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Introduction

CHAPTER 1
INTRODUCTION

The work presented in this thesis of master is an approach that takes advantage of the Mode-
Driven Development approach for developing complex software systems. This approach
improves the software quality and reduces the time and cost invested in its development and
maintenance processes. It is supported by the results obtained in the thesis of Pérez [PerO6c]: a
model, a language, a methodology, and a Computer-Aided Software Engineering (CASE) tool
prototype. The model and the tool defined in this work are called PRISMA and PRISMA
CASE, respectively. The PRISMA model combines two approaches to define software
architectures: the Component-Based Software Development (CBSD) and the Aspect-Oriented
Software Development (AOSD). The main contributions of the model are the way that it
integrates both approaches to take their advantages as well as the definition of a formal Aspect-
Oriented Architecture Description Language (AOADL). The AOADL is independent of
technology and is based on a formal language and formalisms that preserve non-ambiguity for
applying code generation techniques.

In this thesis of master, a step forward on the work of [Per06c] is done. A complete MDD
support for the PRISMA approach is defined. It follows the Paradigm of Automatic
Programming [Bal85] by applying the Model-Driven Development (MDD) approach. In
addition to the code generation, the MDD approach defined in this thesis of master defines

15



Model-Driven Development of Aspect-Oriented Software Architectures

verification and reusability properties associated to the MDD process of aspect-oriented
software architecture.

The structure of this chapter is as follows: Section 1 introduces the motivation of this work.
Section 2 explains the main goals of this thesis of master, section 3 presents the research
methodology that has been followed during the development of the thesis, and section 4

summarizes the structure of the thesis.

1.1. MOTIVATION

Complex structures, non-functional requirements, heterogeneity, scalability, traceability,
reusability and maintainability are leading properties that current software systems need to deal
with. In the last few years, these properties have increased the time and the staff invested in the
development and maintenance processes of software. As a result, there is greater interest in
research areas to reduce the time and the cost invested in these software system processes. In
order to achieve the milestones of software products and to overcome the competitiveness of
the market, models for the software development, techniques to improve reusability and
processes to support automation, traceability and maintainability of software have been
proposed.

Some new approaches have recently emerged in order to improve software development.
They try to improve the early stages of the software life cycle by automating their activities as
much as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD
is a software development paradigm that is based on models that use automatic generation
techniques in order to obtain the software product. MDD is included within Model-Driven
Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be
represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The
use of models to develop software provides solutions that are independent of technology,
whose source code can be obtained by means of automatic code generation techniques for
different technologies and programming languages. The high level of abstraction that models
provide permits working with metamodels in the same way as with specific models or domain-

specific models.
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Introduction

The complexity, heterogeneity, scalability and reusability properties of current software
systems have led to considering the analysis of the software structure as an important phase of
the software life cycle. As a result, in the last two decades, a new research area called Software
Architectures has emerged. Software architectures are presented as a solution for the design and
development of complex software systems.

The Component-Based Software Development (CBSD) approach is used in the field of
software architectures. This approach decomposes the software system into reusable entities
called components. Components provide services to the rest of the system by encapsulating
their functionality (black boxes). As a result, software architectures can be described preserving
the reusability of their components.

The reusability of software allows the same software artefact to be used in different places
of the same application or in different applications. The artefact is only programmed one time
and can be used more than once. This reusability reduces the development time of software
systems. Also, reused software artefacts guarantee their quality and suitable functionality
because they have been tested and used before. As a consequence, the COTS (Commercial
Off-The-Shelf) importation has acquired relevance, because tools that allow the reuse of their
components and the COTS importation achieve the highest reuse and quality code.

Another approach that has emerged to improve reusability is the Aspect-Oriented Software
Development (AOSD) approach. This approach allows for the separation of concerns by
modularizing crosscutting concerns into a separate entity called aspect. As a result, the same
aspect can be reused by different software artefacts, which are usually, objects.

The automatic code generation from models reduces the cost and time of the development
process as well. Nowadays, there are many CASE tools that are able to generate applications
following the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are
widely-known as model compilers. They automatically generate the application code and the
database schema from the conceptual schema of a software system. The automatic generation
can be complete as in Oblog Case [Ser94], OlivaNova® (OO-Method/CASE [Pas97]), or it

can be partial, as in Rational Rose [RAT07], System Architect [SYS07], Together [TOGO07]
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and others. However, since these model compilers follow the Object-Oriented Paradigm, the
need for developing model compilers that follow the CBSD and/or AOSD approaches has
emerged. The combination of the CBSD and AOSD reusability and the automatic code
generation achieves higher reduction in the time and cost of the development process than
using only one of these approaches.

In the software life cycle, the maintenance process is as important as the development
process due to the fact that the requirements of software systems are continuously evolving,
The sources of these changes can be caused by several factors. First of all, the requirements
specifications are inaccurate and ambiguous and these deficiencies promote misunderstandings
from the very beginning of the software life cycle. An incorrect requirements specification can
be produced by an inexperienced analyst, by a lack of accuracy in the presentation of the
customer’s needs or by a misunderstanding between the analyst and the customer because of
the semantic gap in their vocabularies. This means that the software product will require
continuous changes until the software that the customer really wanted is finally produced. The
traceability among the different stages of the software life cycle must be preserved in order to
ensure quality maintenance of software products.

An important challenge in the software engineering area is the integration of software
architectures, CBSD, AOSD and MDD in a unique approach in order to support the

development and maintenance of complex software systems in an efficient way.

1.2.0OBJECTIVES OF THE THESIS
The main goal of this thesis is to provide a complete support for the development of PRISMA
models following the MDD approach, i.e., the support for the development of technology-
independent aspect-oriented software architectures. In addition, the PRISMA CASE must
make this software development support feasible.
The main goal of the thesis can be divided into several specific objectives:

» To extend the related works presented in [PerO6c] of the proposals that integrate the

aspect-orientation approach and ADLs in order to take into account in this comparison the

MDD support that these proposals provide.
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» To analyze, define and formalize a coordination model that improves the reusability,
maintainability and traceability of aspect-oriented software architectures.

» To define the MDD process of the PRISMA approach

» To define a verification process associated to the proposed MDD process. This verification
process must be flexible and intuitive in order to be an important help for the user during
the modelling stage of the MDD process.

» To introduce the use of COTS in the PRISMA MDD process. This introduction must
preserve the PRISMA properties to be compliant with the PRISMA model and to
maintain the PRISMA advantages.

» To define a methodology to follow the proposed MDD and verification processes and to
provide support for the use of COTS.

» To modify and extend the PRISMA CASE Tool in order to support the PRISMA MDD
process, its methodology, verification and the use of COTS.

1.3.RESEARCH METHODOLOGY OF THE THESIS

The research methodology that has been applied in order to fulfil the objectives proposed in this
thesis follows a classical methodological strategy often called the “feasibility research strategy”.
This methodology departs from a generic and conceptual hypothesis that is presented as a
contribution in the area in which the thesis is developed. This hypothesis is based on a previous
analysis of the state of art where the contribution of the thesis is justified. This thesis departs
from the following hypothesis: Is it possible to define and implement software aspect-oriented
software architectures following a Model-Driven Development Process?. In addition, the thesis
departs from the results previously obtained from the thesis [Per06c¢] and the set of objectives
that have been established in order to answer this question. From this starting point, the main
goal of this thesis is to reach to a software engineering solution that copes with the set of

specific objectives that have been established in section 1.2 .
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1.4.STRUCTURE OF THE THESIS

The remainder of this thesis is organized in the following chapters:

>

20

Chapter 2: Preliminaries

This chapter provides an introduction to the role of software architectures in the software
life cycle and their main concepts. It also establishes a conceptual base for the aspect-
oriented paradigm. Finally, it is introduced the case study that has been chosen to illustrate
the contributions of this thesis.

Chapter 3: State of the Art

This chapter extends the analysis of [Per06c] of the most relevant approaches that integrate
aspects in software architectures. It includes the MDD support as part of the set of
desirable properties that aspect-oriented software architecture approaches should fulfil.

Chapter 4: PRISMA Background
This chapter introduce the PRISMA model and metamodel as the basis of the rest of the

thesis of master. Therefore, this thesis is self-content.

Chapter 5: Coordination

This chapter discuss the interest of using aspect-oriented connectors in detail, justifying the
relevance of the PRISMA model and its merits with regard to other proposals, especially
to provide a complete MDD support. It is described the concrete structure of connectors in
PRISMA, and it is also defined the formalization of the relevant PRISMA concepts for

coordination.

Chapter 6: Model-Driven Development
This chapter presents the MDD proposal for the PRISMA approach and how to be
supported by PRISMA CASE Tool.



Introduction

Chapter 7: Verification

This chapter presents how the PRISMA approach provides a complete support for the
verification of aspect-oriented architectural models following the MDD approach. The
verification proposal and how PRISMA CASE makes feasible this verification are
presented in detail.

Chapter 8: Commercial Off-The Self

This chapter presents a proposal for integrating COTS into aspect-oriented architectural
models that are developed and maintained following the Model-Driven Development
(MDD) approach. In addition, this chapter presents how PRISMA CASE supports the use
of COTS in the PRISMA model.

Chapter 9: The PRISMA MDD Methodology

This chapter presents the PRISMA methodology in order to develop aspect-oriented
software architectures following the PRISMA MDD process. This methodology takes
advantage of the PRISMA reusability properties (coordination model, modelling and
reusability facilities, the use of COTS), the graphical specification of PRISMA models,
and the verification process proposed by the PRISMA approach.

Chapter 10: Conclusions and Further Research

This chapter presents the main contributions of the thesis and future research work.

Appendix A: PRISMA CODE-GENERATION PATTERNS

This appendix presents the patterns that allow the transformation from models to C# code.
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CHAPTER 2
PRELIMINARIES

Nowadays, software systems are becoming more and more difficult to develop due to their
complex structures, non-functional requirements and distributed and dynamic nature. Two
approaches of software development have emerged to overcome these needs: software
architectures and Aspect-Oriented Software Development. This thesis of master is focused in
the development of applications that combine these two approaches by following the MDD
approach.

In this chapter, the basis that is necessary to understand the rest of the chapters is provided. As a
result, an introduction about software architectures and AOSD is presented; as well as the
explanation of the main concepts of both approaches. In addition, the case study that is used to
illustrate the contributions of this thesis is presented.

2.1.SOFTWARE ARCHITECTURES

The complexity of current software systems has led computer community to recognize the
analysis of software structure as an important phase of the software life cycle. As a result in the
last decades, a new research area called Soffware Architecture has emerged to deal specifically
with this phase. The software architecture discipline has emerged due to the natural increase in
size and complexity of current software systems. An inaccurate architectural design leads to the
failure of large software systems. For this reason, the design, specification, and analysis of the
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structure of these software systems have become critical issues in software development
[Gar01].

Software architectures are presented as a solution for the design and development of large,
complex software systems. They allow us to describe the structure of a software system by
hiding the low-level details and abstracting the high level important features [Per92]. This
structure is usually represented in terms of computational elements and their interactions. As a
result, software architectures make software systems simpler and more understandable
[Gar95a].

The software architecture discipline is capable of performing the following functions:
analyze and describe the properties of systems at a high level of abstraction; validate software
requirements; estimate the cost of the development and maintenance processes; reuse software,
and establish the bases and guides for the design of large complex software systems [Per92]. At
the same time, software architectures should be adaptable and should provide support for the
reuse of architectural elements and of partial or complete software architecture descriptions in
the new software architecture specifications. Thus, new designs are not started from scratch and
only the specific features of the new systems are created from the beginning [Per92].

However, despite the attempt of the IEEE to standardize the software architecture discipline
[IEEO0], there is no consensus about the definition of software architecture and the different
concepts and approaches to be used in this field. The main drawback of this deficiency is the
fact that the concept of software architecture is used in different ways and sometimes, it is
really difficult to know what the exact meaning is. As a result, it is common to refer to several
definitions in order to provide a complete notion of the concept of software architecture.

There are some definitions of software architecture that are general and non-exclusive;
however at the same time, they are incomplete, non-explicit, and imprecise definitions. An

early definition that was defined by Perry and Wolf'is:

<< A software architecture is a set of architectural (or, if you will, design)
elements that have a particular form.>>

Dewayne Perry and Alex Wolf [Per92]
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Another modern definition that it is typically used to define software architecture is the
definition presented by Bass, Clements and Kazman.

<<The sofiware architecture of a program or computing system is the structure or
structures of the system, which comprise sofiware elements, the externally visible
properties of those elements, and the relationships among them.>>

Len Bass, Paul Clements and Rick Kazman [Bass03]

However, this definition is also imprecise and incomplete because of a lot of questions
emerge from this definition: For example, What is a structure?, What is an external visible
property?, and so forth.

The definition of Garlan and Perry is also used to define software architecture; in fact, this is
the definition proposed by the Software Engineering Institute (SEI).

<<The structure of the components of a program/system, their interrelationships,
and principles and guidelines governing their design and evolution over time.>>

David Garlan and Dewayne Perry [Gar95a]

The definition that is recommended by the ANSI/IEEE Std 1471-2000 is in essence a small
variation of Garlan and Perry’s definition.

<<Architecture is defined by the recommended practice as the fundamental
organization of a system, embodied in its components, their relationships to each

other and the environment, and the principles governing its design and evolution.>>
ANSVIEEE Std 1471-2000 [IEE00]
There are other proposals that are not exactly definitions of software architecture but which
are more specific and address the issues of the software architecture discipline. Some of them

are the following:
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<< Beyond algorithms and data structures of the computation,; designing and
specifying the overall system structure emerge as a new kind of problem. Structural
issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to
design elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives.>>

David Garlan and Mary Shaw [Gar93]

<< An architecture is the set of significant decisions about the organization of a
software system, the selection of the structural elements and their interfaces by which
the system is composed, together with their behaviour as specified in the
collaborations among those elements, the composition of these structural and
behavioural elements into progressively larger subsystems, and the architectural style
that guides this organization—these elements and their interfaces, their
collaborations, and their composition™>>

Jan Booch, Rumbaugh and Jacobson [Boo99]

From all these different definitions, it is possible to conclude that there are two principle
kinds of definitions: those that define the concept of software architecture and those that define
the specification of software architectures. The former are characterized by being general and
non-specific and the latter are characterized by being an enumeration of issues related to the
description of software architectures. However, there is a common concept in both kinds of
definitions; they are both concerned with the notion of structure and how to organize software.

Software architecture descriptions are specified in a formal way using ADLs. Despite the
diversity of the different ADLs that have been proposed to date, all of them share a common
conceptual basis. They have a common set of elements to design the structure of software
systems. The elements that provide a common foundation for software architecture

descriptions are introduced in this section.
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2.1.1. Component
The concept of component is the basis of software architecture and the concept that ADLs

share par excellence. A component is a computational element that permits users to structure
the functionality of software systems. It has a high level of encapsulation and it is only possible
to interact with it by means of its interfaces. Most ADLs permit the definition of more than one
interface for each component. The interface or multiple interfaces of a component define the
functionality that the component requires and provides. In this sense, components are
considered as black boxes.

The concept of component is not only used in the field of software architecture. For this
reason, it is sometimes difficult to know the exact meaning of the concept, and there is no
consensus about the definition of component and how to identify the components that make up
a software system. There are two tendencies: one is implementation-oriented and the other is
more generic. The first one covers definitions that are related to the fact that a component is a
package of code [DS099]; whereas the second one defines a component as an artefact that has
been developed to be reused. This second definition is abstract and generic, and a component
could be a use case, a class or another element that emerges during the development process.
The definition of component in the software architecture field is also in this category. There are
a lot of definitions for component; the most widely used definition in the software architecture
field is the one proposed by Szyperski.

<< A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A sofiware component can be

deployed independently and is subject to composition by third parties>>
Clemens Szyperski [Szy98]

Another well-known definition is the one of Meyer based on the “seven criteria”:
<<4 component is a software element that:

1. May be used by other software elements
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2. May be used by clients without the intervention of the component’s developer
3. Include a specification of all dependencies
4. Include a specification of the functionality it offers
5. Is usable on the sole basis of its specifications
6. Is composable with other components
7. Can be integrated into a system quickly and smoothly>>
Bertran Meyer[MEY07] [Szy00]
This “seven criteria” definition of component has been refined over time by the following
one:
<<4 component is a softiware element (modular unit) satisfying the following
three conditions:
1. It can be used by other sofiware elements, its “clients”.
2. It possesses an official usage description, which is sufficient for a client author
fo use it.
3. Itis not tied to any fixed set of clients. >>
Bertran Meyer [Mey03]

Despite the fact that D’Souza advocates the module of code notion for the definition of

component, he also provides a generic definition for component:

<<A component is a coherent package of software artefacts that can be
independently developed and delivered as a unit and that can be composed,
unchanged, with other components to build something larger>>

Desmond D ’Souza[DS099]

2.1.2. Connector
The concept of connector emerges from the need to separate the interaction from the

computation in order to obtain more reusable and modularized components and to improve the

level of abstraction of software architecture descriptions.
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Connectors represent the interactions of software systems. They define the coordination
process among components, that is, the rules that govern the interaction of components.
Interfaces are the way to interact with them and these interfaces represent the roles that each
one of the components plays in the coordination process.

Mary Shaw [Sha94] defines the notion of connector as follows:

<<Connectors are the locus of relations among components. They mediate
interactions but are not “‘things” to be hooked up (they are, rather, the hookers-up).
Each connector has a protocol specification that defines its properties. These
properties include rules about the types of interfaces it is able to mediate for,
assurances about properties of the interaction, rules about the order in which things
happen, and commitments about the interaction such as ordering, performance,
etc.>>

Mary Shaw [Sha94]

2.1.3. Port
The concept of port is related to architectural elements, components, and connectors. Ports are

the points through which architectural elements can interact with the rest of a software
architecture. They are the parts into which the interface of an architectural element is divided.

Their main function is to preserve the black box view of architectural elements and to
publish the behaviour offered and required by architectural elements. They have been used in
different ways; some approaches consider a port as a service and other approaches as a process
with several services. This last way of defining ports, not only defines the services of ports, but
also the conditions of how and when they can be required and provided.

Different names have been used to refer to this concept. Some of them use the name of port
to refer to ports of architectural elements, while other approaches use the name of port to refer
to the ports of components and the name of role for ports of connectors. Other less frequently

used names are players or name of interfaces.
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In this thesis, it will be used the generic name of port to refer to both component and

connectors ports.

2.1.4. Connection
Connections are used to constrain the “placement” of architectural elements; that is, they

constrain how the different elements may interact and how they are organized with respect to
each other in the architecture [Per92].

They establish the communication channels among architectural elements. They connect a
component port with a connector port or with a port of another component [Luc95a],
depending on whether the connectors are considered first-order citizens or not, respectively. In
this thesis, since connectors are considered first-order citizens, a connection is established
between a component port and a connector port. These connections are usually called

attachments.

2.1.5. System

Most architectural approaches need to provide abstraction mechanisms. These mechanisms
permit definition of elements of higher granularity and increase the modularity, composition,
and reuse of software systems. Software composition provides flexible support and a reduction
in complexity for the development process of software systems [Nie95].

These needs and advantages have led to a wide variety of architectural models and their
ADLs to provide the concept of complex component. A complex component is a component
that is composed by other architectural elements. Systems represent architectural configurations
that are made up of connectors and components that can be built in a hierarchical way. For this

reason, a system can be composed of other subsystems [And03].

2.1.6. Composition Relationship
Compositional relationships emerge with systems due to the fact that it is necessary for systems

to communicate with their architectural elements. These connections are different from
attachments because they are used to connect architectural elements of different levels of

granularity. As a result, the semantics of these connections is compositional, whereas
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attachments have a communication semantics that is not compositional (the same level of
granularity). These relationships are usually called Bindings.

Bindings establish the mappings between the internal and external interfaces of a system
[Gar01]. As a result, bindings establish a connection between a system port and a port of one of
its architectural elements.

2.2.ASPECT-ORIENTED SOFTWARE DEVELOPMENT

The nature of current software systems has led to software being more complex, its modularity
is an essential feature in being more understandable, reusable and maintainable. In addition,
non-functional requirements of software systems are acquiring as much relevance as functional
requirements. As a result, the support of software modularity and non-functional requirements
are essential challenges to be faced in software development. The application of Software
Engineering principles is necessary in order to cope with these challenges. A consolidated
principle of Software Engineering is Separation of Concerns (SoC), which was introduced in
[Par72].

The SoC principle promotes dealing with the different concemns of a software system
individually. [Dij76] demonstrated that this division provides better results and offers many
advantages. A suitable application of SoC provides a reduction in software complexity and an
improvement in the modularity, reuse and maintenance of software artefacts.

In the last decade, Aspect-Oriented Programming (AOP) has emerged as an innovative
way of applying SoC in software development [Kiz97], [EIrO1]. Its proposal is different from
previous ones (packages, modules, classes, interfaces, patterns, etc). The concerns that are dealt
with individually in AOP are those that crosscut a software system, instead of those that can be
perfectly located as software units of a system. As a result, AOP introduces a new notion of
concern. The IEEE defines concerns as:

<<...those interests which pertain to the system’s development, its operation or
any other aspects that are critical or otherwise important to one or more

stakeholders>>
ANSUVIEEE Std 1471-2000 [IEE00]
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Tarr et al. define concern as a predicate over software units [Tar99]. The crosscutting-
concerns concept comes from this notion of concern. Software systems are usually crosscut by
common concerns of a domain system. These crosscutting-concerns are spread throughout the
software units of the system. As a result, the crosscutting-concerns are repeated in all the
software units that they affect, and these concerns are tangled with the other concerns that also
modify the same software unit. The repetition of crosscutting-concerns throughout software
systems increases the volume of code and complicates the maintenance that preserves the
consistency of changes. Furthermore, tangled concerns make the maintenance of a specific
concern more costly because it is so difficult to locate the correct place to introduce the
changes. As a result, AOP proposes the separation of the crosscutting-concerns of software
systems into separate entities, which are called aspects. This separation avoids the tangled code
of software and allows the reuse of the same aspect in different software units (objects,
components, modules, etc.).

AOP applies the notion of aspect to cleanly structure software systems in order to easily
develop, understand, customize, evolve, and maintain software systems. It was introduced to
the research community by the works of Gregor Kizcales [Kiz97], [KizO01].

AOP separates the crosscutting concerns into aspects. It introduces the existence of two
kinds of software units: components and aspects. These are clearly defined in [Kiz97] from the
point of view of a non-aspect-oriented programming language:

<< A component, if it can be cleanly encapsulated in a generalized procedure
(i.e. object, method, procedure, API). By cleanly, we mean well localized, and easily
accessed and composed as necessary. Components tend to be units of the system’s
functional decomposition, such as image filters, bank accounts and GUI widgets.

An aspect, if it can not be cleanly encapsulated in a generalized procedure.
Aspects tend not to be units of the system’s functional decomposition, but rather to be
properties that affect the performance or semantics of the components in systemic
ways. Examples of aspects include memory access patterns and synchronization of

concurrent objects and so forth. >>
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Kizcales et al. [Kiz97]

The origin of AOP is the programming language Aspect] [ASP07a]. Aspect] is currently
the most widely used language for aspect-oriented programming. But, crosscutting-concerns
arise throughout the software life cycle. For this reason, despite the fact that AOP emerged
from the implementation level, its use is being extended to all the stages of the software life
cycle. As a result, Aspect-Oriented Sofiware Development (AOSD) has emerged to gain the
advantages that aspects provide in every stage of software development.

AOP introduces a set of new concepts that are essential for correctly understanding this new
paradigm. These concepts are introduced in this section to establish a conceptual basis for
aspect-oriented programming.

2.2.1. Base Code

AOP introduces a clear differentiation between the base and aspect codes. The base code is
composed of the software units (modules, objects, components) of an application, which have
been obtained as a result of a functional decomposition. However, the aspect code is composed
of the aspects that have been implemented to encapsulate the crosscutting-concerns of the same

application.

2.2.2. Join Point
Join points are situated in the base code of an application. A join point is a semantic concept

that defines a well-defined point of the execution of a base code. This point can extend the base
code with the aspect code, thereby altering the execution flow of the original application. As a
result, join points allow us to suitably coordinate the base code with the aspect code.

In the AOP taxonomy defined by [Dou05], two approaches for specifying join points are
detected: one approach marks the join points using labels [Wal03], [Dan04], and the other one
uses the language constructors [Col00], [Dou01], [Dou2a], [Dou02b], [DouO4a], [Dou04b].
The former introduces a pre-processing procedure that slows the code injection process down
at run-time. The latter is the most widely used way of defining join points. Consequently, this is
the approach that has been adopted for defining join point in this thesis. This approach usually
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matches join points with method calls. The different kinds of join points that this approach uses
are presented and classified in [KizO01].

As [Kiz97] defines, a join point is not an explicit language constructor, it is the semantics of
the language constructor. In other words, the join point is associated to a language constructor;
however, the different instantiations of this constructor will be different join points at run-time.
A clear example is a joint point that is associated to a method call. The different invocations of
this method are different join points with different semantics. The semantics is different
because it depends on the object that has invoked the method, on the instantiation of its
arguments, and so forth.

2.2.3. Pointcut
From the previous section, it can be deduced that an application has a large quantity of join

points in its base code. However, not all join points of the application are interesting or relevant
for injecting aspect code. As a result, the relevant join points for this injection of aspect code
must be selected. The mechanism that permits this selection is the pointcut.

A pointcut is a set of join points, which are candidates for injecting aspect code into base
code at run-time, and their multiple instantiations. Pointcuts perform the weaving between the
base code and the aspect code by capturing joinpoints.

The most widely used pointcut model is the Aspect] model [Dan04], [Jag0O6a], [Jag06b],
[Lam02], [Wal03], [Wan04]. There are also other pointcut models that use more general
execution patterns, such as stack of events, tree of events, sequence of events, etc [Col00],

[Dou2a], [Dou04a], [Mas03].

2.2.4. Advice
An advice defines the code that should be executed at the join points of a specific pointcut.

Advices define additional code for the join points that have been selected by pointcuts. As
[Bru04] cites, the advice code is the profiling code of an aspect-oriented program and the
compiler profiles the join points by executing the advice code at run-time. This process by the
compiler consists of inserting or replacing the base program code is called weaving. The

execution of code depends on the kind of advice. There are three main kinds of advice:
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» Before: The before advice adds code to the base program before the join point. As a result,
the code of the advice is executed before the code of the join point.

» Around: The around advice substitutes the code of the join point. As a result, the code of
the advice is executed instead of the code of the join point.

»  After: The after advice adds code to the base program after the join point. As a result, the
code of'the advice is executed after the code of the join point.

o  After returning: This kind of after advice is executed when the execution of
the join point finishes correctly.

o After throwing: This kind of after advice is executed when the join point
throws an exception. As a result, the code of the advice is executed after the
throwing of the join point.

As [Wan04] concludes, an aspect-oriented program is composed of a base program and

some advices.

2.2.5. Aspect

An aspect is a language constructor that encapsulates a crosscutting-concern. An aspect is
linked to one or more methods of the base code by means of pointcuts. For this reason, an
aspect is composed of pointcuts and an advice. As a result, aspects specify whether their
execution will be before, after or around a method of the base code by means of the advice that
is associated to pointcuts. Despite the fact that aspects are usually pairs of pointcuts and
advices, they can have their own state [Dou05]. The definition of aspect proposed by Kizcales
is the following;

<< Aspects are units of modular crosscutting implementation, composed of

pointeuts, advice, and ordinary Java member declarations. >>

Gregor Kizcales et al. [Kiz01]

2.3.TELE-OPERATED SYSTEMS: THE TEACHMOVER
ROBOT

There is a wide variety of domains that can take advantage of the PRISMA approach for
developing software systems. PRISMA has been put into practice in the tele-operation domain,
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which unlike academic examples, provides real problems that must be solved in real industrial
systems. This domain has been chosen because it offers a framework for applying software
engineering techniques.

The main purpose of this section is to provide an introduction to the tele-operation domain
as well as to present the suitability of tele-operation systems to apply an aspect-oriented
software architecture approach following the MDD paradigm. In addition, the specific robot
that has been completely developed using PRISMA MDD proposal is presented. This robot is
used throughout the thesis in order to illustrate the PRISMA MDD approach and its main
concepts.

2.3.1. The Tele-operation Domain
Tele-operation systems are control systems that depend on software to perform their

operations. Designing these systems is a difficult task that must integrate mechanical and
electrical elements with software components in the same system. They are used for tele-
operating mechanisms (robots, vehicles, and tools) that handle inspection and maintenance
tasks. This thesis focuses specifically on robotic tele-operated systems. Tele-operated robots are
software intensive systems that are used to perform tasks that human operators cannot carry out
due to the dangerous nature of the tasks or the hostile nature of the working environment.

The importance of considering the software architecture in robotic tele-operated systems is
well known [Cos00]. However, despite the fact that robotic tele-operated systems usually have
many common requirements in their definition and many common components in their
implementation, it is impossible for a single architecture to be flexible enough to cope with all
the variability of the domain. Therefore, a further step is needed to provide a flexible and
extensible architectural framework to develop systems with different requirements and
commonalities. There have been numerous efforts to provide developers with frameworks such
as [Bru02], [Sch01] and [Vol01]. All of them make very valuable contributions that simplify
the development of systems. However, the way that the component-oriented approach has been
applied may reduce some of its benefits. These frameworks are object-oriented or component-

oriented frameworks that rely on object-oriented technologies and that highly depend on a

36



Preliminaries

given infrastructure (Linux O.S. and the C++ language). As a result, a technology-independent
framework that will follow MDD is necessary. This framework should provide mechanisms to
define abstract software architectures that can be mapped into specific software architectures as
well as mechanisms to dynamically evolve the interaction patterns among components. In
addition, tele-operated systems have a wide range of common concerns in their domain. These
concerns can be modelled as aspects in order to take advantage of AOSD. Some of these
candidate aspects of the tele-operation domain are distribution, safety, mobility, security,
coordination, etc.

Most robotic tele-operated system has strong requirements in terms of adaptability to
different devices, operator safety, response time, dynamic reconfiguration, etc. As a result,
PRISMA has been applied to these kinds of systems in order to cope with these requirements.
A complete development of a small-scale robot has been done. This robot is called

TeachMover [TEAOQ7].

2.3.2. The TeachMover Robot
The TeachMover robot is a robotic arm that is frequently used to teach the fundamentals of

robotics (see Figure 1). This robot was specially designed for the purpose of simulating the
behaviour of large and heavy industrial robots.

Figure 1. The TeachMover Robot

2.3.2.1. The morphology of the TeachMover Robot
The TeachMover is formed by a set of joints that permit the movement of the robot. These

joints are: Base, Shoulder, EIbow and Wrist. In addition, it has a Too! to perform different tasks
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(see Figure 2). The movements that the robot is able to perform are: the rotation of the robot
using the base, the articulation of the elbow and shoulder joints, and the rotation of the wrist. In
this case, the Tool is a gripper, whose open and close actions allow the robot to pick up and

deposit objects.

BASE

Figure 2. Joints of the TeachMover robot

The robot has six electric step motors for driving the direction of the movements of each
joint. These motors perform the movements through gears that are joined by a cable system.
The TeachMover can be moved at a specific speed by means of half-steps or inverse
cinematics. A half-step movement moves the robot using the number of teeth that a gear of a
joint must be moved as a measure. And, an inverse cinematic movement moves the robot using
a specific point in the space as a measure. These features, together with the features of the
gripper, allow the robot to move objects from an initial position to a final one.

In addition, safety directives of the robot require its movements to be checked to make sure
that they are safe for the robot and the environment that surrounds it. The internal safety of the
robot is preserved by establishing a set of constraints that forbid certain movements that will
break the gears of the robot due to the position of the gears inside the robot. These constraints
are defined by establishing minimum and maximum values for the movements of each joint.

These values are specified in degrees as follows:
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Base: +90°

Shoulder: + 144°, - 35°
Elbow: +0°, -149°
Gradient of the Wrist: + 90°
Rotation of the Wrist: + 180°

YV V V V VYV V

Opening of the gripper: 0 inches, + 3 inches (7,62 cm.)
The robot has a sensor to pick up objects without breaking them. The weight of the objects
that the robot is able to carry when its arm is stretched out is 450 grammes. Furthermore, the
gripper presses the objects with a maximum pressure of 14 Newtons. Finally, the speed of
movements fluctuates between 0 or 7 inches per second (178 mm/s) depending on the load that
the robot carries when the movement is performed.

