list of errors that have been previously saved in the Log file is displayed in the 

Error List window (see Figure 71). 
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Figure 71. Error List 

7.3.3. Partial and complete verification in PRISMA CASE 
Verification rules can also be checked whenever the user requires it. The PRISMA menu offers 

the option of checking these rules in a complete or partial way (see Figure 72). The complete 

way checks all the verification rules, while the partial way allows you to only check one kind of 

PRISMA type. The options that are provided to check an architectural model in a partial way 

are the following: interfaces, aspects, components, connectors, systems and attachments. For 

example, if the user requests the Interface Verification, only the rules associated to interfaces 

are checked. The advantage of this partial verification is that the user can incrementally check 

the models and focus on the problems of a specific type of the model. 

 

 
Figure 72. Verification Menu 
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In addition, the modelling tool offers the mechanism of checking only one element of the 

architectural model. This is possible by executing the option that appears in the contextual 

menu that is associated to the element that the user wants to check. For example, Figure 73 

shows the contextual menu that only verifies the interface IMotionJoint. 

 

 
Figure 73. Contextual menu of an interface 

7.4. RELATED WORKS 
In the MDD field there are three kinds of strategies to perform the verification of models 

[Mod06]: analysis, construction and monitoring. Analysis strategies define the constraints 

together with the metamodel using OCL rules. Then, a verification tool is in charge of checking 

that models satisfy these constraints. These strategies perform a complete verification of the 

model. There is a wide range of tools that offer OCL checkers [Tov07].  

The constructive strategies construct models by applying QVT transformation rules 

[QVT05] or ATL [Bez06]. The monitoring strategies define models by means of graphical 

tools that prevent the creation of inconsistent models. Both strategies have in common that they 

construct models in an incremental way by defining implicit modelling constraints. However, 

the constraints are spread through the transformation rules and the monitoring logia. Therefore, 

this is an inconvenient because the maintenance of constraints is really difficult. There are 

mixed approaches, such as the Bézivin & Jouault approach [Jou05], which use the engine of 

ATL transformation rules to verify that the OCL rules of the metamodel are satisfied. But the 

main inconvenient of these approaches is the fact that OCL rules are separated from the 

metamodel. 
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The proposals that have been acquired more relevant are those that combine analysis and 

monitoring strategies. They take advantage of the flexibility that provide the analysis strategies 

and the security that offers the monitoring strategies. For example: Microsoft DSL-Tools 

[DSL07], AMMA [Kur06], XMF-Mosaic [Tov07], EMF [EMF07] and GME [GME07]. 

These tools provide support for all the stages of the MDD process, although each one provides 

this support using a different meta-metamodel, different strategies of consistence verification, 

and a different code generation process. 

The choice of one tool or another depends on different factors. One of the reasons to choose 

DSL Tools for developing PRISMA CASE was that it offers mechanisms for monitoring and 

analyzing the verification of the consistence. The monitoring is offered in an implicit way by its 

graphical modelling tool, once the metamodel has been previously defined in the DSL Tools. 

The analysis of constraints is offered by customizing the metaclasses using the partial class 

facility.  

It is important to mention that despite the fact that the area of software architectures is 

making an important effort to give support for validation, there are not solid proposal for the 

verification of architectures. As a result, a solution for this lack is presented in this chapter. 

7.5.  CONCLUSIONS 
In this chapter the need to support model verification throughout the MDD process is set out. 

An important contribution in the area is the classification of constraints that is presented in the 

chapter: hardconstraints and weakconstraints. From this classification the contribution takes a 

step forward and the partial and incremental verification has been proposed instead of only 

taking into account the complete verification of the model. Therefore, the flexibility of the 

modelling process is increased by adapting the help to user needs. In addition, a methodology 

to support the verification of models during the MDD process is defined by establishing the 

needed mechanisms to offer all kinds of verification.  

This methodology has been applied to the PRISMA approach. The PRISMA model 

defines through its metamodel, the properties and constraints that any PRISMA architectural 

model must satisfy. These constraints have been analyzed in order to be classified into 
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hardconstraints and weakcontraints. It has been only defined as hardconstraints, those that are 

strictly necessary. As a result, the PRISMA modelling process has more flexibility. PRISMA 

CASE has made the application of this methodology to the PRISMA approach feasible.  

PRISMA CASE provides support for : (1) the partial and complete verification process, (2) 

the difference between hardconstraints and weakconstraints, and (3) the incremental 

verification of aspect-oriented architectural models by means of the partial verification of types 

(aspects, components, etc)  or the partial verification of specific elements of the model. As a 

result, PRISMA is presented as an approach that facilitates the modelling process of aspect-

oriented architectural models by means of a well-defined verification process that follows the 

MDD approach. 

The work presented in this chapter has been published in the following publication: 

 

 Jennifer Pérez,  Cristóbal Costa, Jose A. Carsí, Isidro Ramos, Verification of Aspect-

Oriented Architectural Models, XII Conference on Software Engineering and Databases 

(JISBD), Zaragoza, Spain, 12-14 September. (In Spanish) 
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CHAPTER 8 
8. COTS: Commercial Off-The-Shelf 

 

 

 

Reusability reduces the development time of software systems because artefacts are only 

programmed one time and can be used more than once. Reused software artefacts guarantee 

their quality and suitable functionality because they have been tested and used before. As a 

consequence, Commercial Off-The-Shelf (COTS) importation has acquired relevance in the 

last few years. This chapter presents a proposal for integrating COTS into aspect-oriented 

architectural models that are developed and maintained following the Model-Driven 

Development (MDD) approach. The proposal is based on the PRISMA approach, which gives 

a complete support to the development of technology-independent, aspect-oriented software 

architectures. PRISMA improves the reusability of software by combining COTS, 

components, and aspects. In addition, PRISMA integrates COTS into its MDD process to 

automatically obtain the complete application code.  

8.1.  INTRODUCTION 
In the last few years, the high complexity of software has increased the time and the staff that 

are invested in the development and maintenance processes of software. As a result, there is 

greater interest in research areas to reduce this time and cost. In order to achieve these goals, 

software community is making a big effort to provide techniques that improve the reusability of 

software. 
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Reusability of software allows the same software artefact to be used in different places of 

the same application or in different applications. The artefact is only programmed once and can 

be used many times. This reusability reduces the development time of software systems, and 

their quality and suitable functionality are guaranteed because they have been tested and used 

before. 

The Component-Based Software Development (CBSD) approach [DSo99][Szy98] is used 

in the field of software architectures [Per92], [Sha96]. This approach decomposes the software 

system into reusable entities (black boxes) called components. As a result, software 

architectures can be described preserving the reusability of their components and are presented 

as a solution for the design and development of complex software systems.  

Another approach that has emerged to improve reusability is the Aspect-Oriented Software 

Development (AOSD) approach [Kiz01], [Kiz97]. This approach allows for the separation of 

concerns by modularizing crosscutting concerns into a separate entity called aspect. As a result, 

the same aspect can be reused by different software artefacts, which are usually objects. 

In addition, there is another approach to develop software that improves its reusability. It 

consists of buying components (black boxes that offer a set of services that are properly 

documented for use) from third-party developers and then, integrating them into the system. 

These components that are for sale commercially are known as Commercial Off-The-Shelf 

(COTS) [Obe97], [Car00]. The use of COTS during the development process has increased in 

the last few years due to market competitiveness. This increase has led developers to try to 

reduce the time required to develop a software product. Since developers are using the software 

components of other companies more and more, COTS importation has acquired greater 

relevance. This is because tools that allow the reuse of their components combined with COTS 

importation achieve the highest reuse and quality code. PRISMA is an approach whose aim is 

to provide these two benefits. 

This chapter takes a step forward with regard to previous work of the PRISMA approach. It 

presents a new version of the PRISMA approach, which is able to integrate COTS into its 

MDD process. The chapter describes how PRISMA integrates COTS into its aspect-oriented 

software architectures without violating the properties of the PRISMA model. As a result, 
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PRISMA improves the reusability of software by combining COTS, components and aspects. 

In addition, the chapter explains the process to obtain a complete application code, which is 

composed of the generated code from its architectural models and the code from COTS. It is 

then ready to be executed on the .NET platform [Per05b].  

8.2.  THE SOFTWARE ARCHITECTURE OF A 
TEACHMOVER’S JOINT USING COTS 

In this section present the evolved version of the TeachMover case study that has been used as 

an example in the rest of the thesis. This new version uses COTS to permit the communication 

between hardware and software, i.e., the hardware robot and software components of the 

architecture. This example is going to be used in this chapter to illustrate how COTS are 

introduced in PRISMA.  

The TeachMover architecture has different levels of abstraction for its components, 

connectors, and the interactions with each other. The lowest abstraction level of the robot 

architecture is defined by a system called Joint or SUC, which is composed of components that 

interact with the hardware joints of the robot (see section 2.3.2.2). The communication between 

the robot and the computer is performed through the serial port of the computer because the 

computer is connected to it. The Joint system defines a joint of the robot. It is composed of two 

components and a connector and their corresponding connections: 

  ActSen: This software component is in charge of communicating with the hardware joint 

of the robot. It communicates with the actuator of the hardware joint when commands are 

sent to the hardware joint of the robot. These commands are performed by the hardware 

joints or the tool. This software component also notifies the joint system when the 

commands have been performed successfully. 

 WrapAspSys: This software component encapsulates the behaviour and the state related 

to the software joint, such as the position of the joint and its movements. 

 CnctJoint: This software connector coordinates the ActSen component and the 

WrapAspSys component. 
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Since the ActSen component is responsible for interacting with the hardware pieces of the 

robot, it is necessary to use a COTS that provides the services to move the joint and to listen to 

the results through the RS232 serial port. The COTS that have been used in this case study is a 

dynamic linking library called RS232 (RS232.dll). This COTS provides a set of services. To 

facilitate the readers’ comprehension of the example in this chapter, it is illustrated the 

integration of the COTS using the most representative service, the service Send. Its definition is 

the following: 
 

Send (int joint, int halfsteps, int speed): int 

 
The first parameter specifies the joint to which the movement is sent. Each joint of the 

TeachMover has a predefined number (1. Base, 2. Shoulder, 3. Elbow, 4. Wrist (right rotation), 

5. Wrist (left rotation), and 6. Tool). The second parameter is the number of halfsteps that the 

robot is going to be moved when the service is executed. And finally, the third parameter 

corresponds to the speed of the processing movement. 

8.3.  INTEGRATING COTS INTO THE PRISMA MODEL 
COTS integration is usually presented as a handicap for developers because there are many 

incompatibilities with programming languages, frameworks, platforms, communications, etc. 

Therefore, COTS must be adapted so that it can be reused in a software system. There are three 

well-known techniques for integrating COTS in software systems: wrappers, gluewares, and 

proxies. Wrappers wrap COTS in a kind of software artefact of the software system; gluewares 

are intermediaries between the COTS and the software components of the software system; 

and proxies are adapters that hide the incompatibilities between COTS and the components of 

the software system. These three techniques are black box techniques to integrate COTS into 

software systems. 

The wrappers technique was chosen over gluewares and proxies, since it integrates COTS 

into a model using its own concepts, which is the goal of PRISMA. There are two PRISMA 

candidates that can serve as wrappers: components and aspects. 
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8.3.1. COTS as components 
A PRISMA component can act as a wrapper because it can wrap a COTS and publish its 

interface through the component port (see Figure 74). As a result, the services of the COTS can 

be requested through the port. 

 
Figure 74. COTS as components 

 

This proposal of integrating COTS into software architectures does not violate the concepts 

of any architectural model. In addition, the proposal allows the rest of components of the 

software architecture to interact with COTS since it is a component that has been specified 

from scratch using the model constructors. However, one of the drawbacks of this proposal is 

that it is really difficult to extend the behaviour of the COTS. There is also another drawback 

that specifically affects the PRISMA model: the COTS behaviour is directly provided by the 

component. As a result, this proposal of wrapping COTS using components does not fit the 

PRISMA model properties since PRISMA component behaviour is always defined inside 

aspects and never inside components. Component behaviour cannot be specified inside 

components because they do not provide mechanisms to do so, therefore, it is not possible to 

specify the properties and processes that are needed to integrate the services of the software 

system with the services of the COTS. However, aspects do provide properties, services and 

protocols that can be used to specify the integration behaviour of the COTS into the software 

system. 

8.3.2. COTS as aspects 
An aspect defines the structure and the behaviour of a specific concern of the software system. 

An aspect declares a number of interfaces and defines a semantics for the services that these 

interfaces publish. As a result, an aspect can act as a wrapper because it can wrap a COTS and 

declare the interface of the COTS. In order to the COTS integration to be compliant with the 
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PRISMA model, the aspect must be imported by an architectural element of the model so that 

it can publish its interfaces through its ports and communicate with other architectural elements 

through the channels (see Figure 75). This wrapper proposal provides an easy way of extending 

the behaviour of the COTS. The architectural element that imports the wrapper aspect can 

import other aspects and weave with each other using weavings. As a result, the architectural 

element provides an extended version of the COTS through its ports, which is compliant with 

the PRISMA model and is also more flexible than the proposal presented in section 8.3.1. For 

this reason, aspects are the PRISMA element that has been selected to wrap COTS. In fact, a 

new kind of aspect called Integration Aspect has been defined to do this. 

An integration aspect allows the integration of COTS components in PRISMA software 

architectures in an abstract way. It contains a reference to the COTS that it is related to and uses 

a PRISMA interface that defines all the services that the COTS provides. The integration 

aspect also uses the interfaces of the architectural model that define services that must be 

transformed into requests to the COTS. As a result, the protocol of the PRISMA integration 

aspect consists of redirecting each request service to its corresponding COTS service. 

 

 
Figure 75. COTS as aspects 

 

All the architectural elements that import the integration aspect are crosscut by the concern 

that it represents. For example, in the case study, all the components that import the integration 
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aspect are crosscut by the hardware interaction concern. This is due to the fact that the COTS 

RS232.dll allows communication with the serial port that the robot is connected to. 

8.4.  USING COTS DURING THE MDD PROCESS 
The PRISMA approach follows the MDD process to define its application. As it has been 

presented in section 6.2, PRISMA supports the MDD process through its PRISMA CASE 

Tool. The addition of COTS to this process has been also made feasible thanks to PRISMA 

CASE. Next, how COTS have been introduced in the PRISMA CASE modelling tool and in 

the PRISMA CASE model compiler. 

8.4.1. The use of COTS in the PRISMA CASE modelling tool 
The aspect is one of the modelling primitives of the PRISMA Modelling Tool of PRISMA 

CASE (see Figure 58). Every concern is modelled using the aspect primitive, which is 

represented as a rectangle (see number 1, Figure 58). It includes the definition of attributes, 

services, valuations, preconditions, constraints, transactions, played_roles and a protocol. The 

concern of the aspect is determined by its properties. In order to visually identify the concern of 

an aspect, each concern has a colour associated to it; depending on the value of the aspect 

concern, the aspect is painted in one colour or another.  

However, the integration aspect is not modelled using the aspect modelling primitive as 

other concerns do. There is a specialized integration aspect modelling primitive (see number 5, 

Figure 58) because it only provides the properties that are strictly necessary for integrating 

COTS into software architectures. The integration aspect only defines services, played_roles, 

and a protocol (see the IACOT aspect specification in Figure 76). The integration aspect is 

graphically represented by a rectangle. Integration aspects are painted grey to denote their 

wrapper semantics, which are viewed as a black box. In addition to the name of the aspect, the 

aspect has a COTS property to specify the name of the COTS that it wraps (see the Properties 

Window in Figure 76  (lower right)). 

The importation of interfaces by an aspect is specified using the link AspectHasInterface, 

which is provided by the tool box (see number 2, Figure 58). However, integration aspects use 
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a different link called Integration_AspectHasInterface. It is graphically represented by a line 

(see number 7, Figure 58).  

