
i

Model-Driven Development of

Aspect-Oriented Software
Architectures

Jenifer Pérez Benedí

Department of Information Systems and Computation
Polytechnic University of Valencia

A thesis submitted in partial fulfilment of the requirements for the
degree of Master in Software Engineering, Formal Methods and

Information Systems

Supervisors: Prof. Dr. Isidro Ramos Salavert
 Dr. Jose Ángel Carsí Cubel

September 2007

ii

This thesis has been funded by the Department of Science and Technology (Spain) under the
National Program for Research, Development and Innovation, META (Models,
Environments, Transformations and Applications) project, MOMENT (a technological
framework for the model management in the Model Engineering) subproject, TIN2006-
15175-C05-01.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..15

1.1. MOTIVATION .. 16
1.2. OBJECTIVES OF THE THESIS .. 18
1.3. RESEARCH METHODOLOGY OF THE THESIS.......................... 19
1.4. STRUCTURE OF THE THESIS ... 20

CHAPTER 2 PRELIMINARIES ...23
2.1. SOFTWARE ARCHITECTURES .. 23

2.1.1. Component ...27
2.1.2. Connector ...28
2.1.3. Port ...29
2.1.4. Connection..30
2.1.5. System ..30
2.1.6. Composition Relationship ..30

2.2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT................... 31
2.2.1. Base Code...33
2.2.2. Join Point..33
2.2.3. Pointcut...34
2.2.4. Advice ..34
2.2.5. Aspect...35

2.3. TELE-OPERATED SYSTEMS: THE TEACHMOVER ROBOT... 35
2.3.1. The Tele-operation Domain..36
2.3.2. The TeachMover Robot..37
2.3.2.1. The morphology of the TeachMover Robot ..37
2.3.2.2. The Software Architecture of the TeachMover Robot...............................39

2.4. CONCLUSIONS.. 41
CHAPTER 3 STATE OF THE ART..43

3.1. ASPECT-ORIENTED APPROACHES AT THE
ARCHITECTURAL LEVEL .. 44

3.1.1. PCS: The Perspectival Concern-Space Framework..45
3.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented
 Platform ...46
3.1.3. Superimposition..48
3.1.4. TRANSAT..49

iv

3.1.5. ASAAM: Aspectual Software Architecture Analysis Method51
3.1.6. AVA: Architectural Views of Aspects ...52
3.1.7. AspectLEDA ..53
3.1.8. AOCE: Aspect-Oriented Component Engineering...54
3.1.9. Component Views ..55
3.1.10. Aspectual Components ..55
3.1.11. Caesar ..56
3.1.12. JASCO...57
3.1.13. FUSEJ..57
3.1.14. JAC..58
3.1.15. JIAZZI ...59

3.2. COMPARISON OF ASPECT-ORIENTED SOFTWARE
ARCHITECTURES ... 60
3.3. CONCLUSIONS.. 66

CHAPTER 4 PRISMA BACKGROUND ...69
4.1. THE PRISMA MODEL.. 69
4.2. THE PRISMA METAMODEL.. 75

4.2.1. THE PACKAGE “TYPES”..77
4.2.1.1. The Package “Interfaces”...77
4.2.1.2. The package “Aspects”..78
 - The package “Attributes” ..81
 - The package “Services”...83
 - The package “Constraints” ..85
 - The package “Preconditions” ..85
 - The package “Valuations” ...86
 - The package “PlayedRoles” ..87
 - The package “Protocols” ...89
4.2.1.3. The package “ArchitecturalElements”...90
4.2.1.4. The package “Weaver” ..92
4.2.1.5. The package “Components” ..94
4.2.1.6. The package “Connectors” ..95
4.2.1.7. The package “Attachments” ..96
4.2.1.8. The package “Systems” ...97
4.2.1.9. The package “Bindings” ..98
4.2.1.10. The package “Ports” ..99
4.2.2. THE PACKAGE “ARCHITECTURE SPECIFICATION”101

4.3. CONCLUSIONS.. 102
CHAPTER 5 COORDINATION ..111

5.1. INTRODUCTION ... 112
5.2. ASPECT ORIENTED CONNECTORS.. 113

5.2.1. Non-Aspect-Oriented, connector less ADLs ..113

v

5.2.2. Non-Aspect-Oriented ADLs with connectors...114
5.2.3. Aspect-Oriented, connector-less ADLs ..115
5.2.4. Aspect-Oriented ADLs with connectors...116

5.3. CONNECTORS IN PRISMA... 117
5.3.1. Architectural Element...117
 - Formalization: Architectural Element ...117
5.3.2. Ports..119
 - Formalization: Ports ...119
5.3.3. Aspect...120
 - Formalization: Aspects ...120
5.3.4. Weavings ..121
 - Formalization: Weavings..122

5.4. ANALYSIS OF THE PROPOSAL .. 127
5.5. CONCLUSIONS.. 130

CHAPTER 6 MODEL-DRIVEN DEVELOPMENT.................................133
6.1. INTRODUCTION ... 133
6.2. THE MDD SUPPORT OF PRISMA ... 135

6.2.1. PRISMA in MOF ...136
6.2.2. PRISMA transformations ...137

6.3. FOLLOWING MDD WITH PRISMA CASE 139
6.3.1. PRISMA CASE development: Domain Specific Language Tools
 (DSL Tools) ...140
6.3.2. The PRISMA Type Modelling Tool: A) From the PRISMA Metamodel to
 the PRISMA Type Models...141
6.3.3. The PRISMA Model Compiler for Types: 1)Transformation: Code and
 AOADL generation patterns for types ...145
6.3.4. The PRISMA Configuration Modelling Tool: B)From PRISMA Type
 Models to PRISMA Configuration Models ..150
6.3.5. PRISMA Model Compiler Instances: 2) Transformation: Code and
 AOADL generation patterns for instances...153

6.4. CONCLUSIONS.. 154
CHAPTER 7 VERIFICATION ..157

7.1. INTRODUCTION ... 157
7.2. VERIFICATION IN PRISMA ... 159

7.2.1. Verification from the PRISMA metamodel..159
7.2.2. Kinds of constraints..160
7.2.2.1. Hardconstraints ..160
7.2.2.2. Weakconstraints...160
7.2.3. Kinds of verification...161
7.2.3.1. Partial Verification...161

vi

7.2.3.2. Complete Verification ...161
7.3. VERIFICATION IN PRISMA CASE ... 161

7.3.1. Hardconstraints in PRISMA CASE..162
7.3.2. Weakconstraints in PRISMA CASE ..166
7.3.3. Partial and complete verification in PRISMA CASE...................................167

7.4. RELATED WORKS.. 168
7.5. CONCLUSIONS.. 169

CHAPTER 8 COTS: Commercial Off-The-Shelf171
8.1. INTRODUCTION ... 171
8.2. THE SOFTWARE ARCHITECTURE OF A TEACHMOVER’S
JOINT USING COTS .. 173
8.3. INTEGRATING COTS INTO THE PRISMA MODEL 174

8.3.1. COTS as components ...175
8.3.2. COTS as aspects ...175

8.4. USING COTS DURING THE MDD PROCESS 177
8.4.1. The use of COTS in the PRISMA CASE modeling tool177
8.4.2. The use of COTS in the PRISMA CASE model compiler180

8.5. RELATED WORKS.. 183
8.6. CONCLUSIONS.. 184

CHAPTER 9 THE PRISMA MDD METHODOLOGY187
9.1. 1ST STAGE: DETECTION OF ARCHITECTURAL ELEMENTS
AND ASPECTS... 188

9.1.1. Identification of Architectural Elements ..189
9.1.2. Identification of Crosscutting-Concerns...190

9.2. 2ND STAGE: TYPE ARCHITECTURAL MODELLING 190
9.2.1. STEP 1: Interfaces..191
9.2.2. STEP 2: Aspects ...192
9.2.2.1. The safety aspect..193
9.2.2.2. The coodination aspect ..195
9.2.3. STEP 3: Simple Architectural Elements...196
9.2.4. STEP 4: Complex Architectural Elements ...200

9.3. 3RD STAGE: TYPE CODE GENERATION 203
9.4. 4TH STAGE: CONFIGURATION MODELLING............................ 204
9.5. 5TH STAGE: CONFIGURATION CODE GENERATION 205
9.6. 6TH STAGE: CODE EXECUTION.. 205

vii

9.7. DISCUSSION... 206
9.8. CONCLUSIONS.. 210

CHAPTER 10 CONCLUSIONS AND FURTHER RESEARCH.............211
10.1. CONCLUSIONS.. 211
10.2. FURTHER RESEARCH .. 222

BIBLIOGRAPHY..227

APPENDIX A PRISMA CODE GENERATION PATTERNS.................249
A.1. INTERFACES ... 249
A.2. ASPECTS ... 252
A.2.1. Attributes ... 254
A.2.2. Protocol .. 257
A.2.3. Services... 259
A.2.3.1. Begin ... 259
A.2.3.2. Public Services ... 263
A.2.3.3. Private Services ... 267
A.2.3.4. Transactions... 270
A.2.3.5. Checking The Service Execution ... 276
A.2.4. Preconditions ... 278
A.2.5. Valuations .. 280
A.2.6. Constraints... 283
A.2.7. State of the Protocol .. 285
A.2.8. Processing of a service sequence .. 288
A.3. SIMPLE ARCHITECTURAL ELEMENTS: COMPONENTS

 AND CONNECTORS ... 292
A.4. COMPLEX ARCHITECTURAL ELEMENTS: SYSTEMS 295
A.5. IMPORTATION OF ASPECTS FROM AN ARCHITECTURAL

 ELEMENT ... 298
A.6. WEAVINGS... 300
A.7. PORTS.. 303

viii

ix

INDEX OF FIGURES

Figure 1. The TeachMover Robot ..37
Figure 2. Joints of the TeachMover robot..38
Figure 3. Architectural Elements of the TeachMover Software Architecture40
Figure 4. A Perspectival Concern-Space in Overview [Kan03]45
Figure 5. Superimposition [Sih03]...49
Figure 6. Concern Diagram of AVA [Kat03]...53
Figure 7. Unified Component Architecture [Suv05b] ..58
Figure 8. Crosscutting-concerns in PRISMA architectures ...70
Figure 9. Black box view of an architectural element..71
Figure 10. White box view of an architectural element ...71
Figure 11. Communication between the white box and the black box views73
Figure 12. Attachments ..73
Figure 13. Systems ...74
Figure 14. Main packages of the PRISMA metamodel ..76
Figure 15. The package Types of the PRISMA metamodel ..76
Figure 16. The package Interfaces of the PRISMA metamodel..77
Figure 17. The package SignatureOfService of the PRISMA metamodel78
Figure 18. The sub-packages of the package Aspects of the PRISMA metamodel...........79
Figure 19. The metaclass Aspect of the package Aspects of the PRISMA metamodel79
Figure 20. Constraints of the metaclass Aspect ...81
Figure 21. The package Attributes of the PRISMA metamodel..81
Figure 22. The package KindsOfAttributes of the PRISMA metamodel...........................82
Figure 23. The package Derivations of the PRISMA metamodel.....................................83
Figure 24. The package Services of the PRISMA metamodel ..84
Figure 25. The package KindsOfServices of the PRISMA metamodel84
Figure 26. The package Constraints of the PRISMA metamodel85
Figure 27. The package Preconditions of the PRISMA metamodel86
Figure 28. The package Valuations of the PRISMA metamodel87
Figure 29. The package PlayedRoles of the PRISMA metamodel....................................88
Figure 30. The package Protocols of the PRISMA metamodel ..89
Figure 31. The subpackages of the package ArchitecturalElements of the PRISMA
metamodel 91
Figure 32. The package ArchitecturalElements of the PRISMA metamodel....................92
Figure 33. The package KindsOfArchitecturalElements of the PRISMA metamodel.......92
Figure 34. The package Weaver of the PRISMA metamodel ...93
Figure 35. Constraints of the metaclass Weaving..94
Figure 36. The package Components of the PRISMA metamodel....................................94
Figure 37. The package Connectors of the PRISMA metamodel95
Figure 38. The package Attachments of the PRISMA metamodel....................................96
Figure 39. The package Systems of the PRISMA metamodel...98
Figure 40. The package Bindings of the PRISMA metamodel ...99
Figure 41. The package Ports of the PRISMA metamodel...100
Figure 42. Constraints of the metaclass Port...100

x

Figure 43. The package Architecture Specification of the PRISMA metamodel102
Figure 44. Sensor-Actuator coordination by using a Connector-less ADL114
Figure 45. Sensor-Actuator coordination by using an ADL with Connectors115
Figure 46. Sensor-Actuator coordination by using a connector-less Aspect-Oriented ADL
(AOADL) 115
Figure 47. Sensor-Actuator coordination by using the PRISMA ADL...........................116
Fig. 49 (a). The black box representation ..118
Fig. 49 (b). PRISMA specification ...118
Figure 48. The RobotConnector Connector...118
Figure 49. Formalization of a Service ...122
Figure 50. Formalization of a service controlled by a weaving.....................................124
Figure 51. Translation for beforeif weaving patterns ..125
Figure 52. Translation for the weaving in the RobotConnector example127
Figure 53. Meta-Object Facility (MOF) layers and PRISMA models137
Figure 54. MDD from the PRISMA Metamodel to Applications....................................138
Figure 55. PRISMA CASE ...140
Figure 56. Toolbox of DSL Tools...141
Figure 57. Definition of Architectural Elements and Aspects in the DomainModel of DSL
 142
Figure 58. PRISMA ToolBox..143
Figure 59. The Visual Studio Project of PRISMA..144
Figure 60. PRISMA Type Modelling Tool..144
Figure 61. PRISMA Code Generation Templates ..146
Figure 62. The generated AOADL and C# code of the component Actuator149
Figure 63. Model Persistence and Configuration Language Information151
Figure 64. Generation and Execution of the PRISMA Modelling Configuration Tool ..152
Figure 65. XML document for storing instances..153
Figure 66. Generic GUI of PRISMA Applications ...154
Figure 67. Graphical representation of an aspect in PRISMA CASE............................163
Figure 68. Relationship verification using graphical modelling primitives...................163
Figure 69. The partial C# class of the relationship ArchitecturalElementHasAspect ...165
Figure 70. The partial C# class of the metaclass Component..166
Figure 71. Error List..167
Figure 72. Verification Menu...167
Figure 73. Contextual menu of an inteface ..168
Figure 74. COTS as components..175
Figure 75. COTS as aspects ...176
Figure 76. Integration of the TeachMover.dll into a PRISMA architectural model178
Figure 77. PRISMA architectural model of a Joint..179
Figure 78. COTS Execution Process in PRISMACASE ...181
Figure 79. The C# code that is automatically generated from the IACOT aspect182
Figure 80. The methodology of the PRISMA approach following the MDD paradigm .188
Figure 81. The ISUC interface ...191
Figure 82. The safety aspect SMotion ..194
Figure 83. The coordination aspect CProcessSUC..195
Figure 84. The component Actuator...197
Figure 85. The component Sensor..198

xi

Figure 86. The connector SUCConnector..198
Figure 87. The system SUC (Simple Unit Controller)..201
Figure 88. The system MUC (Mechanism Unit Controller)...202
Figure 89. The system RUC (Robot Unit Controller) ..203
Figure 90. The architectural model of the TeachMover...203
Figure 91. The configuration MUC for the TeachMover ...205
Figure 92. Reusability of aspects ...208
Figure 93. Resusability of architectural elements..208

xii

xiii

INDEX OF TABLES

Table 1. First comparison of aspect-oriented software architecture approaches.............64
Table 2. Second comparison of aspect-oriented software architecture approaches66
Table 3. Translation set of π-processes for beforeif weaving pattern125

xiv

Introduction

15

CHAPTER 1
1. INTRODUCTION

The work presented in this thesis of master is an approach that takes advantage of the Mode-

Driven Development approach for developing complex software systems. This approach

improves the software quality and reduces the time and cost invested in its development and

maintenance processes. It is supported by the results obtained in the thesis of Pérez [Per06c]: a

model, a language, a methodology, and a Computer-Aided Software Engineering (CASE) tool

prototype. The model and the tool defined in this work are called PRISMA and PRISMA

CASE, respectively. The PRISMA model combines two approaches to define software

architectures: the Component-Based Software Development (CBSD) and the Aspect-Oriented

Software Development (AOSD). The main contributions of the model are the way that it

integrates both approaches to take their advantages as well as the definition of a formal Aspect-

Oriented Architecture Description Language (AOADL). The AOADL is independent of

technology and is based on a formal language and formalisms that preserve non-ambiguity for

applying code generation techniques.

In this thesis of master, a step forward on the work of [Per06c] is done. A complete MDD

support for the PRISMA approach is defined. It follows the Paradigm of Automatic

Programming [Bal85] by applying the Model-Driven Development (MDD) approach. In

addition to the code generation, the MDD approach defined in this thesis of master defines

Model-Driven Development of Aspect-Oriented Software Architectures

16

verification and reusability properties associated to the MDD process of aspect-oriented

software architecture.

The structure of this chapter is as follows: Section 1 introduces the motivation of this work.

Section 2 explains the main goals of this thesis of master, section 3 presents the research

methodology that has been followed during the development of the thesis, and section 4

summarizes the structure of the thesis.

1.1. MOTIVATION
Complex structures, non-functional requirements, heterogeneity, scalability, traceability,

reusability and maintainability are leading properties that current software systems need to deal

with. In the last few years, these properties have increased the time and the staff invested in the

development and maintenance processes of software. As a result, there is greater interest in

research areas to reduce the time and the cost invested in these software system processes. In

order to achieve the milestones of software products and to overcome the competitiveness of

the market, models for the software development, techniques to improve reusability and

processes to support automation, traceability and maintainability of software have been

proposed.

Some new approaches have recently emerged in order to improve software development.

They try to improve the early stages of the software life cycle by automating their activities as

much as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD

is a software development paradigm that is based on models that use automatic generation

techniques in order to obtain the software product. MDD is included within Model–Driven

Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be

represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The

use of models to develop software provides solutions that are independent of technology,

whose source code can be obtained by means of automatic code generation techniques for

different technologies and programming languages. The high level of abstraction that models

provide permits working with metamodels in the same way as with specific models or domain-

specific models.

Introduction

17

The complexity, heterogeneity, scalability and reusability properties of current software

systems have led to considering the analysis of the software structure as an important phase of

the software life cycle. As a result, in the last two decades, a new research area called Software

Architectures has emerged. Software architectures are presented as a solution for the design and

development of complex software systems.

The Component-Based Software Development (CBSD) approach is used in the field of

software architectures. This approach decomposes the software system into reusable entities

called components. Components provide services to the rest of the system by encapsulating

their functionality (black boxes). As a result, software architectures can be described preserving

the reusability of their components.

 The reusability of software allows the same software artefact to be used in different places

of the same application or in different applications. The artefact is only programmed one time

and can be used more than once. This reusability reduces the development time of software

systems. Also, reused software artefacts guarantee their quality and suitable functionality

because they have been tested and used before. As a consequence, the COTS (Commercial

Off-The-Shelf) importation has acquired relevance, because tools that allow the reuse of their

components and the COTS importation achieve the highest reuse and quality code.

Another approach that has emerged to improve reusability is the Aspect-Oriented Software

Development (AOSD) approach. This approach allows for the separation of concerns by

modularizing crosscutting concerns into a separate entity called aspect. As a result, the same

aspect can be reused by different software artefacts, which are usually, objects.

The automatic code generation from models reduces the cost and time of the development

process as well. Nowadays, there are many CASE tools that are able to generate applications

following the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are

widely-known as model compilers. They automatically generate the application code and the

database schema from the conceptual schema of a software system. The automatic generation

can be complete as in Oblog Case [Ser94], OlivaNova (OO-Method/CASE [Pas97]), or it

can be partial, as in Rational Rose [RAT07], System Architect [SYS07], Together [TOG07]

Model-Driven Development of Aspect-Oriented Software Architectures

18

and others. However, since these model compilers follow the Object-Oriented Paradigm, the

need for developing model compilers that follow the CBSD and/or AOSD approaches has

emerged. The combination of the CBSD and AOSD reusability and the automatic code

generation achieves higher reduction in the time and cost of the development process than

using only one of these approaches.

In the software life cycle, the maintenance process is as important as the development

process due to the fact that the requirements of software systems are continuously evolving.

The sources of these changes can be caused by several factors. First of all, the requirements

specifications are inaccurate and ambiguous and these deficiencies promote misunderstandings

from the very beginning of the software life cycle. An incorrect requirements specification can

be produced by an inexperienced analyst, by a lack of accuracy in the presentation of the

customer’s needs or by a misunderstanding between the analyst and the customer because of

the semantic gap in their vocabularies. This means that the software product will require

continuous changes until the software that the customer really wanted is finally produced. The

traceability among the different stages of the software life cycle must be preserved in order to

ensure quality maintenance of software products.

An important challenge in the software engineering area is the integration of software

architectures, CBSD, AOSD and MDD in a unique approach in order to support the

development and maintenance of complex software systems in an efficient way.

1.2. OBJECTIVES OF THE THESIS
The main goal of this thesis is to provide a complete support for the development of PRISMA

models following the MDD approach, i.e., the support for the development of technology-

independent aspect-oriented software architectures. In addition, the PRISMA CASE must

make this software development support feasible.

The main goal of the thesis can be divided into several specific objectives:

 To extend the related works presented in [Per06c] of the proposals that integrate the

aspect-orientation approach and ADLs in order to take into account in this comparison the

MDD support that these proposals provide.

Introduction

19

 To analyze, define and formalize a coordination model that improves the reusability,

maintainability and traceability of aspect-oriented software architectures.

 To define the MDD process of the PRISMA approach

 To define a verification process associated to the proposed MDD process. This verification

process must be flexible and intuitive in order to be an important help for the user during

the modelling stage of the MDD process.

 To introduce the use of COTS in the PRISMA MDD process. This introduction must

preserve the PRISMA properties to be compliant with the PRISMA model and to

maintain the PRISMA advantages.

 To define a methodology to follow the proposed MDD and verification processes and to

provide support for the use of COTS.

 To modify and extend the PRISMA CASE Tool in order to support the PRISMA MDD

process, its methodology, verification and the use of COTS.

1.3. RESEARCH METHODOLOGY OF THE THESIS
The research methodology that has been applied in order to fulfil the objectives proposed in this

thesis follows a classical methodological strategy often called the “feasibility research strategy”.

This methodology departs from a generic and conceptual hypothesis that is presented as a

contribution in the area in which the thesis is developed. This hypothesis is based on a previous

analysis of the state of art where the contribution of the thesis is justified. This thesis departs

from the following hypothesis: Is it possible to define and implement software aspect-oriented

software architectures following a Model-Driven Development Process?. In addition, the thesis

departs from the results previously obtained from the thesis [Per06c] and the set of objectives

that have been established in order to answer this question. From this starting point, the main

goal of this thesis is to reach to a software engineering solution that copes with the set of

specific objectives that have been established in section 1.2 .

Model-Driven Development of Aspect-Oriented Software Architectures

20

1.4. STRUCTURE OF THE THESIS
The remainder of this thesis is organized in the following chapters:

 Chapter 2: Preliminaries

This chapter provides an introduction to the role of software architectures in the software

life cycle and their main concepts. It also establishes a conceptual base for the aspect-

oriented paradigm. Finally, it is introduced the case study that has been chosen to illustrate

the contributions of this thesis.

 Chapter 3: State of the Art

This chapter extends the analysis of [Per06c] of the most relevant approaches that integrate

aspects in software architectures. It includes the MDD support as part of the set of

desirable properties that aspect-oriented software architecture approaches should fulfil.

 Chapter 4: PRISMA Background

This chapter introduce the PRISMA model and metamodel as the basis of the rest of the

thesis of master. Therefore, this thesis is self-content.

 Chapter 5: Coordination

This chapter discuss the interest of using aspect-oriented connectors in detail, justifying the

relevance of the PRISMA model and its merits with regard to other proposals, especially

to provide a complete MDD support. It is described the concrete structure of connectors in

PRISMA, and it is also defined the formalization of the relevant PRISMA concepts for

coordination.

 Chapter 6: Model-Driven Development

This chapter presents the MDD proposal for the PRISMA approach and how to be

supported by PRISMA CASE Tool.

Introduction

21

 Chapter 7: Verification

This chapter presents how the PRISMA approach provides a complete support for the

verification of aspect-oriented architectural models following the MDD approach. The

verification proposal and how PRISMA CASE makes feasible this verification are

presented in detail.

 Chapter 8: Commercial Off-The Self

This chapter presents a proposal for integrating COTS into aspect-oriented architectural

models that are developed and maintained following the Model-Driven Development

(MDD) approach. In addition, this chapter presents how PRISMA CASE supports the use

of COTS in the PRISMA model.

 Chapter 9: The PRISMA MDD Methodology

This chapter presents the PRISMA methodology in order to develop aspect-oriented

software architectures following the PRISMA MDD process. This methodology takes

advantage of the PRISMA reusability properties (coordination model, modelling and

reusability facilities, the use of COTS), the graphical specification of PRISMA models,

and the verification process proposed by the PRISMA approach.

 Chapter 10: Conclusions and Further Research

This chapter presents the main contributions of the thesis and future research work.

 Appendix A: PRISMA CODE-GENERATION PATTERNS

This appendix presents the patterns that allow the transformation from models to C# code.

Model-Driven Development of Aspect-Oriented Software Architectures

22

Preliminaries

23

CHAPTER 2
2. PRELIMINARIES

Nowadays, software systems are becoming more and more difficult to develop due to their

complex structures, non-functional requirements and distributed and dynamic nature. Two

approaches of software development have emerged to overcome these needs: software

architectures and Aspect-Oriented Software Development. This thesis of master is focused in

the development of applications that combine these two approaches by following the MDD

approach.

In this chapter, the basis that is necessary to understand the rest of the chapters is provided. As a

result, an introduction about software architectures and AOSD is presented; as well as the

explanation of the main concepts of both approaches. In addition, the case study that is used to

illustrate the contributions of this thesis is presented.

2.1. SOFTWARE ARCHITECTURES
The complexity of current software systems has led computer community to recognize the

analysis of software structure as an important phase of the software life cycle. As a result in the

last decades, a new research area called Software Architecture has emerged to deal specifically

with this phase. The software architecture discipline has emerged due to the natural increase in

size and complexity of current software systems. An inaccurate architectural design leads to the

failure of large software systems. For this reason, the design, specification, and analysis of the

Model-Driven Development of Aspect-Oriented Software Architectures

24

structure of these software systems have become critical issues in software development

[Gar01].

Software architectures are presented as a solution for the design and development of large,

complex software systems. They allow us to describe the structure of a software system by

hiding the low-level details and abstracting the high level important features [Per92]. This

structure is usually represented in terms of computational elements and their interactions. As a

result, software architectures make software systems simpler and more understandable

[Gar95a].

The software architecture discipline is capable of performing the following functions:

analyze and describe the properties of systems at a high level of abstraction; validate software

requirements; estimate the cost of the development and maintenance processes; reuse software,

and establish the bases and guides for the design of large complex software systems [Per92]. At

the same time, software architectures should be adaptable and should provide support for the

reuse of architectural elements and of partial or complete software architecture descriptions in

the new software architecture specifications. Thus, new designs are not started from scratch and

only the specific features of the new systems are created from the beginning [Per92].

However, despite the attempt of the IEEE to standardize the software architecture discipline

[IEE00], there is no consensus about the definition of software architecture and the different

concepts and approaches to be used in this field. The main drawback of this deficiency is the

fact that the concept of software architecture is used in different ways and sometimes, it is

really difficult to know what the exact meaning is. As a result, it is common to refer to several

definitions in order to provide a complete notion of the concept of software architecture.

There are some definitions of software architecture that are general and non-exclusive;

however at the same time, they are incomplete, non-explicit, and imprecise definitions. An

early definition that was defined by Perry and Wolf is:

<< A software architecture is a set of architectural (or, if you will, design)

elements that have a particular form.>>

Dewayne Perry and Alex Wolf [Per92]

Preliminaries

25

Another modern definition that it is typically used to define software architecture is the

definition presented by Bass, Clements and Kazman.

<<The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them.>>

 Len Bass, Paul Clements and Rick Kazman [Bass03]

However, this definition is also imprecise and incomplete because of a lot of questions

emerge from this definition: For example, What is a structure?, What is an external visible

property?, and so forth.

The definition of Garlan and Perry is also used to define software architecture; in fact, this is

the definition proposed by the Software Engineering Institute (SEI).

<<The structure of the components of a program/system, their interrelationships,

and principles and guidelines governing their design and evolution over time.>>

 David Garlan and Dewayne Perry [Gar95a]

The definition that is recommended by the ANSI/IEEE Std 1471-2000 is in essence a small

variation of Garlan and Perry’s definition.

<<Architecture is defined by the recommended practice as the fundamental

organization of a system, embodied in its components, their relationships to each

other and the environment, and the principles governing its design and evolution.>>

 ANSI/IEEE Std 1471-2000 [IEE00]

There are other proposals that are not exactly definitions of software architecture but which

are more specific and address the issues of the software architecture discipline. Some of them

are the following:

Model-Driven Development of Aspect-Oriented Software Architectures

26

<< Beyond algorithms and data structures of the computation; designing and

specifying the overall system structure emerge as a new kind of problem. Structural

issues include gross organization and global control structure; protocols for

communication, synchronization, and data access; assignment of functionality to

design elements; physical distribution; composition of design elements; scaling and

performance; and selection among design alternatives.>>

 David Garlan and Mary Shaw [Gar93]

<< An architecture is the set of significant decisions about the organization of a

software system, the selection of the structural elements and their interfaces by which

the system is composed, together with their behaviour as specified in the

collaborations among those elements, the composition of these structural and

behavioural elements into progressively larger subsystems, and the architectural style

that guides this organization---these elements and their interfaces, their

collaborations, and their composition>>

 Jan Booch, Rumbaugh and Jacobson [Boo99]

From all these different definitions, it is possible to conclude that there are two principle

kinds of definitions: those that define the concept of software architecture and those that define

the specification of software architectures. The former are characterized by being general and

non-specific and the latter are characterized by being an enumeration of issues related to the

description of software architectures. However, there is a common concept in both kinds of

definitions; they are both concerned with the notion of structure and how to organize software.

Software architecture descriptions are specified in a formal way using ADLs. Despite the

diversity of the different ADLs that have been proposed to date, all of them share a common

conceptual basis. They have a common set of elements to design the structure of software

systems. The elements that provide a common foundation for software architecture

descriptions are introduced in this section.

Preliminaries

27

2.1.1. Component
The concept of component is the basis of software architecture and the concept that ADLs

share par excellence. A component is a computational element that permits users to structure

the functionality of software systems. It has a high level of encapsulation and it is only possible

to interact with it by means of its interfaces. Most ADLs permit the definition of more than one

interface for each component. The interface or multiple interfaces of a component define the

functionality that the component requires and provides. In this sense, components are

considered as black boxes.

The concept of component is not only used in the field of software architecture. For this

reason, it is sometimes difficult to know the exact meaning of the concept, and there is no

consensus about the definition of component and how to identify the components that make up

a software system. There are two tendencies: one is implementation-oriented and the other is

more generic. The first one covers definitions that are related to the fact that a component is a

package of code [DSo99]; whereas the second one defines a component as an artefact that has

been developed to be reused. This second definition is abstract and generic, and a component

could be a use case, a class or another element that emerges during the development process.

The definition of component in the software architecture field is also in this category. There are

a lot of definitions for component; the most widely used definition in the software architecture

field is the one proposed by Szyperski.

<< A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties>>

 Clemens Szyperski [Szy98]

Another well-known definition is the one of Meyer based on the “seven criteria”:

<<A component is a software element that:

1. May be used by other software elements

Model-Driven Development of Aspect-Oriented Software Architectures

28

2. May be used by clients without the intervention of the component’s developer

3. Include a specification of all dependencies

4. Include a specification of the functionality it offers

5. Is usable on the sole basis of its specifications

6. Is composable with other components

7. Can be integrated into a system quickly and smoothly>>

 Bertran Meyer[MEY07] [Szy00]

This “seven criteria” definition of component has been refined over time by the following

one:

<<A component is a software element (modular unit) satisfying the following

three conditions:

1. It can be used by other software elements, its“clients”.

2. It possesses an official usage description, which is sufficient for a client author

to use it.

3. It is not tied to any fixed set of clients. >>

 Bertran Meyer [Mey03]

Despite the fact that D’Souza advocates the module of code notion for the definition of

component, he also provides a generic definition for component:

<<A component is a coherent package of software artefacts that can be

independently developed and delivered as a unit and that can be composed,

unchanged, with other components to build something larger>>

 Desmond D’Souza[DSo99]

2.1.2. Connector
The concept of connector emerges from the need to separate the interaction from the

computation in order to obtain more reusable and modularized components and to improve the

level of abstraction of software architecture descriptions.

Preliminaries

29

Connectors represent the interactions of software systems. They define the coordination

process among components, that is, the rules that govern the interaction of components.

Interfaces are the way to interact with them and these interfaces represent the roles that each

one of the components plays in the coordination process.

Mary Shaw [Sha94] defines the notion of connector as follows:

<<Connectors are the locus of relations among components. They mediate

interactions but are not “things” to be hooked up (they are, rather, the hookers-up).

Each connector has a protocol specification that defines its properties. These

properties include rules about the types of interfaces it is able to mediate for,

assurances about properties of the interaction, rules about the order in which things

happen, and commitments about the interaction such as ordering, performance,

etc.>>

 Mary Shaw [Sha94]

2.1.3. Port
The concept of port is related to architectural elements, components, and connectors. Ports are

the points through which architectural elements can interact with the rest of a software

architecture. They are the parts into which the interface of an architectural element is divided.

Their main function is to preserve the black box view of architectural elements and to

publish the behaviour offered and required by architectural elements. They have been used in

different ways; some approaches consider a port as a service and other approaches as a process

with several services. This last way of defining ports, not only defines the services of ports, but

also the conditions of how and when they can be required and provided.

Different names have been used to refer to this concept. Some of them use the name of port

to refer to ports of architectural elements, while other approaches use the name of port to refer

to the ports of components and the name of role for ports of connectors. Other less frequently

used names are players or name of interfaces.

Model-Driven Development of Aspect-Oriented Software Architectures

30

In this thesis, it will be used the generic name of port to refer to both component and

connectors ports.

2.1.4. Connection
Connections are used to constrain the “placement" of architectural elements; that is, they

constrain how the different elements may interact and how they are organized with respect to

each other in the architecture [Per92].

They establish the communication channels among architectural elements. They connect a

component port with a connector port or with a port of another component [Luc95a],

depending on whether the connectors are considered first-order citizens or not, respectively. In

this thesis, since connectors are considered first-order citizens, a connection is established

between a component port and a connector port. These connections are usually called

attachments.

2.1.5. System
Most architectural approaches need to provide abstraction mechanisms. These mechanisms

permit definition of elements of higher granularity and increase the modularity, composition,

and reuse of software systems. Software composition provides flexible support and a reduction

in complexity for the development process of software systems [Nie95].

These needs and advantages have led to a wide variety of architectural models and their

ADLs to provide the concept of complex component. A complex component is a component

that is composed by other architectural elements. Systems represent architectural configurations

that are made up of connectors and components that can be built in a hierarchical way. For this

reason, a system can be composed of other subsystems [And03].

2.1.6. Composition Relationship
Compositional relationships emerge with systems due to the fact that it is necessary for systems

to communicate with their architectural elements. These connections are different from

attachments because they are used to connect architectural elements of different levels of

granularity. As a result, the semantics of these connections is compositional, whereas

Preliminaries

31

attachments have a communication semantics that is not compositional (the same level of

granularity). These relationships are usually called Bindings.

Bindings establish the mappings between the internal and external interfaces of a system

[Gar01]. As a result, bindings establish a connection between a system port and a port of one of

its architectural elements.

2.2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT
The nature of current software systems has led to software being more complex, its modularity

is an essential feature in being more understandable, reusable and maintainable. In addition,

non-functional requirements of software systems are acquiring as much relevance as functional

requirements. As a result, the support of software modularity and non-functional requirements

are essential challenges to be faced in software development. The application of Software

Engineering principles is necessary in order to cope with these challenges. A consolidated

principle of Software Engineering is Separation of Concerns (SoC), which was introduced in

[Par72].

The SoC principle promotes dealing with the different concerns of a software system

individually. [Dij76] demonstrated that this division provides better results and offers many

advantages. A suitable application of SoC provides a reduction in software complexity and an

improvement in the modularity, reuse and maintenance of software artefacts.

In the last decade, Aspect-Oriented Programming (AOP) has emerged as an innovative

way of applying SoC in software development [Kiz97], [Elr01]. Its proposal is different from

previous ones (packages, modules, classes, interfaces, patterns, etc). The concerns that are dealt

with individually in AOP are those that crosscut a software system, instead of those that can be

perfectly located as software units of a system. As a result, AOP introduces a new notion of

concern. The IEEE defines concerns as:

<<…those interests which pertain to the system’s development, its operation or

any other aspects that are critical or otherwise important to one or more

stakeholders>>

 ANSI/IEEE Std 1471-2000 [IEE00]

Model-Driven Development of Aspect-Oriented Software Architectures

32

Tarr et al. define concern as a predicate over software units [Tar99]. The crosscutting-

concerns concept comes from this notion of concern. Software systems are usually crosscut by

common concerns of a domain system. These crosscutting-concerns are spread throughout the

software units of the system. As a result, the crosscutting-concerns are repeated in all the

software units that they affect, and these concerns are tangled with the other concerns that also

modify the same software unit. The repetition of crosscutting-concerns throughout software

systems increases the volume of code and complicates the maintenance that preserves the

consistency of changes. Furthermore, tangled concerns make the maintenance of a specific

concern more costly because it is so difficult to locate the correct place to introduce the

changes. As a result, AOP proposes the separation of the crosscutting-concerns of software

systems into separate entities, which are called aspects. This separation avoids the tangled code

of software and allows the reuse of the same aspect in different software units (objects,

components, modules, etc.).

AOP applies the notion of aspect to cleanly structure software systems in order to easily

develop, understand, customize, evolve, and maintain software systems. It was introduced to

the research community by the works of Gregor Kizcales [Kiz97], [Kiz01].

AOP separates the crosscutting concerns into aspects. It introduces the existence of two

kinds of software units: components and aspects. These are clearly defined in [Kiz97] from the

point of view of a non-aspect-oriented programming language:

<< A component, if it can be cleanly encapsulated in a generalized procedure

(i.e. object, method, procedure, API). By cleanly, we mean well localized, and easily

accessed and composed as necessary. Components tend to be units of the system’s

functional decomposition, such as image filters, bank accounts and GUI widgets.

An aspect, if it can not be cleanly encapsulated in a generalized procedure.

Aspects tend not to be units of the system’s functional decomposition, but rather to be

properties that affect the performance or semantics of the components in systemic

ways. Examples of aspects include memory access patterns and synchronization of

concurrent objects and so forth. >>

Preliminaries

33

 Kizcales et al. [Kiz97]

The origin of AOP is the programming language AspectJ [ASP07a]. AspectJ is currently

the most widely used language for aspect-oriented programming. But, crosscutting-concerns

arise throughout the software life cycle. For this reason, despite the fact that AOP emerged

from the implementation level, its use is being extended to all the stages of the software life

cycle. As a result, Aspect-Oriented Software Development (AOSD) has emerged to gain the

advantages that aspects provide in every stage of software development.

AOP introduces a set of new concepts that are essential for correctly understanding this new

paradigm. These concepts are introduced in this section to establish a conceptual basis for

aspect-oriented programming.

2.2.1. Base Code
AOP introduces a clear differentiation between the base and aspect codes. The base code is

composed of the software units (modules, objects, components) of an application, which have

been obtained as a result of a functional decomposition. However, the aspect code is composed

of the aspects that have been implemented to encapsulate the crosscutting-concerns of the same

application.

2.2.2. Join Point
Join points are situated in the base code of an application. A join point is a semantic concept

that defines a well-defined point of the execution of a base code. This point can extend the base

code with the aspect code, thereby altering the execution flow of the original application. As a

result, join points allow us to suitably coordinate the base code with the aspect code.

In the AOP taxonomy defined by [Dou05], two approaches for specifying join points are

detected: one approach marks the join points using labels [Wal03], [Dan04], and the other one

uses the language constructors [Col00], [Dou01], [Dou2a], [Dou02b], [Dou04a], [Dou04b].

The former introduces a pre-processing procedure that slows the code injection process down

at run-time. The latter is the most widely used way of defining join points. Consequently, this is

the approach that has been adopted for defining join point in this thesis. This approach usually

Model-Driven Development of Aspect-Oriented Software Architectures

34

matches join points with method calls. The different kinds of join points that this approach uses

are presented and classified in [Kiz01].

As [Kiz97] defines, a join point is not an explicit language constructor, it is the semantics of

the language constructor. In other words, the join point is associated to a language constructor;

however, the different instantiations of this constructor will be different join points at run-time.

A clear example is a joint point that is associated to a method call. The different invocations of

this method are different join points with different semantics. The semantics is different

because it depends on the object that has invoked the method, on the instantiation of its

arguments, and so forth.

2.2.3. Pointcut
From the previous section, it can be deduced that an application has a large quantity of join

points in its base code. However, not all join points of the application are interesting or relevant

for injecting aspect code. As a result, the relevant join points for this injection of aspect code

must be selected. The mechanism that permits this selection is the pointcut.

A pointcut is a set of join points, which are candidates for injecting aspect code into base

code at run-time, and their multiple instantiations. Pointcuts perform the weaving between the

base code and the aspect code by capturing joinpoints.

The most widely used pointcut model is the AspectJ model [Dan04], [Jag06a], [Jag06b],

[Läm02], [Wal03], [Wan04]. There are also other pointcut models that use more general

execution patterns, such as stack of events, tree of events, sequence of events, etc [Col00],

[Dou2a], [Dou04a], [Mas03].

2.2.4. Advice
An advice defines the code that should be executed at the join points of a specific pointcut.

Advices define additional code for the join points that have been selected by pointcuts. As

[Bru04] cites, the advice code is the profiling code of an aspect-oriented program and the

compiler profiles the join points by executing the advice code at run-time. This process by the

compiler consists of inserting or replacing the base program code is called weaving. The

execution of code depends on the kind of advice. There are three main kinds of advice:

Preliminaries

35

 Before: The before advice adds code to the base program before the join point. As a result,

the code of the advice is executed before the code of the join point.

 Around: The around advice substitutes the code of the join point. As a result, the code of

the advice is executed instead of the code of the join point.

 After: The after advice adds code to the base program after the join point. As a result, the

code of the advice is executed after the code of the join point.

o After returning: This kind of after advice is executed when the execution of

the join point finishes correctly.

o After throwing: This kind of after advice is executed when the join point

throws an exception. As a result, the code of the advice is executed after the

throwing of the join point.

As [Wan04] concludes, an aspect-oriented program is composed of a base program and

some advices.

2.2.5. Aspect
An aspect is a language constructor that encapsulates a crosscutting-concern. An aspect is

linked to one or more methods of the base code by means of pointcuts. For this reason, an

aspect is composed of pointcuts and an advice. As a result, aspects specify whether their

execution will be before, after or around a method of the base code by means of the advice that

is associated to pointcuts. Despite the fact that aspects are usually pairs of pointcuts and

advices, they can have their own state [Dou05]. The definition of aspect proposed by Kizcales

is the following:

<< Aspects are units of modular crosscutting implementation, composed of

pointcuts, advice, and ordinary Java member declarations. >>

 Gregor Kizcales et al. [Kiz01]

2.3. TELE-OPERATED SYSTEMS: THE TEACHMOVER
ROBOT

There is a wide variety of domains that can take advantage of the PRISMA approach for

developing software systems. PRISMA has been put into practice in the tele-operation domain,

Model-Driven Development of Aspect-Oriented Software Architectures

36

which unlike academic examples, provides real problems that must be solved in real industrial

systems. This domain has been chosen because it offers a framework for applying software

engineering techniques.

The main purpose of this section is to provide an introduction to the tele-operation domain

as well as to present the suitability of tele-operation systems to apply an aspect-oriented

software architecture approach following the MDD paradigm. In addition, the specific robot

that has been completely developed using PRISMA MDD proposal is presented. This robot is

used throughout the thesis in order to illustrate the PRISMA MDD approach and its main

concepts.

2.3.1. The Tele-operation Domain
Tele-operation systems are control systems that depend on software to perform their

operations. Designing these systems is a difficult task that must integrate mechanical and

electrical elements with software components in the same system. They are used for tele-

operating mechanisms (robots, vehicles, and tools) that handle inspection and maintenance

tasks. This thesis focuses specifically on robotic tele-operated systems. Tele-operated robots are

software intensive systems that are used to perform tasks that human operators cannot carry out

due to the dangerous nature of the tasks or the hostile nature of the working environment.

The importance of considering the software architecture in robotic tele-operated systems is

well known [Cos00]. However, despite the fact that robotic tele-operated systems usually have

many common requirements in their definition and many common components in their

implementation, it is impossible for a single architecture to be flexible enough to cope with all

the variability of the domain. Therefore, a further step is needed to provide a flexible and

extensible architectural framework to develop systems with different requirements and

commonalities. There have been numerous efforts to provide developers with frameworks such

as [Bru02], [Sch01] and [Vol01]. All of them make very valuable contributions that simplify

the development of systems. However, the way that the component-oriented approach has been

applied may reduce some of its benefits. These frameworks are object-oriented or component-

oriented frameworks that rely on object-oriented technologies and that highly depend on a

Preliminaries

37

given infrastructure (Linux O.S. and the C++ language). As a result, a technology-independent

framework that will follow MDD is necessary. This framework should provide mechanisms to

define abstract software architectures that can be mapped into specific software architectures as

well as mechanisms to dynamically evolve the interaction patterns among components. In

addition, tele-operated systems have a wide range of common concerns in their domain. These

concerns can be modelled as aspects in order to take advantage of AOSD. Some of these

candidate aspects of the tele-operation domain are distribution, safety, mobility, security,

coordination, etc.

Most robotic tele-operated system has strong requirements in terms of adaptability to

different devices, operator safety, response time, dynamic reconfiguration, etc. As a result,

PRISMA has been applied to these kinds of systems in order to cope with these requirements.

A complete development of a small-scale robot has been done. This robot is called

TeachMover [TEA07].