It is important to mention that the movements of the robot are commanded by an operator
from a computer. This communication between the computer and the robot is possible by
means of the serial/RS232C port. In order to stop the robot in situations of emergency, the
robot has an interruption mechanism for disconnecting the power of the robot by means of
software. This is possible because this interruption mechanism is connected to the parallel port
of the computer.

All these features allow the TeachMover robot to simulate the movements of most of the
industrial tele-operated robots that are currently in use. This robot allows the testing and

verification of new solutions to be applied to more complex robotic systems in the future.

2.3.2.2. The Software Architecture of the TeachMover Robot
The TeachMover architecture has different levels of abstraction for its components, connectors

and the interactions among them. The lowest abstraction level of the robot architecture has
sensors and actuators as basic components, which are communicated with the hardware joints
of the robot. The functionality of the actuators and sensors are the following:

» Actuator: An actuator sends commands to a joint of the robot. These commands are

performed by the joint or the tool.
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» Sensor: A sensor reads the results of the commands in order to know whether or not they

have been performed successfully.

[ TeachMover Architecture ]

—e{ RUC )
e MUC )

—{ suc )
_[ Actuator ]
_[ SUCConnector ]
—[ Sensor ]

—[ MUCConnector ]

—[ Wrist ]
—[ Actuator ]
_[ WristConnector ]
—[ Sensor ]

RUCConnector ]

_[
_[ Tool ]

Actuator ]

ToolConnector ]

INNI

Sensor ]

—{ OPERATOR )
—[ OperatorConnector ]

Figure 3. Architectural Elements of the TeachMover Software Architecture

An actuator and a sensor are coordinated by means of a connector. These three architectural
elements (actuator, sensor, and SUCconnector) are encapsulated inside a complex component
called the Simple Unit Controller (SUC) (see Figure 3). However, two special SUCs have been
identified in order to take into account the peculiarities of the wrist joint and the tool. The SUC,
the Wrist SUC and the Tool SUC must be composed and coordinated in order to form the
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complete structure and functionality of a tele-operated robot. This composition generates

different levels of granularity (see Figure 3):

» Mechanism Unit Controllers (MUCs): This architectural element type represents the
arm of the robot, which is composed of the SUC and Wrist SUC coordinated by means of
a connector.

» Robot Unit Controllers (RUCsS): This architectural element represents the robot, which is
composed of MUCs and Tool SUCs coordinated by means of a connector.

» The Architectural Model: This level represents the interactions between operators and

robots through a connector.

2.4.CONCLUSIONS
This chapter has detailed the preliminary notions of this thesis of master. The origins of AOP

and software architectures and their main concepts have been presented. This introduction is
necessary in order to understand the PRISMA approach, and as a consequence, the MDD
process of PRISMA that is proposed in this thesis.

In addition, the robotic tele-operated systems are presented. Robotic tele-operated systems
have been chosen as application domain for the PRISMA MDD approach, since these provide
real systems that need real solutions for their development and maintenance processes.
Specifically, PRISMA has been applied to the TeachMover tele-operated robot, which is also
used in this thesis to illustrate the PRISMA MDD approach as well as its methodology.
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CHAPTER 3
STATE OF THE ART

The relevance that non-functional requirements have acquired in current software systems has
led to the emergence of crosscutting concerns in software architectures. These crosscutting-
concerns are spread throughout software architectures.

There is a wide variety of ADLs that have been proposed in order to specify software
architectures, such as ACME [Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99],
Darwin [Mag95], [Mag96], MetaH [Bin96], [Ves96][Bin96], Rapide [Luc95b], [Luc95a],
SADL [Mor95], [Mor97], UniCon [Sha95] [Sha96], Weaves [Gor91], [Gor94]Jand Wright
[All97a],[AlI97b]. An interesting comparison with respect to these ADLs is presented in
[Med00]. In addition to this work by Medvidovic and Taylor, there are other interesting
surveys on ADLs such as the ones presented in the PhD. Thesis by Cuesta [Cue02], which
covers the analysis of other ADLs such as Conic [Kram85], [Mag89], DURRA [Bar01], AML
[WydO1], and Armani [Mon98]. It is also important to mention other approaches that are
especially prepared to support evolution in software architectures, such as CommUnity
[And03], [Fia04], LEDA [Can00], Pilar [Cue02], GUARANA [Ol1i98] or R-RIO [Loq00].

These ADLs do not explicitly distinguish the conventional architectural elements from
concerns that crosscut multiple architectural elements of software architectures. One of the few
approaches that deals with the separation of concerns is the work by Jose Fiadeiro. This work
addresses the separation of distribution, mobility [Fia04], contex-awareness [Lop05] and
coordination [And03] in software architectures. However, none of these original ADLs

supports the separation of concerns by means of the aspect-orientated approach at the
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architectural level. For this reason, several approaches have emerged to cover this need either
by extending original ADLs or by creating new ADLs from scratch.

There some approaches that extend MDD by providing AOSD mechanisms during their
different stages [Aks05], [Kul03]. Other works that are related to the development of aspect-
oriented applications following MDD are [Sim05] and [Ama05]. However, none of these
aspect-oriented approaches take into account software architectures.

The combination of AOSD and software architectures has created two new challenges:
how to define the concept of aspect at the architectural level and how to integrate aspects and
architectural elements in a suitable way. A few of these approaches that combine AOSD and
software architectures give support for a complete development of software. In fact, they do not
provide a complete MDD support for developing aspect-oriented software architectures.

In this chapter, the analysis presented in [Per06c¢] is extended by taking into account the
MDD support that provide the most relevant approaches that deal with AOSD and Software
Architectures. In this case, the analysis is also made by starting from the premise that an aspect-
oriented software architecture approach should completely support the development and
maintenance processes of software following the MDD approach. As a result, the set of
desirable properties that aspect-oriented software architecture approaches should fulfil are also
extended by introducing the MDD property. Finally, the comparison of these approaches using

these new properties is presented and discussed.

3.1.ASPECT-ORIENTED APPROACHES AT THE
ARCHITECTURAL LEVEL

The incorporation of aspects at the architectural level implies considering what an aspect is at
this level. An aspect is a new entity for modularizing and encapsulating specifications in
software architectures. As a result, it is necessary to define how aspects are related to the rest of
the main concepts of software architectures, especially to components and connectors. It is also
necessary to define the kind of relationships (reference, connection, composition, etc) that they

have with these elements.
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In this section, the most important works of the area are analyzed paying special attention to
the way that they introduce the notion of aspect in software architectures, how they coordinate
aspects and architectural elements, their MDD support and their main properties. Due to the
fact that there has not been much work done at the architectural level, not only are ADL
extensions analyzed, but also aspect-oriented component models that could be applied at the
architectural level.

3.1.1. PCS: The Perspectival Concern-Space Framework
The Perspectival Concern-Space (PCS) [Kan03] approach is based on the MDSOC model

[Har03] and IEEE-Std-1471. It uses UML for modelling concerns at the architectural level.
PCS describes concerns by means of architectural views. These views consist of one or more
models and one or more diagrams. A perspective in PCS is defined as “a way of looking” at a
multidimensional space of concerns from a specific viewpoint. As a result, this approach
defines a perspectival concermn-space as a projection of a concern-space that involves a set of
related concerns, their reifications into models, and the realization of these models (see Figure

4).

Viewpoint Set of related ns View, Models and diagrams Other artifacts

Figure 4. A Perspectival Concern-Space in Overview [Kan03]

The PCS approach uses UML to specify aspect-oriented software architectures, and it
extends UML by defining a profile that supports the modelling of aspects and components. The
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profile simulates aspects by means of architectural connectors based on the idea that aspects act
as coordinators among components to intercept their interactions and then replace or add
behaviour either before or after them [Kan02b]. As a result, PCS is based on an original ADL
without connectors, whose aspect-oriented behaviour is introduced by means of connectors.
Components and aspects are modelled by means of UML classes that have been profiled in
order to have ports through publishing services. In addition, aspect classes are distinguished by
component classes by means of the <<aspect>> stereotype [Kan02a]. A disadvantage of this
combination of aspects and software architectures is the loss of the advantages that connectors
provide to ADLS and the opportunity to specify how concerns crosscut the coordination rules
of connectors.

The PCS approach is supported by the ConcernBase tool [Kan03]. This tool provides
mechanisms for modelling software systems, and it also allows the translation from UML
models to the SADL language [Mor97].

Technological independence is a clear advantage that this approach offers. Yet, at the same
time, it is a drawback of PCS because it does not provide support to translate its models to a
programming language or to trace from models to implementation. As a result, PCS supports
MDD in a partial way. It provides mechanisms for modelling software systems, and it also
allows the translation from UML models to the SADL language, but it does not translate its
models to a programming language in order to be executed on a technological platform.

3.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented
Platform

CAM/DAORP is an approach that supports the separation of concerns from the design to the
implementation stages of the software life cycle. It is composed of the CAM model, the DAOP
-ADL [Pin03], and the DAOP platform [Pin05].

The CAM model extends UML in order to specify the components, the aspects and the
mechanisms that compose components and aspects. Components are the core functionality that
is crosscut by non-functional concerns, which are specified as aspects. In CAM, aspects are
presented as special components, which are differentiated from the original ones by means of
the <<aspect>> stereotype. Specifically, since its component model does not have the notion of
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connector (see section 2.1.2), CAM introduces aspects as special connectors among
components. The coordination of these connectors is performed by intercepting the services
that arrive to or depart from components and by adding behaviour before, after or instead of
their services. As a result, CAM does not introduce a new concept in software architectures for
modelling aspects; it uses a refined version of the connector concept in order to simulate the
behaviour of aspects and the composition of aspects and components. One of the advantages of
this model is the fact that the weaving process between aspects and components is defined by
means of interfaces. As a result, the encapsulation and reusability of components and aspects
are preserved. In addition, this allows CAM to define the weaving process using the interfaces
and also to execute it dynamically [Fue05]. However, the model does not provide original
connectors to specify the architecture of the system. As a result, the model loses the advantages
that connectors provide to ADLS and the opportunity to specify how concerns crosscut the
coordination rules of connectors. Finally, it is important to emphasize the local or remote
instantiation of components and the four kinds of instantiation that the CAM model provides
for aspects: a single instance for each aspect, one aspect instance for each user of the system,
one aspect instance for all the components that play the same role, and one aspect instance for
each instance of a component.

CAM specifies aspect-oriented software architectures using its DAOP-ADL. This ADL
uses XML to describe components, aspects, and their interactions. On one hand, this is an
advantage because it is a standard of data exchange between tools, it is widely extended and
there are other languages that support query and management mechanisms for XML
documents. On the other hand, this is a disadvantage because XML is not a formal language,
and it can involve problems of correctness, accuracy, inconsistency, etc. In addition, it
introduces limitations such as mechanisms to validate properties, to automatically generate
code without ambiguity, etc. Finally, with regard to the DAOP-ADL, it is important to
emphasize that it is independent of technology. As a result, their specifications do not introduce
expressions or syntaxes of specific programming languages or technologies.

The DAOP platform has been implemented in Java, and it provides a middleware in order

to support the execution of aspects, components, and the dynamic weaving between them over
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the Java technology. The platform and the DAOP-ADL specifications are integrated because
the input of the DAOP platform is the XML document that contains the specification of the
architectural model in XML. As a result, the middleware can perform the dynamic weaving
since it knows all the information about the architectural model and knows the weavings that
can be executed by each one of the aspects. The middleware performs the weaving by
intercepting service requests and determining which aspect must be executed. In addition, the
XML document contains the information needed to instantiate components and aspects. For
this reason, when the document is loaded by the DAOP platform, the instantiation of
components and aspects starts taking into account the instantiation information defined in the
document.

The work [Fue03] of CAM/DACQRP is a first step to support MDD in the DAOP platform,
however a complete support using code generation techniques for the development is not
provided. They use MDA to show the different views of the models that are specified in the
platform.

3.1.3. Superimposition
The work of Sihman and Katz proposes the use of superimposition for incorporating aspects

into object-oriented programs. The generic operation of superimposition consists of applying a
concept on top of another one. In this approach, aspects are superimposed on top of base
applications. This approach creates the Super] constructor in order to pre-process aspect-
oriented superimpositions over Aspectl.

A superimposition consists of a set of aspects and new classes that represent the extension
of an application. A SuperJ implements an algorithm to apply a superimposition to a base
application. Base applications do not reference superimpositions, and superimpositions can also
be defined and compiled independently of base applications. However, when a
superimposition is connected to a base application using the Super]J constructor, the code of the
superimposition makes reference to the state of the base application and it is not independent
(see Figure 5). In fact, the needed advices and pointcuts are defined inside the aspects of a

superimposition. As a result, the behaviour of the aspect and its connections to the base
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program are not defined separately. Despite the fact that the specification of an aspect is done at
a high abstraction level, the specification of advices and pointcuts inside aspects reduces the
capabilities of aspect reuse of the approach. In addition, superimposition allows the
specification of conditions of applicability or the definition of desired results for the process of

applying a superimposition to a base application.
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Figure 5. Superimposition [Sih03]

This approach allows us to combine superimpositions and to check the constraints that have
been defined in a superimposition. It has been implemented using Java, and it uses Aspect] in
order to apply this technique over Java base applications. As a result, the Java implementation

of the SuperJ makes this model dependent on technology and it is closer to object-oriented
programming languages than ADLs.

3.1.4. TRANSAT
Transat [Bar04b] is an approach for managing the evolution of software architecture

specifications using aspect-oriented programming principles. The approach starts from a core
architectural model that either needs to be extended during its development process or needs to
be evolved during its maintenance process. The mechanisms of extension and evolution are
provided using AOP techniques. As a result, this approach incrementally obtains a complete
software architecture with business and technical concerns from a business software
architecture.

This approach is supported by a framework that allows the evolution of software
architectures by integrating new technical concerns. The framework guides the separated

definition of technical and business concerns. Business concerns are the core architectural
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model, and technical concerns are the aspects that extend the basic functionality of the system.
The framework provides aspect-oriented mechanisms to weave both.

The core architectural model is defined using its component model, SafArchie [Bar03].
This model is a hierarchical component model that defines software architecture by means of
composition relationships. The new technical concerns such as persistence, security, or
transaction management are modelled as components. Finally, the weavings between business
components and aspect components are defined by means of adapters and weavers. Adapters
define the integration rules between technical components and business components, and
weavers define the coordination rules between them. In other words, adapters and weavers
materialize the integration of the core architecture and their extensions by identifying the join
points in the core architecture and by defining the pointcuts at adapters and weavers.

The Transat framework consists of a tool called SafArchie Studio [Bar04a]. This tool is an
extension of ArgoUML, which offers several views of the evolution process depending on the
kind of user.

One of the main advantages of this approach is that it is based on ADL for defining the core
architectural model. As a result, the formal definition of software architecture and its
independence from a technological platform are guaranteed.

Another advantage is the way that evolution is supported. The integration of new
requirements does not break the consistency of the original software architecture. In addition,
the application of AOP principles to this integration ensures both the separation of concerns in
the software architecture extension and better management if new requirements for these
concerns arise. Finally, this extension mechanism allows analysts to easily identify where the
original software architecture has been modified; they only need to find the adapters and
weavers of the complete architecture.

A great limitation of this approach is the constraint of starting the development from a core
architectural model without considering concerns from the beginning. Also, the fact that
concems are only technical and not more generic is another drawback. As a result, aspects in

this approach are not introduced as a new concept for modelling software architectures.
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Software architectures are defined using a pure compositional ADL, and aspects only appear as
an extension or evolution mechanism of software architectures.

Since Transat is only focused on the evolution and maintenance stages of software, it does
not provide a complete MDD support. Its tool only allows to analyze the evolution of the
software architecture, and not to develop the aspect-oriented software architecture application

following MDD.

3.1.5. ASAAM: Aspectual Software Architecture Analysis Method
ASAAM [Tek04] is the approach that introduces aspect-orientation techniques to the SAAM

approach, which introduces three perspectives to analyze software architecture specifications:
functionality, structure and allocation. As a result, ASAAM is an extension and refinement of
SAAM. The steps of ASAAM are the following:
1. Develop a candidate architecture: A candidate architecture is generated taking into
account quality attributes and potential aspects.
2. Develop scenarios: The scenarios that define the business rules of the system and
possible future changes are created.
3. Perform scenario evaluations. The scenarios are evaluated and categorized, and
potential aspects are identified for each scenario.
4. Assess scenario interaction and classify components: The separation of concerns is
assessed for both crosscutting-concerns and non-crosscutting concerns.
5. Refactor the architecture: A refactorization of the architecture is proposed using
conventional techniques and aspect-oriented techniques.

This evaluation method of aspect-oriented software architectures has been implemented as
an Eclipse add-in called ASAAM-T [Tek05]. The main difference between this approach and
the others is the fact that the purpose of ASAAM is to assess an aspect-oriented software
architecture instead of specifying and implementing a software architecture. As a result, this
approach is a valuable contribution to the field for evaluating if an aspect-oriented software

architecture has considered the correct aspects, and if the aspects are factorized in a proper way.
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3.1.6. AVA: Architectural Views of Aspects
AVA is an approach where aspects are introduced in software architectures as views [Kat03].

The notion of aspect in software architectures is simulated by the architectural view concept.
This facilitates the comprehensibility of the model for the software architecture community.
However, an aspect is not semantically a view because an aspect has its own behaviour
independently of the architectural elements that it affects. Furthermore, this approach constrains
the notion of architectural view to an aspect, losing other viewpoints for defining views such as
kinds of users, models, level of abstraction, features, etc.

In AVA, an aspect is a module that encapsulates a set of components and their connections
that are crosscut by this aspect. As a component can be crosscut by more than one aspect, the
dependencies between different aspects must be explicitly specified in order not to lose the
consistency of the software architecture. Since it is possible to define several aspects for the
same concern in AVA, aspect modules (S,0) can be composed to form a single concemn
module (C) (see Figure 6). This aspect composition is performed using superimposition, which
is an asymmetric operation in which one aspect is applied on top of another one [Kat02]. As a
result, the software architecture is completely remodularized in different modules that represent
aspects or concerns, depending on the level of abstraction. This modularization distributes
components into different modules taking into account the aspects that affect them. The main
disadvantage of this remodularization is the loss of the complete software architecture view.
However, this concern and remodularization structure of modules allows analysts to easily
locate where to introduce new changes, taking into account the concemns that should be
modified.

The AVA model has been created by defining a UML profile. As a result, the definition of
AVA software architectures is really intuitive because these architectures use the OMG
standard. In addition, the use of UML allows analysts to specify software architectures
independently of technology and in a graphical way. In the AVA profile, the aspect is a
stereotype of the package UML metaclass, and the concern diagram is an extension of the

component diagram.
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Figure 6. Concern Diagram of AVA [Kat03]

The AVA approach has also been applied to the definition and documentation of pattern
systems [Ham05], and the MADE tool has been developed to support it [Ham04]. This tool
shows the different views of the architecture, but it does not provide a complete MDD support.

3.1.7. AspectLEDA
AspectLeda is an approach that extends the LEDA ADL [Can00][Can99] with aspect-oriented

concepts [Nav05]. This approach consists of two steps: the definition of an initial architectural
model and the addition of aspects. The initial architectural model is defined using the LEDA
ADL in order to have the advantages of a formal basis, to validate the software architecture by
executing a prototype, and to be independent of technology. Once the initial architecture has
been defined, the new requirements that emerge during the development and maintenance
processes are incorporated in the architecture such as aspects. This is a clear drawback of this
approach because it does not give the analyst the chance to introduce aspects at the beginning
of the software development process. Aspects are only used at the maintenance stage or at
refinement processes of the development stage. In addition, it is important to take into account
that not all new requirements of a system are aspects. However, AspectLEDA forces the
analyst to introduce new requirements into the model as new aspects without taking into
account whether they are aspects or not.

In AspectLEDA, aspects are specified in the way as components because LEDA is an

ADL without connectors. However, aspect components and components of the initial software
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architecture are defined in different levels. Since AspectLEDA does not have architectural
connectors, it cannot specify the concerns that crosscut connectors, and it loses the advantages
that connectors provide to ADLs. However, AspectLEDA introduces the notion of coordinator
to define the weaving process that synchronizes aspects and components and coordinates both
levels. This coordinator preserves the reusability and encapsulation of aspects because the
coordination of aspects and components is specified outside aspects.

Finally, it is important to emphasize that this approach is still only a proposal. It does not
have a tool to support for its methodology, and it is not able to compile its aspect-oriented

software architecture into any technological platform.

3.1.8. AOCE: Aspect-Oriented Component Engineering
The Aspect-Oriented Component Engineering approach (AOCE) is based on AOREC

(Aspect-Oriented Requierements for Component-Based Systems). AOREC uses the notion of
aspect in order to suitably define and categorize the requirements of components in terms of
what they provide or require through their services. In AOREC, an aspect is a characteristic of a
system for which components provide and/or require services. This approach takes into
account some aspects such as user interface, collaboration, persistence, distribution, and
configuration. As a result, AOREC uses aspects in order to attain multiple perspectives of the
components in order to better understand and reason about the behaviour and semantics of
these components.

Since AOCE is the step after AOREC in the development process, AOCE defines aspects
in the same way that AOREC does; aspects are specified as components. The definition of an
aspect component is done separately from the component specification in order to be
independent and reusable. However, an AspectManager must be introduced in order to
coordinate aspect components and components. Despite the fact that this approach does not
have connectors (because is a component-based approach), it still must introduce a connector
called AspectManager to weave aspects and components at run-time.

Apart from not having the notion of connector and not classifying the interfaces of

connectors in terms of aspects, the main disadvantage of this approach is the fact that the design
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language of AOCE is based on a specific component-based platform, the JViews [Grun9§]
AOP implementation platform, which is not independent of technology.

Finally, it is important to mention that AOREC and AOCE have a tool to support their
methodology. They have extended the tool of JViews to support aspects. This tool is called
JComposer [Grun98]. It is an implementation framework used by developers; it only provides
support for programming. As a result, it does not support for MDD.

3.1.9. Component Views
The component views approach [Sto02] is not really an approach to specify aspects of software

architectures. The component views approach is an extension of component-based models to
define views using concemns as viewpoints. As a result, this approach decomposes the
architecture taking into account which components and connections among them are affected
by a specific concern. The result of this decomposition is that each view of a concern contains
the components and relationships affected by this concemn. This approach defines a UML
profile to support the definition of these views for software architectures. However, this
approach does not introduce new concepts or simulates the notion of aspect because it does not
support this notion. It only works with concerns which are only used to analyze component-
based models. Their specification is made using a UML profile. The purpose is not to execute

an aspect-oriented component-based model, it is simply to analyze component models.

3.1.10. Aspectual Components
Aspectual Components are proposed as a new kind of component by the work of Lieberherr

[Lie99]. They are defined using a generic data model called a participant graph. This graph is
then refined to deploy aspects as normal components.

This approach proposes adding a new dimension to aspects over the organization of an
object-oriented application. As a result, the first task of the software development process is to
decompose software into aspects. The second one is to decompose each aspect into classes
following the object-oriented approach. The result of this process is an aspectual component
composed of object-oriented classes. However, these aspectual components should be

composed with the application base. In other words, the new dimension of aspects must be
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communicated to the bottom dimension of the application. This communication is achieved by
means of connectors that coordinate both dimensions.

Aspectual components can be programmed using Java programming language because this
approach does not introduce a new programming constructor; instead, aspectual components
are implemented as normal components. However, this approach does not offer a tool to

support work with this model.

3.1.11. Caesar
Caesar is a model for aspect-oriented programming [Mez03] with its own programming

language. This model is characterized by being technology-dependent and by developing a
higher-level module to develop aspects independently of the mechanisms for join point
interceptions.

Caesar specifies the implementation of aspects and their weaving relationships in a separate
way in order to reuse the aspect independently of what the aspect is related to. The main feature
that distinguishes Caesar from other aspect-programming models is the concept of Aspect
Collaboration Interface (ACI). An aspect is specified by means of an ACI. An ACI decouples
the implementation and weavings of aspects. An ACI is composed of two different interrelated
modules: an implementation aspect module and a binding aspect module. The former
implements the methods that the aspect provides, independently of the context. The latter
implements the required methods from a specific context by means of pointcuts and advices. In
addition, an ACI can be composed of other ACIs, which provide a complete level of
composition in order to define aspects over the base code.

Caesar defines an instantiation mechanism for its ACIs. To instantiate ACIS, the
implementation and a specific binding for the aspects must be composed in the same unit; this
unit is called weavelet. A weavelet is a class that is composed of the interface that provides and
requires. Once, the weavelets are defined; they can be instantiated in a static or dynamic way.
This mechanism of instantiation allows several instances of the same weavelet to be defined. It

also provides a choice of different weavelets using aspectual polymorphism.
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3.1.12. JASCO
JAsCo is originally an aspect-oriented programming language for the Java Beans component

model [Suv03]; however, a prototype for NET platform is currently being developed [Ver03].
As a result, JAsCo is a programming language that is dependent on technology. It introduces
three new concepts to extend Java to support aspect-oriented programming, which include
aspects, hooks, and connectors.

In JAsCo, aspects are composed of a set of hooks that define how to link an aspect to a
specific context. A hook consists of two parts: the pointcut (when the hook is activated) and the
advice (what is going to be executed as a result of the activation). Finally, connectors allow the
definition of the mappings between a hook and one or more elements of the base code
(joinpoint and pointcut correspondence).

The JAsCo execution model is very flexible and provides many advantages. It supports
aspectual polymorphism, which is the weaving between aspects and code. This is dynamic
because aspects can be added and removed at run-time. However, the referential nature of the
dynamic weaving requires an execution platform to intercept the application and insert it into
the aspects at execution time. In addition, aspects can be combined to form complex structures
by means of inheritance and aggregation relationships.

Finally, it important to mention that there are a pair of tools that support the JAsCo
approach. One of them transforms a Java bean into a JAsCo bean, and the other one is the
integration of JAsCo into the PacoSuite [Van0Ol], [Wyd0O1], which allows modelling
component models at a high abstraction level and also allows generating one or more JAsCo
connectors from its models.

These tools are implementation frameworks used by developers. As a result, they provide

support for programming and not for MDD.

3.1.13. FUSEJ

Fusel is a programming language for component-based software architectures onto the Java
Beans component model [Suv05b]. This language asserts that there are no aspects and these
services can be implemented as a component. It is a platform dependent language that does not

make distinctions between normal components and aspect components. It is based on the
57



Model-Driven Development of Aspect-Oriented Software Architectures

component architecture presented in Figure 7. Each concern and component is programmed as
a component of the Component Layer. The provided and required services of components are
sent through the gates of the Gate Layer by preserving the encapsulation of components (black
box view). Finally, the coordination among the gates is programmed using connectors of the
Connector Layer. However, this connector must be implemented in different ways depending
on whether two normal components are being coordinated or a component and an aspect
component are being coordinated. In this last case, the coordination is performed using the
aspect-oriented primitives to define the pointcuts and advices (to specifying the weaving

process).
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Figure 7. Unified Component Architecture [Suv05b]

With regard to instantiation, aspects are instantiated as regular components; each aspect can
have more than one instance. Finally, it is important to emphasize that the tool support for

Fusel is currently being developed.

3.1.14. JAC
JAC is a framework to develop aspect-oriented distributed applications in Java programming

language [Paw04]. The main contribution of the programming model of JAC is the fact that
aspects can be distributed. They also have a dynamic nature, which means they can be added

and removed at run-time.
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JAC provides a set of classes and methods that are extended when a new JAC application is
developed. JAC provides two different levels of aspect-oriented programming: the
programming level and the configuration level. The former is used when new aspects are
programmed from scratch. The latter is used when existing aspects are customized for new
requirements.

Since JAC packages normal components inside containers, it also defines aspects as
components that are inside containers. The components that define aspects are called aspect
components. These containers are remote servers that can represent normal or aspect
components. JAC aspect components crosscut normal components that are not necessarily in
the same location as the aspect components. As a result, JAC gives support to distributed
weaving processes. This need emerges because aspects are treated as components and the
weaving process (the pointcuts and advices) are defined inside the aspect. If the weaving
process were defined in a different entity of the aspect such as a connector, this distribution
need would not arise, because the distributed communication is supported by components and
connectors. The main drawback is not the effort needed to support distributed communication
in pointcuts, it is the fact that the behaviour of the aspect cannot be reused. JAC loses the
reusability of aspects because the relationships for applying the aspect to a specific context are

defined inside it.

3.1.15. JIAZZI
Jazzi is an aspect-programming model that extends Java by means of encapsulated code

modules called units [McDO03]. They are separately compiled and are externally linked code
modules that are introduced into a Java program. These units were originally created to obtain
higher modularity of code. However, they are currently being used to add aspects to non-
aspect-oriented Java programs in a non-invasive way. This is possible because JIAZZI also
provides linking units like connectors to specify the connections of units and a base Java
program.

Jiazzi units are composed of Java classes that implement the behaviour of a specific

concem. They are compiled independently of linking units and base code; as well as the type
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checking is also performed internally. In addition, an external compilation is needed to perform
the connection between base code and units by means of linking units. In this compilation
process, the types of connections must also be checked.

Jiazzi does not extend the syntax of the Java programming language because it introduces
aspects as externally linked Java modules. Jiazzi and its interaction with Java are implemented
using Java, and it runs perfectly on this technology. Its main drawback is the fact that it is a
technology-dependent model and the pre-compilation and encapsulation of its modules before

its integration reduces the flexibility to evolve aspects at run-time.

3.2.COMPARISON OF ASPECT-ORIENTED SOFTWARE
ARCHITECTURES

There are several features that are essential for analyzing and to comparing the different

approaches that have been presented in the previous section. The features that have been used

as comparison criteria have been selected starting from the premise that an aspect-oriented
software architecture approach should completely support the development and maintenance
processes of software. It is important to mention that there are important features, such as the
instantiation mechanisms and the types checking, that have not been used to compare the
different approaches because the proposal does not usually give very much information about
these features. The analysis of these features is included in their descriptions above for those
approaches that provide information about them.

Next, it is detailed the features of comparison and the reasons because they have been
considered as a classification criteria of aspect-oriented architectural models.

»  Aspect-oriented model: This feature defines the kind of aspect-oriented model that is
integrated with the software architectural model. The four kinds are: asymmetric or
symmetric [Har02], multidimensional [Oss01, [Oss00], and composition filters [BerO1],
[Ber94]. This characteristic is important because the integration is completely different

depending on the aspect-oriented model.
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Architectural model: This feature determines whether an architectural model provides
connectors for modelling software architectures or not. Those that have connectors provide
features that improve the structure and maintenance of software architecture (see section
2.1.2 for details).

Definition of Aspects: The most distinguishable feature of aspect-oriented architectural
models is how they integrate aspects and software architectures. There are two ways of
doing this: by simulating the notion of aspect by means of another architectural concept or
by defining a new concept in software architecture for aspects. The first way refines the
architectural concepts varying their original semantics; and the second one requires
understanding a new concept to model software architectures.

Definition of Weavings: This is an important feature of aspect-oriented models, and of
aspect-oriented architectural models. The definition of weavings feature specifies where
the weaving process between aspects and architectural elements is defined. If the pointcuts
and advices are defined inside the aspect, the aspect is dependent on the context that the
aspect is connected to. However, if they are defined outside the aspect, the behaviour of the
aspect can be reused independently of where they will be connected.

ADL: Another feature that is necessary to take into account when comparing architectural
models is whether the ADL is a formal language or not. The formal nature of an ADL is
an indispensable property of architectural models if the purpose of the approach is to
generate code without ambiguity, to verify properties, to validate behaviour, to trace the
different levels of abstraction in a suitable way, to evolve software architectures preserving
the consistency of the system and so forth.