 
Figure 76. Integration of the TeachMover.dll into a PRISMA architectural 

model 
 

Finally, architectural elements are represented by rectangles that have one pin for each one 

of the ports that are associated to them (see number 3, Figure 58 (components)). The 

importation of aspects by architectural elements is specified using the link 

ArchitectecturalElementHasAspect (see number 4, Figure 58). In addition, there is another 

specialized link for importing the integration aspect called 

ArchitectecturalElementHasIntegrationAspect (see number 6, Figure 58).  

The IACOT integration aspect that is illustrated in Figure 76 integrates a TeachMover.dll 

into the architectural model of the TeachMover robot. For this reason, it has as a value of the 

COTS property the TeachMover DLL. In addition, there is an ActSen component that imports 

the IACOT integration aspect and interacts with the rest of the software architecture. 



COTS 

179 

IACOT imports the interfaces IRead and IMotionJoint of the TeachMover architectural 

model in order to synchronize their services with the COTS services. In addition, IACOT 

imports another interface, called ICOT, which defines the services of the COTS. As a 

consequence, the IACOT aspect has all the services that define these three interfaces and can 

specify the protocol in order to synchronize them (see the COTSServices section inside the 

IACOT aspect in Figure 76). The protocol of IACOT consists of redirecting the requests of the 

services from the IACOT to the COTS. These services (for example: the moveJoint service) 

arrives to the IACOT from the ports of the ActSen component. To do this the protocol 

establishes that each time that the movejoint service is requested, the COTS service send is 

called with the same values of the parameters of the moveJoint service. The protocol is 

specified by modelling a State Transition Diagram (STD) (see the IACOT aspect in Figure 76). 

In order to model the complete behaviour, the actuator is connected to a component called 

WrappAspSys through the connector CnctJoint (see section 8.2). Moreover, these three 

components belong to a system called Joint (see Figure 77). 

 

 
Figure 77. PRISMA architectural model of a Joint 
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8.4.2. The use of COTS in the PRISMA CASE model compiler 
The PRISMA CASE also provides a model compiler, which is composed of a set of templates 

that automatically generate the code from the models that have been graphically modelled. A 

specific template has been developed for automatically generating the code of the integration 

aspect. The code generation template of integration aspects is different from other kinds of 

aspects. This is due to the fact that it must integrate the code of the COTS with the code of the 

aspect. However, the remaining aspects have a common template that generates the 

functionality of the system that each aspect describes.  

There are many kinds of COTS: Web Services, COM components, ActiveX components, 

dynamic linking libraries, etc. This chapter is going to focus on dynamic linking libraries, 

specifically: native libraries and libraries that have been developed using the .NET framework. 

Native libraries can be used as provided by the supplier. As a result, the template should 

generate the C# code that imports the set of services of the COTS by means of the C# attribute 

DLLImport. This attribute, which is provided by the C# programming language, allows us to 

include the service of a COTS inside its wrapper (see numbers 1 and 2 in the code presented 

below). In addition, it is necessary to define the COTS service as a private method that returns 

the result of the invocation (see number 4 in the code presented below) and the invocation of 

the COTS service by the corresponding service of the software architecture to make the 

integration (see number 3 in the code presented below). The C# code that the model compiler 

should generate for integrating the RS232.dll of the case study into the IACOT aspect is the 

following: 
… 
//1. To use the attribute DLLImport 
using System.Runtime.InteropServices; 
… 
namespace RobotJoint 
{ public class IACOT : IntegrationAspect , IMotionJoint, ICOT, IRead 
  { 
//2. To define the entry point to the DLL through the send service 
  [DLLImport("RS232.dll", EntryPoint = "Send")] 
    enum protocolStates 
 { 
       SubStateNotify,IACOT, COT, END  
 } 
   protocolStates state; 
   private protocolStates State{…} 
   public IACOT(string name) : base(name) {…} 
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//3. The request of the moveJoint service called the send service of the   
ICOT interface 
   public AsyncResult moveJoint (int NewSteps,   
          int Speed) 
 { 
     send(NewSteps, Speed, this.aspectName); 
    CallOutService("IRead","INTLISTEN","moveOk",  
    this.aspectStateCareTaker.ActiveTransaction, 
    null); 
     return null; 
  } 
   public AsyncResult stop (){…} 
//4. The request of the send service called the Send service of the COTS  
   private static extern int send (int Speed,  
                    int HalfSteps, string Joint) 
    { 
       int response = Send(NewSteps, Speed,  
                           this.aspectName);       
       return null; } 
   public AsyncResult stopRobot (){…} 

   public AsyncResult moveOk (){…}}} 
 

However, the code presented above is not the code generated by the PRISMA CASE 

model compiler because the libraries that are developed using the .NET platform cannot be 

used as provided by the supplier, and cannot be executed with this code. The .NET libraries 

need to create another wrapper that encapsulates the services that the COTS provides. This 

wrapper consists of a class that permits the invocation of the COTS in a transparent way and 

prepares the parameters required to call the COTS services. This class must be contained in a 

project that is a class library (see Figure 78). 

 

 
Figure 78. COTS Execution Process in PRISMACASE  
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Since PRISMA model compiler automatically generates the code for the integration aspect, 

the generated code must be valid for both the native and the .NET libraries. For this reason, the 

solution for the .NET libraries has been chosen. 

In consequence, the PRISMA integration aspect interacts with a wrapper that wraps the 

COTS in a library that contains the class that manages the COTS services (see Figure 78). In 

our example, the class that wraps the COTS is called TeachMover.dll. Thus, the COTS 

property of IACOT aspect contains the value TeachMover.dll instead of RS232.dll (see the 

Properties Window in Figure 77). 

 

 
Figure 79. The C# code that is automatically generated from the IACOT 

aspect  
 

Figure 79 shows the code generated for IACOT by the PRISMA model compiler: the 

IACOT aspect imports the TeachMover library, the moveJoint service addresses its request to 
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the COTS by requesting the send service, and the send service calls the send service of the 

TeachMover.dll in a transparent way. Once the code has been generated, the COTS assemblies 

and project of libraries must be stored in the same folder as the generated assemblies by the 

PRISMA project. This is done so that COTS assemblies can be added to the compilation 

process and can be executed in the same way as other PRISMA software architectural 

elements. In our case, the generated code the TeachMover.dll and the RS232.dll are stored 

together in the assembly folder. 

8.5.  RELATED WORKS 
COTS are components that are developed and sold by third parties. Since they have been run 

on different software systems by different companies, their quality and correct behaviour are 

guaranteed. However, their proper integration into software systems is both difficult and time-

consuming  [Vig96].  

COTS integration and use has not considered as part of the software life cycle and most 

proposals and initiatives related to COTS are based on the implementation stage of the software 

life cycle only. In this chapter, it is proposed introducing COTS at the software architecture 

stage of the software life cycle.  

There are a wide variety of ADLs that have been proposed to specify software architectures 

(see chapter 3).  However, all of them are based on the fact that the software architecture is 

completely specified using their ADL constructors and none of the components are imported 

from other developers or architects. In addition, there are other approaches that combine 

software architectures with aspect-orientation (see chapter 3). Even thought these approaches 

are closer to PRISMA approach, they do not propose mechanisms to introduce COTS in their 

software systems. 

The work of Yakimovich et al [Yak99] creates a method that supports estimation of the 

cost of integration of COTS products in software architectures. The work of Guerra et al 

[Gue02], [Gue03a], [Gue03b] outlines a proposal that takes advantage of COTS in software 

architecture by introducing its specific COTS in the C2 architectural style. However, they only 

focus on its components for supporting fault tolerance, and it is not a proposal for a complete 
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software architecture of a real software system. This proposal is platform-dependent and does 

not use a formal ADL as recommended for the definition of software architectures. 

The work of Kvale et al [Kva05] compares the advantanges and disadvantages of using 

COTS in Aspect-Oriented Programming (AOP) or in Object-Oriented Programming (OOP). 

This work explains how to wrap COTS using aspects. It describes the advantages and 

disadvantages of this wrapping depending on the weavings process (which is where the 

synchronizations between the base code and the aspect code are localized). This work also 

states that the AOP development frameworks do not provide good mechanisms for importing 

COTS. 

8.6.  CONCLUSIONS 
This chapter explains how to integrate COTS into software architectures in a novel way. This 

integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect 

called integration_aspect has been defined to specify the COTS that it wraps and to specify the 

integration process with the rest of software architecture. In the same way as other aspects, 

integration aspects must be imported by an architectural element in order to publish their 

services through ports that enable their communication with other architectural elements. This 

is an advantageous way of introducing COTS into software architectures because the COTS 

services can be requested and received and can also be extended by using the aspect-oriented 

mechanisms that PRISMA offers. The integration aspect functionality can be extended by 

weaving it with the other aspects that the architectural element imports.  

This chapter also describes how the use of COTS is supported by the PRISMA 

methodology thanks to the facilities that the PRISMA CASE provides. This is an important 

characteristic since COTS are widely used, and any development approach that needs to reduce 

development time must provide it. 

In summary, the proposal presented here is a suitable development framework for reducing 

the time and cost invested in the software development process and for improving the quality 

of the code. This can be done since PRISMA provides mechanisms to use COTS, it reuses its 

aspects and components, and it uses code-generation techniques to automatically generate 
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code. This proposal has used in practice to develop an aspect-oriented software architecture for 

a robot. The robot code was automatically generated and the COTS was integrated in the code. 

The application code was executed through the PRISMANET middleware and it was possible 

to move a robot with an aspect-oriented software architecture that integrates COTS. 

The work presented in this chapter has been submitted to the following publication: 

 

 Jennifer Pérez,  Isidro Ramos, Jose A. Carsí, Taking Advantage of COTS for Developing 

Aspect-Oriented Software Architectures, Working IEEE/IFIP Conference on Software 

Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 – 21 

February 2008. (submitted) 
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CHAPTER 9 
9. THE PRISMA MDD METHODOLOGY 

 

 

 

This chapter presents the PRISMA methodology in order to develop aspect-oriented software 

architectures following the PRISMA MDD process. This methodology takes advantage of the 

PRISMA reusability properties (coordination model, modelling and reusability facilities, the 

use of COTS), the graphical specification of PRISMA models [Per06a], [Per06b], and the 

verification process proposed by the PRISMA approach. In this chapter is illustrated how the 

PRISMA approach can improve the development and maintenance processes of complex 

software systems. 

The methodology is divided into six stages: detection of architectural elements and aspects, 

type architectural modelling, type code generation, configuration modelling, configuration code 

generation and execution (see Figure 80). These six stages are applied by the analyst of the 

software system in an iterative and an incremental way depending on his/her needs. This thesis 

of master is focused on how the modelling and code generation stages in order to illustrate how 

the PRISMA combination of AOSD and software architectures can improve the development 

and maintenance processes of software.  
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Figure 80. The methodology of the PRISMA approach following the MDD 

paradigm 

9.1. 1ST STAGE: DETECTION OF ARCHITECTURAL 
ELEMENTS AND ASPECTS 

The first tasks for developing software architectures are to identify which architectural elements 

make up the architecture and to detect the aspects that crosscut the software architecture. In 

PRISMA, the detection of those architectural elements and aspects is performed from the 

requirements document in an intuitive way. 

The running example that it is going to be used to illustrate our methodology is the 

TeachMover tele-operation system (see section 2.3.2 [TEA07]). The computational units 

(components) and the coordination units (connectors), which allow the architecture to 

synchronize components and permit the communication among them, can be identified from 

the manual of the TeachMover robot. In addition, the concerns that crosscut the software 

architecture can be detected. The mechanisms and criteria to detect concerns, components and 



The PRISMA MDD Methodology 

189 

connectors are out of the scope of this thesis of master, so it is assumed that these elements have 

already been detected. 

9.1.1. Identification of Architectural Elements  
The manual of the TeachMover shows that the robot is composed of a set of components 

that represent a set of joints, a set of connectors that coordinate the joints, and a set of complex 

components that allows the composition of joints to form a robot. These joints permit the 

robot’s movements. They are the following: Base, Shoulder, Elbow and Wrist. In addition, it 

has a gripper, whose open and close actions allow the robot to pick up and deposit objects (see 

[TEA06]).  

From the manual of the robot the components of the robot and the different level of 

composition have been identified. The result of this identification process is presented in 

section 2.3.2.2, specifically in Figure 3 where they are illustrated in their corresponding level of 

granularity using a tree view. In addition, the connectors needed to coordinate these 

components as well as to provide a suitable behaviour of the architecture have been identified. 

Connectors are necessary because PRISMA introduces connectors as first order citizens of 

architectural models. As a result, PRISMA avoids the dependencies among components that 

ADLs without connectors encounter by specifying coordination rules inside components 

[Sha94]. 

Both architectural elements and the services that must be interchanged among them can be 

identified during this stage. These services are requested and/or provided by the architectural 

elements. Since a PRISMA interface is a set of services that is provided and/or requested by 

means of the ports of architectural elements, the identification of these services implies the 

identification of the interfaces. The ports of architectural elements and the interconnections 

among these ports can also be detected taking into account the identified interfaces. 

The PRISMA methodology is put into practice using the PRISMA CASE, except for this 

1st Stage that the identification of architectural elements and aspects is made by hand. 
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9.1.2. Identification of Crosscutting-Concerns 
The concerns that crosscut the software system must be identified from the requirements 

specification in order to modularize them into reusable entities called aspects. In the case of the 

TeachMover, the crosscutting concerns that have been identified in the case study are the 

following: 

 Functional: The purpose of the TeachMover software system is to move the robot. The 

robot has a motor to accurately perform movements by half-steps. A half-step is an angular 

advance that is produced by a stimulating impulse. In the case of the TeachMover, the 

movements can be requested using half-steps or inverse cinematics (moving to a specific 

point in space). This functionality, together with the gripper functionalities allows the robot 

to move objects from an initial position to a final one. The movements of the robot are 

ordered by an operator from a computer.  

 Safety: Safety directives are necessary for monitoring the TeachMover movements in 

order to make sure that the movements are safe for the robot, the operator, and the 

environment that surrounds them. 

 Coordination: The inner behaviour of joints (SUCs) and the movements in which more 

than one joint has to be moved must be coordinated. In addition, the requests of the 

operator and the performance of the movements must be synchronized. 

9.2.  2ND STAGE: TYPE ARCHITECTURAL MODELLING 
Once the interfaces, aspects, architectural elements and their ports have been identified, the 

skeleton of the architectural elements and the aspects can be defined. The analyst is then ready 

to start the type modelling process of the software architecture. This stage can be divided into 

four modelling steps: Interfaces, Aspects, Simple Architectural Elements, and Complex 

Architectural Elements (see Figure 80). 

It is important to keep in mind that the enumeration of these steps is not a restrictive order. 

The enumeration simply indicates the dependencies between the different concepts that arise 

when the architectural model is being modelled. These dependencies are the following: 
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  To completely define a complex architectural element, the architectural elements that it 

consists of must have been previously defined 

  To completely define an architectural element, the aspects that it imports and the 

interfaces that their ports use must have been previously defined 

  To completely define an aspect that uses interfaces, the interfaces must have been 

previously defined 

Even though the order of these steps can be different, it should be followed in order to 

completely define an architectural model. In other words, it does not mean that partial 

descriptions of the architectural elements, aspects or architectural models cannot be performed 

during the development process. The analyst can start the modelling process from either steps 

1, 2, 3, or 4, obtaining partial solutions of the model, and can go backward or forward 

depending on his/her needs. 

This 2nd Stage is developed using the PRISMA Type Modelling Tool. The STEPS 1 to 4 

are developed using  the PRISMA Type Modelling Tool, where all the reusable types 

(interfaces, aspects, simple architectural elements and complex architectural elements) are 

modelled in a graphical way by drawing and dropping the PRISMA modelling primitives. 

9.2.1. STEP 1: Interfaces 
Interfaces are specified in step 1 of the PRISMA architecture modelling stage. This is due to the 

fact that it is not necessary to previously define other elements of the model. Interfaces are 

stored in a PRISMA repository for reuse (see step 1, 2nd Stage, Figure 80). 