2.3.2. The TeachMover Robot
The TeachMover robot is a robotic arm that is frequently used to teach the fundamentals of

robotics (see Figure 1). This robot was specially designed for the purpose of simulating the

behaviour of large and heavy industrial robots.

Figure 1. The TeachMover Robot

2.3.2.1. The morphology of the TeachMover Robot
The TeachMover is formed by a set of joints that permit the movement of the robot. These

joints are: Base, Shoulder, Elbow and Wrist. In addition, it has a Tool to perform different tasks

Model-Driven Development of Aspect-Oriented Software Architectures

38

(see Figure 2). The movements that the robot is able to perform are: the rotation of the robot

using the base, the articulation of the elbow and shoulder joints, and the rotation of the wrist. In

this case, the Tool is a gripper, whose open and close actions allow the robot to pick up and

deposit objects.

Figure 2. Joints of the TeachMover robot

The robot has six electric step motors for driving the direction of the movements of each

joint. These motors perform the movements through gears that are joined by a cable system.

The TeachMover can be moved at a specific speed by means of half-steps or inverse

cinematics. A half-step movement moves the robot using the number of teeth that a gear of a

joint must be moved as a measure. And, an inverse cinematic movement moves the robot using

a specific point in the space as a measure. These features, together with the features of the

gripper, allow the robot to move objects from an initial position to a final one.

In addition, safety directives of the robot require its movements to be checked to make sure

that they are safe for the robot and the environment that surrounds it. The internal safety of the

robot is preserved by establishing a set of constraints that forbid certain movements that will

break the gears of the robot due to the position of the gears inside the robot. These constraints

are defined by establishing minimum and maximum values for the movements of each joint.

These values are specified in degrees as follows:

Preliminaries

39

 Base: ± 90°

 Shoulder: + 144°, - 35°

 Elbow: + 0° , -149°

 Gradient of the Wrist: ± 90°

 Rotation of the Wrist: ± 180°

 Opening of the gripper: 0 inches, + 3 inches (7,62 cm.)

The robot has a sensor to pick up objects without breaking them. The weight of the objects

that the robot is able to carry when its arm is stretched out is 450 grammes. Furthermore, the

gripper presses the objects with a maximum pressure of 14 Newtons. Finally, the speed of

movements fluctuates between 0 or 7 inches per second (178 mm/s) depending on the load that

the robot carries when the movement is performed.

It is important to mention that the movements of the robot are commanded by an operator

from a computer. This communication between the computer and the robot is possible by

means of the serial/RS232C port. In order to stop the robot in situations of emergency, the

robot has an interruption mechanism for disconnecting the power of the robot by means of

software. This is possible because this interruption mechanism is connected to the parallel port

of the computer.

All these features allow the TeachMover robot to simulate the movements of most of the

industrial tele-operated robots that are currently in use. This robot allows the testing and

verification of new solutions to be applied to more complex robotic systems in the future.

2.3.2.2. The Software Architecture of the TeachMover Robot
The TeachMover architecture has different levels of abstraction for its components, connectors

and the interactions among them. The lowest abstraction level of the robot architecture has

sensors and actuators as basic components, which are communicated with the hardware joints

of the robot. The functionality of the actuators and sensors are the following:

 Actuator: An actuator sends commands to a joint of the robot. These commands are

performed by the joint or the tool.

Model-Driven Development of Aspect-Oriented Software Architectures

40

 Sensor: A sensor reads the results of the commands in order to know whether or not they

have been performed successfully.

Figure 3. Architectural Elements of the TeachMover Software Architecture

An actuator and a sensor are coordinated by means of a connector. These three architectural

elements (actuator, sensor, and SUCconnector) are encapsulated inside a complex component

called the Simple Unit Controller (SUC) (see Figure 3). However, two special SUCs have been

identified in order to take into account the peculiarities of the wrist joint and the tool. The SUC,

the Wrist SUC and the Tool SUC must be composed and coordinated in order to form the

TeachMover Architecture

RUC

OPERATOR

OperatorConnector

MUC

RUCConnector

Tool

SUC

MUCConnector

Wrist

Actuator

SUCConnector

Sensor

Actuator

WristConnector

Sensor

Actuator

ToolConnector

Sensor

n

Preliminaries

41

complete structure and functionality of a tele-operated robot. This composition generates

different levels of granularity (see Figure 3):

 Mechanism Unit Controllers (MUCs): This architectural element type represents the

arm of the robot, which is composed of the SUC and Wrist SUC coordinated by means of

a connector.

 Robot Unit Controllers (RUCs): This architectural element represents the robot, which is

composed of MUCs and Tool SUCs coordinated by means of a connector.

 The Architectural Model: This level represents the interactions between operators and

robots through a connector.

2.4. CONCLUSIONS
This chapter has detailed the preliminary notions of this thesis of master. The origins of AOP

and software architectures and their main concepts have been presented. This introduction is

necessary in order to understand the PRISMA approach, and as a consequence, the MDD

process of PRISMA that is proposed in this thesis.

In addition, the robotic tele-operated systems are presented. Robotic tele-operated systems

have been chosen as application domain for the PRISMA MDD approach, since these provide

real systems that need real solutions for their development and maintenance processes.

Specifically, PRISMA has been applied to the TeachMover tele-operated robot, which is also

used in this thesis to illustrate the PRISMA MDD approach as well as its methodology.

Model-Driven Development of Aspect-Oriented Software Architectures

42

State of The Art

43

CHAPTER 3
3. STATE OF THE ART

The relevance that non-functional requirements have acquired in current software systems has

led to the emergence of crosscutting concerns in software architectures. These crosscutting-

concerns are spread throughout software architectures.

There is a wide variety of ADLs that have been proposed in order to specify software

architectures, such as ACME [Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99],

Darwin [Mag95], [Mag96], MetaH [Bin96], [Ves96][Bin96], Rapide [Luc95b], [Luc95a],

SADL [Mor95], [Mor97], UniCon [Sha95] [Sha96], Weaves [Gor91], [Gor94]and Wright

[All97a],[All97b]. An interesting comparison with respect to these ADLs is presented in

[Med00]. In addition to this work by Medvidovic and Taylor, there are other interesting

surveys on ADLs such as the ones presented in the PhD. Thesis by Cuesta [Cue02], which

covers the analysis of other ADLs such as Conic [Kram85], [Mag89], DURRA [Bar01], AML

[Wyd01], and Armani [Mon98]. It is also important to mention other approaches that are

especially prepared to support evolution in software architectures, such as CommUnity

[And03], [Fia04], LEDA [Can00], Pilar [Cue02], GUARANA [Oli98] or R-RIO [Loq00].

These ADLs do not explicitly distinguish the conventional architectural elements from

concerns that crosscut multiple architectural elements of software architectures. One of the few

approaches that deals with the separation of concerns is the work by Jose Fiadeiro. This work

addresses the separation of distribution, mobility [Fia04], contex-awareness [Lop05] and

coordination [And03] in software architectures. However, none of these original ADLs

supports the separation of concerns by means of the aspect-orientated approach at the

Model-Driven Development of Aspect-Oriented Software Architectures

44

architectural level. For this reason, several approaches have emerged to cover this need either

by extending original ADLs or by creating new ADLs from scratch.

There some approaches that extend MDD by providing AOSD mechanisms during their

different stages [Aks05], [Kul03]. Other works that are related to the development of aspect-

oriented applications following MDD are [Sim05] and [Ama05]. However, none of these

aspect-oriented approaches take into account software architectures.

The combination of AOSD and software architectures has created two new challenges:

how to define the concept of aspect at the architectural level and how to integrate aspects and

architectural elements in a suitable way. A few of these approaches that combine AOSD and

software architectures give support for a complete development of software. In fact, they do not

provide a complete MDD support for developing aspect-oriented software architectures.

In this chapter, the analysis presented in [Per06c] is extended by taking into account the

MDD support that provide the most relevant approaches that deal with AOSD and Software

Architectures. In this case, the analysis is also made by starting from the premise that an aspect-

oriented software architecture approach should completely support the development and

maintenance processes of software following the MDD approach. As a result, the set of

desirable properties that aspect-oriented software architecture approaches should fulfil are also

extended by introducing the MDD property. Finally, the comparison of these approaches using

these new properties is presented and discussed.

3.1. ASPECT-ORIENTED APPROACHES AT THE
ARCHITECTURAL LEVEL

The incorporation of aspects at the architectural level implies considering what an aspect is at

this level. An aspect is a new entity for modularizing and encapsulating specifications in

software architectures. As a result, it is necessary to define how aspects are related to the rest of

the main concepts of software architectures, especially to components and connectors. It is also

necessary to define the kind of relationships (reference, connection, composition, etc) that they

have with these elements.

State of The Art

45

In this section, the most important works of the area are analyzed paying special attention to

the way that they introduce the notion of aspect in software architectures, how they coordinate

aspects and architectural elements, their MDD support and their main properties. Due to the

fact that there has not been much work done at the architectural level, not only are ADL

extensions analyzed, but also aspect-oriented component models that could be applied at the

architectural level.

3.1.1. PCS: The Perspectival Concern-Space Framework
The Perspectival Concern-Space (PCS) [Kan03] approach is based on the MDSOC model

[Har03] and IEEE-Std-1471. It uses UML for modelling concerns at the architectural level.

PCS describes concerns by means of architectural views. These views consist of one or more

models and one or more diagrams. A perspective in PCS is defined as “a way of looking” at a

multidimensional space of concerns from a specific viewpoint. As a result, this approach

defines a perspectival concern-space as a projection of a concern-space that involves a set of

related concerns, their reifications into models, and the realization of these models (see Figure

4).

Figure 4. A Perspectival Concern-Space in Overview [Kan03]

The PCS approach uses UML to specify aspect-oriented software architectures, and it

extends UML by defining a profile that supports the modelling of aspects and components. The

Model-Driven Development of Aspect-Oriented Software Architectures

46

profile simulates aspects by means of architectural connectors based on the idea that aspects act

as coordinators among components to intercept their interactions and then replace or add

behaviour either before or after them [Kan02b]. As a result, PCS is based on an original ADL

without connectors, whose aspect-oriented behaviour is introduced by means of connectors.

Components and aspects are modelled by means of UML classes that have been profiled in

order to have ports through publishing services. In addition, aspect classes are distinguished by

component classes by means of the <<aspect>> stereotype [Kan02a]. A disadvantage of this

combination of aspects and software architectures is the loss of the advantages that connectors

provide to ADLS and the opportunity to specify how concerns crosscut the coordination rules

of connectors.

The PCS approach is supported by the ConcernBase tool [Kan03]. This tool provides

mechanisms for modelling software systems, and it also allows the translation from UML

models to the SADL language [Mor97].

Technological independence is a clear advantage that this approach offers. Yet, at the same

time, it is a drawback of PCS because it does not provide support to translate its models to a

programming language or to trace from models to implementation. As a result, PCS supports

MDD in a partial way. It provides mechanisms for modelling software systems, and it also

allows the translation from UML models to the SADL language, but it does not translate its

models to a programming language in order to be executed on a technological platform.

3.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented
Platform

CAM/DAOP is an approach that supports the separation of concerns from the design to the

implementation stages of the software life cycle. It is composed of the CAM model, the DAOP

-ADL [Pin03], and the DAOP platform [Pin05].

The CAM model extends UML in order to specify the components, the aspects and the

mechanisms that compose components and aspects. Components are the core functionality that

is crosscut by non-functional concerns, which are specified as aspects. In CAM, aspects are

presented as special components, which are differentiated from the original ones by means of

the <<aspect>> stereotype. Specifically, since its component model does not have the notion of

State of The Art

47

connector (see section 2.1.2), CAM introduces aspects as special connectors among

components. The coordination of these connectors is performed by intercepting the services

that arrive to or depart from components and by adding behaviour before, after or instead of

their services. As a result, CAM does not introduce a new concept in software architectures for

modelling aspects; it uses a refined version of the connector concept in order to simulate the

behaviour of aspects and the composition of aspects and components. One of the advantages of

this model is the fact that the weaving process between aspects and components is defined by

means of interfaces. As a result, the encapsulation and reusability of components and aspects

are preserved. In addition, this allows CAM to define the weaving process using the interfaces

and also to execute it dynamically [Fue05]. However, the model does not provide original

connectors to specify the architecture of the system. As a result, the model loses the advantages

that connectors provide to ADLS and the opportunity to specify how concerns crosscut the

coordination rules of connectors. Finally, it is important to emphasize the local or remote

instantiation of components and the four kinds of instantiation that the CAM model provides

for aspects: a single instance for each aspect, one aspect instance for each user of the system,

one aspect instance for all the components that play the same role, and one aspect instance for

each instance of a component.

CAM specifies aspect-oriented software architectures using its DAOP-ADL. This ADL

uses XML to describe components, aspects, and their interactions. On one hand, this is an

advantage because it is a standard of data exchange between tools, it is widely extended and

there are other languages that support query and management mechanisms for XML

documents. On the other hand, this is a disadvantage because XML is not a formal language,

and it can involve problems of correctness, accuracy, inconsistency, etc. In addition, it

introduces limitations such as mechanisms to validate properties, to automatically generate

code without ambiguity, etc. Finally, with regard to the DAOP-ADL, it is important to

emphasize that it is independent of technology. As a result, their specifications do not introduce

expressions or syntaxes of specific programming languages or technologies.

The DAOP platform has been implemented in Java, and it provides a middleware in order

to support the execution of aspects, components, and the dynamic weaving between them over

Model-Driven Development of Aspect-Oriented Software Architectures

48

the Java technology. The platform and the DAOP-ADL specifications are integrated because

the input of the DAOP platform is the XML document that contains the specification of the

architectural model in XML. As a result, the middleware can perform the dynamic weaving

since it knows all the information about the architectural model and knows the weavings that

can be executed by each one of the aspects. The middleware performs the weaving by

intercepting service requests and determining which aspect must be executed. In addition, the

XML document contains the information needed to instantiate components and aspects. For

this reason, when the document is loaded by the DAOP platform, the instantiation of

components and aspects starts taking into account the instantiation information defined in the

document.

The work [Fue03] of CAM/DAOP is a first step to support MDD in the DAOP platform,

however a complete support using code generation techniques for the development is not

provided. They use MDA to show the different views of the models that are specified in the

platform.

3.1.3. Superimposition
The work of Sihman and Katz proposes the use of superimposition for incorporating aspects

into object-oriented programs. The generic operation of superimposition consists of applying a

concept on top of another one. In this approach, aspects are superimposed on top of base

applications. This approach creates the SuperJ constructor in order to pre-process aspect-

oriented superimpositions over AspectJ.

A superimposition consists of a set of aspects and new classes that represent the extension

of an application. A SuperJ implements an algorithm to apply a superimposition to a base

application. Base applications do not reference superimpositions, and superimpositions can also

be defined and compiled independently of base applications. However, when a

superimposition is connected to a base application using the SuperJ constructor, the code of the

superimposition makes reference to the state of the base application and it is not independent

(see Figure 5). In fact, the needed advices and pointcuts are defined inside the aspects of a

superimposition. As a result, the behaviour of the aspect and its connections to the base

State of The Art

49

program are not defined separately. Despite the fact that the specification of an aspect is done at

a high abstraction level, the specification of advices and pointcuts inside aspects reduces the

capabilities of aspect reuse of the approach. In addition, superimposition allows the

specification of conditions of applicability or the definition of desired results for the process of

applying a superimposition to a base application.

Figure 5. Superimposition [Sih03]

This approach allows us to combine superimpositions and to check the constraints that have

been defined in a superimposition. It has been implemented using Java, and it uses AspectJ in

order to apply this technique over Java base applications. As a result, the Java implementation

of the SuperJ makes this model dependent on technology and it is closer to object-oriented

programming languages than ADLs.

3.1.4. TRANSAT
Transat [Bar04b] is an approach for managing the evolution of software architecture

specifications using aspect-oriented programming principles. The approach starts from a core

architectural model that either needs to be extended during its development process or needs to

be evolved during its maintenance process. The mechanisms of extension and evolution are

provided using AOP techniques. As a result, this approach incrementally obtains a complete

software architecture with business and technical concerns from a business software

architecture.

This approach is supported by a framework that allows the evolution of software

architectures by integrating new technical concerns. The framework guides the separated

definition of technical and business concerns. Business concerns are the core architectural

Model-Driven Development of Aspect-Oriented Software Architectures

50

model, and technical concerns are the aspects that extend the basic functionality of the system.

The framework provides aspect-oriented mechanisms to weave both.

The core architectural model is defined using its component model, SafArchie [Bar03].

This model is a hierarchical component model that defines software architecture by means of

composition relationships. The new technical concerns such as persistence, security, or

transaction management are modelled as components. Finally, the weavings between business

components and aspect components are defined by means of adapters and weavers. Adapters

define the integration rules between technical components and business components, and

weavers define the coordination rules between them. In other words, adapters and weavers

materialize the integration of the core architecture and their extensions by identifying the join

points in the core architecture and by defining the pointcuts at adapters and weavers.

The Transat framework consists of a tool called SafArchie Studio [Bar04a]. This tool is an

extension of ArgoUML, which offers several views of the evolution process depending on the

kind of user.

One of the main advantages of this approach is that it is based on ADL for defining the core

architectural model. As a result, the formal definition of software architecture and its

independence from a technological platform are guaranteed.

Another advantage is the way that evolution is supported. The integration of new

requirements does not break the consistency of the original software architecture. In addition,

the application of AOP principles to this integration ensures both the separation of concerns in

the software architecture extension and better management if new requirements for these

concerns arise. Finally, this extension mechanism allows analysts to easily identify where the

original software architecture has been modified; they only need to find the adapters and

weavers of the complete architecture.

A great limitation of this approach is the constraint of starting the development from a core

architectural model without considering concerns from the beginning. Also, the fact that

concerns are only technical and not more generic is another drawback. As a result, aspects in

this approach are not introduced as a new concept for modelling software architectures.

State of The Art

51

Software architectures are defined using a pure compositional ADL, and aspects only appear as

an extension or evolution mechanism of software architectures.

Since Transat is only focused on the evolution and maintenance stages of software, it does

not provide a complete MDD support. Its tool only allows to analyze the evolution of the

software architecture, and not to develop the aspect-oriented software architecture application

following MDD.

3.1.5. ASAAM: Aspectual Software Architecture Analysis Method
ASAAM [Tek04] is the approach that introduces aspect-orientation techniques to the SAAM

approach, which introduces three perspectives to analyze software architecture specifications:

functionality, structure and allocation. As a result, ASAAM is an extension and refinement of

SAAM. The steps of ASAAM are the following:

1. Develop a candidate architecture: A candidate architecture is generated taking into

account quality attributes and potential aspects.

2. Develop scenarios: The scenarios that define the business rules of the system and

possible future changes are created.

3. Perform scenario evaluations: The scenarios are evaluated and categorized, and

potential aspects are identified for each scenario.

4. Assess scenario interaction and classify components: The separation of concerns is

assessed for both crosscutting-concerns and non-crosscutting concerns.

5. Refactor the architecture: A refactorization of the architecture is proposed using

conventional techniques and aspect-oriented techniques.

This evaluation method of aspect-oriented software architectures has been implemented as

an Eclipse add-in called ASAAM-T [Tek05]. The main difference between this approach and

the others is the fact that the purpose of ASAAM is to assess an aspect-oriented software

architecture instead of specifying and implementing a software architecture. As a result, this

approach is a valuable contribution to the field for evaluating if an aspect-oriented software

architecture has considered the correct aspects, and if the aspects are factorized in a proper way.

Model-Driven Development of Aspect-Oriented Software Architectures

52

3.1.6. AVA: Architectural Views of Aspects
AVA is an approach where aspects are introduced in software architectures as views [Kat03].

The notion of aspect in software architectures is simulated by the architectural view concept.

This facilitates the comprehensibility of the model for the software architecture community.

However, an aspect is not semantically a view because an aspect has its own behaviour

independently of the architectural elements that it affects. Furthermore, this approach constrains

the notion of architectural view to an aspect, losing other viewpoints for defining views such as

kinds of users, models, level of abstraction, features, etc.

In AVA, an aspect is a module that encapsulates a set of components and their connections

that are crosscut by this aspect. As a component can be crosscut by more than one aspect, the

dependencies between different aspects must be explicitly specified in order not to lose the

consistency of the software architecture. Since it is possible to define several aspects for the

same concern in AVA, aspect modules (S,O) can be composed to form a single concern

module (C) (see Figure 6). This aspect composition is performed using superimposition, which

is an asymmetric operation in which one aspect is applied on top of another one [Kat02]. As a

result, the software architecture is completely remodularized in different modules that represent

aspects or concerns, depending on the level of abstraction. This modularization distributes

components into different modules taking into account the aspects that affect them. The main

disadvantage of this remodularization is the loss of the complete software architecture view.

However, this concern and remodularization structure of modules allows analysts to easily

locate where to introduce new changes, taking into account the concerns that should be

modified.

The AVA model has been created by defining a UML profile. As a result, the definition of

AVA software architectures is really intuitive because these architectures use the OMG

standard. In addition, the use of UML allows analysts to specify software architectures

independently of technology and in a graphical way. In the AVA profile, the aspect is a

stereotype of the package UML metaclass, and the concern diagram is an extension of the

component diagram.

State of The Art

53

Figure 6. Concern Diagram of AVA [Kat03]

The AVA approach has also been applied to the definition and documentation of pattern

systems [Ham05], and the MADE tool has been developed to support it [Ham04]. This tool

shows the different views of the architecture, but it does not provide a complete MDD support.

3.1.7. AspectLEDA
AspectLeda is an approach that extends the LEDA ADL [Can00][Can99] with aspect-oriented

concepts [Nav05]. This approach consists of two steps: the definition of an initial architectural

model and the addition of aspects. The initial architectural model is defined using the LEDA

ADL in order to have the advantages of a formal basis, to validate the software architecture by

executing a prototype, and to be independent of technology. Once the initial architecture has

been defined, the new requirements that emerge during the development and maintenance

processes are incorporated in the architecture such as aspects. This is a clear drawback of this

approach because it does not give the analyst the chance to introduce aspects at the beginning

of the software development process. Aspects are only used at the maintenance stage or at

refinement processes of the development stage. In addition, it is important to take into account

that not all new requirements of a system are aspects. However, AspectLEDA forces the

analyst to introduce new requirements into the model as new aspects without taking into

account whether they are aspects or not.

In AspectLEDA, aspects are specified in the way as components because LEDA is an

ADL without connectors. However, aspect components and components of the initial software

Model-Driven Development of Aspect-Oriented Software Architectures

54

architecture are defined in different levels. Since AspectLEDA does not have architectural

connectors, it cannot specify the concerns that crosscut connectors, and it loses the advantages

that connectors provide to ADLs. However, AspectLEDA introduces the notion of coordinator

to define the weaving process that synchronizes aspects and components and coordinates both

levels. This coordinator preserves the reusability and encapsulation of aspects because the

coordination of aspects and components is specified outside aspects.

Finally, it is important to emphasize that this approach is still only a proposal. It does not

have a tool to support for its methodology, and it is not able to compile its aspect-oriented

software architecture into any technological platform.

3.1.8. AOCE: Aspect-Oriented Component Engineering
The Aspect-Oriented Component Engineering approach (AOCE) is based on AOREC

(Aspect-Oriented Requierements for Component-Based Systems). AOREC uses the notion of

aspect in order to suitably define and categorize the requirements of components in terms of

what they provide or require through their services. In AOREC, an aspect is a characteristic of a

system for which components provide and/or require services. This approach takes into

account some aspects such as user interface, collaboration, persistence, distribution, and

configuration. As a result, AOREC uses aspects in order to attain multiple perspectives of the

components in order to better understand and reason about the behaviour and semantics of

these components.

Since AOCE is the step after AOREC in the development process, AOCE defines aspects

in the same way that AOREC does; aspects are specified as components. The definition of an

aspect component is done separately from the component specification in order to be

independent and reusable. However, an AspectManager must be introduced in order to

coordinate aspect components and components. Despite the fact that this approach does not

have connectors (because is a component-based approach), it still must introduce a connector

called AspectManager to weave aspects and components at run-time.

Apart from not having the notion of connector and not classifying the interfaces of

connectors in terms of aspects, the main disadvantage of this approach is the fact that the design

State of The Art

55

language of AOCE is based on a specific component-based platform, the JViews [Grun98]

AOP implementation platform, which is not independent of technology.

Finally, it is important to mention that AOREC and AOCE have a tool to support their

methodology. They have extended the tool of JViews to support aspects. This tool is called

JComposer [Grun98]. It is an implementation framework used by developers; it only provides

support for programming. As a result, it does not support for MDD.

3.1.9. Component Views
The component views approach [Sto02] is not really an approach to specify aspects of software

architectures. The component views approach is an extension of component-based models to

define views using concerns as viewpoints. As a result, this approach decomposes the

architecture taking into account which components and connections among them are affected

by a specific concern. The result of this decomposition is that each view of a concern contains

the components and relationships affected by this concern. This approach defines a UML

profile to support the definition of these views for software architectures. However, this

approach does not introduce new concepts or simulates the notion of aspect because it does not

support this notion. It only works with concerns which are only used to analyze component-

based models. Their specification is made using a UML profile. The purpose is not to execute

an aspect-oriented component-based model, it is simply to analyze component models.

3.1.10. Aspectual Components
Aspectual Components are proposed as a new kind of component by the work of Lieberherr

[Lie99]. They are defined using a generic data model called a participant graph. This graph is

then refined to deploy aspects as normal components.

This approach proposes adding a new dimension to aspects over the organization of an

object-oriented application. As a result, the first task of the software development process is to

decompose software into aspects. The second one is to decompose each aspect into classes

following the object-oriented approach. The result of this process is an aspectual component

composed of object-oriented classes. However, these aspectual components should be

composed with the application base. In other words, the new dimension of aspects must be

Model-Driven Development of Aspect-Oriented Software Architectures

56

communicated to the bottom dimension of the application. This communication is achieved by

means of connectors that coordinate both dimensions.

Aspectual components can be programmed using Java programming language because this

approach does not introduce a new programming constructor; instead, aspectual components

are implemented as normal components. However, this approach does not offer a tool to

support work with this model.

3.1.11. Caesar
Caesar is a model for aspect-oriented programming [Mez03] with its own programming

language. This model is characterized by being technology-dependent and by developing a

higher-level module to develop aspects independently of the mechanisms for join point

interceptions.

Caesar specifies the implementation of aspects and their weaving relationships in a separate

way in order to reuse the aspect independently of what the aspect is related to. The main feature

that distinguishes Caesar from other aspect-programming models is the concept of Aspect

Collaboration Interface (ACI). An aspect is specified by means of an ACI. An ACI decouples

the implementation and weavings of aspects. An ACI is composed of two different interrelated

modules: an implementation aspect module and a binding aspect module. The former

implements the methods that the aspect provides, independently of the context. The latter

implements the required methods from a specific context by means of pointcuts and advices. In

addition, an ACI can be composed of other ACIs, which provide a complete level of

composition in order to define aspects over the base code.

Caesar defines an instantiation mechanism for its ACIs. To instantiate ACIS, the

implementation and a specific binding for the aspects must be composed in the same unit; this

unit is called weavelet. A weavelet is a class that is composed of the interface that provides and

requires. Once, the weavelets are defined; they can be instantiated in a static or dynamic way.

This mechanism of instantiation allows several instances of the same weavelet to be defined. It

also provides a choice of different weavelets using aspectual polymorphism.

State of The Art

57

3.1.12. JASCO
JAsCo is originally an aspect-oriented programming language for the Java Beans component

model [Suv03]; however, a prototype for .NET platform is currently being developed [Ver03].

As a result, JAsCo is a programming language that is dependent on technology. It introduces

three new concepts to extend Java to support aspect-oriented programming, which include

aspects, hooks, and connectors.

In JAsCo, aspects are composed of a set of hooks that define how to link an aspect to a

specific context. A hook consists of two parts: the pointcut (when the hook is activated) and the

advice (what is going to be executed as a result of the activation). Finally, connectors allow the

definition of the mappings between a hook and one or more elements of the base code

(joinpoint and pointcut correspondence).

The JAsCo execution model is very flexible and provides many advantages. It supports

aspectual polymorphism, which is the weaving between aspects and code. This is dynamic

because aspects can be added and removed at run-time. However, the referential nature of the

dynamic weaving requires an execution platform to intercept the application and insert it into

the aspects at execution time. In addition, aspects can be combined to form complex structures

by means of inheritance and aggregation relationships.

Finally, it important to mention that there are a pair of tools that support the JAsCo

approach. One of them transforms a Java bean into a JAsCo bean, and the other one is the

integration of JAsCo into the PacoSuite [Van01], [Wyd01], which allows modelling

component models at a high abstraction level and also allows generating one or more JAsCo

connectors from its models.

These tools are implementation frameworks used by developers. As a result, they provide

support for programming and not for MDD.

3.1.13. FUSEJ
FuseJ is a programming language for component-based software architectures onto the Java

Beans component model [Suv05b]. This language asserts that there are no aspects and these

services can be implemented as a component. It is a platform dependent language that does not

make distinctions between normal components and aspect components. It is based on the

Model-Driven Development of Aspect-Oriented Software Architectures

58

component architecture presented in Figure 7. Each concern and component is programmed as

a component of the Component Layer. The provided and required services of components are

sent through the gates of the Gate Layer by preserving the encapsulation of components (black

box view). Finally, the coordination among the gates is programmed using connectors of the

Connector Layer. However, this connector must be implemented in different ways depending

on whether two normal components are being coordinated or a component and an aspect

component are being coordinated. In this last case, the coordination is performed using the

aspect-oriented primitives to define the pointcuts and advices (to specifying the weaving

process).

Figure 7. Unified Component Architecture [Suv05b]

With regard to instantiation, aspects are instantiated as regular components; each aspect can

have more than one instance. Finally, it is important to emphasize that the tool support for

FuseJ is currently being developed.

3.1.14. JAC
JAC is a framework to develop aspect-oriented distributed applications in Java programming

language [Paw04]. The main contribution of the programming model of JAC is the fact that

aspects can be distributed. They also have a dynamic nature, which means they can be added

and removed at run-time.

State of The Art

59

JAC provides a set of classes and methods that are extended when a new JAC application is

developed. JAC provides two different levels of aspect-oriented programming: the

programming level and the configuration level. The former is used when new aspects are

programmed from scratch. The latter is used when existing aspects are customized for new

requirements.

Since JAC packages normal components inside containers, it also defines aspects as

components that are inside containers. The components that define aspects are called aspect

components. These containers are remote servers that can represent normal or aspect

components. JAC aspect components crosscut normal components that are not necessarily in

the same location as the aspect components. As a result, JAC gives support to distributed

weaving processes. This need emerges because aspects are treated as components and the

weaving process (the pointcuts and advices) are defined inside the aspect. If the weaving

process were defined in a different entity of the aspect such as a connector, this distribution

need would not arise, because the distributed communication is supported by components and

connectors. The main drawback is not the effort needed to support distributed communication

in pointcuts, it is the fact that the behaviour of the aspect cannot be reused. JAC loses the

reusability of aspects because the relationships for applying the aspect to a specific context are

defined inside it.

3.1.15. JIAZZI
Jiazzi is an aspect-programming model that extends Java by means of encapsulated code

modules called units [McD03]. They are separately compiled and are externally linked code

modules that are introduced into a Java program. These units were originally created to obtain

higher modularity of code. However, they are currently being used to add aspects to non-

aspect-oriented Java programs in a non-invasive way. This is possible because JIAZZI also

provides linking units like connectors to specify the connections of units and a base Java

program.

Jiazzi units are composed of Java classes that implement the behaviour of a specific

concern. They are compiled independently of linking units and base code; as well as the type

Model-Driven Development of Aspect-Oriented Software Architectures

60

checking is also performed internally. In addition, an external compilation is needed to perform

the connection between base code and units by means of linking units. In this compilation

process, the types of connections must also be checked.

Jiazzi does not extend the syntax of the Java programming language because it introduces

aspects as externally linked Java modules. Jiazzi and its interaction with Java are implemented

using Java, and it runs perfectly on this technology. Its main drawback is the fact that it is a

technology-dependent model and the pre-compilation and encapsulation of its modules before

its integration reduces the flexibility to evolve aspects at run-time.

3.2. COMPARISON OF ASPECT-ORIENTED SOFTWARE
ARCHITECTURES

There are several features that are essential for analyzing and to comparing the different

approaches that have been presented in the previous section. The features that have been used

as comparison criteria have been selected starting from the premise that an aspect-oriented

software architecture approach should completely support the development and maintenance

processes of software. It is important to mention that there are important features, such as the

instantiation mechanisms and the types checking, that have not been used to compare the

different approaches because the proposal does not usually give very much information about

these features. The analysis of these features is included in their descriptions above for those

approaches that provide information about them.

Next, it is detailed the features of comparison and the reasons because they have been

considered as a classification criteria of aspect-oriented architectural models.

 Aspect-oriented model: This feature defines the kind of aspect-oriented model that is

integrated with the software architectural model. The four kinds are: asymmetric or

symmetric [Har02], multidimensional [Oss01, [Oss00], and composition filters [Ber01],

[Ber94]. This characteristic is important because the integration is completely different

depending on the aspect-oriented model.

State of The Art

61

 Architectural model: This feature determines whether an architectural model provides

connectors for modelling software architectures or not. Those that have connectors provide

features that improve the structure and maintenance of software architecture (see section

2.1.2 for details).

 Definition of Aspects: The most distinguishable feature of aspect-oriented architectural

models is how they integrate aspects and software architectures. There are two ways of

doing this: by simulating the notion of aspect by means of another architectural concept or

by defining a new concept in software architecture for aspects. The first way refines the

architectural concepts varying their original semantics; and the second one requires

understanding a new concept to model software architectures.

 Definition of Weavings: This is an important feature of aspect-oriented models, and of

aspect-oriented architectural models. The definition of weavings feature specifies where

the weaving process between aspects and architectural elements is defined. If the pointcuts

and advices are defined inside the aspect, the aspect is dependent on the context that the

aspect is connected to. However, if they are defined outside the aspect, the behaviour of the

aspect can be reused independently of where they will be connected.

 ADL: Another feature that is necessary to take into account when comparing architectural

models is whether the ADL is a formal language or not. The formal nature of an ADL is

an indispensable property of architectural models if the purpose of the approach is to

generate code without ambiguity, to verify properties, to validate behaviour, to trace the

different levels of abstraction in a suitable way, to evolve software architectures preserving

the consistency of the system and so forth.

 Aspect-Oriented Evolution: The evolution of aspect support is an important feature that

can improve the evolution and run-time evolution of software architectures. As a result, an

approach that provides mechanisms for adding or removing aspects is a great advantage.

 Purpose: The purpose of the approach is an essential feature to be able to compare

models. There are aspect-oriented architectural models that give complete support during

the development process, others that analyze or evolve models, and still others that fulfil

several purposes.

Model-Driven Development of Aspect-Oriented Software Architectures

62

 Technology: This is an important feature that distinguishes the wide variety of aspect-

oriented architectural models that exists. An aspect-oriented architectural model should be

specified in an abstract way by means of an ADL. As a result, the same specification can

be applied to different platforms and different programming languages. However, if the

model depends on a specific platform and/or programming language, its application and

flexibility are considerably reduced.

 Graphical support: The graphical specification of aspect-oriented software architectures

is a necessary feature to avoid the complexity of using ADLs. The graphical support is

achieved by defining the graphical metaphor of ADLs by means of a new language or by

extending a well-known graphical language.

 Tool support: A significant feature of the aspect-oriented architectural models is its

support by means of a framework that guides the analyst during the development and

maintenance processes. A framework can provide a wide variety of facilities such as

modelling support, ADL generation, code generation, code execution, validation,

verification, evolution, run-time evolution, etc.

 MDD support: A significant feature of an approach that should completely support the

development and maintenance processes of software following the MDD approach is the

MDD support that it offers. The complete MDD support should consist of automatically

generating the code from models and to guide the analyst during all the stages by

providing mechanisms to facilitate the tasks. Some of these mechanisms are: verification

techniques, reusability mechanisms, integration facilities, code generation mechanism, etc.

A comparison table has been developed from the features and the approaches analyzed in

the above section. This table is divided into two separate tables due to the limitation of the page

dimensions. Blank cells indicate that no information was available.

State of The Art

63

 Aspect-oriented
model

Architectural
model

Definition of
Aspects

Definition of
Weavings

ADL

PCS Multidimensional
and symmetric

Without
connectors

Aspects like
connectors

Inside aspects SADL:
Formal

compositional
ADL

CAM/DAOP Asymmetric Without
connectors

Aspects like
connectors

Outside aspects
using

communication
between
interfaces

DAOP –
ADL: Not

formal, based
on XML

Superimposition Asymmetric:
Two levels:
aspects and
architectures

 Java Classes
inside a

superimposition
layer

Inside aspects

TRANSAT Asymmetric.
Only technical

aspects

Without
connectors

Aspects like
components.

Aspect
components

Outside
aspects. Using

adapters or
weavers ≅
connectors

SafArchie
component

model

ASAAM Asymmetric Not fixed Scenarios Outside
Aspects

Not fixed

AVA Asymmetric Not fixed Aspects as views Outside
Aspects

Not fixed

AspectLEDA Asymmetric:
Two levels:
Aspects and
architectures

Without
connectors

Aspects as
components

Outside aspects
using

coordinators ≅
connectors

Leda: Formal
Compositional

ADL

AOCE Asymmetric Without
connectors

Aspects as
components

Outside aspects
using aspect
managers ≅
connectors

Component
Views

Asymmetric Not aspects.
Concerns as

viewpoints for
defining

architectural
views

Aspectual
Components

Asymmetric:
Two levels:
Aspects and

object-oriented
applications

 Aspects as
components:

Aspectual
components

Outside aspects
with

connectors

Model-Driven Development of Aspect-Oriented Software Architectures

64

Caesar Asymmetric Aspect
Collaboration

Interface (ACI)

Separation of
ACI modules

into
implementation
and interaction

of aspects

JASCO Asymmetric Aspects Hooks and
connectors

FUSEJ With
Connectors

Without Aspects:
Components

Connectors

JAC Asymmetric Aspects as
components:

aspectcomponents

Inside aspects

JIAZZI Asymmetric:
Two levels:
Aspects and

object-oriented
applications

 Units Linking units

Table 1. First comparison of aspect-oriented software architecture
approaches

 Aspect-
Oriented
Evolution

Purpose Technology Graphi
cal

support

Tool support MDD
support

PCS Development of
AO Software
Architecture

Independent UML
profile:
Aspect

is a
stereoty
pe of a
UML
class

ConcernBase
tool: modelling
support, ADL

generation
from UML, no

code
generation, no

execution

Partial:
Modelling
techniques

CAM/DAOP

Dynamic
weaving
but not

adding and
removing
aspects at
run-time

Development of

AO Software
Architecture

Independent

UML
profile

DAOP

platform: Java
Technology,
modelling
support,
DAOP

middleware for
code execution

Partial:

Multiple
views of
analysis

State of The Art

65

Superimposition Programming
aspect-oriented

Java applications
and verifying
properties of

aspect-oriented
superimposition

Dependent
on Java

technology

TRANSAT Only evolution
support, the

initial aspect-
oriented

specification is
not supported.

Independent UML
profile

SafArchie
Studio.

Extension of
ArgoUML

Partial:
Models to
analyze

evolution
and

maintenanc
e

ASAAM Analysis of
Software

Architectures

Independent UML
profile:
scenario

s

ASAAM-T

AVA Development of
AO Software
Architecture

Independent UML
profile:
aspect is

an
stereoty
pe of a
UML

package
that

contains
an

extensio
n of

compon
ent

diagram

MADE tool:
modelling
support

Partial:
Multiple
views of
analysis

AspectLEDA Development of
AO Software
Architecture

Independent

AOCE

Dynamic
weaving

Development of
AO Software
Architecture

Dependent
on JViews

 JComposer:
An extension
of the JViews

tool

Not
supported:
developme

nt
framework

Component

Views

Analysis of
software
architectures

Independent

UML
profile

Model-Driven Development of Aspect-Oriented Software Architectures

66

Aspectual
Components

Programming
aspect-oriented

Java applications

Dependent

on Java
technology

Caesar Programming
aspect-oriented

Caesar
applications

Dependent
on Caesar

programming
language

 Programming
framework

Not
supported:
developme

nt
framework

JASCO Dynamic
weaving

and
support for
adding and
removing
aspects at
run-time

Programming
aspect-oriented

application

Dependent
on Java or

.Net
technology

 Programming
framework

Not
supported:
developme

nt
framework

FUSEJ Programming
aspect-oriented

applications onto
Java Beans

Dependent
on the Java

Beans
component

model

JAC Programming
aspect-oriented

Java applications

Dependent
on Java

technology

JIAZZI Programming
aspect-oriented

Java applications

Dependent
on Java

technology

Table 2. Second comparison of aspect-oriented software architecture
approaches

3.3. CONCLUSIONS
After the analysis and comparison of different approaches for aspect-oriented software

architecture, it is possible to conclude that these proposals at the architectural level usually

extend ADLs without connectors and mainly follow an asymmetric model by considering

functionality as architectural components. Despite the fact that there has been a lot of work

done, these proposals are only focused on a single specific purpose: the analysis, evolution or

development of software architectures. They do not pursue several purposes simultaneously to

provide a complete development and maintenance support. Furthermore, they always introduce

the notion of aspect by using original architectural concepts, despite the fact that they do not

State of The Art

67

provide the suitable semantics for aspects. And finally, the most important conclusion for this

thesis, they do not provide a complete support for MDD. As a result, it is necessary to provide

an aspect-oriented model for symmetric aspect-oriented models and ADLs with connectors,

whose development will follow the MDD paradigm. This model should include:

 A suitable semantics for the aspect concept

 A graphical modelling metaphor

 Analysis and evolution capabilities

 Technological support in order to execute the aspect-oriented architectural models that

have been defined independently of technology

 A guided support during the development and maintenance processes of software

following MDD: Reusability, Verification, Code generation, Maintenance, Evolution, etc.

The PRISMA approach has been defined to fulfil these needs. In particular, in this thesis the

main properties to facilitate and provide mechanism to give a complete MDD support in

PRISMA are defined. As a result, this thesis is a step forward in the previous PRISMA work.

Model-Driven Development of Aspect-Oriented Software Architectures

68

PRISMA Background

69

CHAPTER 4
4. PRISMA BACKGROUND

PRISMA provides a model for the definition of complex software systems [Per05a]. Its main

contributions are the way in which it integrates elements from aspect-oriented software

development and software architecture approaches, as well as the advantages that this

integration provides to software development. The PRISMA model introduces the notion of

aspect following an architectural model with connectors and a symmetrical aspect-oriented

model.

Since the PRISMA model is a technology-independent model, the PRISMA approach also

follows the MDD paradigm to obtain its advantages during the development and maintenance

processes of PRISMA architectures. The main goal of the PRISMA approach is to give a

complete support for the development of technology-independent aspect-oriented software

architectures, which could be compiled for different technological platforms and languages

using automatic code generation techniques.

The purpose of this chapter is to present the main properties of the PRISMA model and to

explain in detail the PRISMA metamodel. The PRISMA metamodel is the starting point to

apply the MDD to the development of PRISMA applications.

4.1. THE PRISMA MODEL
PRISMA provides a model for the description of software architectures of complex and large

systems. It introduces aspects as first-order citizens of software architectures. This means that,

Model-Driven Development of Aspect-Oriented Software Architectures

70

in PRISMA, aspects are not simulated through other architectural concepts such as connectors,

views or similar mechanisms as in other approaches. PRISMA creates a new concept for

modelling concerns called aspects. As a result, PRISMA specifies different characteristics

(distribution, safety, context-awareness, coordination, etc.) of an architectural element

(component, connector) using aspects. As a result, PRISMA preserves the meaning of the

component and aspect concepts.

 From the aspect-oriented point of view, PRISMA is a symmetrical model that does not

distinguish a kernel or core entity to encapsulate functionality; functionality is also defined as

an aspect. One concern can be specified by several aspects of a software architecture, whereas a

PRISMA aspect represents a concern that crosscuts the software architecture. This crosscutting

is due to the fact that the same aspect can be imported by more than one architectural element

of a software architecture. In this sense, aspects crosscut those elements of the architecture that

import their behaviour (see Figure 8).

Figure 8. Crosscutting-concerns in PRISMA architectures

The fact that PRISMA is a symmetrical model is an advantage. This facilitates the

construction of software architectures since the model does not manage two different concepts

The PRISMA Background

71

(class or component, and aspect) in different ways. In addition, the reusability of functional

properties is independent of the architectural element that imports it because the functionality is

specified as an aspect. However, if this functionality were implemented as a kernel class of the

architectural element, the reuse of the functionality would only be achieved by reusing the full

architectural element. Consequently, a more uniform model is obtained because of the

homogeneity of the concepts that build an architectural element.

A PRISMA architectural element can be seen from two different views: internal and

external. In the external view, architectural elements encapsulate their functionality as black

boxes and publish a set of services that they offer to other architectural elements (see Figure 9).

These services are grouped into interfaces to be published through the ports of architectural

elements. Each port has an associated interface that contains the services that are provided and

requested through the port. As a result, ports are the interaction points of architectural elements.

Figure 9. Black box view of an architectural element

The internal view shows an architectural element as a prism (white box view). Each side of

the prism is an aspect that the architectural element imports. In this way, architectural elements

are represented as a set of aspects (see Figure 10) and the weaving relationships among

aspects.

Figure 10. White box view of an architectural element

Model-Driven Development of Aspect-Oriented Software Architectures

72

Since PRISMA is a symmetrical aspect-oriented model that it is applied at the architectural

level, the weaving process does not define the pointcuts between the base code and the aspect

code and their corresponding advices. In PRISMA, there is no base code; all behaviour of the

system is defined as an aspect. As a result, the weaving process is composed of a set of

weavings, and a weaving indicates that the execution of an aspect service can trigger the

execution of services in other aspects. From the AOP point of view PRISMA weavings can be

defined as follows: every service of an aspect is a join point , the services that trigger a weaving

are the pointcuts, and the services that are executed as a consequence of weavings are the

advices. In PRISMA, in order to preserve the independence of the aspect specification from

other aspects and weavings, weavings are specified outside aspects and inside architectural

elements. As a result, aspects are reusable and independent of the context of application and

weavings weave the different aspects that form an architectural element. This way of

specifying weavings achieves not only the reusability of the aspects in different architectural

elements, but also the flexibility of specifying different behaviours of an architectural element

by importing the same aspects and defining different weavings. A weaving is defined by means

of operators that describe the order in which services are executed. A weaving that relates

service s1 of aspect A1 and service s2 of aspect A2 can be specified using the following

operators: after, before, instead, afterif (Boolean condition), beforeif(Boolean condition, and

insteadif(Boolean condition).