Aspect-Oriented Evolution: The evolution of aspect support is an important feature that
can improve the evolution and run-time evolution of software architectures. As a result, an
approach that provides mechanisms for adding or removing aspects is a great advantage.
Purpose: The purpose of the approach is an essential feature to be able to compare
models. There are aspect-oriented architectural models that give complete support during
the development process, others that analyze or evolve models, and still others that fulfil

several purposes.
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>

Technology: This is an important feature that distinguishes the wide variety of aspect-
oriented architectural models that exists. An aspect-oriented architectural model should be
specified in an abstract way by means of an ADL. As a result, the same specification can
be applied to different platforms and different programming languages. However, if the
model depends on a specific platform and/or programming language, its application and
flexibility are considerably reduced.

Graphical support: The graphical specification of aspect-oriented software architectures
is a necessary feature to avoid the complexity of using ADLs. The graphical support is
achieved by defining the graphical metaphor of ADLs by means of a new language or by
extending a well-known graphical language.

Tool support: A significant feature of the aspect-oriented architectural models is its
support by means of a framework that guides the analyst during the development and
maintenance processes. A framework can provide a wide variety of facilities such as
modelling support, ADL generation, code generation, code execution, validation,
verification, evolution, run-time evolution, etc.

MDD support: A significant feature of an approach that should completely support the
development and maintenance processes of software following the MDD approach is the
MDD support that it offers. The complete MDD support should consist of automatically
generating the code from models and to guide the analyst during all the stages by
providing mechanisms to facilitate the tasks. Some of these mechanisms are: verification

techniques, reusability mechanisms, integration facilities, code generation mechanism, etc.

A comparison table has been developed from the features and the approaches analyzed in

the above section. This table is divided into two separate tables due to the limitation of the page

dimensions. Blank cells indicate that no information was available.
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Aspect-oriented | Architectural Definition of Definition of ADL
model model Aspects Weavings
PCS Multidimensional Without Aspects like Inside aspects SADL:
and symmetric connectors connectors Formal
compositional
ADL
CAM/DAOP Asymmetric Without Aspects like Outside aspects DAOP -
connectors connectors using ADL: Not
communication | formal, based
between on XML
interfaces
Superimposition Asymmetric: Java Classes Inside aspects
Two levels: inside a
aspects and superimposition
architectures layer
TRANSAT Asymmetric. Without Aspects like Outside SafArchie
Only technical connectors components. aspects. Using component
aspects Aspect adapters or model
components weavers =
connectors
ASAAM Asymmetric Not fixed Scenarios Outside Not fixed
Aspects
AVA Asymmetric Not fixed Aspects as views Outside Not fixed
Aspects
AspectLEDA Asymmetric: Without Aspects as Outside aspects | Leda: Formal
Two levels: connectors components using Compositional
Aspects and coordinators = ADL
architectures connectors
AOCE Asymmetric Without Aspects as Outside aspects
connectors components using aspect
managers =
connectors
Component Asymmetric Not aspects.
Views Concerns as
viewpoints for
defining
architectural
views
Aspectual Asymmetric: Aspects as Outside aspects
Components Two levels: components: with
Aspects and Aspectual connectors
object-oriented components
applications
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Caesar Asymmetric Aspect Separation of
Collaboration ACI'modules
Interface (ACT) into
implementation
and interaction
of aspects
JASCO Asymmetric Aspects Hooks and
connectors
FUSEJ With Without Aspects: Connectors
Connectors Components
JAC Asymmetric Aspects as Inside aspects
components:
aspectcomponents
JIAZZ1 Asymmetric: Units Linking units
Two levels:
Aspects and
object-oriented
applications
Table 1.  First comparison of aspect-oriented software architecture
approaches
Aspect- Purpose Technology | Graphi | Tool support MDD
Oriented cal support
Evolution support
PCS Developmentof | Independent UML ConcernBase Partial:
AO Software profile: | tool: modelling | Modelling
Architecture Aspect | support, ADL | techniques
isa generation
stereoty | from UML, no
peofa code
UML generation, no
class execution
Dynamic | Developmentof | Independent UML DAOP Partial:
weaving AO Software profile | platform: Java | Multiple
CAM/DAOP but not Architecture Technology, views of
adding and modelling analysis
removing support,
aspects at DAOP
run-time middleware for
code execution
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Superimposition Programming Dependent
aspect-oriented on Java
Java applications | technology
and verifying
properties of
aspect-oriented
superimposition
TRANSAT Only evolution | Independent UML SafArchie Partial:
support, the profile Studio. Models to
initial aspect- Extension of analyze
oriented ArgoUML evolution
specification is and
not supported. maintenanc
e
ASAAM Analysis of Independent UML ASAAM-T
Software profile:
Architectures scenario
s
AVA Development of | Independent UML MADE tool: Partial:
AO Software profile: modelling Multiple
Architecture aspect is support views of
an analysis
stereoty
peofa
UML
package
that
contains
an
extensio
nof
compon
ent
diagram
AspectLEDA Development of | Independent
AO Software
Architecture
Dynamic | Developmentof | Dependent JComposer: Not
AOCE weaving AO Software on JViews Anextension | supported:
Architecture ofthe JViews | developme
tool nt
framework
Component Analysis of Independent | UML
Views software profile
architectures
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Programming Dependent
Aspectual aspect-oriented on Java
Components Java applications | technology
Caesar Programming Dependent Programming Not
aspect-oriented on Caesar framework supported:
Caesar programming developme
applications language nt
framework
JASCO Dynamic Programming Dependent Programming Not
weaving aspect-oriented on Java or framework supported:
and application Net developme
support for technology nt
adding and framework
removing
aspects at
run-time
FUSEJ Programming Dependent
aspect-oriented on the Java
applications onto Beans
Java Beans component
model
JAC Programming Dependent
aspect-oriented on Java
Java applications | technology
JIAZZ1 Programming Dependent
aspect-oriented on Java
Java applications | technology

Table 2. Second comparison of aspect-oriented software architecture
approaches

3.3.CONCLUSIONS

After the analysis and comparison of different approaches for aspect-oriented software
architecture, it is possible to conclude that these proposals at the architectural level usually
extend ADLs without connectors and mainly follow an asymmetric model by considering
functionality as architectural components. Despite the fact that there has been a lot of work
done, these proposals are only focused on a single specific purpose: the analysis, evolution or
development of software architectures. They do not pursue several purposes simultaneously to
provide a complete development and maintenance support. Furthermore, they always introduce

the notion of aspect by using original architectural concepts, despite the fact that they do not
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provide the suitable semantics for aspects. And finally, the most important conclusion for this

thesis, they do not provide a complete support for MDD. As a result, it is necessary to provide

an aspect-oriented model for symmetric aspect-oriented models and ADLs with connectors,

whose development will follow the MDD paradigm. This model should include:

>

>
>
>

A suitable semantics for the aspect concept

A graphical modelling metaphor

Analysis and evolution capabilities

Technological support in order to execute the aspect-oriented architectural models that
have been defined independently of technology

A guided support during the development and maintenance processes of software

following MDD: Reusability, Verification, Code generation, Maintenance, Evolution, etc.

The PRISMA approach has been defined to fulfil these needs. In particular, in this thesis the

main propetties to facilitate and provide mechanism to give a complete MDD support in

PRISMA are defined. As a result, this thesis is a step forward in the previous PRISMA work.
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CHAPTER 4
PRISMA BACKGROUND

PRISMA provides a model for the definition of complex software systems [Per05a]. Its main
contributions are the way in which it integrates elements from aspect-oriented software
development and software architecture approaches, as well as the advantages that this
integration provides to software development. The PRISMA model introduces the notion of
aspect following an architectural model with connectors and a symmetrical aspect-oriented
model.

Since the PRISMA model is a technology-independent model, the PRISMA approach also
follows the MDD paradigm to obtain its advantages during the development and maintenance
processes of PRISMA architectures. The main goal of the PRISMA approach is to give a
complete support for the development of technology-independent aspect-oriented software
architectures, which could be compiled for different technological platforms and languages
using automatic code generation techniques.

The purpose of this chapter is to present the main properties of the PRISMA model and to
explain in detail the PRISMA metamodel. The PRISMA metamodel is the starting point to
apply the MDD to the development of PRISMA applications.

4.1. THE PRISMA MODEL
PRISMA provides a model for the description of software architectures of complex and large

systems. It introduces aspects as first-order citizens of software architectures. This means that,
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in PRISMA, aspects are not simulated through other architectural concepts such as connectors,
views or similar mechanisms as in other approaches. PRISMA creates a new concept for
modelling concerns called aspects. As a result, PRISMA specifies different characteristics
(distribution, safety, context-awareness, coordination, etc.) of an architectural element
(component, connector) using aspects. As a result, PRISMA preserves the meaning of the
component and aspect concepts.

From the aspect-oriented point of view, PRISMA is a symmetrical model that does not
distinguish a kernel or core entity to encapsulate functionality; functionality is also defined as
an aspect. One concern can be specified by several aspects of a software architecture, whereas a
PRISMA aspect represents a concern that crosscuts the software architecture. This crosscutting
is due to the fact that the same aspect can be imported by more than one architectural element
of a software architecture. In this sense, aspects crosscut those elements of the architecture that

import their behaviour (see Figure 8).

FUNCTIONAL COORDIMATION SAFETY FUNCTIONAL

Figure 8. Crosscutting-concerns in PRISMA architectures

The fact that PRISMA is a symmetrical model is an advantage. This facilitates the
construction of software architectures since the model does not manage two different concepts
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(class or component, and aspect) in different ways. In addition, the reusability of functional
properties is independent of the architectural element that imports it because the functionality is
specified as an aspect. However, if this functionality were implemented as a kernel class of the
architectural element, the reuse of the functionality would only be achieved by reusing the full
architectural element. Consequently, a more uniform model is obtained because of the
homogeneity of the concepts that build an architectural element.

A PRISMA architectural element can be seen from two different views: internal and
external. In the external view, architectural elements encapsulate their functionality as black
boxes and publish a set of services that they offer to other architectural elements (see Figure 9).
These services are grouped into interfaces to be published through the ports of architectural
elements. Each port has an associated interface that contains the services that are provided and

requested through the port. As a result, ports are the interaction points of architectural elements.

Figure 9. Black box view of an architectural element

The internal view shows an architectural element as a prism (white box view). Each side of
the prism is an aspect that the architectural element imports. In this way, architectural elements
are represented as a set of aspects (see Figure 10 ) and the weaving relationships among

aspects.
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Figure 10. White box view of an architectural element
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Since PRISMA is a symmetrical aspect-oriented model that it is applied at the architectural
level, the weaving process does not define the pointcuts between the base code and the aspect
code and their corresponding advices. In PRISMA, there is no base code; all behaviour of the
system is defined as an aspect. As a result, the weaving process is composed of a set of
weavings, and a weaving indicates that the execution of an aspect service can trigger the
execution of services in other aspects. From the AOP point of view PRISMA weavings can be
defined as follows: every service of an aspect is a join point , the services that trigger a weaving
are the pointcuts, and the services that are executed as a consequence of weavings are the
advices. In PRISMA, in order to preserve the independence of the aspect specification from
other aspects and weavings, weavings are specified outside aspects and inside architectural
elements. As a result, aspects are reusable and independent of the context of application and
weavings weave the different aspects that form an architectural element. This way of
specifying weavings achieves not only the reusability of the aspects in different architectural
elements, but also the flexibility of specifying different behaviours of an architectural element
by importing the same aspects and defining different weavings. A weaving is defined by means
of operators that describe the order in which services are executed. A weaving that relates
service sl of aspect Al and service s2 of aspect A2 can be specified using the following
operators: affer, before, instead, afterif (Boolean condition), beforeif(Boolean condition, and
insteadif(Boolean condition).

The communications between the white box and black box views is possible by means of
interfaces; which are associated to ports and are used by aspects (see Figure 11). Consequently,
arequest for a service that arrives to a port of an architectural element is processed by an aspect
that uses the same interface that is used by this port.

PRISMA has three kinds of architectural elements: components, connectors, and systems.
Components and connectors are simple, but systems are complex components. A component is
an architectural element that captures the functionality of software systems and does not act as a
coordinator among other architectural elements; whereas, a connector is an architectural

element that acts as a coordinator among other architectural elements.
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FUNCICNAL
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Figure 11. Communication between the white box and the black box views

Connectors provide the separation of component interactions thereby achieving a higher
level of abstraction, modularity, and a greater architectural view of the system [Sha94]. For this
reason, PRISMA connectors are first-class citizens of the ADL. Connectors do not have the
references of the components that they connect and vice versa. Thus, architectural elements are
reusable and unaware of each other. This is possible due to the fact that the channels defined
between components and connectors have their references (atfachments) instead of
architectural elements. Attachments are the channels that enable the communication between
components and connectors. Each attachment is defined by attaching a component port with a

connector port.

Figure 12. Attachments

PRISMA components can be simple or complex. The complex ones are called systems. A
PRISMA system is a component that includes a set of architectural elements (connectors,
components and other systems) that are correctly attached. In addition, a system can have its

own aspects and weavings as components and connectors. Since a system is composed by
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other architectural elements, the composition relationships among them must be defined. These
composition relationships are called bindings. Bindings establish the connection among the
ports of the complex component (the system) and the ports of the architectural elements that a
system contains (see Figure 13).

In PRISMA, the dynamics of aspect-oriented architectures are treated at the meta-level. The
meta-level contains the elements that define the PRISMA concepts as data. They can be
created, modified and destroyed through the execution of the services of the meta-level. In this
way, the execution of services is reflected in the architecture by updating this data (the concept
of reflection). As a result, the PRISMA meta-level allows for the creation, destruction and
evolution of architectural elements and aspects as well as the dynamic reconfiguration of
software architectures. The PRISMA meta-level is represented by means of a metamodel that
contains one metaclass for each PRISMA concept. These metaclasses define a set of properties

and services for each concept considered in the model (see section 4.2).

Systeml s i
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Figure 13. Systems

In PRISMA, the complete view of the software architecture is not lost because of the use of

aspect, that is, the use of the view notion is not required to define aspects in the PRISMA
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software architectures. But, it is possible to define an aspect-oriented view of the software
architecture by considering all the architectural elements that import a specific aspect, and also
another view by considering all the architectural elements that import a kind of aspect concern.
For example, this allows the definition of the view of all the architectural elements of the
TeachMover robot that import a safety concern.

The PRISMA model takes advantage of the notion of aspect from the beginning of the
system definition by specifying the aspects that are found in the requirements specifications.
These aspects are reusable and can be used during the rest of the development process as well
as in the maintenance process of the PRISMA software architectures. Thus, PRISMA does not
require an initial architectural specification of the system in order to introduce aspects.
Moreover, the change of a property only requires the change of the aspect that defines it, and
then, each architectural element that imports the changed aspect is also updated

4.2. THE PRISMA METAMODEL
Metamodels define models and establish their properties in a precise way. In addition,

metamodels facilitate the automation and maintenance of software development thanks to the
support that modelling tools currently offer for these tasks and the MDD paradigm. In order to
take advantage of these properties, the PRISMA meta-level is represented by means of a
metamodel that contains a set of metaclasses that are related to each other. These metaclasses
define a set of properties and services for each concept considered in the model. The
metaclasses and their relationships define the structure and the information that is necessary to
describe PRISMA architectural models. In addition, the PRISMA metamodel defines the
constraints that must be satisfied by a PRISMA architectural model. These constraints guide
the methodology for modelling PRISMA architectural models. At the end of the modelling
process, all of them must be satisfied in order to ensure that an architectural model is correct.
The PRISMA metamodel has been specified using the class diagram of the Unified
Modelling Language (UML) 1.5. and the Object Constraint Language (OCL) 2.0 [UMLO7].
UML has been used to model the metaclasses and their relationships, attributes and services.

OCL has been used to specify the constraints of the metamodel. The choice of these languages

75



Model-Driven Development of Aspect-Oriented Software Architectures

over others is based on the fact that they are standards and are widely extended languages. As a

result, they facilitate the comprehension of the model by new users.

The PRISMA metamodel is composed of three main packages: Types, Architecture

Specification, and Common (see Figure 14 ).
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—-[_7 Logical Wiew
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Figure 14. Main packages of the PRISMA metamodel
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Figure 15. The package Types of the PRISMA metamodel

The package Types contains the packages Interfaces, Aspects, Architectural Elements and
Attachments of the PRISMA model (see Figure 15). These packages define the properties of

PRISMA types.
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The package Architecture Specification defines the elements that form an architectural
model using the types that are defined in the package Types. This package provides the
mechanisms to build an architectural model.

The package Common defines the utilities that are necessary to develop any kind of model.
It provides mechanisms to define data types, parameters, constant values, formulae of different

kinds and complex process [Per06c].

4.2.1. THE PACKAGE “TYPES”

4.2.1.1. The Package “Interfaces”
An interface publishes a set of services. This set of services is composed of at least one service,

and there is no limit to the number of services that can be specified (see Figure 16). The
services that make up an interface are called InferfaceServices. These services are defined in an
abstract way, without specifying whether they are going to be provided (in), requested (ouf), or
provided and requested (in/out) by architectural elements. An InterfaceService only specifies its
signature.

Interface . -y
- ServiceDescription
Tename string; (from Senices)

Wgname ; string

Srgwinterface(ntariame : string)
PaddSewice(Ser © InterfaceService)

SrowSenice(SenMame : string)
®addParameter(Parar : Pararneter)

..*

SignatureOfServices

InterfaceSerice

Figure 16. The package Interfaces of the PRISMA metamodel

The signature of a service specifies its name and parameters. The parameters are defined in
a specific order. The data type and kind (input/outpur) of parameters are also defined (see
Figure 17).
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has Parameter
InterfaceSenice (from Parameters)
(frarm Interfaces) 1.* | Bename : string,
! (LI hkind © {input, ouput};
0.*
typed

1

DataType

(frorn DataTypes)
Skind : {natural, integer, double, char, string, boolean, date, currency, enumerated);

Figure 17. The package SignatureOfService of the PRISMA metamodel

The metaclass [InferfaceService inherits its properties from the metaclass
ServiceDescription. This class allows the creation of services using the service newService,
whose parameter defines the name of the service that is created. The attribute name stores the
value of the ServiName parameter of newService. The service addParameter adds parameters
to services.

The metaclass Interface creates interfaces. The service newlnterface creates a new interface,
whose parameter defines the name of the interface that is created. The service addService adds
a service to the interface, whose parameter provides the InterfaceService that is added to the

interface.

4.2.1.2. The package “Aspects”
An aspect defines structure and behaviour of a specific concern of the software system. The

Aspects package includes all the metaclasses that are necessary to specify an aspect. The
structure and the behaviour of aspects are defined by attributes, services, preconditions,
valuations, constraints, played roles and protocols. These concepts are sub-packages of the
Aspects package (see Figure 18).

The metaclass Aspect (see Figure 19) has two attributes, name and concern. These
attributes store the name of the aspect and the concern that the aspect belongs to, respectively.
The service newAspect creates a new aspect, whose parameters define the name, the concern

and the protocol of the aspect.
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Figure 18. The sub-packages of the package Aspects of the PRISMA
metamodel
= Precondition
\/aluallcuj {frorn Preconditions)
{frorn aluations)
o.r
- a.* Constraint
& At;tlfgget . {frorn Constraints)
(frorn Attributes) i inlude candition
0. . 0.
descnbe sausly
1 1 1
1
Aspect
&concem : string;
- Foname : string; . Frotocal
using
(o [EiFeEs) 0+ ————_| ®newAspect(name : string, concem : string, Ptr : Protocol)rﬁi@——msf‘ {fram Protocals)
0.*| ®addinterfacenter : Interface)
®addAttribute(Attr - Attribute) 1
%addSerice(Ser | Service)
SaddOperation(Oper : Operation)
:addPrecondmon(Prec : Precondition)
i addaluation(al : Valuation) 9 .
o 1| ®addCanstraint{Const : Caonstraint) (o=t
Played_Rale o *addPlayedRole(PlayRole : PlayRole) Service
{frarm PlayedRales) (from Services)

Figure 19. The metaclass Aspect of the package Aspects of the PRISMA
metamodel

Aspects may need to store information to successfully perform their computation. For this

reason, the Aspect metaclass has an aggregation relationship with the Attribute metaclass . This
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relationship aggregates the attributes that an aspect is composed of (see the describe
aggregation relationship in Figure 19). This aggregation is established by invoking the
addAttribute service. This service adds attributes to an aspect through its A#r parameter by
providing the attribute that is added to the aspect. Aspects may need to constrain the value of
attributes. For this reason, an aspect can be composed of constraints that determine the value of
aspect attributes (see the satisfy aggregation relationship in Figure 19).

Aspects must be composed of three or more services. The three services that are required
are the following: The services begin and end to start and finish the execution of the aspect, and
at least one service to perform the necessary computations of an aspect (see the belongsTo
aggregation relationship in Figure 19). Aspect services can be private or public. Public services
of an aspect are those that are published by an interface whose semantics is defined by the
aspect. As a result, aspects import the interfaces whose semantics they define (see the using
association relationship in Figure 18). In order to associate interfaces and services to aspects,
the aspect metaclass provides the addInterface and addService services, whose Inter and Serv
parameters provide the interface and the service that are added to aspects.

In order to define the semantics of aspect services, aspects are composed of preconditions,
valuations, played roles and a protocol (see the aggregation relationships condition, include,
play and executes in Figure 19). For this reason, the Aspect metaclass has three services to
associate preconditions, valuations, and played roles to aspects. These services are
addPrecondition, addValuation, and addPlayedRole, respectively.

In addition to these attributes, services, and relationships, the metaclass Aspect has an
associated set of constraints to completely model its properties (see Figure 20).

These constraints correspond to the OCL rules shown in Figure 20. They specify the
following:

<<Every aspect has a “begin” service>>

<<Every aspect service must participate in the protocol of the aspect>>

<<Every aspect has an “end” service>>

<<For each interface that an aspect imports, the aspect must define at least a played role

associated to this interface>>
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<<Every service of an interface that is imported by an aspect must be a service of the

aspect>>
iy
self Types:Aspects:: Services :KindsOfSewices:: simplesewice > exists (s | s.name="begin")
i
self Types:Aspects: Senices::senice —-»
forAll{aSer |

self Types:Aspects::Protocols:protocol Types:Aspects:: Sewvices: service >
exists (prtServ | prtSerw = aSen)

Aspect

“{&concerm ; string;

inv: Tpname : string;

self Types:Aspects:: Services:KindsOfSewices: simpleserice >

exists (s | s.name="end") Srewhspect(name | string, concern  string, Ptr : Protocol)

°| ®addinterface(nter : Interface)

SaddAttribute(Attr  Attribute)

®addSerice(Serv : Service)

o :agggperahdo_n_(o;zgr Opperatiun)d_ -
. addPrecondition(Prec : Precondition

self Types:Interfaces:interface --» Saddvaluation(val - Valuation)

®addConstraint(Const : Constraint)

®addPlayedRole(PlayRole - PlayRole)

forAll{ ai | self. Types:Aspects::PlayedRoles:: played_role >
exist{pr | pr.Types:Interface:interfface = ai))

inv:

self Types:Interfaces:interface --> forAll (ai | ai.interfacesenice =

fordll (aiServ | self Types:Aspects:: Services:service --»

exists (aServ | aServ.oclAsType(Types:Interfaces: InterfaceService) = aiSen))

Figure 20. Constraints of the metaclass Aspect

- The package “Attributes”
Attributes store a value of a specific data type. Therefore, each aspect attribute must be

associated to a data type (see Figure 21).

Attribute
%Eagen:-ﬁmg;- type DataType
odefaut : stnng; o= " (from DataTypes
SnewAttribute(name : sting, default'alle : string)
Derivations KindsOfattributes

Figure 21. The package Attributes of the PRISMA metamodel
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The metaclass Atribute has two attributes, name and default. The attribute name stores the
name of the aspect and the attribute default stores the default value of the attribute when
necessary. The service newAttribute creates a new attribute, whose parameters define the name

and the default value of the attribute.

i
self alllnstances() --» selectindAttr | ndAttr.notMull = true) -->
forAllinnAttr | nnattr. Commaon::Formulae::formulaleft --=
exist (if | th.ocllsTypeOfiCommon::Formulae:: Postcondition)) and
(tf. Types::Aspects:Valuations:valuation. service. name = "begin”j)

3 inv;
Aftribute self ocllsTypeOfConstant)
{from Attributes) implies
Tgnarme | string; nothull = true

gdefault © string;

PnewAttributeiname : string, defaultvalue © string)

KF {disjoint, complete}

DerivedAttribute MonDervedAttribute

@addDerivationFormulafders : ComplexTerm)

'%notNuII : boolean;

Srewhttributefname : string, Nulls : boolean, defaultalue : string)

{disjoint, complete}

ConstantAttribute “Wariabledttribute

Figure 22. The package KindsOfAttributes of the PRISMA metamodel

In PRISMA, it is possible to define different kinds of attributes. The semantics of each kind
is defined in the kindsofAttributes sub-package of the Attributes package. Attributes can be
classified into derived and non-derived attributes (see Figure 22). Derived attributes calculate
their values on demand by applying a derivation rule. The derivation rule is associated to the
derived attribute (see Figure 23). Non-derived attributes store their values, and it is possible to
constrain the fact that they must contain a value by means of the notNull attribute (see the
NonDerivedAttribute metaclass in Figure 22). If notNull is true, the attributes must contain a

value; if notNull is false, no value is required. In order to correctly define the semantics of non-
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derived attributes, there are two constraints associated to the NonDerivedAttribute metaclass.
These constraints correspond to the OCL rules shown in Figure 22. They specify the following:

<<For each non-derived attribute that cannot contain a null value, there is a postcondition
of the begin service valuation that must provide a value to the attribute >>

<<The "notNull” attribute of a constant attribute is always true>>

Non-derived attributes can be constant or variable. Constant attributes store values that
cannot change; i.e., they cannot be modified during the execution of the aspect. Also, variable

attributes store values that can be modified during the execution of the aspect.

DerivedAttribute L cakulate 1 ComplexTerm

{frarm Kinds Ot botes) (from Farmulag)

Figure 23. The package Derivations of the PRISMA metamodel

- The package “Services”
The metaclass Service is a specialization of the metaclass InterfaceService (see Figure 24). As a

result, it inherits all its properties and services. The metaclass Service defines that every service
of an aspect must be characterized by the behaviour that it offers in the context of the aspect.
This means that the service can either be provided, requested or both by the aspect. This
characteristic is specified by the #pe attribute of the metaclass. The #ype values are in, out and
in/out to define the behaviour of a server (provide), a client (request), or both a server and a
client (provide and request), respectively. A service of an aspect can also have an alias. An alias
permits changing the name of an /nterfaceService inside the aspect. This metaclass stores the
alias name and provides the newAlias service to change the name. The parameters of newAlias
are the service whose name is going to be changed and the new alias.

There are two kinds of services: simple services and transactions (see Figure 25). A
transaction is a complex service that it is composed of more than one service and is executed in
a transactional way (all or nothing) (see the composedService aggregation in Figure 25). A

transaction describes a process, which models how and when the different services that
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compose the transaction are executed. As a result, a transaction is a specialization of the

Process metaclass.

ServiceDescription
gname : string

SrewSerice(Serdlame : string)
¥addParameter{Param : Parameter)

Z% {digjoint, complete}

Serice InterfaceService
Etype : {infout, in, out} {from Interfaces)

¥addType(serType : {in, out, infout})
Faddhliaz(hs : Alias)

0.+

hasdlias

0.*
Alias

e 2 Sy KindsOfSerices

®newhlias(Ser : Serice, AliasMame © string)

Figure 24. The package Services of the PRISMA metamodel

Senice
{fram Services)
Sstype : finfout, in, out}

2.*

SaddType(serType : Jin, out, infout)) composedbenie

BaddAlias(hs © Alias)

{disjoint, completezﬁ

SimpleSerace Transaction } Process
{frorm Process)

0.

Figure 25. The package KindsOfServices of the PRISMA metamodel
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- The package “Constraints”
Constraints are formulae that establish conditions on the state of the aspect that they belong to.

As a result, each time that a service execution is finished, the value of each attribute must
satisfy the aspect constraints. There are two kinds of constraints: static and dynamic (see Figure
26).

Constraint
Fename : string

{disjoint, complete}

StaticConstraint Dy namicConst raint
*newStaticConstraint{ConstMame : string, Const : Condition) *newDynamicConstraint{Consthame : string, DynConst : TermporalConstraint)

0.1 4

hasConstraint hasTemplonstraint

1
1

Condition Temporal Constraint
(from Farmulag) (from Formulag)

Figure 26. The package Constraints of the PRISMA metamodel

The metaclass Constraint is an abstract class that has only one attribute, the name of the
constraint. This metaclass is specialized into two metaclasses: StaticConstraint and
DynamicConstraint. Each one of them provides a constructor service to create instances of
static and dynamic constraints, respectively. The service newStaticConstraint creates a new
static constraint giving the name and the condition of the constraint as parameters. The service
newDynamicConstraint creates a new dynamic constraint, whose parameters define the name

of the constraint and a condition that uses a temporal.

- The package “Preconditions”
Preconditions establish the condition that must be satisfied to execute an aspect service.

Therefore, the metaclass Precondition has the aggregation relationship establishCondition and
aggregation relationship constrains with the metaclasses Condition and Service, respectively
(see Figure 27). The first aggregation establishes that a precondition must define the service that
it affects. The second aggregation establishes the condition that must be satisfied to execute the

service.
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ir:
not(self service --> exists(name = "begin') j

Precondition

&phame : string

®newPreconditionfNamePreCon © string, Con : Condition, Sery : Service)

0.1 (I _
astablishCohdition constrains
1 1

Condition Service
(from Formulae) (fram Senices)

Figure 27. The package Preconditions of the PRISMA metamodel

The metaclass Precondition only has one attribute, the name of the precondition. The
service newPrecondition creates a new precondition, whose parameters define the name, the
condition that must be satisfied, and the service that will only be executed if the condition is
satisfied. In addition, the metaclass Precondition has an associated constraint in order to ensure
that the aspect execution is not conditioned by a precondition. This constraint corresponds to
the OCL rule shown in Figure 27. It specifies the following:

<</ service begin does not have preconditions associated to it since the start of the aspect
execution cannot be conditioned by the aspect itself>>

This constraint is necessary because preconditions are used to define the business logic of
the software system and not to define the mechanisms of creating, destroying or executing

nstances.

- The package “Valuations”
Valuations establish how the service executions affect the aspect state. This semantics is

specified by means of two conditions: one that must be satisfied before the service execution
and another that must be satisfied after the service execution. For this reason, the metaclass
Valuation has three aggregation relationships with the metaclasses Condition, Service and
Postcondition (see Figure 28).
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YWaluation

pname : string

®newsaluation(valMame © string, Serv Serice, Post : Postcondition)
®addPostCondition(Post : Postcondition)
®addCaondition(Cond ; Condition)

0.1 o.x L
conditionst! belondsTo evaluate
0.1 1 1.*
Condition Senvice Postcondition
(fram Faorrmulag) {from Services) {from Forrmulae)

Figure 28. The package Valuations of the PRISMA metamodel

The metaclass Condition defines the condition that specifies the state of the aspect before
the service execution. This condition is optional, this means it does not have to be specified
when the state before the execution is not relevant to the state change (see the conditioned
aggregation in Figure 28). However, the specification of the condition after the service
execution is mandatory. The postcondition must be satisfied after the service execution. Since
the metaclass Postcondition defines the change in one attribute or parameter and a valuation
can affect several attributes or parameters, a valuation can have more than one postcondition
associated to it in order to model the service changes in several attributes and/or parameters (see
the evaluate aggregation in Figure 28).

The metaclass Valuation has only one attribute, the name of the valuation. The service
newValuation creates a new valuation, whose parameters define the name, the service that
produces the change of state, and the condition that must be satisfied after the service execution.
Moreover, it has two services addCondition and addPostCondition. The addCondition adds a
condition to the valuation. This condition must be satisfied before the service execution. The
addPostCondition adds more that one postcondition when the valuation affects several

attributes or parameters.