 

 
Figure 81. The ISUC interface 

 

Interface ISUC 
 
  moveJoint(input NewHalfSteps: integer, input Speed: integer); 
  cinematicsMoveJoint(input NewAngle: integer, input Speed: integer); 
  stop(); 
  moveOk(output success: boolean); 
 
End_Interface ISUC; 
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The specification of the interfaces identified in the first stage consists of describing the 

interface services and their signatures. The signature of a service specifies its name and 

parameters. The data type and the kind (input/output) of parameters are also declared. An 

example of an interface is shown in Figure 81. 

Once an interface is specified is convenient to verify it in order to be sure that the 

specification is correct. In addition, it is recommended to verify all the interfaces the entire 

model once they have been defined. After the verification of an interface, it can be stored in the 

PRISMA repository to be reused by other architectural models. 

9.2.2. STEP 2: Aspects 
As it has been previously mentioned, a PRISMA aspect encapsulates a concern that crosscuts 

the architectural elements of software architectures. This aspect semantics is different from any 

of the architectural terms in the software architecture discipline that currently exist. The notion 

of aspect has an entity of its own, and aspects are first-order citizens of the PRISMA AOADL 

[Per06d]. 

Aspects are defined in step 2 of the second stage using the combination of two formalisms: 

a modal logic of actions [Sti92] and a dialect of the polyadic π-calculus [Mil93]. π-calculus is 

used to specify and formalize the processes of the PRISMA model, and the modal logic of 

actions is used to formalize how the execution of these processes affects the state of aspects. 

The kind of aspects and the number of each one depends on the software system. Aspects are 

reusable entities that define a specific behaviour of a crosscutting-concern and are, therefore, 

stored in a PRISMA repository (see step 2, 2nd stage, Figure 80). As a result, not only can 

aspects be used more than once in a software architecture description, they can also be reused 

in different software architectures. If there are going to use COTS in the model specification, 

the specification of the aspect that wrapps the COTS must to be done in this step. On the other 

hand, it is important to mention that before the storage of aspects in the PRISMA repository, it 

is recommended that each aspect will be verified.  

There are aspects that specify the semantics of the services that are published by an 

interface (public services), there are aspects that specify the semantics of services that are not 
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published by any interface (private services), and there are aspects that specify the semantics of 

both, public services and private services. The aspects that specify the semantics of public 

services must be defined after the interface of their services has been defined. This is why 

interfaces are defined in step 1 and aspects are defined in the step 2 of the methodology. 

However, this does not constrain the specification order. Either the interface is defined before 

the aspect, or the services are initially defined as private services of the aspect and are then 

changed to publish services by means of an interface. Furthermore, when the needed interfaces 

are reused from the repository, step 1 is not necessary. 

The aspects are defined by taking into account the crosscutting concerns identified in the 

first stage.  The number of aspects for the same concern is decided by the analyst, taking into 

account criteria such as reusability and understanding. Depending on the analyst’s criteria, 

he/she will define one aspect for a concern or several aspects for the same concern. For 

example, for the safety concern that crosscuts the software system, two safety aspects can be 

defined. Each of these aspects has different safety behaviour. This chapter is going to focus on 

the specification of a safety and a coordination aspect of the TeachMover case study. 

9.2.2.1. The safety aspect 
The concerns (safety, coordination, functionality, distribution, etc) that an aspect can specify in 

PRISMA is not constrained because the concerns vary depending on the system and the 

domain that is being modelled. A keyword is used to establish the concern of the aspect that is 

being specified. For example, in this case, the Safety word establishes that every property, 

service, or behaviour that is specified in the aspect is related to the safety concern (see Figure 

82). This keyword is a property of a PRISMA aspect called concern, whose value is provided 

when a specific aspect is defined. There is no predefined list of keywords; the value is 

introduced by the analyst when he/she starts the aspect modelling task. 

The concern of an aspect and its name are detailed at the head of the aspect. Several 

constant attributes are declared in the body in order to store the information of the minimum 

and maximum values that have to be taken into account to preserve the safety of the 

TeachMover (see section 1, Figure 82). Begin and end services start and end the execution of 
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an aspect, respectively (see sections 2 and 5, Figure 82,). Also, several services to preserve the 

safety of the system are defined in the SMotion aspect using dynamic logic. Some of them are 

specified in section 3 of Figure 82, but only the complete specification of the service check is 

presented to facilitate the understanding of the specification. This service ensures that the 

requested movement is safe by determining whether it is between the minimum and maximum 

degree (see section 4, Figure 82). In addition, transactional operations are defined to execute a 

set of services atomically (see section 6, Figure 82). Finally, the protocol defines the process of 

execution of the aspect services using a dialect of π-calculus (see section 7, Figure 82). 

 
Figure 82. The safety aspect SMotion 

Safety Aspect SMotion 
  Attributes 
1  Constant 
    minimum, maximum, minRoll, maxRoll, minPitch,  
    maximumPitch: integer, NOT NULL; … … 
  Services 
2 begin( input InitialMinimum: integer,  

input InitialMaximum: integer, … …); 
    Valuations 
    [begin (InitialMinimum, InitialMaximum)]  
      minimum := InitialMinimum,  
      maximum := InitialMaximum;  
   
3  in checkdistance(input NewX: integer, input NewY: integer,  

3 input NewZ: integer, output Secure: boolean); … … 
 
   in check(input Degrees: integer, output Secure: boolean); 
4    Valuations 
     {(Degrees >= minimum) and (Degrees <= maximum)}     
      [check(Degrees, Secure)] 
       Secure := true; 
 
     {(Degrees < minimum) or (Degrees > maximum)}              
      [check(Degrees, Secure)] 
      Secure := false; 
    … … 
5   end;     
6  Transaction 
    DANGEROUSCHECKING(input Degrees: integer,  
     input CurrentSpeed: integer, output Secure: boolean): … …  ; 
    … … 
7  Protocol 
    SMOTION = begin.CHECKING; 
    CHECKING = check (Degrees, Secure).CHECKING +  
               checkDistance(NewX, NewY, NewZ, Secure). CHECKING  
               + …  … + 
               DANGEROUSCHECKING(Degrees, Secure).CHECKING  
               + end; 
 End_Aspect SMotion; 
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9.2.2.2. The coodination aspect 
The coordination aspect defines the interactions needed to coordinate the sending of 

movements to the robot and the robot’s answers. These answers notify whether or not the 

movements have been satisfactorily performed.  

 
Figure 83. The coordination aspect CProcessSUC 

 

Coordination Aspect CProcessSUC using IMotionJoint, IRead, ISUC 
  Attributes 
   Variable 
1   halfSteps: integer, NOT NULL; 
    tempHalfSteps: integer; 
 
   Derived 
    angle: integer, Derivation FtransHalfstepsToAngle(halfSteps); 
     
  Services 
   begin (input InitialHalfSteps: integer); 
      Valuations 
        [begin (InitialHalfSteps)]  
         halfSteps := InitialHalfsteps,  
 
2   in/out movejoint(input NewHalfsteps: integer, input Speed: integer); 
       Valuations 
         [in movejoint (NewHalfsteps, Speed)]  
          tempHalfSteps := NewHalfsteps; 
      
3  in cinematicsmovejoint( input NewAngle: integer, input Speed:integer); 
       Valuations 
        [in cinematicsmovejoint(NewAngle, Speed)]  

 tempHalfSteps := FtransAngleToHalfsteps(NewAngle); 
 

4  in/out moveok(output Success: boolean); 
        Valuations 
         {Success=1}     
         [in moveok(Success)]  
         halfSteps:= halfSteps + tempHalSteps; 
 
    end;    

 
5  Protocol 
6  CPROCESSSUC = begin(InitialHalfStep).MOTION 
7  MOTION =  
          (ISUC.movejoint?(NewHalfsteps, Speed)  

         IMotionJoint.movejoint!(NewHalfsteps, Speed).ANSWER) 
        + 
        (ISUC.cinematicsmovejoint?(NewAngle, Speed)                      
         IMotionJoint.movejoint!(FTransAngleToHalfSteps(NewAngle, 

Speed).ANSWER) 
        + 
         end;             

8  ANSWER= IRead.moveok?(Success)  ISUC.moveok!(Success).MOTION  
End_Aspect CProcessSUC; 
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In this case, the aspect uses the services of several interfaces. This is detailed at the head of 

the aspect (see Figure 83), that means, that these services are public. As a result, these interfaces 

have been previously defined. Since the request of a movement to the robot does not guarantee 

that it will be satisfactorily performed, the coordination aspect must coordinate the position of 

the joint that is synchronizing the movement request (see sections 2 and 3, Figure 83) with the 

movement notification of the robot (moveOk service, see section 4, Figure 83). At this point, 

the aspect changes the value of the robot position, i.e., the halfstep attribute (see section 1, 

Figure 83). 

The protocol of the CProccessSUC aspect coordinates the requested movements and the 

notification movements of the robot. It is composed of three processes CProcessSUC, 

MOTION, and ANSWER (see section 5, Figure 83). The CProcessSUC process starts the 

execution of the aspect (begin), initializes the attributes that need a value (Not Null), and starts 

the MOTION process (see section 6, Figure 83). This process either receives a movement 

request or ends the aspect execution (see section 7, Figure 83). Finally, this MOTION process 

continues with the ANSWER process, in which the coordination process waits for the sensor’s 

answer and notifies of the failure or success of the movement (see section 8, Figure 83). 

9.2.3. STEP 3: Simple Architectural Elements 
The definition of simple architectural elements is performed in step 3 of the second stage. The 

aspects that are defined in step 2 are used to completely define these architectural elements. An 

architectural element imports the aspects that define the concerns that it requires. For this 

reason, aspects must be defined before architectural elements. 

The same aspect is imported by each architectural element that needs to take into account 

the same behaviour of this concern (crosscutting concerns). As a result, an aspect can be 

imported by one or more architectural elements (see steps 2 and 3, 2nd stage, Figure 80). It is 

important to note that the changes performed in an aspect also affect every architectural 

element that imports this aspect.  

From the architectural element point of view, each architectural element is formed by a set 

of aspects. For example, the connector in Figure 80 is made up of a safety aspect and a 
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coordination aspect. It is important to emphasize that one of these aspect can be an integration 

aspects that wrapps a COTS. 

In PRISMA, weavings weave the different aspects that form an architectural element and 

they are encapsulated inside the architectural element. The temporal order of the weaving 

process is described by temporal operations called weaving operators. As a result, a PRISMA 

simple architectural element is specified by a set of aspects, the weavings of aspects, and a set 

of ports that have an associated interface. Ports represent the points of interaction of 

architectural elements. The architectural elements can be verified using the partial verification 

of a specific architectural element or all the architectural elements. The architectural elements 

that are defined in this step are types that are reusable by different software architectures 

because they are stored in the PRISMA repository. The storage of PRISMA architectural 

elements implies the storage of the aspects that they import. In addition, the reusability of the 

aspect can be due to the fact that it is reused in many architectural elements and also when the 

architectural element that imports the aspect is reused. 

The simplest components that are found in the TeachMover system are actuators and 

sensors: 

 Actuator: An actuator has two ports. To describe its functional behaviour, it imports the 

FActuator aspect that has been previously stored in the repository (see Figure 84). 

 

 

 

 
 
 
 
 

Figure 84. The component Actuator 
 

 Sensor: A sensor has two ports. To describe its functional behaviour, it imports the 

FSensor aspect that has been previously stored in the repository (see Figure 85). 

Component Actuator 
 Ports 
  ControlAct: IMotionJoint; 
  HW: IMotionJoint; 
 End_Ports; 
 
 Functional Aspect Import FActuator;   
 End_Component Actuator; 
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Figure 85. The component Sensor 
 

In addition, the actuators and sensors for the tool and the wrist joints are defined as new 

architectural elements. They have the same functionality as the ones presented in Figure 84 and 

Figure 85. However, the signature of the services that they offer is different, that is, the number 

of parameters and their types is different.   

Weavings are only specified when they are necessary to weave the execution of two 

services from different aspects. An example of weavings appears in the SUCConnector 

architectural element where the joint is moved only after the connector is sure that the 

movement is safe (see the weavings section of the SUCConnector in Figure 86). 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 86. The connector SUCConnector 
 

The invocation of the movejoint service (the second service of the weaving) of the 

CProcessSUC aspect triggers the execution of a weaving. When a weaving is specified, the 

weaving operator is chosen from the point of view of the service that triggers the weaving; that 

Component Sensor 
 Ports 
  ControlSen: IRead; 
  HW: IRead; 
 End_Ports; 
 
 Functional Aspect Import FSensor; 
 End_Component Sensor;

Connector SUCConnector 
 Ports 
  portSUC: ISUC; 
  ContrActua: IMotionJoint; 
  ContrSensor:IRead; 
 End_Port; 
 
 Coordination Aspect Import CProcessSUC;     
 Safety Aspect Import Smotion; 
  
 Weavings 
  SMotion.check(FTransHalfstepsToAngle 
                (NewHalfsteps), Secure)    
  beforeIf (Secure = true)   
  CProcessSUC.movejoint(NewHalfsteps, Speed); 
   ……  
  End_Weavings; 
End_Connector SUCconnector; 
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is, depending on whether the service needs the execution of a service before, after, or instead of 

it. As a result, the weaving of the SUCConnector (see Figure 86) means that the check service 

of the SMotion safety aspect will be executed before the moveJoint service of the 

CProcessSUC coordination aspect. The condition also establishes that the execution of the 

moveJoint service must only be performed if the Secure parameter of the check service returns 

true. 

The connectors that coordinate the actuators and the sensors of the tool and the wrist joints 

are also defined as new architectural elements. SUCconnector, WristSUCconnector, and 

ToolSUCConnector are architectural elements stored in the PRISMA repository after their 

verification. These three architectural elements import the same coordination (CProcessSUC) 

and safety (SMotion) aspects (crosscutting concerns); however their behaviour is different 

because they have different weavings. This is a clear example of the reuse of aspects inside the 

same architectural model thanks to the fact that the definition of weavings outside aspects and 

inside architectural elements, and an example of how these aspects crosscut the behaviour of 

several architectural elements.  

The Actuator, Sensor, and their connector SUCConnector are reusable architectural 

elements that can be used several times in the TeachMover architectural model or in another 

architecture specification of a bigger tele-operation domain such as the EFTCoR robot [Fer05], 

[EFT02]. In the case of the TeachMover, they have been specified in the simplest way. 

However, in the EFTCoR, they also have a distribution aspect in order to provide distributed 

behaviour to these components [Ali05a], [Ali03]. As a result, we have reused the Actuator, 

Sensor and SUCConnector architectural elements of the TeachMover in the architecture of the 

EFTCoR. We have modified them by adding a distribution aspect, a pair of weavings between 

the functional and distribution aspects of the Actuator and Sensor, and another pair of weavings 

between the coordination and distribution aspects of the SUCConnector.  This is an example of 

reusability of defined components in other architectural models using the PRISMA repository. 

This reusability avoids having to start from scratch to build a new architectural model. The 

analyst can reuse the architectural elements in their original way or can reuse them and then 
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introduce the changes that the new software system requires, just as we did with the actuator 

and sensor components of the EFTCoR. 

An actuator and a sensor must be coordinated through a connector in order to separate their 

computations from their interactions [Sha94]. The SUCConnector imports a coordination and a 

safety aspect in order to define its behaviour (see Figure 86). 

9.2.4. STEP 4: Complex Architectural Elements 
PRISMA complex components are called systems. Systems are defined in the 4 step of the 

second stage. A PRISMA system is a complex component that imports a set of connectors, 

components, and other systems that must be correctly attached. A system is defined by using 

two kinds of communication channels: attachments and bindings 

To completely specify a system, the architectural elements that the system is composed of 

should be previously defined. In addition, the communication channels that permit the 

communication among them are defined. It is important to emphasize that the attachments are 

only defined if the system includes components and connectors that must be coordinated. 

Systems are defined as patterns or architectural styles [Gar93] that can be reused in any 

software architecture whenever they are needed. For this reason they are stored in the PRISMA 

repository after their previous verification. 