The communications between the white box and black box views is possible by means of

interfaces; which are associated to ports and are used by aspects (see Figure 11). Consequently,

a request for a service that arrives to a port of an architectural element is processed by an aspect

that uses the same interface that is used by this port.

PRISMA has three kinds of architectural elements: components, connectors, and systems.

Components and connectors are simple, but systems are complex components. A component is

an architectural element that captures the functionality of software systems and does not act as a

coordinator among other architectural elements; whereas, a connector is an architectural

element that acts as a coordinator among other architectural elements.

The PRISMA Background

73

Figure 11. Communication between the white box and the black box views

Connectors provide the separation of component interactions thereby achieving a higher

level of abstraction, modularity, and a greater architectural view of the system [Sha94]. For this

reason, PRISMA connectors are first-class citizens of the ADL. Connectors do not have the

references of the components that they connect and vice versa. Thus, architectural elements are

reusable and unaware of each other. This is possible due to the fact that the channels defined

between components and connectors have their references (attachments) instead of

architectural elements. Attachments are the channels that enable the communication between

components and connectors. Each attachment is defined by attaching a component port with a

connector port.

Figure 12. Attachments

PRISMA components can be simple or complex. The complex ones are called systems. A

PRISMA system is a component that includes a set of architectural elements (connectors,

components and other systems) that are correctly attached. In addition, a system can have its

own aspects and weavings as components and connectors. Since a system is composed by

Model-Driven Development of Aspect-Oriented Software Architectures

74

other architectural elements, the composition relationships among them must be defined. These

composition relationships are called bindings. Bindings establish the connection among the

ports of the complex component (the system) and the ports of the architectural elements that a

system contains (see Figure 13).

In PRISMA, the dynamics of aspect-oriented architectures are treated at the meta-level. The

meta-level contains the elements that define the PRISMA concepts as data. They can be

created, modified and destroyed through the execution of the services of the meta-level. In this

way, the execution of services is reflected in the architecture by updating this data (the concept

of reflection). As a result, the PRISMA meta-level allows for the creation, destruction and

evolution of architectural elements and aspects as well as the dynamic reconfiguration of

software architectures. The PRISMA meta-level is represented by means of a metamodel that

contains one metaclass for each PRISMA concept. These metaclasses define a set of properties

and services for each concept considered in the model (see section 4.2).

Figure 13. Systems

In PRISMA, the complete view of the software architecture is not lost because of the use of

aspect, that is, the use of the view notion is not required to define aspects in the PRISMA

The PRISMA Background

75

software architectures. But, it is possible to define an aspect-oriented view of the software

architecture by considering all the architectural elements that import a specific aspect, and also

another view by considering all the architectural elements that import a kind of aspect concern.

For example, this allows the definition of the view of all the architectural elements of the

TeachMover robot that import a safety concern.

The PRISMA model takes advantage of the notion of aspect from the beginning of the

system definition by specifying the aspects that are found in the requirements specifications.

These aspects are reusable and can be used during the rest of the development process as well

as in the maintenance process of the PRISMA software architectures. Thus, PRISMA does not

require an initial architectural specification of the system in order to introduce aspects.

Moreover, the change of a property only requires the change of the aspect that defines it, and

then, each architectural element that imports the changed aspect is also updated

4.2. THE PRISMA METAMODEL
Metamodels define models and establish their properties in a precise way. In addition,

metamodels facilitate the automation and maintenance of software development thanks to the

support that modelling tools currently offer for these tasks and the MDD paradigm. In order to

take advantage of these properties, the PRISMA meta-level is represented by means of a

metamodel that contains a set of metaclasses that are related to each other. These metaclasses

define a set of properties and services for each concept considered in the model. The

metaclasses and their relationships define the structure and the information that is necessary to

describe PRISMA architectural models. In addition, the PRISMA metamodel defines the

constraints that must be satisfied by a PRISMA architectural model. These constraints guide

the methodology for modelling PRISMA architectural models. At the end of the modelling

process, all of them must be satisfied in order to ensure that an architectural model is correct.

The PRISMA metamodel has been specified using the class diagram of the Unified

Modelling Language (UML) 1.5. and the Object Constraint Language (OCL) 2.0 [UML07].

UML has been used to model the metaclasses and their relationships, attributes and services.

OCL has been used to specify the constraints of the metamodel. The choice of these languages

Model-Driven Development of Aspect-Oriented Software Architectures

76

over others is based on the fact that they are standards and are widely extended languages. As a

result, they facilitate the comprehension of the model by new users.

The PRISMA metamodel is composed of three main packages: Types, Architecture

Specification, and Common (see Figure 14).

Figure 14. Main packages of the PRISMA metamodel

Figure 15. The package Types of the PRISMA metamodel

The package Types contains the packages Interfaces, Aspects, Architectural Elements and

Attachments of the PRISMA model (see Figure 15). These packages define the properties of

PRISMA types.

The PRISMA Background

77

The package Architecture Specification defines the elements that form an architectural

model using the types that are defined in the package Types. This package provides the

mechanisms to build an architectural model.

The package Common defines the utilities that are necessary to develop any kind of model.

It provides mechanisms to define data types, parameters, constant values, formulae of different

kinds and complex process [Per06c].

4.2.1. THE PACKAGE “TYPES”

4.2.1.1. The Package “Interfaces”
An interface publishes a set of services. This set of services is composed of at least one service,

and there is no limit to the number of services that can be specified (see Figure 16). The

services that make up an interface are called InterfaceServices. These services are defined in an

abstract way, without specifying whether they are going to be provided (in), requested (out), or

provided and requested (in/out) by architectural elements. An InterfaceService only specifies its

signature.

Figure 16. The package Interfaces of the PRISMA metamodel

The signature of a service specifies its name and parameters. The parameters are defined in

a specific order. The data type and kind (input/output) of parameters are also defined (see

Figure 17).

Model-Driven Development of Aspect-Oriented Software Architectures

78

Figure 17. The package SignatureOfService of the PRISMA metamodel

The metaclass InterfaceService inherits its properties from the metaclass

ServiceDescription. This class allows the creation of services using the service newService,

whose parameter defines the name of the service that is created. The attribute name stores the

value of the ServName parameter of newService. The service addParameter adds parameters

to services.

The metaclass Interface creates interfaces. The service newInterface creates a new interface,

whose parameter defines the name of the interface that is created. The service addService adds

a service to the interface, whose parameter provides the InterfaceService that is added to the

interface.

4.2.1.2. The package “Aspects”
An aspect defines structure and behaviour of a specific concern of the software system. The

Aspects package includes all the metaclasses that are necessary to specify an aspect. The

structure and the behaviour of aspects are defined by attributes, services, preconditions,

valuations, constraints, played_roles and protocols. These concepts are sub-packages of the

Aspects package (see Figure 18).

The metaclass Aspect (see Figure 19) has two attributes, name and concern. These

attributes store the name of the aspect and the concern that the aspect belongs to, respectively.

The service newAspect creates a new aspect, whose parameters define the name, the concern

and the protocol of the aspect.

The PRISMA Background

79

Figure 18. The sub-packages of the package Aspects of the PRISMA
metamodel

Figure 19. The metaclass Aspect of the package Aspects of the PRISMA

metamodel

Aspects may need to store information to successfully perform their computation. For this

reason, the Aspect metaclass has an aggregation relationship with the Attribute metaclass . This

Model-Driven Development of Aspect-Oriented Software Architectures

80

relationship aggregates the attributes that an aspect is composed of (see the describe

aggregation relationship in Figure 19). This aggregation is established by invoking the

addAttribute service. This service adds attributes to an aspect through its Attr parameter by

providing the attribute that is added to the aspect. Aspects may need to constrain the value of

attributes. For this reason, an aspect can be composed of constraints that determine the value of

aspect attributes (see the satisfy aggregation relationship in Figure 19).

Aspects must be composed of three or more services. The three services that are required

are the following: The services begin and end to start and finish the execution of the aspect, and

at least one service to perform the necessary computations of an aspect (see the belongsTo

aggregation relationship in Figure 19). Aspect services can be private or public. Public services

of an aspect are those that are published by an interface whose semantics is defined by the

aspect. As a result, aspects import the interfaces whose semantics they define (see the using

association relationship in Figure 18). In order to associate interfaces and services to aspects,

the aspect metaclass provides the addInterface and addService services, whose Inter and Serv

parameters provide the interface and the service that are added to aspects.

In order to define the semantics of aspect services, aspects are composed of preconditions,

valuations, played_roles and a protocol (see the aggregation relationships condition, include,

play and executes in Figure 19). For this reason, the Aspect metaclass has three services to

associate preconditions, valuations, and played_roles to aspects. These services are

addPrecondition, addValuation, and addPlayedRole, respectively.

In addition to these attributes, services, and relationships, the metaclass Aspect has an

associated set of constraints to completely model its properties (see Figure 20).

These constraints correspond to the OCL rules shown in Figure 20. They specify the

following:

<<Every aspect has a “begin” service>>

<<Every aspect service must participate in the protocol of the aspect>>

<<Every aspect has an “end” service>>

<<For each interface that an aspect imports, the aspect must define at least a played_role

associated to this interface>>

The PRISMA Background

81

<<Every service of an interface that is imported by an aspect must be a service of the

aspect>>

Figure 20. Constraints of the metaclass Aspect

- The package “Attributes”
Attributes store a value of a specific data type. Therefore, each aspect attribute must be

associated to a data type (see Figure 21).

Figure 21. The package Attributes of the PRISMA metamodel

Model-Driven Development of Aspect-Oriented Software Architectures

82

The metaclass Attribute has two attributes, name and default. The attribute name stores the

name of the aspect and the attribute default stores the default value of the attribute when

necessary. The service newAttribute creates a new attribute, whose parameters define the name

and the default value of the attribute.

Figure 22. The package KindsOfAttributes of the PRISMA metamodel

In PRISMA, it is possible to define different kinds of attributes. The semantics of each kind

is defined in the kindsofAttributes sub-package of the Attributes package. Attributes can be

classified into derived and non-derived attributes (see Figure 22). Derived attributes calculate

their values on demand by applying a derivation rule. The derivation rule is associated to the

derived attribute (see Figure 23). Non-derived attributes store their values, and it is possible to

constrain the fact that they must contain a value by means of the notNull attribute (see the

NonDerivedAttribute metaclass in Figure 22). If notNull is true, the attributes must contain a

value; if notNull is false, no value is required. In order to correctly define the semantics of non-

The PRISMA Background

83

derived attributes, there are two constraints associated to the NonDerivedAttribute metaclass.

These constraints correspond to the OCL rules shown in Figure 22. They specify the following:

<<For each non-derived attribute that cannot contain a null value, there is a postcondition

of the begin service valuation that must provide a value to the attribute >>

<<The ”notNull” attribute of a constant attribute is always true>>

Non-derived attributes can be constant or variable. Constant attributes store values that

cannot change; i.e., they cannot be modified during the execution of the aspect. Also, variable

attributes store values that can be modified during the execution of the aspect.

Figure 23. The package Derivations of the PRISMA metamodel

- The package “Services”
The metaclass Service is a specialization of the metaclass InterfaceService (see Figure 24). As a

result, it inherits all its properties and services. The metaclass Service defines that every service

of an aspect must be characterized by the behaviour that it offers in the context of the aspect.

This means that the service can either be provided, requested or both by the aspect. This

characteristic is specified by the type attribute of the metaclass. The type values are in, out and

in/out to define the behaviour of a server (provide), a client (request), or both a server and a

client (provide and request), respectively. A service of an aspect can also have an alias. An alias

permits changing the name of an InterfaceService inside the aspect. This metaclass stores the

alias name and provides the newAlias service to change the name. The parameters of newAlias

are the service whose name is going to be changed and the new alias.

There are two kinds of services: simple services and transactions (see Figure 25). A

transaction is a complex service that it is composed of more than one service and is executed in

a transactional way (all or nothing) (see the composedService aggregation in Figure 25). A

transaction describes a process, which models how and when the different services that

Model-Driven Development of Aspect-Oriented Software Architectures

84

compose the transaction are executed. As a result, a transaction is a specialization of the

Process metaclass.

Figure 24. The package Services of the PRISMA metamodel

Figure 25. The package KindsOfServices of the PRISMA metamodel

The PRISMA Background

85

- The package “Constraints”
Constraints are formulae that establish conditions on the state of the aspect that they belong to.

As a result, each time that a service execution is finished, the value of each attribute must

satisfy the aspect constraints. There are two kinds of constraints: static and dynamic (see Figure

26).

Figure 26. The package Constraints of the PRISMA metamodel

The metaclass Constraint is an abstract class that has only one attribute, the name of the

constraint. This metaclass is specialized into two metaclasses: StaticConstraint and

DynamicConstraint. Each one of them provides a constructor service to create instances of

static and dynamic constraints, respectively. The service newStaticConstraint creates a new

static constraint giving the name and the condition of the constraint as parameters. The service

newDynamicConstraint creates a new dynamic constraint, whose parameters define the name

of the constraint and a condition that uses a temporal.

- The package “Preconditions”
Preconditions establish the condition that must be satisfied to execute an aspect service.

Therefore, the metaclass Precondition has the aggregation relationship establishCondition and

aggregation relationship constrains with the metaclasses Condition and Service, respectively

(see Figure 27). The first aggregation establishes that a precondition must define the service that

it affects. The second aggregation establishes the condition that must be satisfied to execute the

service.

Model-Driven Development of Aspect-Oriented Software Architectures

86

Figure 27. The package Preconditions of the PRISMA metamodel

The metaclass Precondition only has one attribute, the name of the precondition. The

service newPrecondition creates a new precondition, whose parameters define the name, the

condition that must be satisfied, and the service that will only be executed if the condition is

satisfied. In addition, the metaclass Precondition has an associated constraint in order to ensure

that the aspect execution is not conditioned by a precondition. This constraint corresponds to

the OCL rule shown in Figure 27. It specifies the following:

<<A service begin does not have preconditions associated to it since the start of the aspect

execution cannot be conditioned by the aspect itself>>

This constraint is necessary because preconditions are used to define the business logic of

the software system and not to define the mechanisms of creating, destroying or executing

instances.

- The package “Valuations”
Valuations establish how the service executions affect the aspect state. This semantics is

specified by means of two conditions: one that must be satisfied before the service execution

and another that must be satisfied after the service execution. For this reason, the metaclass

Valuation has three aggregation relationships with the metaclasses Condition, Service and

Postcondition (see Figure 28).

The PRISMA Background

87

Figure 28. The package Valuations of the PRISMA metamodel

The metaclass Condition defines the condition that specifies the state of the aspect before

the service execution. This condition is optional, this means it does not have to be specified

when the state before the execution is not relevant to the state change (see the conditioned

aggregation in Figure 28). However, the specification of the condition after the service

execution is mandatory. The postcondition must be satisfied after the service execution. Since

the metaclass Postcondition defines the change in one attribute or parameter and a valuation

can affect several attributes or parameters, a valuation can have more than one postcondition

associated to it in order to model the service changes in several attributes and/or parameters (see

the evaluate aggregation in Figure 28).

The metaclass Valuation has only one attribute, the name of the valuation. The service

newValuation creates a new valuation, whose parameters define the name, the service that

produces the change of state, and the condition that must be satisfied after the service execution.

Moreover, it has two services addCondition and addPostCondition. The addCondition adds a

condition to the valuation. This condition must be satisfied before the service execution. The

addPostCondition adds more that one postcondition when the valuation affects several

attributes or parameters.

- The package “PlayedRoles”
PlayedRoles establish how the services of an interface can be executed. As a result, a

played_role defines a process that orchestrates the service execution of a specific interface.

Model-Driven Development of Aspect-Oriented Software Architectures

88

Since the metaclass Played_Role defines a process, it inherits the properties of the metaclass

Process.

Figure 29. The package PlayedRoles of the PRISMA metamodel

The metaclass Played_Role has two association relationships with the metaclasses Interface

and Service (see Figure 29). A played_role defines the behaviour of only one interface (see the

the for association in Figure 29) and describes the execution process of more than one service

(see the order association in Figure 29). However, the played_role cannot be related to any

interface or service of the software system. As a result, these relationships are constrained by

three constraints. These constraints correspond to the OCL rules shown in Figure 29. They

specify the following:

<<Every interface that an aspect imports must have associated a played_role>>

<<The interface of a played_role is one of the interfaces that imports the aspect that the

played_role belongs to>>

<<Every service that participate in a played_role must be a service of the played_role

interface>>

The PRISMA Background

89

The metaclass Played_Role has one attribute, the name of the played_role. The service

newPlayedRole creates a new played_role, whose parameters define the name and the

interface. The behaviour of this interface is defined by the played_role.

- The package “Protocols”
A protocol establishes how the services of an aspect can be executed. As a result, a protocol

defines a process that coordinates the private and public services of an aspect. Since the

metaclass Protocol defines a process, it inherits the properties of the metaclass Process.

Figure 30. The package Protocols of the PRISMA metamodel

A service can be private or public and only belongs to one aspect. For this reason, a service

can only participate in one protocol: the protocol of the aspect that it belongs to (see the

privateandpublicsynch association Figure 30). In addition, each service of the aspect must

participate in its protocol (see the constraint in the Aspect package in Figure 20).These services

can be either private or public services, but there must be at least three: the begin and end

services of an aspect, and one service to perform the computation of the aspect (see the

privateandpublicsynch association in Figure 30).

A protocol is the glue of the played_roles and the private services of the aspect. As a result,

the protocol coordinates the many different played_roles that have been defined in the aspect

that it belongs to. However, a played_role is only coordinated one protocol, its aspect protocol

Model-Driven Development of Aspect-Oriented Software Architectures

90

(see the coordinates association in Figure 30). Played_roles are specified using the public

services of an aspect. Since aspect services can be private or public, those that are private are

not related to played_roles (see the order association in Figure 30).

The metaclass Protocol has one attribute, the name of the protocol. The service

newProtocol creates a new protocol by providing the name of the protocol as a parameter.

4.2.1.3. The package “ArchitecturalElements”
In PRISMA, there are three kinds of architectural elements: components, connectors, and

systems (see Figure 31). The package ArchitecturalElements defines the metaclass

ArchitecturalElement. It is an abstract metaclass that specifies the commonalities of the three

kinds of PRISMA architectural elements. In addition, it includes all subpackages that define the

concepts required to specify PRISMA architectural elements.

The metaclass ArchitecturalElement has two aggregation relationships with the

metaclassess Port and Weaving, and one association relationship with the metaclass Aspect (see

Figure 32). An architectural element has at least one port; the port is part of the architectural

element and does not have its own entity without the architectural element. In other words, the

aggregation between the port and the architectural element is inclusive (see the has aggregation

in Figure 32). An architectural element imports at least one aspect and an aspect can be

imported by one or more architectural elements of the software system (see the imports

association in Figure 32). In addition, an architectural element can include a set of weavings to

synchronize its aspects. These Weavings are related to the architectural element by means of an

inclusive aggregation (see the weaves aggregation in Figure 32).

The metaclass ArchitecturalElement has one attribute, the name of the architectural

element. In addition, it has three services addAspect, addPort, addWeaving to associate aspects,

ports, and weavings to the architectural element, respectively (see Figure 32). It is important to

emphasize that this metaclass does not have a constructor (new service) because it is an abstract

class that cannot be instantiated.

The PRISMA Background

91

Figure 31. The subpackages of the package ArchitecturalElements of the
PRISMA metamodel

The metaclass ArchitecturalElement has two constraints associated to it in order to

completely define its properties. These constraints correspond to the OCL rules shown in

Figure 32. They specify the following:

<<There are no two ports of an architectural model that have the same interface and the

same played_role associated >>

<<An architectural element cannot import more than one aspect of the same concern>>

The package KindsOfArchitecturalElements is a subpackage of the package

ArchitecturalElements, and it classifies architectural elements into components and connectors.

As a result, this package specifies that components and connectors inherit the properties of the

ArchitecturalElement metaclass, and it also contains the packages that define components and

connectors.

Model-Driven Development of Aspect-Oriented Software Architectures

92

Figure 32. The package ArchitecturalElements of the PRISMA metamodel

Figure 33. The package KindsOfArchitecturalElements of the PRISMA

metamodel

4.2.1.4. The package “Weaver”
The package Weaver defines the weavings of architectural elements. It contains the metaclass

weaving which is formed by two aspect services. One of the services, the pointcut service,

triggers the execution of the weaving; the other service, the advice service, is executed as a

consequence of the weaving. The relationships between the weaving and these two services are

modelled in the metamodel by means of two aggregations (see Figure 34). In addition, if the

weaving is conditional, it has a condition associated to it.

The PRISMA Background

93

There are certain constraints that must be satisfied in order to associate the appropriate

services to a weaving definition. As a result, the metaclass Weaving has constraints associated

to it. These constraints correspond to the OCL rules shown in Figure 35. They specify the

following:

<<The services that participate in the weaving must belong to aspects that are imported by

the architectural element in which the weaving is defined>>

<<If the weaving uses a conditional operator, it must have a condition associated to it.

However, if the weaving does not use a conditional operator, it cannot have a condition

associated to it>>

<<The services that participate in a weaving must belong to different aspects>>

<<The aspects of the services that participate in a weaving must define different

concerns>>

Figure 34. The package Weaver of the PRISMA metamodel

The metaclass Weaving has two attributes, name and operator (see Figure 34). These store

the name of the aspect and the operator that the weaving applies to the service execution,

respectively. The service newWeaving creates a new aspect; whose parameters define the

name, the operator of the weaving, and the two services that participate in the weaving. In

addition, the metaclass provides a service for adding a condition to a weaving when it uses a

conditional operator. This service is called addCondition.

Model-Driven Development of Aspect-Oriented Software Architectures

94

Figure 35. Constraints of the metaclass Weaving

4.2.1.5. The package “Components”
The package Components defines simple and complex components (see Figure 36). Since

components cannot be coordinators of the software system, there is a constraint that specifies

that a component cannot import an aspect whose concern is coordination.

The metaclass Component provides a service to create components. This service is called

newComponent, and its parameter is the name of the component that is created as a result of the

service execution.

Figure 36. The package Components of the PRISMA metamodel

The PRISMA Background

95

Since systems are complex components, they inherit all the properties of components. For

this reason, the package that defines a system is a subpackage of the Component metaclass.

4.2.1.6. The package “Connectors”
The package Connectors defines the connector architectural element (see Figure 37). Since

connectors act as coordinators of components, the metaclass Connector has an associated

constraint that specifies that a connector must import an aspect whose concern is coordination

(see the first constraint that appears in Figure 37).

Figure 37. The package Connectors of the PRISMA metamodel

Morevover, the metaclass Connector has another constraint associated to it that specifies

the following:

<<A connector must have at least two attachments associated to it, and each attachment

must connect the connector to two different components>>

The metaclass Connector provides a service to create connectors. This service is called

newConnector, and its parameter is the name of the connector that is created as a result of the

service execution

Model-Driven Development of Aspect-Oriented Software Architectures

96

4.2.1.7. The package “Attachments”
Attachments define types of communication channels between the ports of a component and

the port of a connector. As a result, the metaclass Attachment is related to the metaclass Port by

means of an association relationship (see Figure 42). This relationship establishes that the

attachment must be related to two ports. However, it is necessary to constrain this association

with a constraint in order to establish that one of the ports must belong to a component and that

the other one must belong to a connector.

Figure 38. The package Attachments of the PRISMA metamodel

In addition to the attachment name for storing the name of the attachment, the metaclass

Attachment has four more attributes to specify the attachment communication pattern, i.e., the

instantiation pattern of the attachment. It is necessary to constrain how many instances of the

attachment can be attached to the port of the component instance and the port of the connector

instance. The attribute card_min_port_component specifies the minimum number of

attachment instances that must be connected to one instance of this component through the

port. The attribute card_max_port_component specifies the maximum number of attachment

instances that must be connected to one instance of this component through the port. The

attribute card_min_port_connector specifies the minimum number of attachment instances that

must be connected to one instance of this connector through the port. The attribute

The PRISMA Background

97

card_max_port_connector specifies the maximum number of attachment instances that must

be connected to one instance of this connector through the port.

Moreover, the metaclass Attachment has the service newAttachment to create a new

attachment. Its parameters are the name of the attachment that is created as a result of the

service execution, the component port and the connector port that it connects, and the

minimum and maximum cardinalities for each one of the ports.

4.2.1.8. The package “Systems”
The package Systems defines complex components (see Figure 39). Systems are complex

components that are composed of a set of architectural elements and their attachments. For this

reason, the metaclass System has an aggregation with each one of the metaclasses Component,

Connector and Attachment.

The architectural elements that compose a system can be directly related to other elements

or their access can only be possible through the system. These two kinds of composition are

referential and inclusive, respectively. The analyst can model any of these compositions for the

architectural elements of the system, depending on the requirements of the system. However,

the definition of an inclusive composition between a system and an architectural element

requires the definition of a channel between a system port and a port of the architectural

element. This channel is required to resend the provided and requested services of the

architectural element through the system port. These channels are called bindings. Therefore,

the metaclass System has an aggregation relationship with the metaclass Binding. Bindings are

defined in the Bindings subpackage of the System package.

The metaclass System must be related to at least one component in order to be complex (see

the containsComp aggregation in Figure 39). In addition, it has an associated constraint that

ensures a correct composition. It specifies the following:

<<If a system does not import any aspect, the system must have at least one binding

associated to it >>

Model-Driven Development of Aspect-Oriented Software Architectures

98

Figure 39. The package Systems of the PRISMA metamodel

The metaclass System has four services. The service newSystem creates a new system by

providing the name of the system as a parameter. In addition, the services addComponent,

addConnector, addAttachment and addBinding add components, connectors, attachments and

bindings, respectively, to the system.

4.2.1.9. The package “Bindings”
The metaclass Binding is related to the metaclass Port by means of two association

relationships (see Figure 42). These associations establish that the binding must be related to a

system port and an architectural element port. However, the architectural element that the port

belongs to must be one of the architectural elements of the system. This constraint is applied

not only at the types level, but also at the configuration level (instances). For this reason, the

metaclass Binding has an associated constraint that specifies this requirement.

In addition to the attribute name for storing the name of the binding, the metaclass Binding

has four more attributes to specify the communication pattern of the binding. As a result, the

attribute card_min_port_AR specifies the minimum number of binding instances that must be

connected to one instance of this architectural element through the port. The attribute

card_max_port_AR specifies the maximum number of binding instances that must be

The PRISMA Background

99

connected to one instance of this architectural element through the port. The attribute

card_min_port_Sys specifies the minimum number of binding instances that must be

connected to one instance of this system through the port. The attribute card_max_port_Syst

specifies the maximum number of binding instances that must be connected to one instance of

this system through the port.

Figure 40. The package Bindings of the PRISMA metamodel

Moreover, the metaclass Binding has the service newBinding to create a new binding. Its

parameters are the name of the binding that is created as a result of the service execution, the

system port and architectural element port that it connects, and the minimum and maximum

cardinalities for each one of the ports.

4.2.1.10. The package “Ports”
Ports publish the services of an interface and constrain how these services can be provided or

requested by means of a played_role. For this reason, the metaclass Port has two aggregation

relationships with the metaclasses Interface and Played_Role (see Figure 41).

Model-Driven Development of Aspect-Oriented Software Architectures

100

Figure 41. The package Ports of the PRISMA metamodel

Figure 42. Constraints of the metaclass Port

However, ports cannot be related to any interface or played_role of the software system. As

a result, these relationships are constrained by the following two constraints that correspond to

the two that appear in Figure 42:

The PRISMA Background

101

<<If the architectural element that the port belongs to is not a system, the played_role of

the port must be defined for one of the aspects that the architectural element imports. In

addition, the interface of the played_role must be the same one as the interface of the port>>

<<If the architectural element that the port belongs to is a system, there are two possible

options: 1) either the played_role of the port is defined for one of the aspects that the system

imports, and the interface of the played_role is the same as the interface of the port; 2) or the

port has the same interface and played_role as one port of the architectural element of the

system>>

The metaclass Port has one attribute, the name of the port. The service newPort creates a

new port by providing the name of the port, the interface and the played_role as parameters.

4.2.2. THE PACKAGE “ARCHITECTURE SPECIFICATION”
The package Architecture Specification defines how a PRISMA architecture can be defined

using the types defined in the package Types. The metaclass PRISMAArchitecture has five

aggregation relationships with each one of the first-order citizens of the PRISMA model. They

are components, connectors, aspects, interfaces, and attachments. Since components,

connectors, interfaces, and aspects are reusable, they can be used by more than one

architectural element (see Figure 43).

The metaclass PRISMAArchitecture has one attribute, the name of the architectural model.

The service newArchitecture creates a new architectural model by providing its name as a

parameter. In addition, the metaclass provides five services to add attachments, components,

connectors, interfaces and aspects to the architectural model. In order to ensure that a model is

correctly defined, the metaclass PRISMAArchitecture has a set of constraints associated to it

(see Figure 43). Their meaning is the following:

<<An architectural model must include every aspect that is imported by its components

and/or connectors>>

<<An architectural model must include every interface that is used by its aspects >>

Model-Driven Development of Aspect-Oriented Software Architectures

102

Figure 43. The package Architecture Specification of the PRISMA

metamodel

4.3. CONCLUSIONS
The PRISMA model has been presented in this chapter. This model allows us to describe

software architectures of complex and large systems and to improve their reusability and

maintainability. This is possible because the application of aspect-oriented software

development to software architectures provides different levels of reusability and maintenance:

the concern level (aspects) and the functional level (architectural elements).

 The concern level places the properties of a concern inside an aspect. As a result, the

modification of a concern is easily found in the aspects of this concern, and the aspects of a

concern can be reused by any architectural element that needs their properties.

The PRISMA Background

103

 The functional level places functional or coordination processes of the business rules of the

software system in components and connectors, respectively. These can be easily found in

order to be reused or modified.

Another important property of this model is the fact that the weavings between aspects and

the relationships among architectural elements are defined outside aspects, which improves

their reusability and maintenance.

Instead of using a kernel or core entity to encapsulate functionality, aspects to define non-

functional requirements and their weavings, this model only uses aspects and weavings to

define architectural elements. The symmetrical way in which aspects are introduced in

PRISMA software architectures provides homogeneity to the model and a clean and novel way

of modelling software architectures. In PRISMA, architectural elements and aspects are used as

it they were pieces of a puzzle that fit together to form a software architecture. This way of

specifying PRISMA software architectures is presented in detail in chapter.

This chapter also has presented the PRISMA metamodel. This metamodel permits the

creation of PRISMA architectural models in a correct way and the accurate definition of their

properties following the MDD paradigm. In addition, it facilitates the integration of the

PRISMA model into modelling tools that support the incorporation of new metamodels.

The PRISMA metamodel defines the required metaclasses, their properties and services,

and their relationships with each other. In addition, the metamodel specifies the constraints to

ensure that the definition of an architectural model is correct.

The metamodel is the repository structure that stores PRISMA architectural models,

preserving the reusability of interfaces, architectural elements and aspects. In addition, the

metamodel introduces a methodology to follow during the MDD process when a PRISMA

architectural model is specified by means of constraints. This is supported by verification rules

that are associated to the MDD process.

The PRISMA metamodel has been defined to be able to support evolution at run-time in

the future. This evolution could be supported at different levels of granularity by adding the

evolution services to the different metaclasses of the metamodel. This would consist of adding

or removing architectural elements of the model, or adding or removing properties of an aspect

Model-Driven Development of Aspect-Oriented Software Architectures

104

(attributes, services, etc). In addition to adding evolution services to the metamodel, a

mechanism to invoke these services at run-time should be provided to support run-time

evolution.

The work related to PRISMA model has produced a set of results that are published in the

following publications:

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose Ángel Carsí, Replicación

Distribuida en Arquitecturas Software Orientadas a Aspectos utilizando Ambientes,

Journal IEEE América Latina, Vol. 5, Issue 4, July 2007.

 Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos, Designing Software

Architectures with an Aspect-Oriented Architecture Description Language, 9th

Symposium on the Component Based Software Engineering (CBSE), Springer Verlang

LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Suecia,

June 29th-July 1st, 2006.

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Mobile

Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on

Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227

pp. 37-48, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20,

2006.

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for

Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer

Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area),

March 27th-30th, 2006.

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for

Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp.

1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)

The PRISMA Background

105

 Jennifer Pérez, Manuel Llavador, Jose A. Carsí, Jose H. Canós, Isidro Ramos,

Coordination in Software Architectures: an Aspect-Oriented Approach, Fifth Working

IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society

Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November,

2005 (position paper)

 Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Integrating Ambient Calculus in

Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on

Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-

7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005 (position paper)

 Jennifer Pérez, Nour Ali, Cristobal Costa, José Á. Carsí, Isidro Ramos, Executing Aspect-

Oriented Component-Based Software Architectures on .NET Technology, 3rd

International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic,

May-June 2005.

 Nour Ali, Jennifer Pérez, Isidro Ramos, Aspect High Level Specification of Distributed

and Mobile Information Systems, Second International Symposium on Innovation in

Information & Communication Technology ISSICT, pp. 14, Amman, Jordania,21-22,

April, 2004.

 Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsí , Aspect Reusability in Software

Architectures, 8th International conference of Software Reuse (ICSR), July, 2004 (poster)

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Goals Model-Driving Software

Architecture, 2nd International Conference on Software Engineering Research,

Management and Applications (SERA), pp. 205-212, ISBN:0-9700776-9-6, May 5-8,

2004, Los Angeles, CA, USA.

 Nour Hussein, Josep Silva, Javier Jaen, Isidro Ramos, Jose Ángel Carsí ,Jennifer Pérez ,

Mobility and Replicability Patterns in Aspect-Oriented Component- Based Software

Architectures, 15th IASTED International Conference, Parallel and Distributed

Computing and Systems (PDCS), ACTA Press, ISBN: 0-88986-392-X, ISSN: 1027-

2658, pp. 820-826, Marina del Rey, California, USA, 3-5, November 2003,

Model-Driven Development of Aspect-Oriented Software Architectures

106

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, Elena Navarro , PRISMA:

Towards Quality, Aspect Oriented and Dynamic Software Architectures, 3rd IEEE

International Conference on Quality Software (QSIC 2003), IEEE Computer Society

Press, pp.59-66, ISBN: 0-7695-2015-4, Dallas, Texas, USA, November 6 - 7, 2003.

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Software Requirements for Architectured

Systems, 11t h IEEE International Requirements Engineering Conference (RE'03), IEEE

Computer Society Press, pp. 365-366, ISSN: 1090-705X, ISBN: 0-7695-1980-6,

Monterey, California, 8-12 September 2003 (Poster)

 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Dynamic Evolution in Aspect-

Oriented Architectural Models, Second European Workshop on Software Architecture,

Springer LNCS 3527, pp.59-16, ISSN: 0302-9743, ISBN: 3-540-26275-X , Pisa, Italy,

June 2005.

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, PRISMA: Development of

Software Architectures with an Aspect Oriented, Reflexive and Dynamic Approach,

Dagstuhl Seminar Nº 03081, Report Nº 36 "Objects, Agents and Features",Copyright (c)

IBFI gem. GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany . Eds.H.-D. Ehrich

(Univ. Braunschweig, D), J.-J. Meyer (Utrecht, NL), M. Ryan (Univ. of Birmingham,

GB), pp. 16, Germany, January, 2003.

 Jorge Ferrer, Ángeles Lorenzo, Isidro Ramos, José Ángel Carsí, Jennifer Pérez,

Modeling Dynamic Aspects in Architectures and Multiagent Systems, Logic Programming

and Software Engineering (CLPSE), pp. 1-13, Copenhagen, Denmark, affiliated with

ICLP, july 2002.

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Distributed

Replication in Aspect-Oriented Software Architectures using Ambients, XI Conference on

Software Engineering and Databases (JISBD), pp. 379-388, ISBN: 84-95999-99-4, Sitges,

Barcelona, October 2006. (In Spanish)

The PRISMA Background

107

 Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsí, Isidro Ramos, PRISMANET

middleware: Support to the Dynamic Evolution of Aspect-Oriented Software

Architectures, X Conference on Software Engineering and Databases (JISBD), pp. 27-34,

ISBN: 84-9732-434-X, Granada, September, 2005. (In Spanish)

 Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sánchez, Bárbara

Álvarez, Development of a Tele-Operation System using the PRISMA Approach, VIII

Conference on Software Engineering and Databases (JISBD), pp. 411-420, ISBN: 84-

688-3836-5, Alicante, November, 2003. (In Spanish)

 Jennifer Pérez, Isidro Ramos , Ángeles Lorenzo, Patricio Letelier, Javier Jaén, PRISMA:

OASIS PlatfoRm for Architectural Models, VII Conference on Software Engineering and

Databases (JISBD), pp. 349-360, ISBN: 84-688-0206-9, El Escorial (Madrid), November,

2002. (In Spanish)

 Cristóbal Costa, Jennifer Pérez, Jose Angel Carsí, Towards the Dynamic Configuration

of Aspect-Oriented Software Architectures, IV Workshop on Aspect-Oriented Software

Development (DSOA), XI Conference on Software Engineering and Databases (JISBD),

Technical Report TR-24/06 of the Polytechic School of the University of Extremadura,

pp.35-40, Sitges, Barcelona, Octubre, 2006. (In Spanish)

 Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose A. Carsí, Aspect-Oriented

C# Implementation of a Tele-Operated Robotic System, III Workshop on Aspect-Oriented

Software Development (DSOA), X Conference on Software Engineering and Databases

(JISBD), pp. 53-59, ISBN: 84-7723-670-4, Granada, September, 2005. (In Spanish)

 Jennifer Pérez,Nour H. Ali, Isidro Ramos, Jose A. Carsí, PRISMA: Aspect-Oriented and

Component-Based Software Architectures, Workshop on Aspect-Oriented Software

Development (DSOA), Conference on Software Engineering and Databases (JISBD),

Technical Report TR-20/2003 of the Polytechic School of the University of Extremadura,

pp. 27-36, Alicante, November, 2003. (In Spanish)

Model-Driven Development of Aspect-Oriented Software Architectures

108

 Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, DIAGMED: An

Architectural model for a Medical Diagnosis, IV workshop DYNAMICA – DYNamic

and Aspect-Oriented Modeling for Integrated Component-based Architectures, pp. 1-7,

Archena, Murcia, November, 2005. (In Spanish)

 Rafael Cabedo, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Generation and Modelling

of PRISMA Architecture using DSL Tools, IV Workshop DYNAMICA – DYNamic and

Aspect-Oriented Modeling for Integrated Component-based Architectures, pp.79-86,

Archena, Murcia, November, 2005. (In Spanish)

 Nour Ali, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Mobility of Objects in the

PRISMA Approach, II workshop DYNAMICA – DYNamic and Aspect-Oriented

Modeling for Integrated Component-based Architectures, pp. 111-118, Almagro, Ciudad

Real, April, 2005.

 Jennifer Pérez, Rafael Cabedo, Pedro Sánchez, Jose A. Carsí, Juan A. Pastor, Isidro

Ramos, Bárbara Álvarez, PRISMA Architecture of the Case Study: an Arm Robot, II

workshop DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, Conference on Software Engineering and Databases

(JISBD), pp. 119-127, Málaga, November 2004. (In Spanish)

 Nour Ali Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos, Implementation

of the PRISMA Model in the .Net Platform,II workshop DYNAMICA – DYNamic and

Aspect-Oriented Modeling for Integrated Component-based Architectures, Conference on

Software Engineering and Databases (JISBD), pp. 119-127, Málaga, November, 2004.

 Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose Á. Carsí, Jennifer Pérez,

Distribution Patterns in Aspect-Oriented Component-Based Software Architectures, IV

Workshop Distributed Objects, Languages, Methods and Environments (DOLMEN),

pp.74-80, Alicante, November, 2003.

 Rafael Cabedo, Jennifer Pérez, Isidro Ramos, The application of the PRISMA

Architecture Description Language to an Industrial Robotic System, Technical Report,

DSIC-II/11/05, pp.180, Polytechnic University of Valencia, September 2005. (In Spanish)

The PRISMA Background

109

 Cristobal Costa, Jennifer Pérez, Jose Ángel Carsí, Study and Implementation of an

Aspect-Oriented Component-Based Model in .NET technology, Technical Report, DSIC-

II/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish)

 Jennifer Pérez, Nour Ali , Jose A. Carsí, Isidro Ramos, PRISMA Architecture of the

Robot 4U4 Case Study, Technical Report DSIC-II/13/04, pp. 72, Polytechnic University

of Valencia, 2004. (In Spanish)

 Jennifer Pérez, Isidro Ramos, OASIS as a Formal Support for the Dynamic, Distributed

and Evolutive Hypermedia Models, Technical Report DSIC-II/22/03, pp. 144, Polytechnic

University of Valencia, October 2003. (In Spanish)

 Jennifer Pérez, Isidro Ramos, Jose A. Carsí, A Compiler to Automatically Generate the

Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-

II/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish)

Model-Driven Development of Aspect-Oriented Software Architectures

110

Coordination

111

CHAPTER 5
5. COORDINATION

Coordination has become a key concept in the modelling process of industrial systems as it

leads to a better understanding of the interactions that take place in complex and distributed

systems. In the last few years, coordination has been introduced in two important fields of

Software Engineering: Software Architectures, through the notion of connector, and Aspect-

Oriented Software Development, through the notion of weaving and by considering

coordination as an aspect. The separation of coordination from functionality is a key concept in

order to provide a better reusability and maintenance during the MDD process.

In this chapter the interest of using aspect-oriented connectors is discussed in detail,

justifying the relevance of the PRISMA model and its merits with regard to other proposals,

especially to provide a complete MDD support. Once this interest has been stated, the concrete

structure of connectors in PRISMA is described in detail, and the formalization of the relevant

PRISMA concepts is provided and explained. The notion of weavings is described with special

care. In addition, a discussion of the proposal is done by comparing it with other works and

highlighting the advantages of the PRISMA proposal. Finally, the chapter concludes by

summarizing the results and the directions of further work about PRISMA coordination

processes.

Model-Driven Development of Aspect-Oriented Software Architectures

112

5.1. INTRODUCTION
Currently, there is a great interest in coordination. Coordination orchestrates processes in order

to achieve the correct functionality of software products. Good coordination management is

essential and is a risk factor for the synchronization of difficult tasks that industrial systems

must perform. As a result, several software development approaches have taken coordination

into account. Two widely used are Component-Based Software Development (CBSD)

[Szy98]and Aspect-Oriented Software Development (AOSD) [Kiz97].

On the one hand, coordination is an important topic in CBSD and, by extension, in

Software Architectures since it can be used to synchronize the components that form a specific

architecture. In fact, as it is presented in chapter 3, Architecture Description Languages (ADLs)

[Med00] could be classified according to the importance they give to coordination. Some of

these ADLs have introduced the notion of connector, which is an architectural element that acts

as a coordinator among other architectural elements (either connectors or components)

[All97a], [Cue05], [Med00]. However, other ADLs do not include connectors [Can99],

[Mag95]. Those that use the notion of connector give more relevance to coordination because

they provide a specific architectural element to define it. In addition, they offer an architectural

view of systems; whereas, an ADL without connectors has a more compositional view, as in

object-oriented models [Luc95b], [Mag95]. As a result, an ADL should provide connectors in

order to separate coordination from computation and to provide an architectural view instead of

a compositional view.

On the other hand, AOSD allows the separation of cross-cutting concerns of software

systems in a modular entity called aspect. Among the different crosscutting concerns that can

be identified in software systems, coordination is perhaps one of the most common. But in

addition to this characterization as a concern, coordination has also emerged as an important

feature within AOSD itself, because the different aspects of a software system must also be

synchronized. The need for aspect coordination has been identified as a key feature in this

approach [Kiz01].

The main contribution of this chapter is the formalization and definition of aspect-oriented

connectors in order to define their coordination process in a formal way and thus, to avoid

Coordination

113

ambiguity in the code generation process. In addition, its definition must provide reusability

and avoid the replication of specification to facilitate the development and maintenance of

software following the MDD paradigm.

Since PRISMA connectors are observable processes that have state and behaviour, the

formalisms which are used to formalize the PRISMA model are a variant of a Modal Logic of

Actions [Sti92], and a extension of the π-calculus [Mil93] which provides priorities. The π-

calculus is a process algebra which is used to specify and formalize the processes of the

PRISMA model, and the Modal Logic of Actions is used to formalize the way in which the

execution of these processes affects the state of architectural elements. More detail about these

formalisms can be found in [Per06c].

5.2. ASPECT ORIENTED CONNECTORS
It is important to keep in mind that current software systems perform complex coordination

processes that have to take into account not only the coordination concern, but also other

concerns such as: safety, distribution, security, etc. These other concerns are necessary in order

to provide a correct coordination process. For example: The connectors that coordinate the

actuators and sensors of tele-operated robots need to check that the movement is safe for the

robot before sending the movement to the actuator. PRISMA aspect-oriented connectors are

presented as a solution for the specification of these complex coordination processes by

improving the reusability and maintenance of software during the MDD process. This

improvement has been achieved by overcoming the disadvantages of the rest of ADLs. Current

ADLs can be classified into three different kinds: non-aspect-oriented ADLs without

connectors, non-aspect-oriented ADLs with connectors, and aspect-oriented ADLs. Next, it is

presented how they specify complex coordination processes that have to take into account

several concerns.

5.2.1. Non-Aspect-Oriented, connector less ADLs
There are ADLs that prefer the absence of connectors because they distort the compositional

nature of soft ware architectures. Some ADLs, such as Darwin [Mag95], [Mag96]Leda

[Can01], [Can00], and Rapide [Luc95b], [Luc95a], [Ken95] do not consider connectors as

Model-Driven Development of Aspect-Oriented Software Architectures

114

first-class citizens. However, these ADLs make difficult the reusability of components because

they have the coordination process tangled with the computation inside them, and they are

aware of the coordination process that has to happen in order to communicate with the rest. The

notion of connector emerges from the need to separate the interaction from the computation in

order to obtain more reusable and modularized components and to improve the level of

abstraction of software architecture descriptions. Mary Shaw [Sha94]presents the need for

connectors due to the fact that the specification of software systems with complex coordination

protocols is very difficult without the notion of connector. From her experience in the software

architecture field, she demonstrates that the connector provides not only a high level of

abstraction and modularity to software architectures, but also an architectural view of the

system instead of the object-oriented view of compositional approaches. She also defends the

idea of considering connectors as first-order citizens of ADLs. Figure 44 illustrates how two

components (actuator and sensor) are communicated using an ADL without connectors. The

coordination process is encapsulated in the components and tangled with the computation and

other concerns.