- The package “PlayedRoles”

PlayedRoles establish how the services of an interface can be executed. As a result, a

played role defines a process that orchestrates the service execution of a specific interface.
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Since the metaclass Played Role defines a process, it inherits the properties of the metaclass

Process.
Process
(from Process)
A i
self Types:Aspects:aspect. Types:Interfaces:interface --»
E— T ————— exists (i |i=self Types:Intefaces:interface)
(from Protocols) (from Kinds0fServices) B
Played_Role

Tgpname © string;

®newPlayedRole(PRMarme © string, PRIt © Interface)

for .
1

Interface : Serice
{fram Interfaces) i {fram Services)

i
i|self Types::Aspects::aspect. Types:Interfaces:interface --»
©lexist (i ]i= self Types:Interfaces: interface)

iny:

self Types: Aspects: Serices. service =

fordlll pr3ery | self. Types:Interfaces:interface.intefaceserice -->

exists( iServ | pr3ervoclAsType(Types:Interfaces:interface.interfaceservice) = iSer))

Figure 29. The package PlayedRoles of the PRISMA metamodel

The metaclass Played Role has two association relationships with the metaclasses Interface
and Service (see Figure 29). A played role defines the behaviour of only one interface (see the
the for association in Figure 29) and describes the execution process of more than one service
(see the order association in Figure 29). However, the played role cannot be related to any
interface or service of the software system. As a result, these relationships are constrained by
three constraints. These constraints correspond to the OCL rules shown in Figure 29. They
specify the following:

<<Every interface that an aspect imports must have associated a played role>>

<<The interface of a played role is one of the interfaces that imports the aspect that the
played_role belongs to>>

<<Every service that participate in a played role must be a service of the played role
interface>>
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The metaclass Played Role has one attribute, the name of the played role. The service
newPlayedRole creates a new played role, whose parameters define the name and the

interface. The behaviour of this interface is defined by the played role.

- The package “Protocols”
A protocol establishes how the services of an aspect can be executed. As a result, a protocol

defines a process that coordinates the private and public services of an aspect. Since the

metaclass Profocol defines a process, it inherits the properties of the metaclass Process.

Process
ffrom Process)

Protocol
Tpnhame : string;

Played Raole 0.” coordivates 1

from FlayedRoles)

SnewProtocol{PtrMarme © string)

Service
(from Services)

Figure 30. The package Protocols of the PRISMA metamodel

A service can be private or public and only belongs to one aspect. For this reason, a service
can only participate in one protocol: the protocol of the aspect that it belongs to (see the
privateandpublicsynch association Figure 30). In addition, each service of the aspect must
participate in its protocol (see the constraint in the Aspect package in Figure 20).These services
can be either private or public services, but there must be at least three: the begin and end
services of an aspect, and one service to perform the computation of the aspect (see the
privateandpublicsynch association in Figure 30).

A protocol is the glue of the played roles and the private services of the aspect. As a result,
the protocol coordinates the many different played roles that have been defined in the aspect

that it belongs to. However, a played role is only coordinated one protocol, its aspect protocol
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(see the coordinates association in Figure 30). Played roles are specified using the public
services of an aspect. Since aspect services can be private or public, those that are private are
not related to played roles (see the order association in Figure 30).

The metaclass Profocol has one attribute, the name of the protocol. The service

newProtocol creates a new protocol by providing the name of the protocol as a parameter.

4.2.1.3. The package “ArchitecturalElements”
In PRISMA, there are three kinds of architectural elements: components, connectors, and

systems (see Figure 31). The package ArchitecturalElements defines the metaclass
ArchitecturalElement. It is an abstract metaclass that specifies the commonalities of the three
kinds of PRISMA architectural elements. In addition, it includes all subpackages that define the
concepts required to specify PRISMA architectural elements.

The metaclass ArchitecturalElement has two aggregation relationships with the
metaclassess Port and Weaving, and one association relationship with the metaclass Aspect (see
Figure 32). An architectural element has at least one port; the port is part of the architectural
element and does not have its own entity without the architectural element. In other words, the
aggregation between the port and the architectural element is inclusive (see the /as aggregation
in Figure 32). An architectural element imports at least one aspect and an aspect can be
imported by one or more architectural elements of the software system (see the imports
association in Figure 32). In addition, an architectural element can include a set of weavings to
synchronize its aspects. These Weavings are related to the architectural element by means of an
inclusive aggregation (see the weaves aggregation in Figure 32).

The metaclass ArchitecturalElement has one attribute, the name of the architectural
element. In addition, it has three services addAspect, addPort, addWeaving to associate aspects,
ports, and weavings to the architectural element, respectively (see Figure 32). It is important to
emphasize that this metaclass does not have a constructor (new service) because it is an abstract

class that cannot be instantiated.
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Figure 31. The subpackages of the package ArchitecturalElements of the
PRISMA metamodel

The metaclass ArchitecturalElement has two constraints associated to it in order to
completely define its properties. These constraints correspond to the OCL rules shown in
Figure 32. They specify the following:

<<There are no two ports of an architectural model that have the same interface and the
same played_role associated >>

<<An architectural element cannot import more than one aspect of the same concern>>

The package KindsOfArchitecturalElements is a subpackage of the package
ArchitecturalElements, and it classifies architectural elements into components and connectors.
As a result, this package specifies that components and connectors inherit the properties of the

ArchitecturalElement metaclass, and it also contains the packages that define components and

connectors.
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iny:

self Types: ArchitecturalElements: :Portsport --»
farAll(pl, p2 | (p1. Types:intefaces:interface <> p2 Types::Intefaces:interface ) and
{p1.Types:Aspects: PlayedRoles:plavedrole <= p2. Types::Aspects::PlayedRoles: ;playedrole))

Port
{from Ports)

ArchitecturalElernent

Tename : string

- 1| ®addAspect(fsp ; Aspect)

SaddPort(Prt : Port)
SaddWeaving(Weave | Weaving)

Hmpoits Aspect
-7 firom Aspects

i

1

-
Waaves
_self.Types::Aspects::aspect.sizeO =1 0=
implies self Types::Aspects: aspect --= -
forAll(at, a2| al.concem <> a2 concem) ‘Weaving
{frarn Weaver)

Figure 32. The package ArchitecturalElements of the PRISMA metamodel

Components ArchitecturalElement Connectors
(from ArchitecturalElements)
Component
; Connectaor

{from Components)

SrewComponent{CompMame : string)

(from Connectors)

SnewConnectonCnetName © string)

Figure 33. The package KindsOfArchitecturalElements of the PRISMA
metamodel

4.2.1.4. The package “Weaver”

The package Weaver defines the weavings of architectural elements. It contains the metaclass
weaving which is formed by two aspect services. One of the services, the pointcut service,
triggers the execution of the weaving; the other service, the advice service, is executed as a
consequence of the weaving. The relationships between the weaving and these two services are
modelled in the metamodel by means of two aggregations (see Figure 34). In addition, if the

weaving is conditional, it has a condition associated to it.
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There are certain constraints that must be satisfied in order to associate the appropriate
services to a weaving definition. As a result, the metaclass Weaving has constraints associated
to it. These constraints correspond to the OCL rules shown in Figure 35. They specify the
following:

<<The services that participate in the weaving must belong to aspects that are imported by
the architectural element in which the weaving is defined>>

<<If the weaving uses a conditional operator, it must have a condition associated to it.
However, if the weaving does not use a conditional operator, it cannot have a condition
associated to it>>

<<The services that participate in a weaving must belong to different aspects>>

<<The aspects of the services that participate in a weaving must define different

concerns>>

Weaaving
%operator : {after, befare, instead, afterif, beforeif, insteadif}
Fpname : string

SreviWeaving(Wname © string, Oper : string, SerPointcut @ Service, ServAdvice © Service)
®addCondition(Cand : Condition)

conditioniptweaving

+adviceService

Candition Service
{fram Faormulae) (fram Services)

Figure 34. The package Weaver of the PRISMA metamodel

The metaclass Weaving has two attributes, name and operator (see Figure 34). These store
the name of the aspect and the operator that the weaving applies to the service execution,
respectively. The service newWeaving creates a new aspect; whose parameters define the
name, the operator of the weaving, and the two services that participate in the weaving. In
addition, the metaclass provides a service for adding a condition to a weaving when it uses a

conditional operator. This service is called addCondition.
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iy

and

self Types::ArchitecturalElements::architecturalElement. Types:: Aspects:Aspect >
exists (Al | A1 = self Types:Aspects: Serices: pointcutService. Types:Aspects:Aspect)

self Types:ArchitecturalElements::architecturalElement. Types: Aspects:Aspect =
exists [ AZ | A2 = self. Types:Aspects:: Senices: adviceService. Types:Aspects: Aspect)

i

((self operator ="afterif" or self. operator ="beforeif" or self. operator ="insteadif™)
implies

self. Commaon:: Formulae::condition. size() =1)

and

((self operator ="after" or self.operator ="before” or self. operator ="instead")
implies

self Comman:: Farmulae:: condition. size() =0)

WWeaving

Bename : string

@operator : {after, before, instead, aftenf, beforeif, insteadif}

®addCondition{Cond : Condition)

SnewiWeaving(Wname : string, Oper : string, SenSource : Sewvice, SenTarget : Service)

" i

self Types: Aspects::Services:pointcutSerice. Types:Aspects:Aspect
<>

self Types: Aspects::Services: adviceService. Types::Aspects:Aspect

inv:

<

self. Types:Aspects: Senices: pointcutService. Types::Aspects:Aspect.concem

self. Types:Aspects: Serices: adviceService Types:Aspects: Aspect. concern

Figure 35. Constraints of the metaclass Weaving

4.2.1.5. The package “Components”

The package Components defines simple and complex components (see Figure 36). Since

components cannot be coordinators of the software system, there is a constraint that specifies

that a component cannot import an aspect whose concern is coordination.

The metaclass Component provides a service to create components. This service is called

newComponent, and its parameter is the name of the component that is created as a result of the

service execution.

Carponent
‘newComponent(CompName : string)

System
(from Systems)

T self Types:Aspects:aspect --» not (exists (a | a.concern == "coordination™))

]

]

Systems

Figure 36. The package Components of the PRISMA metamodel
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Since systems are complex components, they inherit all the properties of components. For

this reason, the package that defines a system is a subpackage of the Component metaclass.

4.2.1.6. The package “Connectors”
The package Connectors defines the connector architectural element (see Figure 37). Since

connectors act as coordinators of components, the metaclass Connector has an associated
constraint that specifies that a connector must import an aspect whose concern is coordination

(see the first constraint that appears in Figure 37).

iny:
self Types::Aspects::aspect --» exists (A | A concern == "coordination”) I\T

|

Connector
¥rgwConnector(CrctMarme © string)

|

|
iy AN
Types:Attachments: attachmert --> select{attch | attch Types:ArchitecturalElerments:: Port s port -
exists{ p1, p2| (p1.Types:ArchitecturalElement s architecturalelement=self)
or
(1. Types::ArchitecturalElements: :architecturalelermnent=se ) --=exists(attchl, attch2 | attchl.ports —=
exists (pol | pol. Types:ArchitecturalElements: architecturalelement .ocllsType OfC omponent))
and
attch2 pots --= exists(pc2 | po2 Types: ArchitecturalElements: architect uralelement. ocllsT ypeQf Cormp onert))
and
{pcl. Types:Architectura Elements: KindsOfArchitect uralEleme nts: :Cormponents: .component
<
pc2 Types: Architectural Elernent s:: Kinds CfArchit ectural Element s Component s: component))

Figure 37. The package Connectors of the PRISMA metamodel
Morevover, the metaclass Connector has another constraint associated to it that specifies

the following:

<<A connector must have at least two attachments associated to it, and each attachment
must connect the connector to two different components>>

The metaclass Connector provides a service to create connectors. This service is called
newConnector, and its parameter is the name of the connector that is created as a result of the

service execution
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4.2.1.7. The package “Attachments”
Attachments define types of communication channels between the ports of a component and

the port of a connector. As a result, the metaclass Attachment is related to the metaclass Port by
means of an association relationship (see Figure 42). This relationship establishes that the
attachment must be related to two ports. However, it is necessary to constrain this association
with a constraint in order to establish that one of the ports must belong to a component and that

the other one must belong to a connector.

iny:

self. Types::ArchitecturalElements:: Ports::port --=exist{pl p2 |
(p1.Types:ArchitecturalElements:architecturalelement. ocllsType Of Compaonent)
and

p2. Types:ArchitecturalElements:: architecturalelement. ocllsType OfiConnector))

Part ar
{from Ports) (p1.Types:ArchitecturalElermnents::architecturalelement. ocllsTypeOffConnector)
and
2 p2. Types::ArchitecturalElerments:: architecturalelernent. oclls Type OfiComponent)))
inkPort
0.7

Attachment

&card_min__port_component © char;
&card_max_pont_component : char,
&card_min_port_connector : char,
&card_max_port_connector © char,
Tpname : string;

SnewAttachment(AttchMamme © string, PortG © Port, PortCnct : Port, CMIinPC : char, ChaxPC : char, CMinPChct | char, CMaxPCnet © char)

Figure 38. The package Attachments of the PRISMA metamodel

In addition to the attachment name for storing the name of the attachment, the metaclass
Attachment has four more attributes to specify the attachment communication pattern, i.e., the
instantiation pattern of the attachment. It is necessary to constrain how many instances of the
attachment can be attached to the port of the component instance and the port of the connector
instance. The attribute card min_port component specifies the minimum number of
attachment instances that must be connected to one instance of this component through the
port. The attribute card max_port_component specifies the maximum number of attachment
instances that must be connected to one instance of this component through the port. The
attribute card_min_port _connector specifies the minimum number of attachment instances that

must be connected to one instance of this commector through the port. The attribute
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card_max_port_connector specifies the maximum number of attachment instances that must
be connected to one instance of this connector through the port.

Moreover, the metaclass Attachment has the service newAttachment to create a new
attachment. Its parameters are the name of the attachment that is created as a result of the
service execution, the component port and the connector port that it connects, and the

minimum and maximum cardinalities for each one of the ports.

4.2.1.8. The package “Systems”
The package Systems defines complex components (see Figure 39). Systems are complex

components that are composed of a set of architectural elements and their attachments. For this
reason, the metaclass System has an aggregation with each one of the metaclasses Component,
Connector and Attachment.

The architectural elements that compose a system can be directly related to other elements
or their access can only be possible through the system. These two kinds of composition are
referential and inclusive, respectively. The analyst can model any of these compositions for the
architectural elements of the system, depending on the requirements of the system. However,
the definition of an inclusive composition between a system and an architectural element
requires the definition of a channel between a system port and a port of the architectural
element. This channel is required to resend the provided and requested services of the
architectural element through the system port. These channels are called bindings. Therefore,
the metaclass System has an aggregation relationship with the metaclass Binding. Bindings are
defined in the Bindings subpackage of the System package.

The metaclass System must be related to at least one component in order to be complex (see
the containsComp aggregation in Figure 39). In addition, it has an associated constraint that
ensures a correct composition. It specifies the following:

<<If a system does not import any aspect, the system must have at least one binding

associated to it >>
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Connector —|
Attachment {from Connectaors) e
(fram Attachrnents) o Incings
0.” nect containsnct
0.1 0.
System
: +| ¥newSystem(Systerniame © stri .
tins 0. newSystem(3ystemiame : string) =
CiompemEn e $addAttachment(Attch : Attachrent) . fink Binding
{from Components) 1 ®addBinding(Bnd : Binding) 1 g+ [ffrom Bindings)

®addComponent{Cmp : Component)
®addConnector(Cnect : Connectar)

i

self Types:Aspects:aspect.size) =0

implies

self Types:ArchitecturalElerments:: KindsOfArchitecturalElernents:: Campanents:: Systerms: Bindings: binding. size) == 1

Figure 39. The package Systems of the PRISMA metamodel

The metaclass System has four services. The service newSystem creates a new system by
providing the name of the system as a parameter. In addition, the services addComponent,
addConnector, addAttachment and addBinding add components, connectors, attachments and
bindings, respectively, to the system.

4.2.1.9. The package “Bindings”
The metaclass Binding is related to the metaclass Port by means of two association

relationships (see Figure 42). These associations establish that the binding must be related to a
system port and an architectural element port. However, the architectural element that the port
belongs to must be one of the architectural elements of the system. This constraint is applied
not only at the types level, but also at the configuration level (instances). For this reason, the
metaclass Binding has an associated constraint that specifies this requirement.

In addition to the attribute name for storing the name of the binding, the metaclass Binding
has four more attributes to specify the communication pattern of the binding. As a result, the
attribute card_min_port AR specifies the minimum number of binding instances that must be
connected to one instance of this architectural element through the port. The attribute

card_max_port AR specifies the maximum number of binding instances that must be
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connected to one instance of this architectural element through the port. The attribute
card min_port Sys specifies the minimum number of binding instances that must be
connected to one instance of this system through the port. The attribute card max _port Syst
specifies the maximum number of binding instances that must be connected to one instance of

this system through the port.

iy

self. SystemPort. Types: ArchitecturalElements:: KindsOfArchitecturalElements:: Components:: Systems:system. Types::
ArchitecturalElements:: KindsOfArchitecturalElements:: Components:: component -

exists (¢ | ¢ = self ARPort. Types::ArchitecturalElements:: KindsOfArchitecturalElerments:: Components:: component)

ar

self. SystemPort. Types: ArchitecturalElements:: KindsOfArchitecturalElements:: Components:: Systems:system. Types::
ArchitecturalElements:: KindsOfArchitecturalElements:: Connectors:: connectar --=

exists [ cnct | cnct = self ARPort. Types:: ArchitecturalElements:: KindsOfArchitecturalElerments:: Connectors:: connectar)

Binding

Bcard_min_port AR : char;
&card_max_port AR char;
&card_min_port_Sys : char,
&card_max_port_Sys : char;
Tgname © string:

¥rewBinding(BdMName : string, PSys : Port, PAR : Port, CMinPSys © char, CMaxPSys : char, CMinPAR : char, CMaxPAR : char)
0.*

isCompoyent

+5ysternPort

Port
(from Ports)

Figure 40. The package Bindings of the PRISMA metamodel

Moreover, the metaclass Binding has the service newBinding to create a new binding, Its
parameters are the name of the binding that is created as a result of the service execution, the
system port and architectural element port that it connects, and the minimum and maximum

cardinalities for each one of the ports.

4.2.1.10.The package “Ports”
Ports publish the services of an interface and constrain how these services can be provided or

requested by means of a played role. For this reason, the metaclass Port has two aggregation

relationships with the metaclasses Interface and Played Role (see Figure 41).
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Port

Bgname - string

®newPor(narme © string, Intf ; Interface, PlayR : Played_Role)

a.r a.r
type chavos
1 1
Inteface Playved Role
(fram Interfaces) (from PlayedHoles)

Figure 41. The package Ports of the PRISMA metamodel

i

not(self Types: ArchictecturalElements: :architecturalelerment. ocl ls TypeOff Sy stem))

irn plies

(self. Types: ArchitecturalElements :architecturalelernent. Types: Aspects::aspect —-»

exists (A Aspect | ATypes:Aspects: PlayedRoles:played_role = self Types:Aspects:PlayedRales: played _role)
and

([ self Types :Aspects::FlayedRoles:played_role Types::Interfaces:intefface = self. Types::Interfaces::interface)

/
/
/

Port

Tname : string

TnewPort(name : string, Intf : Interface, PlayR : Played_Role)

Y
\

inv:

self. Types::ArchictecturalElements::architecturalelement. oclls Ty peOfiSy stem)

implies

(({self Types:ArchitecturalElements:architecturalelement. Types: Aspects:aspect =

exists (A Aspect | A Types:Aspects::PlayedRoles:: played_role = self Types::Aspects::FlayedRoles:: played_role))
and

([ self Types:Aspects: PlayedRoles: played_role Types:Interfaces::interface = self. Types::Intedfaces::interface))

ar

((self Types:ArchitecturalElements: KindsOfArchitecturalElements: Components:: Systerns:system. Bindings:: binding --»
exists (B | (self Types::Aspects:PlayedRoles::played_role = B.ARpont. Types:: Aspects::PlayedRaoles::played_rale))
and

(self Types:Interfaces:interface = interfaceB.ARport. Types:: Intefaces::interface)))

Figure 42. Constraints of the metaclass Port

However, ports cannot be related to any interface or played role of the software system. As
a result, these relationships are constrained by the following two constraints that correspond to

the two that appear in Figure 42:
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<<If the architectural element that the port belongs to is not a system, the played role of
the port must be defined for one of the aspects that the architectural element imports. In

addition, the interface of the played_role must be the same one as the interface of the port>>

<<If the architectural element that the port belongs to is a system, there are two possible
options: 1) either the played_role of the port is defined for one of the aspects that the system
imports, and the interface of the played role is the same as the interface of the port, 2) or the
port has the same interface and played role as one port of the architectural element of the

system>>

The metaclass Port has one attribute, the name of the port. The service newPort creates a

new port by providing the name of the port, the interface and the played role as parameters.

4.2.2. THE PACKAGE “ARCHITECTURE SPECIFICATION”
The package Architecture Specification defines how a PRISMA architecture can be defined

using the types defined in the package Types. The metaclass PRISMAArchitecture has five
aggregation relationships with each one of the first-order citizens of the PRISMA model. They
are components, connectors, aspects, interfaces, and attachments. Since components,
connectors, interfaces, and aspects are reusable, they can be used by more than one
architectural element (see Figure 43).

The metaclass PRISMAArchitecture has one attribute, the name of the architectural model.
The service newArchitecture creates a new architectural model by providing its name as a
parameter. In addition, the metaclass provides five services to add attachments, components,
connectors, interfaces and aspects to the architectural model. In order to ensure that a model is
correctly defined, the metaclass PRISMAArchitecture has a set of constraints associated to it
(see Figure 43). Their meaning is the following:

<<An architectural model must include every aspect that is imported by its components
and/or connectors>>

<<An architectural model must include every interface that is used by its aspects >>
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irn:

Attachmant self Types: Aspects: Aspect =

fordll (a | & Types:Intedfaces:interface --> exists(i1] self Types:Intedfaces::interface —=
exists( 2 | i1 =i2)))

{from Attachments)

1.7% -
corract
1 K
PRISMAArchitecture
Esname string,
include Snewdrchitecture(name © string) synchionize
Component : 4 Connectar

(frarn Components)

PaddAttachment(Attch : Atachment) Fo——

2. 1..%| ®addCamponent{Cmp : Component) | 1.7 1.7 (from Connectars]
®addConnector(Cnet ; Connectar)
VaddAzpect(hsp ;- Aspect)
Paddintarface(nt ; Interface)

- 5
u i
i 2.7
* :
Interface Aspect
Cfrom Interfaces) E (from Aspects)
i [

(self. Types: ArchitecturalElements:: KindsOfArchitecturalElements:: Components: component --=
forAll {c | c.Types:Aspects:Aspect = exists(al| self Types:: Aspects: Aspect-=

exists( a2 | al = a2))))

and

(self. Types:: ArchitecturalElements:: KindsOfArchitecturalElements:: Connectars:: connector - »
forAll fenct | cnct. Types::Aspects: Aspect > exists(al] self Types::Aspects: Aspect-=

exists( a2 | al = a2))))

Figure 43. The package Architecture Specification of the PRISMA
metamodel

4.3.CONCLUSIONS

The PRISMA model has been presented in this chapter. This model allows us to describe

software architectures of complex and large systems and to improve their reusability and

maintainability. This is possible because the application of aspect-oriented software

development to software architectures provides different levels of reusability and maintenance:

the concern level (aspects) and the functional level (architectural elements).

» The concem level places the properties of a concern inside an aspect. As a result, the
modification of a concern is easily found in the aspects of this concern, and the aspects of a
concern can be reused by any architectural element that needs their properties.
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» The functional level places functional or coordination processes of the business rules of the
software system in components and connectors, respectively. These can be easily found in
order to be reused or modified.

Another important property of this model is the fact that the weavings between aspects and
the relationships among architectural elements are defined outside aspects, which improves
their reusability and maintenance.

Instead of using a kernel or core entity to encapsulate functionality, aspects to define non-
functional requirements and their weavings, this model only uses aspects and weavings to
define architectural elements. The symmetrical way in which aspects are introduced in
PRISMA software architectures provides homogeneity to the model and a clean and novel way
of modelling software architectures. In PRISMA, architectural elements and aspects are used as
it they were pieces of a puzzle that fit together to form a software architecture. This way of
specifying PRISMA software architectures is presented in detail in chapter.

This chapter also has presented the PRISMA metamodel. This metamodel permits the
creation of PRISMA architectural models in a correct way and the accurate definition of their
propetties following the MDD paradigm. In addition, it facilitates the integration of the
PRISMA model into modelling tools that support the incorporation of new metamodels.

The PRISMA metamodel defines the required metaclasses, their properties and services,
and their relationships with each other. In addition, the metamodel specifies the constraints to
ensure that the definition of an architectural model is correct.

The metamodel is the repository structure that stores PRISMA architectural models,
preserving the reusability of interfaces, architectural elements and aspects. In addition, the
metamodel introduces a methodology to follow during the MDD process when a PRISMA
architectural model is specified by means of constraints. This is supported by verification rules
that are associated to the MDD process.

The PRISMA metamodel has been defined to be able to support evolution at run-time in
the future. This evolution could be supported at different levels of granularity by adding the
evolution services to the different metaclasses of the metamodel. This would consist of adding

or removing architectural elements of the model, or adding or removing properties of an aspect
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(attributes, services, etc). In addition to adding evolution services to the metamodel, a
mechanism to invoke these services at run-time should be provided to support run-time
evolution.

The work related to PRISMA model has produced a set of results that are published in the
following publications:

> Nour Ali, Jennifer Pérez, Cristobal Costa, Isidro Ramos, Jose Angel Carsi, Replicacion
Distribuida en Arquitecturas Software Orientadas a Aspectos utilizando Ambientes,
Journal IEEE América Latina, Vol. 5, Issue 4, July 2007.

> Jennifer Pérez, Nour Ali, Jose Angel Carsi, Isidro Ramos, Designing Software
Architectures with an Aspect-Oriented Architecture Description Language, 9th
Symposium on the Component Based Software Engineering (CBSE), Springer Verlang
LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Suecia,
June 29th-July 1st, 2006.

» Nour Ali, Jennifer Pérez, Cristobal Costa, Isidro Ramos, José Angel Carsi, Mobile
Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on
Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227
pp. 3748, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20,
2006.

» Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for
Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer
Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area),
March 27th-30th, 2006.

» Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for
Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp.
1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)
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Jennifer Pérez, Manuel Llavador, Jose A. Carsi, Jose H. Cands, Isidro Ramos,
Coordination in Sofiware Architectures: an Aspect-Oriented Approach, Fifth Working
IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society
Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November,
2005 (position paper)

Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsi, Infegrating Ambient Calculus in
Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-
7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005 (position paper)
Jennifer Pérez, Nour Ali, Cristobal Costa, José A. Carsi, Isidro Ramos, Executing Aspect-
Oriented Component-Based Software Architectures on .NET Technology, 3rd
International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic,
May-June 2005.

Nour Ali, Jennifer Pérez, Isidro Ramos, Aspect High Level Specification of Distributed
and Mobile Information Systems, Second International Symposium on Innovation in
Information & Communication Technology ISSICT, pp. 14, Amman, Jordania,21-22,
April, 2004.

Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsi , Aspect Reusability in Software
Architectures, 8th International conference of Software Reuse (ICSR), July, 2004 (poster)
Elena Navarro, Isidro Ramos, Jennifer Pérez, Goals Model-Driving Sofiware
Architecture, 2nd International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 205-212, ISBN:0-9700776-9-6, May 5-8,
2004, Los Angeles, CA, USA.

Nour Hussein, Josep Silva, Javier Jaen, Isidro Ramos, Jose Angel Carsi ,Jennifer Pérez ,
Mobility and Replicability Patterns in Aspect-Oriented Component- Based Software
Architectures, 15th TASTED International Conference, Parallel and Distributed
Computing and Systems (PDCS), ACTA Press, ISBN: 0-88986-392-X, ISSN: 1027-
2658, pp. 820-826, Marina del Rey, California, USA, 3-5, November 2003,
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Towards Quality, Aspect Oriented and Dynamic Sofiware Architectures, 3rd 1IEEE
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Architectural model for a Medical Diagnosis, IV workshop DYNAMICA — DYNamic
and Aspect-Oriented Modeling for Integrated Component-based Architectures, pp. 1-7,
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of PRISMA Architecture using DSL Tools, IV Workshop DYNAMICA — DYNamic and
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CHAPTER S
COORDINATION

Coordination has become a key concept in the modelling process of industrial systems as it
leads to a better understanding of the interactions that take place in complex and distributed
systems. In the last few years, coordination has been introduced in two important fields of
Software Engineering: Software Architectures, through the notion of connector, and Aspect-
Oriented Software Development, through the notion of weaving and by considering
coordination as an aspect. The separation of coordination from functionality is a key concept in
order to provide a better reusability and maintenance during the MDD process.

In this chapter the interest of using aspect-oriented connectors is discussed in detail,
justifying the relevance of the PRISMA model and its merits with regard to other proposals,
especially to provide a complete MDD support. Once this interest has been stated, the concrete
structure of connectors in PRISMA is described in detail, and the formalization of the relevant
PRISMA concepts is provided and explained. The notion of weavings is described with special
care. In addition, a discussion of the proposal is done by comparing it with other works and
highlighting the advantages of the PRISMA proposal. Finally, the chapter concludes by
summarizing the results and the directions of further work about PRISMA coordination

processes.
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5.1. INTRODUCTION

Currently, there is a great interest in coordination. Coordination orchestrates processes in order
to achieve the correct functionality of software products. Good coordination management is
essential and is a risk factor for the synchronization of difficult tasks that industrial systems
must perform. As a result, several software development approaches have taken coordination
into account. Two widely used are Component-Based Software Development (CBSD)
[Szy98]and Aspect-Oriented Software Development (AOSD) [Kiz97].

On the one hand, coordination is an important topic in CBSD and, by extension, in
Software Architectures since it can be used to synchronize the components that form a specific
architecture. In fact, as it is presented in chapter 3, Architecture Description Languages (ADLs)
[Med00] could be classified according to the importance they give to coordination. Some of
these ADLSs have introduced the notion of connector, which is an architectural element that acts
as a coordinator among other architectural elements (either connectors or components)
[All97a], [Cue05], [Med00]. However, other ADLs do not include connectors [Can99],
[Mag95]. Those that use the notion of connector give more relevance to coordination because
they provide a specific architectural element to define it. In addition, they offer an architectural
view of systems; whereas, an ADL without connectors has a more compositional view, as in
object-oriented models [Luc95b], [Mag95]. As a result, an ADL should provide connectors in
order to separate coordination from computation and to provide an architectural view instead of
a compositional view.

On the other hand, AOSD allows the separation of cross-cutting concerns of software
systems in a modular entity called aspect. Among the different crosscutting concerns that can
be identified in software systems, coordination is perhaps one of the most common. But in
addition to this characterization as a concern, coordination has also emerged as an important
feature within AOSD itself, because the different aspects of a software system must also be
synchronized. The need for aspect coordination has been identified as a key feature in this
approach [Kiz01].

The main contribution of this chapter is the formalization and definition of aspect-oriented

connectors in order to define their coordination process in a formal way and thus, to avoid
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ambiguity in the code generation process. In addition, its definition must provide reusability
and avoid the replication of specification to facilitate the development and maintenance of
software following the MDD paradigm.

Since PRISMA connectors are observable processes that have state and behaviour, the
formalisms which are used to formalize the PRISMA model are a variant of a Modal Logic of
Actions [Sti92], and a extension of the n-calculus [Mil93] which provides priorities. The 7-
calculus is a process algebra which is used to specify and formalize the processes of the
PRISMA model, and the Modal Logic of Actions is used to formalize the way in which the
execution of these processes affects the state of architectural elements. More detail about these

formalisms can be found in [Per0O6c].

5.2.ASPECT ORIENTED CONNECTORS

It is important to keep in mind that current software systems perform complex coordination
processes that have to take into account not only the coordination concern, but also other
concerns such as: safety, distribution, security, etc. These other concerns are necessary in order
to provide a correct coordination process. For example: The connectors that coordinate the
actuators and sensors of tele-operated robots need to check that the movement is safe for the
robot before sending the movement to the actuator. PRISMA aspect-oriented connectors are
presented as a solution for the specification of these complex coordination processes by
improving the reusability and maintenance of software during the MDD process. This
improvement has been achieved by overcoming the disadvantages of the rest of ADLs. Current
ADLs can be classified into three different kinds: non-aspect-oriented ADLs without
connectors, non-aspect-oriented ADLs with connectors, and aspect-oriented ADLs. Next, it is
presented how they specify complex coordination processes that have to take into account

several concemns.