It is important to note that any changes that occur in aspects affect the architectural elements 

that import them and, consequently, affect the systems that import these architectural elements. 

Moreover, the changes that occur in architectural elements that are imported by a system also 

affect the system (see step 3, 2nd stage, Figure 80).  

In the case of the TeachMover, there are several systems, at different levels of granularity. 

These systems are guided by the skeleton identified in the first stage (see Figure 3). The SUC 

(Simple Unit Controller) system is composed of an actuator, a sensor, and the connector that 

synchronizes them. The system specifies the architectural elements that it is composed of and 

the communication channels among them (see Figure 87). 
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Figure 87. The system SUC (Simple Unit Controller) 

 

The SUC system delegates the commands that it receives to the connector in order to 

perform the movements between the actuator and sensor in a synchronized way. For this 

reason, the SUC system and the SUCConnector have a binding between their portMUC and 

portSUC ports, respectively. In addition, two attachments haven been defined in order to 

establish the communication channels between the Actuator and the SUCconnector, and the 

Sensor and the SUCconnector, respectively.  

System SUC 
 Ports 

PortMUC: ISUC; 
 End_Ports; 
  
 Import Architectural_Elements  
                Actuator, Sensor, SUCconnector; 
 End_Architectural_Elements; 
  
 Attachments  
   SUCconnector.ContrActua     
   Actuator.ControlAct;     
   VarSUCconnector.ContrSensor   
   VarSensor.ControlSen; 
 End_Attachments; 
  
 Bindings 

SUCconnector.portSUC  portMUC; 
End Bindings;
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A ToolSUC and a WristSUC are also defined with their corresponding actuators, sensors, 

connectors and their relationships. The SUC system is stored in the PRISMA repository so that 

it can be reused as an architectural pattern. 

 
Figure 88. The system MUC (Mechanism Unit Controller) 

 

The MUC (Mechanism Unit Controller) system is the third layer of granularity of the 

decomposition of the TeachMover system. It integrates a set of SUCs and a connector.  The 

connector coordinates the SUCs in order to achieve a common goal. Specifically, the MUC of 

the TeachMover is composed of the generic SUC, the SUC of a wrist, and a connector that 

synchronizes them (see Figure 88). As a result, the MUC of the TeachMover is matched with 

the arm of the robot and specifies the behaviour required to accurately perform its movements. 

The MUC is also stored in the PRISMA repository. 

The RUC (Robot Unit Controller) system coordinates every part of the robot and is 

composed of the MUC of the arm and the SUC of the tool, which are synchronized through a 

connector (see Figure 89). The SUC of the tool is not inside the MUC system in order to easily 

allow changes in the tool. For example, the tool of the TeachMover is a gripper, but it can be 

changed for a paintbrush, a hosepipe, etc., in order to perform other tasks. The RUC is matched 

with the TeachMover. As a result, we obtain a software architecture that is easy to evolve. 
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Figure 89. The system RUC (Robot Unit Controller) 

 

Finally, the last layer of decomposition is composed of the operator, the robot (RUC), and 

the connector that coordinates them (see Figure 90). This last level provides us the most 

abstract view of the software architecture, which is called the Architectural Model.  It is 

important to emphasize that since the architectural model does not define a system that 

encapsulates it, bindings are do not need to be defined. 

 
Figure 90. The architectural model of the TeachMover 

 

9.3. 3RD STAGE: TYPE CODE GENERATION 
Once the interfaces, aspects, and simple and complex architectural elements have been 

completely specified, their code and specifications of PRISMA AOADL can be automatically 

generated. This code generation must be performed after the complete verification of the model 

and to check that there are no constraints that are not satisfied by the model (see 3rd stage, 

Figure 80). 

 This stage is performed by executing the code generation templates that the PRISMA Type 

Modelling Tool provides (see section 6.3.3). This generation is possible thanks to the code 

generation templates (model compiler), which isolate the specification from the source code 
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preserving their independence. Until now, PRISMA CASE generates PRISMA aspect-

oriented C# code that is executable in .NET framework thanks to our PRISMANET 

middleware, which gives support to aspect execution over .NET technology [Per05b]. 

9.4. 4TH STAGE: CONFIGURATION MODELLING 
The architectural elements that have been defined in the previous stage and have been stored in 

the PRISMA repository are instantiated in this stage. In order to understand the trace of the 

approach, it is important to take into account that instances have all the properties and 

behaviours of their architectural elements, and as a consequence, instances have the properties 

and behaviours of the aspects that their architectural elements import. As a result, when an 

architectural element is instantiated, the aspects that it imports are also instantiated in order to 

have their specific state and behaviour. 

This 4th Stage is developed using the PRISMA Configuration Modelling Tool, where the 

configuration of the architectural model of the software system is modelled in a graphical way 

by drawing and dropping the domain specific PRISMA modelling primitives (see section 

6.3.4). The configuration of the initial architecture of a specific system is modelled by 

instantiating the types and the architectural model that has been defined in the previous stage.  

A specific software architecture is defined by connecting a set of instances of components, 

systems, and connectors with each other (see instance_of relationships, Figure 80). For this 

reason, the instantiation of the architectural elements of a model and the definition of 

attachment and binding relationships among instances is necessary to obtain an executable 

architectural model.  

To obtain the software architecture of the TeachMover, the SUC has been instantiated three 

times in order to obtain the base, shoulder, and elbow joints of the robot (see section 2.3.2). The 

gripper and the wrist are instances of the ToolSUC and WristSUC, respectively. As a result of 

these instantiations, the instantiation of the MUC generates the configuration that appears in 

Figure 91.  
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Figure 91. The configuration MUC for the TeachMover 

 

The RUC and the architectural model of the TeachMover are instantiated generating one 

instance for each one of them. This instantiation constitutes the last step of the configuration 

stage. As a result of this step, the software architecture of the TeachMover is completely 

defined. 

9.5. 5TH STAGE: CONFIGURATION CODE GENERATION 
Once the complete architectural model has been instantiated, their code and specifications 

of PRISMA AOADL can be automatically generated (see 5th stage, Figure 80). They are 

generated by executing the PRISMA Model Compiler from the PRISMA Configuration 

Modelling Tool (see section 6.3.5).  

9.6. 6TH STAGE: CODE EXECUTION 
Next, the execution of the generated code joint the PRISMANET middleware can be launched 

from the PRISMA Configuration Modelling Tool (see 6th stage, Figure 80). Once the aspect-

oriented software architecture is executed the user can interact with it using the PRISMA 

Generic GUI, which allows the user to execute services, query the value of attributes and 
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validate the correct behaviour of each of the architectural elements that compose the 

architecture (see section 6.3.5). 

9.7.  DISCUSSION 
The TeachMover example illustrates that the PRISMA approach allows the development of 

aspect-oriented software architectures as if aspects and architectural elements were building 

blocks. You can work with them in different ways to obtain different results. This flexibility 

and facility for working is achieved thanks to the fact that aspects and components are 

independent entities that can be imported in different entities of the same software architecture 

or in different ones.  

The introduction of aspects in a separate entity allows for the TeachMover software 

architecture to separate the safety concern in the SMotion aspect. This aspect is only defined 

once and it is imported by the SUCconnector, WristSUCconnector, ToolSUCconnector, 

MUCconnector and RUCconnector connectors by referencing this aspect. As a consequence, 

the aspect is used by the instances of these connectors. For example, the TeachMover instances 

of the SUCconnector are the BaseSUCconnector, ShoulderSUCConnector and 

ElbowSUCConnector. As a result of considering aspects to model the TeachMover, tangled 

code is avoided by separating coordination properties from safety properties. In addition, this 

separation of concerns can improve the maintenance process of the system due to the fact that 

the introduction of a change in the safety properties of the TeachMover only requires 

modifying the SMotion Aspect and, consequently, all the changes are propagated to the 

connectors and their instances. 

The PRISMA repository also promotes the reuse of architectural elements and aspects in 

different software architectures. They can be used as they are stored in the repository or can be 

adapted to the features of the new architecture that is being modelled. For example, most of the 

architectural elements of the TeachMover were reused in the EFTCoR software architecture. 

The specific properties of the EFTCoR were easily adapted; for example, some of the robot 

pieces of the EFTCoR are distributed. This property was introduced by defining a distribution 

aspect and importing it from the reused architectural elements of the TeachMover that 
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represent these pieces [Ali05a], [Ali03]. It must be noted that reuse is limited for software 

architectures of different domains, but the PRISMA repository could be a great contribution for 

reuse in product families such as the tele-operation family. In addition, a large repository with 

good searching mechanisms could provide excellent support for the development and 

maintenance of software. 

The PRISMA MDD methodology is supported by the PRISMA CASE framework for the 

construction of aspect-oriented software architectures that are independent of specific 

technologies. The first stage of the PRISMA methodology is the identification of the aspects 

and the architectural elements of a software architecture. Currently, this identification is 

performed in an intuitive way from the requirements document of the system. However, we are 

working in this stage in order to propose guidance for the user in this identification [Nav03], 

[Nav04a], [Nav04b], [Nav04c]. 

The modelling stage of the PRISMA methodology is based on the PRISMA metamodel. It 

has been defined by integrating aspects and software architectures. In this way, software 

architectures can be constructed gaining the advantages of two different paradigms: the aspect-

oriented paradigm (AOP) and the component-based paradigm. One of these advantages is the 

reusability of software at different levels of granularity. As an example, the reusability level of 

the SUC system  (see Figure 87) is illustrated in the following: 

- Analysis of the reusability of the SUC system 
The reusability of the SUC is analyzed by taking into account the system, its architectural 

elements and the aspects that these architectural elements import. In addition, the reusability is 

going to be analyzed at the type level and at the configuration level. 

Figure 92 shows the number of times that an aspect is reused by different architectural 

elements and the names of the architectural elements that import the aspect. The aspects are 

enumerated in the first columns of the two tables. These aspects are the ones that have been 

used for defining the SUC system. The first table details the reusability at the type level, and the 

second table details the reusability at the configuration level, respectively. From these tables, it 

is possible to conclude that: the aspect SMotion is defined once and it is reused by five 

architectural elements at the type level and by seven architectural elements at the configuration 
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level. The aspects FActuator, FSensor and CProcessSUC have been defined once and they are 

reused by one architectural element at the type level and three architectural elements at the 

configuration level. 

 

 
Figure 92. Reusability of aspects 

 

On the other hand, Figure 93 shows the number of times that an architectural element type 

is reused at the configuration level of the architecture by means of its instantiation. 

 
Figure 93. Resusability of architectural elements 

 

In addition to the SUC rates of reusability inside the TeachMover software architecture, the 

reusability of aspects and architectural element types by other software architectures, such as 

the EFTCoR software architecture, must be taken into account. For example, in the case of the 

EFTCoR it has been imported every aspect and architectural elements of the TeachMover 

without having to start the modelling process from scratch. Some of the reused aspects have 
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been modified introducing new properties and others had not to be modified. Some of the 

reused architectural elements have been modified adding new aspects and/or weavings and 

others have been preserved in their original version.  

 Maintainability and evolution are also gained from integrating the aspect-oriented 

paradigm (AOP) and the component-based paradigm. This is due to the fact that aspects and 

architectural elements facilitate the task of locating where the changes must occur. For 

example, in the case of the TeachMover, safety properties are located in only one place, in the 

aspect SMotion. As a result, if a change in the safety properties occurs, the safety aspect is only 

modified instead of changing the five architectural elements that import it at the type level. But 

not only the number of changes is reduced, but also the time invested in locating where the 

change must be introduced is improved. In our case, the safety properties of the aspect have to 

be only searched; whereas in a non-aspect-oriented approach, the architectural elements with 

tangled concerns have to be searched and the location of the safety properties is more difficult. 

Finally, another important advantage is the reduction of code. As it was demonstrated by 

[Kiz97], the lines of code are reduced. Our proposal avoids the replication of code. For 

example, t the lines of the safety aspect SMotion were avoided to be repeated five times at the 

type level. 

The DSL tools development environment has been chosen in order to provide a framework 

for the PRISMA approach. DSL tools allow us to define PRISMA metamodel, associate a 

graphical notation to each metamodel concept and its instantiation, and implement the C# code 

generation templates of PRISMA.  The PRISMA framework provides mechanisms to 

optimize the programming, reusability, and modularity of code. Developers use the graphical 

notation of the PRISMA AOADL to build their software architectures using the methodology 

presented in this thesis. After, the models are verified they can generate automatically the code. 

The TeachMover software architecture has been modelled, its code has been generated and it 

has been executed in the .NET platform. As a result, PRISMA has made it possible to move a 

robot using an aspect-oriented architecture that is executed in .NET technology (see 

demonstrations in [PRI07]). 
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9.8.  CONCLUSIONS 
This chapter defines and explains the MDD PRISMA methodology.  This methodology 

allows the complete development of aspect-oriented architectural models following the MDD 

paradigm. This methodology is divided into six stages and allows the development and 

maintenance of software systems in a simple and flexible way. 

The precise semantics of the PRISMA language gives us the chance to include the 

verification of model and its compile to code as parts of this methodology. As a result of this 

methodology application executable systems on the PRISMANET middleware [Per05b] are 

obtained.  

The ideas developed in the case study have been applied to specific products of the 

EFTCoR and TeachMover. The benefits of applying PRISMA to the case study are mainly: 1) 

the definition of reusable concerns that crosscut the software architecture called aspects and the 

storage in a repository 2) the definition of  reusable architectural elements by reusing aspects, 3) 

the definition of complex architectural elements reusing other architectural elements, 5) the 

verification of models supports, 5) the use of COTS support, 6) building the formal software 

architecture of the system using a friendly graphical notation independently of technology, 7) 

the reduction of the development time as code is automatically generated from the graphical 

notation to a specific technology.  

It is important to emphasize that this chapter has applied a software engineering approach to 

the development of a robotic system. In this way, this development has taken advantage of the 

good properties provided by this software engineering approach, especially reuse of 

components, maintainability, evolution, etc. 

The work presented in this chapter has been published in the following publication: 

 Jennifer Pérez,  Nour Ali, Jose A. Carsí, Isidro Ramos, Bárbara Álvarez, Pedro Sánchez, 

Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to 

Robotic Tele-operated Systems, Journal of Information and Software Technology, 

Elsevier, (JCR 2006: 0.726) (accepted, to be published) 
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CHAPTER 10 
10. CONCLUSIONS AND FURTHER 

RESEARCH 
 

 

This chapter presents and analyzes the main contributions of this thesis of master. It also 

presents future work that can be done to continue this research and to extend the results that 

have already been obtained. 

10.1. CONCLUSIONS 
The complexity of current software systems and the fact that their non-functional requirements 

have become very relevant to the user are challenges to be faced in all software development. 

Software Architectures and AOSD have emerged to overcome these needs. In order to take 

advantage of Software architectures and AOSD, several approaches have emerged to combine 

both approaches providing all their advantages together. However, these approaches usually 

extend architectural models without connectors and mainly follow an asymmetric model. They 

are only focused on a single specific purpose: analysis, evolution or development of software 

architectures without attempting to provide complete development and maintenance support 

following the MDD process. Furthermore, these approaches always introduce the notion of 

aspect by using original architectural concepts, despite the fact that they do not provide the 

suitable semantics for aspects. This thesis presents the MDD support for the PRISMA 

approach, a new software development approach that integrates Software Architectures and 

AOSD to fulfil these needs.  
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The PRISMA MDD provides complete support during the development and maintenance 

processes of software following the MDD paradigm. The PRISMA MDD approach is 

presented as an important advance in the combination of the aspect-oriented paradigm and 

software architectures. The PRISMA approach integrates an aspect-oriented symmetric model 

with an architectural model that has the notion of connector. The MDD advantages that this 

combination of software architectures and AOSD provides to the definition of coordination 

models have been presented. In addition, a detailed analysis about how to improve coordination 

models from this combination has been done.  

In PRISMA, aspects and software architectures are smoothly integrated with a clear 

semantics, which has been formalized using a Modal Logic of Actions and π-calculus. In 

addition, the PRISMA metamodel allows the definition the PRISMA models and to establish 

its properties in a precise way. This metamodel and formalization have facilitated the 

automation and maintenance tasks of PRISMA software architectures since the main goal of 

this thesis was to define the MDD support of the PRISMA approach. 