Figure 44. Sensor-Actuator coordination by using a Connector-less ADL

5.2.2. Non-Aspect-Oriented ADLs with connectors
Most ADLs provide connectors as a first order citizens of the language such as: ACME

[Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99], SADL [Mor95], [Mor97], UniCon

[Sha95], [Sha96], Wright [All97a], [All97b], CommUnity [Lop05], [And03], [Fia04][9], Pilar

[Cue02], [Cue04], ArchWare π-ADL [Oqu04a], [Oqu04b], etc. All of these languages go a

step forward with regard to the previous kind of ADLs. They improve the reusability of

components and connectors by separating computation from coordination. However, their

connectors are non-aspect-oriented and they specify their coordination processes by tangling

the code inside them. For example: the coordination process between an actuator and a sensor

Coordination

115

of a robot will imply the specification of a connector with tangled concerns of coordination and

safety (see Figure 45).

Figure 45. Sensor-Actuator coordination by using an ADL with Connectors

5.2.3. Aspect-Oriented, connector-less ADLs
Most aspect-oriented approaches applied to software architectures and their ADLs are based on

an original ADL without connectors such as: PCS [Kan02b][Kan02a][Kan03], DAOP-ADL

[Pin03][Pin05], AspectLEDA [Nav05], AOCE [Gru00], etc. These ADLs introduce the

aspect-oriented behaviour by means of connectors, i.e., aspects are connectors among

components. However, when there are two components that are coordinated by several

connectors (aspects), the connectors cannot be synchronized among them (weavings among

aspects). And in those ADLs that could try to solve this problem by connecting both connectors

they will lose the reusability of the concerns of those connectors, because they will be

dependent to the connector (aspect) that are connected to. Figure 46 illustrates how two

components are communicated using an aspect oriented ADL without connectors.

Figure 46. Sensor-Actuator coordination by using a connector-less Aspect-

Oriented ADL (AOADL)

Model-Driven Development of Aspect-Oriented Software Architectures

116

5.2.4. Aspect-Oriented ADLs with connectors
However, in PRISMA a new kind of ADLs is introduced, namely aspect-oriented ADLs with

connectors. PRISMA is based on an ADL with connectors, and aspects are introduced as a

new concept in software architectures for concerns called aspects. As a result, each concern is

specified in its aspect and the coordination rules among the different aspects are inside the

connector being aspects reusable and independent one to each other. Figure 47 presents how

PRISMA coordinates the sensor and the actuator by separating the concerns or computation,

safety and coordination. As a result, they are not scattered through the architecture and they are

not repeated. These properties are the base to improve the reusability and maintenance of

software during the Model-Driven Development of aspect-oriented software architectures.

Figure 47. Sensor-Actuator coordination by using the PRISMA ADL

In addition, Figure 47 shows that the coordination process among components, connectors

and aspect is very complex. For this reason, this coordination process must be very well

defined and formalized in order to guarantee that it coordinates all the pieces of software

successfully. The formalization of this coordination process is presented in detail along the next

section.

Coordination

117

5.3. CONNECTORS IN PRISMA
A connector is an architectural element that acts as a coordinator between other architectural

elements. As such, connectors have a coordination aspect. An example is the connector that

synchronizes the Actuator and the Sensor of a robot joint. This connector imports a safety

aspect and a coordination aspect to coordinate the movements of the robot in a safe way for the

joint, the robot and the environment that surrounds it.

5.3.1. Architectural Element
Since a connector is an architectural element, a connector is formalized as an architectural

element. An architectural element is formed by a set of aspects, their weaving relationships, and

one or more ports. These ports represent interaction points among architectural elements.

- Formalization: Architectural Element
An architectural element AE is built by composing a set of aspects A1, A2, …An, which are

conceived as the smallest modules in our approach, and will be defined in section 5.3.3. The

resulting element AE is in turn defined itself by the 4-tuple (A, X, Φ, Π), as follows:

 A: the set of attributes in aspects A1, A2, …An

 X: the set of the services in aspects A1, A2, …An (see Definition 1 in section 5.3.4)

 Φ: the set of formulae (in Modal Logic of Actions) providing constraints for aspects

A1…An

 Π: the process PAE defined as follows:

PAE ::= PP1 ||…|| PPm || PA1 || …|| PAn || PW

This means that the processes of the ports, weavings and aspects of the architectural

element are executed concurrently. For this reason, PAR is defined as their parallel

composition, and therefore their dependencies are expressed and solved just as concurrency

conflicts.

Model-Driven Development of Aspect-Oriented Software Architectures

118

 Fig. 49 (a). The black box representation

 Fig. 49 (b). PRISMA specification

Figure 48. The RobotConnector Connector

A brief comment about the role of the Modal Logic of Actions in PRISMA is relevant here.

Basically, the formulae in Φ are used for implementing obligations, prohibitions, and

permissions, providing the concurrent equivalent of a deontic logic. As a result, it permits the

Connector CnctJoint

 Coordination Aspect Import CProcessSuc;

 Safety Aspect Import SMotion;

 Weavings

 SMotion. DANGEROUSCHECKING(NewSteps, Speed, Secure)

 beforeif (Safe = true)

 CProcessSuc.movejoint(NewSteps, Speed);

 End_Weavings;

 Ports

 PAct : IMotionJoint,

 Played_Role CProcessSuc.ACT;

 PSen : IRead,

 Played_Role CProcessSuc.SEN;

 PJoint : IJoint,

 Played_Role CProcessSuc.JOINT;

 PPos : IPosition,

 Played_Role CProcessSuc.POS;

 End_Ports

 … …

End Connector CnctJoint;

Coordination

119

analysis and formulation of assertions about processes that change the execution environment.

A formula of this Modal Logic of Actions is written following the structure ψ [a] ϕ, where ψ

and ϕ are well-formed formulae (wff) in conventional first-order logic, which characterize the

state before or after the execution of the action a, respectively. As usual in modal logics, the

construct [] represents the necessity operator, and a represents an action. As a result, the

meaning of formulae which are constructed following this pattern (ψ [a] ϕ) is the following: “if

ψ is satisfied before the execution of a, ϕ must be satisfied after the execution of a”. To

conclude, an example for an architectural element (and particularly of a connector) is provided,

namely the RobotConnector in charge of synchronizing the Actuator and the Sensor of a robot

(see Figure 47). This connector imports the SMotion safety aspect and the CoordJoint

coordination aspect as mentioned above and is formed by the follow set of ports and weavings

(see Figure 48).

The formalization of this connector is therefore given by the following composite π-

process:

PAE ::= PP1 ||…|| PPm || PA1 || …|| PAn || PW

5.3.2. Ports
Ports are the interaction points of architectural elements (components and connectors). Every

port has associated a process, which establishes the services that publishes, and how and when

they can be executed.

- Formalization: Ports
Let P be a port of an architectural element, such that its behaviour is specified by a process

PR1. Then its semantics are given by the process PP , defined simply as follows:

PP ::= PR1

An example is the port PAct in the RobotConnector example (see Figure 48), which has its

behaviour specified as a process PPAct, which in turn refers to the generic definition of another

process ACT.

PPAct ::= ACT

Model-Driven Development of Aspect-Oriented Software Architectures

120

5.3.3. Aspect
An aspect defines the structure and the behaviour of a specific concern of the software system.

Examples of concerns are functionality, coordination, safety, distribution, among others.

Structure is defined by a set of attributes, each of which has a value in every state. The state

of the aspect at any given moment is determined by the value of its attributes. An aspect defines

a semantics for its services. This semantics captures when the services cannot be executed, how

the execution of services changes the state of the aspect, and the order in which they can be

executed. The behaviour of an aspect is defined by means of a protocol. The protocol describes

how the different services of the aspect are coordinated.

- Formalization: Aspects
An aspect is defined by the tuple (A, X, Φ, Π):

 A: a set of attributes

 X: a set of services (see section 5.3.4)

 Φ: a set of formulae in modal logic of actions

 Π: a set of terms in π-calculus; this is, a set of concurrent terms describing partial processes

in the π-calculus.

The contents of the set Π are therefore a set of π-calculus processes. For instance, let α be

an aspect whose behaviour is specified by the PRT1 protocol. Then its semantics is the process

Pα defined as follows:

Pα::= PRT1

Again, in the RobotConnector example of Figure 48, the SMotion aspect is similarly

defined as:

PSMotion::= SMotionProtocol

The dialect that is used to describe terms in the Π set is a syntactic variant of the polyadic π-

calculus. It also includes an extension to include priorities, which are not describe nor use here.

But apart from this extension, the language is largely standard, even in the choice of derived

Coordination

121

operators (such as if . . . then). The main syntactic differences are the use of the arrow () as

the prefix operator to define a sequence of actions, instead of the dot (.), which is used here with

its usual meaning at the programming level, to indicate scope nesting. Finally, the dialect

provides also support for vector-like tuples of channels, which are simply indicated as
>−

v . It is

assumed an implicit indexing operator in this kind of vectors, so the name v1 will refer to the

first channel in the vector
>−

v . This should be considered just as syntactic sugar.

5.3.4. Weavings
A weaving specification defines how the execution of a service of an aspect can trigger the

execution of a service of another aspect. Of course, the same service can be involved in several

weavings. In order to preserve the independence of the aspect specification from other aspects

and weavings, weavings in PRISMA are specified outside aspects and inside architectural

elements, including connectors. As a result, weavings specified inside connectors are the ones

which coordinate the different aspects that a connector imports.

A weaving is defined by means of operators that describe the order in which services are

executed. A weaving that relates service s1 of aspect A1 and service s2 of aspect A2 can be

specified using the following operators. Note the use of the dot (.) operator to indicate scope

nesting, as indicated above.

 A2.s2 after A1.s1. A2.s2 is executed after A1.s1.

 A2.s2 before A1.s1. A2.s2 is executed before A1.s1

 A2.s2 instead A1.s1. A2.s2 is executed instead of A1.s1

 A2.s2 afterif (Boolean condition) A1.s1. A2.s2 is executed after A1.s1 if the condition is

satisfied.

 A2.s2 beforeif (Boolean condition) A1.s1. If the condition is satisfied, A2.s2 is executed

followed by A1.s1; otherwise, only A2.s2 is executed.

 A2.s2 insteadif (Boolean condition) A1.s1. A2.s2 is executed instead of A1.s1 if the

condition is satisfied.

Model-Driven Development of Aspect-Oriented Software Architectures

122

The invocation of A1.s1, the second argument of the weaving, triggers the execution of

weaving (pointcut). When a weaving is specified, the operator is chosen from the trigger

service point of view; depending on whether the trigger service needs the execution of a service

before, after, or instead of it (advice). Therefore the before and after weaving modifiers are not

directly interchangeable.

- Formalization: Weavings
The semantics of a weaving is a coordination process that intercepts the invocation of a

service A1.s1 and either replaces it with, or executes it in relation to, another service A2.s2.

A1.s1 and A2.s2 belong to different aspects.

The weaving must be executed each time that A1.s1 is invoked, upon which it executes

either A2.s2 instead of A1.s1 or A1.s1 and A2.s2 in the correct order. This means that the

invocation of a service does not automatically trigger the execution of its associated process.

Taking into account that the formalization of a service in PRISMA is the following:

 DEFINITION 1. (Service) A service is a process that executes a set of actions to produce a

result.

Let S be a service. The semantics of S is a process in the polyadic π-calculus called PS.

This process has a channel CS through which it is able to interact; or, conversely, it can be

invoked for execution (see Figure 49). It is possible to see immediately that services are not

invoked directly by other processes, but only through weavings that coordinate execution of

services within architectural elements.

Figure 49. Formalization of a Service

Let's start by defining a service invocation. This will make much easier to understand later

the way in which it is defined the internal behaviour of a service.

Coordination

123

 DEFINITION 2. (Service Invocation) Let
>−

x = x1, …,xn be the input parameters for a

service S, and y = y1 : : : ym be its output parameters. The invocation of S is formalized by

means of a message sent through channel CS. Moreover, each output parameter yi must

have a return channel ryi, which is dynamically created for each invocation using the π-

calculus restriction operator (υ). These channels are used to send the results of S and to

indicate and acknowledge termination of the execution of S. All this considered, a service

invocation is described as the following process.

(υ yr
>−

) (CS !(
>−

x , yr
>−

) ry1?(y1)…rym?(ym))

The structure of this process defines the different ways in which a service is able to interact;

so, it is now possible to define the behaviour of a service as a set of π-calculus processes, as

indicated by the following definition.

 DEFINITION 3. (Service Process) The behaviour of a process PS of a service S can be

divided in three kinds of actions:

o Request Reception. The first action of PS must be the reception of the

messages that come through CS. This reception is specified as follows.

 CS? (
>−

x , yr
>−

)

o Service Execution. The execution of the service internal behaviour consists

of processing a set of internal actions. The output parameters (
>−

y = y1, …,

ym) are created, and it is assumed that internal actions bind them with some

useful value. Then this internal execution is specified as follows.

 (υ
>−

y) (τ)
o Termination. The last action in PS is always the sending of the output

parameters (
>−

y = y1, …, ym) through return channels (yr
>−

= ry1…rym). This

Model-Driven Development of Aspect-Oriented Software Architectures

124

way, the invoker is confirmed that execution of S has ended. This

termination is therefore specified as follows.

ry1!(y1)… rym!(ym)
As a result, the complete formalization of PS is the replicated sequence of

these three actions.

PS::= *(CS? (
>−

x , yr
>−

) (υ
>−

y) ((τ) ry1!(y1)… rym!(ym)))

This replication allows us to execute the service as many times as it is necessary. In terms of

our formalization in the π-calculus, and given a service S which is being controlled by the

weaving, this means that the weaving process PW interacts with PS via the channel CS defined in

DEFINITION 1. To do so, it must provide a channel CWS which other processes can use to

invoke S (see Figure 50).

Figure 50. Formalization of a service controlled by a weaving

Considering these two channels, the invocation of S by other processes is defined as the

following π-term:

(υ yr
>−

) (CwS ! (
>−

x , yr
>−

) ry1?(y1)…rym?(ym))

And then the invocation of S by the weaving process is therefore as follows:

(υ yr
>−

)(CS !(
>−

x , yr
>−

) ry1?(y1)…rym?(ym))

After that, each weaving operator defines a different process with a specific behaviour, to

provide the required semantics for each one of them. As an example, let's consider the process

for the beforeif weaving operator, which involves two services belonging to two different

aspects.

P1..n ::= (υ yr
>−

) (CwA1_s1 ! (
>−

x , yr
>−

) ry1?(y1)…rym?(ym))

Coordination

125

PBWIF::= *(CwA1_s1? (
>−

x , yr
>−

) (υ 2sr
>−

) (CA2_s2! (
>−

x , 2sr
>−

)

 rS21?(s21)… rS2m?(s2m))
 if (boolean_condition = true) then

 (υ 1sr
>−

) (CA1_s1! (
>−

x , 1sr
>−

) rs11?(s11)… rs1m?(s1m))
 ry1 ! (s11)… rym ! (s1m))
 else
 ry1 ! (s21)… rym ! (s2m))

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

) (υ 1

>−

s) ((τ) rs11!(s11)… rs1m!(s1m)))

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

) (υ 2

>−

s) ((τ) rs21!(s21)… rs2m!(s2m)))

Table 3. Translation set of π-processes for beforeif weaving pattern

Figure 51. Translation for beforeif weaving patterns

A2:s2 beforeif (Boolean condition) A1:s1

According to PRISMA formal semantics, this weaving pattern will be translated to the ¼-

calculus as a compound process PBWIF , which has the context depicted in Figure 51. This

means that PBWIF receives the invocation of A1.s1 from another process (P1…n) through CWA1_S1.

As BWIF is a “before" weaving, PBWIF starts by invoking A2.s2 using CA2_s2. Then, PA2_s2

receives the invocation, executes a set of internal actions, sends the results, and notifies the

Model-Driven Development of Aspect-Oriented Software Architectures

126

weaving that execution has finished. Next, if the Boolean condition in BWIF is true, the first

service of the weaving is executed; otherwise PBWIF sends the results of A2.s2 to the process

that invoked A1.s1. In the first case, when the condition is satisfied, PBWIF invokes A1.s1 using

CA1_s1 and PA1_s1 receives the invocation upon which it executes a set of internal actions, sends

the results, and notifies the weaving that the execution has finished. Finally, PBWIF sends the

results of A1.s1 to the process that invoked A1.s1.

The semantics of the set of weavings defined inside a connector is therefore translated as

the PW process, the parallel composition of every individual weaving process.

PW ::= PAW1 || …|| PAWn || PBW1 || …|| PBWn || PIW1 || …||
PIWn || PAWIF1 || …|| PAWIFn || PBWIF1 || …||

PBWIFn || PIWIF1|| …|| PIWIFn

This means that the weavings are executed concurrently, interacting as specified. In

addition, the same service can be involved in several weavings of the same architectural

element and there is an order for processing the different weavings that a service triggers. This

ordering establishes that weavings are executed from more restrictive to less restrictive. The

precedence is as follows: InsteadIf, Instead, BeforeIf, Before, After, AfterIf. Deadlocks and

infinite loops that could appear when using these operators are avoided at the specification

time.

An example of a weaving appears in the RobotConnector case study. This connector

imports the SMotion safety aspect and the CoordJoint coordination aspect. The need for a

weaving emerges due to the fact that the robot is moved only after the connector is sure that a

movement is safe. The invocation of the moveJoint service (the second argument of the

weaving) of the CoordJoint triggers the execution of the weaving (see the process

PBWIFSMotionCoordJoint in Figure 12). Specifically, the weaving of the connector receives the

invocation of the moveJoint service (the term CWCoordJoint_moveJoint?(newsteps, speed, yr
>−

) in the

process) and afterwards it specifies that the DANGEROUSCHECK service of SMotion has to

be executed, and it must answer before the moveJoint service of CoordJoint is even invoked,

Coordination

127

hence the term (υ 2Sr
>−

) (CSMotion_DANGER ! (newsteps, rs21) rs21?(safe)) in the process. Then

the condition guarantees that the execution of the moveJoint service is only performed if the

safe return parameter of the DangerousCheck service is set to true (hence the if/then/else

construct in Figure 12, which encloses the invocation of the moveJoint service through the

CCoordJoint_moveJoint channel). On the other hand, the processes defining the behaviour of each one

of the services, which are in turn defined within the aspects, are ready to be invoked by the

weaving at any time (see the definition for both PCoordJoint_moveJoint and PSMotion_DANGER as replicated,

hence permanent, processes in the Figure).

PW ::= PBWIFSMotionCoordJoint

PBWIFSMotionCoordJoint::=*(CwCoordJoint_movejoint? (newsteps, speed, yr
>−

)

 (υ 2sr
>−

) (CSMotion_DANGER! (newsteps, rS21) rS21?(safe))
 if (safe = true) then

 (υ 1sr
>−

) (CCoordJoint_movejoint! (newsteps, speed, 1sr
>−

)
 rs11?(s11)) ry1 ! (s11))

 else
 ry1 ! (s21))

PCoordJoint_movejoint::= *(CCoordJoint_movejoint? (newsteps, speed, 1sr
>−

) (υ 1

>−

s) ((τ)
 rs11!(s11)))

PSMotion_DANGER::= *(CSMotion_DANGER? (newsteps, rs21) ((τ) rs21!(safe)))

Figure 52. Translation for the weaving in the RobotConnector example

5.4. ANALYSIS OF THE PROPOSAL
Both coordination and architecture are generic high-level abstractions of a software system;

they provide different approaches to close concerns, and both have long and separate research

traditions. At the same time, there is an obvious relationship between them. Both notions try to

identify highlevel patterns in the system, though their perspectives are slightly different.

Architecture identifies structural patterns defined by inner interaction within a (mostly)

Model-Driven Development of Aspect-Oriented Software Architectures

128

compositional configuration, while coordination defines high-level interaction patterns shown

by the resulting structure.

However when the relationship between them is considered, even their relative ordering has

not always been clear. Different authors have considered their relationship in different ways,

and this is the best proof of their intertwining and the intrinsic difficulty of their separation. For

instance, Andrade et al. [And02a], [And02b] consider that configurations are built on top of a

coordination layer which guarantees a shared behaviour. On the contrary, Eisenbach and

Radestock [Eis98] conceive coordination as the higher level abstraction, which is built on top

of a configuration layer, which guarantees a substrate for shared interaction. At the same time,

many authors present these two abstractions at the same level and provide a common support

for it; in particular, many coordination languages have also been presented as ADLs, provided

that their particular abstractions are equally good for describing both [Mag95], [Pap01]. In

particular, connectors and special-purpose components bear many similarities to some

constructs in several control-driven coordination proposals.

Probably among the most important reasons for the success of the architectural approach is

the implicit separation of concerns it provides; the designer is just concerned with the

functionality of components (and possibly some relevant non-functional requirements), but he

is now relieved of describing compositional and coordination issues, which have become the

architect's responsibility. Though connectors are not the only way in which an ADL can

describe interaction and coordination abstractions, their existence and the emphasis on them is

probably the reason why these languages are so apt in specifying these issues. And once they

have been separated, the relevant high-level linguistic constructs in different approaches are

similar.

It is possible to conclude that coordination is an emergent property of some architectures; an

architecture-level description has the means for providing the coordination concern, but of

course it can also describe non-coordinated systems. In summary, architectures describe

interaction structures; and coordination can be described as a higher-level abstraction on

interaction, therefore supported by architecture [Cue06].

Coordination

129

Connectors alone do not provide a global coordination policy, but only local coordination

groups; therefore the use of connectors (as discussed in section 5.2 and above) eases the

description of a coordinated system, but it is not a sufficient condition. Shaw's original

identification of connectors [Sha94] tried not to provide a coordination, but an interaction

abstraction. However, subsequent work has defined ever more complex connectors, which

were grouped in types and categories, tending towards the definition of much more complex

abstractions, even higher-order connectors [Lop03]. Mehta provided an initial taxonomy for

connectors [Meh00], which could have provided a basis for later developments in this

direction, but this thread has not had continuity.

The locality of the connector approach justifies still the definition of generic coordination

language proposals, which provide the means to describe general policies. However an aspect-

oriented alternative is also possible. Instead of providing a complete language from scratch, it is

also possible to define an aspect-oriented extension of some existing language. More than that,

this would ease the integration of this “coordination aspect" with other concerns in the

architecture. Consider also that earlier proposals for aspect-orientation [Kiz97] defined specific-

purpose languages to deal with aspects, rather than aspectual extensions, so this evolution

towards an architectural extension is also within the tradition in the field.

Therefore it is possible to provide coordination by means of pure compositional ADLs, but

connectors make it easier. Then, a specific coordination language provides general policies, but

an aspect-oriented extension makes integration easier. Thus, providing an aspect-oriented,

connector-based ADL would gather the benefits of different proposals. The reader is again

referred to section 5.2 for a detailed discussion of the different approaches for providing

coordination in ADLs, including connector-based and aspect-oriented alternatives.

The reflective ADL PiLar has explored the way in which a very general architecture

language is able to describe coordination as a separate concern, i.e. as an architectural aspect. In

[Cue04] this was made by exploiting the reflective capabilities, thus proving that this is indeed

possible, but very complex. Later research has explored also an aspect-oriented approach

which makes a non-explicit use of these reflective capabilities in PiLar, providing an aspectual

layer and showing how coordination can be independently managed as an aspect [Cue06]; but

Model-Driven Development of Aspect-Oriented Software Architectures

130

the relationship between this aspect and others, though possible, was complex, and is not

explored in detail.

And this is the main benefit of the PRISMA approach, as highlighted in previous

discussion. The aspect-oriented structure of the language itself, and the symmetry of its model,

provide the basis to be able to relate coordination to other concerns, such as safety. The notion

of weaving, which is required by the aspect model, provides also the means to reconcile the

conflicts between aspects, whenever they appear. This, combined to the benefits of both

connectors and aspects themselves for coordination, defines PRISMA as one of the most

complete proposals in the field, gathering all the benefits provided by other approaches in a

single, consistent and rigorous conceptual model. Thus, PRISMA coordination model proposal

provides a suitable framework to develop aspect-oriented software architecures following the

MDD proposal.

5.5. CONCLUSIONS
In this chapter, the advantages of combining software architectures and AOSD to define

coordination have been presented. In addition, a detailed analysis about how to take more

advantage of this combination has been done. From this analysis, this chapter defines and

formalizes PRISMA aspect-oriented connectors. They are specified in an elegant and novel

way through the combination of AOSD and Software Architectures. As a result, PRISMA

presents a coordination process that provides the following advantages:

1. Connectors to coordinate components: Reusability and maintenance of components

and connector is improved by separating coordination from computation. Components and

connectors can be used during the MDD process as building blocks of the modelling

process and they can be reused throughout all their stages.

2. Aspects to specify the coordination process of connectors: Reusability and

maintenance of different concerns is improved by separating coordination from other

concerns that are necessary for the coordination process (safety, security, distribution,

mobility, etc.). There are no tangled concerns inside complex connectors. Aspects can be

Coordination

131

used during the MDD process as building blocks of the modelling process and they can be

reused throughout all their stages.

3. Weavings are inside connectors to coordinate their aspects: Reusability and

maintenance of different aspect is improved by not specifying weavings inside aspects.

4. Formalization of the coordination processes among aspects (weavings) and

architectural elements. Thus, non-ambiguity and proper execution of the different

coordination processes is guaranteed. The code generation of coordination models is

improved during the MDD process.

The work presented in this chapter has been published in the following publication:

 Jennifer Pérez, Carlos E. Cuesta, Aspect-Oriented Connectors for Coordination,

International Workshop on Synthesis and Analysis of Component Connectors (SYANCO

2007), Joint to The 6th joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC-

FSE, ACM Digital Library, Dubroknik, Croacia, September 3-4, 2007.

Model-Driven Development of Aspect-Oriented Software Architectures

132

Model-Driven Development

133

CHAPTER 6
6. MODEL-DRIVEN DEVELOPMENT

This chapter presents how PRISMA gives a complete support for the development of

technology-independent aspect-oriented software architectures following the MDD approach,

and the PRISMA CASE, which is the tool that makes this software development support

feasible. PRISMA has been applied to several case studies: banking systems, electronic

auctions, robotic tele-operated systems such as the TeachMover robot, etc. The MDD support

of PRISMA CASE is going to be illustrated using these case studies.

6.1. INTRODUCTION
Some new approaches have recently emerged in order to improve software development. They

try to improve the early stages of the software life cycle by automating their activities as much

as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD is a

software development paradigm that is based on models that use automatic generation

techniques in order to obtain the software product. MDD is included within Model–Driven

Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be

represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The

use of models to develop software provides solutions that are independent of technology,

whose source code can be obtained by means of automatic code generation techniques for

different technologies and programming languages. The high level of abstraction that models

Model-Driven Development of Aspect-Oriented Software Architectures

134

provide permits working with metamodels in the same way as with specific models or domain-

specific models.

Aspect-Oriented Models propose the separation of the crosscutting concerns of software

systems into separate entities called aspects [Kiz97]. Despite the fact that the aspect-oriented

paradigm emerged from the implementation level, its use is being extended to all stages of the

software life cycle. As a result, Aspect-Oriented Software Development (AOSD) has emerged

in order to extend the advantages that aspects provide to every stage of the software life cycle

[Kiz01]. One interesting stage where AOSD is being introduced is the software architecture

stage.

Software architectures [Per92] make software systems simpler and more understandable.

Some proposals for the integration of software architecture and AOSD have emerged to take

advantage of both approaches [Chi05], [Cue05], [Nav05], [Pin05], [Pin03], [Kat03], etc.

The automatic code generation from models reduces the cost and time of the development

process. Nowadays, there are many CASE tools that are able to generate applications following

the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are widely-

known as model compilers. They automatically generate the application code from the

conceptual schema of a software system. The automatic generation can be complete as in

Oblog Case [Ser94], or it can be partial, as in Rational Rose [RAT07], Together [TOG07] and

others. However, since these model compilers follow the Object-Oriented Paradigm, the need

for developing model compilers that follow the Software Architectures and/or AOSD

approaches has emerged. The combination of the Software Architectures and AOSD

reusability and the automatic code generation achieves higher reduction in the time and cost of

the development process than using only one of these approaches. As a result, an important

challenge in the software engineering area is the integration of software architectures and

AOSD approaches, and automatic code generation and traceability techniques in a unique

approach in order to support the development and maintenance of complex software systems in

an efficient way.

PRISMA is an approach that integrates software architecture and AOSD in order to take

advantage of both. The PRISMA approach is based on its meta-model [Per05a] and its formal

Model-Driven Development

135

Aspect-Oriented Architecture Description Language (AOADL) [Per06d]. Since the PRISMA

model is a technology-independent model, the PRISMA approach also follows the MDD

paradigm to obtain its advantages during the development and maintenance processes of

PRISMA architectures. The main goal of the PRISMA approach is to give a complete support

for the development of technology-independent aspect-oriented software architectures, which

could be compiled for different technological platforms and languages using automatic code

generation techniques. A PRISMA CASE has been developed in order to cope with the

challenge of developing aspect-oriented software architectures following the MDD paradigm.

The PRISMA Aspect-Oriented Architecture Description Language is a formal language

that is based on a Modal Logic of Actions [Sti92]and a dialect of polyadic π-calculus

[Mil93][Mil99]. It is important to emphasize that most ADLs only permit the specification of

the skeleton of architectures and the services that are interchanged among their different

architectural elements. The PRISMA AOADL has greater expressive power and can specify

more features and requirements using aspects. This complete specification of the system

requirements, and the fact that the PRISMA AOADL is a formal technology independent

language, facilitates the automatic code generation and the validation of architectural and aspect

features of the system.

6.2. THE MDD SUPPORT OF PRISMA
The PRISMA approach follows the MDD paradigm. There are two main approaches that

apply this paradigm. They are the Model-Driven Architecture (MDA) approach proposed by

the OMG [MDA07], and the Software Factories approach proposed by Microsoft [Gre04].

MDA deals with the lack of software system adaptation to different technologies and

programming languages by proposing four levels of abstraction: CIM (Computation

Independent Model), PIM (Platform Independent Model), PSM (Platform Specific Model),

and the final application. Software Factories leads to the reuse of architectures, software

components, techniques and tools to improve software development.

PRISMA follows MDD in the general sense, that is, it is not focused on MDA or Software

Factories. PRISMA MDD support is not constrained to the definition of a specific number of

Model-Driven Development of Aspect-Oriented Software Architectures

136

levels of abstraction or techniques because it can vary depending on the needs of each software

system. In this way, this provides us the opportunity of extending the MDD support of

PRISMA in future works. PRISMA follows the MDD approach by providing the software

architect models, which allow for completely developing aspect-oriented software

architectures. Since the level of abstraction of models is higher than programming languages

and the code is automatically generated from models, the tasks of the software architect are

facilitated. In addition, the use of code generation techniques improves the development and

maintenance processes of software.

6.2.1. PRISMA in MOF
In order to present PRISMA model specifications and how they follow the MDD approach, the

OMG Meta-Object Facility (MOF) specification is going to be used [MOF02]. MOF allows us

to clearly present in this thesis the differences between types and instances and their

correspondent models.

MOF defines a four-level “architecture” and its main purpose is the management of model

descriptions at different levels of abstraction and their static modification. The upper layer is the

most abstract one (see the M3 layer, Figure 53). This layer defines the abstract language used to

describe the next lower layer, which contains metamodels (the M2 layer). The MOF

specification proposes the MOF Model as the abstract language for defining all kinds of

metamodels, such as UML or PRISMA.

The metamodel layer defines the structure and semantics of the models defined at the next

lower layer (the M1 layer). The PRISMA metamodel is defined at the M2 level. It defines the

properties that the interface, aspect, architectural element, and connection primitives have (see

the system package of the PRISMA metamodel in the M2 layer, Figure 53).

The M1 layer comprises the models that describe a software system. These models are

defined using the primitives and relationships that are described in the metamodel layer (M2).

PRISMA models are defined using the interface, aspect, architectural element, and connection

primitives that are defined in the previous level (M2). As a result, PRISMA types that are

placed in the M1 layer satisfy the properties established at the M2 layer. An example is the

Model-Driven Development

137

VirtualBank type that has been defined using the PRISMA system primitive (see M1 layer,

Figure 53). PRISMA system types are defined as architectural patterns, which are not

specifically configured until a particular instantiation is performed.

The lowest level is the information layer (M0 layer), which contains the data, that is, the

instances of a specific model. In PRISMA, these data are particular system instantiations (see

myVirtualBank, M0 layer, Figure 53), which behave as described in the system type.

Figure 53. Meta-Object Facility (MOF) layers and PRISMA models

6.2.2. PRISMA transformations
The PRISMA AOADL [Per06d] defines the architectural elements at different levels of

abstraction: the type definition level and the configuration level. The type definition level

defines architectural types with a high abstraction level in order to be reused by other types or

specific architectures. The configuration level designs the architecture of software systems by

creating and interconnecting instances of the defined architectural elements in the type

definition level. In other words, it specifies the topology of a specific architectural model. These

Model-Driven Development of Aspect-Oriented Software Architectures

138

two levels of abstraction also appear in PRISMA models: PRISMA type models and PRISMA

configuration models.

Figure 54. MDD from the PRISMA Metamodel to Applications

The PRISMA model is a metamodel that permits the definition of PRISMA type models

whose instantiation defines PRISMA configuration models. PRISMA configuration models

define specific systems. PRISMA applies MDD to define type models from its metamodel (see

step A, Figure 54), and to define configuration models from type models (see step B, Figure

54). In addition, PRISMA approach has created a set of transformation patterns to transform

PRISMA models into its AOADL specifications and into C# code (see steps 1 and 2, Figure

54). PRISMA applies these transformation patterns during the development process in order to

automatically generate applications from its PRISMA architectural models and to show the

formal specification of its models.

This MDD process together with the models and the generation patterns are provided by

PRISMA CASE. This CASE tool supports the PRISMA approach and it is presented in detail

in the following section.

Model-Driven Development

139

6.3. FOLLOWING MDD WITH PRISMA CASE
PRISMA CASE currently supports the generation C# code that is executable on .NET

technology from its aspect-oriented architectural models. The PRISMA CASE is composed of

the PRISMA metamodel, a graphical modelling tool, a model compiler, a middleware and a

generic graphical user interface to execute the generated code (see Figure 55).

The PRISMA metamodel is part of the PRISMA CASE since the metaclasses that allow

the creation of PRISMA aspect-oriented software architectures, as well the constraints of the

PRISMA metamodel, must be available in the CASE tool. They are necessary to be able to

model PRISMA architectural models and to make sure that they satisfy the PRISMA

constraints.

The PRISMA AOADL is a formal language [Per06d]. Even though the use of a formal

language clearly provides advantageous characteristics, the use of a formal language is really

difficult. For this reason, PRISMA CASE provides a graphical language [Per06a], [Per06b]

and a graphical modelling tool to model PRISMA software architectures using an intuitive and

friendly graphical AOADL. This PRISMA graphical modelling tool is divided into two

modelling tools following the MDD process presented in the previous section: the PRISMA

Type Modelling Tool and the PRISMA Configuration Modelling tool.

Since PRISMA CASE must generate executable C# code in .NET technology and the

.NET framework does not provide support for the Aspect-Oriented approach, a PRISMANET

middleware has been developed to provide a solution [Per05b]. PRISMANET extends the

.NET technology through the execution of aspects on the .NET platform in accordance with

the PRISMA model.

Finally, the PRISMA model compiler has been developed to automatically generate

PRISMA AOADL specifications and C# code from the PRISMA architectural models, and a

generic GUI is provided to assist the user in checking the behaviour of the architecture.

Model-Driven Development of Aspect-Oriented Software Architectures

140

Figure 55. PRISMA CASE

6.3.1. PRISMA CASE development: Domain Specific Language Tools
(DSL Tools)

 Since there are a lot of tools in the market that provides mechanisms to follow the MDD,

PRISMA CASE has been developed using one of them instead of developing a tool from

scratch. This decision is taken in order to reduce the time and cost invested in the

implementation of this MDD support. Following this same criteria, since the PRISMANET

middleware was previously developed using the Visual Studio framework, the Domain

Specific Languages Tools (DSL Tools) [DSL07] was chosen among the different tools of the

market to develop PRISMA CASE.

DSL Tools is a set of tools for creating, editing, visualizing, and using domain-specific

models to automate and improve the software development process. This set of tools is

integrated into the Visual Studio 2005 framework to define domain models with their

customized graphical representations.

Model-Driven Development

141

DSL tools have been created to model specific models such as the model of a web page, a

banking system, a tele-operated system, etc. DSL Tools allows for the definition of domain

specific models and their customized graphical representations. From these two projects, DSL

tools is able to generate domain-specific tools for these specific models. These specific and

customized tools are then used to define specific applications of web pages, banks systems,

tele-operated systems with domain-specific tool boxes and concepts.

The generated tool not only provides a customized modelling tool, it also provides Code

Generation Templates, which automatically generate code using a set of code generators.

These templates help users to define a model compiler in an easy way by browsing through the

concepts that have been modelled and stored in the domain specific model. The DSL code

generators take the templates, the domain specific model definition and its XML document as

inputs of the code generation process. The output of this process is generated by the code

generators following the defined templates and substituting the parameters for the concepts

stored in the model.

6.3.2. The PRISMA Type Modelling Tool: A) From the PRISMA
Metamodel to the PRISMA Type Models

In order to develop PRISMA CASE, every metaclass and relationship of the PRISMA

metamodel have been introduced in the DSL Tools using the primitives that DSL provides (see

Figure 56). For example, Figure 57 shows the definition of the architectural element and aspect

metaclasses in DSL Tools.

Figure 56. Toolbox of DSL Tools

Model-Driven Development of Aspect-Oriented Software Architectures

142

(a) Architectural Element

(b) Aspect

Figure 57. Definition of Architectural Elements and Aspects in the
DomainModel of DSL

Model-Driven Development

143

All the classes of the PRISMA metamodel are translated by DSL to partial C# classes in

order to access and update value properties, to navigate across relationships, and to enable an

object to participate in a relationship. In addition, they can be used to add new behaviour to the

model, such as to include verification rules (see section 7.3).

In addition, the graphical metaphor to each metaclass of the PRISMA metamodel has been

defined. DSL tools stores the graphical representations selected for the PRISMA concepts. As

a result of this definition, the PRISMA graphical modelling tool provides a tool box that

permits the graphical modelling of PRISMA models by dragging and dropping the shapes to

the drawing sheet (see Figure 6). In PRISMA, only the main concepts and their relationships

are graphically represented; the rest of the concepts are specified using the AOADL and are

included in the definition of the corresponding shapes.

Figure 58. PRISMA ToolBox

Model-Driven Development of Aspect-Oriented Software Architectures

144

Figure 59. The Visual Studio Project of PRISMA

Figure 60. PRISMA Type Modelling Tool

Finally, it is important to mention that a setup for the PRISMA CASE has been defined in

DSL Tools. As a result, PRISMA CASE can be provided to the software architect as an

independent project of the PRISMA CASE implementation. When the software architect

executes the setup, it creates a new kind of project for Visual Studio 2005 called PRISMACase

Model-Driven Development

145

(see Figure 59). The creation of a PRISMA CASE project consists of launching PRISMA

CASE and starting the development process.

The PRISMA Type Modelling Tool is generated from the PRISMA metamodel, its

graphical representions and its partial C# classes (see step A, Figure 54). The modelling tool is

composed of a toolbox, a drawing sheet, a model explorer, a window of properties and a

PRISMA menu (see Figure 60).

6.3.3. The PRISMA Model Compiler for Types: 1)Transformation: Code
and AOADL generation patterns for types

The PRISMA Type Modelling Tool also provides a set of templates to automatically generate

the code from the models that have been graphically modelled. The templates for generating

the AOADL specification and the C# code are already available (see step 1 in Figure 54). They

can be extended to generate the code for other languages. The templates and the command to

execute the generators that produce the result are provided by the window Solution Explorer of

PRISMA CASE. This command is called Transform All Templates. Its execution calls the

code generators that execute the code generation templates of PRISMA by substituting the

parameters for the elements that have been modelled. The PRISMA templates are stored in two

different folders: ADLCodeGeneration and CSharpCodeGeneration. These folders contain the

templates to generate each PRISMA type and the file that contains the result of the last

Transform All Templates execution (see Figure 61).

The ADLCodeGeneration folder contains the formal specification of the software

architecture that has been modelled following the PRISMA AOADL [Per06d]. Despite the fact

that the specifications are introduced in the graphical shapes using the PRISMA AOADL, the

AOADL generation permits the user to see the complete textual specification of the model.

The CSharpCodeGeneration folder contains the C# code generation, which allows the

execution of the specified software architecture on the PRISMANET. The implementation of a

specific PRISMA software architecture is performed by extending the classes provided by

PRISMANET. In order to develop these code generation templates, a set of patterns has been

identified and defined to generate the C# code for each one the PRISMA concepts to be

executed over PRISMANET (see appendix A). Next, a simplified example of a component

Model-Driven Development of Aspect-Oriented Software Architectures

146

pattern is presented by using the Actuator component of the TeachMover Robot case

study(Pattern 15 of the catalogue).

Figure 61. PRISMA Code Generation Templates

Pattern 15: Simple Architectural Elements
PRISMA metamodel in DSL Tools Graphical Metaphor

Model-Driven Development

147

Transformation
Description
This pattern details how to generate the C# code from a simple architectural
element. Specifically, it only generates the structure of the architectural model, the
internal code of this structure, that is, ports, aspects and weaving, is generated by
other patterns related to it.
Template

...
using System;
using System.Reflection;

using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace <#=this.Model.Name#>
{
<#
foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)
{
 if (architecturalElement is Component || architecturalElement is Connector)
 {
#>
 [Serializable]
 public class <#=architecturalElement.Name#> : ComponentBase
<#
 if (architecturalElement is Connector)
 {
#>
 , IConnector
<#
 }
#>
 {
 public <#=architecturalElement.Name#>
 (string name<#=ArchitecturalElementArguments(architecturalElement)#>) :
base(name)
 {
<#

/* Aspects */
/* Weavings */
/* Ports */

#>
 }

Model-Driven Development of Aspect-Oriented Software Architectures

148

 }
<#
 }/* endif (architecturalElement is Component || architecturalElement is
Connector)*/

...

Case Study
Description

 This pattern is illustrated using the component Actuator of the TeachMover case
study. The representation of the Actuator in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Graphical representation

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class Actuator : ComponentBase
 {
 public Actuator(string name) : base(name)
 {
 /* Aspects */
 /* Weavings */
 /* Ports */
 }
 }
}

...

Model-Driven Development

149

Related Patterns
Pattern 16, Pattern 17 and Pattern 18.

using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class Actuator : ComponentBase
 {
 public Actuator(string name) : base(name)
 {
 /* Aspects */
 AddAspect(new RS232 ());
 /* Weavings */
 /* Ports */
 InPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE);
 OutPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE);
 InPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE);
 OutPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE);

 }
 }
}

Figure 62. The generated AOADL and C# code of the component Actuator

Component Actuator

 Integration Aspect Import RS232;

 Ports

 PCoord : IMotionJoint,

 Played_Role RS232. INTMOVE;

 PSENSOT : IMotionJoint,

 Played_Role RS232. OUTMOVE;

 End_Ports;

 new(){RS232.begin();

 destroy(){RS232.end();}

EEnd_Component Actuator;

Model-Driven Development of Aspect-Oriented Software Architectures

150

All the patterns are not presented due to space limitations. But, the results of the complete

C# and AOADL transformations of the component pattern for the Actuator are presented in

Figure 13. As it can be seen in the C# code presented in Figure 13, a component is

implemented as a serializable C# class. This class is serializable in order to enable mobility in

future versions of PRISMA CASE [Ali06]. This class inherits from the ComponentBase class

of PRISMANET, which implements the component of the PRISMA model. The component

name is the same as the one in the PRISMA specification. The set of ports and aspects that

make up a component are included by invoking the constructors of the port and aspect

PRISMANET classes. Both classes implement the port and aspect elements of the PRISMA

model.

6.3.4. The PRISMA Configuration Modelling Tool: B)From PRISMA
Type Models to PRISMA Configuration Models

The PRISMA metamodel that has been introduced in DSL, and the modelling tool that has

been developed from this model provide us mechanisms to specify PRISMA aspect-oriented

software architectures. However, it is necessary to instantiate and to configure these

architectures into specific ones and provide the software architecture mechanisms to do so. In

order to cope with these needs, PRISMA CASE automatically generates a domain specific

graphical modelling tool to configure the software architectures that have been defined using

PRISMA Type modelling tool. A PRISMA Configuration Modelling Tool is generated for each

PRISMA software architecture that is modelled using the PRISMA Type Modelling Tool. The

PRISMA Configuration Modelling Tool is used to develop specific software architectures using

the PRISMA types defined in the PRISMA Type Modelling Tool as modelling primitives.

The capacity to store all the information needed to automatically generate a domain-specific

tool permits the use of PRISMA architecture as a domain specific language in other model

specifications. It also permits the generation of the specification of the configuration language.

This information is generated using the code generators of DSL and is stored in the persistence

and configuration language folders of PRISMA type modelling tool (see Figure 63). The

Model-Driven Development

151

information of these folders is the input for creating the new modelling tool for the domain-

specific PRISMA software architecture that has been defined.

Figure 63. Model Persistence and Configuration Language Information

The automatic generation of a tool for modelling configurations of a PRISMA software

architectures is performed by executing the PRISMA Model Configuration option of the menu

PRISMA after the transformation of all templates has been done (see step 1, Figure 64). Next, a

new project is automatically created and can be used as a Configuration Modelling Tool. Step 2

of Figure 64 shows how the Actuator and Sensor component types of the TeachMover robot

defined in step 1, Figure 64 appear in the tool box of the Configuration Modelling Tool as

shapes for modelling. It shows how these types have been dragged and dropped on the drawing

sheet generating two instances. In Figure 64 example, the base joint of the TeachMover robot is

modelled by defining its actuator and sensor component instances: Actuator_BASE and

Sensor_BASE.