5.2.1. Non-Aspect-Oriented, connector less ADLs

There are ADLs that prefer the absence of connectors because they distort the compositional
nature of soft ware architectures. Some ADLs, such as Darwin [Mag95], [Mag96]Leda

[Can01], [Can00], and Rapide [Luc95b], [Luc95a], [Ken95] do not consider connectors as
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first-class citizens. However, these ADLs make difficult the reusability of components because
they have the coordination process tangled with the computation inside them, and they are
aware of the coordination process that has to happen in order to communicate with the rest. The
notion of connector emerges from the need to separate the interaction from the computation in
order to obtain more reusable and modularized components and to improve the level of
abstraction of software architecture descriptions. Mary Shaw [Sha94]presents the need for
connectors due to the fact that the specification of software systems with complex coordination
protocols is very difficult without the notion of connector. From her experience in the software
architecture field, she demonstrates that the connector provides not only a high level of
abstraction and modularity to software architectures, but also an architectural view of the
system instead of the object-oriented view of compositional approaches. She also defends the
idea of considering connectors as first-order citizens of ADLs. Figure 44 illustrates how two
components (actuator and sensor) are communicated using an ADL without connectors. The

coordination process is encapsulated in the components and tangled with the computation and

other concems.
Computation Computation
+ +
tor
Conrdinatiun\\A??; e L~” Coordination
+ N +
Safety . Safety

Figure 44. Sensor-Actuator coordination by using a Connector-less ADL

5.2.2. Non-Aspect-Oriented ADLs with connectors
Most ADLs provide connectors as a first order citizens of the language such as: ACME

[Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99], SADL [Mor95], [Mor97], UniCon
[Sha95], [Sha96], Wright [All97a], [All97b], CommUnity [Lop05], [And03], [Fia04][9], Pilar
[Cue02], [Cue04], ArchWare nT-ADL [Oqu04a], [Oqu04b], etc. All of these languages go a
step forward with regard to the previous kind of ADLs. They improve the reusability of
components and connectors by separating computation from coordination. However, their
connectors are non-aspect-oriented and they specify their coordination processes by tangling
the code inside them. For example: the coordination process between an actuator and a sensor
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of a robot will imply the specification of a connector with tangled concerns of coordination and

safety (see Figure 45).
Safety
Robot % d‘!‘ ti
. Corp__ryec'ror ~ Coordination
e
Computation+ ,Computation

Figure 45. Sensor-Actuator coordination by using an ADL with Connectors

5.2.3. Aspect-Oriented, connector-less ADLs
Most aspect-oriented approaches applied to software architectures and their ADLs are based on

an original ADL without connectors such as: PCS [Kan02b][Kan02a][Kan03], DAOP-ADL
[Pin03][Pin05], AspectLEDA [Nav05], AOCE [Gru00], etc. These ADLs introduce the
aspect-oriented behaviour by means of connectors, i.e., aspects are connectors among
components. However, when there are two components that are coordinated by several
connectors (aspects), the connectors cannot be synchronized among them (weavings among
aspects). And in those ADLs that could try to solve this problem by connecting both connectors
they will lose the reusability of the concerns of those connectors, because they will be
dependent to the connector (aspect) that are connected to. Figure 46 illustrates how two
components are communicated using an aspect oriented ADL without connectors.

Coordination

Coordination

Computation~_ Actuator

Computation
o s
%

Saiety
= Coordination Weavings

Figure 46. Sensor-Actuator coordination by using a connector-less Aspect-
Oriented ADL (AOADL)
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5.2.4. Aspect-Oriented ADLs with connectors
However, in PRISMA a new kind of ADLs is introduced, namely aspect-oriented ADLs with

connectors. PRISMA is based on an ADL with connectors, and aspects are introduced as a
new concept in software architectures for concerns called aspects. As a result, each concern is
specified in its aspect and the coordination rules among the different aspects are inside the
connector being aspects reusable and independent one to each other. Figure 47 presents how
PRISMA coordinates the sensor and the actuator by separating the concerns or computation,
safety and coordination. As a result, they are not scattered through the architecture and they are
not repeated. These properties are the base to improve the reusability and maintenance of

software during the Model-Driven Development of aspect-oriented software architectures.

Coordination
Aspect | coordination

Robot

Weavings
Connector a' g

Safety _|

Computation

AY

Computation-{:g_ uator
] j

Sgr_n_sor/

Figure 47. Sensor-Actuator coordination by using the PRISMA ADL

In addition, Figure 47 shows that the coordination process among components, connectors
and aspect is very complex. For this reason, this coordination process must be very well
defined and formalized in order to guarantee that it coordinates all the pieces of software
successfully. The formalization of this coordination process is presented in detail along the next

section.
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5.3.CONNECTORS IN PRISMA

A connector is an architectural element that acts as a coordinator between other architectural
elements. As such, connectors have a coordination aspect. An example is the connector that
synchronizes the Actuator and the Sensor of a robot joint. This connector imports a safety
aspect and a coordination aspect to coordinate the movements of the robot in a safe way for the

joint, the robot and the environment that surrounds it.

5.3.1. Architectural Element
Since a connector is an architectural element, a connector is formalized as an architectural

element. An architectural element is formed by a set of aspects, their weaving relationships, and

one or more ports. These ports represent interaction points among architectural elements.

- Formalization: Architectural Element
An architectural element AE is built by composing a set of aspects A; A, ...A,, which are

conceived as the smallest modules in our approach, and will be defined in section 5.3.3. The

resulting element AE is in turn defined itself by the 4-tuple (A, X, @, 1), as follows:

» A:the set of attributes in aspects A; Ay, ... A,
» X the set of the services in aspects A; A, ... A, (see Definition 1 in section 5.3.4)

A\

O: the set of formulae (in Modal Logic of Actions) providing constraints for aspects
Ay A,
» IT: the process Pag defined as follows:

Pae ::= Pp1]|...]| Ppm || Pa1]| ...]| Pan|| Pw

This means that the processes of the ports, weavings and aspects of the architectural
element are executed concurrently. For this reason, PAR is defined as their parallel
composition, and therefore their dependencies are expressed and solved just as concurrency

conflicts.
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% Réﬁoﬁfgnnat'tpr
Fhck PSen

Fig. 49 (a). The black box representation

Connector CnctJoint

Coordination Aspect Import CProcessSuc;

Safety Aspect Import SMotion;

Weavings
SMotion. DANGEROUSCHECKING (NewSteps, Speed, Secure)
beforeif (Safe = true)

CProcessSuc.movejoint (NewSteps, Speed);
End Weavings;

Ports
PAct : IMotiondJoint,
Played Role CProcessSuc.ACT;
PSen : IRead,
Played Role CProcessSuc.SEN;
PJoint : IJoint,
Played Role CProcessSuc.JOINT;
PPos : IPosition,
Played Role CProcessSuc.POS;
End Ports

End Connector CnctJoint;

Fig. 49 (b). PRISMA specification
Figure 48. The RobotConnector Connector
A brief comment about the role of the Modal Logic of Actions in PRISMA is relevant here.

Basically, the formulaec in @ are used for implementing obligations, prohibitions, and

permissions, providing the concurrent equivalent of a deontic logic. As a result, it permits the

118



Coordination

analysis and formulation of assertions about processes that change the execution environment.
A formula of this Modal Logic of Actions is written following the structure  [a] ¢, where
and ¢ are well-formed formulae (wff) in conventional first-order logic, which characterize the
state before or after the execution of the action a, respectively. As usual in modal logics, the
construct [] represents the necessity operator, and @ represents an action. As a result, the
meaning of formulae which are constructed following this pattern (y [a] ¢) is the following: “if
v is satisfied before the execution of a, ¢ must be satisfied after the execution of a”. To
conclude, an example for an architectural element (and particularly of a connector) is provided,
namely the RobotConnector in charge of synchronizing the Actuator and the Sensor of a robot
(see Figure 47). This connector imports the SMotion safety aspect and the CoordJoint
coordination aspect as mentioned above and is formed by the follow set of ports and weavings
(see Figure 48).

The formalization of this connector is therefore given by the following composite -
process:

Pag ::= Pp1||...|| Pem|| Pat]| ...|| Pan|| Pw

5.3.2. Ports
Ports are the interaction points of architectural elements (components and connectors). Every
port has associated a process, which establishes the services that publishes, and how and when

they can be executed.

- Formalization: Ports
Let P be a port of an architectural element, such that its behaviour is specified by a process

PR;. Then its semantics are given by the process Pp, defined simply as follows:
Pp ::=PRI1

An example is the port PAct in the RobotConnector example (see Figure 48), which has its
behaviour specified as a process Ppay, which in turn refers to the generic definition of another
process ACT.

PPAct ::= ACT
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5.3.3. Aspect
An aspect defines the structure and the behaviour of a specific concern of the software system.

Examples of concerns are functionality, coordination, safety, distribution, among others.
Structure is defined by a set of attributes, each of which has a value in every state. The state
of the aspect at any given moment is determined by the value of its attributes. An aspect defines
a semantics for its services. This semantics captures when the services cannot be executed, how
the execution of services changes the state of the aspect, and the order in which they can be
executed. The behaviour of an aspect is defined by means of a protocol. The protocol describes

how the different services of the aspect are coordinated.

- Formalization: Aspects
An aspect is defined by the tuple (A, X, @, I1T):
» A:asetof attributes
» X:asetof services (see section 5.3.4)
»  @: aset of formulae in modal logic of actions
» II: aset of terms in 7-calculus; this is, a set of concurrent terms describing partial processes
in the m-calculus.
The contents of the set I'1 are therefore a set of r-calculus processes. For instance, let o be
an aspect whose behaviour is specified by the PRT; protocol. Then its semantics is the process

P, defined as follows:

P,::= PRT1

Again, in the RobotConnector example of Figure 48, the SMotion aspect is similarly
defined as:

Pswmotion::= SMotionProtocol

The dialect that is used to describe terms in the I set is a syntactic variant of the polyadic -
calculus. It also includes an extension to include priorities, which are not describe nor use here.

But apart from this extension, the language is largely standard, even in the choice of derived
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operators (such as if . . . then). The main syntactic differences are the use of the arrow () as
the prefix operator to define a sequence of actions, instead of the dot (.), which is used here with

its usual meaning at the programming level, to indicate scope nesting. Finally, the dialect

—>

provides also support for vector-like tuples of channels, which are simply indicated as v . It is

assumed an implicit indexing operator in this kind of vectors, so the name vI will refer to the

first channel in the vector v . This should be considered just as syntactic sugar.

5.3.4. Weavings
A weaving specification defines how the execution of a service of an aspect can trigger the

execution of a service of another aspect. Of course, the same service can be involved in several
weavings. In order to preserve the independence of the aspect specification from other aspects
and weavings, weavings in PRISMA are specified outside aspects and inside architectural
elements, including connectors. As a result, weavings specified inside connectors are the ones
which coordinate the different aspects that a connector imports.

A weaving is defined by means of operators that describe the order in which services are
executed. A weaving that relates service s/ of aspect A/ and service s2 of aspect A2 can be
specified using the following operators. Note the use of the dot (.) operator to indicate scope
nesting, as indicated above.

» A2.s2 after Al.sl. A2.s2 is executed after Al.sl.

» A2.s2 before Al.sl. A2.s2 is executed before Al.s1

» A2s2instead Al.sl. A2.s2 is executed instead of Al.s1

» A2.s2 afterif (Boolean condition) Al.sl. A2.s2 is executed after Al.sl if the condition is
satisfied.

» A2.s2 beforeif (Boolean condition) Al.s1. If the condition is satisfied, A2.s2 is executed
followed by Al.s1; otherwise, only A2.s2 is executed.

» A2s2 insteadif (Boolean condition) Al.sl. A2.s2 is executed instead of Al.sl if the

condition s satisfied.
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The invocation of Al.sl, the second argument of the weaving, triggers the execution of
weaving (pointcutf). When a weaving is specified, the operator is chosen from the trigger
service point of view; depending on whether the trigger service needs the execution of a service
before, after, or instead of it (advice). Therefore the before and after weaving modifiers are not

directly interchangeable.

- Formalization: Weavings
The semantics of a weaving is a coordination process that intercepts the invocation of a

service Al.sl and either replaces it with, or executes it in relation to, another service A2.s2.
Al.sl and A2.s2 belong to different aspects.

The weaving must be executed each time that Al.sl is invoked, upon which it executes
either A2.s2 instead of Al.sl or Al.sl and A2.s2 in the correct order. This means that the
invocation of a service does not automatically trigger the execution of its associated process.

Taking into account that the formalization of a service in PRISMA is the following:

» DEFINITION 1. (Service) A service is a process that executes a set of actions to produce a
result.

Let S be a service. The semantics of S is a process in the polyadic -calculus called Ps.

This process has a channel Cs through which it is able to interact; or, conversely, it can be

invoked for execution (see Figure 49). It is possible to see immediately that services are not

invoked directly by other processes, but only through weavings that coordinate execution of

services within architectural elements.

Figure 49. Formalization of a Service

Let's start by defining a service invocation. This will make much easier to understand later

the way in which it is defined the internal behaviour of a service.
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» DEFINITION 2. (Service Invocation) Let x = x;, ...,x, be the input parameters for a
service S, andy =yl : : : ym be its output parameters. The invocation of S is formalized by
means of a message sent through channel Cs. Moreover, each output parameter y; must
have a return channel r,;, which is dynamically created for each invocation using the 7=
calculus restriction operator (v). These channels are used to send the results of S and to
indicate and acknowledge termination of the execution of S. All this considered, a service

invocation is described as the following process.

- -> >

(v I’y) (Cs!( x, l"y) 2 ry1?2(y1)...rym?(ym))

The structure of this process defines the different ways in which a service is able to interact;
S0, it is now possible to define the behaviour of a service as a set of w-calculus processes, as

indicated by the following definition.

» DEFINITION 3. (Service Process) The behaviour of a process Ps of a service S can be
divided in three kinds of actions:
o Request Reception. The first action of Ps must be the reception of the

messages that come through Cs. This reception is specified as follows.

- -

Cs?(x,7ry)

o Service Execution. The execution of the service mternal behaviour consists

->

of processing a set of internal actions. The output parameters (y =y, ...,
Vm) are created, and it is assumed that internal actions bind them with some
useful value. Then this internal execution is specified as follows.
->
v y)@
o Termination. The last action in Ps is always the sending of the output

->

—>
parameters ( ) =Y, ..., ym) through return channels ( 7 y = ry;...1,m). This
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way, the invoker is confirmed that execution of S has ended. This

termination is therefore specified as follows.

ry1!(y1)... rym!(ym)
As a result, the complete formalization of Ps is the replicated sequence of

these three actions.

- > —>

Ps::=*(Cs? (X, 7 y)> (v V) ((r) 2 ryl(y1)... ryml(ym)))

This replication allows us to execute the service as many times as it is necessary. In terms of
our formalization in the w-calculus, and given a service S which is being controlled by the
weaving, this means that the weaving process Py interacts with Pg via the channel Cg defined in
DEFINITION 1. To do so, it must provide a channel Cys which other processes can use to
invoke S (see Figure 50).

Figure 50. Formalization of a service controlled by a weaving

Considering these two channels, the invocation of S by other processes is defined as the

following mt-term:
- - >

(W ry)Cws!( X, 7y) D ry?(y1)...rym2(ym))

And then the invocation of S by the weaving process is therefore as follows:

—-> —-> —->
(v 7y)NCs!( X, ry)>r1?(y1)...ym?(Ym))
After that, each weaving operator defines a different process with a specific behaviour, to
provide the required semantics for each one of them. As an example, let's consider the process
for the beforeif weaving operator, which involves two services belonging to two different

aspects.

—> > >

Pini=( 7 ) (Cwaist!( _x ;’y) 2 ry1?2(y1)...rym?(Ym))
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s > - - >
Pewir::=*(Cwa1s1? ( X, 7y) 2@ ¥s2)(Cazsd ( X, ¥s2)>

rs21?(s21)... rsam?(s2m)) >

if (boolean_condition = true) then
—> - >

(v 7s1)(Carst! ( X, 7s1) > rs11?(s11)... rsm?(s1m)) >
ry11(s11)... rym! (s1m))
else

ry1!(s21)... rym ! (s2m))

- —> —>

Pa1s1::=*(Ca1s1? (X, 7s1)2> (0 S1) ((t) 2 rs11l(s11)... rsim!(s1m)))

> > >

Pa2_s2::= *(Caz_s2? (_x , _l” s2)2> (v _S 2) ((t) =2 rs21!(s21)... rs2m!(s2m)))

Table 3. Translation set of n-processes for beforeif weaving pattern

T
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Figure 51. Translation for beforeif weaving patterns

A2:52 beforeif (Boolean condition) Al:sl

According to PRISMA formal semantics, this weaving pattern will be translated to the Y-

calculus as a compound process Pgwir , which has the context depicted in Figure 51. This

means that Ppy;- receives the invocation of Al.s1 from another process (P, ,,) through Cy; s.

As BWIF is a “before" weaving, Pgy- starts by invoking A2.s2 using Cy; »». Then, Py, 5

receives the invocation, executes a set of internal actions, sends the results, and notifies the
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weaving that execution has finished. Next, if the Boolean condition in BWIF is true, the first
service of the weaving is executed; otherwise Pgyy- sends the results of A2.s2 to the process
that invoked A1.s1. In the first case, when the condition is satisfied, Pgy- invokes Al.s1 using
Cy; 51 and Py; 4 receives the invocation upon which it executes a set of internal actions, sends
the results, and notifies the weaving that the execution has finished. Finally, Pgy;+ sends the
results of Al.s1 to the process that invoked A1l.s1.

The semantics of the set of weavings defined inside a connector is therefore translated as

the Py process, the parallel composition of every individual weaving process.

Pw ::= Paw1 || ...|| Pawn || Paw1 || ...|| Pewn || Piw1 || ...||
Pwn || Pawiet || ...|| Pawien || Pewirt || .. ]|
Pewien || Pwiet]] ...|| Piwien

This means that the weavings are executed concurrently, interacting as specified. In
addition, the same service can be involved in several weavings of the same architectural
element and there is an order for processing the different weavings that a service triggers. This
ordering establishes that weavings are executed from more restrictive to less restrictive. The
precedence is as follows: Insteadlf, Instead, Beforelf, Before, After, Afterlf. Deadlocks and
infinite loops that could appear when using these operators are avoided at the specification
time.

An example of a weaving appears in the RobotConnector case study. This connector
imports the SMotion safety aspect and the CoordJoint coordination aspect. The need for a
weaving emerges due to the fact that the robot is moved only after the connector is sure that a
movement is safe. The invocation of the moveJoint service (the second argument of the
weaving) of the CoordJoint triggers the execution of the weaving (see the process

Powiesmioncooraion: M Figure 12). Specifically, the weaving of the connector receives the

—>

invocation of the moveJoint service (the term Cycoorsoint moveloint/(NEWStEpS, speed, 7 ) in the

process) and afterwards it specifies that the DANGEROUSCHECK service of SMofion has to

be executed, and it must answer before the moveJoint service of CoordJoint 1s even invoked,
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hence the term (v _I’>s2 ) (Csmotion DANGER | (NeWsteps, To1) =2 roi?(safe)) in the process. Then
the condition guarantees that the execution of the moveloint service is only performed if the
safe return parameter of the DangerousCheck service is set to true (hence the ifthen/else
construct in Figure 12, which encloses the invocation of the movelJoint service through the
Ccoondioint moveloint channel). On the other hand, the processes defining the behaviour of each one
of the services, which are in turn defined within the aspects, are ready to be invoked by the
weaving at any time (see the definition for both Pcyoraoint movesoins A0 Psysorion pancir as replicated,

hence permanent, processes in the Figure).

Pw ::= PBwiFsMotionCoordJoint
>
PBWIFSMotionCoordJoim:I=*(CWCoordJoint_movejoint? (newsteps, Speed, r y) >
—->
(v 7 52) (Csmotion_DaNGER! (newsteps, rs21) = rs21?(safe)) >

if (safe = true) then
- -
(v 7 s1) (Ccoorddoint_movejoint! ( Nnewsteps, speed, 7 s1) >

rs11?(s11)) > ry1!(s11))
else
ry1 ! (s21))

-> ->
F)CoordJ<)int7movejointiZ= *(CCoordJoianovejoint? (newsteps, speed, I s1 )9 (1) S 1) ((‘E) >

rs11!(s11)))

PsmMotion_DANGER::= *(Csmotion_DANGER? (Nnewsteps, rs21)=> ( (t) = rs21!(safe)))

Figure 52. Translation for the weaving in the RobotConnector example

5.4. ANALYSIS OF THE PROPOSAL

Both coordination and architecture are generic high-level abstractions of a software system;
they provide different approaches to close concerns, and both have long and separate research
traditions. At the same time, there is an obvious relationship between them. Both notions try to
identify highlevel patterns in the system, though their perspectives are slightly different.
Architecture identifies structural patterns defined by inner interaction within a (mostly)
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compositional configuration, while coordination defines high-level interaction patterns shown
by the resulting structure.

However when the relationship between them is considered, even their relative ordering has
not always been clear. Different authors have considered their relationship in different ways,
and this is the best proof of their intertwining and the intrinsic difficulty of their separation. For
instance, Andrade et al. [And02a], [And02b] consider that configurations are built on top of a
coordination layer which guarantees a shared behaviour. On the contrary, Eisenbach and
Radestock [Eis98] conceive coordination as the higher level abstraction, which is built on top
of a configuration layer, which guarantees a substrate for shared interaction. At the same time,
many authors present these two abstractions at the same level and provide a common support
for it; in particular, many coordination languages have also been presented as ADLs, provided
that their particular abstractions are equally good for describing both [Mag95], [Pap0O1]. In
particular, connectors and special-purpose components bear many similarities to some
constructs in several control-driven coordination proposals.

Probably among the most important reasons for the success of the architectural approach is
the implicit separation of concerns it provides; the designer is just concerned with the
functionality of components (and possibly some relevant non-functional requirements), but he
is now relieved of describing compositional and coordination issues, which have become the
architect's responsibility. Though connectors are not the only way in which an ADL can
describe interaction and coordination abstractions, their existence and the emphasis on them is
probably the reason why these languages are so apt in specifying these issues. And once they
have been separated, the relevant high-level linguistic constructs in different approaches are
similar.

It is possible to conclude that coordination is an emergent property of some architectures; an
architecture-level description has the means for providing the coordination concem, but of
course it can also describe non-coordinated systems. In summary, architectures describe
interaction structures; and coordination can be described as a higher-level abstraction on

interaction, therefore supported by architecture [Cue06].
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Connectors alone do not provide a global coordination policy, but only local coordination
groups; therefore the use of connectors (as discussed in section 5.2 and above) eases the
description of a coordinated system, but it is not a sufficient condition. Shaw's original
identification of connectors [Sha94] tried not to provide a coordination, but an interaction
abstraction. However, subsequent work has defined ever more complex connectors, which
were grouped in types and categories, tending towards the definition of much more complex
abstractions, even higher-order connectors [Lop03]. Mehta provided an initial taxonomy for
connectors [Meh00], which could have provided a basis for later developments in this
direction, but this thread has not had continuity.

The locality of the connector approach justifies still the definition of generic coordination
language proposals, which provide the means to describe general policies. However an aspect-
oriented alternative is also possible. Instead of providing a complete language from scratch, it is
also possible to define an aspect-oriented extension of some existing language. More than that,
this would ease the integration of this “coordination aspect” with other concerns in the
architecture. Consider also that earlier proposals for aspect-orientation [Kiz97] defined specific-
purpose languages to deal with aspects, rather than aspectual extensions, so this evolution
towards an architectural extension is also within the tradition in the field.

Therefore it is possible to provide coordination by means of pure compositional ADLs, but
connectors make it easier. Then, a specific coordination language provides general policies, but
an aspect-oriented extension makes integration easier. Thus, providing an aspect-oriented,
connector-based ADL would gather the benefits of different proposals. The reader is again
referred to section 5.2 for a detailed discussion of the different approaches for providing
coordination in ADLs, including connector-based and aspect-oriented alternatives.

The reflective ADL PiLar has explored the way in which a very general architecture
language is able to describe coordination as a separate concern, i.e. as an architectural aspect. In
[Cue04] this was made by exploiting the reflective capabilities, thus proving that this is indeed
possible, but very complex. Later research has explored also an aspect-oriented approach
which makes a non-explicit use of these reflective capabilities in PiLar, providing an aspectual

layer and showing how coordination can be independently managed as an aspect [Cue06]; but
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the relationship between this aspect and others, though possible, was complex, and is not
explored in detail.

And this is the main benefit of the PRISMA approach, as highlighted in previous
discussion. The aspect-oriented structure of the language itself, and the symmetry of its model,
provide the basis to be able to relate coordination to other concerns, such as safety. The notion
of weaving, which is required by the aspect model, provides also the means to reconcile the
conflicts between aspects, whenever they appear. This, combined to the benefits of both
connectors and aspects themselves for coordination, defines PRISMA as one of the most
complete proposals in the field, gathering all the benefits provided by other approaches in a
single, consistent and rigorous conceptual model. Thus, PRISMA coordination model proposal
provides a suitable framework to develop aspect-oriented software architecures following the

MDD proposal.

5.5.CONCLUSIONS
In this chapter, the advantages of combining software architectures and AOSD to define
coordination have been presented. In addition, a detailed analysis about how to take more
advantage of this combination has been done. From this analysis, this chapter defines and
formalizes PRISMA aspect-oriented connectors. They are specified in an elegant and novel
way through the combination of AOSD and Software Architectures. As a result, PRISMA
presents a coordination process that provides the following advantages:
1. Connectors to coordinate components: Reusability and maintenance of components
and connector is improved by separating coordination from computation. Components and
connectors can be used during the MDD process as building blocks of the modelling
process and they can be reused throughout all their stages.

2. Aspects to specify the coordination process of connectors: Reusability and
maintenance of different concemns is improved by separating coordination from other
concerns that are necessary for the coordination process (safety, security, distribution,

mobility, etc.). There are no tangled concerns inside complex connectors. Aspects can be
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used during the MDD process as building blocks of the modelling process and they can be
reused throughout all their stages.

3. Weavings are inside connectors to coordinate their aspects: Reusability and

maintenance of different aspect is improved by not specifying weavings inside aspects.

4. Formalization of the coordination processes among aspects (weavings) and
architectural elements. Thus, non-ambiguity and proper execution of the different
coordination processes is guaranteed. The code generation of coordination models is

improved during the MDD process.

The work presented in this chapter has been published in the following publication:

» Jennifer Pérez, Carlos E. Cuesta, Aspect-Oriented Connectors for Coordination,
International Workshop on Synthesis and Analysis of Component Connectors (SYANCO
2007), Joint to The 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC-
FSE, ACM Digital Library, Dubroknik, Croacia, September 3-4, 2007.
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CHAPTER 6
MODEL-DRIVEN DEVELOPMENT

This chapter presents how PRISMA gives a complete support for the development of
technology-independent aspect-oriented software architectures following the MDD approach,
and the PRISMA CASE, which is the tool that makes this software development support
feasible. PRISMA has been applied to several case studies: banking systems, electronic
auctions, robotic tele-operated systems such as the TeachMover robot, etc. The MDD support

of PRISMA CASE is going to be illustrated using these case studies.

6.1.INTRODUCTION

Some new approaches have recently emerged in order to improve software development. They
try to improve the early stages of the software life cycle by automating their activities as much
as possible by following Model-Driven Development (MDD) [Bey05], [Am04]. MDD is a
software development paradigm that is based on models that use automatic generation
techniques in order to obtain the software product. MDD is included within Model-Driven
Engineering (MDE) [Sch06], which increases the variety of software artefacts that can be
represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The
use of models to develop software provides solutions that are independent of technology,
whose source code can be obtained by means of automatic code generation techniques for

different technologies and programming languages. The high level of abstraction that models
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provide permits working with metamodels in the same way as with specific models or domain-
specific models.

Aspect-Oriented Models propose the separation of the crosscutting concemns of software
systems into separate entities called aspects [Kiz97]. Despite the fact that the aspect-oriented
paradigm emerged from the implementation level, its use is being extended to all stages of the
software life cycle. As a result, Aspect-Oriented Software Development (AOSD) has emerged
in order to extend the advantages that aspects provide to every stage of the software life cycle
[Kiz01]. One interesting stage where AOSD is being introduced is the software architecture
stage.

Software architectures [Per92] make software systems simpler and more understandable.
Some proposals for the integration of software architecture and AOSD have emerged to take
advantage of both approaches [Chi05], [Cue05], [Nav05], [Pin05], [Pin03], [Kat03], etc.

The automatic code generation from models reduces the cost and time of the development
process. Nowadays, there are many CASE tools that are able to generate applications following
the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are widely-
known as model compilers. They automatically generate the application code from the
conceptual schema of a software system. The automatic generation can be complete as in
Oblog Case [Ser94], or it can be partial, as in Rational Rose [RAT07], Together [TOGO7] and
others. However, since these model compilers follow the Object-Oriented Paradigm, the need
for developing model compilers that follow the Software Architectures and/or AOSD
approaches has emerged. The combination of the Software Architectures and AOSD
reusability and the automatic code generation achieves higher reduction in the time and cost of
the development process than using only one of these approaches. As a result, an important
challenge in the software engineering area is the integration of software architectures and
AOSD approaches, and automatic code generation and traceability techniques in a unique
approach in order to support the development and maintenance of complex software systems in
an efficient way.

PRISMA is an approach that integrates software architecture and AOSD in order to take

advantage of both. The PRISMA approach is based on its meta-model [Per05a] and its formal
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Aspect-Oriented Architecture Description Language (AOADL) [Per06d]. Since the PRISMA
model is a technology-independent model, the PRISMA approach also follows the MDD
paradigm to obtain its advantages during the development and maintenance processes of
PRISMA architectures. The main goal of the PRISMA approach is to give a complete support
for the development of technology-independent aspect-oriented software architectures, which
could be compiled for different technological platforms and languages using automatic code
generation techniques. A PRISMA CASE has been developed in order to cope with the
challenge of developing aspect-oriented software architectures following the MDD paradigm.
The PRISMA Aspect-Oriented Architecture Description Language is a formal language
that is based on a Modal Logic of Actions [Sti92]and a dialect of polyadic m-calculus
[Mil93][Mil99]. It is important to emphasize that most ADLs only permit the specification of
the skeleton of architectures and the services that are interchanged among their different
architectural elements. The PRISMA AOADL has greater expressive power and can specify
more features and requirements using aspects. This complete specification of the system
requirements, and the fact that the PRISMA AOADL is a formal technology independent
language, facilitates the automatic code generation and the validation of architectural and aspect

features of the system.

6.2.THE MDD SUPPORT OF PRISMA
The PRISMA approach follows the MDD paradigm. There are two main approaches that
apply this paradigm. They are the Model-Driven Architecture (MDA) approach proposed by
the OMG [MDAO07], and the Software Factories approach proposed by Microsoft [Gre04].
MDA deals with the lack of software system adaptation to different technologies and
programming languages by proposing four levels of abstraction: CIM (Computation
Independent Model), PIM (Platform Independent Model), PSM (Platform Specific Model),
and the final application. Software Factories leads to the reuse of architectures, software
components, techniques and tools to improve software development.

PRISMA follows MDD in the general sense, that is, it is not focused on MDA or Software
Factories. PRISMA MDD support is not constrained to the definition of a specific number of
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levels of abstraction or techniques because it can vary depending on the needs of each software
system. In this way, this provides us the opportunity of extending the MDD support of
PRISMA in future works. PRISMA follows the MDD approach by providing the software
architect models, which allow for completely developing aspect-oriented software
architectures. Since the level of abstraction of models is higher than programming languages
and the code is automatically generated from models, the tasks of the software architect are
facilitated. In addition, the use of code generation techniques improves the development and

maintenance processes of software.