Another important characteristic of PRISMA that has facilitated the definition of the 

PRISMA MDD process is the PRISMA Aspect-Oriented Architecture Description Language 

(AOADL) [Per06d], which supports the PRISMA model [Per05a]. This AOADL allows the 

definition of PRISMA aspect-oriented software architectures, not only providing components 

and connectors as first-order citizens of the language, but also provides aspects and interfaces. 

The structure, design and maintainability of architectures specified in the PRISMA AOADL 

are improved by defining and reusing entities at different levels of granularity (interfaces, 

aspects, components, connectors and systems). This improvement is possible since (1) 

AOADL provides interfaces and aspects, (2) weavings are defined outside aspects, (3) aspects 

are defined independently of architectural elements, and (4) architectural elements are defined 

without being aware of the architectural elements that are connected to them. As a result, an 

interface can be used by several aspects, an aspect can be used by several architectural 

elements, and an architectural element can be used by several software architectures. In 

addition, the precise semantics of the PRISMA AOADL and its independence of technology 
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provide the opportunity to validate PRISMA software architecture properties and to compile 

models for different programming languages and platforms.  

In order to improve this reusability and the development time of the PRISMA MDD 

approach. This thesis has defined a novel way of integrating COTS into software architectures. 

This integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect 

called integration_aspect has been defined to specify the COTS that it wraps and to specify the 

integration process with the rest of software architecture. In the same way as other aspects, 

integration aspects must be imported by an architectural element in order to publish their 

services through ports that enable their communication with other architectural elements. 

Moreover, it is presented how the use of COTS is supported by the PRISMA methodology 

thanks to the facilities that the PRISMA CASE provides. This is an important characteristic 

since COTS are widely used, and any development approach that needs to reduce development 

time must provide it. 

This independency and reusabilily properties of PRISMA elements has facilitated the 

definition of a flexible verification process. This thesis has defined a complete verification 

process to be supported by the PRISMA MDD approach. This verification process has 

classified PRISMA constraints into hardconstraints and weakconstraints. From this 

classification the PRISMA verification process takes a step forward and the partial and 

incremental verification has been proposed instead of only taking into account the complete 

verification of the model. 

Since the use of a formal language is a hindrance for many users, PRISMA provides a 

graphical AOADL to describe formal software architectures using a friendly graphical 

notation. Finally, it is important to mention that the PRISMA AOADL has great expressive 

power to specify more features and requirements related to the software system by means of 

aspects. Therefore, PRISMA AOADL is not only able to specify simple architectural systems 

for academic projects such as pipelines, filters, blackboards, etc, but it is also able to completely 

specify complex software systems. In addition, this expressive power permits to have enough 

information for the code generation task of the PRISMA model compiler. 
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The MDD approach proposed in this thesis is based on the models hierarchy of PRIMA 

and the code generation techniques. The PRISMA model is a metamodel that permits the 

definition of PRISMA type models whose instantiation defines PRISMA configuration 

models. PRISMA configuration models define specific systems. PRISMA applies MDD to 

define type models from its metamodel, and to define configuration models from type models. 

In addition, PRISMA approach has created a set of transformation patterns to transform 

PRISMA models into its AOADL specifications and into C# code. PRISMA applies these 

transformation patterns during the development process in order to automatically generate 

applications from its PRISMA architectural models and to show the formal specification of its 

models.  

PRISMA CASE is a framework that provides complete support for the PRISMA MDD 

approach. It is composed of a set of tools that is suitably integrated to provide a unique 

framework that gives support for the user throughout the software life cycle. This integration 

also provides top-down traceability during the different stages of the software life cycle and 

facilitates the maintenance of the developed software products. This set of tools includes the 

PRISMA Type Modelling Tool with its code generation patterns, the PRISMA Configuration 

Modelling Tool with its code generation patterns, the generic Graphical User Interface for 

PRISMA applications, and the middleware PRISMANET. The PRISMA Types and 

Configuration Modelling Tools give support for the development of PRISMA software 

architectures following the MDD approach and using the PRISMA AOADL in a graphical 

way. As a result, PRISMA offers mechanisms to develop software architectures in a more 

intuitive and friendly way and mechanisms to verify their models. In addition, the code 

generation patterns that PRISMA modelling tools offer allow automatically generate 

executable C# code on PRISMANET from the specified graphical models. Thus, PRISMA 

CASE deals with the traceability between software architectures and implementation and 

reduces the time and cost invested in the development and maintenance processes. PRISMA 

CASE provides a generic Graphical User Interface to execute software architectures. This is an 

important advantage because it is a simple way of validating that software architectures provide 

the behaviour expected by the user without having to develop a customized graphical user 
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interface. All the tools and mechanisms that PRISMA CASE provides make PRISMA a well-

supported approach for developing aspect-oriented software architectures following the MDD 

approach. 

Just as important is the methodology that has been defined to guide the user during the 

MDD process of PRISMA software architectures. This methodology is supported by the 

PRISMA CASE and consists of six stages that define how to specify software architectures 

from scratch or how to reuse software by importing PRISMA architectural elements and 

aspects and COTS, and how to obtain the final code from these specifications. These stages are 

the following: detection of architectural elements and aspects, type architectural modelling, 

type code generation, configuration modelling, configuration code generation and execution. 

These six stages are applied by the analyst of the software system in an iterative and an 

incremental way depending on his/her needs. As a result this methodology allows the 

development and maintenance of software systems in a simple and flexible way. 

All the contributions of this thesis of master have been demonstrated using the TeachMover 

robot case study. The reuse capabilities of the PRISMA model have been presented by means 

of the TeachMover case study. The TeachMover architecture has also helped to present the 

capabilities of the PRISMA modelling tool and the verification process. The case study has 

been totally specified and its code has been generated and executed by PRISMACASE using 

COTS and without COTS.  

The contributions of this thesis of master are based in the previous PRISMA contributions 

that have been published in the following publications: 

 
JOURNALS 
 

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose Ángel Carsí,  Distributed 

Replication in Aspect-Oriented Software Architectures using Ambients, Journal IEEE 

América Latina, Vol. 5, Issue 4, July 2007. (In Spanish) 
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 Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos, Designing Software 

Architectures with an Aspect-Oriented Architecture Description Language, 9th 

Symposium on the Component Based Software Engineering  (CBSE), Springer Verlang 

LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Sweden, 

June 29th-July 1st, 2006.  

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Mobile 

Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on 

Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227 

pp. 37-48, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20, 

2006. 

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for 

Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and 

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer 
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March 27th-30th, 2006.  

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for 

Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp. 

1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)  

 Jennifer Pérez, Manuel Llavador, Jose A. Carsí, Jose H. Canós, Isidro Ramos, 

Coordination in Software Architectures: an Aspect-Oriented Approach, Fifth Working 

IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society 

Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 

2005 (position paper)  

 Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Integrating Ambient Calculus in 

Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on 

Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-
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II/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish) 

 Jennifer Pérez,  Nour Ali , Jose A. Carsí, Isidro Ramos,  PRISMA Architecture of the 

Robot 4U4 Case Study, Technical Report DSIC-II/13/04, pp. 72, Polytechnic University 

of Valencia, 2004. (In Spanish) 

 Jennifer Pérez,  Isidro Ramos,  OASIS as a Formal Support for the Dynamic, Distributed 

and Evolutive Hypermedia Models, Technical Report DSIC-II/22/03, pp. 144, Polytechnic 

University of Valencia, October 2003. (In Spanish) 

 Jennifer Pérez,  Isidro Ramos, Jose A. Carsí, A Compiler to Automatically Generate the 

Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-

II/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish) 

 

In addition to be well supported the contributions of this thesis of master by the previous 

PRISMA publications. The contributions of this thesis that have beeen published or submitted 
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 Jennifer Pérez,  Jose A. Carsí, Isidro Ramos, Model-Driven Development of Aspect-

Oriented Software Architectures, The Computer Journal, Oxford Journal, (JCR 2006: 

0.593) (submitted) 

 Jennifer Pérez,  Nour Ali, Jose A. Carsí, Isidro Ramos, Bárbara Álvarez, Pedro Sánchez, 

Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to 

Robotic Tele-operated Systems, Journal of Information and Software Technology, 

Elsevier, (JCR 2006: 0.726) (accepted, to be published) 
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 Jennifer Pérez,  Isidro Ramos, Jose A. Carsí, Taking Advantage of COTS for Developing 

Aspect-Oriented Software Architectures, Working IEEE/IFIP Conference on Software 

Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 – 21 

February 2008. (submitted) 

 

INTERNATIONAL WORKSHOPS 

 

 Jennifer Pérez,  Carlos E. Cuesta, Aspect-Oriented Connectors for Coordination, 

International Workshop on Synthesis and Analysis of Component Connectors (SYANCO 

2007), Joint to The 6th joint meeting of the European Software Engineering Conference 

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC-

FSE, ACM Digital Library, Dubroknik, Croacia, September 3-4, 2007.  

 

NATIONAL CONFERENCES 

 

 Jennifer Pérez,  Cristóbal Costa, Jose A. Carsí, Isidro Ramos, Verification of Aspect-

Oriented Architectural Models, XII Conference on Software Engineering and Databases 

(JISBD), Zaragoza, Spain, 12-14 Septermber. (In Spanish) 

 Jennifer Pérez,  Cristóbal Costa, Jose A. Carsí, Isidro Ramos, PRISMA CASE, XII 

Conference on Software Engineering and Databases (JISBD), Zaragoza, Spain, 12-14 

Septermber. (Demonstration, In Spanish) 

 

10.2. FURTHER RESEARCH 
The PRISMA MDD approach opens a perfect setting for further research. All the parts that the 

PRISMA MDD approach is composed of can be extended in order to face new challenges. 
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PRISMA has been applied to both: the tele-operation domain and the electronic bank 

domain. However, other domains can have other specific properties that are not taken into 

account in PRISMA. As a result, the application of the PRISMA model to other domains can 

assist us in defining new aspects that can introduce new properties of modelling and differences 

in aspect specifications. In fact, PRISMA only supports the definition of software architectures 

that are locally executed, despite the fact that most software architectures have a distributed 

nature. For this reason, we are currently working on introducing distribution and mobility 

properties in PRISMA using aspects [Ali05a], [Ali03], [Ali06], [Ali05b]. In addition, until 

now, PRISMA has been applied to software architectures that do not require persistence. 

However, information systems usually store their information in secondary memory. As a 

result, persistence is another important property that the model should support. There are other 

concepts from software architectures that PRISMA does not provide such as views and 

architectural patterns. In the long term, these concepts should also be defined in PRISMA. 

The PRISMA model extensions imply modifications in the PRISMA AOADL at its 

different levels of abstraction (types and configuration) and at its different kinds of 

representation (textual and graphical). PRISMA AOADL supports cardinality constraints to 

define systems, but it should be extended to support other kinds of constraints as well.  

Since PRISMA does not yet provide model checking mechanisms to check the properties 

of its architectural specifications such as reachability, deadlock detection and liveness, these 

model checking techniques should also be applied to PRISMA. With regard to the verification 

process associated to the PRISMA MDD process, the verification of the configuration models 

is not supported. Ass a result, it is necessary to provide the needed verification mechanisms for 

configuration models and to define the complete verification process. 

Future work will exploit the results of the coordination model formalization to show the 

effects of combining several complex aspects, and will consider also the combination with the 

influence of assertions in the Modal Logic of Actions provided in architectural elements, as 

well as the possibility of extending this to a temporal logic such as the modal µ-calculus, which 

has already been made for recent work in PiLar [Cue04], [Cue02]. Also, a detailed comparison 

with the formalization and capabilities of some other π-calculus-based ADLs, such as Leda 
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[Can01], [Can00], PiLar [Cue04], [Cue02]or π-ADL [Oqu04a] will be carried out, studing the 

extent in which our results can be provided as extensions to non-symmetric, non-aspect-

oriented existing ADLs. 

Another important property of software systems is the continuous evolution that they 

undergo. Development frameworks must provide mechanisms to support evolution and to 

facilitate the software maintenance. As a result, PRISMA must be able to support the evolution 

of aspect-oriented software architectures. The division of the PRISMA architecture 

specifications into two levels of abstraction opens the opportunity to distinguish between the 

evolution of types and the evolution of a specific architecture. Despite the fact that the 

PRISMA evolution services have been identified and included in the PRISMA metamodel to 

modify software architectures, this only permits its modification at modelling time. However, 

since there are a lot of software systems that cannot stop their execution to be modified, run-

time evolution must be provided. This run-time evolution is usually called dynamic 

configuration. Therefore, we are currently working on defining mechanisms to dynamically 

execute evolution services at run-time. Over the long term, our work with regard to software 

evolution will be related to the data evolution problem of software architectures, where we will 

apply our previous experience on data migration and data evolution of object-oriented 

conceptual schemas [Per02a], [Per02b], [Per02c]. 

For the application of PRISMANET, there are a lot of lacks that must be dealt with in the 

near future. The most important ones are the support of transactions and fault tolerance. In the 

long term, PRISMANET must also provide distributed and evolution mechanisms to the 

architectural elements. Automatic code generation of other programming languages and 

technologies is future work that could imply the implementation of other middlewares if 

required by the new technological platforms. Furthermore, an abstract middleware that would 

hide the differences between the different platforms could also be developed. 

The PRISMA methodology does not support the identification of architectural elements 

and aspects from the requirements specification. As a result, one future work is to integrate 

ATRIUM [Nav03] with PRISMA to provide complete support to every stage of the software 

life-cycle (from requirements to implementation).  
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In addition, the extension of PRISMA methodology also offers opportunities for future 

work. This extension can consist of providing mechanisms that will take into account product 

family modelling as well as the variability that software architectures of this kind would 

introduce at the PRISMA modelling stage. Yet another task is to create a repository with a 

query language and metadata description of the architectural elements and aspects to improve 

reusability even more. The incorporation of COTS introduces the possibility of importing web 

services in PRISMA, making the study of PRISMA as a Service-Oriented Architecture (SOA) 

necessary. Therefore, another interesting task is to analyze what implications the SOA support 

will have for the PRISMA model and the PRISMANET implementation. 

Finally, it is necessary to evaluate PRISMA using different applications and case studies in 

order to perform a quantified evaluation of the approach. A comparison of aspect-oriented and 

non-aspect oriented applications is necessary to be able to measure the advantages that 

PRISMA provides in comparison with other approaches. This measurement should be made 

taking into account different case studies and domains in order to have a wide sample that will 

allow us to get a set of well based conclusions.  

Some of these research works have already started, especially those that improve the MDD 

support. For this reason, there are contributions about the maintenance and evolution support of 

the PRISMA MDD approach that have beeen published, but they are not included in this thesis 

of master. These publications are the following: 

INTERNATIONAL CONFERENCES 

 Cristóbal Costa, Nour Ali, Jennifer Pérez,  Jose A. Carsí, Isidro Ramos, Dynamic 

Reconfiguration of Software Architectures through Aspects, In: Oquendo, F. (ed.) 1st 

European Conference on Software Architecture (ECSA’07). LNCS, vol. 4758, pp. 279-

283 Springer, Aranjuez, Madrid Spain, 24-26 September 2007 (To appear) 

 Cristóbal Costa, Jennifer Pérez, Jose A. Carsí,  Dynamic Adaptation of Aspect-Oriented 

Components,10th International ACM SIGSOFT Symposium on Component-Based 

Software Engineering (CBSE’07),  Springer Verlag, LNCS 4608, ISSN 0302-9743, ISBN 

978-3-540-73550-2 ,  Tufts University, Medford (Boston area), Massachusetts, USA , 9- 

11 July 2007.         
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APPENDIX A 
A.  PRISMA CODE GENERATION 

PATTERNS 
 

 

 

This appendix presents the code generation patterns to generate the C# from PRISMA 

types models. 