Model-Driven Development of Aspect-Oriented Software Architectures

152

(1) PRISMA Type Modelling Tool

(2) PRISMA Configuration Modelling Tool

Figure 64. Generation and Execution of the PRISMA Modelling

Configuration Tool

Model-Driven Development

153

6.3.5. PRISMA Model Compiler Instances: 2) Transformation: Code and
AOADL generation patterns for instances

In addition, the configuration modelling tool provides a command to transform its templates to

obtain the AOADL specification that corresponds to the configuration that has been defined

using the tool, and to instantiate the code, that has been generated in step 1, with the instances

that are in the configuration model. In order to allow this transformation process, the

information of the configuration model is stored in a XML document. Figure 65 shows the

structure of this XML store simple components:

Finally, this tool permits the execution of the generated code by launching the defined

instances. In order to do this, the PRISMA menu offers the option PRISMANET, which

executes the middleware PRISMANET and instantiates the defined configuration (see the

menu PRISMATools, step 2, Figure 64). As a result of this execution, a generic GUI is

launched to interact with the architecture by invoking its services and checking the value of its

attributes (see Figure 66). The main purpose of the generic GUI is to assist the user in checking

the behaviour of the architecture without having to worry about aesthetic details and without

forcing the user to define a GUI in order to obtain a result.
<?xml version="1.0" encoding="utf-8"?>
<ConfigurationModel name = "_operation">
 ……

 <Components>
 <Component name = "" type = "">
 <Properties>
 <Property name = ""
 type = "" value = "">
 </Property>
 </Properties>

 <SystemRef name = "">
 </SystemRef>

 </Component>
 </Components>
… …
</ConfigurationModel>

Figure 65. XML document for storing instances

Model-Driven Development of Aspect-Oriented Software Architectures

154

Figure 66. Generic GUI of PRISMA Applications

However, it is important to mention that the use of this interface is not mandatory. In other

words, if the users prefer to define their own specialized forms, they can do so.

6.4. CONCLUSIONS
In this chapter, the PRISMA approach is presented as an important advance in the combination

of the aspect-oriented paradigm and software architectures due to the fact that it completely

supports the development process of these systems by applying the MDD paradigm. In

addition, the PRISMA CASE that supports this approach has been presented in this chapter.

PRISMA CASE is a framework that provides complete support for the PRISMA approach.

It is composed of a set of tools that is suitably integrated to provide a unique framework that

gives support for the user throughout the software life cycle. This integration also provides top-

down traceability during the different stages of the software life cycle and facilitates the

maintenance of the developed software products.

 This set of tools includes the PRISMA Type Modelling Tool with its code generation

patterns, the PRISMA Configuration Modelling Tool with its code generation patterns, the

generic Graphical User Interface for PRISMA applications, and the middleware

PRISMANET.

Model-Driven Development

155

The PRISMA Types and Configuration Modelling Tools give support for the development

of PRISMA software architectures following the MDD approach and using the PRISMA

AOADL [Per06d] in a graphical way [Per06a], [Per06b]. As a result, PRISMA offers

mechanisms to develop software architectures in a more intuitive and friendly way and

mechanisms to verify their models. In addition, the code generation patterns that PRISMA

modelling tools offer allow automatically generate executable C# code on PRISMANET from

the specified graphical models. Thus, PRISMA CASE deals with the traceability between

software architectures and implementation and reduces the time and cost invested in the

development and maintenance processes.

PRISMA CASE provides a generic Graphical User Interface to execute software

architectures. This is an important advantage because it is a simple way of validating that

software architectures provide the behaviour expected by the user without having to develop a

customized graphical user interface.

This chapter demonstrates that all the tools and mechanisms that PRISMA CASE provides

make PRISMA a well-supported approach for developing aspect-oriented software

architectures following the MDD approach. The demonstrations of the PRISMA CASE and its

download are available in the [PRI07].

The work presented in this chapter has been submitted to the following publication:

 Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Model-Driven Development of Aspect-

Oriented Software Architectures, The Computer Journal, Oxford Journal, (JCR 2006:

0.593) (submitted, status: first review)

The work presented in this chapter has been published in the following publication:

 Jennifer Pérez, Cristóbal Costa, Jose A. Carsí, Isidro Ramos, PRISMA CASE, XII

Conference on Software Engineering and Databases (JISBD), Zaragoza, Spain, 12-14

Septermber. (Demonstration, In Spanish)

Model-Driven Development of Aspect-Oriented Software Architectures

156

Verification

157

CHAPTER 7
7. VERIFICATION

Most mistakes that are made during the software production come from the first stages of the

software life cycle. For this reason, there is an increase in the number of proposals that try to

deal with the problems that appear in these first stages. They usually improve the user help

during the modelling process. A fundamental mechanism that must be provided to guide the

user during the modelling process is the verification of models. The verification of models

allows the detection of modelling mistakes and avoids that these mistakes will be spread

throughout the rest of stages.

This chapter presents how the PRISMA approach provides a complete support for the

verification of aspect-oriented architectural models following the MDD approach. The

verification proposal and how PRISMA CASE makes feasible this verification are presented in

detail.

7.1. INTRODUCTION
Nowadays, to provide software production with properties such as reliability, quality and easy

maintenance is one of the challenges of software engineering. Most mistakes that are made

during the software production come from the first stages of the software life cycle. Since these

mistakes grow in an exponential way as projects progress, it is necessary to focus on the

improvement of these first stages instead of postponing the solution for late stages. Thus, most

proposals that try to solve these problems improve the software development by automatizing

Model-Driven Development of Aspect-Oriented Software Architectures

158

the first stages of the software life cycle following the Model Driven Development Paradigm

(MDD) [Am04], [Bey05].

The use of models to develop software provides important advantages such as the high

level of abstraction and the technology independence. The high level of abstraction that models

provide permits working with metamodels in the same way as with specific models or domain-

specific models. Whereas the solutions that are independent of technology can generate the

application code by means of automatic code generation techniques for different technologies

and programming languages.

The automatic code generation avoids the mistakes of correspondence between the

semantics of the model and the application code. However, it dos not prevent the modelling

mistakes that the user makes. In order to prevent these modelling mistakes, it is necessary to

provide user help in order to guide the user during the modelling process. This guidance

mechanism must be well-supported by the approach and its corresponding tool.

The verification and the validation of software are not only possible to be performed in the

testing stage of the classic software life cycle by means of black-box and white-box testing for

the application code. The verification and validation can be also performed in the modelling

stage in order to detect modelling mistakes. These modelling mistakes can be related to the

structure and/or the behaviour of the model. As a result, the verification and validation of

models should be part of the software development process, and they should be integrated into

those processes that try to improve the development of the first stages of the software life cycle.

On the one hand, the verification of models allows us to know if a model satisfies or not the

constraints that its metamodel defines. If a model satisfies every constraint of its metamodel, it

is possible to state that the model is correct. On the other hand, the validation of models allows

us to know if the behaviour of a model is the one that the user expected and if a model satisfies

certain quality properties. The validation of properties and model is performed by using

prototyping techniques and model checking.

This chapter is focused in the verification of PRISMA models in order to avoid the code

generation from incorrect models. In addition, this verification of models allows us to

propagate these modelling mistakes to the following stage, i.e., the code generation stage. The

Verification

159

PRISMA metamodel defines a set of constraints that every PRISMA architectural model must

satisfy (see section 4.2). This is made feasible by the verification process of the PRISMA

CASE tool, which assists the user the whole time.

7.2. VERIFICATION IN PRISMA
The MDD process of PRISMA is based on the hierarchy of levels that MOF (Meta-Object

Facility) [MOF02] proposes (see section 6.2.1). This hierarchy of PRISMA models implies

that there are two kinds of model verification in PRISMA: verification of architectural models

and verification of architectural configurations.

The verification of architectural models consists in checking that PRISMA type

architectural models satisfy the properties and constraints that are defined in the PRISMA

metamodel. Whereas, the verification of architectural configurations consists in checking that a

configuration of instances satisfies the architectural model that it is instance of, i.e.,

interconnections and compositions among instances are compliant with the interaction and

composition patterns of the architectural model. This chapter is focused on the verification of

architectural models from the PRISMA metamodel.

7.2.1. Verification from the PRISMA metamodel
The PRISMA metamodel defines the properties of PRISMA models in a precise way by

means of metaclasses, relationships among metaclasses and constrains. These metaclasses

define a set of properties and services for each concept considered in the model. The

metaclasses and their relationships define the structure and the information that is necessary to

describe PRISMA architectural models. In addition, the PRISMA metamodel defines the

constraints that cannot be specified using the structure or the information of the metamodel.

These constraints are associated to a metaclass of the metamodel, specifically the metaclass that

is affected by the constraint. The structure, information and constraints of the PRISMA

metamodel must be satisfied by PRISMA architectural models in order to ensure that an

architectural model is correct.

The verification process of the PRISMA architerural models exactly consist in checking

that the models satisfy the following properties: (1) the types of model contain all the

Model-Driven Development of Aspect-Oriented Software Architectures

160

information that their metaclasses establishes, (2) the relationships of the model connect the

types in suitable way, (3) the number or relationships between types is correct, and (4) the

constrains of the metamodel are satisfied. This verification process must be always applied to

the modelling process of PRISMA architectural models and must guide the software architect

the whole moment.

7.2.2. Kinds of constraints
Any metamodel have two kinds of constraints: hardconstraints and weakconstraints. These two

kinds of constraints also appear in the PRISMA metamodel (see section 4.2).

7.2.2.1. Hardconstraints
Hardconstraints are those that must always be satisfied without taking into account the

modelling process situation. An example of hardconstraint is the relationship between aspects

and attributes. An attribute must always be associated to the aspect concept, it will never be

associated to another concept (see section 4.2.1.2). This is a hardconstraint of the PRISMA

metamodel because if an attribute would be associated to another concept of the architectural

model, it would violate the PRISMA model. Another example is the fact that a component

cannot import a coordination aspect (see section 4.2.1.5). If an architect associates a

coordination aspect to a component, the resulting model would violate the PRISMA model.

7.2.2.2. Weakconstraints
Weakconstraints are those that can be violate during the modelling process, but once the

architectural model will be finished, all of them must be satisfied.

Architectural models have a lot of weakconstraints associated to them. For example: an

architectural element must import one aspect at least and must have one port at least (see

section 4.2.1.3). This is an example of a weakconstraint of the PRISMA metamodel because it

is possible to define an architectural element without establishing its ports and/or aspect, and to

establish them later.

Weakconstraints are necessary in any modelling process due to the fact that the definition of

hardconstraint dependencies among two concepts implies that none of them can be modelled.

For example, if a constraint establishes that any port must be associated to an architectural

Verification

161

element and another constraint establishes that any architectural element must have a port, none

of them could be created. The creation of an architectural element will require the previous

existence of a port and vice versa.

7.2.3. Kinds of verification
Weakconstraints provides more flexibility to modelling process. The fact that there are

weakconstraints that are not satisfied means that the modelling process has not finished.

However, it is possible that there can be parts of the architectural model that are finished and

the architect want to verify them.

7.2.3.1. Partial Verification
The partial verification consists in only applying those constraints that affect the elements,

concepts or parts of the model that have been selected by the architect for their verification.

This kind of verification allows the architect to verify the model in an incremental way, as well

as to verify elements of the model for their later storage in repositories and/or reuse in other

models. For example, in PRISMA, the verification of a specific component would consists in

verifying that it has all the needed relationships that the metaclasses ArchitecturalElement and

Component establish, and it satisfies all the OCL rules of both metaclasses.

7.2.3.2. Complete Verification
The complete verification is the verification that is applied to the complete architectural

model. As a result, the complete verification consists in verifying all the constraints that must

satisfy a model. In PRISMA, this process implies that all the restrictions of the PRISMA

metamodel are checked.

7.3. VERIFICATION IN PRISMA CASE
The PRISMA approach is supported by PRISMA CASE, a development framework for

aspect-oriented software architectures that follows the MDD proposal. This CASE tool guides

the user during the development process and facilitates his/her task by providing: (1) The use of

graphical modelling [Per06a], [Per06b] to specify the models instead of using a formal ADL

[Per06d], (2) Support for the partial and complete verification of architectural models, (3) C#

Model-Driven Development of Aspect-Oriented Software Architectures

162

code and formal AOADL automatic generation, and (4) the behaviour validation by means of

the execution of the generated code and the interaction with the final application. This section

presents in detail how PRISMA CASE supports the hard and weak constraints of the PRISMA

metamodel, and the partial and complete verification of PRISMA architectural models. In this

way, PRISMA CASE guides the user throughout the MDD process.

The verification process defined for PRISMA has been included in PRISMA CASE. It is

based on the PRISMA metamodel, which is also part of the PRISMA CASE tool (see 6.3.2).

7.3.1. Hardconstraints in PRISMA CASE
Hardconstraints are part of the graphical modelling behaviour of the tool. As a result, those

relationships that violate hardconstraints cannot be drawn. The hardconstraints have been

defined by means of: (1) the specification of the PRISMA metamodel in DSL Tools and the

corresponding graphical representations of its concepts, and (2) the development of the

graphical constraints for each metaclass of the PRISMA metamodel.

Since the PRISMA CASE tool is generated from the PRISMA metamodel and its

graphical metaphor that have been introduced in DSL Tools, the dependency and association

relationships among the metamodel metaclasses are inherently satisfied by the PRISMA

CASE tool. As a result, the graphical metaphor of each metaclass embodies the inclusion

relationships by defining graphical representations that group a set of concepts. For example,

the metaclass Aspect has an associated graphical metaphor that is a container of other concepts,

the Aspect has an inclusion relationship with them. Figure 67 shows the graphical

representation of the coordination aspect CProcessSUC of the TeachMover architectural

model, and how the attribute TempHalfSteps, which stores the current position of the robot’s

joint, is included as part of the graphical representation of the aspect. As a result, the itself

graphical representation satisfies the constraint: <<An attribute does not have its own entity, it

can only be defined inside an aspect.>>. The rest of concepts that are necessary to specify an

aspect have the same constraint (see section 4.2.1.2).

Verification

163

Figure 67. Graphical representation of an aspect in PRISMA CASE

Figure 68. Relationship verification using graphical modelling primitives

Model-Driven Development of Aspect-Oriented Software Architectures

164

In addition, the referential relationships are also satisfied in an inherent way. Therefore, the

modelling tool guides the architect by only allowing the connections of those elements that

have a referential relationship between them in the PRISMA metamodel. Each connection has

an associated graphical metaphor. For example, the relationship between the concept

architectural element and the concept aspect corresponds with the modelling primitive

ArchitecturalElementHasAspect, whose graphical representation is an arrow. It allows the

connection between an architectural elements and an aspect. If the architect used this primitive

to connect an architectural element with, e.g. an interface, a forbidden sign would appear to

denote that it is impossible to link these two concepts using this graphical primitive (see Figure

68).

As it has been explained in section 7.2.1, the PRISMA metamodel defines the constraints

that cannot be specified using the structure or the information of the metamodel. They are OCL

rules that are associated to the metaclasses. These constrains have been introduced in PRISMA

CASE by extending the partial classes of PRISMA metaclasess that have constraints associated

(see section 6.3.2). Thus, the constraints of the PRIMA metamodel are verified during the

modelling process. DSL tools also distinguishes between two kinds of verification: verification

rules that must always be satisfied (hardconstraints), and verification rules that must be

satisfied once the model has been completely finished (verification rules). They are PRISMA

hardconstraints and PRISMA weakconstraints, respectively.

On the one hand, Verification rules are not verified while the user is modelling. They are

related to the concept of the metamodel, and are verified when it is explicitly requested by the

user or when the model is saved. These Verification rules act as warnings during the modelling

process. These warnings must be rectified before the model is finished so that, it is compliant

with the PRISMA metamodel.

On the other hand, Hardconstraints are verified while the user is modelling. They are

related to the graphical metaphor and they do not permit links between certain graphical

entities, compositions of certain entities, changes of name, etc.

Verification

165

Figure 69 show the partial C# class of the relationship between the metaclasses

ArchitecturalElement and Aspect. This partial C# class is associated to the graphical metaphor

of the relationship, and it has been extended to check the hardconstraints that are related to the

fact that architectural elements import aspects. Specifically, this partial class checks the

following OCL rules: <<An architectural element cannot import more than one aspect of the

same concern>> (see section 4.2.1.3), and <<A component cannot import an aspect whose

concern is coordination>> (see section 4.2.1.5). These constraints are checked by means of the

method CanCreateConnection of the partial class ArchitecturalElementHasAspect.

Figure 69. The partial C# class of the relationship

ArchitecturalElementHasAspect

As a result, each time that an architect imports an aspect from an architectural element, the

method CanCreateConnection is executed and both constraints are checked. The source code

shows that if the constraints are not satisfied, a graphical connection error is launched. This

error has an associated text message that is shown to the user together with a forbidden sign.

From this example, it is possible to conclude that hardconstraints are part of the graphical

metaphor and they are checked without being requested by the architect.

Model-Driven Development of Aspect-Oriented Software Architectures

166

7.3.2. Weakconstraints in PRISMA CASE
Since weakcostraints are implemented using Verification rules, that are associated to the

concept instead of the graphical metaphor. They are only checked when the architect requests

their execution, the architectural model is saved, or once the architectural model has been

finished and the C# code generation is launched.

Figure 70. The partial C# class of the metaclass Component

Figure 70 shows the partial C# class of the metaclass Conmponent, whose method

ValidateComponentHasAspect checks if a component imports one aspect at least. The source

code of the method shows that if the constraint is not satisfied, the error is saved in a Log file

together the rest of errors that have been identified in the verification process instead of being

immediately shown as hardconstraints do. Then, when the verification process is requested by

the user, the list of errors that have been previously saved in the Log file is displayed in the

Error List window (see Figure 71).

Verification

167

Figure 71. Error List

7.3.3. Partial and complete verification in PRISMA CASE
Verification rules can also be checked whenever the user requires it. The PRISMA menu offers

the option of checking these rules in a complete or partial way (see Figure 72). The complete

way checks all the verification rules, while the partial way allows you to only check one kind of

PRISMA type. The options that are provided to check an architectural model in a partial way

are the following: interfaces, aspects, components, connectors, systems and attachments. For

example, if the user requests the Interface Verification, only the rules associated to interfaces

are checked. The advantage of this partial verification is that the user can incrementally check

the models and focus on the problems of a specific type of the model.

Figure 72. Verification Menu

Model-Driven Development of Aspect-Oriented Software Architectures

168

In addition, the modelling tool offers the mechanism of checking only one element of the

architectural model. This is possible by executing the option that appears in the contextual

menu that is associated to the element that the user wants to check. For example, Figure 73

shows the contextual menu that only verifies the interface IMotionJoint.

Figure 73. Contextual menu of an interface

7.4. RELATED WORKS
In the MDD field there are three kinds of strategies to perform the verification of models

[Mod06]: analysis, construction and monitoring. Analysis strategies define the constraints

together with the metamodel using OCL rules. Then, a verification tool is in charge of checking

that models satisfy these constraints. These strategies perform a complete verification of the

model. There is a wide range of tools that offer OCL checkers [Tov07].

The constructive strategies construct models by applying QVT transformation rules

[QVT05] or ATL [Bez06]. The monitoring strategies define models by means of graphical

tools that prevent the creation of inconsistent models. Both strategies have in common that they

construct models in an incremental way by defining implicit modelling constraints. However,

the constraints are spread through the transformation rules and the monitoring logia. Therefore,

this is an inconvenient because the maintenance of constraints is really difficult. There are

mixed approaches, such as the Bézivin & Jouault approach [Jou05], which use the engine of

ATL transformation rules to verify that the OCL rules of the metamodel are satisfied. But the

main inconvenient of these approaches is the fact that OCL rules are separated from the

metamodel.

Verification

169

The proposals that have been acquired more relevant are those that combine analysis and

monitoring strategies. They take advantage of the flexibility that provide the analysis strategies

and the security that offers the monitoring strategies. For example: Microsoft DSL-Tools

[DSL07], AMMA [Kur06], XMF-Mosaic [Tov07], EMF [EMF07] and GME [GME07].

These tools provide support for all the stages of the MDD process, although each one provides

this support using a different meta-metamodel, different strategies of consistence verification,

and a different code generation process.

The choice of one tool or another depends on different factors. One of the reasons to choose

DSL Tools for developing PRISMA CASE was that it offers mechanisms for monitoring and

analyzing the verification of the consistence. The monitoring is offered in an implicit way by its

graphical modelling tool, once the metamodel has been previously defined in the DSL Tools.

The analysis of constraints is offered by customizing the metaclasses using the partial class

facility.

It is important to mention that despite the fact that the area of software architectures is

making an important effort to give support for validation, there are not solid proposal for the

verification of architectures. As a result, a solution for this lack is presented in this chapter.

7.5. CONCLUSIONS
In this chapter the need to support model verification throughout the MDD process is set out.

An important contribution in the area is the classification of constraints that is presented in the

chapter: hardconstraints and weakconstraints. From this classification the contribution takes a

step forward and the partial and incremental verification has been proposed instead of only

taking into account the complete verification of the model. Therefore, the flexibility of the

modelling process is increased by adapting the help to user needs. In addition, a methodology

to support the verification of models during the MDD process is defined by establishing the

needed mechanisms to offer all kinds of verification.

This methodology has been applied to the PRISMA approach. The PRISMA model

defines through its metamodel, the properties and constraints that any PRISMA architectural

model must satisfy. These constraints have been analyzed in order to be classified into

Model-Driven Development of Aspect-Oriented Software Architectures

170

hardconstraints and weakcontraints. It has been only defined as hardconstraints, those that are

strictly necessary. As a result, the PRISMA modelling process has more flexibility. PRISMA

CASE has made the application of this methodology to the PRISMA approach feasible.

PRISMA CASE provides support for : (1) the partial and complete verification process, (2)

the difference between hardconstraints and weakconstraints, and (3) the incremental

verification of aspect-oriented architectural models by means of the partial verification of types

(aspects, components, etc) or the partial verification of specific elements of the model. As a

result, PRISMA is presented as an approach that facilitates the modelling process of aspect-

oriented architectural models by means of a well-defined verification process that follows the

MDD approach.

The work presented in this chapter has been published in the following publication:

 Jennifer Pérez, Cristóbal Costa, Jose A. Carsí, Isidro Ramos, Verification of Aspect-

Oriented Architectural Models, XII Conference on Software Engineering and Databases

(JISBD), Zaragoza, Spain, 12-14 September. (In Spanish)

COTS

171

CHAPTER 8
8. COTS: Commercial Off-The-Shelf

Reusability reduces the development time of software systems because artefacts are only

programmed one time and can be used more than once. Reused software artefacts guarantee

their quality and suitable functionality because they have been tested and used before. As a

consequence, Commercial Off-The-Shelf (COTS) importation has acquired relevance in the

last few years. This chapter presents a proposal for integrating COTS into aspect-oriented

architectural models that are developed and maintained following the Model-Driven

Development (MDD) approach. The proposal is based on the PRISMA approach, which gives

a complete support to the development of technology-independent, aspect-oriented software

architectures. PRISMA improves the reusability of software by combining COTS,

components, and aspects. In addition, PRISMA integrates COTS into its MDD process to

automatically obtain the complete application code.

8.1. INTRODUCTION
In the last few years, the high complexity of software has increased the time and the staff that

are invested in the development and maintenance processes of software. As a result, there is

greater interest in research areas to reduce this time and cost. In order to achieve these goals,

software community is making a big effort to provide techniques that improve the reusability of

software.

Model-Driven Development of Aspect-Oriented Software Architectures

172

Reusability of software allows the same software artefact to be used in different places of

the same application or in different applications. The artefact is only programmed once and can

be used many times. This reusability reduces the development time of software systems, and

their quality and suitable functionality are guaranteed because they have been tested and used

before.

The Component-Based Software Development (CBSD) approach [DSo99][Szy98] is used

in the field of software architectures [Per92], [Sha96]. This approach decomposes the software

system into reusable entities (black boxes) called components. As a result, software

architectures can be described preserving the reusability of their components and are presented

as a solution for the design and development of complex software systems.

Another approach that has emerged to improve reusability is the Aspect-Oriented Software

Development (AOSD) approach [Kiz01], [Kiz97]. This approach allows for the separation of

concerns by modularizing crosscutting concerns into a separate entity called aspect. As a result,

the same aspect can be reused by different software artefacts, which are usually objects.

In addition, there is another approach to develop software that improves its reusability. It

consists of buying components (black boxes that offer a set of services that are properly

documented for use) from third-party developers and then, integrating them into the system.

These components that are for sale commercially are known as Commercial Off-The-Shelf

(COTS) [Obe97], [Car00]. The use of COTS during the development process has increased in

the last few years due to market competitiveness. This increase has led developers to try to

reduce the time required to develop a software product. Since developers are using the software

components of other companies more and more, COTS importation has acquired greater

relevance. This is because tools that allow the reuse of their components combined with COTS

importation achieve the highest reuse and quality code. PRISMA is an approach whose aim is

to provide these two benefits.

This chapter takes a step forward with regard to previous work of the PRISMA approach. It

presents a new version of the PRISMA approach, which is able to integrate COTS into its

MDD process. The chapter describes how PRISMA integrates COTS into its aspect-oriented

software architectures without violating the properties of the PRISMA model. As a result,

COTS

173

PRISMA improves the reusability of software by combining COTS, components and aspects.

In addition, the chapter explains the process to obtain a complete application code, which is

composed of the generated code from its architectural models and the code from COTS. It is

then ready to be executed on the .NET platform [Per05b].

8.2. THE SOFTWARE ARCHITECTURE OF A
TEACHMOVER’S JOINT USING COTS

In this section present the evolved version of the TeachMover case study that has been used as

an example in the rest of the thesis. This new version uses COTS to permit the communication

between hardware and software, i.e., the hardware robot and software components of the

architecture. This example is going to be used in this chapter to illustrate how COTS are

introduced in PRISMA.

The TeachMover architecture has different levels of abstraction for its components,

connectors, and the interactions with each other. The lowest abstraction level of the robot

architecture is defined by a system called Joint or SUC, which is composed of components that

interact with the hardware joints of the robot (see section 2.3.2.2). The communication between

the robot and the computer is performed through the serial port of the computer because the

computer is connected to it. The Joint system defines a joint of the robot. It is composed of two

components and a connector and their corresponding connections:

 ActSen: This software component is in charge of communicating with the hardware joint

of the robot. It communicates with the actuator of the hardware joint when commands are

sent to the hardware joint of the robot. These commands are performed by the hardware

joints or the tool. This software component also notifies the joint system when the

commands have been performed successfully.

 WrapAspSys: This software component encapsulates the behaviour and the state related

to the software joint, such as the position of the joint and its movements.

 CnctJoint: This software connector coordinates the ActSen component and the

WrapAspSys component.

Model-Driven Development of Aspect-Oriented Software Architectures

174

Since the ActSen component is responsible for interacting with the hardware pieces of the

robot, it is necessary to use a COTS that provides the services to move the joint and to listen to

the results through the RS232 serial port. The COTS that have been used in this case study is a

dynamic linking library called RS232 (RS232.dll). This COTS provides a set of services. To

facilitate the readers’ comprehension of the example in this chapter, it is illustrated the

integration of the COTS using the most representative service, the service Send. Its definition is

the following:

Send (int joint, int halfsteps, int speed): int

The first parameter specifies the joint to which the movement is sent. Each joint of the

TeachMover has a predefined number (1. Base, 2. Shoulder, 3. Elbow, 4. Wrist (right rotation),

5. Wrist (left rotation), and 6. Tool). The second parameter is the number of halfsteps that the

robot is going to be moved when the service is executed. And finally, the third parameter

corresponds to the speed of the processing movement.

8.3. INTEGRATING COTS INTO THE PRISMA MODEL
COTS integration is usually presented as a handicap for developers because there are many

incompatibilities with programming languages, frameworks, platforms, communications, etc.

Therefore, COTS must be adapted so that it can be reused in a software system. There are three

well-known techniques for integrating COTS in software systems: wrappers, gluewares, and

proxies. Wrappers wrap COTS in a kind of software artefact of the software system; gluewares

are intermediaries between the COTS and the software components of the software system;

and proxies are adapters that hide the incompatibilities between COTS and the components of

the software system. These three techniques are black box techniques to integrate COTS into

software systems.

The wrappers technique was chosen over gluewares and proxies, since it integrates COTS

into a model using its own concepts, which is the goal of PRISMA. There are two PRISMA

candidates that can serve as wrappers: components and aspects.

COTS

175

8.3.1. COTS as components
A PRISMA component can act as a wrapper because it can wrap a COTS and publish its

interface through the component port (see Figure 74). As a result, the services of the COTS can

be requested through the port.

Figure 74. COTS as components

This proposal of integrating COTS into software architectures does not violate the concepts

of any architectural model. In addition, the proposal allows the rest of components of the

software architecture to interact with COTS since it is a component that has been specified

from scratch using the model constructors. However, one of the drawbacks of this proposal is

that it is really difficult to extend the behaviour of the COTS. There is also another drawback

that specifically affects the PRISMA model: the COTS behaviour is directly provided by the

component. As a result, this proposal of wrapping COTS using components does not fit the

PRISMA model properties since PRISMA component behaviour is always defined inside

aspects and never inside components. Component behaviour cannot be specified inside

components because they do not provide mechanisms to do so, therefore, it is not possible to

specify the properties and processes that are needed to integrate the services of the software

system with the services of the COTS. However, aspects do provide properties, services and

protocols that can be used to specify the integration behaviour of the COTS into the software

system.

8.3.2. COTS as aspects
An aspect defines the structure and the behaviour of a specific concern of the software system.

An aspect declares a number of interfaces and defines a semantics for the services that these

interfaces publish. As a result, an aspect can act as a wrapper because it can wrap a COTS and

declare the interface of the COTS. In order to the COTS integration to be compliant with the

Model-Driven Development of Aspect-Oriented Software Architectures

176

PRISMA model, the aspect must be imported by an architectural element of the model so that

it can publish its interfaces through its ports and communicate with other architectural elements

through the channels (see Figure 75). This wrapper proposal provides an easy way of extending

the behaviour of the COTS. The architectural element that imports the wrapper aspect can

import other aspects and weave with each other using weavings. As a result, the architectural

element provides an extended version of the COTS through its ports, which is compliant with

the PRISMA model and is also more flexible than the proposal presented in section 8.3.1. For

this reason, aspects are the PRISMA element that has been selected to wrap COTS. In fact, a

new kind of aspect called Integration Aspect has been defined to do this.

An integration aspect allows the integration of COTS components in PRISMA software

architectures in an abstract way. It contains a reference to the COTS that it is related to and uses

a PRISMA interface that defines all the services that the COTS provides. The integration

aspect also uses the interfaces of the architectural model that define services that must be

transformed into requests to the COTS. As a result, the protocol of the PRISMA integration

aspect consists of redirecting each request service to its corresponding COTS service.

Figure 75. COTS as aspects

All the architectural elements that import the integration aspect are crosscut by the concern

that it represents. For example, in the case study, all the components that import the integration

COTS

177

aspect are crosscut by the hardware interaction concern. This is due to the fact that the COTS

RS232.dll allows communication with the serial port that the robot is connected to.

8.4. USING COTS DURING THE MDD PROCESS
The PRISMA approach follows the MDD process to define its application. As it has been

presented in section 6.2, PRISMA supports the MDD process through its PRISMA CASE

Tool. The addition of COTS to this process has been also made feasible thanks to PRISMA

CASE. Next, how COTS have been introduced in the PRISMA CASE modelling tool and in

the PRISMA CASE model compiler.

8.4.1. The use of COTS in the PRISMA CASE modelling tool
The aspect is one of the modelling primitives of the PRISMA Modelling Tool of PRISMA

CASE (see Figure 58). Every concern is modelled using the aspect primitive, which is

represented as a rectangle (see number 1, Figure 58). It includes the definition of attributes,

services, valuations, preconditions, constraints, transactions, played_roles and a protocol. The

concern of the aspect is determined by its properties. In order to visually identify the concern of

an aspect, each concern has a colour associated to it; depending on the value of the aspect

concern, the aspect is painted in one colour or another.

However, the integration aspect is not modelled using the aspect modelling primitive as

other concerns do. There is a specialized integration aspect modelling primitive (see number 5,

Figure 58) because it only provides the properties that are strictly necessary for integrating

COTS into software architectures. The integration aspect only defines services, played_roles,

and a protocol (see the IACOT aspect specification in Figure 76). The integration aspect is

graphically represented by a rectangle. Integration aspects are painted grey to denote their

wrapper semantics, which are viewed as a black box. In addition to the name of the aspect, the

aspect has a COTS property to specify the name of the COTS that it wraps (see the Properties

Window in Figure 76 (lower right)).

The importation of interfaces by an aspect is specified using the link AspectHasInterface,

which is provided by the tool box (see number 2, Figure 58). However, integration aspects use

Model-Driven Development of Aspect-Oriented Software Architectures

178

a different link called Integration_AspectHasInterface. It is graphically represented by a line

(see number 7, Figure 58).

Figure 76. Integration of the TeachMover.dll into a PRISMA architectural

model

Finally, architectural elements are represented by rectangles that have one pin for each one

of the ports that are associated to them (see number 3, Figure 58 (components)). The

importation of aspects by architectural elements is specified using the link

ArchitectecturalElementHasAspect (see number 4, Figure 58). In addition, there is another

specialized link for importing the integration aspect called

ArchitectecturalElementHasIntegrationAspect (see number 6, Figure 58).

The IACOT integration aspect that is illustrated in Figure 76 integrates a TeachMover.dll

into the architectural model of the TeachMover robot. For this reason, it has as a value of the

COTS property the TeachMover DLL. In addition, there is an ActSen component that imports

the IACOT integration aspect and interacts with the rest of the software architecture.

COTS

179

IACOT imports the interfaces IRead and IMotionJoint of the TeachMover architectural

model in order to synchronize their services with the COTS services. In addition, IACOT

imports another interface, called ICOT, which defines the services of the COTS. As a

consequence, the IACOT aspect has all the services that define these three interfaces and can

specify the protocol in order to synchronize them (see the COTSServices section inside the

IACOT aspect in Figure 76). The protocol of IACOT consists of redirecting the requests of the

services from the IACOT to the COTS. These services (for example: the moveJoint service)

arrives to the IACOT from the ports of the ActSen component. To do this the protocol

establishes that each time that the movejoint service is requested, the COTS service send is

called with the same values of the parameters of the moveJoint service. The protocol is

specified by modelling a State Transition Diagram (STD) (see the IACOT aspect in Figure 76).

In order to model the complete behaviour, the actuator is connected to a component called

WrappAspSys through the connector CnctJoint (see section 8.2). Moreover, these three

components belong to a system called Joint (see Figure 77).

Figure 77. PRISMA architectural model of a Joint

Model-Driven Development of Aspect-Oriented Software Architectures

180

8.4.2. The use of COTS in the PRISMA CASE model compiler
The PRISMA CASE also provides a model compiler, which is composed of a set of templates

that automatically generate the code from the models that have been graphically modelled. A

specific template has been developed for automatically generating the code of the integration

aspect. The code generation template of integration aspects is different from other kinds of

aspects. This is due to the fact that it must integrate the code of the COTS with the code of the

aspect. However, the remaining aspects have a common template that generates the

functionality of the system that each aspect describes.

There are many kinds of COTS: Web Services, COM components, ActiveX components,

dynamic linking libraries, etc. This chapter is going to focus on dynamic linking libraries,

specifically: native libraries and libraries that have been developed using the .NET framework.

Native libraries can be used as provided by the supplier. As a result, the template should

generate the C# code that imports the set of services of the COTS by means of the C# attribute

DLLImport. This attribute, which is provided by the C# programming language, allows us to

include the service of a COTS inside its wrapper (see numbers 1 and 2 in the code presented

below). In addition, it is necessary to define the COTS service as a private method that returns

the result of the invocation (see number 4 in the code presented below) and the invocation of

the COTS service by the corresponding service of the software architecture to make the

integration (see number 3 in the code presented below). The C# code that the model compiler

should generate for integrating the RS232.dll of the case study into the IACOT aspect is the

following:
…
//1. To use the attribute DLLImport
using System.Runtime.InteropServices;
…
namespace RobotJoint
{ public class IACOT : IntegrationAspect , IMotionJoint, ICOT, IRead
 {
//2. To define the entry point to the DLL through the send service
 [DLLImport("RS232.dll", EntryPoint = "Send")]
 enum protocolStates
 {
 SubStateNotify,IACOT, COT, END
 }
 protocolStates state;
 private protocolStates State{…}
 public IACOT(string name) : base(name) {…}

COTS

181

//3. The request of the moveJoint service called the send service of the
ICOT interface
 public AsyncResult moveJoint (int NewSteps,
 int Speed)
 {
 send(NewSteps, Speed, this.aspectName);
 CallOutService("IRead","INTLISTEN","moveOk",
 this.aspectStateCareTaker.ActiveTransaction,
 null);
 return null;
 }
 public AsyncResult stop (){…}
//4. The request of the send service called the Send service of the COTS
 private static extern int send (int Speed,
 int HalfSteps, string Joint)
 {
 int response = Send(NewSteps, Speed,
 this.aspectName);
 return null; }
 public AsyncResult stopRobot (){…}

 public AsyncResult moveOk (){…}}}

However, the code presented above is not the code generated by the PRISMA CASE

model compiler because the libraries that are developed using the .NET platform cannot be

used as provided by the supplier, and cannot be executed with this code. The .NET libraries

need to create another wrapper that encapsulates the services that the COTS provides. This

wrapper consists of a class that permits the invocation of the COTS in a transparent way and

prepares the parameters required to call the COTS services. This class must be contained in a

project that is a class library (see Figure 78).

Figure 78. COTS Execution Process in PRISMACASE

Model-Driven Development of Aspect-Oriented Software Architectures

182

Since PRISMA model compiler automatically generates the code for the integration aspect,

the generated code must be valid for both the native and the .NET libraries. For this reason, the

solution for the .NET libraries has been chosen.

In consequence, the PRISMA integration aspect interacts with a wrapper that wraps the

COTS in a library that contains the class that manages the COTS services (see Figure 78). In

our example, the class that wraps the COTS is called TeachMover.dll. Thus, the COTS

property of IACOT aspect contains the value TeachMover.dll instead of RS232.dll (see the

Properties Window in Figure 77).

Figure 79. The C# code that is automatically generated from the IACOT

aspect

Figure 79 shows the code generated for IACOT by the PRISMA model compiler: the

IACOT aspect imports the TeachMover library, the moveJoint service addresses its request to

COTS

183

the COTS by requesting the send service, and the send service calls the send service of the

TeachMover.dll in a transparent way. Once the code has been generated, the COTS assemblies

and project of libraries must be stored in the same folder as the generated assemblies by the

PRISMA project. This is done so that COTS assemblies can be added to the compilation

process and can be executed in the same way as other PRISMA software architectural

elements. In our case, the generated code the TeachMover.dll and the RS232.dll are stored

together in the assembly folder.

8.5. RELATED WORKS
COTS are components that are developed and sold by third parties. Since they have been run

on different software systems by different companies, their quality and correct behaviour are

guaranteed. However, their proper integration into software systems is both difficult and time-

consuming [Vig96].

COTS integration and use has not considered as part of the software life cycle and most

proposals and initiatives related to COTS are based on the implementation stage of the software

life cycle only. In this chapter, it is proposed introducing COTS at the software architecture

stage of the software life cycle.

There are a wide variety of ADLs that have been proposed to specify software architectures

(see chapter 3). However, all of them are based on the fact that the software architecture is

completely specified using their ADL constructors and none of the components are imported

from other developers or architects. In addition, there are other approaches that combine

software architectures with aspect-orientation (see chapter 3). Even thought these approaches

are closer to PRISMA approach, they do not propose mechanisms to introduce COTS in their

software systems.

The work of Yakimovich et al [Yak99] creates a method that supports estimation of the

cost of integration of COTS products in software architectures. The work of Guerra et al

[Gue02], [Gue03a], [Gue03b] outlines a proposal that takes advantage of COTS in software

architecture by introducing its specific COTS in the C2 architectural style. However, they only

focus on its components for supporting fault tolerance, and it is not a proposal for a complete

Model-Driven Development of Aspect-Oriented Software Architectures

184

software architecture of a real software system. This proposal is platform-dependent and does

not use a formal ADL as recommended for the definition of software architectures.

The work of Kvale et al [Kva05] compares the advantanges and disadvantages of using

COTS in Aspect-Oriented Programming (AOP) or in Object-Oriented Programming (OOP).

This work explains how to wrap COTS using aspects. It describes the advantages and

disadvantages of this wrapping depending on the weavings process (which is where the

synchronizations between the base code and the aspect code are localized). This work also

states that the AOP development frameworks do not provide good mechanisms for importing

COTS.

8.6. CONCLUSIONS
This chapter explains how to integrate COTS into software architectures in a novel way. This

integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect

called integration_aspect has been defined to specify the COTS that it wraps and to specify the

integration process with the rest of software architecture. In the same way as other aspects,

integration aspects must be imported by an architectural element in order to publish their

services through ports that enable their communication with other architectural elements. This

is an advantageous way of introducing COTS into software architectures because the COTS

services can be requested and received and can also be extended by using the aspect-oriented

mechanisms that PRISMA offers. The integration aspect functionality can be extended by

weaving it with the other aspects that the architectural element imports.

This chapter also describes how the use of COTS is supported by the PRISMA

methodology thanks to the facilities that the PRISMA CASE provides. This is an important

characteristic since COTS are widely used, and any development approach that needs to reduce

development time must provide it.

In summary, the proposal presented here is a suitable development framework for reducing

the time and cost invested in the software development process and for improving the quality

of the code. This can be done since PRISMA provides mechanisms to use COTS, it reuses its

aspects and components, and it uses code-generation techniques to automatically generate

COTS

185

code. This proposal has used in practice to develop an aspect-oriented software architecture for

a robot. The robot code was automatically generated and the COTS was integrated in the code.

The application code was executed through the PRISMANET middleware and it was possible

to move a robot with an aspect-oriented software architecture that integrates COTS.

The work presented in this chapter has been submitted to the following publication:

 Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Taking Advantage of COTS for Developing

Aspect-Oriented Software Architectures, Working IEEE/IFIP Conference on Software

Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 – 21

February 2008. (submitted)

Model-Driven Development of Aspect-Oriented Software Architectures

186

The PRISMA MDD Methodology

187

CHAPTER 9
9. THE PRISMA MDD METHODOLOGY

This chapter presents the PRISMA methodology in order to develop aspect-oriented software

architectures following the PRISMA MDD process. This methodology takes advantage of the

PRISMA reusability properties (coordination model, modelling and reusability facilities, the

use of COTS), the graphical specification of PRISMA models [Per06a], [Per06b], and the

verification process proposed by the PRISMA approach. In this chapter is illustrated how the

PRISMA approach can improve the development and maintenance processes of complex

software systems.

The methodology is divided into six stages: detection of architectural elements and aspects,

type architectural modelling, type code generation, configuration modelling, configuration code

generation and execution (see Figure 80). These six stages are applied by the analyst of the

software system in an iterative and an incremental way depending on his/her needs. This thesis

of master is focused on how the modelling and code generation stages in order to illustrate how

the PRISMA combination of AOSD and software architectures can improve the development

and maintenance processes of software.

Model-Driven Development of Aspect-Oriented Software Architectures

188

Figure 80. The methodology of the PRISMA approach following the MDD

paradigm

9.1. 1ST STAGE: DETECTION OF ARCHITECTURAL
ELEMENTS AND ASPECTS

The first tasks for developing software architectures are to identify which architectural elements

make up the architecture and to detect the aspects that crosscut the software architecture. In

PRISMA, the detection of those architectural elements and aspects is performed from the

requirements document in an intuitive way.

The running example that it is going to be used to illustrate our methodology is the

TeachMover tele-operation system (see section 2.3.2 [TEA07]). The computational units

(components) and the coordination units (connectors), which allow the architecture to

synchronize components and permit the communication among them, can be identified from

the manual of the TeachMover robot. In addition, the concerns that crosscut the software

architecture can be detected. The mechanisms and criteria to detect concerns, components and

The PRISMA MDD Methodology

189

connectors are out of the scope of this thesis of master, so it is assumed that these elements have

already been detected.

9.1.1. Identification of Architectural Elements
The manual of the TeachMover shows that the robot is composed of a set of components

that represent a set of joints, a set of connectors that coordinate the joints, and a set of complex

components that allows the composition of joints to form a robot. These joints permit the

robot’s movements. They are the following: Base, Shoulder, Elbow and Wrist. In addition, it

has a gripper, whose open and close actions allow the robot to pick up and deposit objects (see

[TEA06]).

From the manual of the robot the components of the robot and the different level of

composition have been identified. The result of this identification process is presented in

section 2.3.2.2, specifically in Figure 3 where they are illustrated in their corresponding level of

granularity using a tree view. In addition, the connectors needed to coordinate these

components as well as to provide a suitable behaviour of the architecture have been identified.

Connectors are necessary because PRISMA introduces connectors as first order citizens of

architectural models. As a result, PRISMA avoids the dependencies among components that

ADLs without connectors encounter by specifying coordination rules inside components

[Sha94].

Both architectural elements and the services that must be interchanged among them can be

identified during this stage. These services are requested and/or provided by the architectural

elements. Since a PRISMA interface is a set of services that is provided and/or requested by

means of the ports of architectural elements, the identification of these services implies the

identification of the interfaces. The ports of architectural elements and the interconnections

among these ports can also be detected taking into account the identified interfaces.

The PRISMA methodology is put into practice using the PRISMA CASE, except for this

1st Stage that the identification of architectural elements and aspects is made by hand.

Model-Driven Development of Aspect-Oriented Software Architectures

190

9.1.2. Identification of Crosscutting-Concerns
The concerns that crosscut the software system must be identified from the requirements

specification in order to modularize them into reusable entities called aspects. In the case of the

TeachMover, the crosscutting concerns that have been identified in the case study are the

following:

 Functional: The purpose of the TeachMover software system is to move the robot. The

robot has a motor to accurately perform movements by half-steps. A half-step is an angular

advance that is produced by a stimulating impulse. In the case of the TeachMover, the

movements can be requested using half-steps or inverse cinematics (moving to a specific

point in space). This functionality, together with the gripper functionalities allows the robot

to move objects from an initial position to a final one. The movements of the robot are

ordered by an operator from a computer.

 Safety: Safety directives are necessary for monitoring the TeachMover movements in

order to make sure that the movements are safe for the robot, the operator, and the

environment that surrounds them.

 Coordination: The inner behaviour of joints (SUCs) and the movements in which more

than one joint has to be moved must be coordinated. In addition, the requests of the

operator and the performance of the movements must be synchronized.