6.2.1. PRISMA in MOF
In order to present PRISMA model specifications and how they follow the MDD approach, the

OMG Meta-Object Facility (MOF) specification is going to be used [MOF02]. MOF allows us
to clearly present in this thesis the differences between types and instances and their
correspondent models.

MOF defines a four-level “architecture’” and its main purpose is the management of model
descriptions at different levels of abstraction and their static modification. The upper layer is the
most abstract one (see the M3 layer, Figure 53). This layer defines the abstract language used to
describe the next lower layer, which contains metamodels (the M2 layer). The MOF
specification proposes the MOF Model as the abstract language for defining all kinds of
metamodels, such as UML or PRISMA.

The metamodel layer defines the structure and semantics of the models defined at the next
lower layer (the M1 layer). The PRISMA metamodel is defined at the M2 level. It defines the
properties that the interface, aspect, architectural element, and connection primitives have (see
the system package of the PRISMA metamodel in the M2 layer, Figure 53).

The M1 layer comprises the models that describe a software system. These models are
defined using the primitives and relationships that are described in the metamodel layer (M2).
PRISMA models are defined using the interface, aspect, architectural element, and connection
primitives that are defined in the previous level (M2). As a result, PRISMA types that are
placed in the M1 layer satisfy the properties established at the M2 layer. An example is the
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VirtualBank type that has been defined using the PRISMA system primitive (see M1 layer,
Figure 53). PRISMA system types are defined as architectural patterns, which are not
specifically configured until a particular instantiation is performed.

The lowest level is the information layer (MO layer), which contains the data, that is, the
instances of a specific model. In PRISMA, these data are particular system instantiations (see
my VirtualBank, MO layer, Figure 53), which behave as described in the system type.

[} connect

M3 layer
MOF model \ meta-metamodel
]

M2 layer
metamodels

PRISMA
types

M1 layer

models

s . .
is_instance_of .- «_is_instance_of
L Lo !

PRISMA

‘ MO layer
instances L

myVirtualBank Another\VVBank information

Figure 53. Meta-Object Facility (MOF) layers and PRISMA models

6.2.2. PRISMA transformations
The PRISMA AOADL [Per06d] defines the architectural elements at different levels of

abstraction: the type definition level and the configuration level. The type definition level
defines architectural types with a high abstraction level in order to be reused by other types or
specific architectures. The configuration level designs the architecture of software systems by
creating and interconnecting instances of the defined architectural elements in the type
definition level. In other words, it specifies the topology of a specific architectural model. These
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two levels of abstraction also appear in PRISMA models: PRISMA type models and PRISMA

configuration models.
From the PRISMA
@ metamodel to a type
PRISMA model
From a type PRISMA
model to a configuration
PRISMA model
inputs
.
. N '&
-« * \
‘ : ' outputs .% D
TRANSFORMATION: I [S# Sode (\ 2 . B\
Code and AOADL — ||-
Generation Patterns forll- PRISMA @ ‘ APPLICATIONS
Types AOADL
— TRANSFORMATION: °UtPuts
Code_ and AOADL “- PRISMA
Generation Patterns for AOADL
Instances

Figure 54. MDD from the PRISMA Metamodel to Applications

The PRISMA model is a metamodel that permits the definition of PRISMA type models
whose instantiation defines PRISMA configuration models. PRISMA configuration models
define specific systems. PRISMA applies MDD to define type models from its metamodel (see
step A, Figure 54), and to define configuration models from type models (see step B, Figure
54). In addition, PRISMA approach has created a set of transformation patterns to transform
PRISMA models into its AOADL specifications and into C# code (see steps 1 and 2, Figure
54). PRISMA applies these transformation patterns during the development process in order to
automatically generate applications from its PRISMA architectural models and to show the
formal specification of its models.

This MDD process together with the models and the generation patterns are provided by
PRISMA CASE. This CASE tool supports the PRISMA approach and it is presented in detail

in the following section.
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6.3. FOLLOWING MDD WITH PRISMA CASE

PRISMA CASE currently supports the generation C# code that is executable on NET
technology from its aspect-oriented architectural models. The PRISMA CASE is composed of
the PRISMA metamodel, a graphical modelling tool, a model compiler, a middleware and a
generic graphical user interface to execute the generated code (see Figure 55).

The PRISMA metamodel is part of the PRISMA CASE since the metaclasses that allow
the creation of PRISMA aspect-oriented software architectures, as well the constraints of the
PRISMA metamodel, must be available in the CASE tool. They are necessary to be able to
model PRISMA architectural models and to make sure that they satisfy the PRISMA
constraints.

The PRISMA AOADL is a formal language [Per06d]. Even though the use of a formal
language clearly provides advantageous characteristics, the use of a formal language is really
difficult. For this reason, PRISMA CASE provides a graphical language [PerO6a], [Per06b]
and a graphical modelling tool to model PRISMA software architectures using an intuitive and
friendly graphical AOADL. This PRISMA graphical modelling tool is divided into two
modelling tools following the MDD process presented in the previous section: the PRISMA
Type Modelling Tool and the PRISMA Configuration Modelling tool.

Since PRISMA CASE must generate executable C# code in .NET technology and the
NET framework does not provide support for the Aspect-Oriented approach, a PRISMANET
middleware has been developed to provide a solution [Per0Sb]. PRISMANET extends the
NET technology through the execution of aspects on the NET platform in accordance with
the PRISMA model.

Finally, the PRISMA model compiler has been developed to automatically generate
PRISMA AOADL specifications and C# code from the PRISMA architectural models, and a
generic GUI is provided to assist the user in checking the behaviour of the architecture.
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Figure 55. PRISMA CASE

6.3.1. PRISMA CASE development: Domain Specific Language Tools
(DSL Tools)

Since there are a lot of tools in the market that provides mechanisms to follow the MDD,

PRISMA CASE has been developed using one of them instead of developing a tool from

scratch. This decision is taken in order to reduce the time and cost invested in the

implementation of this MDD support. Following this same criteria, since the PRISMANET

middleware was previously developed using the Visual Studio framework, the Domain

Specific Languages Tools (DSL Tools) [DSLO7] was chosen among the different tools of the

market to develop PRISMA CASE.

DSL Tools is a set of tools for creating, editing, visualizing, and using domain-specific

models to automate and improve the software development process. This set of tools is

integrated into the Visual Studio 2005 framework to define domain models with their

customized graphical representations.
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DSL tools have been created to model specific models such as the model of a web page, a
banking system, a tele-operated system, etc. DSL Tools allows for the definition of domain
specific models and their customized graphical representations. From these two projects, DSL
tools is able to generate domain-specific tools for these specific models. These specific and
customized tools are then used to define specific applications of web pages, banks systems,
tele-operated systems with domain-specific tool boxes and concepts.

The generated tool not only provides a customized modelling tool, it also provides Code
Generation Templates, which automatically generate code using a set of code generators.
These templates help users to define a model compiler in an easy way by browsing through the
concepts that have been modelled and stored in the domain specific model. The DSL code
generators take the templates, the domain specific model definition and its XML document as
inputs of the code generation process. The output of this process is generated by the code
generators following the defined templates and substituting the parameters for the concepts

stored in the model.

6.3.2. The PRISMA Type Modelling Tool: A) From the PRISMA
Metamodel to the PRISMA Type Models

In order to develop PRISMA CASE, every metaclass and relationship of the PRISMA
metamodel have been introduced in the DSL Tools using the primitives that DSL provides (see
Figure 56). For example, Figure 57 shows the definition of the architectural element and aspect
metaclasses in DSL Tools.
Toolbox _—
i nakise

N Pointer
= Class

& Value Property
%% Reference

% Embedding
Te Inheritance

= General

There are no usable controls
in this group. Drag an item
onkto this text to add it to the
toolbox,

Figure 56. Toolbox of DSL Tools
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All the classes of the PRISMA metamodel are translated by DSL to partial C# classes in
order to access and update value properties, to navigate across relationships, and to enable an
object to participate in a relationship. In addition, they can be used to add new behaviour to the
model, such as to include verification rules (see section 7.3).

In addition, the graphical metaphor to each metaclass of the PRISMA metamodel has been
defined. DSL tools stores the graphical representations selected for the PRISMA concepts. As
a result of this definition, the PRISMA graphical modelling tool provides a tool box that
permits the graphical modelling of PRISMA models by dragging and dropping the shapes to
the drawing sheet (see Figure 6). In PRISMA, only the main concepts and their relationships
are graphically represented; the rest of the concepts are specified using the AOADL and are
included in the definition of the corresponding shapes.

Toolbox - 1 X
= PRISMA DSL
|k Pointer |
&= Interface
1 [ Aspect
2 - AspectHasInterface
3 {F Component
P Connector
O Port
4 T ArchitecturalElementHasAspect
O Weaving
— Attachment
b System
=== Binding
() State
(O SubState
—> StateHasState
5 E Integration_Aspect
6 T ArchitecturalElementHasIntegration_aAspect
T - Integration_AspectHasInterface
Figure 58. PRISMA ToolBox
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Figure 60. PRISMA Type Modelling Tool

Finally, it is important to mention that a setup for the PRISMA CASE has been defined in
DSL Tools. As a result, PRISMA CASE can be provided to the software architect as an
independent project of the PRISMA CASE implementation. When the software architect
executes the setup, it creates a new kind of project for Visual Studio 2005 called PRISMACase
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(see Figure 59). The creation of a PRISMA CASE project consists of launching PRISMA
CASE and starting the development process.

The PRISMA Type Modelling Tool is generated from the PRISMA metamodel, its
graphical representions and its partial C# classes (see step A, Figure 54). The modelling tool is
composed of a toolbox, a drawing sheet, a model explorer, a window of properties and a
PRISMA menu (see Figure 60).

6.3.3. The PRISMA Model Compiler for Types: 1) Transformation: Code
and AOADL generation patterns for types

The PRISMA Type Modelling Tool also provides a set of templates to automatically generate
the code from the models that have been graphically modelled. The templates for generating
the AOADL specification and the C# code are already available (see step 1 in Figure 54). They
can be extended to generate the code for other languages. The templates and the command to
execute the generators that produce the result are provided by the window Solution Explorer of
PRISMA CASE. This command is called Transform All Templates. Its execution calls the
code generators that execute the code generation templates of PRISMA by substituting the
parameters for the elements that have been modelled. The PRISMA templates are stored in two
different folders: ADLCodeGeneration and CSharpCodeGeneration. These folders contain the
templates to generate each PRISMA type and the file that contains the result of the last
Transform All Templates execution (see Figure 61).

The ADLCodeGeneration folder contains the formal specification of the software
architecture that has been modelled following the PRISMA AOADL [Per06d]. Despite the fact
that the specifications are introduced in the graphical shapes using the PRISMA AOADL, the
AOADL generation permits the user to see the complete textual specification of the model.

The CSharpCodeGeneration folder contains the C# code generation, which allows the
execution of the specified software architecture on the PRISMANET. The implementation of a
specific PRISMA software architecture is performed by extending the classes provided by
PRISMANET. In order to develop these code generation templates, a set of patterns has been
identified and defined to generate the C# code for each one the PRISMA concepts to be
executed over PRISMANET (see appendix A). Next, a simplified example of a component
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pattern is presented by using the Actuator component of the TeachMover Robot case

study(Pattern 15 of the catalogue).
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Figure 61. PRISMA Code Generation Templates
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=) ArchitecturalElement {Class)
ArchitecturalModel (Reference property)
Aspects (Reference property)
Ports (Reference property)
WWeavings (Reference property)
Sistem (Reference property)
Integration_Aspects (Reference property)

Transformation

Description

This pattern details how to generate the C# code from a simple architectural
element. Specifically, it only generates the structure of the architectural model, the
internal code of this structure, that is, ports, aspects and weaving, is generated by
other patterns related to it.

Template

using System;
using System.Reflection;

using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace <#=this.Model.Name#>
{
<#
foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)
{
if (architecturalElement is Component || architecturalElement is Connector)
{
#>
[Serializable]
public class <#=architecturalElement.Name#> : ComponentBase
<#
if (architecturalElement is Connector)
{
#>
, IConnector
<#
}
#>
{
public <#=architecturalElement.Name#>
(string name<#=ArchitecturalElementArguments (architecturalElement) #> )
base (name)

{

<#
/* Aspects */
/* Weavings */
/* Ports */
#>
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}
<#

}/* endif (architecturalElement is Component || architecturalElement is
Connector) */

Case Study

Description

This pattern is illustrated using the component Actuator of the TeachMover case
study. The representation of the Actuator in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Graphical representation

Actuator Component -

= .
Name chuatar =1+ ArchitecturalElements
Sistem Tt ¢ e Actuator {Component)

Result of the pattern execution

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class Actuator : ComponentBase
{
public Actuator (string name ) : base (name)
{
/* Aspects */
/* Weavings */
/* Ports */
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Related Patterns

Pattern 16, Pattern 17 and Pattern 18.

Component Actuator

Integration Aspect Import RS232;

Ports
PCoord : IMotionJoint,
Played_Role RS232. INTMOVE;
PSENSOT : IMotiondJoint,
Played Role RS232. OUTMOVE;

End_Ports;
new () {RS232.begin () ;
destroy () {RS232.end () ; }

End_Component Actuator;

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class Actuator : ComponentBase
{
public Actuator (string name )
{
/* Aspects */
AddAspect (new RS232 ());
/* Weavings */
/* Ports */

base (name)

InPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE) ;
OutPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE) ;
InPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE) ;
OutPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE) ;

Figure 62. The generated AOADL and C# code of the component Actuator
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All the patterns are not presented due to space limitations. But, the results of the complete
C# and AOADL transformations of the component pattern for the Actuator are presented in
Figure 13. As it can be seen in the C# code presented in Figure 13, a component is
implemented as a serializable C# class. This class is serializable in order to enable mobility in
future versions of PRISMA CASE [Ali06]. This class inherits from the ComponentBase class
of PRISMANET, which implements the component of the PRISMA model. The component
name is the same as the one in the PRISMA specification. The set of ports and aspects that
make up a component are included by invoking the constructors of the port and aspect
PRISMANET classes. Both classes implement the port and aspect elements of the PRISMA

model.

6.3.4. The PRISMA Configuration Modelling Tool: B) From PRISMA
Type Models to PRISMA Configuration Models

The PRISMA metamodel that has been introduced in DSL, and the modelling tool that has
been developed from this model provide us mechanisms to specify PRISMA aspect-oriented
software architectures. However, it is necessary to instantiate and to configure these
architectures into specific ones and provide the software architecture mechanisms to do so. In
order to cope with these needs, PRISMA CASE automatically generates a domain specific
graphical modelling tool to configure the software architectures that have been defined using
PRISMA Type modelling tool. A PRISMA Configuration Modelling Tool is generated for each
PRISMA software architecture that is modelled using the PRISMA Type Modelling Tool. The
PRISMA Configuration Modelling Tool is used to develop specific software architectures using
the PRISMA types defined in the PRISMA Type Modelling Tool as modelling primitives.

The capacity to store all the information needed to automatically generate a domain-specific
tool permits the use of PRISMA architecture as a domain specific language in other model
specifications. It also permits the generation of the specification of the configuration language.
This information is generated using the code generators of DSL and is stored in the persistence

and configuration language folders of PRISMA type modelling tool (see Figure 63). The
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information of these folders is the input for creating the new modelling tool for the domain-

specific PRISMA software architecture that has been defined.
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Figure 63. Model Persistence and Configuration Language Information

The automatic generation of a tool for modelling configurations of a PRISMA software
architectures is performed by executing the PRISMA Model Configuration option of the menu
PRISMA after the transformation of all templates has been done (see step 1, Figure 64). Next, a
new project is automatically created and can be used as a Configuration Modelling Tool. Step 2
of Figure 64 shows how the Actuator and Sensor component types of the TeachMover robot
defined in step 1, Figure 64 appear in the tool box of the Configuration Modelling Tool as
shapes for modelling. It shows how these types have been dragged and dropped on the drawing
sheet generating two instances. In Figure 64 example, the base joint of the TeachMover robot is
modelled by defining its actuator and sensor component instances: Actuator BASE and
Sensor BASE.
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(1) PRISMA Type Modelling Tool
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Figure 64. Generation and Execution of the PRISMA Modelling
Configuration Tool
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6.3.5. PRISMA Model Compiler Instances: 2) Transformation: Code and
AOADL generation patterns for instances

In addition, the configuration modelling tool provides a command to transform its templates to
obtain the AOADL specification that corresponds to the configuration that has been defined
using the tool, and to instantiate the code, that has been generated in step 1, with the instances
that are in the configuration model. In order to allow this transformation process, the
information of the configuration model is stored in a XML document. Figure 65 shows the
structure of this XML store simple components:

Finally, this tool permits the execution of the generated code by launching the defined
instances. In order to do this, the PRISMA menu offers the option PRISMANET, which
executes the middleware PRISMANET and instantiates the defined configuration (see the
menu PRISMATools, step 2, Figure 64). As a result of this execution, a generic GUI is
launched to interact with the architecture by invoking its services and checking the value of its
attributes (see Figure 66). The main purpose of the generic GUI is to assist the user in checking
the behaviour of the architecture without having to worry about aesthetic details and without
forcing the user to define a GUI in order to obtain a result.

<?xml version="1.0" encoding="utf-8"7?>
<ConfigurationModel name = " operation">

<Components>
<Component name = "" type = "">
<Properties>
<Property name =
type = "" value = "">
</Property>
</Properties>

<SystemRef name = "">
</SystemRef>

</Component>
</Components>

</ConfigurationModel>

Figure 65. XML document for storing instances
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Figure 66. Generic GUI of PRISMA Applications

However, it is important to mention that the use of this interface is not mandatory. In other

words, if the users prefer to define their own specialized forms, they can do so.

6.4. CONCLUSIONS

In this chapter, the PRISMA approach is presented as an important advance in the combination
of the aspect-oriented paradigm and software architectures due to the fact that it completely
supports the development process of these systems by applying the MDD paradigm. In
addition, the PRISMA CASE that supports this approach has been presented in this chapter.

PRISMA CASE is a framework that provides complete support for the PRISMA approach.
It is composed of a set of tools that is suitably integrated to provide a unique framework that
gives support for the user throughout the software life cycle. This integration also provides top-
down traceability during the different stages of the software life cycle and facilitates the
maintenance of the developed software products.

This set of tools includes the PRISMA Type Modelling Tool with its code generation
patterns, the PRISMA Configuration Modelling Tool with its code generation patterns, the
generic Graphical User Interface for PRISMA applications, and the middleware

PRISMANET.
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The PRISMA Types and Configuration Modelling Tools give support for the development
of PRISMA software architectures following the MDD approach and using the PRISMA
AOADL [Per06d] in a graphical way [Per06a], [Per06b]. As a result, PRISMA offers
mechanisms to develop software architectures in a more intuitive and friendly way and
mechanisms to verify their models. In addition, the code generation patterns that PRISMA
modelling tools offer allow automatically generate executable C# code on PRISMANET from
the specified graphical models. Thus, PRISMA CASE deals with the traceability between
software architectures and implementation and reduces the time and cost invested in the
development and maintenance processes.

PRISMA CASE provides a generic Graphical User Interface to execute software
architectures. This is an important advantage because it is a simple way of validating that
software architectures provide the behaviour expected by the user without having to develop a
customized graphical user interface.

This chapter demonstrates that all the tools and mechanisms that PRISMA CASE provides
make PRISMA a well-supported approach for developing aspect-oriented software
architectures following the MDD approach. The demonstrations of the PRISMA CASE and its
download are available in the [PRI07].

The work presented in this chapter has been submitted to the following publication:

» Jennifer Pérez, Jose A. Carsi, Isidro Ramos, Model-Driven Development of Aspect-
Oriented Sofiware Architectures, The Computer Journal, Oxford Journal, (JCR 2006:
0.593) (submitted, status: first review)

The work presented in this chapter has been published in the following publication:

> Jennifer Pérez, Cristobal Costa, Jose A. Carsi, Isidro Ramos, PRISMA CASE, XII
Conference on Software Engineering and Databases (JISBD), Zaragoza, Spain, 12-14
Septermber. (Demonstration, In Spanish)

155



Model-Driven Development of Aspect-Oriented Software Architectures

156



Verification

CHAPTER 7
VERIFICATION

Most mistakes that are made during the software production come from the first stages of the
software life cycle. For this reason, there is an increase in the number of proposals that try to
deal with the problems that appear in these first stages. They usually improve the user help
during the modelling process. A fundamental mechanism that must be provided to guide the
user during the modelling process is the verification of models. The verification of models
allows the detection of modelling mistakes and avoids that these mistakes will be spread
throughout the rest of stages.

This chapter presents how the PRISMA approach provides a complete support for the
verification of aspect-oriented architectural models following the MDD approach. The
verification proposal and how PRISMA CASE makes feasible this verification are presented in
detail.

7.1.INTRODUCTION
Nowadays, to provide software production with properties such as reliability, quality and easy

maintenance is one of the challenges of software engineering. Most mistakes that are made
during the software production come from the first stages of the software life cycle. Since these
mistakes grow in an exponential way as projects progress, it is necessary to focus on the
improvement of these first stages instead of postponing the solution for late stages. Thus, most

proposals that try to solve these problems improve the software development by automatizing
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the first stages of the software life cycle following the Model Driven Development Paradigm
(MDD) [Am04], [Bey05].

The use of models to develop software provides important advantages such as the high
level of abstraction and the technology independence. The high level of abstraction that models
provide permits working with metamodels in the same way as with specific models or domain-
specific models. Whereas the solutions that are independent of technology can generate the
application code by means of automatic code generation techniques for different technologies
and programming languages.

The automatic code generation avoids the mistakes of correspondence between the
semantics of the model and the application code. However, it dos not prevent the modelling
mistakes that the user makes. In order to prevent these modelling mistakes, it is necessary to
provide user help in order to guide the user during the modelling process. This guidance
mechanism must be well-supported by the approach and its corresponding tool.

The verification and the validation of software are not only possible to be performed in the
testing stage of the classic software life cycle by means of black-box and white-box testing for
the application code. The verification and validation can be also performed in the modelling
stage in order to detect modelling mistakes. These modelling mistakes can be related to the
structure and/or the behaviour of the model. As a result, the verification and validation of
models should be part of the software development process, and they should be integrated into
those processes that try to improve the development of the first stages of the software life cycle.

On the one hand, the verification of models allows us to know if a model satisfies or not the
constraints that its metamodel defines. If a model satisfies every constraint of its metamodel, it
is possible to state that the model is correct. On the other hand, the validation of models allows
us to know if the behaviour of a model is the one that the user expected and if a model satisfies
certain quality properties. The validation of properties and model is performed by using
prototyping techniques and model checking.

This chapter is focused in the verification of PRISMA models in order to avoid the code
generation from incorrect models. In addition, this verification of models allows us to

propagate these modelling mistakes to the following stage, i.e., the code generation stage. The
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PRISMA metamodel defines a set of constraints that every PRISMA architectural model must
satisfy (see section 4.2). This is made feasible by the verification process of the PRISMA
CASE tool, which assists the user the whole time.

7.2.VERIFICATION IN PRISMA

The MDD process of PRISMA is based on the hierarchy of levels that MOF (Meta-Object
Facility) [MOFO2] proposes (see section 6.2.1 ). This hierarchy of PRISMA models implies
that there are two kinds of model verification in PRISMA: verification of architectural models
and verification of architectural configurations.

The verification of architectural models consists in checking that PRISMA type
architectural models satisfy the properties and constraints that are defined in the PRISMA
metamodel. Whereas, the verification of architectural configurations consists in checking that a
configuration of instances satisfies the architectural model that it is instance of, ie.,
interconnections and compositions among instances are compliant with the interaction and
composition patterns of the architectural model. This chapter is focused on the verification of

architectural models from the PRISMA metamodel.

7.2.1. Verification from the PRISMA metamodel
The PRISMA metamodel defines the properties of PRISMA models in a precise way by

means of metaclasses, relationships among metaclasses and constrains. These metaclasses
define a set of properties and services for each concept considered in the model. The
metaclasses and their relationships define the structure and the information that is necessary to
describe PRISMA architectural models. In addition, the PRISMA metamodel defines the
constraints that cannot be specified using the structure or the information of the metamodel.
These constraints are associated to a metaclass of the metamodel, specifically the metaclass that
is affected by the constraint. The structure, information and constraints of the PRISMA
metamodel must be satisfied by PRISMA architectural models in order to ensure that an
architectural model is correct.

The verification process of the PRISMA architerural models exactly consist in checking

that the models satisfy the following properties: (1) the types of model contain all the
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information that their metaclasses establishes, (2) the relationships of the model connect the
types in suitable way, (3) the number or relationships between types is correct, and (4) the
constrains of the metamodel are satisfied. This verification process must be always applied to
the modelling process of PRISMA architectural models and must guide the software architect

the whole moment.

7.2.2. Kinds of constraints
Any metamodel have two kinds of constraints: hardconstraints and weakconstraints. These two

kinds of constraints also appear in the PRISMA metamodel (see section 4.2).

7.2.2.1. Hardconstraints
Hardconstraints are those that must always be satisfied without taking into account the

modelling process situation. An example of hardconstraint is the relationship between aspects
and attributes. An attribute must always be associated to the aspect concept, it will never be
associated to another concept (see section 4.2.1.2). This is a hardconstraint of the PRISMA
metamodel because if an attribute would be associated to another concept of the architectural
model, it would violate the PRISMA model. Another example is the fact that a component
cannot import a coordination aspect (see section 4.2.1.5). If an architect associates a

coordination aspect to a component, the resulting model would violate the PRISMA model.

7.2.2.2. Weakconstraints
Weakconstraints are those that can be violate during the modelling process, but once the

architectural model will be finished, all of them must be satisfied.

Architectural models have a lot of weakconstraints associated to them. For example: an
architectural element must import one aspect at least and must have one port at least (see
section 4.2.1.3). This is an example of a weakconstraint of the PRISMA metamodel because it
is possible to define an architectural element without establishing its ports and/or aspect, and to
establish them later.

Weakconstraints are necessary in any modelling process due to the fact that the definition of
hardconstraint dependencies among two concepts implies that none of them can be modelled.

For example, if a constraint establishes that any port must be associated to an architectural
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element and another constraint establishes that any architectural element must have a port, none
of them could be created. The creation of an architectural element will require the previous

existence of a port and vice versa.

7.2.3. Kinds of verification
Weakconstraints provides more flexibility to modelling process. The fact that there are

weakconstraints that are not satisfied means that the modelling process has not finished.
However, it is possible that there can be parts of the architectural model that are finished and

the architect want to verify them.

7.2.3.1. Partial Verification
The partial verification consists in only applying those constraints that affect the elements,

concepts or parts of the model that have been selected by the architect for their verification.
This kind of verification allows the architect to verify the model in an incremental way, as well
as to verify elements of the model for their later storage in repositories and/or reuse in other
models. For example, in PRISMA, the verification of a specific component would consists in
verifying that it has all the needed relationships that the metaclasses ArchitecturalElement and
Component establish, and it satisfies all the OCL rules of both metaclasses.

7.2.3.2. Complete Verification
The complete verification is the verification that is applied to the complete architectural

model. As a result, the complete verification consists in verifying all the constraints that must
satisfy a model. In PRISMA, this process implies that all the restrictions of the PRISMA
metamodel are checked.

7.3.VERIFICATION IN PRISMA CASE

The PRISMA approach is supported by PRISMA CASE, a development framework for
aspect-oriented software architectures that follows the MDD proposal. This CASE tool guides
the user during the development process and facilitates his/her task by providing: (1) The use of
graphical modelling [Per06a], [Per06b] to specify the models instead of using a formal ADL
[Per06d], (2) Support for the partial and complete verification of architectural models, (3) C#
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code and formal AOADL automatic generation, and (4) the behaviour validation by means of
the execution of the generated code and the interaction with the final application. This section
presents in detail how PRISMA CASE supports the hard and weak constraints of the PRISMA
metamodel, and the partial and complete verification of PRISMA architectural models. In this
way, PRISMA CASE guides the user throughout the MDD process.

The verification process defined for PRISMA has been included in PRISMA CASE. It is
based on the PRISMA metamodel, which is also part of the PRISMA CASE tool (see 6.3.2).

7.3.1. Hardconstraints in PRISMA CASE
Hardconstraints are part of the graphical modelling behaviour of the tool. As a result, those

relationships that violate hardconstraints cannot be drawn. The hardconstraints have been
defined by means of: (1) the specification of the PRISMA metamodel in DSL Tools and the
corresponding graphical representations of its concepts, and (2) the development of the
graphical constraints for each metaclass of the PRISMA metamodel.

Since the PRISMA CASE tool is generated from the PRISMA metamodel and its
graphical metaphor that have been introduced in DSL Tools, the dependency and association
relationships among the metamodel metaclasses are inherently satisfied by the PRISMA
CASE tool. As a result, the graphical metaphor of each metaclass embodies the inclusion
relationships by defining graphical representations that group a set of concepts. For example,
the metaclass Aspect has an associated graphical metaphor that is a container of other concepts,
the Aspect has an inclusion relationship with them. Figure 67 shows the graphical
representation of the coordination aspect CProcessSUC of the TeachMover architectural
model, and how the attribute TempHalfSteps, which stores the current position of the robot’s
joint, is included as part of the graphical representation of the aspect. As a result, the itself
graphical representation satisfies the constraint: <<An attribute does not have its own entity, it
can only be defined inside an aspect>>. The rest of concepts that are necessary to specify an

aspect have the same constraint (see section 4.2.1.2).
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In addition, the referential relationships are also satisfied in an inherent way. Therefore, the
modelling tool guides the architect by only allowing the connections of those elements that
have a referential relationship between them in the PRISMA metamodel. Each connection has
an associated graphical metaphor. For example, the relationship between the concept
architectural element and the concept aspect corresponds with the modelling primitive
ArchitecturalElementHasAspect, whose graphical representation is an arrow. It allows the
connection between an architectural elements and an aspect. If the architect used this primitive
to connect an architectural element with, e.g. an interface, a forbidden sign would appear to
denote that it is impossible to link these two concepts using this graphical primitive (see Figure
68).

As it has been explained in section 7.2.1, the PRISMA metamodel defines the constraints
that cannot be specified using the structure or the information of the metamodel. They are OCL
rules that are associated to the metaclasses. These constrains have been introduced in PRISMA
CASE by extending the partial classes of PRISMA metaclasess that have constraints associated
(see section 6.3.2). Thus, the constraints of the PRIMA metamodel are verified during the
modelling process. DSL tools also distinguishes between two kinds of verification: verification
rules that must always be satisfied (hardconstraints), and verification rules that must be
satisfied once the model has been completely finished (verification rules). They are PRISMA
hardconstraints and PRISMA weakconstraints, respectively.

On the one hand, Verification rules are not verified while the user is modelling. They are
related to the concept of the metamodel, and are verified when it is explicitly requested by the
user or when the model is saved. These Verification rules act as warnings during the modelling
process. These warnings must be rectified before the model is finished so that, it is compliant
with the PRISMA metamodel.

On the other hand, Hardconstraints are verified while the user is modelling. They are
related to the graphical metaphor and they do not permit links between certain graphical

entities, compositions of certain entities, changes of name, etc.
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Figure 69 show the partial C# class of the relationship between the metaclasses
ArchitecturalElement and Aspect. This partial C# class is associated to the graphical metaphor
of the relationship, and it has been extended to check the hardconstraints that are related to the
fact that architectural elements import aspects. Specifically, this partial class checks the
following OCL rules: <<An architectural element cannot import more than one aspect of the
same concern>> (see section 4.2.1.3), and <<A component cannot import an aspect whose
concern is coordination>> (see section 4.2.1.5). These constraints are checked by means of the

method CanCreateConnection of the partial class ArchitecturalElementHasAspect.