A.1. INTERFACES 
 
 
Pattern 1: Interfaces 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
  

 
 

 
 
 
 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from an interface. 
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Template 
 
using System; 
using PRISMA; 
namespace <#=this.Model.Name#> 
{ 
<# 
  SortedList serviceList = new SortedList(); 
  foreach (Interface interfaz in this.Model.Interfaces) 
  { 
#> 
  public interface <#=interfaz.Name#> 
  { 
<# 
   foreach (Service servicio in interfaz.IServices) 
   { 
#> 
   AsyncResult 
<#=servicio.Name#>(<#=CommaSeparatedArguments(servicio.Arguments)#>); 
  
<# if(!serviceList.Contains(servicio.Name)) 
  serviceList.Add(servicio.Name,servicio); 
    
   } 
#> 
  } 
 
<# 
  }  
  foreach(Service servicio in serviceList.Values) 
  { 
#> 
  public delegate AsyncResult    
  
<#=servicio.Name#>Delegate(<#=CommaSeparatedArguments(servicio.Arguments)#>); 
 
<# 
  } 
#> 
} 
 

Case Study 
Description 
 
This pattern is illustrated using the interface ImotionJoint of the TeachMover case 
study. This interface specifies the services that are required to move and stop the 
TeachMover robot.  
 
The representation of the ImotionJoint in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
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Graphical representation 
 

                 
 

Result of the pattern execution 
 
using System; 
using PRISMA; 
namespace RobotJoint 
{ 
 public interface IMotionJoint 
 { 
  AsyncResult moveJoint(int NewSteps, int Speed);   
  AsyncResult stop();   
 } 
 
 public delegate AsyncResult moveJointDelegate(int NewSteps, int 
Speed); 
 public delegate AsyncResult stopDelegate(); 
} 
 

Related Patterns 
 
There are no related patterns 
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A.2. ASPECTS 
 
Pattern 2:Aspects 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 
 

 
 
 

 

 

Transformation 
Descripción 
 
 
This pattern details how to generate the C# code from an aspect. Specifically, it only 
generates the structure of the aspect, the internal code of this structure is generated 
by other patterns related to it. 
 
 



PRISMA Code Generation Patterns 

253 

Template 
 
using System; 
using PRISMA; 
using PRISMA.Aspects.Types; 
using PRISMA.Exceptions; 
using System.Collections; 
 
namespace <#=this.Model.Name#> 
{ 
<# 
 foreach (Aspect aspect in this.Model.Aspects) 
 { 
#> 
 [Serializable] 
 public class <#=aspect.Name#> :  
        <#=aspect.Concern#>Aspect<#=CommaSeparatedNames3(aspect.Interfaces)#> 
 { 
<# 
            /* Internal code generation of the aspect  
                        ...             
            */ 
 }/* endforeach (Aspect aspect in this.Model.Aspects) */ 
#> 
} 

Case Study 
Description 
 
This pattern is illustrated using the aspect FJoint of the TeachMover architectural 
model. The representation of the FJoint  in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
 
Representación  
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Result of the pattern execution 
 
using System; 
using PRISMA; 
using PRISMA.Aspects.Types; 
using PRISMA.Exceptions; 
using System.Collections; 
 
namespace RobotJoint 
{ 
      [Serializable] 
 public class FJoint : FunctionalAspect, IQueryPos, IUpdatePos 
 { 
            ... 
 } 
} 

Related patterns 
 
Pattern 3, Pattern 4, Pattern 5, Pattern 6, Pattern 7, Pattern 8, Pattern 9, Pattern 10, 
Pattern 11, Pattern 12, and Pattern 13. 

A.2.1. Attributes 
 

Pattern 3:Attributes 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
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Transformation 
Description 
 
This pattern details how to generate the C# code from an attribute. There are three 
kinds of attributes: Constant, Variable and Derived. The code generation for derived 
attributes is still not supported. Constant and Variable attributes follow the same 
pattern because there are no differences in their code generation.   
 
Template 

 
... 

<# 
 SortedList attributes=new SortedList();   
 foreach (DSIC.ISSI.PrismaDSL.DomainModel.Attribute atribute in 
aspect.Attributes) 
 { 
  
  attributes.Add(atribute.Name,null); 
#> 
        <#=DomainToType(atribute.Domain)#> <#=atribute.Name#>; 
 public <#=DomainToType(atribute.Domain)#>  
       
<#=atribute.Name.Substring(0,1).ToUpper()#><#=atribute.Name.Substring(1)#> 
 { 
   get { return <#=atribute.Name#>; } 
 } 
<# 
 } 
#> 

... 
 

Case Study 
Description 
 
 
This pattern is illustrated using the attribute halfSteps of the aspect FJoint of the 
TeachMover architectural model. The halfSteps is an Integer attribute to store the 
position of the Joint. The representation of the attribute halfSteps  in the PRISMA 
model and the C# code generated from this model by applying this pattern are 
presented following. 
 
 
 
Representation 
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Result of the pattern execution 
 
            ... 
 
  int halfSteps; 
  public int HalfSteps 
  { 
    get { return halfSteps; } 
  } 
            ... 
 

Related Patterns 
Pattern 2. 
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A.2.2. Protocol 
 
Pattern 4:Protocols 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from the protocol of an aspect. 
Specifically, it only generates the set of states that compose the protocol.  
 
Template 

... 
#> 
  enum protocolStates 
  { 
  <#=CommaSeparatedNames(aspect.Protocol.States)#> 
  } 
  protocolStates state; 
  private protocolStates State{ 
   get { return state;} 
   set { state=value; 
      this.StateName=state.ToString(); 
    } 
  } 
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<# 
... 

 
Case Study 
Description 
 
This pattern is illustrated using the protocol of the aspect FJoint of the TeachMover 
architectural model. The representation of the states of the protocol in the PRISMA 
model and the C# code generated from this model by applying this pattern are 
presented following. 
 
Graphical representation 

 

                                 
 

Result of the pattern execution 
 

... 
 
enum protocolStates 
{ 
 FJOINT, POS, END, SubStateNewPos, SubStateNotify, SubStateQuery 
} 
protocolStates state; 
private protocolStates State{ 
 get { return state;} 
 set { state=value; 
             this.StateName=state.ToString(); 
     } 
}            

... 
 

Related Patterns 
 
Pattern 2. 
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A.2.3. Services 

A.2.3.1. Begin 
 
Pattern 5: Begin Services 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 

 

 

 
 

Pattern 
Description 
 
This pattern details how to generate the C# code from the service Begin of an 
aspect. This service acts as the constructor of the aspect. This generation follows 
four steps: 1) To establish the initial state of the aspect, 2) To generate the code of 
the valuations associated to the Begin service, 3) To generate the information of the 
played_roles of the aspect adding the priority to each service that compose them., 4) 
to indicate which is the state that is reached after the Begin execution. This pattern 
does not generate the code for the second step because the valuations of all services 
are generated by other pattern. 
 
Template 

 
... 
 

<# 
foreach (AService service in aspect.AServices) 
{ 
   if (service is Begin) 
   { 
#>  
   public <#=aspect.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>) :  
    base("<#=aspect.Name#>") 
{ 
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   State = protocolStates.<#=service.StateHasState[0].Source.Name#>; 
 
<# 
   /* Valuations */ 
   /* PlayedRoles */ 
 
   foreach (PlayedRole playedRole in aspect.PlayedRoles) 
   { 
#> 
   PlayedRoleClass <#=playedRole.Name#> = new 
PlayedRoleClass("<#=playedRole.Name#>"); 
 
<# 
   bool ServiceIn; 
   foreach (IService servic in playedRole.Interface.IServices) 
   { 
      ServiceIn=false; 
      foreach (StateHasState stateHasState in playedRole.StateHasState) 
      { 
 if(stateHasState.Service.Name == servic.Name) 
 { 
   if(stateHasState.Modifier == TransitionModifier.In) 
   { 
     ServiceIn=true; 
     break; 
   } 
        }/* End if(stateHasState.Modifier == TransitionModifier.In)*/ 
      } /* End foreach (StateHasState stateHasState in 
playedRole.StateHasState) */ 
   }/* End foreach (IService servic in playedRole.Interface.IServices)*/  
 
#> 
 
 
<#=playedRole.Name#>.AddMethod("<#=servic.Name#>",<#=ServiceIn.ToString().ToL
ower()#>); 
 
<# 
   } 
#> 
   this.playedRoleList.Add(<#=playedRole.Name#>); 
     
<# 
   }/* End foreach (PlayedRole playedRole in aspect.PlayedRoles)*/ 
 
#> 
   this.stateList=new ArrayList(); 
 
<# 
foreach(Microsoft.VisualStudio.Modeling.NamedElement element in 
aspect.Protocol.States) 
{ 
#> 
   this.stateList.Add("<#=element.Name#>"); 
 
<# 
} 
foreach (PlayedRole playedRole in aspect.PlayedRoles) 
{ 
 foreach(StateHasState stateHasState in playedRole.StateHasState) 
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 { 
#>            
          
AddPriorityService(protocolStates.<#=stateHasState.Source.Name#>.ToString(), 
          
<#=playedRole.Name#>.PlayedRoleName,"<#=stateHasState.Service.Name#>", 
          <#=stateHasState.Priority#>); 
 
<# 
 } 
} 
#> 
 State = protocolStates.<#=service.StateHasState[0].Target.Name#>; 
} 
<# 
}/* endif (service is Begin) */ 

 
... 

Case Study 
Description 
 
This pattern is illustrated using the service Begin of the aspect FJoint of the 
TeachMover architectural model. The representation of the Begin of the FJoint in 
the PRISMA model and the C# code generated from this model by applying this 
pattern are presented following. 
 
Graphical representation 
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Result of the pattern execution 
... 

 
public FJoint(int IniPos) : base("FJoint") 
{ 
 
  State = protocolStates.FJOINT; 
  halfSteps=IniPos; 
 
  PlayedRoleClass UPPOS = new PlayedRoleClass("UPPOS"); 
  UPPOS.AddMethod("newPosition", true); 
  this.playedRoleList.Add(UPPOS); 
    
  PlayedRoleClass QPOS = new PlayedRoleClass("QPOS"); 
  QPOS.AddMethod("currentPosition", true); 
  this.playedRoleList.Add(QPOS); 
    
  this.stateList=new ArrayList(); 
  this.stateList.Add("FJOINT"); 
  this.stateList.Add("POS"); 
  this.stateList.Add("END"); 
  this.stateList.Add("SubStateNewPos"); 
  this.stateList.Add("SubStateNotify"); 
  this.stateList.Add("SubStateQuery"); 
 
  AddPriorityService(protocolStates.POS.ToString(), UPPOS.PlayedRoleName, 
"newPosition", 1); 
  AddPriorityService(protocolStates.SubStateNewPos.ToString(), 
QPOS.PlayedRoleName, "currentPosition", 1); 
  AddPriorityService(protocolStates.SubStateNotify.ToString(), 
QPOS.PlayedRoleName, "currentPosition", 1); 
  AddPriorityService(protocolStates.POS.ToString(), QPOS.PlayedRoleName, 
"currentPosition", 1); 
  AddPriorityService(protocolStates.SubStateQuery.ToString(), 
QPOS.PlayedRoleName, "currentPosition", 1); 
  State = protocolStates.POS; 
} 

... 

Related Patterns 
Pattern 2, Pattern 9, and Pattern 10. 
 



PRISMA Code Generation Patterns 

263 

 

A.2.3.2. Public Services 
 
Pattern 6:Public Services 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 

 

 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a service of an aspect that is 
published by one of the interfaces that the aspect imports. Specifically, it only 
generates the head of the service and if the services is IN or OUT. 
 
Template 

... 
 
<#  
   foreach (AService service in aspect.AServices) 
   {  
    if (!(service is Begin)) 
    { 
       ... 
    }/* endif (service is Begin) */ 
    else 
    { 
 if (!(service is End)) 
 { 
#> 
 
public AsyncResult 
<#=service.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>) 
{ 
<# 
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 SortedList parameters=new SortedList();  
 foreach (Argument element in service.Arguments) 
 { 
  parameters.Add(element.Name,null);  
 } 
  
  
 if(service.Modifier != AServiceModifier.none) 
 { 
#> 
 // Modo In 
 if(ServiceIn) 
 { 
<# 
 } 
        
        /* Checking if the state of the aspect is correct for the service  
           execution */ 
         
        /* Preconditions*/ 
 
        /* Valuations */ 
 
        /* Constraints*/ 
 
        /* Execution of a service sequence of the protocol */ 
         
        /* Update of the state of the protocol*/ 
 
      if(service.Modifier != AServiceModifier.none)  
      { 
#>       
      } //End modo IN 
      // Modo Out 
      else 
      { 
<# 
      } 
       
 
 if(service.Modifier == AServiceModifier.Out ||  
          service.Modifier == AServiceModifier.InOut ) 
 { 
   
        /* Valuations */ 
  
#> 
  return 
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut, 
               
"<#=service.Name#>",this.aspectStateCareTaker.ActiveTransaction, 
                <#=CommaSeparatedNames(service.Arguments)#>); 
 
<# 
 } 
 else if(service.Modifier == AServiceModifier.In) 
 { 
#> 
 throw new Exception("This method doesn't have Service mode Out"); 
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<# } 
  
 }/* end if (!(service is End))*/ 
   }/* endelse (service is Begin) */ 
}/*endforeach (AService service in aspect.AServices)*/ 
#> 

... 
 
 

Case Study 
Description 
 
 
This pattern is illustrated using the public service currentPosition of the aspect 
FJoint of the TeachMover architectural model. The representation of the 
currentPosition  in the PRISMA model and the C# code generated from this model 
by applying this pattern are presented following. 
 
Representación  
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Result of the pattern execution 
 

... 
public AsyncResult currentPosition(ref int Pos) 
{ 
  // Modo In 
  if(ServiceIn) 
  { 
        /* Checking if the state of the aspect is correct for the service  
           execution*/ 
         
        /* Preconditions*/ 
 
        /* Valuations */ 
 
        /* Constraints*/ 
 
        /* Execution of a service sequence of the protocol*/ 
         
        /* Update of the state of the protocol */ 
 
  } 
  // Modo Out 
  else 
  { 
 return 
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut, 
                 
"currentPosition",this.aspectStateCareTaker.ActiveTransaction,Pos); 
  } 
     
} 

... 

Related Patterns 
 
Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12,and Pattern 13.  
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A.2.3.3. Private Services 
Pattern 7: Private Services 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 

 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a private service of an aspect.   
 
Template 
 
 
 
... 
<#  
   foreach (AService service in aspect.AServices) 
   {  
    if (!(service is Begin)) 
    { 
       ... 
    }/* endif (service is Begin) */ 
    else 
    { 
 if (!(service is End)) 
 { 
            if(service.Modifier == AServiceModifier.none) 
     { 
#> 
       public delegate AsyncResult    
         
<#=service.Name#>Delegate(<#=CommaSeparatedArguments(service.Arguments)#>); 
 
<# 
      }//End if(service.Modifier != AServiceModifier.none) 
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#> 
 
 
public AsyncResult 
<#=service.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>) 
{ 
<# 
 SortedList parameters=new SortedList();  
 foreach (Argument element in service.Arguments) 
 { 
  parameters.Add(element.Name,null);  
 } 
         
        /* Checking if the state of the aspect is correct for the service  
           execution */ 
         
        /* Preconditions*/ 
 
        /* Valuations */ 
 
        /* Constraints*/ 
 
        /* Execution of a service sequence of the protocol */ 
         
        /* Update of the state of the protocol*/ 
    
        if(service.Modifier == AServiceModifier.none) 
 { 
#> 
   return null; 
<# 
 }  
      }/* end if (!(service is End))*/ 
   }/* endelse (service is Begin) */ 
}/*endforeach (AService service in aspect.AServices)*/ 
#> 

... 
 