9.2. 2ND STAGE: TYPE ARCHITECTURAL MODELLING
Once the interfaces, aspects, architectural elements and their ports have been identified, the

skeleton of the architectural elements and the aspects can be defined. The analyst is then ready

to start the type modelling process of the software architecture. This stage can be divided into

four modelling steps: Interfaces, Aspects, Simple Architectural Elements, and Complex

Architectural Elements (see Figure 80).

It is important to keep in mind that the enumeration of these steps is not a restrictive order.

The enumeration simply indicates the dependencies between the different concepts that arise

when the architectural model is being modelled. These dependencies are the following:

The PRISMA MDD Methodology

191

 To completely define a complex architectural element, the architectural elements that it

consists of must have been previously defined

 To completely define an architectural element, the aspects that it imports and the

interfaces that their ports use must have been previously defined

 To completely define an aspect that uses interfaces, the interfaces must have been

previously defined

Even though the order of these steps can be different, it should be followed in order to

completely define an architectural model. In other words, it does not mean that partial

descriptions of the architectural elements, aspects or architectural models cannot be performed

during the development process. The analyst can start the modelling process from either steps

1, 2, 3, or 4, obtaining partial solutions of the model, and can go backward or forward

depending on his/her needs.

This 2nd Stage is developed using the PRISMA Type Modelling Tool. The STEPS 1 to 4

are developed using the PRISMA Type Modelling Tool, where all the reusable types

(interfaces, aspects, simple architectural elements and complex architectural elements) are

modelled in a graphical way by drawing and dropping the PRISMA modelling primitives.

9.2.1. STEP 1: Interfaces
Interfaces are specified in step 1 of the PRISMA architecture modelling stage. This is due to the

fact that it is not necessary to previously define other elements of the model. Interfaces are

stored in a PRISMA repository for reuse (see step 1, 2nd Stage, Figure 80).

Figure 81. The ISUC interface

Interface ISUC

 moveJoint(input NewHalfSteps: integer, input Speed: integer);
 cinematicsMoveJoint(input NewAngle: integer, input Speed: integer);
 stop();
 moveOk(output success: boolean);

End_Interface ISUC;

Model-Driven Development of Aspect-Oriented Software Architectures

192

The specification of the interfaces identified in the first stage consists of describing the

interface services and their signatures. The signature of a service specifies its name and

parameters. The data type and the kind (input/output) of parameters are also declared. An

example of an interface is shown in Figure 81.

Once an interface is specified is convenient to verify it in order to be sure that the

specification is correct. In addition, it is recommended to verify all the interfaces the entire

model once they have been defined. After the verification of an interface, it can be stored in the

PRISMA repository to be reused by other architectural models.

9.2.2. STEP 2: Aspects
As it has been previously mentioned, a PRISMA aspect encapsulates a concern that crosscuts

the architectural elements of software architectures. This aspect semantics is different from any

of the architectural terms in the software architecture discipline that currently exist. The notion

of aspect has an entity of its own, and aspects are first-order citizens of the PRISMA AOADL

[Per06d].

Aspects are defined in step 2 of the second stage using the combination of two formalisms:

a modal logic of actions [Sti92] and a dialect of the polyadic π-calculus [Mil93]. π-calculus is

used to specify and formalize the processes of the PRISMA model, and the modal logic of

actions is used to formalize how the execution of these processes affects the state of aspects.

The kind of aspects and the number of each one depends on the software system. Aspects are

reusable entities that define a specific behaviour of a crosscutting-concern and are, therefore,

stored in a PRISMA repository (see step 2, 2nd stage, Figure 80). As a result, not only can

aspects be used more than once in a software architecture description, they can also be reused

in different software architectures. If there are going to use COTS in the model specification,

the specification of the aspect that wrapps the COTS must to be done in this step. On the other

hand, it is important to mention that before the storage of aspects in the PRISMA repository, it

is recommended that each aspect will be verified.

There are aspects that specify the semantics of the services that are published by an

interface (public services), there are aspects that specify the semantics of services that are not

The PRISMA MDD Methodology

193

published by any interface (private services), and there are aspects that specify the semantics of

both, public services and private services. The aspects that specify the semantics of public

services must be defined after the interface of their services has been defined. This is why

interfaces are defined in step 1 and aspects are defined in the step 2 of the methodology.

However, this does not constrain the specification order. Either the interface is defined before

the aspect, or the services are initially defined as private services of the aspect and are then

changed to publish services by means of an interface. Furthermore, when the needed interfaces

are reused from the repository, step 1 is not necessary.

The aspects are defined by taking into account the crosscutting concerns identified in the

first stage. The number of aspects for the same concern is decided by the analyst, taking into

account criteria such as reusability and understanding. Depending on the analyst’s criteria,

he/she will define one aspect for a concern or several aspects for the same concern. For

example, for the safety concern that crosscuts the software system, two safety aspects can be

defined. Each of these aspects has different safety behaviour. This chapter is going to focus on

the specification of a safety and a coordination aspect of the TeachMover case study.

9.2.2.1. The safety aspect
The concerns (safety, coordination, functionality, distribution, etc) that an aspect can specify in

PRISMA is not constrained because the concerns vary depending on the system and the

domain that is being modelled. A keyword is used to establish the concern of the aspect that is

being specified. For example, in this case, the Safety word establishes that every property,

service, or behaviour that is specified in the aspect is related to the safety concern (see Figure

82). This keyword is a property of a PRISMA aspect called concern, whose value is provided

when a specific aspect is defined. There is no predefined list of keywords; the value is

introduced by the analyst when he/she starts the aspect modelling task.

The concern of an aspect and its name are detailed at the head of the aspect. Several

constant attributes are declared in the body in order to store the information of the minimum

and maximum values that have to be taken into account to preserve the safety of the

TeachMover (see section 1, Figure 82). Begin and end services start and end the execution of

Model-Driven Development of Aspect-Oriented Software Architectures

194

an aspect, respectively (see sections 2 and 5, Figure 82,). Also, several services to preserve the

safety of the system are defined in the SMotion aspect using dynamic logic. Some of them are

specified in section 3 of Figure 82, but only the complete specification of the service check is

presented to facilitate the understanding of the specification. This service ensures that the

requested movement is safe by determining whether it is between the minimum and maximum

degree (see section 4, Figure 82). In addition, transactional operations are defined to execute a

set of services atomically (see section 6, Figure 82). Finally, the protocol defines the process of

execution of the aspect services using a dialect of π-calculus (see section 7, Figure 82).

Figure 82. The safety aspect SMotion

Safety Aspect SMotion
 Attributes
1 Constant
 minimum, maximum, minRoll, maxRoll, minPitch,
 maximumPitch: integer, NOT NULL; … …
 Services
2 begin(input InitialMinimum: integer,

input InitialMaximum: integer, … …);
 Valuations
 [begin (InitialMinimum, InitialMaximum)]
 minimum := InitialMinimum,
 maximum := InitialMaximum;

3 in checkdistance(input NewX: integer, input NewY: integer,

3 input NewZ: integer, output Secure: boolean); … …

 in check(input Degrees: integer, output Secure: boolean);
4 Valuations
 {(Degrees >= minimum) and (Degrees <= maximum)}
 [check(Degrees, Secure)]
 Secure := true;

 {(Degrees < minimum) or (Degrees > maximum)}
 [check(Degrees, Secure)]
 Secure := false;
 … …
5 end;
6 Transaction
 DANGEROUSCHECKING(input Degrees: integer,
 input CurrentSpeed: integer, output Secure: boolean): … … ;
 … …
7 Protocol
 SMOTION = begin.CHECKING;
 CHECKING = check (Degrees, Secure).CHECKING +
 checkDistance(NewX, NewY, NewZ, Secure). CHECKING
 + … … +
 DANGEROUSCHECKING(Degrees, Secure).CHECKING
 + end;
 End_Aspect SMotion;

The PRISMA MDD Methodology

195

9.2.2.2. The coodination aspect
The coordination aspect defines the interactions needed to coordinate the sending of

movements to the robot and the robot’s answers. These answers notify whether or not the

movements have been satisfactorily performed.

Figure 83. The coordination aspect CProcessSUC

Coordination Aspect CProcessSUC using IMotionJoint, IRead, ISUC
 Attributes
 Variable
1 halfSteps: integer, NOT NULL;
 tempHalfSteps: integer;

 Derived
 angle: integer, Derivation FtransHalfstepsToAngle(halfSteps);

 Services
 begin (input InitialHalfSteps: integer);
 Valuations
 [begin (InitialHalfSteps)]
 halfSteps := InitialHalfsteps,

2 in/out movejoint(input NewHalfsteps: integer, input Speed: integer);
 Valuations
 [in movejoint (NewHalfsteps, Speed)]
 tempHalfSteps := NewHalfsteps;

3 in cinematicsmovejoint(input NewAngle: integer, input Speed:integer);
 Valuations
 [in cinematicsmovejoint(NewAngle, Speed)]

 tempHalfSteps := FtransAngleToHalfsteps(NewAngle);

4 in/out moveok(output Success: boolean);
 Valuations
 {Success=1}
 [in moveok(Success)]
 halfSteps:= halfSteps + tempHalSteps;

 end;

5 Protocol
6 CPROCESSSUC = begin(InitialHalfStep).MOTION
7 MOTION =
 (ISUC.movejoint?(NewHalfsteps, Speed)

 IMotionJoint.movejoint!(NewHalfsteps, Speed).ANSWER)
 +
 (ISUC.cinematicsmovejoint?(NewAngle, Speed)
 IMotionJoint.movejoint!(FTransAngleToHalfSteps(NewAngle,

Speed).ANSWER)
 +
 end;

8 ANSWER= IRead.moveok?(Success) ISUC.moveok!(Success).MOTION
End_Aspect CProcessSUC;

Model-Driven Development of Aspect-Oriented Software Architectures

196

In this case, the aspect uses the services of several interfaces. This is detailed at the head of

the aspect (see Figure 83), that means, that these services are public. As a result, these interfaces

have been previously defined. Since the request of a movement to the robot does not guarantee

that it will be satisfactorily performed, the coordination aspect must coordinate the position of

the joint that is synchronizing the movement request (see sections 2 and 3, Figure 83) with the

movement notification of the robot (moveOk service, see section 4, Figure 83). At this point,

the aspect changes the value of the robot position, i.e., the halfstep attribute (see section 1,

Figure 83).

The protocol of the CProccessSUC aspect coordinates the requested movements and the

notification movements of the robot. It is composed of three processes CProcessSUC,

MOTION, and ANSWER (see section 5, Figure 83). The CProcessSUC process starts the

execution of the aspect (begin), initializes the attributes that need a value (Not Null), and starts

the MOTION process (see section 6, Figure 83). This process either receives a movement

request or ends the aspect execution (see section 7, Figure 83). Finally, this MOTION process

continues with the ANSWER process, in which the coordination process waits for the sensor’s

answer and notifies of the failure or success of the movement (see section 8, Figure 83).

9.2.3. STEP 3: Simple Architectural Elements
The definition of simple architectural elements is performed in step 3 of the second stage. The

aspects that are defined in step 2 are used to completely define these architectural elements. An

architectural element imports the aspects that define the concerns that it requires. For this

reason, aspects must be defined before architectural elements.

The same aspect is imported by each architectural element that needs to take into account

the same behaviour of this concern (crosscutting concerns). As a result, an aspect can be

imported by one or more architectural elements (see steps 2 and 3, 2nd stage, Figure 80). It is

important to note that the changes performed in an aspect also affect every architectural

element that imports this aspect.

From the architectural element point of view, each architectural element is formed by a set

of aspects. For example, the connector in Figure 80 is made up of a safety aspect and a

The PRISMA MDD Methodology

197

coordination aspect. It is important to emphasize that one of these aspect can be an integration

aspects that wrapps a COTS.

In PRISMA, weavings weave the different aspects that form an architectural element and

they are encapsulated inside the architectural element. The temporal order of the weaving

process is described by temporal operations called weaving operators. As a result, a PRISMA

simple architectural element is specified by a set of aspects, the weavings of aspects, and a set

of ports that have an associated interface. Ports represent the points of interaction of

architectural elements. The architectural elements can be verified using the partial verification

of a specific architectural element or all the architectural elements. The architectural elements

that are defined in this step are types that are reusable by different software architectures

because they are stored in the PRISMA repository. The storage of PRISMA architectural

elements implies the storage of the aspects that they import. In addition, the reusability of the

aspect can be due to the fact that it is reused in many architectural elements and also when the

architectural element that imports the aspect is reused.

The simplest components that are found in the TeachMover system are actuators and

sensors:

 Actuator: An actuator has two ports. To describe its functional behaviour, it imports the

FActuator aspect that has been previously stored in the repository (see Figure 84).

Figure 84. The component Actuator

 Sensor: A sensor has two ports. To describe its functional behaviour, it imports the

FSensor aspect that has been previously stored in the repository (see Figure 85).

Component Actuator
 Ports
 ControlAct: IMotionJoint;
 HW: IMotionJoint;
 End_Ports;

 Functional Aspect Import FActuator;
 End_Component Actuator;

Model-Driven Development of Aspect-Oriented Software Architectures

198

Figure 85. The component Sensor

In addition, the actuators and sensors for the tool and the wrist joints are defined as new

architectural elements. They have the same functionality as the ones presented in Figure 84 and

Figure 85. However, the signature of the services that they offer is different, that is, the number

of parameters and their types is different.

Weavings are only specified when they are necessary to weave the execution of two

services from different aspects. An example of weavings appears in the SUCConnector

architectural element where the joint is moved only after the connector is sure that the

movement is safe (see the weavings section of the SUCConnector in Figure 86).

Figure 86. The connector SUCConnector

The invocation of the movejoint service (the second service of the weaving) of the

CProcessSUC aspect triggers the execution of a weaving. When a weaving is specified, the

weaving operator is chosen from the point of view of the service that triggers the weaving; that

Component Sensor
 Ports
 ControlSen: IRead;
 HW: IRead;
 End_Ports;

 Functional Aspect Import FSensor;
 End_Component Sensor;

Connector SUCConnector
 Ports
 portSUC: ISUC;
 ContrActua: IMotionJoint;
 ContrSensor:IRead;
 End_Port;

 Coordination Aspect Import CProcessSUC;
 Safety Aspect Import Smotion;

 Weavings
 SMotion.check(FTransHalfstepsToAngle
 (NewHalfsteps), Secure)
 beforeIf (Secure = true)
 CProcessSUC.movejoint(NewHalfsteps, Speed);
 ……
 End_Weavings;
End_Connector SUCconnector;

The PRISMA MDD Methodology

199

is, depending on whether the service needs the execution of a service before, after, or instead of

it. As a result, the weaving of the SUCConnector (see Figure 86) means that the check service

of the SMotion safety aspect will be executed before the moveJoint service of the

CProcessSUC coordination aspect. The condition also establishes that the execution of the

moveJoint service must only be performed if the Secure parameter of the check service returns

true.

The connectors that coordinate the actuators and the sensors of the tool and the wrist joints

are also defined as new architectural elements. SUCconnector, WristSUCconnector, and

ToolSUCConnector are architectural elements stored in the PRISMA repository after their

verification. These three architectural elements import the same coordination (CProcessSUC)

and safety (SMotion) aspects (crosscutting concerns); however their behaviour is different

because they have different weavings. This is a clear example of the reuse of aspects inside the

same architectural model thanks to the fact that the definition of weavings outside aspects and

inside architectural elements, and an example of how these aspects crosscut the behaviour of

several architectural elements.

The Actuator, Sensor, and their connector SUCConnector are reusable architectural

elements that can be used several times in the TeachMover architectural model or in another

architecture specification of a bigger tele-operation domain such as the EFTCoR robot [Fer05],

[EFT02]. In the case of the TeachMover, they have been specified in the simplest way.

However, in the EFTCoR, they also have a distribution aspect in order to provide distributed

behaviour to these components [Ali05a], [Ali03]. As a result, we have reused the Actuator,

Sensor and SUCConnector architectural elements of the TeachMover in the architecture of the

EFTCoR. We have modified them by adding a distribution aspect, a pair of weavings between

the functional and distribution aspects of the Actuator and Sensor, and another pair of weavings

between the coordination and distribution aspects of the SUCConnector. This is an example of

reusability of defined components in other architectural models using the PRISMA repository.

This reusability avoids having to start from scratch to build a new architectural model. The

analyst can reuse the architectural elements in their original way or can reuse them and then

Model-Driven Development of Aspect-Oriented Software Architectures

200

introduce the changes that the new software system requires, just as we did with the actuator

and sensor components of the EFTCoR.

An actuator and a sensor must be coordinated through a connector in order to separate their

computations from their interactions [Sha94]. The SUCConnector imports a coordination and a

safety aspect in order to define its behaviour (see Figure 86).

9.2.4. STEP 4: Complex Architectural Elements
PRISMA complex components are called systems. Systems are defined in the 4 step of the

second stage. A PRISMA system is a complex component that imports a set of connectors,

components, and other systems that must be correctly attached. A system is defined by using

two kinds of communication channels: attachments and bindings

To completely specify a system, the architectural elements that the system is composed of

should be previously defined. In addition, the communication channels that permit the

communication among them are defined. It is important to emphasize that the attachments are

only defined if the system includes components and connectors that must be coordinated.

Systems are defined as patterns or architectural styles [Gar93] that can be reused in any

software architecture whenever they are needed. For this reason they are stored in the PRISMA

repository after their previous verification.

It is important to note that any changes that occur in aspects affect the architectural elements

that import them and, consequently, affect the systems that import these architectural elements.

Moreover, the changes that occur in architectural elements that are imported by a system also

affect the system (see step 3, 2nd stage, Figure 80).

In the case of the TeachMover, there are several systems, at different levels of granularity.

These systems are guided by the skeleton identified in the first stage (see Figure 3). The SUC

(Simple Unit Controller) system is composed of an actuator, a sensor, and the connector that

synchronizes them. The system specifies the architectural elements that it is composed of and

the communication channels among them (see Figure 87).

The PRISMA MDD Methodology

201

Figure 87. The system SUC (Simple Unit Controller)

The SUC system delegates the commands that it receives to the connector in order to

perform the movements between the actuator and sensor in a synchronized way. For this

reason, the SUC system and the SUCConnector have a binding between their portMUC and

portSUC ports, respectively. In addition, two attachments haven been defined in order to

establish the communication channels between the Actuator and the SUCconnector, and the

Sensor and the SUCconnector, respectively.

System SUC
 Ports

PortMUC: ISUC;
 End_Ports;

 Import Architectural_Elements
 Actuator, Sensor, SUCconnector;
 End_Architectural_Elements;

 Attachments
 SUCconnector.ContrActua
 Actuator.ControlAct;
 VarSUCconnector.ContrSensor
 VarSensor.ControlSen;
 End_Attachments;

 Bindings

SUCconnector.portSUC portMUC;
End Bindings;

Model-Driven Development of Aspect-Oriented Software Architectures

202

A ToolSUC and a WristSUC are also defined with their corresponding actuators, sensors,

connectors and their relationships. The SUC system is stored in the PRISMA repository so that

it can be reused as an architectural pattern.

Figure 88. The system MUC (Mechanism Unit Controller)

The MUC (Mechanism Unit Controller) system is the third layer of granularity of the

decomposition of the TeachMover system. It integrates a set of SUCs and a connector. The

connector coordinates the SUCs in order to achieve a common goal. Specifically, the MUC of

the TeachMover is composed of the generic SUC, the SUC of a wrist, and a connector that

synchronizes them (see Figure 88). As a result, the MUC of the TeachMover is matched with

the arm of the robot and specifies the behaviour required to accurately perform its movements.

The MUC is also stored in the PRISMA repository.

The RUC (Robot Unit Controller) system coordinates every part of the robot and is

composed of the MUC of the arm and the SUC of the tool, which are synchronized through a

connector (see Figure 89). The SUC of the tool is not inside the MUC system in order to easily

allow changes in the tool. For example, the tool of the TeachMover is a gripper, but it can be

changed for a paintbrush, a hosepipe, etc., in order to perform other tasks. The RUC is matched

with the TeachMover. As a result, we obtain a software architecture that is easy to evolve.

The PRISMA MDD Methodology

203

Figure 89. The system RUC (Robot Unit Controller)

Finally, the last layer of decomposition is composed of the operator, the robot (RUC), and

the connector that coordinates them (see Figure 90). This last level provides us the most

abstract view of the software architecture, which is called the Architectural Model. It is

important to emphasize that since the architectural model does not define a system that

encapsulates it, bindings are do not need to be defined.

Figure 90. The architectural model of the TeachMover

9.3. 3RD STAGE: TYPE CODE GENERATION
Once the interfaces, aspects, and simple and complex architectural elements have been

completely specified, their code and specifications of PRISMA AOADL can be automatically

generated. This code generation must be performed after the complete verification of the model

and to check that there are no constraints that are not satisfied by the model (see 3rd stage,

Figure 80).

 This stage is performed by executing the code generation templates that the PRISMA Type

Modelling Tool provides (see section 6.3.3). This generation is possible thanks to the code

generation templates (model compiler), which isolate the specification from the source code

Model-Driven Development of Aspect-Oriented Software Architectures

204

preserving their independence. Until now, PRISMA CASE generates PRISMA aspect-

oriented C# code that is executable in .NET framework thanks to our PRISMANET

middleware, which gives support to aspect execution over .NET technology [Per05b].

9.4. 4TH STAGE: CONFIGURATION MODELLING
The architectural elements that have been defined in the previous stage and have been stored in

the PRISMA repository are instantiated in this stage. In order to understand the trace of the

approach, it is important to take into account that instances have all the properties and

behaviours of their architectural elements, and as a consequence, instances have the properties

and behaviours of the aspects that their architectural elements import. As a result, when an

architectural element is instantiated, the aspects that it imports are also instantiated in order to

have their specific state and behaviour.

This 4th Stage is developed using the PRISMA Configuration Modelling Tool, where the

configuration of the architectural model of the software system is modelled in a graphical way

by drawing and dropping the domain specific PRISMA modelling primitives (see section

6.3.4). The configuration of the initial architecture of a specific system is modelled by

instantiating the types and the architectural model that has been defined in the previous stage.

A specific software architecture is defined by connecting a set of instances of components,

systems, and connectors with each other (see instance_of relationships, Figure 80). For this

reason, the instantiation of the architectural elements of a model and the definition of

attachment and binding relationships among instances is necessary to obtain an executable

architectural model.

To obtain the software architecture of the TeachMover, the SUC has been instantiated three

times in order to obtain the base, shoulder, and elbow joints of the robot (see section 2.3.2). The

gripper and the wrist are instances of the ToolSUC and WristSUC, respectively. As a result of

these instantiations, the instantiation of the MUC generates the configuration that appears in

Figure 91.

The PRISMA MDD Methodology

205

Figure 91. The configuration MUC for the TeachMover

The RUC and the architectural model of the TeachMover are instantiated generating one

instance for each one of them. This instantiation constitutes the last step of the configuration

stage. As a result of this step, the software architecture of the TeachMover is completely

defined.

9.5. 5TH STAGE: CONFIGURATION CODE GENERATION
Once the complete architectural model has been instantiated, their code and specifications

of PRISMA AOADL can be automatically generated (see 5th stage, Figure 80). They are

generated by executing the PRISMA Model Compiler from the PRISMA Configuration

Modelling Tool (see section 6.3.5).

9.6. 6TH STAGE: CODE EXECUTION
Next, the execution of the generated code joint the PRISMANET middleware can be launched

from the PRISMA Configuration Modelling Tool (see 6th stage, Figure 80). Once the aspect-

oriented software architecture is executed the user can interact with it using the PRISMA

Generic GUI, which allows the user to execute services, query the value of attributes and

Model-Driven Development of Aspect-Oriented Software Architectures

206

validate the correct behaviour of each of the architectural elements that compose the

architecture (see section 6.3.5).

9.7. DISCUSSION
The TeachMover example illustrates that the PRISMA approach allows the development of

aspect-oriented software architectures as if aspects and architectural elements were building

blocks. You can work with them in different ways to obtain different results. This flexibility

and facility for working is achieved thanks to the fact that aspects and components are

independent entities that can be imported in different entities of the same software architecture

or in different ones.

The introduction of aspects in a separate entity allows for the TeachMover software

architecture to separate the safety concern in the SMotion aspect. This aspect is only defined

once and it is imported by the SUCconnector, WristSUCconnector, ToolSUCconnector,

MUCconnector and RUCconnector connectors by referencing this aspect. As a consequence,

the aspect is used by the instances of these connectors. For example, the TeachMover instances

of the SUCconnector are the BaseSUCconnector, ShoulderSUCConnector and

ElbowSUCConnector. As a result of considering aspects to model the TeachMover, tangled

code is avoided by separating coordination properties from safety properties. In addition, this

separation of concerns can improve the maintenance process of the system due to the fact that

the introduction of a change in the safety properties of the TeachMover only requires

modifying the SMotion Aspect and, consequently, all the changes are propagated to the

connectors and their instances.

The PRISMA repository also promotes the reuse of architectural elements and aspects in

different software architectures. They can be used as they are stored in the repository or can be

adapted to the features of the new architecture that is being modelled. For example, most of the

architectural elements of the TeachMover were reused in the EFTCoR software architecture.

The specific properties of the EFTCoR were easily adapted; for example, some of the robot

pieces of the EFTCoR are distributed. This property was introduced by defining a distribution

aspect and importing it from the reused architectural elements of the TeachMover that

The PRISMA MDD Methodology

207

represent these pieces [Ali05a], [Ali03]. It must be noted that reuse is limited for software

architectures of different domains, but the PRISMA repository could be a great contribution for

reuse in product families such as the tele-operation family. In addition, a large repository with

good searching mechanisms could provide excellent support for the development and

maintenance of software.

The PRISMA MDD methodology is supported by the PRISMA CASE framework for the

construction of aspect-oriented software architectures that are independent of specific

technologies. The first stage of the PRISMA methodology is the identification of the aspects

and the architectural elements of a software architecture. Currently, this identification is

performed in an intuitive way from the requirements document of the system. However, we are

working in this stage in order to propose guidance for the user in this identification [Nav03],

[Nav04a], [Nav04b], [Nav04c].

The modelling stage of the PRISMA methodology is based on the PRISMA metamodel. It

has been defined by integrating aspects and software architectures. In this way, software

architectures can be constructed gaining the advantages of two different paradigms: the aspect-

oriented paradigm (AOP) and the component-based paradigm. One of these advantages is the

reusability of software at different levels of granularity. As an example, the reusability level of

the SUC system (see Figure 87) is illustrated in the following:

- Analysis of the reusability of the SUC system
The reusability of the SUC is analyzed by taking into account the system, its architectural

elements and the aspects that these architectural elements import. In addition, the reusability is

going to be analyzed at the type level and at the configuration level.

Figure 92 shows the number of times that an aspect is reused by different architectural

elements and the names of the architectural elements that import the aspect. The aspects are

enumerated in the first columns of the two tables. These aspects are the ones that have been

used for defining the SUC system. The first table details the reusability at the type level, and the

second table details the reusability at the configuration level, respectively. From these tables, it

is possible to conclude that: the aspect SMotion is defined once and it is reused by five

architectural elements at the type level and by seven architectural elements at the configuration

Model-Driven Development of Aspect-Oriented Software Architectures

208

level. The aspects FActuator, FSensor and CProcessSUC have been defined once and they are

reused by one architectural element at the type level and three architectural elements at the

configuration level.

Figure 92. Reusability of aspects

On the other hand, Figure 93 shows the number of times that an architectural element type

is reused at the configuration level of the architecture by means of its instantiation.

Figure 93. Resusability of architectural elements

In addition to the SUC rates of reusability inside the TeachMover software architecture, the

reusability of aspects and architectural element types by other software architectures, such as

the EFTCoR software architecture, must be taken into account. For example, in the case of the

EFTCoR it has been imported every aspect and architectural elements of the TeachMover

without having to start the modelling process from scratch. Some of the reused aspects have

The PRISMA MDD Methodology

209

been modified introducing new properties and others had not to be modified. Some of the

reused architectural elements have been modified adding new aspects and/or weavings and

others have been preserved in their original version.

 Maintainability and evolution are also gained from integrating the aspect-oriented

paradigm (AOP) and the component-based paradigm. This is due to the fact that aspects and

architectural elements facilitate the task of locating where the changes must occur. For

example, in the case of the TeachMover, safety properties are located in only one place, in the

aspect SMotion. As a result, if a change in the safety properties occurs, the safety aspect is only

modified instead of changing the five architectural elements that import it at the type level. But

not only the number of changes is reduced, but also the time invested in locating where the

change must be introduced is improved. In our case, the safety properties of the aspect have to

be only searched; whereas in a non-aspect-oriented approach, the architectural elements with

tangled concerns have to be searched and the location of the safety properties is more difficult.

Finally, another important advantage is the reduction of code. As it was demonstrated by

[Kiz97], the lines of code are reduced. Our proposal avoids the replication of code. For

example, t the lines of the safety aspect SMotion were avoided to be repeated five times at the

type level.

The DSL tools development environment has been chosen in order to provide a framework

for the PRISMA approach. DSL tools allow us to define PRISMA metamodel, associate a

graphical notation to each metamodel concept and its instantiation, and implement the C# code

generation templates of PRISMA. The PRISMA framework provides mechanisms to

optimize the programming, reusability, and modularity of code. Developers use the graphical

notation of the PRISMA AOADL to build their software architectures using the methodology

presented in this thesis. After, the models are verified they can generate automatically the code.

The TeachMover software architecture has been modelled, its code has been generated and it

has been executed in the .NET platform. As a result, PRISMA has made it possible to move a

robot using an aspect-oriented architecture that is executed in .NET technology (see

demonstrations in [PRI07]).

Model-Driven Development of Aspect-Oriented Software Architectures

210

9.8. CONCLUSIONS
This chapter defines and explains the MDD PRISMA methodology. This methodology

allows the complete development of aspect-oriented architectural models following the MDD

paradigm. This methodology is divided into six stages and allows the development and

maintenance of software systems in a simple and flexible way.

The precise semantics of the PRISMA language gives us the chance to include the

verification of model and its compile to code as parts of this methodology. As a result of this

methodology application executable systems on the PRISMANET middleware [Per05b] are

obtained.

The ideas developed in the case study have been applied to specific products of the

EFTCoR and TeachMover. The benefits of applying PRISMA to the case study are mainly: 1)

the definition of reusable concerns that crosscut the software architecture called aspects and the

storage in a repository 2) the definition of reusable architectural elements by reusing aspects, 3)

the definition of complex architectural elements reusing other architectural elements, 5) the

verification of models supports, 5) the use of COTS support, 6) building the formal software

architecture of the system using a friendly graphical notation independently of technology, 7)

the reduction of the development time as code is automatically generated from the graphical

notation to a specific technology.

It is important to emphasize that this chapter has applied a software engineering approach to

the development of a robotic system. In this way, this development has taken advantage of the

good properties provided by this software engineering approach, especially reuse of

components, maintainability, evolution, etc.

The work presented in this chapter has been published in the following publication:

 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Bárbara Álvarez, Pedro Sánchez,

Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to

Robotic Tele-operated Systems, Journal of Information and Software Technology,

Elsevier, (JCR 2006: 0.726) (accepted, to be published)

Conclusions and Further Research

211

CHAPTER 10
10. CONCLUSIONS AND FURTHER

RESEARCH

This chapter presents and analyzes the main contributions of this thesis of master. It also

presents future work that can be done to continue this research and to extend the results that

have already been obtained.

10.1. CONCLUSIONS
The complexity of current software systems and the fact that their non-functional requirements

have become very relevant to the user are challenges to be faced in all software development.

Software Architectures and AOSD have emerged to overcome these needs. In order to take

advantage of Software architectures and AOSD, several approaches have emerged to combine

both approaches providing all their advantages together. However, these approaches usually

extend architectural models without connectors and mainly follow an asymmetric model. They

are only focused on a single specific purpose: analysis, evolution or development of software

architectures without attempting to provide complete development and maintenance support

following the MDD process. Furthermore, these approaches always introduce the notion of

aspect by using original architectural concepts, despite the fact that they do not provide the

suitable semantics for aspects. This thesis presents the MDD support for the PRISMA

approach, a new software development approach that integrates Software Architectures and

AOSD to fulfil these needs.

Model-Driven Development of Aspect-Oriented Software Architectures

212

The PRISMA MDD provides complete support during the development and maintenance

processes of software following the MDD paradigm. The PRISMA MDD approach is

presented as an important advance in the combination of the aspect-oriented paradigm and

software architectures. The PRISMA approach integrates an aspect-oriented symmetric model

with an architectural model that has the notion of connector. The MDD advantages that this

combination of software architectures and AOSD provides to the definition of coordination

models have been presented. In addition, a detailed analysis about how to improve coordination

models from this combination has been done.

In PRISMA, aspects and software architectures are smoothly integrated with a clear

semantics, which has been formalized using a Modal Logic of Actions and π-calculus. In

addition, the PRISMA metamodel allows the definition the PRISMA models and to establish

its properties in a precise way. This metamodel and formalization have facilitated the

automation and maintenance tasks of PRISMA software architectures since the main goal of

this thesis was to define the MDD support of the PRISMA approach.

Another important characteristic of PRISMA that has facilitated the definition of the

PRISMA MDD process is the PRISMA Aspect-Oriented Architecture Description Language

(AOADL) [Per06d], which supports the PRISMA model [Per05a]. This AOADL allows the

definition of PRISMA aspect-oriented software architectures, not only providing components

and connectors as first-order citizens of the language, but also provides aspects and interfaces.

The structure, design and maintainability of architectures specified in the PRISMA AOADL

are improved by defining and reusing entities at different levels of granularity (interfaces,

aspects, components, connectors and systems). This improvement is possible since (1)

AOADL provides interfaces and aspects, (2) weavings are defined outside aspects, (3) aspects

are defined independently of architectural elements, and (4) architectural elements are defined

without being aware of the architectural elements that are connected to them. As a result, an

interface can be used by several aspects, an aspect can be used by several architectural

elements, and an architectural element can be used by several software architectures. In

addition, the precise semantics of the PRISMA AOADL and its independence of technology

Conclusions and Further Research

213

provide the opportunity to validate PRISMA software architecture properties and to compile

models for different programming languages and platforms.

In order to improve this reusability and the development time of the PRISMA MDD

approach. This thesis has defined a novel way of integrating COTS into software architectures.

This integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect

called integration_aspect has been defined to specify the COTS that it wraps and to specify the

integration process with the rest of software architecture. In the same way as other aspects,

integration aspects must be imported by an architectural element in order to publish their

services through ports that enable their communication with other architectural elements.

Moreover, it is presented how the use of COTS is supported by the PRISMA methodology

thanks to the facilities that the PRISMA CASE provides. This is an important characteristic

since COTS are widely used, and any development approach that needs to reduce development

time must provide it.

This independency and reusabilily properties of PRISMA elements has facilitated the

definition of a flexible verification process. This thesis has defined a complete verification

process to be supported by the PRISMA MDD approach. This verification process has

classified PRISMA constraints into hardconstraints and weakconstraints. From this

classification the PRISMA verification process takes a step forward and the partial and

incremental verification has been proposed instead of only taking into account the complete

verification of the model.

Since the use of a formal language is a hindrance for many users, PRISMA provides a

graphical AOADL to describe formal software architectures using a friendly graphical

notation. Finally, it is important to mention that the PRISMA AOADL has great expressive

power to specify more features and requirements related to the software system by means of

aspects. Therefore, PRISMA AOADL is not only able to specify simple architectural systems

for academic projects such as pipelines, filters, blackboards, etc, but it is also able to completely

specify complex software systems. In addition, this expressive power permits to have enough

information for the code generation task of the PRISMA model compiler.

Model-Driven Development of Aspect-Oriented Software Architectures

214

The MDD approach proposed in this thesis is based on the models hierarchy of PRIMA

and the code generation techniques. The PRISMA model is a metamodel that permits the

definition of PRISMA type models whose instantiation defines PRISMA configuration

models. PRISMA configuration models define specific systems. PRISMA applies MDD to

define type models from its metamodel, and to define configuration models from type models.

In addition, PRISMA approach has created a set of transformation patterns to transform

PRISMA models into its AOADL specifications and into C# code. PRISMA applies these

transformation patterns during the development process in order to automatically generate

applications from its PRISMA architectural models and to show the formal specification of its

models.

PRISMA CASE is a framework that provides complete support for the PRISMA MDD

approach. It is composed of a set of tools that is suitably integrated to provide a unique

framework that gives support for the user throughout the software life cycle. This integration

also provides top-down traceability during the different stages of the software life cycle and

facilitates the maintenance of the developed software products. This set of tools includes the

PRISMA Type Modelling Tool with its code generation patterns, the PRISMA Configuration

Modelling Tool with its code generation patterns, the generic Graphical User Interface for

PRISMA applications, and the middleware PRISMANET. The PRISMA Types and

Configuration Modelling Tools give support for the development of PRISMA software

architectures following the MDD approach and using the PRISMA AOADL in a graphical

way. As a result, PRISMA offers mechanisms to develop software architectures in a more

intuitive and friendly way and mechanisms to verify their models. In addition, the code

generation patterns that PRISMA modelling tools offer allow automatically generate

executable C# code on PRISMANET from the specified graphical models. Thus, PRISMA

CASE deals with the traceability between software architectures and implementation and

reduces the time and cost invested in the development and maintenance processes. PRISMA

CASE provides a generic Graphical User Interface to execute software architectures. This is an

important advantage because it is a simple way of validating that software architectures provide

the behaviour expected by the user without having to develop a customized graphical user

Conclusions and Further Research

215

interface. All the tools and mechanisms that PRISMA CASE provides make PRISMA a well-

supported approach for developing aspect-oriented software architectures following the MDD

approach.

Just as important is the methodology that has been defined to guide the user during the

MDD process of PRISMA software architectures. This methodology is supported by the

PRISMA CASE and consists of six stages that define how to specify software architectures

from scratch or how to reuse software by importing PRISMA architectural elements and

aspects and COTS, and how to obtain the final code from these specifications. These stages are

the following: detection of architectural elements and aspects, type architectural modelling,

type code generation, configuration modelling, configuration code generation and execution.

These six stages are applied by the analyst of the software system in an iterative and an

incremental way depending on his/her needs. As a result this methodology allows the

development and maintenance of software systems in a simple and flexible way.

All the contributions of this thesis of master have been demonstrated using the TeachMover

robot case study. The reuse capabilities of the PRISMA model have been presented by means

of the TeachMover case study. The TeachMover architecture has also helped to present the

capabilities of the PRISMA modelling tool and the verification process. The case study has

been totally specified and its code has been generated and executed by PRISMACASE using

COTS and without COTS.

The contributions of this thesis of master are based in the previous PRISMA contributions

that have been published in the following publications:

JOURNALS

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose Ángel Carsí, Distributed

Replication in Aspect-Oriented Software Architectures using Ambients, Journal IEEE

América Latina, Vol. 5, Issue 4, July 2007. (In Spanish)

Model-Driven Development of Aspect-Oriented Software Architectures

216

INTERNATIONAL CONFERENCES

 Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos, Designing Software

Architectures with an Aspect-Oriented Architecture Description Language, 9th

Symposium on the Component Based Software Engineering (CBSE), Springer Verlang

LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Sweden,

June 29th-July 1st, 2006.

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Mobile

Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on

Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227

pp. 37-48, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20,

2006.

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for

Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer

Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area),

March 27th-30th, 2006.

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for

Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp.

1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)

 Jennifer Pérez, Manuel Llavador, Jose A. Carsí, Jose H. Canós, Isidro Ramos,

Coordination in Software Architectures: an Aspect-Oriented Approach, Fifth Working

IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society

Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November,

2005 (position paper)

 Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Integrating Ambient Calculus in

Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on

Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-

7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005 (position paper)

Conclusions and Further Research

217

 Jennifer Pérez, Nour Ali, Cristobal Costa, José Á. Carsí, Isidro Ramos, Executing Aspect-

Oriented Component-Based Software Architectures on .NET Technology, 3rd

International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic,

May-June 2005.

 Nour Ali, Jennifer Pérez, Isidro Ramos, Aspect High Level Specification of Distributed

and Mobile Information Systems, Second International Symposium on Innovation in

Information & Communication Technology ISSICT, pp. 14, Amman, Jordania,21-22,

April, 2004.

 Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsí , Aspect Reusability in Software

Architectures, 8th International conference of Software Reuse (ICSR), July, 2004 (poster)

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Goals Model-Driving Software

Architecture, 2nd International Conference on Software Engineering Research,

Management and Applications (SERA), pp. 205-212, ISBN:0-9700776-9-6, May 5-8,

2004, Los Angeles, CA, USA.

 Nour Hussein, Josep Silva, Javier Jaen, Isidro Ramos, Jose Ángel Carsí ,Jennifer Pérez ,

Mobility and Replicability Patterns in Aspect-Oriented Component- Based Software

Architectures, 15th IASTED International Conference, Parallel and Distributed

Computing and Systems (PDCS), ACTA Press, ISBN: 0-88986-392-X, ISSN: 1027-

2658, pp. 820-826, Marina del Rey, California, USA, 3-5, November 2003,

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, Elena Navarro , PRISMA:

Towards Quality, Aspect Oriented and Dynamic Software Architectures, 3rd IEEE

International Conference on Quality Software (QSIC 2003), IEEE Computer Society

Press, pp.59-66, ISBN: 0-7695-2015-4, Dallas, Texas, USA, November 6 - 7, 2003.

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Software Requirements for Architectured

Systems, 11t h IEEE International Requirements Engineering Conference (RE'03), IEEE

Computer Society Press, pp. 365-366, ISSN: 1090-705X, ISBN: 0-7695-1980-6,

Monterey, California, 8-12 September 2003 (Poster)

Model-Driven Development of Aspect-Oriented Software Architectures

218

INTERNATIONAL WORKSHOPS

 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Dynamic Evolution in Aspect-

Oriented Architectural Models, Second European Workshop on Software Architecture,

Springer LNCS 3527, pp.59-16, ISSN: 0302-9743, ISBN: 3-540-26275-X , Pisa, Italy,

June 2005.

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, PRISMA: Development of

Software Architectures with an Aspect Oriented, Reflexive and Dynamic Approach,

Dagstuhl Seminar Nº 03081, Report Nº 36 "Objects, Agents and Features",Copyright (c)

IBFI gem. GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany . Eds.H.-D. Ehrich

(Univ. Braunschweig, D), J.-J. Meyer (Utrecht, NL), M. Ryan (Univ. of Birmingham,

GB), pp. 16, Germany, January, 2003.

 Jorge Ferrer, Ángeles Lorenzo, Isidro Ramos, José Ángel Carsí, Jennifer Pérez,

Modeling Dynamic Aspects in Architectures and Multiagent Systems, Logic Programming

and Software Engineering (CLPSE), pp. 1-13, Copenhagen, Denmark, affiliated with

ICLP, july 2002.

NATIONAL CONFERENCES

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Distributed

Replication in Aspect-Oriented Software Architectures using Ambients, XI Conference on

Software Engineering and Databases (JISBD), pp. 379-388, ISBN: 84-95999-99-4, Sitges,

Barcelona, October 2006. (In Spanish)

 Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsí, Isidro Ramos, PRISMANET

middleware: Support to the Dynamic Evolution of Aspect-Oriented Software

Architectures, X Conference on Software Engineering and Databases (JISBD), pp. 27-34,

ISBN: 84-9732-434-X, Granada, September, 2005. (In Spanish)

Conclusions and Further Research

219

 Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sánchez, Bárbara

Álvarez, Development of a Tele-Operation System using the PRISMA Approach, VIII

Conference on Software Engineering and Databases (JISBD), pp. 411-420, ISBN: 84-

688-3836-5, Alicante, November, 2003. (In Spanish)

 Jennifer Pérez, Isidro Ramos , Ángeles Lorenzo, Patricio Letelier, Javier Jaén, PRISMA:

OASIS PlatfoRm for Architectural Models, VII Conference on Software Engineering and

Databases (JISBD), pp. 349-360, ISBN: 84-688-0206-9, El Escorial (Madrid), November,

2002. (In Spanish)

NATIONAL WORKSHOPS

 Cristóbal Costa, Jennifer Pérez, Jose Angel Carsí, Towards the Dynamic Configuration

of Aspect-Oriented Software Architectures, IV Workshop on Aspect-Oriented Software

Development (DSOA), XI Conference on Software Engineering and Databases (JISBD),

Technical Report TR-24/06 of the Polytechic School of the University of Extremadura,

pp.35-40, Sitges, Barcelona, Octubre, 2006. (In Spanish)

 Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose A. Carsí, Aspect-Oriented

C# Implementation of a Tele-Operated Robotic System, III Workshop on Aspect-Oriented

Software Development (DSOA), X Conference on Software Engineering and Databases

(JISBD), pp. 53-59, ISBN: 84-7723-670-4, Granada, September, 2005. (In Spanish)

 Jennifer Pérez,Nour H. Ali, Isidro Ramos, Jose A. Carsí, PRISMA: Aspect-Oriented and

Component-Based Software Architectures, Workshop on Aspect-Oriented Software

Development (DSOA), Conference on Software Engineering and Databases (JISBD),

Technical Report TR-20/2003 of the Polytechic School of the University of Extremadura,

pp. 27-36, Alicante, November, 2003. (In Spanish)

 Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, DIAGMED: An

Architectural model for a Medical Diagnosis, IV workshop DYNAMICA – DYNamic

and Aspect-Oriented Modeling for Integrated Component-based Architectures, pp. 1-7,

Archena, Murcia, November, 2005. (In Spanish)

Model-Driven Development of Aspect-Oriented Software Architectures

220

 Rafael Cabedo, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Generation and Modelling

of PRISMA Architecture using DSL Tools, IV Workshop DYNAMICA – DYNamic and

Aspect-Oriented Modeling for Integrated Component-based Architectures, pp.79-86,

Archena, Murcia, November, 2005. (In Spanish)

 Nour Ali, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Mobility of Objects in the

PRISMA Approach, II workshop DYNAMICA – DYNamic and Aspect-Oriented

Modeling for Integrated Component-based Architectures, pp. 111-118, Almagro, Ciudad

Real, April, 2005.