ArchitecturalE...ntHasAspect.cs |

:DEIC. 1551, PrismaDal  Designer  ArchElementHas AspectConnector onnection Type LI I @ CanCreateConnectionModeling, Diag

é]public partial class ArchElementHaslspectConnectorConnectionType |

public override bool CanCreatelonnection(Modeling.Diagrams.3hapeElement sourceER,
Modeling.Diagraws. ShapeElement targetlspect,

= ref string connectionError)

7T RN R Oy 1

CowponentShape component = ArchElemwmentHasispectConnectorConnectiction. TopLewelSh

ConectorShape connector = ArchElementHaslispectConhnectorConnectiction. TopLlevelSha

SystemShape system = ArchElementHasispectConnectorConnectiction. TopLewelShape (so

Azpectihape aspect = ArchElementHasispectConnectorConnectiction. TopLewelShape (ta

if (conknector == null &£& system == null) {
it (TR,
if (isincowmp == true] {
connectionError = "The component " + realComponent . Natee +

" already imports an aspect of the™ + reallispect.Concern + " concern™:
return false:

}oelse |
if (realispect.Concern.Equals (DomainModel. AspectConcern. Coordination) ) |
connectionError = "The component " + realComponent.Natoe +

" gannot import & coordination aspect.™:
return false:

Figure 69. The partial C# class of the relationship
ArchitecturalElementHasAspect

As a result, each time that an architect imports an aspect from an architectural element, the
method CanCreateConnection is executed and both constraints are checked. The source code
shows that if the constraints are not satisfied, a graphical connection error is launched. This
error has an associated text message that is shown to the user together with a forbidden sign.
From this example, it is possible to conclude that hardconstraints are part of the graphical
metaphor and they are checked without being requested by the architect.
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7.3.2. Weakconstraints in PRISMA CASE
Since weakcostraints are implemented using Verification rules, that are associated to the

concept instead of the graphical metaphor. They are only checked when the architect requests
their execution, the architectural model is saved, or once the architectural model has been

finished and the C# code generation is launched.

Component.cs
- D3IC. 1551, Prismalal, Domaintodel, Component j IﬁVVaIidateCDmpDnentr
F e

[Validation3tate (Validation3tate.Enabled)]
-public partial class Compohent
E #region Aspects Validation

[ValidationMethod (CustomCategory = "ComponentPartialWVerification™)]
[ValidationMethod (ValidationCategory.Save | ValidationCategory.Menu)]
= volid ValidateComponentHasAspect (ValidationContext context) ¢
if (this.Aspects.Count < 1) |
string error = "The component " + this.Name +

" does not iwport aspectsT:
context.LogError (error, "ComponentHasNoblspect™, this):
H
= i
- #endregion
A e
52k

Figure 70. The partial C# class of the metaclass Component

Figure 70 shows the partial C# class of the metaclass Conmponent, whose method
ValidateComponentHasAspect checks if a component imports one aspect at least. The source
code of the method shows that if the constraint is not satisfied, the error is saved in a Log file
together the rest of errors that have been identified in the verification process instead of being
immediately shown as hardconstraints do. Then, when the verification process is requested by
the user, the list of errors that have been previously saved in the Log file is displayed in the

Error List window (see Figure 71).
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Figure 71. Error List

7.3.3. Partial and complete verification in PRISMA CASE

Verification rules can also be checked whenever the user requires it. The PRISMA menu offers

the option of checking these rules in a complete or partial way (see Figure 72). The complete

way checks all the verification rules, while the partial way allows you to only check one kind of

PRISMA type. The options that are provided to check an architectural model in a partial way

are the following: interfaces, aspects, components, connectors, systems and attachments. For

example, if the user requests the Inferface Verification, only the rules associated to interfaces

are checked. The advantage of this partial verification is that the user can incrementally check

the models and focus on the problems of a specific type of the model.

Prisma Tools i Window  Commurity  Help

Verification > | Interfaces

Prismalet Aspects

Remove Model Components

Prisma Model Configuration Connectors

Activate Verification Rules Systems
Attachments
Architectural Model

Figure 72. Verification Menu
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In addition, the modelling tool offers the mechanism of checking only one element of the
architectural model. This is possible by executing the option that appears in the contextual
menu that is associated to the element that the user wants to check. For example, Figure 73

shows the contextual menu that only verifies the interface /MotionJoint.

_ IMotionJoint ) 23

i Coll

] =/ Service o

! moveloint Add '
e e [

Interface Yerification ‘

Remaove Model

Figure 73. Contextual menu of an interface

7.4.RELATED WORKS

In the MDD field there are three kinds of strategies to perform the verification of models
[Mod06]: analysis, construction and monitoring. Analysis strategies define the constraints
together with the metamodel using OCL rules. Then, a verification tool is in charge of checking
that models satisfy these constraints. These strategies perform a complete verification of the
model. There is a wide range of tools that offer OCL checkers [Tov07].

The constructive strategies construct models by applying QVT transformation rules
[QVTO5] or ATL [Bez06]. The monitoring strategies define models by means of graphical
tools that prevent the creation of inconsistent models. Both strategies have in common that they
construct models in an incremental way by defining implicit modelling constraints. However,
the constraints are spread through the transformation rules and the monitoring logia. Therefore,
this is an inconvenient because the maintenance of constraints is really difficult. There are
mixed approaches, such as the Bézivin & Jouault approach [Jou05], which use the engine of
ATL transformation rules to verify that the OCL rules of the metamodel are satisfied. But the
main inconvenient of these approaches is the fact that OCL rules are separated from the

metamodel.
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The proposals that have been acquired more relevant are those that combine analysis and
monitoring strategies. They take advantage of the flexibility that provide the analysis strategies
and the security that offers the monitoring strategies. For example: Microsoft DSL-Tools
[DSLO7], AMMA [Kur06], XMF-Mosaic [Tov07], EMF [EMF07] and GME [GMEO7].
These tools provide support for all the stages of the MDD process, although each one provides
this support using a different meta-metamodel, different strategies of consistence verification,
and a different code generation process.

The choice of one tool or another depends on different factors. One of the reasons to choose
DSL Tools for developing PRISMA CASE was that it offers mechanisms for monitoring and
analyzing the verification of the consistence. The monitoring is offered in an implicit way by its
graphical modelling tool, once the metamodel has been previously defined in the DSL Tools.
The analysis of constraints is offered by customizing the metaclasses using the partial class
facility.

It is important to mention that despite the fact that the area of software architectures is
making an important effort to give support for validation, there are not solid proposal for the

verification of architectures. As a result, a solution for this lack is presented in this chapter.

7.5. CONCLUSIONS
In this chapter the need to support model verification throughout the MDD process is set out.

An important contribution in the area is the classification of constraints that is presented in the
chapter: hardconstraints and weakconstraints. From this classification the contribution takes a
step forward and the partial and incremental verification has been proposed instead of only
taking into account the complete verification of the model. Therefore, the flexibility of the
modelling process is increased by adapting the help to user needs. In addition, a methodology
to support the verification of models during the MDD process is defined by establishing the
needed mechanisms to offer all kinds of verification.

This methodology has been applied to the PRISMA approach. The PRISMA model
defines through its metamodel, the properties and constraints that any PRISMA architectural

model must satisfy. These constraints have been analyzed in order to be classified into
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hardconstraints and weakcontraints. It has been only defined as hardconstraints, those that are
strictly necessary. As a result, the PRISMA modelling process has more flexibility. PRISMA
CASE has made the application of this methodology to the PRISMA approach feasible.

PRISMA CASE provides support for : (1) the partial and complete verification process, (2)
the difference between hardconstraints and weakconstraints, and (3) the incremental
verification of aspect-oriented architectural models by means of the partial verification of types
(aspects, components, etc) or the partial verification of specific elements of the model. As a
result, PRISMA is presented as an approach that facilitates the modelling process of aspect-
oriented architectural models by means of a well-defined verification process that follows the
MDD approach.

The work presented in this chapter has been published in the following publication:

» Jennifer Pérez, Cristobal Costa, Jose A. Carsi, Isidro Ramos, Verification of Aspect-

Oriented Architectural Models, X1 Conference on Software Engineering and Databases
(JISBD), Zaragoza, Spain, 12-14 September. (In Spanish)
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CHAPTER 8
COTS: Commercial Off-The-Shelf

Reusability reduces the development time of software systems because artefacts are only
programmed one time and can be used more than once. Reused software artefacts guarantee
their quality and suitable functionality because they have been tested and used before. As a
consequence, Commercial Off-The-Shelf (COTS) importation has acquired relevance in the
last few years. This chapter presents a proposal for integrating COTS into aspect-oriented
architectural models that are developed and maintained following the Model-Driven
Development (MDD) approach. The proposal is based on the PRISMA approach, which gives
a complete support to the development of technology-independent, aspect-oriented software
architectures. PRISMA improves the reusability of software by combining COTS,
components, and aspects. In addition, PRISMA integrates COTS into its MDD process to

automatically obtain the complete application code.

8.1. INTRODUCTION

In the last few years, the high complexity of software has increased the time and the staff that
are invested in the development and maintenance processes of software. As a result, there is
greater interest in research areas to reduce this time and cost. In order to achieve these goals,
software community is making a big effort to provide techniques that improve the reusability of

software.
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Reusability of software allows the same software artefact to be used in different places of
the same application or in different applications. The artefact is only programmed once and can
be used many times. This reusability reduces the development time of software systems, and
their quality and suitable functionality are guaranteed because they have been tested and used
before.

The Component-Based Software Development (CBSD) approach [DS099][Szy98] is used
in the field of software architectures [Per92], [Sha96]. This approach decomposes the software
system into reusable entities (black boxes) called components. As a result, software
architectures can be described preserving the reusability of their components and are presented
as a solution for the design and development of complex software systems.

Another approach that has emerged to improve reusability is the Aspect-Oriented Software
Development (AOSD) approach [Kiz01], [Kiz97]. This approach allows for the separation of
concerns by modularizing crosscutting concerns into a separate entity called aspect. As a result,
the same aspect can be reused by different software artefacts, which are usually objects.

In addition, there is another approach to develop software that improves its reusability. It
consists of buying components (black boxes that offer a set of services that are properly
documented for use) from third-party developers and then, integrating them into the system.
These components that are for sale commercially are known as Commercial Off-The-Shelf
(COTS) [Obe97], [Car00]. The use of COTS during the development process has increased in
the last few years due to market competitiveness. This increase has led developers to try to
reduce the time required to develop a software product. Since developers are using the software
components of other companies more and more, COTS importation has acquired greater
relevance. This is because tools that allow the reuse of their components combined with COTS
importation achieve the highest reuse and quality code. PRISMA is an approach whose aim is
to provide these two benefits.

This chapter takes a step forward with regard to previous work of the PRISMA approach. It
presents a new version of the PRISMA approach, which is able to integrate COTS into its
MDD process. The chapter describes how PRISMA integrates COTS into its aspect-oriented
software architectures without violating the properties of the PRISMA model. As a result,
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PRISMA improves the reusability of software by combining COTS, components and aspects.
In addition, the chapter explains the process to obtain a complete application code, which is
composed of the generated code from its architectural models and the code from COTS. It is
then ready to be executed on the NET platform [Per05b].

8.2. THE SOFTWARE ARCHITECTURE OF A
TEACHMOVER’S JOINT USING COTS

In this section present the evolved version of the TeachMover case study that has been used as

an example in the rest of the thesis. This new version uses COTS to permit the communication

between hardware and software, i.e., the hardware robot and software components of the
architecture. This example is going to be used in this chapter to illustrate how COTS are
introduced in PRISMA.

The TeachMover architecture has different levels of abstraction for its components,
connectors, and the interactions with each other. The lowest abstraction level of the robot
architecture is defined by a system called Joint or SUC, which is composed of components that
interact with the hardware joints of the robot (see section 2.3.2.2). The communication between
the robot and the computer is performed through the serial port of the computer because the
computer is connected to it. The Joint system defines a joint of the robot. It is composed of two
components and a connector and their corresponding connections:

»  ActSen: This software component is in charge of communicating with the hardware joint
of the robot. It communicates with the actuator of the hardware joint when commands are
sent to the hardware joint of the robot. These commands are performed by the hardware
joints or the tool. This software component also notifies the joint system when the
commands have been performed successfully.

»  WrapAspSys: This software component encapsulates the behaviour and the state related
to the software joint, such as the position of the joint and its movements.

» CnctJoint: This software connector coordinates the ActSen component and the

WrapAspSys component.
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Since the ActSen component is responsible for interacting with the hardware pieces of the
robot, it is necessary to use a COTS that provides the services to move the joint and to listen to
the results through the RS232 serial port. The COTS that have been used in this case study is a
dynamic linking library called RS232 (RS232.dll). This COTS provides a set of services. To
facilitate the readers’ comprehension of the example in this chapter, it is illustrated the
integration of the COTS using the most representative service, the service Send. Its definition is
the following;

Send (int joint, int halfsteps, int speed): int

The first parameter specifies the joint to which the movement is sent. Each joint of the
TeachMover has a predefined number (1. Base, 2. Shoulder, 3. Elbow, 4. Wrist (right rotation),
5. Wrist (left rotation), and 6. Tool). The second parameter is the number of halfsteps that the
robot is going to be moved when the service is executed. And finally, the third parameter

corresponds to the speed of the processing movement.

8.3. INTEGRATING COTS INTO THE PRISMA MODEL

COTS integration is usually presented as a handicap for developers because there are many
incompatibilities with programming languages, frameworks, platforms, communications, etc.
Therefore, COTS must be adapted so that it can be reused in a software system. There are three
well-known techniques for integrating COTS in software systems: wrappers, gluewares, and
proxies. Wrappers wrap COTS in a kind of software artefact of the software system; gluewares
are intermediaries between the COTS and the software components of the software system;
and proxies are adapters that hide the incompatibilities between COTS and the components of
the software system. These three techniques are black box techniques to integrate COTS into
software systems.

The wrappers technique was chosen over gluewares and proxies, since it integrates COTS
into a model using its own concepts, which is the goal of PRISMA. There are two PRISMA

candidates that can serve as wrappers: components and aspects.
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8.3.1. COTS as components
A PRISMA component can act as a wrapper because it can wrap a COTS and publish its

interface through the component port (see Figure 74). As a result, the services of the COTS can
be requested through the port.

COTS Interface

Figure 74. COTS as components

This proposal of integrating COTS into software architectures does not violate the concepts
of any architectural model. In addition, the proposal allows the rest of components of the
software architecture to interact with COTS since it is a component that has been specified
from scratch using the model constructors. However, one of the drawbacks of this proposal is
that it is really difficult to extend the behaviour of the COTS. There is also another drawback
that specifically affects the PRISMA model: the COTS behaviour is directly provided by the
component. As a result, this proposal of wrapping COTS using components does not fit the
PRISMA model properties since PRISMA component behaviour is always defined inside
aspects and never inside components. Component behaviour cannot be specified inside
components because they do not provide mechanisms to do so, therefore, it is not possible to
specify the properties and processes that are needed to integrate the services of the software
system with the services of the COTS. However, aspects do provide properties, services and
protocols that can be used to specify the integration behaviour of the COTS into the software

system.

8.3.2. COTS as aspects
An aspect defines the structure and the behaviour of a specific concern of the software system.

An aspect declares a number of interfaces and defines a semantics for the services that these
interfaces publish. As a result, an aspect can act as a wrapper because it can wrap a COTS and

declare the interface of the COTS. In order to the COTS integration to be compliant with the
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PRISMA model, the aspect must be imported by an architectural element of the model so that
it can publish its interfaces through its ports and communicate with other architectural elements
through the channels (see Figure 75). This wrapper proposal provides an easy way of extending
the behaviour of the COTS. The architectural element that imports the wrapper aspect can
import other aspects and weave with each other using weavings. As a result, the architectural
element provides an extended version of the COTS through its ports, which is compliant with
the PRISMA model and is also more flexible than the proposal presented in section 8.3.1. For
this reason, aspects are the PRISMA element that has been selected to wrap COTS. In fact, a
new kind of aspect called Integration Aspect has been defined to do this.

An integration aspect allows the integration of COTS components in PRISMA software
architectures in an abstract way. It contains a reference to the COTS that it is related to and uses
a PRISMA interface that defines all the services that the COTS provides. The integration
aspect also uses the interfaces of the architectural model that define services that must be
transformed into requests to the COTS. As a result, the protocol of the PRISMA integration

aspect consists of redirecting each request service to its corresponding COTS service.

Veaving

Figure 75. COTS as aspects

All the architectural elements that import the integration aspect are crosscut by the concern

that it represents. For example, in the case study, all the components that import the integration
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aspect are crosscut by the hardware interaction concern. This is due to the fact that the COTS

RS232.dll allows communication with the serial port that the robot is connected to.

8.4. USING COTS DURING THE MDD PROCESS

The PRISMA approach follows the MDD process to define its application. As it has been
presented in section 6.2, PRISMA supports the MDD process through its PRISMA CASE
Tool. The addition of COTS to this process has been also made feasible thanks to PRISMA
CASE. Next, how COTS have been introduced in the PRISMA CASE modelling tool and in
the PRISMA CASE model compiler.

8.4.1. The use of COTS in the PRISMA CASE modelling tool
The aspect is one of the modelling primitives of the PRISMA Modelling Tool of PRISMA

CASE (see Figure 58). Every concern is modelled using the aspect primitive, which is
represented as a rectangle (see number 1, Figure 58). It includes the definition of attributes,
services, valuations, preconditions, constraints, transactions, played roles and a protocol. The
concern of the aspect is determined by its properties. In order to visually identify the concern of
an aspect, each concern has a colour associated to it; depending on the value of the aspect
concern, the aspect is painted in one colour or another.

However, the integration aspect is not modelled using the aspect modelling primitive as
other concerns do. There is a specialized integration aspect modelling primitive (see number 5,
Figure 58) because it only provides the properties that are strictly necessary for integrating
COTS into software architectures. The integration aspect only defines services, played roles,
and a protocol (see the IACOT aspect specification in Figure 76). The integration aspect is
graphically represented by a rectangle. Integration aspects are painted grey to denote their
wrapper semantics, which are viewed as a black box. In addition to the name of the aspect, the
aspect has a COTS property to specify the name of the COTS that it wraps (see the Properties
Window in Figure 76 (lower right)).

The importation of interfaces by an aspect is specified using the link AspectHaslInterface,
which is provided by the tool box (see number 2, Figure 58). However, integration aspects use
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a different link called Integration AspectHasInterface. It is graphically represented by a line
(see number 7, Figure 58).
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Figure 76. Integration of the TeachMover.dll into a PRISMA architectural
model

Finally, architectural elements are represented by rectangles that have one pin for each one
of the ports that are associated to them (see number 3, Figure 58 (components)). The
importation of aspects by architectural elements is specified using the link
ArchitectecturalElementHasAspect (see number 4, Figure 58). In addition, there is another
specialized link for importing the integration aspect called
Architectectural ElementHasIntegrationAspect (see number 6, Figure 58).

The IACOT integration aspect that is illustrated in Figure 76 integrates a TeachMover.dll
mto the architectural model of the TeachMover robot. For this reason, it has as a value of the
COTS property the TeachMover DLL. In addition, there is an ActSen component that imports
the IACOT integration aspect and interacts with the rest of the software architecture.
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IACOT imports the interfaces /Read and IMotionJoint of the TeachMover architectural
model in order to synchronize their services with the COTS services. In addition, /ACOT
imports another interface, called /COT, which defines the services of the COTS. As a
consequence, the JACOT aspect has all the services that define these three interfaces and can
specify the protocol in order to synchronize them (see the COTSServices section inside the
IACOT aspect in Figure 76). The protocol of JACOT consists of redirecting the requests of the
services from the JACOT to the COTS. These services (for example: the moveJoint service)
arrives to the JACOT from the ports of the ActSen component. To do this the protocol
establishes that each time that the movejoint service is requested, the COTS service send is
called with the same values of the parameters of the moveJoint service. The protocol is
specified by modelling a State Transition Diagram (STD) (see the /4 COT aspect in Figure 76).

In order to model the complete behaviour, the actuator is connected to a component called

WrappAspSys through the connector CnctJoint (see section 8.2). Moreover, these three

components belong to a system called Joint (see Figure 77).
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Figure 77. PRISMA architectural model of a Joint
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8.4.2. The use of COTS in the PRISMA CASE model compiler
The PRISMA CASE also provides a model compiler, which is composed of a set of templates

that automatically generate the code from the models that have been graphically modelled. A
specific template has been developed for automatically generating the code of the integration
aspect. The code generation template of integration aspects is different from other kinds of
aspects. This is due to the fact that it must integrate the code of the COTS with the code of the
aspect. However, the remaining aspects have a common template that generates the
functionality of the system that each aspect describes.

There are many kinds of COTS: Web Services, COM components, ActiveX components,
dynamic linking libraries, etc. This chapter is going to focus on dynamic linking libraries,
specifically: native libraries and libraries that have been developed using the .NET framework.

Native libraries can be used as provided by the supplier. As a result, the template should
generate the C# code that imports the set of services of the COTS by means of the C# attribute
DLLImport. This attribute, which is provided by the C# programming language, allows us to
include the service of a COTS inside its wrapper (see numbers 1 and 2 in the code presented
below). In addition, it is necessary to define the COTS service as a private method that returns
the result of the invocation (see number 4 in the code presented below) and the invocation of
the COTS service by the corresponding service of the software architecture to make the
integration (see number 3 in the code presented below). The C# code that the model compiler
should generate for integrating the RS232.dll of the case study into the IACOT aspect is the

following:

//1. To use the attribute DLLImport
using System.Runtime.InteropServices;

namespace RobotJoint
{ public class IACOT : IntegrationAspect , IMotionJoint, ICOT, IRead
{
//2. To define the entry point to the DLL through the send service
[DLLImport ("RS232.d11", EntryPoint = "Send")]
enum protocolStates
{
SubStateNotify, IACOT, COT, END
}
protocolStates state;
private protocolStates Statef{..}
public IACOT (string name) : base (name) {..}
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//3. The request of the moveJoint service called the send service of the
ICOT interface
public AsyncResult moveJoint (int NewSteps,
int Speed)
{
send (NewSteps, Speed, this.aspectName) ;
CallOutService ("IRead","INTLISTEN", "moveOk",
this.aspectStateCareTaker.ActiveTransaction,
null);
return null;
}
public AsyncResult stop () {..}
//4. The request of the send service called the Send service of the COTS
private static extern int send (int Speed,
int HalfSteps, string Joint)
{
int response = Send (NewSteps, Speed,
this.aspectName) ;
return null; }
public AsyncResult stopRobot () {..}

public AsyncResult moveOk (){m}}}

COTS

However, the code presented above is not the code generated by the PRISMA CASE

model compiler because the libraries that are developed using the .NET platform cannot be

used as provided by the supplier, and cannot be executed with this code. The .NET libraries

need to create another wrapper that encapsulates the services that the COTS provides. This

wrapper consists of a class that permits the invocation of the COTS in a transparent way and

prepares the parameters required to call the COTS services. This class must be contained in a

project that is a class library (see Figure 78).

PRISMA CASE Class Library
Are hitecturalElermert : Integration Aspect: W rapper: COTS:
Actuator IACOT Teachhd aver dll RE232 d
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Figure 78. COTS Execution Process in PRISMACASE
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Since PRISMA model compiler automatically generates the code for the integration aspect,
the generated code must be valid for both the native and the .NET libraries. For this reason, the
solution for the NET libraries has been chosen.

In consequence, the PRISMA integration aspect interacts with a wrapper that wraps the
COTS in a library that contains the class that manages the COTS services (see Figure 78). In
our example, the class that wraps the COTS is called TeachMover.dll. Thus, the COTS
property of IACOT aspect contains the value TeachMover.dll instead of RS232.dll (see the
Properties Window in Figure 77).

_/"Integrationnspect.cs*r'- PtismalSL, prisma ‘[/Start Fage | -

[ Robotaint. 1acoT || emoveoki)

[ using TeachMowver;
using System.Collections:

using System:

using PRISMA;

using PRISMA. ispects.Types:;
“uzing PRISHMA.Exceptions:
[ hawespace RobotJoint
L{
= public class I&ACOT : Integrationispect , IMotiondoint, ICOT, IRead
{
=] Enum protocolStateéTT]
protocolStates statg?_

H private protocol3tates Stata::] o
= public IACOT(string name) : base(nameH;LJ
= public AsynoResult movedoint (int NewZteps, int 3peed)
{
zend (New3teps, Speed,this.aspectlame)
CalloutService ("IRead™, "INTLISTEN", "movelk™, this. aspect3tateCareTaker. Aotiv
return null:
i
(| public AsyncResult stop t]E:]

= public AsyncResult send (int Speed, int Half3teps, string Joint)
i
TeachMover . TeachMover . send (Speed, HalfSteps, Joint):
return null;
}
public AsyncResult stopRobot (]ET]
public AsyneResult mowveOk E]EZ:-__

foul
1 B

Figure 79. The C# code that is automatically generated from the IACOT
aspect

Figure 79 shows the code generated for JACOT by the PRISMA model compiler: the
IACOT aspect imports the TeachMover library, the moveJoint service addresses its request to
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the COTS by requesting the send service, and the send service calls the send service of the
TeachMover.dll in a transparent way. Once the code has been generated, the COTS assemblies
and project of libraries must be stored in the same folder as the generated assemblies by the
PRISMA project. This is done so that COTS assemblies can be added to the compilation
process and can be executed in the same way as other PRISMA software architectural
elements. In our case, the generated code the TeachMover.dll and the RS232.dll are stored
together in the assembly folder.

8.5. RELATED WORKS

COTS are components that are developed and sold by third parties. Since they have been run
on different software systems by different companies, their quality and correct behaviour are
guaranteed. However, their proper integration into software systems is both difficult and time-
consuming [Vig96].

COTS integration and use has not considered as part of the software life cycle and most
proposals and initiatives related to COTS are based on the implementation stage of the software
life cycle only. In this chapter, it is proposed introducing COTS at the software architecture
stage of the software life cycle.

There are a wide variety of ADLs that have been proposed to specify software architectures
(see chapter 3). However, all of them are based on the fact that the software architecture is
completely specified using their ADL constructors and none of the components are imported
from other developers or architects. In addition, there are other approaches that combine
software architectures with aspect-orientation (see chapter 3). Even thought these approaches
are closer to PRISMA approach, they do not propose mechanisms to introduce COTS in their
software systems.

The work of Yakimovich et al [Yak99] creates a method that supports estimation of the
cost of integration of COTS products in software architectures. The work of Guerra et al
[Gue02], [GueO3a], [Gue03b] outlines a proposal that takes advantage of COTS in software
architecture by introducing its specific COTS in the C2 architectural style. However, they only

focus on its components for supporting fault tolerance, and it is not a proposal for a complete
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software architecture of a real software system. This proposal is platform-dependent and does
not use a formal ADL as recommended for the definition of software architectures.

The work of Kvale et al [Kva05] compares the advantanges and disadvantages of using
COTS in Aspect-Oriented Programming (AOP) or in Object-Oriented Programming (OOP).
This work explains how to wrap COTS using aspects. It describes the advantages and
disadvantages of this wrapping depending on the weavings process (which is where the
synchronizations between the base code and the aspect code are localized). This work also
states that the AOP development frameworks do not provide good mechanisms for importing
COTS.

8.6. CONCLUSIONS

This chapter explains how to integrate COTS into software architectures in a novel way. This
integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect
called integration aspect has been defined to specify the COTS that it wraps and to specify the
integration process with the rest of software architecture. In the same way as other aspects,
integration aspects must be imported by an architectural element in order to publish their
services through ports that enable their communication with other architectural elements. This
is an advantageous way of introducing COTS into software architectures because the COTS
services can be requested and received and can also be extended by using the aspect-oriented
mechanisms that PRISMA offers. The integration aspect functionality can be extended by
weaving it with the other aspects that the architectural element imports.

This chapter also describes how the use of COTS is supported by the PRISMA
methodology thanks to the facilities that the PRISMA CASE provides. This is an important
characteristic since COTS are widely used, and any development approach that needs to reduce
development time must provide it.

In summary, the proposal presented here is a suitable development framework for reducing
the time and cost invested in the software development process and for improving the quality
of the code. This can be done since PRISMA provides mechanisms to use COTS, it reuses its

aspects and components, and it uses code-generation techniques to automatically generate
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code. This proposal has used in practice to develop an aspect-oriented software architecture for
arobot. The robot code was automatically generated and the COTS was integrated in the code.
The application code was executed through the PRISMANET middleware and it was possible
to move a robot with an aspect-oriented software architecture that integrates COTS.

The work presented in this chapter has been submitted to the following publication:

» Jennifer Pérez, Isidro Ramos, Jose A. Carsi, Taking Advantage of COTS for Developing
Aspect-Oriented Software Architectures, Working IEEE/IFIP Conference on Software
Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 — 21
February 2008. (submitted)
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CHAPTER9
THE PRISMA MDD METHODOLOGY

This chapter presents the PRISMA methodology in order to develop aspect-oriented software
architectures following the PRISMA MDD process. This methodology takes advantage of the
PRISMA reusability properties (coordination model, modelling and reusability facilities, the
use of COTS), the graphical specification of PRISMA models [Per06a], [Per06b], and the
verification process proposed by the PRISMA approach. In this chapter is illustrated how the
PRISMA approach can improve the development and maintenance processes of complex
software systems.

The methodology is divided into six stages: detection of architectural elements and aspects,
type architectural modelling, type code generation, configuration modelling, configuration code
generation and execution (see Figure 80). These six stages are applied by the analyst of the
software system in an iterative and an incremental way depending on his/her needs. This thesis
of master is focused on how the modelling and code generation stages in order to illustrate how
the PRISMA combination of AOSD and software architectures can improve the development

and maintenance processes of software.
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Figure 80. The methodology of the PRISMA approach following the MDD
paradigm

9.1.1" STAGE: DETECTION OF ARCHITECTURAL

ELEMENTS AND ASPECTS

The first tasks for developing software architectures are to identify which architectural elements

make up the architecture and to detect the aspects that crosscut the software architecture. In

PRISMA, the detection of those architectural elements and aspects is performed from the

requirements document in an intuitive way.

The running example that it is going to be used to illustrate our methodology is the

TeachMover tele-operation system (see section 2.3.2 [TEAO7]). The computational units

(components) and the coordination units (connectors), which allow the architecture to

synchronize components and permit the communication among them, can be identified from

the manual of the TeachMover robot. In addition, the concerns that crosscut the software

architecture can be detected. The mechanisms and criteria to detect concerns, components and
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connectors are out of the scope of this thesis of master, so it is assumed that these elements have

already been detected.

9.1.1. Identification of Architectural Elements
The manual of the TeachMover shows that the robot is composed of a set of components

that represent a set of joints, a set of connectors that coordinate the joints, and a set of complex
components that allows the composition of joints to form a robot. These joints permit the
robot’s movements. They are the following: Base, Shoulder, Elbow and Wrist. In addition, it
has a gripper, whose open and close actions allow the robot to pick up and deposit objects (see
[TEAO06)).

From the manual of the robot the components of the robot and the different level of
composition have been identified. The result of this identification process is presented in
section 2.3.2.2, specifically in Figure 3 where they are illustrated in their corresponding level of
granularity using a tree view. In addition, the connectors needed to coordinate these
components as well as to provide a suitable behaviour of the architecture have been identified.
Connectors are necessary because PRISMA introduces connectors as first order citizens of
architectural models. As a result, PRISMA avoids the dependencies among components that
ADLs without connectors encounter by specifying coordination rules inside components
[Sha%4].

Both architectural elements and the services that must be interchanged among them can be
identified during this stage. These services are requested and/or provided by the architectural
elements. Since a PRISMA interface is a set of services that is provided and/or requested by
means of the ports of architectural elements, the identification of these services implies the
identification of the interfaces. The ports of architectural elements and the interconnections
among these ports can also be detected taking into account the identified interfaces.

The PRISMA methodology is put into practice using the PRISMA CASE, except for this
1st Stage that the identification of architectural elements and aspects is made by hand.
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9.1.2. [Identification of Crosscutting-Concerns
The concems that crosscut the software system must be identified from the requirements

specification in order to modularize them into reusable entities called aspects. In the case of the

TeachMover, the crosscutting concerns that have been identified in the case study are the

following:

»  Functional: The purpose of the TeachMover software system is to move the robot. The
robot has a motor to accurately perform movements by half-steps. A half-step is an angular
advance that is produced by a stimulating impulse. In the case of the TeachMover, the
movements can be requested using half-steps or inverse cinematics (moving to a specific
point in space). This functionality, together with the gripper functionalities allows the robot
to move objects from an initial position to a final one. The movements of the robot are
ordered by an operator from a computer.