 

Case Study 
Description 
 
 
This pattern is illustrated using the private service check of the aspect SMotion of the 
TeachMover architectural model. The representation of the check private service  in 
the PRISMA model and the C# code generated from this model by applying this 
pattern are presented following. 
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Graphical representation 

 
  

Result of the pattern execution 
 

... 
 

public delegate AsyncResult checkDelegate(int NewSteps, ref bool Secure); 
   
public AsyncResult check(int NewSteps, ref bool Secure) 
{ 
        /* Checking if the state of the aspect is correct for the service  
           execution*/ 
         
        /* Preconditions*/ 
 
        /* Valuations */ 
 
        /* Constraints*/ 
 
        /* Execution of a service sequence of the protocol*/ 
         
        /* Update of the state of the protocol */ 
 
 return null;     
} 

... 

Related Patterns 
Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13.  
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A.2.3.4. Transactions 
 

Pattern 8:Transactions 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    
 
 
 

 

 

 
Transformation 
Description 
 
This pattern details how to generate the C# code from a transaction.This generation 
si composed of three steps: 1) To generate the transaction definition, 2) To add the 
services that the transaction that it is composed of, 3) To obtain the sequence of 
execution. 
 
Plantilla 
... 
<# foreach(DSIC.ISSI.PrismaDSL.DomainModel.Transaction_ transaction  
             in aspect.Transactions) 
   { 
#> 
  public AsyncResult <#=transaction.Name#> 
    (<#=CommaSeparatedArguments(transaction.Arguments)#>) 
  { 
 
   // Modo In 
   if(ServiceIn) 
   { 
<#         
        /* Checking if the state of the aspect is correct for the service  
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           execution */ 
         
        /* Preconditions*/ 
 
        /* Valuations */ 
 
        /* Constraints*/ 
 
        /* Execution of a service sequence of the protocol */ 
         
        /* Update of the state of the protocol*/ 
 
 
/* invocation of the transaction sequence **/ 
 
foreach (AService serviceTrans in aspect.AServices) 
{ 
   foreach(StateHasState stateHasState in serviceTrans.StateHasState) 
   { 
      if(stateHasState.Transaction != null && stateHasState.Transaction.Name 
== transaction.Name) 
      { 
         if (!(stateHasState.Source is SubState)) 
         { 
      if (stateHasState.Target is SubState) 
      { 
#> 
  if (state == protocolStates.<#=stateHasState.Source.Name#>) 
  { 
  aspectStateCareTaker.StartTransaction(); 
  try 
  { 
<#  /* Processing of the first service of the transaction */ 
   if(stateHasState.Condition != String.Empty) 
   { 
#> 
   if(<#=stateHasState.Condition#>) 
   { 
<# 
   } 
                      /* Invocation of an OUT service */ 
   if(stateHasState.Modifier == TransitionModifier.Out) 
   { 
#> 
  
InvokeOutService("<#=stateHasState.PlayedRole.Interface.Name#>","<#=stateHasS
tate.PlayedRole.Name#>", 
                   
"<#=stateHasState.Service.Name#>",this.aspectStateCareTaker.ActiveTransaction
, 
                    
<#=CommaSeparatedNames(stateHasState.Service.Arguments)#>); 
<# 
   } 
    
                      /* Invocation of a private service of the aspect */ 
   if(stateHasState.PlayedRole==null) 
   { 
#> 
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<#=stateHasState.Service.Name#>(<#=CommaSeparatedNames(stateHasState.Service.
Arguments)#>); 
<# 
              } 
   /* Execution of a service IN because as a private  
                         service because it is associate to a transition of  
                          the protocol */ 
   if(stateHasState.Modifier == TransitionModifier.In) 
   { 
#> 
  
<#=stateHasState.Service.Name#>(<#=CommaSeparatedNames(stateHasState.Service.
Arguments)#>); 
 
<# 
             } 
#> 
   aspectStateCareTaker.CheckConsistence; 
<# 
   if(stateHasState.Condition!="") 
   { 
#> 
   } 
<# 
   } 
#> 
                      /* Update of the state */ 
   state = protocolStates.<#=stateHasState.Target.Name#>; 
<# 
 /* Processing of the rest of the services that the transaction is  
          composed of*/ 
 SubState subState = stateHasState.Target as SubState; 
 System.Collections.IList substateLinks= 
subState.GetElementLinks(subState.Source.TargetRole.Id); 
 StateHasState subStateHasState=null; 
 int i=0; 
 while( i<substateLinks.Count) 
 { 
   if(substateLinks[i] is StateHasState) 
   { 
      subStateHasState=(StateHasState)substateLinks[i]; 
      if(subStateHasState.Condition != "") 
      { 
#> 
   if(<#=subStateHasState.Condition#>) 
   { 
<# 
      } 
                      /* Invocation of an OUT service */ 
      if(subStateHasState.Modifier == TransitionModifier.Out) 
           { 
#> 
InvokeOutService("<#=subStateHasState.PlayedRole.Interface.Name#>", 
                 
"<#=subStateHasState.PlayedRole.Name#>","<#=subStateHasState.Service.Name#>",  
                 this.aspectStateCareTaker.ActiveTransaction, 
                 
<#=CommaSeparatedNames(subStateHasState.Service.Arguments)#>); 
<# 
     } 
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                      /* Invocation of a private service of the aspect */ 
     if(subStateHasState.PlayedRole==null) 
     { 
#>  
   
<#=subStateHasState.Service.Name#>(<#=CommaSeparatedNames(subStateHasState.Se
rvice.Arguments)#>); 
 
<# 
     } 
  /* Execution of a service IN because as a private service  
                  because it is associate to a transition of the protocol */ 
                     
                 if(subStateHasState.Modifier == TransitionModifier.In) 
    { 
#>  
    
<#=subStateHasState.Service.Name#>(<#=CommaSeparatedNames(subStateHasState.Se
rvice.Arguments)#>); 
 
<# 
           } 
#> 
  aspectStateCareTaker.CheckConsistence; 
<#                    
                 if(subStateHasState.Condition!="") 
          { 
#>  } 
 
<# 
    } 
#> 
  state = protocolStates.<#=subStateHasState.Target.Name#>; 
 
<# 
    i++; 
          
       
                 if(subStateHasState.Target is SubState) 
    { 
   subState = subStateHasState.Target as SubState; 
   substateLinks=  
subState.GetElementLinks(subState.Source.TargetRole.Id); 
   i=0; 
    } 
              } /*End if(substateLinks[i] is StateHasState)*/ 
 }/*End While(i<substateLinks.Count) */ 
 }/* End stateHasState.Target is SubState */ 
#> 
 } 
 catch 
 { 
  aspectStateCareTaker.SetConsistecy(false); 
 } 
 finally 
 { 
  aspectStateCareTaker.EndTransaction(); 
 } 
   } 
} 
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<# 
   } 
      } 
   } 
} 
availableStates.Clear(); 
}/*endforeach transacction*/ 
#> 
return null; 
} 

... 
 

Case Study 
Descripción 
 
This pattern is illustrated using the transaction dangerousChecking of the 
TeachMover architectural model. The representation of the dangerousChecking in 
the PRISMA model and the C# code generated from this model by applying this 
pattern are presented following. 
 
Graphical representation 

 

       

 
 



PRISMA Code Generation Patterns 

275 

Result of the pattern execution 
 
public AsyncResult dangerousChecking() 
{ 
 
  // Modo In 
  if(ServiceIn) 
  { 
 if( state != protocolStates.CHECKING 
 ) throw new 
InvalidProtocolStateException("SMotion","dangerousChecking"); 
 
 if (state == protocolStates.CHECKING) 
 { 
  aspectStateCareTaker.StartTransaction(); 
  try 
  { 
  controlSpeed(Steps, CurrentSpeed, Secure); 
  aspectStateCareTaker.CheckConsistence; 
  state = protocolStates.SubState12; 
  
 InvokeOutService("IQueryPos","QUERYPOS","controlSpeed",this.aspectStat
eCareTaker.ActiveTransaction,Steps, CurrentSpeed, Secure); 
  aspectStateCareTaker.CheckConsistence; 
  state = protocolStates.CHECKING; 
 } 
 catch 
 { 
  aspectStateCareTaker.SetConsistecy(false); 
 } 
 finally 
 { 
  aspectStateCareTaker.EndTransaction(); 
 } 
} 
} 
} 

Related Patterns 
Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13. 
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A.2.3.5. Checking The Service Execution 
Pattern 9: Checking The Service Execution 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    
 
 

 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code to check if the state of the protocol 
allows the execution of a service. 
 
Template 

... 
 
<#  
   bool isFirst = true; 
   System.Collections.SortedList availableStates=new 
System.Collections.SortedList(); 
   /* Tratamiento de estado correcto para los servicios*/ 
   foreach(StateHasState stateHasState in service.StateHasState) 
   { 
 if (isFirst) 
 { 
  isFirst = false; 
  availableStates.Add(stateHasState.Source.Name,null); 
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#>   
              if( state != protocolStates.<#=stateHasState.Source.Name#> 
 
<# } 
 else if(!availableStates.Contains(stateHasState.Source.Name)) 
   { 
#> 
      && state != protocolStates.<#=stateHasState.Source.Name#> 
 
<#            
                  availableStates.Add(stateHasState.Source.Name,null); 
   } 
 } 
#> 
 ) throw new 
InvalidProtocolStateException("<#=aspect.Name#>","<#=service.Name#>"); 
 
<# 

... 
 

Case Study 
Description 
 
This pattern is illustrated using the service currentPosition of the aspect FJoint of 
the TeachMover architectural model.  
 
Graphical representation 

 

 
 

Result of the pattern execution 
 

... 
 

public AsyncResult currentPosition(ref int Pos) 
{    

... 
 

 if( state != protocolStates.SubStateNewPos 
    && state != protocolStates.SubStateNotify 
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    && state != protocolStates.POS 
    && state != protocolStates.SubStateQuery 
  ) throw new InvalidProtocolStateException("FJoint","currentPosition"); 
 

... 
} 

... 
 

Related Patterns 
Pattern 6, Pattern 7, Pattern 8, and Pattern 14. 
 

A.2.4. Preconditions 
 
Pattern 10: Preconditions 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 
 

 
 

 
 

  
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a precondition.  
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Template 
... 

 
/* Comprobación de las Precondiciones*/ 
foreach(Precondition precondition in  service.Precondition) 
{ 
#> 
   if (!(<#=precondition.Condition.Replace("=","==").Replace("<>","!="). 
         Replace("<==","<=").Replace(">==",">=").Replace("and","&&"). 
         Replace("or","||").Replace("AND","&&").Replace("OR","||")#>)) 
   throw new 
InvalidPreconditionException("<#=aspect.Name#>","<#=service.Name#>"); 
 
<# 
} 
 

... 
 

Case Study 
Description 
 
This pattern is illustrated using a precondition associated to the service newPostion 
of the aspect FJoint of the TeachMover architectural model. The representation of 
the precondition in the PRISMA model and the C# code generated from this model 
by applying this pattern are presented following. 
 
Graphical representation 
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Result of the pattern execution 
 

... 
public AsyncResult newPosition(int NewSteps) 
{ 

... 
 

if (!(NewSteps > -200 || NewSetps < 200)) 
 throw new InvalidPreconditionException("FJoint","newPosition"); 

 
... 

} 
... 

Related Patterns 
Pattern 2, Pattern 5, Pattern 6, and Pattern 7. 
 

A.2.5. Valuations 
 

Pattern 11: Valuations 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 

 
 

 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a valuation. 
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Template 
 

... 
 
/* Valuations */ 
 
 
foreach(Valuation valuation in service.Valuations) 
{ 
 if(valuation.ServiceModifier != AServiceModifier.Out) 
 { 
  if (valuation.Condition == String.Empty) 
  { 
          foreach(string valuationItem in 
valuation.Assignment.Replace(":=","=").Split(',')) 
         { 
     string Item=valuationItem; 
     if(Item.StartsWith(" ")) 
    Item=Item.Substring(1); 
#> 
   <#=Item#>; 
<# 
           } 
  } 
  else 
  { 
#> 
          if 
(<#=valuation.Condition.Replace("=","==").Replace("<>","!="). 
                           
Replace("<==","<=").Replace(">==",">=").Replace("and","&&"). 
                           
Replace("or","||").Replace("AND","&&").Replace("OR","||")#>) 
   { 
<# 
  foreach(string valuationItem in   
                       valuation.Assignment.Replace(":=","=").Split(',')) 
  { 
   string Item=valuationItem; 
   if(Item.StartsWith(" ")) 
           Item=Item.Substring(1); 
#> 
    <#=Item#>; 
<# 
       } 
   if(valuation.Condition != String.Empty) 
   { 
#> 
   } 
 
<#   } 
  } 
 } 
} 

... 
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Case Study 
Description 
 
This pattern is illustrated using a valuation of the service currentPosition of the 
aspect FJoint of the TeachMover architectural model. The representation of this 
valuation in the PRISMA model and the C# code generated from this model by 
applying this pattern are presented following. 
 
Graphical representation 

 

            
 

Result of the pattern execution 
 

... 
public AsyncResult currentPosition(ref int Pos) 
{    

... 
   Pos=halfSteps; 

... 
} 

... 

Related Patterns 
Pattern 2, Pattern 5, Pattern 6, and Pattern 7. 
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A.2.6. Constraints 
Pattern 12: Constraints 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 
 

 
 

 

 
 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a constraint. 
 
Template 

... 
 
       /* Comprobación de las Restricciones de Integridad*/ 
 foreach(Constraint constraint in  aspect.Constraints) 
 { 
#> 
  if (!(<#=constraint.Condition.Replace("=","==").Replace("<>","!="). 
             Replace("<==","<=").Replace(">==",">=").Replace("and","&&"). 
             Replace("or","||").Replace("AND","&&").Replace("OR","||")#>)) 
  throw new 
InvalidIntegrityConstraintException("<#=aspect.Name#>","<#=service.Name#>"); 
 
<# 
 } 

... 
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Case Study 
Description 
 
This pattern is illustrated using a constraint of the aspect FJoint of the TeachMover 
architectural model. The representation of this contraint in the PRISMA model and 
the C# code generated from this model by applying this pattern are presented 
following. 
 
Graphical representation 

 

  
 

            
 

Result of the pattern execution 
 

... 
 
public AsyncResult newPosition(int NewSteps) 
{ 

... 
 

  if (!(halfSteps > -200 && halfSteps < 200)) 
     throw new InvalidIntegrityConstraintException("FJoint","newPosition"); 

 
... 

} 
 
 

... 
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Related Patterns 
Pattern 2, Pattern 6, Pattern 7, and Pattern 8. 
 

A.2.7. State of the Protocol 
Pattern 13:State of the Protocol 
PRISMA Metamodel in DSL Tools Graphical Metaphor 

 

 
 

 
 

 

 
 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code that permits the change of state 
after a service execution.  
 
Template 

 
... 
 

/* Update of the state of the protocol */ 
foreach(StateHasState stateHasState in service.StateHasState) 
{ 
  if (!(stateHasState.Source is SubState) &&  
       (stateHasState.Transaction ==null && (IsSequence > 0) ) ) 
  { 
 if (stateHasState.Target is SubState) 
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 { 
          SubState subState = stateHasState.Target as SubState; 
          System.Collections.IList substateLinks=   
           subState.GetElementLinks(subState.Source.TargetRole.Id); 
          StateHasState subStateHasStateProtocol=null; 
          int i=0; 
          while( i<substateLinks.Count) 
   { 
    if(substateLinks[i] is StateHasState) 
    { 
     subStateHasStateProtocol=(StateHasState)substateLinks[i]; 
     i++; 
                    
            if(subStateHasStateProtocol.Target is SubState) 
     { 
      subState = subStateHasStateProtocol.Target as SubState; 
      substateLinks=  
subState.GetElementLinks(subState.Source.TargetRole.Id); 
      i=0; 
      } 
     } /*End if(substateLinks[i] is StateHasState)*/ 
    }/*End While(i<substateLinks.Count) */ 
#> 
    if (state == protocolStates.<#=stateHasState.Source.Name#>   
 
<# 
        if (stateHasState.Condition != "") 
        { 
#>  
            && <#=stateHasState.Condition#>  
 
<#      } 
 
#>      ) 
  state = protocolStates.<#=subStateHasStateProtocol.Target.Name#>; 
 
<# 
  } 
  else { 
#> 
  if (state == protocolStates.<#=stateHasState.Source.Name#>  
 
<# 
          if (stateHasState.Condition != "") 
          {  
#>  
        && <#=stateHasState.Condition#>  
 
<#        } 
#>      )  
 state = protocolStates.<#=stateHasState.Target.Name#>; 
<# 
 } 
   } 
} 
 

... 
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Case Study 
Description 
 
This pattern is illustrated using the change of state that generates the service 
currentPosition of the aspect SMotion of the TeachMover architectural model. The 
representation of this change of state in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
 
Como ejemplo de código generado para actualizar el estado de un aspecto 
tras ejecutar un servicio, se puede observar el resultado obtenido en el 
servicio “currentPosition” del aspecto “SMotion”. 
 