 Jennifer Pérez, Rafael Cabedo, Pedro Sánchez, Jose A. Carsí, Juan A. Pastor, Isidro

Ramos, Bárbara Álvarez, PRISMA Architecture of the Case Study: an Arm Robot, II

workshop DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, Conference on Software Engineering and Databases

(JISBD), pp. 119-127, Málaga, November 2004. (In Spanish)

 Nour Ali Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos, Implementation

of the PRISMA Model in the .Net Platform,II workshop DYNAMICA – DYNamic and

Aspect-Oriented Modeling for Integrated Component-based Architectures, Conference on

Software Engineering and Databases (JISBD), pp. 119-127, Málaga, November, 2004.

 Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose Á. Carsí, Jennifer Pérez,

Distribution Patterns in Aspect-Oriented Component-Based Software Architectures, IV

Workshop Distributed Objects, Languages, Methods and Environments (DOLMEN),

pp.74-80, Alicante, November, 2003.

TECHNICAL REPORTS

 Rafael Cabedo, Jennifer Pérez, Isidro Ramos, The application of the PRISMA

Architecture Description Language to an Industrial Robotic System, Technical Report,

DSIC-II/11/05, pp.180, Polytechnic University of Valencia, September 2005. (In Spanish)

Conclusions and Further Research

221

 Cristobal Costa, Jennifer Pérez, Jose Ángel Carsí, Study and Implementation of an

Aspect-Oriented Component-Based Model in .NET technology, Technical Report, DSIC-

II/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish)

 Jennifer Pérez, Nour Ali , Jose A. Carsí, Isidro Ramos, PRISMA Architecture of the

Robot 4U4 Case Study, Technical Report DSIC-II/13/04, pp. 72, Polytechnic University

of Valencia, 2004. (In Spanish)

 Jennifer Pérez, Isidro Ramos, OASIS as a Formal Support for the Dynamic, Distributed

and Evolutive Hypermedia Models, Technical Report DSIC-II/22/03, pp. 144, Polytechnic

University of Valencia, October 2003. (In Spanish)

 Jennifer Pérez, Isidro Ramos, Jose A. Carsí, A Compiler to Automatically Generate the

Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-

II/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish)

In addition to be well supported the contributions of this thesis of master by the previous

PRISMA publications. The contributions of this thesis that have beeen published or submitted

in the following publications:

JOURNALS

 Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Model-Driven Development of Aspect-

Oriented Software Architectures, The Computer Journal, Oxford Journal, (JCR 2006:

0.593) (submitted)

 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Bárbara Álvarez, Pedro Sánchez,

Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to

Robotic Tele-operated Systems, Journal of Information and Software Technology,

Elsevier, (JCR 2006: 0.726) (accepted, to be published)

Model-Driven Development of Aspect-Oriented Software Architectures

222

INTERNATIONAL CONFERENCES

 Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Taking Advantage of COTS for Developing

Aspect-Oriented Software Architectures, Working IEEE/IFIP Conference on Software

Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 – 21

February 2008. (submitted)

INTERNATIONAL WORKSHOPS

 Jennifer Pérez, Carlos E. Cuesta, Aspect-Oriented Connectors for Coordination,

International Workshop on Synthesis and Analysis of Component Connectors (SYANCO

2007), Joint to The 6th joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC-

FSE, ACM Digital Library, Dubroknik, Croacia, September 3-4, 2007.

NATIONAL CONFERENCES

 Jennifer Pérez, Cristóbal Costa, Jose A. Carsí, Isidro Ramos, Verification of Aspect-

Oriented Architectural Models, XII Conference on Software Engineering and Databases

(JISBD), Zaragoza, Spain, 12-14 Septermber. (In Spanish)

 Jennifer Pérez, Cristóbal Costa, Jose A. Carsí, Isidro Ramos, PRISMA CASE, XII

Conference on Software Engineering and Databases (JISBD), Zaragoza, Spain, 12-14

Septermber. (Demonstration, In Spanish)

10.2. FURTHER RESEARCH
The PRISMA MDD approach opens a perfect setting for further research. All the parts that the

PRISMA MDD approach is composed of can be extended in order to face new challenges.

Conclusions and Further Research

223

PRISMA has been applied to both: the tele-operation domain and the electronic bank

domain. However, other domains can have other specific properties that are not taken into

account in PRISMA. As a result, the application of the PRISMA model to other domains can

assist us in defining new aspects that can introduce new properties of modelling and differences

in aspect specifications. In fact, PRISMA only supports the definition of software architectures

that are locally executed, despite the fact that most software architectures have a distributed

nature. For this reason, we are currently working on introducing distribution and mobility

properties in PRISMA using aspects [Ali05a], [Ali03], [Ali06], [Ali05b]. In addition, until

now, PRISMA has been applied to software architectures that do not require persistence.

However, information systems usually store their information in secondary memory. As a

result, persistence is another important property that the model should support. There are other

concepts from software architectures that PRISMA does not provide such as views and

architectural patterns. In the long term, these concepts should also be defined in PRISMA.

The PRISMA model extensions imply modifications in the PRISMA AOADL at its

different levels of abstraction (types and configuration) and at its different kinds of

representation (textual and graphical). PRISMA AOADL supports cardinality constraints to

define systems, but it should be extended to support other kinds of constraints as well.

Since PRISMA does not yet provide model checking mechanisms to check the properties

of its architectural specifications such as reachability, deadlock detection and liveness, these

model checking techniques should also be applied to PRISMA. With regard to the verification

process associated to the PRISMA MDD process, the verification of the configuration models

is not supported. Ass a result, it is necessary to provide the needed verification mechanisms for

configuration models and to define the complete verification process.

Future work will exploit the results of the coordination model formalization to show the

effects of combining several complex aspects, and will consider also the combination with the

influence of assertions in the Modal Logic of Actions provided in architectural elements, as

well as the possibility of extending this to a temporal logic such as the modal µ-calculus, which

has already been made for recent work in PiLar [Cue04], [Cue02]. Also, a detailed comparison

with the formalization and capabilities of some other π-calculus-based ADLs, such as Leda

Model-Driven Development of Aspect-Oriented Software Architectures

224

[Can01], [Can00], PiLar [Cue04], [Cue02]or π-ADL [Oqu04a] will be carried out, studing the

extent in which our results can be provided as extensions to non-symmetric, non-aspect-

oriented existing ADLs.

Another important property of software systems is the continuous evolution that they

undergo. Development frameworks must provide mechanisms to support evolution and to

facilitate the software maintenance. As a result, PRISMA must be able to support the evolution

of aspect-oriented software architectures. The division of the PRISMA architecture

specifications into two levels of abstraction opens the opportunity to distinguish between the

evolution of types and the evolution of a specific architecture. Despite the fact that the

PRISMA evolution services have been identified and included in the PRISMA metamodel to

modify software architectures, this only permits its modification at modelling time. However,

since there are a lot of software systems that cannot stop their execution to be modified, run-

time evolution must be provided. This run-time evolution is usually called dynamic

configuration. Therefore, we are currently working on defining mechanisms to dynamically

execute evolution services at run-time. Over the long term, our work with regard to software

evolution will be related to the data evolution problem of software architectures, where we will

apply our previous experience on data migration and data evolution of object-oriented

conceptual schemas [Per02a], [Per02b], [Per02c].

For the application of PRISMANET, there are a lot of lacks that must be dealt with in the

near future. The most important ones are the support of transactions and fault tolerance. In the

long term, PRISMANET must also provide distributed and evolution mechanisms to the

architectural elements. Automatic code generation of other programming languages and

technologies is future work that could imply the implementation of other middlewares if

required by the new technological platforms. Furthermore, an abstract middleware that would

hide the differences between the different platforms could also be developed.

The PRISMA methodology does not support the identification of architectural elements

and aspects from the requirements specification. As a result, one future work is to integrate

ATRIUM [Nav03] with PRISMA to provide complete support to every stage of the software

life-cycle (from requirements to implementation).

Conclusions and Further Research

225

In addition, the extension of PRISMA methodology also offers opportunities for future

work. This extension can consist of providing mechanisms that will take into account product

family modelling as well as the variability that software architectures of this kind would

introduce at the PRISMA modelling stage. Yet another task is to create a repository with a

query language and metadata description of the architectural elements and aspects to improve

reusability even more. The incorporation of COTS introduces the possibility of importing web

services in PRISMA, making the study of PRISMA as a Service-Oriented Architecture (SOA)

necessary. Therefore, another interesting task is to analyze what implications the SOA support

will have for the PRISMA model and the PRISMANET implementation.

Finally, it is necessary to evaluate PRISMA using different applications and case studies in

order to perform a quantified evaluation of the approach. A comparison of aspect-oriented and

non-aspect oriented applications is necessary to be able to measure the advantages that

PRISMA provides in comparison with other approaches. This measurement should be made

taking into account different case studies and domains in order to have a wide sample that will

allow us to get a set of well based conclusions.

Some of these research works have already started, especially those that improve the MDD

support. For this reason, there are contributions about the maintenance and evolution support of

the PRISMA MDD approach that have beeen published, but they are not included in this thesis

of master. These publications are the following:

INTERNATIONAL CONFERENCES

 Cristóbal Costa, Nour Ali, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Dynamic

Reconfiguration of Software Architectures through Aspects, In: Oquendo, F. (ed.) 1st

European Conference on Software Architecture (ECSA’07). LNCS, vol. 4758, pp. 279-

283 Springer, Aranjuez, Madrid Spain, 24-26 September 2007 (To appear)

 Cristóbal Costa, Jennifer Pérez, Jose A. Carsí, Dynamic Adaptation of Aspect-Oriented

Components,10th International ACM SIGSOFT Symposium on Component-Based

Software Engineering (CBSE’07), Springer Verlag, LNCS 4608, ISSN 0302-9743, ISBN

978-3-540-73550-2 , Tufts University, Medford (Boston area), Massachusetts, USA , 9-

11 July 2007.

Model-Driven Development of Aspect-Oriented Software Architectures

226

Bibliography

227

BIBLIOGRAPHY
[Aks05] Aksit, M., Systematic analysis of crosscutting concerns in the model-driven

architecture design approach. Symposium How Adapatable is MDA ?, 2005.

[Ali06] Ali N., Pérez J., Costa C., Ramos I., Carsí J.A., Mobile Ambients in Aspect-Oriented

Software Architectures. IFIP Working Conference on Software Engineering

Techniques, Warsaw, Poland, October, 2006.

[Ali05b] Ali N., Pérez J., Ramos I., Carsí J. A., Integrating Ambient Calculus in Mobile Aspect-

Oriented Software Architectures. Fifth Working IEEE/IFIP Conference on Software

Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, Pittsburgh,

Pennsylvania, USA, 6-9 November, 2005 (position paper)

 [Ali05a] Ali N., Ramos I., Carsí J.A., A Conceptual Model for Distributed Aspect-Oriented

Software Architectures. International Symposium on Information Technology: Coding

and Computing (ITCC), IEEE Computer Society, Vol. 2, Las Vegas, Nevada, USA,

April, 2005.

[Ali03] Ali N., Silva J.F., Jaen J., Ramos I., Carsí J. A., Pérez J., Mobility and Replicability

Patterns in Aspect-Oriented Component- Based Software Architectures. 15th

IASTED International Conference, Parallel and Distributed Computing and Systems

(PDCS),Marina del Rey, California, USA, 3-5, November 2003, ACTA Press, ISBN:

0-88986-392-X, ISSN: 1027-2658 , pp. 820-826.

[All97a] Allen R., Garlan D., A Formal Basis for Architectural Connection. ACM

Transactions on Software Engineering and Methodology, Vol. 6, No. 3, pp. 213-249,

July 1997.

[All97b] Allen R., A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie

Mellon University, CMU Technical Report CMUCS-97-144, Pittsburgh,

Pennsylvania, USA, May, 1997.

Model-Driven Development of Aspect-Oriented Software Architectures

228

[Ama05] Amaya, P. A., González, C. F., Murillo J. M., MDA and separation of aspects: An

approach based on multiple views and subject oriented design. AOM, AOSD,

Chicago, USA, 2005.

[Am04] Ambler, S., Agile Model-driven Development with UML 2.0, Cambridge University

Press, 2004.

[And03] Andrade, L.F., Fiadeiro J. L., Architecture Based Evolution of Software Systems.

Formal Methods for Software Architectures, Lecture Notes in Computer Science,

Springer Verlang, Eds. Marco Bernardo and Paola Inverardi, LNCS 2804, September

2003.

[And02a] Andrade, L.F., Fiadeiro J. L., Gouveia J., Koutsoukos F., Wermelinger M.,

Coordination for Orchestation, 5th International Conference on Coordination Models

and Languages.. LNCS 2315, pp. 5-13, York, UK; 2002.

[And02b]Andrade, L.F., Fiadeiro J. L., Gouveia J., Koutsoukos F., Separating Computation,

Coordination and Configuration.. Journal of Software Maintenance, Vol. 14 No. 5,

pp. 353-369, 2002.

[ASP07a] The AspectJ Project Website, http://eclipse.org/aspectj/

[Bal85] Balzer, R., A 15 Year Perspective on Automatic Programming. IEEE. Transactions on

Software Engineering, Vol.11, No.11, pp. 1257-1268, November 1985.

[Bar04a] Barais O., Duchien L., Safarchie studio: Argouml extensions to build safe

architectures. Workshop on Architecture Description Languages, IFIP WCC World-

Computer Congress, Toulouse, France, 2004.

[Bar04b] Barais, O., Cariou, E., Duchien, L., Pessemier, N., Seinturier L., Transat: A

framework for the specification of software architecture evolution. The First

International Workshop on Coordination and Adaptation Techniques for Software

Entities (WCAT04), ECOOP, Oslo, Norway, June, 2004. http://wcat04.unex.es/bib

Bibliography

229

[Bar03] Barais O., Duchien L., Pawlak R., Separation of Concerns in Software Modeling: A

Framework for Software Architecture Transformation. IASTED International

Conference on Software Engineering Applications (SEA) ACTA Press, ISBN 0-

88986-394-6, pp. 663-668, Los Angeles, California, USA, November 2003.

[Bar01] Barbacci M.R., Doubleday D., Weinstock C. B., Lichota R.W., DURRA: An

Integrated Approach to Software Specification, Modeling and Rapid Prototyping.

Technical Report CMU/SEI-91-TR-21, Software Engineering Institute (SEI),

September, 1991.

[Bass03] Bass L., Clements P., Kazman R, Software Architecture in Practice. Addison

Wesley, 2nd Edition, 2003.

[Ber01] Bergmans L., Aksit M., Composing Multiple Concerns Using Composition Filters.

Communications of the ACM, Vol. 44, No.10, pp. 51-57, October 2001.

[Ber94] Bergmans L., The Composition-Filters Object Model. PhD Thesis, Department of

Computer Science, University of Twente, 1994.

[Bey05] Beydeda, S., Book, M., Gruhn V., Model-Driven Software Development, Springer,

2005.

[Bez06] Bézivin, J., Jouault, F., Using ATL for Checking Models. International Workshop on

Graph and Model Transformation (GraMoT), ENTCS 152, 2006.

[Bin96] Binns P., Engelhart M., Jackson M., Vestal S., Domain-Specific Software

Architectures for Guidance, Navigation, and Control. International Journal of

Software Engineering and Knowledge Engineering, Vol. 6, No. 2, 1996.

[Boo99] Booch, Rumbaugh and Jacobson, The UML Modeling Language User Guide.

Addison-Wesley, 1999

[Bru04] Bruns G., Jagadeesan R., Jeffrey A., Riely J., µabc: A Minimal Aspect Calculus. 15th

International Conference on Concurrency Theory (CONCUR), Lecture Notes in

Model-Driven Development of Aspect-Oriented Software Architectures

230

Computer Science (LNCS), Springer-Verlag, Vol. 3170, London, UK, August 31 -

September 3, 2004.

[Bru02] Bruyninckx H., Konincks B., Soetens P., A Software Framework for Advanced

Motion Control. Department of Mechanical Engineering, K.U. Leuven. OROCOS

project inside EURON, Belgium, 2002.

[Can01] Canal C, Pimentel E., Troya J.M., Compatibility and Inheritance in Software

Architectures. Science of Computer Programming, vol. 41, no. 2. 2001.

[Can00] Canal C., A Language for the Specification and Validation of Software Architectures.

PhD. Thesis, The University of Malaga, 2000. (In Spanish)

[Can99] Canal C, Pimentel E., Troya J.M., Specification and Refinement of Dynamic Software

Architectures. The First Working IFIP Conference on Software Architecture

(WICSA), Kluwer Academic Publishing, pp. 107-126, San Antonio, Texas, USA,

February, 1999.

[Car00] Carney, D., Long, F., What Do You Mean by COTS?. IEEE Software, March/April

2000, pp. 83-86.

[Chi05] Chitchyan R., Rashid A., Sawyer P., Garcia A., Pinto M., Bakker J., Tekinerdogan B.,

Clarke S., Jackson A., Report synthesizing state-of-the-art in aspect-oriented

requirements engineering, architectures and design. Lancaster University, Lancaster,

AOSD-Europe Deliverable D11, , pp. 1-259, AOSD-Europe-ULANC-9, 18 May

2005, http://www.aosdeurope.net/

[Col00] Colcombet T., Fradet P., Enforcing Trace Properties by Program Transformation.

The 27th ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages (POPL), Communications of the ACM, pp. 54-66., 2000.

[Cos00] Coste-Manière E., Simmons R.., Architecture, the Backbone of Robotic System. IEEE

International Conference on Robotics & Automation, pps. 505-513, San Francisco,

USA, April, 2000.

Bibliography

231

[Cue06] Cuesta C.E., Romay M.P., Fuente P., Barrio-Solorzano M., Coordination as an

Architectural Aspect. Electronics Notes in Theoretical Computer Science, Vol. 154

No. 1, pp. 25-41, May 2006.

[Cue05] Cuesta C.E., Romay M.P., Fuente P., Barrio-Solorzano M., Architectural Aspects of

Architectural Aspects. 2nd European Workshop on Software Architecture (EWSA),

Lecture Notes on Computer Science, Springer Verlang, LNCS 3527, pp. 247-262,

May 2004.

[Cue04] Cuesta C.E., Romay M.P., Fuente P., Barrio-Solorzano M., Reflection-Based, Aspect-

Orientd Software Architecture. 1st European Workshop on Software Architecture

(EWSA), Lecture Notes on Computer Science, Springer Verlang, LNCS 3024, pp.

43-26, Pisa, Italy, June, 2005.

[Cue02] C.E. Cuesta Quintero, Dynamic Software Architecture based on Reflection. PhD.

Thesis, Department of Computer Science, University of Valladolid, 2002. (In Spanish)

[Dan04] Dantas D., Walker D., Washburn G., Weirich S., Analyzing Polymorphic Advice.

Technical Report TR-717-04, Princeton University, December 2004.

[Dij76] Dijkstra, E., A Discipline of Programming. Prentice-Hall, 1976.

[Dou05] Douence R, Le Botlan D., Report Towards a Taxonomy of AOP Semantics. AOSD-

Europe Deliverable D11, AOSD-Europe-INRIA-1, INRIA, CNRS, 7 July 2005, pp.

1-13 http://www.comp.lancs.ac.uk:8080/c/portal/layout?p_l_id=1.94

[Dou04b] Douence R., Fradet P., Sudholt M., Trace-Based Aspects. Aspect-Oriented Software

Development. Mehmet Aksit, Sioh’ an Clarke, Tzilla Elrad, and Robert E. Filman,

editors. Addison-Wesley, 2004.

[Dou04a] Douence R., Teboul L., A Crosscut Language for Control-Flow. The 3rd ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component

Engineering (GPCE), Lecture Notes in Computer Science (LNCS), Springer-Verlag,

Vol. 3286, Vancouver, Canada, October 2004.

Model-Driven Development of Aspect-Oriented Software Architectures

232

[Dou02b] Douence R., Sudholt M., A Model and a Tool for Event-Based Aspect-Oriented

Programming (EAOP). Technical Report 02/11/INFO, Ecole des mines de Nantes,

2nd edition, December 2002.

[Dou2a] Douence R., Fradet P., Sudholt M., A Framework for the Detection and Resolution of

Aspect Interactions. Generative Programming and Component Engineering: ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component

Engineering GPCE 2002, Lecture Notes in Computer Science (LNCS), Springer-

Verlag. In D. Batory, C. Consel, and W. Taha, editors, Vol. 2487, pp. 173–188,

Pittsburgh, PA, USA, October 2002.

[Dou01] Douence R, Motelet O., Sudholt M., A Formal Definition of Crosscuts. Proceedings

of the 3rd International Conference on Reflection, Lecture Notes in Computer Science,

Springer-Verlag, A. Yonezawa and S. Matsuoka eds., Vol. 2192, pp. 170–186, Kyoto,

Japan, September 2001.

 [DSL07] Domain-Specific Language (DSL) Tools.

 http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx

[DSo99] D’Souza D., Wills A., Objects, Components and Frameworks with UML. The

Catalysis approach. Addison-Wesley 1.999.

[EFT02] EFTCoR Project: Friendly and Cost-Effective Technology for Coating Removal. V

Programa Marco, Subprograma Growth, G3RD-CT-2002-00794, 2002.

[Eis98] Eisenbanch S., Radestock M., Component Coordination in Middleware Systems, IFIP

International Conference on Distributed Systems Platforms and OpenDistributed

Processing (Middleware98), septiembre 1998.

[Elr01] Elrald T., Filman R. E., Bader A., Aspect-Oriented Programming: An Introduction.

Communication of the ACM, Vol. 44, No. 10, October 2001.

[EMF07] Eclipse Modeling Framework (EMF) http://www.eclipse.org/modeling/emf

Bibliography

233

[Fer05] Fernández C., Pastor J.A., Sánchez P., Álvarez B., Iborra A., Co-operative Robots for

Hull Blasting in European Shiprepair Industry. IEEE Robotics and Automation

Magazine (RAM), September 2005.

[Fia04] Fiadeiro J.L., Lopes A., CommUnity on the Move: Architectures for Distribution and

Mobility. FMCO 2003, Lecture Notes in Computer Science (LNCS), Springer-Verlag,

Vol. 3188, pp. 177–196, F.S. de Boer et al. (Eds.), Heidelberg , Berlin, Germany,

2004.

[Fue05] Fuentes L., Pinto M., Sánchez P., Dynamic Weaving in CAM/DAOP: An Application

Architecture Drive Approach. Workshop on Dynamic Aspect, Aspect-Oriented

Software Development, Chicago, Illinois, March, 14-18.

[Fue03] Fuentes. L., Pinto. M., & Vallecillo A.. How MDA can help designing component-

and aspect-based applications. EDOC, pp. 124-135, 2003.

[Gar01] Garlan, D., Software Architecture, Wiley Encyclopedia of Software Engineering, J.

Marciniak (Ed.), John Wiley & Sons, 2001

[Gar00] Garlan D., Monroe R. T., Wile D., Acme: Architectural Description of Component-

Based Systems. Foundations of Component-Based Systems, Gary T. Leavens and

Murali Sitaraman (eds), Cambridge University Press, pp. 47-68, 2000.

[Gar95b] Garlan, D., An Introduction to the Aesop System. July 1995.

http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesopoverview.ps

[Gar95a] Garlan, D., Perry D., Introduction to the Special Issue on Software Architecture.

IEEE Transactions on Software Engineering, vol. 21 no. 4, April 1995.

[Gar94] Garlan D., Allen R., Ockerbloom J., Exploiting Style in Architectural Design

Environments. SIGSOFT’94: Foundations of Software Engineering, pp. 175–188,

New Orleans, Louisiana, USA, December 1994.

Model-Driven Development of Aspect-Oriented Software Architectures

234

[Gar93] Garlan, D., Shaw M., An Introduction to Software Architecture. Advances in Software

Engineering and Knowledge Engineering, Vol. I. Eds. V. Ambriola and G. Tortora,

World Scientific Publishing Company, New Jersey, 1993.

[GME07] GME, The Generic Modeling Environment,

http://www.isis.vanderbilt.edu/Projects/gme/

[Gor94] Gorlick M., Quilici A., Visual Programming in the Large versus Visual Programming

in the Small. The 1994 IEEE Symposium on Visual Languages, pp. 137-144, St.

Louis, Missouri, USA, October, 1994.

[Gor91] Gorlick M., Razouk R., Using Weaves for Software Construction and Analysis. The

13th International Conference on Software Engineering (ICSE13), pp. 23-34, Austin,

Texas, USA, May, 1991.

[Gre04] Greenfield J., Short K, Cook S., and Kent S. Software Factories. Wiley Publising Inc.,

2004.

[Gru00] Grundy J., Multi-perspective specification, design and implementation of software

components using aspects. International Journal of Software Engineering and

Knowledge Engineering, vol. 20, 2000.

[Grun98] Grundy J.C., Mugridge W.B., Hosking J.G., Static and dynamic visualisation of

component-based software architectures. The 10th International Conference on

Software Engineering and Knowledge Engineering, KSI Press, San Francisco,

California, USA, 18-20 June, 1998.

[Gue03a] Guerra P. A. C., Rubira C. M. F., Romanovsky A., de Lemos R., Integrating COTS

Software Components into Dependable Software Architectures, The Sixth IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing

(ISORC), 2003.

Bibliography

235

[Gue03b] Guerra P. A. C., Rubira C. M. F., Romanovsky A., de Lemos R., A Dependable

Architecture for COTS-Based Software Systems using Protective Wrappers, ICSE,

Workshop on Architecting Dependable Systems, Portland, Oregon, USA, 2003.

[Gue02] Guerra P. A. C., Rubira C. M. F., de Lemos R., An Idealized Fault-Tolerant

Architectural Component, ICSE, Workshop on Architecting Dependable Systems,

Orlando, USA, 15-20, 2002

[Ham05] Hammouda I., Hakala M., Pussinen M., Katara M., Mikkonen T., Concerní-Based

Development of Pattern Systems. The 2nd European Workshop on Software

Architecture (EWSA), Lecture Notes on Computer Science, Springer Verlang, LNCS

3527, pp. 113-129, Pisa, Italy, June, 2005.

[Ham04] Hammouda I., koskinen J., Pussinen M., Katara M., Mikkonen T., Adaptable

Concerní-Based Framework Specialization in UML,Automated Software

Engineering, pp. 78-87, Linz, Austria, 2004.

 [Har02] Harrison W., Harold L., Ossher H., Peri T., Asymmetrically vs. Symmetrically

Organized Paradigms for Software Composition. IBM Research Report RC22685

(W0212-147), Thomas J. Watson Research Center, IBM, December, 2002.

[Har03] Harrison W., Ossher H., Subject-oriented programming (a critique of pure objects).

Conference on Object-Oriented Programming: Systems, Languages and Applications,

Communications of the ACM, pp. 411-428, September 1993.

[IEE00] IEEE Recommended Practices for Architectural Description of Software-Intensive

Systems. IEEE Std 1471-2000, Software Engineering Standards Committee of the

IEEE Computer Society, 21 September 2000.

 [Jag06a] Jagadeesan R., Jeffrey A., Riely J., Typed Parametric Polymorphism for Aspects.

Science of Computer Programming, 2006.

[Jag06b] Jagadeesan R., Jeffrey A., Riely J., A Typed Calculus of Aspect-Oriented Programs.

http://fpl.cs.depaul.edu/rjagadeesan/pubs.html, 2003.

Model-Driven Development of Aspect-Oriented Software Architectures

236

[Jou05] Jouault, F., Kurtev, I. Transforming Models with ATL. Workshop on Model

Transformations in Practice, collocated with MoDELS, Jamaica 2005.

[Kan02b] Kande M. M., Kienzle J., Strohmeier A., From AOP to UML: Towards an Aspect-

Oriented Architectural Modeling Approach, Technical Reports in Computer and

Communication Sciences, Faculté I&C, École Polytechnique Fédérale de Lausanne,

2002.

[Kan02a] Kande M. M., Kienzle J., Strohmeier A., From AOP to UML - A Bottom-Up

Approach. Workshop on Aspect-Oriented Modeling with UML, AOSD, Enschede,

The Netherlands, 2002.

[Kan03] Kande M. M., A concern-oriented approach to software architecture. PhD. Thesis,

Lausanne, Switzerland: Swiss Federal Institute of Technology (EPFL), 2003.

[Kat03] Katara M., Katz S., Architectural Views of Aspects. The 2nd International Conference

on Aspect-Oriented Software Development (AOSD 2003), Boston, Massachusetts,

USA,2003.

[Kat02] Katara M., Superposing UML Class Diagram. Workshop on Aspect-Oriented

Modelling with UML, AOSD, Enschede, The Netherlands, 2002.

[Ken95] Kenney J.J., Executable Formal Models of Distributed Transaction Systems based on

Even Processing. PhD. Thesis, University of Stanford, CSL, December, 1995.

[Kiz01] Kiczales G., Hilsdale E., Huguin J., Kersten M., Palm J., Griswold W.G., An Overview

of AspectJ. The 15th European Conference on Object-Oriented Programming, Lecture

Notes in Computer Science (LNCS), Springer-Verlag, Vol.2072, Budapest, Hungary,

June 18-22, 2001.

[Kiz97] Kizcales G., Lamping J., Mendhekar A., Maeda C., Aspect-Oriented Programming.

The 11th European Conference on Object-Oriented Programming (ECOOP), Lecture

Notes in Computer Science (LNCS), Springer-Verlag, Vol. 1241, Jyväskylä, Finland,

June 9-13, 1997.

Bibliography

237

[Kram85] Krammer J. Magee J., Dynamic Configuration for Distributed Systems. IEEE

Transactions on Software Engineering, Vol. 11, No. 4, pp. 424-436, 1985.

[Kul03] Kulkarni, V., Reddy S., Separation of concerns in model-driven development, IEEE

software 20(5), 2003.

[Kur06] Kurtev, I., et al. Model-based DSL frameworks. 21st Conf. on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA), Portland, Oregon,

USA, 2006.

[Kva05] Kvale A. A., Li J., Conradi R., A case study on building COTS-based system using

aspect-oriented programming. ACM Sym. on Applied Computing, 1491-149, 2005

[Läm02] Lämmel R., A Semantical Approach to Method-Call Interception. The 1st

International Conference on Aspect-Oriented Software Development (AOSD), ACM

Press, pp. 41–55, Twente, The Netherlands, April 2002.

[Lie99] Lieberherr K., Lorenz D., Mezini M., Programming with Aspectual Components.

Technical Report NU-CCS-99-01, pp. 1-27, Northeastern University, Boston,

Massachusetts, March 1999.

[Lop05] Lopes A., Fiadeiro J. L., Context-Awareness in Software Architectures. The 2nd

European Workshop on Software Architecture (EWSA), Lecture Notes on Computer

Science, Springer Verlang, LNCS 3527, pp. 146-161, Pisa Italy, June, 2005.

[Lop03] Lopes A., Wermelinger M., Fiadeiro J.L., High-Order Architectural Connectors.

ACM Transaction on Software Engineering and Methodology. Vol. 12 No. 1, pp.64-

104, 2003.

[Loq00] Loques O., Sztajnberg A., Leite J., Lobosco, M., On the Integration of Meta-Level

Programming and Configuration Programming, In Reflection and Software

Engineering (special edition), Editors: Walter Cazzola, Robert J. Stroud, Francesco

Tisato, V. 1826, Lecture Notes in Computer Science, pp.191-210, Springer-Verlag,

Heidelberg, Germany, June, 2000.

Model-Driven Development of Aspect-Oriented Software Architectures

238

[Luc95b] Luckham D.C., Vera J., An Event-Based Architecture Definition Language. IEEE

Transactions on Software Engineering, Vol. 21, No. 9, pp. 717-734, September, 1995.

[Luc95a] Luckham D.C., Kenney J.J., Augustine L.M., Vera J., Bryan D., Mann W.,

Specification and Analysis of Software Architecture using Rapide. IEEE Transactions

on Software Engineering, Vol. 21, No. 4, pp. 336-355, April, 1995.

[Mag96] Magee J., Kramer J., Dynamic Structure in Software Architectures. ACM

SIGSOFT’96: Fourth Symposium on the Foundations of Software Engineering

(FSE4), pp. 3-14, San Francisco, CA, October 1996.

[Mag95] Magee J.N., Dulay N., Eisenbach S., Kramer J., Specifying Distributed Software

Architectures. Fifth European Software Engineering Conference (ESEC), Barcelona,

Spain, September, 1995.

[Mag89] Magee J., Krammer J., Sloman M., Constructing Distributed Systems in Conic. IEEE

Transactions on Software Engineering, Vol. 15, No. 6, 1989.

[Mas03] Masuhara H., Kawauchi K., Dataflow Pointcut in Aspect-Oriented Programming.

The First Asian Symposium on Programming Languages and Systems (APLAS’03),

Lecture Notes in Computer Science, Springer-Verlag, vol. 2895, pp. 105–121, 2003.

[McD03] McDirmid S., Hsieh W.C., Aspect-Oriented Programming with Jiazzi. The 2nd

International Conference on Aspect-Oriented Software Development (AOSD), pp. 70-

79, Boston, Massachusetts, USA, march, 2003.

[MDA07] Object Management Group. Model Driven Architecture Guide, 2003

http://www.omg.org/docs/omg/03-06-01.pdf

[Med00] Medvidovic N., Taylor R.N., A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transactions on Software

Engineering,Vol. 26, No. 1, January, 2000.

Bibliography

239

[Med99] Medvidovic N., Rosenblum D. S., Taylor R. N., A Language and Environment for

Architecture-Based Software Development and Evolution. The 21st International

Conference on Software Engineering (ICSE’99), Los Angeles, California, May 1999.

[Med96] Medvidovic N., Oreizy P., Robbins J. E., Taylor R. N., Using Object-Oriented

Typing to Support Architectural Design in the C2 Style. ACM SIGSOFT’96: Fourth

Symposium on the Foundations of Software Engineering (FSE4), pp. 24-32, San

Francisco, California, USA, October 1996.

[Meh00] Mehta N., Medvidovid N., Phadke S., Towards a Taxonomy of Software Connectors.

22nd International Conference on Software Engineering (ICSE2000), Vol. 11, pp.178-

187, Limerick, June 2000.

[MEY07] Meyer B., What to compose?. Eiffel Software,

 http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/compose.html

[Mey03] Meyer B., The Grand Challenge of Trusted Components. International Conference

on Software Engineering (ICSE), IEEE Computer Press, Portland, Oregon, May

2003.

[Mez03] Mezini M., Ostermann K., Conquering Aspects with Caesar. International

Conference on Aspect-Oriented Software Development (AOSD), ACM Press, pp. 90-

100, Boston, Massachusetts, USA, March, 2003.

[Mil99] Milner R., Communicating and Mobile Systems: The Pi-Calculus. Cambridge

University Press, June, 1999.

[Mil93] Milner R., The Polyadic π-Calculus: A Tutorial. Laboratory for Foundations of

Computer Science Department, University of Edinburgh, October 1993.

[MOF02] Meta-Object Facility, Object Management Group (OMG): MOF 1.4 Specification,

TR formal/2002-04-03, 2002 from

http://www.omg.org/technology/documents/formal/mof.htm

Model-Driven Development of Aspect-Oriented Software Architectures

240

[Mod06] Modelware project. D1.5 Model Composition: Development of consistency rules.

TR, WP1 Modelling technologies, 2006 http://www.modelware-ist.org

[Mon98] Monroe R.T., Capturing Software Architecture Design Expertise With

Armani.Technical Report CMU-CS-98-163, Carnegie Mellon University School of

Computer Science, October 1998.

[Mor97] Moriconi M., Riemenschneider R. A., Introduction to SADL 1.0: A Language for

Specifying Software Architecture Hierarchies. Technical Report SRI-CSL-97-01, SRI

International, March, 1997.

[Mor95] Moriconi M., Qian X., Riemenschneider R. A., Correct Architecture Refinement.

IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp. 356-372, April 1995.

[Nav05] Navasa A., Pérez M. A., Murillo J. M., Aspect Modelling at Architecture Design. 2nd

European Workshop on Software Architecture (EWSA), Lecture Notes on Computer

Science, Springer Verlang, LNCS 3527, pp. 41-58, Pisa, Italy, June, 2005.

[Nav04a] Navarro E., Letelier P., Ramos I., Goals and Quality Characteristics: Separating

Concerns, Early Aspects 2004: Aspect-Oriented Requirements Engineering and

Architecture Design Workshop, OOPSLA, Monday, October 25, Vancouver, Canada,

2004.

[Nav04b] Navarro E., Letelier P., Ramos I., UML Visualization for an Aspect and Goal-

Oriented Approach, The 5th Aspect-Oriented Modeling Workshop (AOM'04), UML

2004, Monday, October 11, 2004, Lisbon, Portugal

[Nav04c] Navarro E., Ramos I., Letelier P., Pérez J., Goals Model-Driving Software

Architectur. The 2nd International Conference on Software Engineering Research,

Management and Applications (SERA), May 5-8, 2004, Los Angeles, CA.

[Nav03] Navarro E., Ramos I., Pérez J., Software Requirements for Architectured Systems. The

11th IEEE International Requirements Engineering Conference (RE'03), IEEE

Computer Society, September 8-12, Monterey, California , 2003.

Bibliography

241

[Nie95] Nierstrasz O., Meijler T.D., Research Directions of Software Composition. ACM

Computing Surveys (CSUR), Vol. 27, no. 2, June, 1995.

[Obe97] Oberndorf T., COTS and Open Systems - An Overview, 1997,

 http://www.sei.cmu.edu/str/descriptions/cots.html#ndi

[Oli98] Oliva A., Garcia I.C., Buzato L.E., The Reflective Architecture of Guaraná, Technical

Report IC-98-14. Instituto de computación, Universidad de Campiñas, April, 1998.

[Oqu04a] Oquendo F., π-ADL: An Architecture Description Language based on the Higher-

Order Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures.

ACM Software Engineering Notes, Vol. 29, No. 3, May, 2004.

[Oqu04b] Oquendo F., Warboys B., Morrison R., Dindeleux R, Gallo F., Garavel H.,

Occhipinti C., ArchWARE: Architecting Evolvable Software. The 1st European

Workshop in Software Achitecture (EWSA 2004), Lecture Notes in Computer

Science LNCS 3047, St Andrews, UK, pp. 257-271. Springer, ISBN 3-540-22000-3.

2004

[Oss01] Ossher H., Tarr P., Multi-Dimensional Separation of Concerns and The Hyperspace

Approach. The Symposium on Software Architectures and Component Technology:

The state of the Art in Software Development, Kluwer, 2001.

[Oss00] Ossher H., Tarr P., Hyper/J™: Multi-Dimensional Separation of Concerns for

Java™. The International Conference on Software Engineering (ICSE).

Communications of the ACM, pp. 734-737, Limerick, Ireland (2000).

[Pap01] Papadopoulos G. A., Arbab F., Configuration and Dynamic Reconfiguration of

Components using the Coordination Paradigm, Future Generation Computer

Systems, Vol. 17 No. 8, pp. 1023-1038, June 2001.

[Par72] Parnas D. L., On the Criteria to be used in Decomposing Systems into Modules.

Communications of the ACM, Vol 15, No.12, pp. 1053–1058, December 1972.

Model-Driven Development of Aspect-Oriented Software Architectures

242

[Pas97] Pastor O. Et al, OO-METHOD: A Software Production Environment Combining

Conventional and Formal Methods. The 9th International Conference, CaiSE97,

Barcelona, 1997.

[Paw04] Pawlak R., Seinturier L., Duchien L., Florin G., Legond-Aubry F., Martelli L., JAC:

an Aspect-Based Distributed Dynamic Framework. Software – Practice and

Experience, Vol. 34, pp. 1119-1148, 2004.

[Per92] Perry, D., Wolf A., Foundations for the Study of Software Architecture. ACM

Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, October 1992.

[Per06a] Pérez J., Navarro E., Letelier P., Ramos I., Graphical Modelling Proposal For

Aspect-Oriented SA. The 21st Annual ACM Symposium on Applied Computing

(SAC), ACM, Dijon, France, April 23-27, 2006. (short paper)

[Per06b] Pérez J., Navarro E., Letelier P., Ramos I., A Modelling Proposal For Aspect-

Oriented Software Architectures. The 13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer

Society Press, Hasso-Plattner-Institute For Software Systems Engineering at the

University Of Potsdam, Potsdam, Germany (Berlin Metropolitan Area), 27-30 March.

[Per06c] Pérez J., PRISMA: Aspect-Oriented Software Architectures. Tesis Doctoral,

Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de

Valencia.

[Per06d] Pérez, J., Ali, N., Carsí, J.A., Ramos, I., Designing Software Architectures with an

Aspect-Oriented Architecture Description Language. The 9th International Symposium

on Component-Based Software Engineering (CBSE), LNCS 4063, Västerås, Sweden,

2006.

[Per05a] Pérez, J., Ali, N., Carsí, J.A., Ramos, I., Dynamic Evolution in Aspect-Oriented

Architectural Models. Second European Workshop on Software Architecture, LNCS

3527, Springer Verlag, Pisa, 2005.

Bibliography

243

[Per05b] Pérez J, Ali N, Costa C, Carsí JA., Ramos I., Executing Aspect-Oriented Component-

Based Software Architectures on .NET Technology. The International Conference of

.NET Technologies, Vol.3, No.1-3, ISSN 1801-2108, Pilsen, Czech Republic, 2005.

[Per02a] Pérez J., Carsí J A. and Ramos I., On the implication of application’s requirements

changes in the persistence layer: an automatic approach. Workshop on the Database

Maintenance and Reengineering (DBMR'2002), IEEE International Conference of

Software Maintenance, Montreal (Canada), October 1st, 2002, pp. 3-16, ISBN: 84-699-

8920-0.

[Per02b] Pérez J., Carsí J. A. and Ramos I., ADML: A Language for Automatic Generation of

Migration Plans. The First Eurasian Conference on Advances in Information and

Communication Technology, Tehran, Iran, October 2002 http://www.eurasia-ict.org/ ©

Springer LNCS vol n.2510

[Per02c] Pérez J., Anaya V., Cubel J M., Domínguez F., Boronat A., Ramos I. and Carsí J A.,

Data Reverse Engineering of Legacy Databases to Object Oriented Conceptual

Schemas. Software Evolution Through Transformations: Towards Uniform Support

throughout the Software Life-Cycle Workshop (SET'02), First International

Conference on Graph Transformation(ICGT2002), Barcelona (Spain), October, 2002

© ENTCS vol n. 72.4

[Pin05] Pinto M., Fuentes L., Troya J.M., A Dynamic Component and Aspect Platform, The

Computer Journal Vol. 48, No. 4, pp. 401-420, 2005.

[Pin03] Pinto M., Fuentes L., Troya J. M., DAOP-ADL: An Architecture Description

Language for Dynamic Component and Aspect-Based Development. Generative

Programming and Component Engineering: Second International Conference, GPCE

Springer Verlag, Lecture Notes Computer Science, ISSN: 0302-9743, Erfurt,

Germany, September 22-25.

[PRI07] PRISMA, http://prisma.dsic.upv.es

Model-Driven Development of Aspect-Oriented Software Architectures

244

[QVT05] Object Management Group. MOF QVT final adopted specification. Tech. Report

formal/2005-11-01, 2005

[RAT07] Rational Software, Rational Rose, http://www-306.ibm.com/software/rational/

[Sch06] Schmidt D.C., Model-Driven Engineering, IEEE computer Society, 2006.

[Sch01] Scholl K.U., Albiez J., Gassmann B., MCA: An Expandable Modular Controller

Architecture. The 3rd Real-Time Linux Workshop, Karlsruhe University, Milano,

Italy, 2001.

[Ser94] Sernadas, A., Costa J.F., Sernadas C., Object Specifications Through Diagrams:

OBLOG Approach. INESC Lisbon 1994.

[Sha96] Shaw M., DeLine R., Zelesnik G., Abstractions and Implementations for Architectural

Connections. The Third International Conference on Configurable Distributed

Systems, May, 1996.

[Sha95] Shaw M., DeLine R., Klein D. V., Ross T. L., Young D. M., Zelesnik G., Abstractions

for Software Architecture and Tools to Support Them. IEEE Transactions on Software

Engineering, Vol. 21, No. 4, pp. 314-335, April 1995.

[Sha94] Shaw M., Procedure Calls Are the Assembly Language of Software Interconnection:

Connectors Deserve First-Class Status. Workshop on Studies of Software Design,

January,1994.

[Sih03] Sihman M., Katz S., Superimpositions and Aspect-Oriented Programming. The

Computer Journal, Vol 46, No. 5, pp. 529-541, September, 2003.

[Sim05] Simmonds, D., Reddy, R., France, R., Ghosh, S., Solberg, A., An aspect oriented

model driven framework. Ninth IEEE International EDOC Enterprise Computing

Conference pp. 119-130, 2005.

[Sti92] Stirling C., Modal and Temporal Logics. Handbook of Logic in Computer Science, vol

II, Clarendon Press, Oxford, 1992.

Bibliography

245

[Sto02] Stojanovic Z., Dahanayak A., Components and Viewpoints as Integrated Separations

of Concerns in System Designing, Workshop on Identifying, Separating and Verifying

Concerns in the Design, AOSD, Enschede, The Netherlands, 2002.

[Suv05b] Suvée D., De Fraine B., Vanderperren W., FuseJ: An architectural description

language for unifying aspects and components. Workshop on Software-engineering

Properties of Languages and Aspect Technologies, 2005.

[Suv03] Suvée D., Vanderperren W., Jonckers V., JAsCo: an Aspect-Oriented Approach

Tailored for Component-Based Software Development.The 2nd International

Conference on Aspect-Oriented Software Development (AOSD), ACM Press, pp. 21-

29, ISBN 1-58113-660-9, Boston, Massachusetts, March, 2003.

[SYS07] Telelogic System Architect.

 http://www.telelogic.com/products/system_architect/index.cfm

[Szy00] Szyperski C., Booch G., Meyer B., Beyond Objects. Software Development

Magazine, March, 2000 (originally BrucePowel Douglass).

[Szy98] Szyperski C., Component software: beyond object-oriented programming. ACM

Press and Addison Wesley, New York, USA (1998).

[Tar99] Tarr P., Ossher, H., Harrison, W., Sutton Jr., S. M., N Degrees of Separation:

Multidimensional Separation of Concerns. The 21st International Conference on

Software Engineering (ICSE), Communication of the ACM, pp. 107-119, New York,

1999.

[TEA07] The TeachMover Robot,

 http://www.questechzone.com/microbot/teachmover.htm

[Tek05] Tekinerdogan B., Scholten F., ASAAM-T: A tool environment for identifying

architectural aspects. Aspect-Oriented Software Development Conference (AOSD),

March 18-19, Chicago, 2005.

Model-Driven Development of Aspect-Oriented Software Architectures

246

[Tek04] Tekinerdogan B., ASAAM: Aspectual software architecture analysis method. The 4th

Working IEEE/IFIP Conference on Software Architecture (WICSA), Oslo, Norway,

2004.

[TOG07] Together, Borland Software Corporation.

 http://www.borland.com/us/products/together/index.html

[Tov07] Toval, A., Requena, V., Alemán, J.L. OCL Tools, http://www.um.es/giisw/ocltools/

[UML07] The Unified Modeling Language Website, Object Management Group (OMG),

http://www.uml.org/

[Van01] Vanderperren, W. and Wydaeghe, B. Towards a New Component Composition

Process. The 8th Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS), Washington DC, April 2001.

[Ver03] Verspecht D., Vanderperren W., Suvee D., Jonckers V., JAsCo.NET: Capturing

Crosscutting Concerns in .NET Web Services. The Second Nordic Conference on

Web Services NCWS’03, Vaxjo, Sweden. In “Mathematical modelling in Physics,

Engineering and Cognitive Sciences”, Vol. 8, November 2003.

[Ves96] Vestal S., MetaH Programmer’s Manual, Version 1.09.. Technical Report, Honeywell

Technology Center, April 1996.

[Vig96] Vigder M., Gentleman W.M., Dean J., COTS Software Integration: State of the Art,

Inst. for Information Technology, NRC Nat. Rsch., Council Canada, 1996.

[Voa98] Voas J., Maintaining Component-Based Systems. IEEE Software, July/August, pp.

22-27, 1998.

[Vol01] Volpe R., Nesnas I., Estlin T., Mutz D., Petras R., Das H., The CLARAty architecture

for robotic autonomy. IEEE Aerospace Conference. Vol. 1, pp. 121-132, Montana,

USA, 2001.

Bibliography

247

[Wal03] Walker D., Zdancewic S., Ligatti J. A Theory of Aspects. International Conference on

Functional Programming (ICFP), Communications of the ACM, pp. 127–139, 2003.

Model-Driven Development of Aspect-Oriented Software Architectures

248

[Wan04] Wand M., Kiczales G., Dutchyn C., A Semantics for Advice and Dynamic Join

Points in Aspect-Oriented Programming. TOPLAS, Vol. 26, No. 5, pp. 890–910,

September 2004. Earlier versions of this paper were presented at the 9th International

Workshop on Foundations of Ob ject-Oriented Languages, January 19, 2002, and at

the Workshop on Foundations of Aspect-Oriented Languages (FOAL), April 22,

2002.

[Wyd01] Wydaeghe B., Vanderperren W., Visual Component Composition Using

Composition Pattems. Tools, Santa Barbara, California, July 2001.

[Yak99] Yakimovich, D., Bieman, J. M., and Basili, V. R. Software architecture classification

for estimating the cost of cots integration. the 21st Int. Conf. on Software engineering,

IEEE Computer Society Press, 296-302, 1999.

PRISMA Code Generation Patterns

249

APPENDIX A
A. PRISMA CODE GENERATION

PATTERNS

This appendix presents the code generation patterns to generate the C# from PRISMA

types models.

A.1. INTERFACES

Pattern 1: Interfaces
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from an interface.

Model-Driven Development of Aspect-Oriented Software Architectures

250

Template

using System;
using PRISMA;
namespace <#=this.Model.Name#>
{
<#
 SortedList serviceList = new SortedList();
 foreach (Interface interfaz in this.Model.Interfaces)
 {
#>
 public interface <#=interfaz.Name#>
 {
<#
 foreach (Service servicio in interfaz.IServices)
 {
#>
 AsyncResult
<#=servicio.Name#>(<#=CommaSeparatedArguments(servicio.Arguments)#>);

<# if(!serviceList.Contains(servicio.Name))
 serviceList.Add(servicio.Name,servicio);

 }
#>
 }

<#
 }
 foreach(Service servicio in serviceList.Values)
 {
#>
 public delegate AsyncResult

<#=servicio.Name#>Delegate(<#=CommaSeparatedArguments(servicio.Arguments)#>);

<#
 }
#>
}

Case Study
Description

This pattern is illustrated using the interface ImotionJoint of the TeachMover case
study. This interface specifies the services that are required to move and stop the
TeachMover robot.

The representation of the ImotionJoint in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

PRISMA Code Generation Patterns

251

Graphical representation

Result of the pattern execution

using System;
using PRISMA;
namespace RobotJoint
{
 public interface IMotionJoint
 {
 AsyncResult moveJoint(int NewSteps, int Speed);
 AsyncResult stop();
 }

 public delegate AsyncResult moveJointDelegate(int NewSteps, int
Speed);
 public delegate AsyncResult stopDelegate();
}

Related Patterns

There are no related patterns

Model-Driven Development of Aspect-Oriented Software Architectures

252

A.2. ASPECTS

Pattern 2:Aspects
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Descripción

This pattern details how to generate the C# code from an aspect. Specifically, it only
generates the structure of the aspect, the internal code of this structure is generated
by other patterns related to it.

PRISMA Code Generation Patterns

253

Template

using System;
using PRISMA;
using PRISMA.Aspects.Types;
using PRISMA.Exceptions;
using System.Collections;

namespace <#=this.Model.Name#>
{
<#
 foreach (Aspect aspect in this.Model.Aspects)
 {
#>
 [Serializable]
 public class <#=aspect.Name#> :
 <#=aspect.Concern#>Aspect<#=CommaSeparatedNames3(aspect.Interfaces)#>
 {
<#
 /* Internal code generation of the aspect
 ...
 */
 }/* endforeach (Aspect aspect in this.Model.Aspects) */
#>
}

Case Study
Description

This pattern is illustrated using the aspect FJoint of the TeachMover architectural
model. The representation of the FJoint in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Representación

Model-Driven Development of Aspect-Oriented Software Architectures

254

Result of the pattern execution

using System;
using PRISMA;
using PRISMA.Aspects.Types;
using PRISMA.Exceptions;
using System.Collections;

namespace RobotJoint
{
 [Serializable]
 public class FJoint : FunctionalAspect, IQueryPos, IUpdatePos
 {
 ...
 }
}

Related patterns

Pattern 3, Pattern 4, Pattern 5, Pattern 6, Pattern 7, Pattern 8, Pattern 9, Pattern 10,
Pattern 11, Pattern 12, and Pattern 13.

A.2.1. Attributes

Pattern 3:Attributes
PRISMA Metamodel in DSL Tools Graphical Metaphor

PRISMA Code Generation Patterns

255

Transformation
Description

This pattern details how to generate the C# code from an attribute. There are three
kinds of attributes: Constant, Variable and Derived. The code generation for derived
attributes is still not supported. Constant and Variable attributes follow the same
pattern because there are no differences in their code generation.

Template

...

<#
 SortedList attributes=new SortedList();
 foreach (DSIC.ISSI.PrismaDSL.DomainModel.Attribute atribute in
aspect.Attributes)
 {

 attributes.Add(atribute.Name,null);
#>
 <#=DomainToType(atribute.Domain)#> <#=atribute.Name#>;
 public <#=DomainToType(atribute.Domain)#>

<#=atribute.Name.Substring(0,1).ToUpper()#><#=atribute.Name.Substring(1)#>
 {
 get { return <#=atribute.Name#>; }
 }
<#
 }
#>

...

Case Study
Description

This pattern is illustrated using the attribute halfSteps of the aspect FJoint of the
TeachMover architectural model. The halfSteps is an Integer attribute to store the
position of the Joint. The representation of the attribute halfSteps in the PRISMA
model and the C# code generated from this model by applying this pattern are
presented following.

Representation

Model-Driven Development of Aspect-Oriented Software Architectures

256

Result of the pattern execution

 ...

 int halfSteps;
 public int HalfSteps
 {
 get { return halfSteps; }
 }
 ...

Related Patterns
Pattern 2.

PRISMA Code Generation Patterns

257

A.2.2. Protocol

Pattern 4:Protocols
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from the protocol of an aspect.
Specifically, it only generates the set of states that compose the protocol.

Template

...
#>
 enum protocolStates
 {
 <#=CommaSeparatedNames(aspect.Protocol.States)#>
 }
 protocolStates state;
 private protocolStates State{
 get { return state;}
 set { state=value;
 this.StateName=state.ToString();
 }
 }

Model-Driven Development of Aspect-Oriented Software Architectures

258

<#
...

Case Study
Description

This pattern is illustrated using the protocol of the aspect FJoint of the TeachMover
architectural model. The representation of the states of the protocol in the PRISMA
model and the C# code generated from this model by applying this pattern are
presented following.

Graphical representation

Result of the pattern execution

...

enum protocolStates
{
 FJOINT, POS, END, SubStateNewPos, SubStateNotify, SubStateQuery
}
protocolStates state;
private protocolStates State{
 get { return state;}
 set { state=value;
 this.StateName=state.ToString();
 }
}

...

Related Patterns

Pattern 2.

PRISMA Code Generation Patterns

259

A.2.3. Services

A.2.3.1. Begin

Pattern 5: Begin Services
PRISMA Metamodel in DSL Tools Graphical Metaphor

Pattern
Description

This pattern details how to generate the C# code from the service Begin of an
aspect. This service acts as the constructor of the aspect. This generation follows
four steps: 1) To establish the initial state of the aspect, 2) To generate the code of
the valuations associated to the Begin service, 3) To generate the information of the
played_roles of the aspect adding the priority to each service that compose them., 4)
to indicate which is the state that is reached after the Begin execution. This pattern
does not generate the code for the second step because the valuations of all services
are generated by other pattern.

Template

...

<#
foreach (AService service in aspect.AServices)
{
 if (service is Begin)
 {
#>
 public <#=aspect.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>) :
 base("<#=aspect.Name#>")
{

Model-Driven Development of Aspect-Oriented Software Architectures

260

 State = protocolStates.<#=service.StateHasState[0].Source.Name#>;

<#
 /* Valuations */
 /* PlayedRoles */

 foreach (PlayedRole playedRole in aspect.PlayedRoles)
 {
#>
 PlayedRoleClass <#=playedRole.Name#> = new
PlayedRoleClass("<#=playedRole.Name#>");

<#
 bool ServiceIn;
 foreach (IService servic in playedRole.Interface.IServices)
 {
 ServiceIn=false;
 foreach (StateHasState stateHasState in playedRole.StateHasState)
 {
 if(stateHasState.Service.Name == servic.Name)
 {
 if(stateHasState.Modifier == TransitionModifier.In)
 {
 ServiceIn=true;
 break;
 }
 }/* End if(stateHasState.Modifier == TransitionModifier.In)*/
 } /* End foreach (StateHasState stateHasState in
playedRole.StateHasState) */
 }/* End foreach (IService servic in playedRole.Interface.IServices)*/

#>

<#=playedRole.Name#>.AddMethod("<#=servic.Name#>",<#=ServiceIn.ToString().ToL
ower()#>);

<#
 }
#>
 this.playedRoleList.Add(<#=playedRole.Name#>);

<#
 }/* End foreach (PlayedRole playedRole in aspect.PlayedRoles)*/

#>
 this.stateList=new ArrayList();

<#
foreach(Microsoft.VisualStudio.Modeling.NamedElement element in
aspect.Protocol.States)
{
#>
 this.stateList.Add("<#=element.Name#>");

<#
}
foreach (PlayedRole playedRole in aspect.PlayedRoles)
{
 foreach(StateHasState stateHasState in playedRole.StateHasState)

PRISMA Code Generation Patterns

261

 {
#>

AddPriorityService(protocolStates.<#=stateHasState.Source.Name#>.ToString(),

<#=playedRole.Name#>.PlayedRoleName,"<#=stateHasState.Service.Name#>",
 <#=stateHasState.Priority#>);

<#
 }
}
#>
 State = protocolStates.<#=service.StateHasState[0].Target.Name#>;
}
<#
}/* endif (service is Begin) */

...

Case Study
Description

This pattern is illustrated using the service Begin of the aspect FJoint of the
TeachMover architectural model. The representation of the Begin of the FJoint in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.

Graphical representation

Model-Driven Development of Aspect-Oriented Software Architectures

262

Result of the pattern execution
...

public FJoint(int IniPos) : base("FJoint")
{

 State = protocolStates.FJOINT;
 halfSteps=IniPos;

 PlayedRoleClass UPPOS = new PlayedRoleClass("UPPOS");
 UPPOS.AddMethod("newPosition", true);
 this.playedRoleList.Add(UPPOS);

 PlayedRoleClass QPOS = new PlayedRoleClass("QPOS");
 QPOS.AddMethod("currentPosition", true);
 this.playedRoleList.Add(QPOS);

 this.stateList=new ArrayList();
 this.stateList.Add("FJOINT");
 this.stateList.Add("POS");
 this.stateList.Add("END");
 this.stateList.Add("SubStateNewPos");
 this.stateList.Add("SubStateNotify");
 this.stateList.Add("SubStateQuery");

 AddPriorityService(protocolStates.POS.ToString(), UPPOS.PlayedRoleName,
"newPosition", 1);
 AddPriorityService(protocolStates.SubStateNewPos.ToString(),
QPOS.PlayedRoleName, "currentPosition", 1);
 AddPriorityService(protocolStates.SubStateNotify.ToString(),
QPOS.PlayedRoleName, "currentPosition", 1);
 AddPriorityService(protocolStates.POS.ToString(), QPOS.PlayedRoleName,
"currentPosition", 1);
 AddPriorityService(protocolStates.SubStateQuery.ToString(),
QPOS.PlayedRoleName, "currentPosition", 1);
 State = protocolStates.POS;
}

...

Related Patterns
Pattern 2, Pattern 9, and Pattern 10.

PRISMA Code Generation Patterns

263

A.2.3.2. Public Services

Pattern 6:Public Services
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a service of an aspect that is
published by one of the interfaces that the aspect imports. Specifically, it only
generates the head of the service and if the services is IN or OUT.

Template

...

<#
 foreach (AService service in aspect.AServices)
 {
 if (!(service is Begin))
 {
 ...
 }/* endif (service is Begin) */
 else
 {
 if (!(service is End))
 {
#>

public AsyncResult
<#=service.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>)
{
<#

Model-Driven Development of Aspect-Oriented Software Architectures

264

 SortedList parameters=new SortedList();
 foreach (Argument element in service.Arguments)
 {
 parameters.Add(element.Name,null);
 }

 if(service.Modifier != AServiceModifier.none)
 {
#>
 // Modo In
 if(ServiceIn)
 {
<#
 }

 /* Checking if the state of the aspect is correct for the service
 execution */

 /* Preconditions*/

 /* Valuations */

 /* Constraints*/

 /* Execution of a service sequence of the protocol */

 /* Update of the state of the protocol*/

 if(service.Modifier != AServiceModifier.none)
 {
#>
 } //End modo IN
 // Modo Out
 else
 {
<#
 }

 if(service.Modifier == AServiceModifier.Out ||
 service.Modifier == AServiceModifier.InOut)
 {

 /* Valuations */

#>
 return
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut,

"<#=service.Name#>",this.aspectStateCareTaker.ActiveTransaction,
 <#=CommaSeparatedNames(service.Arguments)#>);

<#
 }
 else if(service.Modifier == AServiceModifier.In)
 {
#>
 throw new Exception("This method doesn't have Service mode Out");

PRISMA Code Generation Patterns

265

<# }

 }/* end if (!(service is End))*/
 }/* endelse (service is Begin) */
}/*endforeach (AService service in aspect.AServices)*/
#>

...

Case Study
Description

This pattern is illustrated using the public service currentPosition of the aspect
FJoint of the TeachMover architectural model. The representation of the
currentPosition in the PRISMA model and the C# code generated from this model
by applying this pattern are presented following.

Representación

Model-Driven Development of Aspect-Oriented Software Architectures

266

Result of the pattern execution

...
public AsyncResult currentPosition(ref int Pos)
{
 // Modo In
 if(ServiceIn)
 {
 /* Checking if the state of the aspect is correct for the service
 execution*/

 /* Preconditions*/

 /* Valuations */

 /* Constraints*/

 /* Execution of a service sequence of the protocol*/

 /* Update of the state of the protocol */

 }
 // Modo Out
 else
 {
 return
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut,

"currentPosition",this.aspectStateCareTaker.ActiveTransaction,Pos);
 }

}

...

Related Patterns

Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12,and Pattern 13.

PRISMA Code Generation Patterns

267

A.2.3.3. Private Services
Pattern 7: Private Services
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a private service of an aspect.

Template

...
<#
 foreach (AService service in aspect.AServices)
 {
 if (!(service is Begin))
 {
 ...
 }/* endif (service is Begin) */
 else
 {
 if (!(service is End))
 {
 if(service.Modifier == AServiceModifier.none)
 {
#>
 public delegate AsyncResult

<#=service.Name#>Delegate(<#=CommaSeparatedArguments(service.Arguments)#>);

<#
 }//End if(service.Modifier != AServiceModifier.none)

Model-Driven Development of Aspect-Oriented Software Architectures

268

#>

public AsyncResult
<#=service.Name#>(<#=CommaSeparatedArguments(service.Arguments)#>)
{
<#
 SortedList parameters=new SortedList();
 foreach (Argument element in service.Arguments)
 {
 parameters.Add(element.Name,null);
 }

 /* Checking if the state of the aspect is correct for the service
 execution */

 /* Preconditions*/

 /* Valuations */

 /* Constraints*/

 /* Execution of a service sequence of the protocol */

 /* Update of the state of the protocol*/

 if(service.Modifier == AServiceModifier.none)
 {
#>
 return null;
<#
 }
 }/* end if (!(service is End))*/
 }/* endelse (service is Begin) */
}/*endforeach (AService service in aspect.AServices)*/
#>

...

Case Study
Description

This pattern is illustrated using the private service check of the aspect SMotion of the
TeachMover architectural model. The representation of the check private service in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.

PRISMA Code Generation Patterns

269

Graphical representation

Result of the pattern execution

...

public delegate AsyncResult checkDelegate(int NewSteps, ref bool Secure);

public AsyncResult check(int NewSteps, ref bool Secure)
{
 /* Checking if the state of the aspect is correct for the service
 execution*/

 /* Preconditions*/

 /* Valuations */

 /* Constraints*/

 /* Execution of a service sequence of the protocol*/

 /* Update of the state of the protocol */

 return null;
}

...

Related Patterns
Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13.

Model-Driven Development of Aspect-Oriented Software Architectures

270

A.2.3.4. Transactions

Pattern 8:Transactions
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a transaction.This generation
si composed of three steps: 1) To generate the transaction definition, 2) To add the
services that the transaction that it is composed of, 3) To obtain the sequence of
execution.

Plantilla
...
<# foreach(DSIC.ISSI.PrismaDSL.DomainModel.Transaction_ transaction
 in aspect.Transactions)
 {
#>
 public AsyncResult <#=transaction.Name#>
 (<#=CommaSeparatedArguments(transaction.Arguments)#>)
 {

 // Modo In
 if(ServiceIn)
 {
<#
 /* Checking if the state of the aspect is correct for the service

PRISMA Code Generation Patterns

271

 execution */

 /* Preconditions*/

 /* Valuations */

 /* Constraints*/

 /* Execution of a service sequence of the protocol */

 /* Update of the state of the protocol*/

/* invocation of the transaction sequence **/

foreach (AService serviceTrans in aspect.AServices)
{
 foreach(StateHasState stateHasState in serviceTrans.StateHasState)
 {
 if(stateHasState.Transaction != null && stateHasState.Transaction.Name
== transaction.Name)
 {
 if (!(stateHasState.Source is SubState))
 {
 if (stateHasState.Target is SubState)
 {
#>
 if (state == protocolStates.<#=stateHasState.Source.Name#>)
 {
 aspectStateCareTaker.StartTransaction();
 try
 {
<# /* Processing of the first service of the transaction */
 if(stateHasState.Condition != String.Empty)
 {
#>
 if(<#=stateHasState.Condition#>)
 {
<#
 }
 /* Invocation of an OUT service */
 if(stateHasState.Modifier == TransitionModifier.Out)
 {
#>

InvokeOutService("<#=stateHasState.PlayedRole.Interface.Name#>","<#=stateHasS
tate.PlayedRole.Name#>",

"<#=stateHasState.Service.Name#>",this.aspectStateCareTaker.ActiveTransaction
,

<#=CommaSeparatedNames(stateHasState.Service.Arguments)#>);
<#
 }

 /* Invocation of a private service of the aspect */
 if(stateHasState.PlayedRole==null)
 {
#>

Model-Driven Development of Aspect-Oriented Software Architectures

272

<#=stateHasState.Service.Name#>(<#=CommaSeparatedNames(stateHasState.Service.
Arguments)#>);
<#
 }
 /* Execution of a service IN because as a private
 service because it is associate to a transition of
 the protocol */
 if(stateHasState.Modifier == TransitionModifier.In)
 {
#>

<#=stateHasState.Service.Name#>(<#=CommaSeparatedNames(stateHasState.Service.
Arguments)#>);

<#
 }
#>
 aspectStateCareTaker.CheckConsistence;
<#
 if(stateHasState.Condition!="")
 {
#>
 }
<#
 }
#>
 /* Update of the state */
 state = protocolStates.<#=stateHasState.Target.Name#>;
<#
 /* Processing of the rest of the services that the transaction is
 composed of*/
 SubState subState = stateHasState.Target as SubState;
 System.Collections.IList substateLinks=
subState.GetElementLinks(subState.Source.TargetRole.Id);
 StateHasState subStateHasState=null;
 int i=0;
 while(i<substateLinks.Count)
 {
 if(substateLinks[i] is StateHasState)
 {
 subStateHasState=(StateHasState)substateLinks[i];
 if(subStateHasState.Condition != "")
 {
#>
 if(<#=subStateHasState.Condition#>)
 {
<#
 }
 /* Invocation of an OUT service */
 if(subStateHasState.Modifier == TransitionModifier.Out)
 {
#>
InvokeOutService("<#=subStateHasState.PlayedRole.Interface.Name#>",

"<#=subStateHasState.PlayedRole.Name#>","<#=subStateHasState.Service.Name#>",
 this.aspectStateCareTaker.ActiveTransaction,

<#=CommaSeparatedNames(subStateHasState.Service.Arguments)#>);
<#
 }

PRISMA Code Generation Patterns

273

 /* Invocation of a private service of the aspect */
 if(subStateHasState.PlayedRole==null)
 {
#>

<#=subStateHasState.Service.Name#>(<#=CommaSeparatedNames(subStateHasState.Se
rvice.Arguments)#>);

<#
 }
 /* Execution of a service IN because as a private service
 because it is associate to a transition of the protocol */

 if(subStateHasState.Modifier == TransitionModifier.In)
 {
#>

<#=subStateHasState.Service.Name#>(<#=CommaSeparatedNames(subStateHasState.Se
rvice.Arguments)#>);

<#
 }
#>
 aspectStateCareTaker.CheckConsistence;
<#
 if(subStateHasState.Condition!="")
 {
#> }

<#
 }
#>
 state = protocolStates.<#=subStateHasState.Target.Name#>;

<#
 i++;

 if(subStateHasState.Target is SubState)
 {
 subState = subStateHasState.Target as SubState;
 substateLinks=
subState.GetElementLinks(subState.Source.TargetRole.Id);
 i=0;
 }
 } /*End if(substateLinks[i] is StateHasState)*/
 }/*End While(i<substateLinks.Count) */
 }/* End stateHasState.Target is SubState */
#>
 }
 catch
 {
 aspectStateCareTaker.SetConsistecy(false);
 }
 finally
 {
 aspectStateCareTaker.EndTransaction();
 }
 }
}

Model-Driven Development of Aspect-Oriented Software Architectures

274

<#
 }
 }
 }
}
availableStates.Clear();
}/*endforeach transacction*/
#>
return null;
}

...

Case Study
Descripción

This pattern is illustrated using the transaction dangerousChecking of the
TeachMover architectural model. The representation of the dangerousChecking in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.

Graphical representation

PRISMA Code Generation Patterns

275

Result of the pattern execution

public AsyncResult dangerousChecking()
{

 // Modo In
 if(ServiceIn)
 {
 if(state != protocolStates.CHECKING
) throw new
InvalidProtocolStateException("SMotion","dangerousChecking");

 if (state == protocolStates.CHECKING)
 {
 aspectStateCareTaker.StartTransaction();
 try
 {
 controlSpeed(Steps, CurrentSpeed, Secure);
 aspectStateCareTaker.CheckConsistence;
 state = protocolStates.SubState12;

 InvokeOutService("IQueryPos","QUERYPOS","controlSpeed",this.aspectStat
eCareTaker.ActiveTransaction,Steps, CurrentSpeed, Secure);
 aspectStateCareTaker.CheckConsistence;
 state = protocolStates.CHECKING;
 }
 catch
 {
 aspectStateCareTaker.SetConsistecy(false);
 }
 finally
 {
 aspectStateCareTaker.EndTransaction();
 }
}
}
}

Related Patterns
Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13.

Model-Driven Development of Aspect-Oriented Software Architectures

276

A.2.3.5. Checking The Service Execution
Pattern 9: Checking The Service Execution
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code to check if the state of the protocol
allows the execution of a service.

Template

...

<#
 bool isFirst = true;
 System.Collections.SortedList availableStates=new
System.Collections.SortedList();
 /* Tratamiento de estado correcto para los servicios*/
 foreach(StateHasState stateHasState in service.StateHasState)
 {
 if (isFirst)
 {
 isFirst = false;
 availableStates.Add(stateHasState.Source.Name,null);

PRISMA Code Generation Patterns

277

#>
 if(state != protocolStates.<#=stateHasState.Source.Name#>

<# }
 else if(!availableStates.Contains(stateHasState.Source.Name))
 {
#>
 && state != protocolStates.<#=stateHasState.Source.Name#>

<#
 availableStates.Add(stateHasState.Source.Name,null);
 }
 }
#>
) throw new
InvalidProtocolStateException("<#=aspect.Name#>","<#=service.Name#>");

<#

...

Case Study
Description

This pattern is illustrated using the service currentPosition of the aspect FJoint of
the TeachMover architectural model.

Graphical representation

Result of the pattern execution

...

public AsyncResult currentPosition(ref int Pos)
{

...

 if(state != protocolStates.SubStateNewPos
 && state != protocolStates.SubStateNotify

Model-Driven Development of Aspect-Oriented Software Architectures

278

 && state != protocolStates.POS
 && state != protocolStates.SubStateQuery
) throw new InvalidProtocolStateException("FJoint","currentPosition");

...
}

...

Related Patterns
Pattern 6, Pattern 7, Pattern 8, and Pattern 14.

A.2.4. Preconditions

Pattern 10: Preconditions
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a precondition.

PRISMA Code Generation Patterns

279

Template
...

/* Comprobación de las Precondiciones*/
foreach(Precondition precondition in service.Precondition)
{
#>
 if (!(<#=precondition.Condition.Replace("=","==").Replace("<>","!=").
 Replace("<==","<=").Replace(">==",">=").Replace("and","&&").
 Replace("or","||").Replace("AND","&&").Replace("OR","||")#>))
 throw new
InvalidPreconditionException("<#=aspect.Name#>","<#=service.Name#>");

<#
}

...

Case Study
Description

This pattern is illustrated using a precondition associated to the service newPostion
of the aspect FJoint of the TeachMover architectural model. The representation of
the precondition in the PRISMA model and the C# code generated from this model
by applying this pattern are presented following.

Graphical representation

Model-Driven Development of Aspect-Oriented Software Architectures

280

Result of the pattern execution

...
public AsyncResult newPosition(int NewSteps)
{

...

if (!(NewSteps > -200 || NewSetps < 200))
 throw new InvalidPreconditionException("FJoint","newPosition");

...

}
...

Related Patterns
Pattern 2, Pattern 5, Pattern 6, and Pattern 7.

A.2.5. Valuations

Pattern 11: Valuations
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a valuation.

PRISMA Code Generation Patterns

281

Template

...

/* Valuations */

foreach(Valuation valuation in service.Valuations)
{
 if(valuation.ServiceModifier != AServiceModifier.Out)
 {
 if (valuation.Condition == String.Empty)
 {
 foreach(string valuationItem in
valuation.Assignment.Replace(":=","=").Split(','))
 {
 string Item=valuationItem;
 if(Item.StartsWith(" "))
 Item=Item.Substring(1);
#>
 <#=Item#>;
<#
 }
 }
 else
 {
#>
 if
(<#=valuation.Condition.Replace("=","==").Replace("<>","!=").

Replace("<==","<=").Replace(">==",">=").Replace("and","&&").

Replace("or","||").Replace("AND","&&").Replace("OR","||")#>)
 {
<#
 foreach(string valuationItem in
 valuation.Assignment.Replace(":=","=").Split(','))
 {
 string Item=valuationItem;
 if(Item.StartsWith(" "))
 Item=Item.Substring(1);
#>
 <#=Item#>;
<#
 }
 if(valuation.Condition != String.Empty)
 {
#>
 }

<# }
 }
 }
}

...

Model-Driven Development of Aspect-Oriented Software Architectures

282

Case Study
Description

This pattern is illustrated using a valuation of the service currentPosition of the
aspect FJoint of the TeachMover architectural model. The representation of this
valuation in the PRISMA model and the C# code generated from this model by
applying this pattern are presented following.

Graphical representation

Result of the pattern execution

...
public AsyncResult currentPosition(ref int Pos)
{

...
 Pos=halfSteps;

...
}

...

Related Patterns
Pattern 2, Pattern 5, Pattern 6, and Pattern 7.

PRISMA Code Generation Patterns

283

A.2.6. Constraints
Pattern 12: Constraints
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a constraint.

Template

...

 /* Comprobación de las Restricciones de Integridad*/
 foreach(Constraint constraint in aspect.Constraints)
 {
#>
 if (!(<#=constraint.Condition.Replace("=","==").Replace("<>","!=").
 Replace("<==","<=").Replace(">==",">=").Replace("and","&&").
 Replace("or","||").Replace("AND","&&").Replace("OR","||")#>))
 throw new
InvalidIntegrityConstraintException("<#=aspect.Name#>","<#=service.Name#>");

<#
 }

...

Model-Driven Development of Aspect-Oriented Software Architectures

284

Case Study
Description

This pattern is illustrated using a constraint of the aspect FJoint of the TeachMover
architectural model. The representation of this contraint in the PRISMA model and
the C# code generated from this model by applying this pattern are presented
following.

Graphical representation

Result of the pattern execution

...

public AsyncResult newPosition(int NewSteps)
{

...

 if (!(halfSteps > -200 && halfSteps < 200))
 throw new InvalidIntegrityConstraintException("FJoint","newPosition");

...

}

...

PRISMA Code Generation Patterns

285

Related Patterns
Pattern 2, Pattern 6, Pattern 7, and Pattern 8.

A.2.7. State of the Protocol
Pattern 13:State of the Protocol
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code that permits the change of state
after a service execution.

Template

...

/* Update of the state of the protocol */
foreach(StateHasState stateHasState in service.StateHasState)
{
 if (!(stateHasState.Source is SubState) &&
 (stateHasState.Transaction ==null && (IsSequence > 0)))
 {
 if (stateHasState.Target is SubState)

Model-Driven Development of Aspect-Oriented Software Architectures

286

 {
 SubState subState = stateHasState.Target as SubState;
 System.Collections.IList substateLinks=
 subState.GetElementLinks(subState.Source.TargetRole.Id);
 StateHasState subStateHasStateProtocol=null;
 int i=0;
 while(i<substateLinks.Count)
 {
 if(substateLinks[i] is StateHasState)
 {
 subStateHasStateProtocol=(StateHasState)substateLinks[i];
 i++;

 if(subStateHasStateProtocol.Target is SubState)
 {
 subState = subStateHasStateProtocol.Target as SubState;
 substateLinks=
subState.GetElementLinks(subState.Source.TargetRole.Id);
 i=0;
 }
 } /*End if(substateLinks[i] is StateHasState)*/
 }/*End While(i<substateLinks.Count) */
#>
 if (state == protocolStates.<#=stateHasState.Source.Name#>

<#
 if (stateHasState.Condition != "")
 {
#>
 && <#=stateHasState.Condition#>

<# }

#>)
 state = protocolStates.<#=subStateHasStateProtocol.Target.Name#>;

<#
 }
 else {
#>
 if (state == protocolStates.<#=stateHasState.Source.Name#>

<#
 if (stateHasState.Condition != "")
 {
#>
 && <#=stateHasState.Condition#>

<# }
#>)
 state = protocolStates.<#=stateHasState.Target.Name#>;
<#
 }
 }
}

...

PRISMA Code Generation Patterns

287

Case Study
Description

This pattern is illustrated using the change of state that generates the service
currentPosition of the aspect SMotion of the TeachMover architectural model. The
representation of this change of state in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Como ejemplo de código generado para actualizar el estado de un aspecto
tras ejecutar un servicio, se puede observar el resultado obtenido en el
servicio “currentPosition” del aspecto “SMotion”.

Graphical representation

Result of the pattern execution

...

public AsyncResult currentPosition(ref int Pos)
{

...

 if (state == protocolStates.CHECKING)
 state = protocolStates.CHECKING;

...
}

...

Related Patterns
Pattern 2, Pattern 6, Pattern 7, and Pattern 8.

Model-Driven Development of Aspect-Oriented Software Architectures

288

A.2.8. Processing of a service sequence
Pattern 14: Processing of a service sequence
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a service sequence of the
protocol.

Template

...

/* Processing of the executions of services that belong to a service sequence
of the protocol */

int IsSequence=0;
foreach(StateHasState stateHasState in service.StateHasState)
{
 if(stateHasState.Transaction == null)
 {
 if (!(stateHasState.Source is SubState))
 {

PRISMA Code Generation Patterns

289

 IsSequence++;
 if (stateHasState.Target is SubState)
 {
 IsSequence--;
 SubState subState = stateHasState.Target as SubState;
#>
 if (state == protocolStates.<#=stateHasState.Source.Name#>)
 {
 state = protocolStates.<#=stateHasState.Target.Name#>;
<#
 if(stateHasState.Condition != String.Empty)
 {
#>
 if(<#=stateHasState.Condition#>)
 {
<#
 }
 System.Collections.IList substateLinks=
subState.GetElementLinks(subState.Source.TargetRole.Id);
 StateHasState subStateHasState=null;
 int i=0;
 while(i<substateLinks.Count)
 {
 if(substateLinks[i] is StateHasState)
 {
 subStateHasState=(StateHasState)substateLinks[i];
 if(subStateHasState.Condition != String.Empty)
 {
#> if(<#=subStateHasState.Condition#>)
 {
<#
 }
 foreach(Argument element in
subStateHasState.Service.Arguments)
 {
 if(!attributes.Contains(element.Name) &&
!parameters.Contains(element.Name))
 {
 parameters.Add(element.Name,null);
#>
 <#=DomainToType(element.Domain)#> <#=element.Name#>=0;

<#
 }
 }
 /* A service OUT is invoked*/
 if(subStateHasState.Modifier == TransitionModifier.Out)
 {
#>
 InvokeOutService("<#=subStateHasState.PlayedRole.Interface.Name#>",
 "<#=subStateHasState.PlayedRole.Name#>",
 "<#=subStateHasState.Service.Name#>",
 this.aspectStateCareTaker.ActiveTransaction,

<#=CommaSeparatedNames(subStateHasState.Service.Arguments)#>);
<#
 }
 /* A private service of the aspect is invoked */
 if(subStateHasState.PlayedRole==null)
 {

Model-Driven Development of Aspect-Oriented Software Architectures

290

#>
 <#=subStateHasState.Service.Name#>(
 <#=CommaSeparatedNames4(subStateHasState.Service.Arguments)#>);

<#
 }
 /* Executes a service IN as a private service of the aspect
 because it is in a transition of the protocol */
 if(subStateHasState.Modifier == TransitionModifier.In)
 {
#> <#=subStateHasState.Service.Name#>(

<#=CommaSeparatedNames4(subStateHasState.Service.Arguments)#>);
<# }

 if(subStateHasState.Condition != String.Empty)
 {
#>
 }
<#
 }
#>
 state=protocolStates.<#=subStateHasState.Target.Name#>;
<#
 i++;
 if(subStateHasState.Target is SubState)
 {
 subState = subStateHasState.Target as SubState;
 substateLinks=

subState.GetElementLinks(subState.Source.TargetRole.Id);
 i=0;
 }
 } /*End if(substateLinks[i] is StateHasState)*/
 }/*End While(i<substateLinks.Count) */

 if(stateHasState.Condition != String.Empty)
 {
#> }
<#
 }
#>
 }
<#
 }
 }
 }
}

...

PRISMA Code Generation Patterns

291

Case Study
Description

This pattern is illustrated using the sequence of services after the service MoveOk of
the aspect CProcressSUC of the TeachMover architectural model. The
representation of the sequence of services in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Graphical representation

Result of the pattern execution

...

public AsyncResult moveOk()
{
 // Modo In
 if(ServiceIn)
 {
 if(state != protocolStates.COOR
 && state != protocolStates.SubStateUpPos
) throw new InvalidProtocolStateException("CProcessSUC","moveOk");
 if (state == protocolStates.COOR)
 {
 state = protocolStates.SubStateOkMove;
 int NewSteps=0;

 InvokeOutService("IUpdatePos","UPDATEPOS","newPosition",this.aspectSta
teCareTaker.ActiveTransaction,NewSteps);
 state=protocolStates.SubStateUpPos;

 InvokeOutService("IJoint","JOINT","moveOk",this.aspectStateCareTaker.A
ctiveTransaction,null);
 state=protocolStates.COOR;
 }

Model-Driven Development of Aspect-Oriented Software Architectures

292

 return null;

 }
 // Modo Out
 else
 {
 return
CallOutService(this.interfaceName_ServiceOut,this.playedRoleName_ServiceOut,"
moveOk",this.aspectStateCareTaker.ActiveTransaction,null);
 }

}

...

Related Patterns
Pattern 2, Pattern 5, Pattern 6, and Pattern 7.

A.3. SIMPLE ARCHITECTURAL ELEMENTS: COMPONENTS AND
CONNECTORS

Pattern 15: Simple Architectural Elements
PRISMA metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a simple architectural
element. Specifically, it only generates the structure of the architectural model, the
internal code of this structure, that is, ports, aspects and weaving, is generated by
other patterns related to it.

PRISMA Code Generation Patterns

293

Template

...
using System;
using System.Reflection;

using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace <#=this.Model.Name#>
{
<#
foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)
{
 if (architecturalElement is Component || architecturalElement is Connector)
 {
#>
 [Serializable]
 public class <#=architecturalElement.Name#> : ComponentBase
<#
 if (architecturalElement is Connector)
 {
#>
 , IConnector
<#
 }
#>
 {
 public <#=architecturalElement.Name#>
 (string name<#=ArchitecturalElementArguments(architecturalElement)#>) :
base(name)
 {
<#

/* Aspects */
/* Weavings */
/* Ports */

#>
 }
 }
<#
 }/* endif (architecturalElement is Component || architecturalElement is
Connector)*/

...

Case Study
Description

 This pattern is illustrated using the component Actuator of the TeachMover case
study. The representation of the Actuator in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Model-Driven Development of Aspect-Oriented Software Architectures

294

Graphical representation

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class Actuator : ComponentBase
 {
 public Actuator(string name) : base(name)
 {
 /* Aspects */
 /* Weavings */
 /* Ports */
 }
 }
}

...

Related Patterns
Pattern 16, Pattern 17 and Pattern 18.

PRISMA Code Generation Patterns

295

A.4. COMPLEX ARCHITECTURAL ELEMENTS: SYSTEMS

Pattern 16: Systems
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a system.

Template

...

using System;
using System.Reflection;

using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace <#=this.Model.Name#>
{
<#
foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)
{
 if (architecturalElement is Component || architecturalElement is Conector)
 {

Model-Driven Development of Aspect-Oriented Software Architectures

296

...
 }
 else
 {
 if (architecturalElement is Sistem)
 {
 Sistem system = architecturalElement as Sistem;
#>
 [Serializable]
 public class <#=architecturalElement.Name#> : SystemBase
 {
 public <#=architecturalElement.Name#>(string
name<#=ArchitecturalElementArguments(architecturalElement)#>) : base(name)
 {
<#

/* Aspects */
/* Weavings */
/* Ports */

#>
 }
 }
<#
 }/*if (architecturalElement is Sistem)*/
 }
 }/* endforeach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements) */
#>
}

...

Case Study
Description

This pattern is illustrated using the system Joint of the TeachMover architectural
model. The representation of the Joint in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Graphical representation

PRISMA Code Generation Patterns

297

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class Joint : SystemBase
 {

 public Joint(string name) : base(name)
 {
 /* Aspects */
 /* Weavings */
 /* Ports */
 }
 }
}

...

Related Patterns
Pattern 17, Pattern 18, and Pattern 19.

Model-Driven Development of Aspect-Oriented Software Architectures

298

A.5. IMPORTATION OF ASPECTS FROM AN ARCHITECTURAL
ELEMENT

Pattern 17: Aspects Importation
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from the importation of aspects
that makes an architectural element.

Template

...
<#
 foreach (Aspect aspect in architecturalElement.Aspects)
 {
#>
 AddAspect(new <#=aspect.Name#>(<#=AspectArguments(aspect)#>));

<#
 } /* endforeach (Aspect aspect in this.Model.Aspects)*/
#>

...

PRISMA Code Generation Patterns

299

Case Study
Description

This pattern is illustrated using the importation of the aspect SMotion from the
connector CnctJoint of the TeachMover architectural model. The representation of
this aspect importation in the PRISMA model and the C# code generated from this
model by applying this pattern are presented following.

Graphical representation

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class CnctJoint : ComponentBase , IConnector
 {

 public CnctJoint(string name, int IniMin, int IniMax, int IniPos) :
base(name)
 {
 AddAspect(new CProcessSUC());
 AddAspect(new SMotion(IniMin, IniMax, IniPos));

...
 }
 }
}

...

Model-Driven Development of Aspect-Oriented Software Architectures

300

Related Patterns
Pattern 14, and Pattern 15.

A.6. WEAVINGS

Pattern 18: Weavings
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from weaving.

Template

...
<#
foreach (Weaving weaving in architecturalElement.Weavings)
{
 if(weaving.Operator.Equals(WeavingOperator.before) ||

PRISMA Code Generation Patterns

301

 weaving.Operator.Equals(WeavingOperator.after) ||
 weaving.Operator.Equals(WeavingOperator.insteadof))
 {
#>
 AddWeaving(GetAspect(typeof(<#=weaving.SourceAspect.Concern#>Aspect)),

"<#=weaving.SourceService.Name#>","<#=weaving.APoincutParameters#>",
 WeavingType.<#=weaving.Operator.ToString().ToUpper()#>,

GetAspect(typeof(<#=weaving.PointcutAspect.Concern#>Aspect)),
 "<#=weaving.PointcutService.Name#>",
 "<#=weaving.AAdviceParameters#>");

<#
 }
 else
 {
 //El separador dentro de la condición debe ser un espacio.
 string parametro_condicion=weaving.Condition.Split(' ')[0];
 string operador=weaving.Condition.Split(' ')[1];
 string valor_condicion=weaving.Condition.Split(' ')[2];
#>
 WeavingType weavingType =
 WeavingType.<#=ChangeWeavingType(weaving.Operator.ToString())#>
 ("<#=parametro_condicion#>",

WeavingType.OperatorType.<#=ChangeOperator(operador)#>,
 <#=valor_condicion#>);

 AddWeaving(GetAspect(typeof(<#=weaving.SourceAspect.Concern#>Aspect)),

"<#=weaving.SourceService.Name#>","<#=weaving.APoincutParameters#>",
 weavingType,

GetAspect(typeof(<#=weaving.PointcutAspect.Concern#>Aspect)),
 "<#=weaving.PointcutService.Name#>",
 "<#=weaving.AAdviceParameters#>");

<#
 }
}/* endforeach (Weaving in architecturalElement.Weavings) */
#>

...

Case Study
Description

This pattern is illustrated using the BeforeIf weaving betweem the aspects
CProcessSUC and CnctJoint of the TeachMover architectural model. The
representation of this weaving in the PRISMA model and the C# code generated
from this model by applying this pattern are presented following.

Model-Driven Development of Aspect-Oriented Software Architectures

302

Graphical representation

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class CnctJoint : ComponentBase , IConnector
 {

 public CnctJoint(string name, int IniMin, int IniMax, int IniPos) :
base(name) {

...

WeavingType weavingType=
WeavingType.BEFOREIF_VALUE("Secure",WeavingType.OperatorType.Equality,true);

PRISMA Code Generation Patterns

303

AddWeaving(GetAspect(typeof(SafetyAspect)), "check","NewSteps,Secure",
weavingType,
 GetAspect(typeof(CoordinationAspect)), "moveJoint",
"NewSteps,Speed");

...
 }
 }
}

...

Related Patterns
Pattern 14, and Pattern 15.

A.7. PORTS

Pattern 19:Ports
PRISMA Metamodel in DSL Tools Graphical Metaphor

Transformation
Description

This pattern details how to generate the C# code from a port of an architectural
element.

Model-Driven Development of Aspect-Oriented Software Architectures

304

Template

...
<#
foreach (Port port in architecturalElement.Ports)
{
 if(port.PlayedRole !=null)
 {
#>

InPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>",
"<#=port.PlayedRole.Name#>");

OutPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>",
"<#=port.PlayedRole.Name#>");

<#
 }
 else if(port.IA_PlayedRole !=null)
 {
#>
InPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>",
 "<#=port.IA_PlayedRole.Name#>");

OutPorts.Add("<#=port.Name#>", "<#=port.Interface.Name#>",
 "<#=port.IA_PlayedRole.Name#>");

<# }
 }/* endforeach (Port port in architecturalElement.Ports) */
#>

...

Case Study
Description
This pattern is illustrated using the port PUpPos of the CnctJoint connector of the
TeachMover architectural model. The representation of the PUpPos in the
PRISMA model and the C# code generated from this model by applying this pattern
are presented following.

Graphical representation

PRISMA Code Generation Patterns

305

Result of the pattern execution

...
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
 [Serializable]
 public class CnctJoint : ComponentBase , IConnector
 {

 public CnctJoint(string name, int IniMin, int IniMax, int IniPos) :
base(name) {

...

 InPorts.Add("PUpPos", "IUpdatePos", "UPDATEPOS");
 OutPorts.Add("PUpPos", "IUpdatePos", "UPDATEPOS");

...
 }
 }
}

...

Related Patterns
Pattern 14, and Pattern 15.