Graphical representation 

 

            
 

Result of the pattern execution 
 

... 
 

public AsyncResult currentPosition(ref int Pos) 
{ 

... 
 
   if (state == protocolStates.CHECKING ) 
      state = protocolStates.CHECKING; 

... 
} 

... 

Related Patterns 
Pattern 2, Pattern 6, Pattern 7, and Pattern 8. 
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A.2.8. Processing of a service sequence 
Pattern 14: Processing of a service sequence 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 

 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a service sequence of the 
protocol. 
 
Template 

 
... 

 
/* Processing of the executions of services that belong to a service sequence 
of the protocol */ 
 
int IsSequence=0; 
foreach(StateHasState stateHasState in service.StateHasState) 
{ 
   if(stateHasState.Transaction == null ) 
   { 
 if (!(stateHasState.Source is SubState)) 
 { 
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  IsSequence++; 
  if (stateHasState.Target is SubState) 
  { 
   IsSequence--; 
   SubState subState = stateHasState.Target as SubState; 
#> 
  if (state == protocolStates.<#=stateHasState.Source.Name#>) 
  { 
   state = protocolStates.<#=stateHasState.Target.Name#>; 
<# 
  if(stateHasState.Condition != String.Empty) 
  { 
#> 
  if(<#=stateHasState.Condition#>) 
  { 
<# 
  } 
 System.Collections.IList substateLinks= 
subState.GetElementLinks(subState.Source.TargetRole.Id); 
        StateHasState subStateHasState=null; 
              int i=0; 
        while( i<substateLinks.Count) 
       { 
  if(substateLinks[i] is StateHasState) 
  { 
   subStateHasState=(StateHasState)substateLinks[i]; 
         if(subStateHasState.Condition != String.Empty) 
        { 
#>    if(<#=subStateHasState.Condition#>) 
    { 
<# 
        } 
   foreach(Argument element in 
subStateHasState.Service.Arguments) 
   {    
    if(!attributes.Contains(element.Name) && 
!parameters.Contains(element.Name)) 
    { 
     parameters.Add(element.Name,null); 
#> 
 <#=DomainToType(element.Domain)#> <#=element.Name#>=0; 
 
<#   
           } 
   } 
    /* A service OUT is invoked*/ 
    if(subStateHasState.Modifier == TransitionModifier.Out) 
    { 
#>   
   InvokeOutService("<#=subStateHasState.PlayedRole.Interface.Name#>",         
                    "<#=subStateHasState.PlayedRole.Name#>", 
                    "<#=subStateHasState.Service.Name#>", 
                    this.aspectStateCareTaker.ActiveTransaction, 
                    
<#=CommaSeparatedNames(subStateHasState.Service.Arguments)#>); 
<# 
     } 
     /* A private service of the aspect is invoked */ 
     if(subStateHasState.PlayedRole==null) 
     { 
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#> 
   <#=subStateHasState.Service.Name#>( 
       <#=CommaSeparatedNames4(subStateHasState.Service.Arguments)#>); 
 
<# 
     } 
     /* Executes a service IN as a private service of the aspect  
                   because it is in a transition of the protocol */ 
     if(subStateHasState.Modifier == TransitionModifier.In) 
     { 
#>  <#=subStateHasState.Service.Name#>( 
                      
<#=CommaSeparatedNames4(subStateHasState.Service.Arguments)#>); 
<#           } 
               
                  if(subStateHasState.Condition != String.Empty)  
       { 
#> 
    } 
<# 
     } 
#> 
  state=protocolStates.<#=subStateHasState.Target.Name#>; 
<# 
     i++; 
     if(subStateHasState.Target is SubState) 
     { 
   subState = subStateHasState.Target as SubState; 
   substateLinks=   
                         
subState.GetElementLinks(subState.Source.TargetRole.Id); 
   i=0; 
     } 
   } /*End if(substateLinks[i] is StateHasState)*/ 
       }/*End While(i<substateLinks.Count) */ 
      
             if(stateHasState.Condition != String.Empty) 
       { 
#>       } 
<# 
   } 
#> 
 } 
<# 
 } 
     } 
   } 
} 

... 
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Case Study 
Description 
 
This pattern is illustrated using the sequence of services after the service MoveOk of 
the aspect CProcressSUC of the TeachMover architectural model. The 
representation of the sequence of services  in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
 
Graphical representation 

 

 
            
 

Result of the pattern execution 
 

... 
 

public AsyncResult moveOk() 
{ 
  // Modo In 
  if(ServiceIn) 
  { 
 if( state != protocolStates.COOR 
     && state != protocolStates.SubStateUpPos 
 ) throw new InvalidProtocolStateException("CProcessSUC","moveOk"); 
 if (state == protocolStates.COOR) 
 { 
  state = protocolStates.SubStateOkMove; 
  int NewSteps=0; 
       
 InvokeOutService("IUpdatePos","UPDATEPOS","newPosition",this.aspectSta
teCareTaker.ActiveTransaction,NewSteps); 
  state=protocolStates.SubStateUpPos;      
   
 InvokeOutService("IJoint","JOINT","moveOk",this.aspectStateCareTaker.A
ctiveTransaction,null); 
  state=protocolStates.COOR; 
 } 
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 return null;    
    
  } 
  // Modo Out 
  else 
  { 
 return 
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut,"
moveOk",this.aspectStateCareTaker.ActiveTransaction,null); 
  } 
    
} 

... 

Related Patterns 
Pattern 2, Pattern 5, Pattern 6, and Pattern 7. 

A.3. SIMPLE ARCHITECTURAL ELEMENTS: COMPONENTS AND 
CONNECTORS 

 
Pattern 15: Simple Architectural Elements 
PRISMA metamodel in DSL Tools Graphical Metaphor 
   

  

 

 

 
 

Transformation  
Description 
 
This pattern details how to generate the C# code from a simple architectural 
element. Specifically, it only generates the structure of the architectural model, the 
internal code of this structure, that is, ports, aspects and weaving, is generated by 
other patterns related to it.  
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Template 
 
 

... 
using System; 
using System.Reflection; 
 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace <#=this.Model.Name#> 
{ 
<# 
foreach (ArchitecturalElement architecturalElement in 
this.Model.ArchitecturalElements) 
{ 
  if (architecturalElement is Component || architecturalElement is Connector) 
  { 
#> 
  [Serializable] 
  public class <#=architecturalElement.Name#> : ComponentBase  
<# 
     if (architecturalElement is Connector)  
     {  
#> 
     , IConnector  
<#  
     }  
#>  
  { 
    public <#=architecturalElement.Name#> 
     (string name<#=ArchitecturalElementArguments(architecturalElement)#> ) : 
base(name) 
    {    
<# 

/* Aspects */ 
/* Weavings */ 
/* Ports */ 

#> 
    } 
  } 
<# 
  }/* endif (architecturalElement is Component || architecturalElement is 
Connector)*/ 

... 
 

Case Study 
Description 
 
     This pattern is illustrated using the component Actuator of the TeachMover case 
study. The representation of the Actuator in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
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Graphical representation  
 

          

 
 

Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
 [Serializable] 
 public class Actuator : ComponentBase   
 { 
  public Actuator(string name ) : base(name) 
  {    
                 /* Aspects */ 
                 /* Weavings */ 
                 /* Ports */  
  } 
 } 
} 

... 

Related Patterns 
Pattern 16, Pattern 17 and Pattern 18. 
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A.4. COMPLEX ARCHITECTURAL ELEMENTS: SYSTEMS 
 
Pattern 16: Systems 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 

 

 

  
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a system.  
 
Template 

 
... 

using System; 
using System.Reflection; 
 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace <#=this.Model.Name#> 
{ 
<# 
foreach (ArchitecturalElement architecturalElement in 
this.Model.ArchitecturalElements) 
{ 
  if (architecturalElement is Component || architecturalElement is Conector) 
  { 
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... 
  } 
  else 
  { 
    if (architecturalElement is Sistem) 
    { 
      Sistem system = architecturalElement as Sistem; 
#> 
  [Serializable] 
  public class <#=architecturalElement.Name#> : SystemBase 
  { 
  public <#=architecturalElement.Name#>(string 
name<#=ArchitecturalElementArguments(architecturalElement)#>) : base(name) 
  { 
<# 

/* Aspects */ 
/* Weavings */ 
/* Ports */ 

 
#> 
   } 
  } 
<# 
   }/*if (architecturalElement is Sistem)*/ 
  } 
 }/* endforeach (ArchitecturalElement architecturalElement in 
this.Model.ArchitecturalElements) */ 
#> 
} 

 
... 

 
 

Case Study 
Description 
 
This pattern is illustrated using the system Joint of the TeachMover architectural 
model. The representation of the Joint in the PRISMA model and the C# code 
generated from this model by applying this pattern are presented following. 
 
Graphical representation 
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Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
 [Serializable] 
 public class Joint : SystemBase 
 { 
 
  public Joint(string name) : base(name) 
  {                  
                 /* Aspects */ 
                 /* Weavings */ 
                 /* Ports */  
  } 
 } 
} 

... 

Related Patterns 
Pattern 17, Pattern 18, and Pattern 19. 
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A.5. IMPORTATION OF ASPECTS FROM AN ARCHITECTURAL 
ELEMENT 

 
Pattern 17: Aspects Importation 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 

 

 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from the importation of aspects 
that makes an architectural element.  
 
Template 

 
 

... 
<# 
 foreach (Aspect aspect in architecturalElement.Aspects) 
 {  
#> 
 AddAspect(new <#=aspect.Name#>(<#=AspectArguments(aspect)#>)); 
  
<# 
 } /* endforeach (Aspect aspect in this.Model.Aspects)*/ 
#> 

... 
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Case Study 
Description 
 
This pattern is illustrated using the importation of the aspect SMotion from the 
connector CnctJoint of the TeachMover architectural model. The representation of 
this aspect importation in the PRISMA model and the C# code generated from this 
model by applying this pattern are presented following.    
 
Graphical representation 

 

    
 

Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
  [Serializable] 
  public class CnctJoint : ComponentBase , IConnector     
  { 
 
 public CnctJoint(string name, int IniMin, int IniMax, int IniPos ) : 
base(name) 
 {    
   AddAspect(new CProcessSUC());   
   AddAspect(new SMotion(IniMin, IniMax, IniPos));    

... 
       } 
  } 
} 

... 
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Related Patterns 
Pattern 14, and Pattern 15. 
 

A.6. WEAVINGS 
 

Pattern 18: Weavings 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from weaving. 
 
Template 

... 
<# 
foreach (Weaving weaving in architecturalElement.Weavings) 
{ 
 if( weaving.Operator.Equals(WeavingOperator.before) ||   
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           weaving.Operator.Equals(WeavingOperator.after) ||   
           weaving.Operator.Equals(WeavingOperator.insteadof) ) 
 { 
#>     
 AddWeaving(GetAspect(typeof(<#=weaving.SourceAspect.Concern#>Aspect)),  
                   
"<#=weaving.SourceService.Name#>","<#=weaving.APoincutParameters#>",   
                   WeavingType.<#=weaving.Operator.ToString().ToUpper()#>,   
                   
GetAspect(typeof(<#=weaving.PointcutAspect.Concern#>Aspect)),  
                   "<#=weaving.PointcutService.Name#>",  
                   "<#=weaving.AAdviceParameters#>"); 
 
<# 
       } 
 else 
 { 
  //El separador dentro de la condición debe ser un espacio. 
  string parametro_condicion=weaving.Condition.Split(' ')[0]; 
  string operador=weaving.Condition.Split(' ')[1]; 
  string valor_condicion=weaving.Condition.Split(' ')[2]; 
#>    
  WeavingType weavingType =  
              WeavingType.<#=ChangeWeavingType(weaving.Operator.ToString())#>  
                         ("<#=parametro_condicion#>", 
                          
WeavingType.OperatorType.<#=ChangeOperator(operador)#>, 
                          <#=valor_condicion#>);  
  
 AddWeaving(GetAspect(typeof(<#=weaving.SourceAspect.Concern#>Aspect)), 
                   
"<#=weaving.SourceService.Name#>","<#=weaving.APoincutParameters#>",  
                   weavingType,   
                   
GetAspect(typeof(<#=weaving.PointcutAspect.Concern#>Aspect)),   
                   "<#=weaving.PointcutService.Name#>",  
                   "<#=weaving.AAdviceParameters#>"); 
 
<#         
 } 
}/* endforeach (Weaving in architecturalElement.Weavings) */ 
#> 

... 
 

Case Study 
Description 
 
 
This pattern is illustrated using the BeforeIf weaving betweem the aspects 
CProcessSUC and CnctJoint of the TeachMover architectural model. The 
representation of this weaving in the PRISMA model and the C# code generated 
from this model by applying this pattern are presented following. 
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Graphical representation 

 
Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
  [Serializable] 
  public class CnctJoint : ComponentBase , IConnector     
  { 
 
 public CnctJoint(string name, int IniMin, int IniMax, int IniPos ) : 
base(name) {    

... 
  
WeavingType weavingType= 
WeavingType.BEFOREIF_VALUE("Secure",WeavingType.OperatorType.Equality,true);
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AddWeaving(GetAspect(typeof(SafetyAspect)), "check","NewSteps,Secure", 
weavingType,  
           GetAspect(typeof(CoordinationAspect)), "moveJoint", 
"NewSteps,Speed"); 
     

... 
       } 
  } 
} 

... 

Related Patterns 
Pattern 14, and Pattern 15. 
 

A.7. PORTS 
 

Pattern 19:Ports 
PRISMA Metamodel in DSL Tools Graphical Metaphor 
    

 

 
 

 
 

Transformation 
Description 
 
This pattern details how to generate the C# code from a port of an architectural 
element.  
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Template 
 

... 
<#   
foreach (Port port in architecturalElement.Ports) 
{ 
 if(port.PlayedRole !=null) 
 { 
#>    
        
InPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>", 
"<#=port.PlayedRole.Name#>");  
 
OutPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>", 
"<#=port.PlayedRole.Name#>");  
    
<# 
 } 
 else if(port.IA_PlayedRole !=null) 
 { 
#>   
InPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>", 
            "<#=port.IA_PlayedRole.Name#>");  
 
OutPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>",   
             "<#=port.IA_PlayedRole.Name#>");     
    
<# } 
 }/* endforeach (Port port in architecturalElement.Ports) */ 
#> 

... 
 

Case Study 
Description 
This pattern is illustrated using the port PUpPos of the CnctJoint connector of the 
TeachMover architectural model. The representation of the PUpPos  in the 
PRISMA model and the C# code generated from this model by applying this pattern 
are presented following. 
 
Graphical representation 
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Result of the pattern execution 
 

... 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace RobotJoint 
{ 
  [Serializable] 
  public class CnctJoint : ComponentBase , IConnector     
  { 
 
 public CnctJoint(string name, int IniMin, int IniMax, int IniPos ) : 
base(name) {    

... 
  
        InPorts.Add("PUpPos", "IUpdatePos", "UPDATEPOS");  
  OutPorts.Add("PUpPos", "IUpdatePos", "UPDATEPOS");   
  

... 
       } 
  } 
} 

... 

Related Patterns 
Pattern 14, and Pattern 15. 
 