» Safety: Safety directives are necessary for monitoring the TeachMover movements in
order to make sure that the movements are safe for the robot, the operator, and the
environment that surrounds them.

»  Coordination: The inner behaviour of joints (SUCs) and the movements in which more
than one joint has to be moved must be coordinated. In addition, the requests of the

operator and the performance of the movements must be synchronized.

9.2. 2"’ STAGE: TYPE ARCHITECTURAL MODELLING

Once the interfaces, aspects, architectural elements and their ports have been identified, the
skeleton of the architectural elements and the aspects can be defined. The analyst is then ready
to start the type modelling process of the software architecture. This stage can be divided into
four modelling steps: Interfaces, Aspects, Simple Architectural Elements, and Complex
Architectural Elements (see Figure 80).

It is important to keep in mind that the enumeration of these steps is not a restrictive order.
The enumeration simply indicates the dependencies between the different concepts that arise

when the architectural model is being modelled. These dependencies are the following:
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» To completely define a complex architectural element, the architectural elements that it
consists of must have been previously defined
» To completely define an architectural element, the aspects that it imports and the
interfaces that their ports use must have been previously defined
» To completely define an aspect that uses interfaces, the interfaces must have been
previously defined
Even though the order of these steps can be different, it should be followed in order to
completely define an architectural model. In other words, it does not mean that partial
descriptions of the architectural elements, aspects or architectural models cannot be performed
during the development process. The analyst can start the modelling process from either steps
1, 2, 3, or 4, obtaining partial solutions of the model, and can go backward or forward
depending on his/her needs.
This 2nd Stage is developed using the PRISMA Type Modelling Tool. The STEPS 1 to 4
are developed using the PRISMA Type Modelling Tool, where all the reusable types
(interfaces, aspects, simple architectural elements and complex architectural elements) are

modelled in a graphical way by drawing and dropping the PRISMA modelling primitives.

9.2.1. STEP I: Interfaces
Interfaces are specified in step 1 of the PRISMA architecture modelling stage. This is due to the

fact that it is not necessary to previously define other elements of the model. Interfaces are

stored in a PRISMA repository for reuse (see step 1, 2™ Stage, Figure 80).

Interface ISUC
moveJoint (input NewHalfSteps: integer, input Speed: integer);
cinematicsMoveJoint (input NewAngle: integer, input Speed: integer);
stop () 7
moveOk (output success: boolean) ;

End_ Interface ISUC;

Figure 81. The ISUC interface
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The specification of the interfaces identified in the first stage consists of describing the
interface services and their signatures. The signature of a service specifies its name and
parameters. The data type and the kind (input/output) of parameters are also declared. An
example of an interface is shown in Figure 81.

Once an interface is specified is convenient to verify it in order to be sure that the
specification is correct. In addition, it is recommended to verify all the interfaces the entire
model once they have been defined. After the verification of an interface, it can be stored in the

PRISMA repository to be reused by other architectural models.

9.2.2. STEP 2: Aspects
As it has been previously mentioned, a PRISMA aspect encapsulates a concern that crosscuts

the architectural elements of software architectures. This aspect semantics is different from any
of the architectural terms in the software architecture discipline that currently exist. The notion
of aspect has an entity of its own, and aspects are first-order citizens of the PRISMA AOADL
[Per06d].

Aspects are defined in step 2 of the second stage using the combination of two formalisms:
a modal logic of actions [Sti92] and a dialect of the polyadic nt-calculus [Mil93]. rt-calculus is
used to specify and formalize the processes of the PRISMA model, and the modal logic of
actions is used to formalize how the execution of these processes affects the state of aspects.
The kind of aspects and the number of each one depends on the software system. Aspects are
reusable entities that define a specific behaviour of a crosscutting-concern and are, therefore,
stored in a PRISMA repository (see step 2, 2™ stage, Figure 80). As a result, not only can
aspects be used more than once in a software architecture description, they can also be reused
in different software architectures. If there are going to use COTS in the model specification,
the specification of the aspect that wrapps the COTS must to be done in this step. On the other
hand, it is important to mention that before the storage of aspects in the PRISMA repository, it
is recommended that each aspect will be verified.

There are aspects that specify the semantics of the services that are published by an

interface (public services), there are aspects that specify the semantics of services that are not
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published by any interface (private services), and there are aspects that specify the semantics of
both, public services and private services. The aspects that specify the semantics of public
services must be defined after the interface of their services has been defined. This is why
interfaces are defined in step 1 and aspects are defined in the step 2 of the methodology.
However, this does not constrain the specification order. Either the interface is defined before
the aspect, or the services are initially defined as private services of the aspect and are then
changed to publish services by means of an interface. Furthermore, when the needed interfaces
are reused from the repository, step 1 is not necessary.

The aspects are defined by taking into account the crosscutting concerns identified in the
first stage. The number of aspects for the same concern is decided by the analyst, taking into
account criteria such as reusability and understanding. Depending on the analyst’s criteria,
he/she will define one aspect for a concern or several aspects for the same concermn. For
example, for the safety concern that crosscuts the software system, two safety aspects can be
defined. Each of these aspects has different safety behaviour. This chapter is going to focus on

the specification of a safety and a coordination aspect of the TeachMover case study.

9.2.2.1. The safety aspect
The concerns (safety, coordination, functionality, distribution, etc) that an aspect can specify in

PRISMA is not constrained because the concerns vary depending on the system and the
domain that is being modelled. A keyword is used to establish the concern of the aspect that is
being specified. For example, in this case, the Safety word establishes that every property,
service, or behaviour that is specified in the aspect is related to the safety concern (see Figure
82). This keyword is a property of a PRISMA aspect called concern, whose value is provided
when a specific aspect is defined. There is no predefined list of keywords; the value is
introduced by the analyst when he/she starts the aspect modelling task.

The concern of an aspect and its name are detailed at the head of the aspect. Several
constant attributes are declared in the body in order to store the information of the minimum
and maximum values that have to be taken into account to preserve the safety of the

TeachMover (see section 1, Figure 82). Begin and end services start and end the execution of
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an aspect, respectively (see sections 2 and 5, Figure 82,). Also, several services to preserve the
safety of the system are defined in the SMotion aspect using dynamic logic. Some of them are
specified in section 3 of Figure 82, but only the complete specification of the service check is
presented to facilitate the understanding of the specification. This service ensures that the
requested movement is safe by determining whether it is between the minimum and maximum
degree (see section 4, Figure 82). In addition, transactional operations are defined to execute a
set of services atomically (see section 6, Figure 82). Finally, the protocol defines the process of
execution of the aspect services using a dialect of -calculus (see section 7, Figure 82).
Safety Aspect SMotion
Attributes
1 Constant
minimum, maximum, minRoll, maxRoll, minPitch,
maximumPitch: integer, NOT NULL;
Services

2 begin( input InitialMinimum: integer,
input InitialMaximum: integer, .. ..);

Valuations

[begin (InitialMinimum, InitialMaximum) ]
minimum := InitialMinimum,
maximum := InitialMaximum;

3 in checkdistance (input NewX: integer, input NewY: integer,
3 input NewZ: integer, output Secure: boolean);

in check (input Degrees: integer, output Secure: boolean);
4 Valuations
{ (Degrees >= minimum) and (Degrees <= maximum) }
[check (Degrees, Secure) ]
Secure := true;

{ (Degrees < minimum) or (Degrees > maximum) }
[check (Degrees, Secure) ]
Secure := false;
5 end;
6 Transaction
DANGEROUSCHECKING (input Degrees: integer,
input CurrentSpeed: integer, output Secure: boolean): .. .. ;
7 Protocol
SMOTION = begin.CHECKING;
CHECKING = check (Degrees, Secure) .CHECKING +
checkDistance (NewX, NewY, NewZ, Secure). CHECKING
+ .. .t
DANGEROUSCHECKING (Degrees, Secure) .CHECKING
+ end;
End Aspect SMotion;

Figure 82. The safety aspect SMotion
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9.2.2.2. The coodination aspect
The coordination aspect defines the interactions needed to coordinate the sending of

movements to the robot and the robot’s answers. These answers notify whether or not the
movements have been satisfactorily performed.

Coordination Aspect CProcessSUC using IMotionJoint, IRead, ISUC
Attributes
Variable
1 halfSteps: integer, NOT NULL;
tempHalfSteps: integer;

Derived
angle: integer, Derivation FtransHalfstepsToAngle (halfSteps) ;

Services
begin (input InitialHalfSteps: integer);
Valuations
[begin (InitialHalfSteps) ]
halfSteps := InitialHalfsteps,

2 in/out movejoint (input NewHalfsteps: integer, input Speed: integer);
Valuations
[in movejoint (NewHalfsteps, Speed)]
tempHalfSteps := NewHalfsteps;

3 in cinematicsmovejoint( input NewAngle: integer, input Speed:integer);

Valuations
[in cinematicsmovejoint (NewAngle, Speed) ]
tempHalfSteps := FtransAngleToHalfsteps (NewAngle) ;

4 in/out moveok (output Success: boolean) ;
Valuations
{Success=1}
[in moveok (Success) ]
halfSteps:= halfSteps + tempHalSteps;

end;

Protocol
CPROCESSSUC = begin(lnitial Hal f Step). MOTI ON
MOTI ON =
(1 SUC. novej oi nt ?( NewHal f st eps, Speed)
- | MotionJdoi nt. novej oi nt! (NewHal f st eps, Speed). ANSVER)

~No wum

+
(1 SUC. ci nenat i csmovej oi nt ?( NewAngl e, Speed)
> | Mot i onJoi nt. novej oi nt! ( FTr ansAngl eToHal f St eps( NewAngl e,

Speed) . ANSVEER)
+

end;
8 ANSWER= | Read. moveok?(Success) - |SUC. noveok! (Success). MOTI ON
End Aspect CProcessSUC;

Figure 83. The coordination aspect CProcessSUC
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In this case, the aspect uses the services of several interfaces. This is detailed at the head of
the aspect (see Figure 83), that means, that these services are public. As a result, these interfaces
have been previously defined. Since the request of a movement to the robot does not guarantee
that it will be satisfactorily performed, the coordination aspect must coordinate the position of
the joint that is synchronizing the movement request (see sections 2 and 3, Figure 83) with the
movement notification of the robot (moveOk service, see section 4, Figure 83). At this point,
the aspect changes the value of the robot position, i.e., the halfstep attribute (see section 1,
Figure 83).

The protocol of the CProccessSUC aspect coordinates the requested movements and the
notification movements of the robot. It is composed of three processes CProcessSUC,
MOTION, and ANSWER (see section 5, Figure 83). The CProcessSUC process starts the
execution of the aspect (begin), initializes the attributes that need a value (Not Null), and starts
the MOTION process (see section 6, Figure 83). This process either receives a movement
request or ends the aspect execution (see section 7, Figure 83). Finally, this MOTION process
continues with the ANSWER process, in which the coordination process waits for the sensor’s

answer and notifies of the failure or success of the movement (see section 8, Figure 83).

9.2.3. STEP 3: Simple Architectural Elements
The definition of simple architectural elements is performed in step 3 of the second stage. The

aspects that are defined in step 2 are used to completely define these architectural elements. An
architectural element imports the aspects that define the concemns that it requires. For this
reason, aspects must be defined before architectural elements.

The same aspect is imported by each architectural element that needs to take into account
the same behaviour of this concern (crosscutting concerns). As a result, an aspect can be
imported by one or more architectural elements (see steps 2 and 3, 2™ stage, Figure 80). It is
important to note that the changes performed in an aspect also affect every architectural
element that imports this aspect.

From the architectural element point of view, each architectural element is formed by a set

of aspects. For example, the connector in Figure 80 is made up of a safety aspect and a
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coordination aspect. It is important to emphasize that one of these aspect can be an integration
aspects that wrapps a COTS.

In PRISMA, weavings weave the different aspects that form an architectural element and
they are encapsulated inside the architectural element. The temporal order of the weaving
process is described by temporal operations called weaving operators. As a result, a PRISMA
simple architectural element is specified by a set of aspects, the weavings of aspects, and a set
of ports that have an associated interface. Ports represent the points of interaction of
architectural elements. The architectural elements can be verified using the partial verification
of a specific architectural element or all the architectural elements. The architectural elements
that are defined in this step are types that are reusable by different software architectures
because they are stored in the PRISMA repository. The storage of PRISMA architectural
elements implies the storage of the aspects that they import. In addition, the reusability of the
aspect can be due to the fact that it is reused in many architectural elements and also when the
architectural element that imports the aspect is reused.

The simplest components that are found in the TeachMover system are actuators and
Sensors:

»  Actuator: An actuator has two ports. To describe its functional behaviour, it imports the

FActuator aspect that has been previously stored in the repository (see Figure 84).

Component Actuator
Ports
ControlAct: IMotiondJoint;
HW: IMotiondJoint;
Hyyy Cofkrolgct End Ports;

Functional Aspect Import FActuator;
End_Component Actuator;

Figure 84. The component Actuator

» Sensor: A sensor has two ports. To describe its functional behaviour, it imports the

FSensor aspect that has been previously stored in the repository (see Figure 85).
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Component Sensor
Ports
ControlSen: IRead;
HW: IRead;

End Ports;

Functional Aspect Import FSensor;
End Component Sensor;

Figure 85. The component Sensor

In addition, the actuators and sensors for the tool and the wrist joints are defined as new

architectural elements. They have the same functionality as the ones presented in Figure 84 and

Figure 85. However, the signature of the services that they offer is different, that is, the number

of parameters and their types is different.

Weavings are only specified when they are necessary to weave the execution of two

services from different aspects. An example of weavings appears in the SUCConnector

architectural element where the joint is moved only after the connector is sure that the

movement is safe (see the weavings section of the SUCConnector in Figure 86).

CopkrAcfua

SCConnectar

o

Aty

=ar

Connector SUCConnector
Ports
portSUC: ISUC;
ContrActua: IMotionJoint;
ContrSensor : TRead;

End Port;

Coordination Aspect Import CProcessSUC;
Safety Aspect Import Smotion;

Weavings

SMotion.check (FTransHal fstepsToAngle
(NewHal fsteps) , Secure)

beforeIf (Secure = true)

CProcessSUC .movejoint (NewHal fsteps, Speed);

End Weavings;
End Connector SUCconnector;

Figure 86. The connector SUCConnector

The invocation of the movejoint service (the second service of the weaving) of the

CProcessSUC aspect triggers the execution of a weaving. When a weaving is specified, the

weaving operator is chosen from the point of view of the service that triggers the weaving; that
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is, depending on whether the service needs the execution of a service before, after, or instead of
it. As a result, the weaving of the SUCConnector (see Figure 86) means that the check service
of the SMotion safety aspect will be executed before the moveloint service of the
CProcessSUC coordination aspect. The condition also establishes that the execution of the
moveJoint service must only be performed if the Secure parameter of the check service returns
true.

The connectors that coordinate the actuators and the sensors of the tool and the wrist joints
are also defined as new architectural elements. SUCconnector, WristSUCconnector, and
ToolSUCConnector are architectural elements stored in the PRISMA repository after their
verification. These three architectural elements import the same coordination (CProcessSUC)
and safety (SMotion) aspects (crosscutting concerns); however their behaviour is different
because they have different weavings. This is a clear example of the reuse of aspects inside the
same architectural model thanks to the fact that the definition of weavings outside aspects and
inside architectural elements, and an example of how these aspects crosscut the behaviour of
several architectural elements.

The Actuator, Sensor, and their connector SUCConnector are reusable architectural
elements that can be used several times in the TeachMover architectural model or in another
architecture specification of a bigger tele-operation domain such as the EFTCoR robot [Fer05],
[EFT02]. In the case of the TeachMover, they have been specified in the simplest way.
However, in the EFTCoR, they also have a distribution aspect in order to provide distributed
behaviour to these components [Ali05a], [Ali03]. As a result, we have reused the Actuator,
Sensor and SUCConnector architectural elements of the TeachMover in the architecture of the
EFTCoR. We have modified them by adding a distribution aspect, a pair of weavings between
the functional and distribution aspects of the Actuator and Sensor, and another pair of weavings
between the coordination and distribution aspects of the SUCConnector. This is an example of
reusability of defined components in other architectural models using the PRISMA repository.
This reusability avoids having to start from scratch to build a new architectural model. The

analyst can reuse the architectural elements in their original way or can reuse them and then
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introduce the changes that the new software system requires, just as we did with the actuator
and sensor components of the EFTCoR.

An actuator and a sensor must be coordinated through a connector in order to separate their
computations from their interactions [Sha94]. The SUCConnector imports a coordination and a

safety aspect in order to define its behaviour (see Figure 86).

9.2.4. STEP 4: Complex Architectural Elements
PRISMA complex components are called systems. Systems are defined in the 4 step of the

second stage. A PRISMA system is a complex component that imports a set of connectors,
components, and other systems that must be correctly attached. A system is defined by using
two kinds of communication channels: attachments and bindings

To completely specify a system, the architectural elements that the system is composed of
should be previously defined. In addition, the communication channels that permit the
communication among them are defined. It is important to emphasize that the attachments are
only defined if the system includes components and connectors that must be coordinated.

Systems are defined as patterns or architectural styles [Gar93] that can be reused in any
software architecture whenever they are needed. For this reason they are stored in the PRISMA
repository after their previous verification.

It is important to note that any changes that occur in aspects affect the architectural elements
that import them and, consequently, affect the systems that import these architectural elements.
Moreover, the changes that occur in architectural elements that are imported by a system also
affect the system (see step 3, 2™ stage, Figure 80).

In the case of the TeachMover, there are several systems, at different levels of granularity.
These systems are guided by the skeleton identified in the first stage (see Figure 3). The SUC
(Simple Unit Controller) system is composed of an actuator, a sensor, and the connector that
synchronizes them. The system specifies the architectural elements that it is composed of and

the communication channels among them (see Figure 87).
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SUCConneckar

Corgrae

System SUC
Ports

PortMUC: ISUC;
End Ports;

Import Architectural Elements
Actuator, Sensor, SUCconnector;
End Architectural Elements;

Attachments
SUCconnector.ContrActua €->
Actuator.ControlAct;
VarSUCconnector.ContrSensor €—>
VarSensor.ControlSen;

End Attachments;

Bindings
SUCconnector.portSUC €= portMUC;
End Bindinas:

Figure 87. The system SUC (Simple Unit Controller)

The SUC system delegates the commands that it receives to the connector in order to
perform the movements between the actuator and sensor in a synchronized way. For this
reason, the SUC system and the SUCConnector have a binding between their portMUC and
portSUC ports, respectively. In addition, two attachments haven been defined in order to
establish the communication channels between the Actuator and the SUCconnector, and the

Sensor and the SUCconnector, respectively.
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A ToolSUC and a WristSUC are also defined with their corresponding actuators, sensors,
connectors and their relationships. The SUC system is stored in the PRISMA repository so that

it can be reused as an architectural pattern.

ofr
I

MUCConneckar
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Port K rist
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Figure 88. The system MUC (Mechanism Unit Controller)

The MUC (Mechanism Unit Controller) system is the third layer of granularity of the
decomposition of the TeachMover system. It integrates a set of SUCs and a connector. The
connector coordinates the SUCs in order to achieve a common goal. Specifically, the MUC of
the TeachMover is composed of the generic SUC, the SUC of a wrist, and a connector that
synchronizes them (see Figure 88). As a result, the MUC of the TeachMover is matched with
the arm of the robot and specifies the behaviour required to accurately perform its movements.
The MUC is also stored in the PRISMA repository.

The RUC (Robot Unit Controller) system coordinates every part of the robot and is
composed of the MUC of the arm and the SUC of the tool, which are synchronized through a
connector (see Figure 89). The SUC of the tool is not inside the MUC system in order to easily
allow changes in the tool. For example, the tool of the TeachMover is a gripper, but it can be
changed for a paintbrush, a hosepipe, etc., in order to perform other tasks. The RUC is matched

with the TeachMover. As a result, we obtain a software architecture that is easy to evolve.
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Figure 89. The system RUC (Robot Unit Controller)

Finally, the last layer of decomposition is composed of the operator, the robot (RUC), and
the connector that coordinates them (see Figure 90). This last level provides us the most
abstract view of the software architecture, which is called the Architectural Model. 1t is
important to emphasize that since the architectural model does not define a system that

encapsulates it, bindings are do not need to be defined.

O AT OperatorConneckar RLIC
C-: d afnmarjds

Figure 90. The architectural model of the TeachMover

9.3.3"” STAGE: TYPE CODE GENERATION

Once the interfaces, aspects, and simple and complex architectural elements have been
completely specified, their code and specifications of PRISMA AOADL can be automatically
generated. This code generation must be performed after the complete verification of the model
and to check that there are no constraints that are not satisfied by the model (see 3" stage,
Figure 80).

This stage is performed by executing the code generation templates that the PRISMA Type
Modelling Tool provides (see section 6.3.3). This generation is possible thanks to the code

generation templates (model compiler), which isolate the specification from the source code
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preserving their independence. Until now, PRISMA CASE generates PRISMA aspect-
oriented C# code that is executable in NET framework thanks to our PRISMANET
middleware, which gives support to aspect execution over .NET technology [Per05b].

9.4.4™ STAGE: CONFIGURATION MODELLING

The architectural elements that have been defined in the previous stage and have been stored in
the PRISMA repository are instantiated in this stage. In order to understand the trace of the
approach, it is important to take into account that instances have all the properties and
behaviours of their architectural elements, and as a consequence, instances have the properties
and behaviours of the aspects that their architectural elements import. As a result, when an
architectural element is instantiated, the aspects that it imports are also instantiated in order to
have their specific state and behaviour.

This 4" Stage is developed using the PRISMA Configuration Modelling Tool, where the
configuration of the architectural model of the software system is modelled in a graphical way
by drawing and dropping the domain specific PRISMA modelling primitives (see section
6.3.4). The configuration of the initial architecture of a specific system is modelled by
instantiating the types and the architectural model that has been defined in the previous stage.

A specific software architecture is defined by connecting a set of instances of components,
systems, and connectors with each other (see instance of relationships, Figure 80). For this
reason, the instantiation of the architectural elements of a model and the definition of
attachment and binding relationships among instances is necessary to obtain an executable
architectural model.

To obtain the software architecture of the TeachMover, the SUC has been instantiated three
times in order to obtain the base, shoulder, and elbow joints of the robot (see section 2.3.2). The
gripper and the wrist are instances of the 7o0lSUC and WristSUC, respectively. As a result of
these instantiations, the instantiation of the MUC generates the configuration that appears in
Figure 91.
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Figure 91. The configuration MUC for the TeachMover

The RUC and the architectural model of the TeachMover are instantiated generating one
instance for each one of them. This instantiation constitutes the last step of the configuration
stage. As a result of this step, the software architecture of the TeachMover is completely
defined.

9.5.5"" STAGE: CONFIGURATION CODE GENERATION

Once the complete architectural model has been instantiated, their code and specifications
of PRISMA AOADL can be automatically generated (see Sth stage, Figure 80). They are
generated by executing the PRISMA Model Compiler from the PRISMA Configuration
Modelling Tool (see section 6.3.5).

9.6.6'" STAGE: CODE EXECUTION

Next, the execution of the generated code joint the PRISMANET middleware can be launched
from the PRISMA Configuration Modelling Tool (see 6 stage, Figure 80). Once the aspect-
oriented software architecture is executed the user can interact with it using the PRISMA

Generic GUI, which allows the user to execute services, query the value of attributes and
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validate the correct behaviour of each of the architectural elements that compose the

architecture (see section 6.3.5).

9.7. DISCUSSION
The TeachMover example illustrates that the PRISMA approach allows the development of

aspect-oriented software architectures as if aspects and architectural elements were building
blocks. You can work with them in different ways to obtain different results. This flexibility
and facility for working is achieved thanks to the fact that aspects and components are
independent entities that can be imported in different entities of the same software architecture
or in different ones.

The introduction of aspects in a separate entity allows for the TeachMover software
architecture to separate the safety concern in the SMotion aspect. This aspect is only defined
once and it is imported by the SUCconnector, WristSUCconnector, ToolSUCconnector,
MUCconnector and RUCconnector connectors by referencing this aspect. As a consequence,
the aspect is used by the instances of these connectors. For example, the TeachMover instances
of the SUCconnector are the BaseSUCconnector, ShoulderSUCConnector and
ElbowSUCConnector. As a result of considering aspects to model the TeachMover, tangled
code is avoided by separating coordination properties from safety properties. In addition, this
separation of concerns can improve the maintenance process of the system due to the fact that
the introduction of a change in the safety properties of the TeachMover only requires
modifying the SMotion Aspect and, consequently, all the changes are propagated to the
connectors and their instances.

The PRISMA repository also promotes the reuse of architectural elements and aspects in
different software architectures. They can be used as they are stored in the repository or can be
adapted to the features of the new architecture that is being modelled. For example, most of the
architectural elements of the TeachMover were reused in the EFTCoR software architecture.
The specific properties of the EFTCoR were easily adapted; for example, some of the robot
pieces of the EFTCoR are distributed. This property was introduced by defining a distribution
aspect and importing it from the reused architectural elements of the TeachMover that
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represent these pieces [Ali05a], [Ali03]. It must be noted that reuse is limited for software
architectures of different domains, but the PRISMA repository could be a great contribution for
reuse in product families such as the tele-operation family. In addition, a large repository with
good searching mechanisms could provide excellent support for the development and
maintenance of software.

The PRISMA MDD methodology is supported by the PRISMA CASE framework for the
construction of aspect-oriented software architectures that are independent of specific
technologies. The first stage of the PRISMA methodology is the identification of the aspects
and the architectural elements of a software architecture. Currently, this identification is
performed in an intuitive way from the requirements document of the system. However, we are
working in this stage in order to propose guidance for the user in this identification [Nav03],
[Nav04a], [Nav04b], [NavO4c].

The modelling stage of the PRISMA methodology is based on the PRISMA metamodel. It
has been defined by integrating aspects and software architectures. In this way, software
architectures can be constructed gaining the advantages of two different paradigms: the aspect-
oriented paradigm (AOP) and the component-based paradigm. One of these advantages is the
reusability of software at different levels of granularity. As an example, the reusability level of
the SUC system (see Figure 87) is illustrated in the following;

- Analysis of the reusability of the SUC system

The reusability of the SUC is analyzed by taking into account the system, its architectural
elements and the aspects that these architectural elements import. In addition, the reusability is
going to be analyzed at the type level and at the configuration level.

Figure 92 shows the number of times that an aspect is reused by different architectural
elements and the names of the architectural elements that import the aspect. The aspects are
enumerated in the first columns of the two tables. These aspects are the ones that have been
used for defining the SUC system. The first table details the reusability at the type level, and the
second table details the reusability at the configuration level, respectively. From these tables, it
is possible to conclude that: the aspect SMotion is defined once and it is reused by five

architectural elements at the type level and by seven architectural elements at the configuration
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level. The aspects FActuator, FSensor and CProcessSUC have been defined once and they are
reused by one architectural element at the type level and three architectural elements at the

configuration level.

Reusability of Aspects

(Type Level) Name
SUCConnector, WristSUCConnector,
SMotion 5 ToolSUCConnector, MUCConnector,
RUCConnector
CProcessSUC 1 SUCConnector
FActuator 1 Actuator
FSensor 1 Sensor
Reusability of Aspects
(Configuration Level) Name
BaseCnct, ElbowCnct, ShoulderCnct,
SMotion 7 WristCnet, ToolCnct, RobotArmCnct,
RobotCnct
CProcessSUC %) BaseCnct, ElbowCnct, ShoulderCnct
FActuator 3 BaseAct, ElbowAct, ShoulderAct
FSensor %) BaseSen, ElbowSen, ShoulderSen

Figure 92. Reusability of aspects

On the other hand, Figure 93 shows the number of times that an architectural element type
is reused at the configuration level of the architecture by means of its instantiation.

Reusabity o Arcitectal [ MMARCHIECTURAEELEVENTINSTANCES |

Elements Number Name

sSUC 3 BASE ,ELBOW, SHOULDER
SUCConnector BaseCnct, ElbowCnct, ShoulderCnct
Actuator BaseAct, ElbowAct, ShoulderAct
BaseSen, ElbowSen, ShoulderSen

Lol |

Sensor

Figure 93. Resusability of architectural elements

In addition to the SUC rates of reusability inside the TeachMover software architecture, the
reusability of aspects and architectural element types by other software architectures, such as
the EFTCoR software architecture, must be taken into account. For example, in the case of the
EFTCoR it has been imported every aspect and architectural elements of the TeachMover

without having to start the modelling process from scratch. Some of the reused aspects have
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been modified introducing new properties and others had not to be modified. Some of the
reused architectural elements have been modified adding new aspects and/or weavings and
others have been preserved in their original version.

Maintainability and evolution are also gained from integrating the aspect-oriented
paradigm (AOP) and the component-based paradigm. This is due to the fact that aspects and
architectural elements facilitate the task of locating where the changes must occur. For
example, in the case of the TeachMover, safety properties are located in only one place, in the
aspect SMotion. As a result, if a change in the safety properties occurs, the safety aspect is only
modified instead of changing the five architectural elements that import it at the type level. But
not only the number of changes is reduced, but also the time invested in locating where the
change must be introduced is improved. In our case, the safety properties of the aspect have to
be only searched; whereas in a non-aspect-oriented approach, the architectural elements with
tangled concerns have to be searched and the location of the safety properties is more difficult.
Finally, another important advantage is the reduction of code. As it was demonstrated by
[Kiz97], the lines of code are reduced. Our proposal avoids the replication of code. For
example, t the lines of the safety aspect SMotion were avoided to be repeated five times at the
type level.

The DSL tools development environment has been chosen in order to provide a framework
for the PRISMA approach. DSL tools allow us to define PRISMA metamodel, associate a
graphical notation to each metamodel concept and its instantiation, and implement the C# code
generation templates of PRISMA. The PRISMA framework provides mechanisms to
optimize the programming, reusability, and modularity of code. Developers use the graphical
notation of the PRISMA AOADL to build their software architectures using the methodology
presented in this thesis. After, the models are verified they can generate automatically the code.
The TeachMover software architecture has been modelled, its code has been generated and it
has been executed in the .NET platform. As a result, PRISMA has made it possible to move a
robot using an aspect-oriented architecture that is executed in .NET technology (see

demonstrations in [PRI07]).
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9.8. CONCLUSIONS

This chapter defines and explains the MDD PRISMA methodology. This methodology
allows the complete development of aspect-oriented architectural models following the MDD
paradigm. This methodology is divided into six stages and allows the development and
maintenance of software systems in a simple and flexible way.

The precise semantics of the PRISMA language gives us the chance to include the
verification of model and its compile to code as parts of this methodology. As a result of this
methodology application executable systems on the PRISMANET middleware [Per05b] are
obtained.

The ideas developed in the case study have been applied to specific products of the
EFTCoR and TeachMover. The benefits of applying PRISMA to the case study are mainly: 1)
the definition of reusable concerns that crosscut the software architecture called aspects and the
storage in a repository 2) the definition of reusable architectural elements by reusing aspects, 3)
the definition of complex architectural elements reusing other architectural elements, 5) the
verification of models supports, 5) the use of COTS support, 6) building the formal software
architecture of the system using a friendly graphical notation independently of technology, 7)
the reduction of the development time as code is automatically generated from the graphical
notation to a specific technology.

It is important to emphasize that this chapter has applied a software engineering approach to
the development of a robotic system. In this way, this development has taken advantage of the
good properties provided by this software engineering approach, especially reuse of
components, maintainability, evolution, etc.

The work presented in this chapter has been published in the following publication:

» Jennifer Pérez, Nour Ali, Jose A. Carsi, Isidro Ramos, Barbara Alvarez, Pedro Sanchez,
Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to
Robotic Tele-operated Systems, Joumal of Information and Software Technology,
Elsevier, (JCR 2006: 0.726) (accepted, to be published)
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CHAPTER 10

CONCLUSIONS AND FURTHER
RESEARCH

This chapter presents and analyzes the main contributions of this thesis of master. It also
presents future work that can be done to continue this research and to extend the results that

have already been obtained.

10.1. CONCLUSIONS

The complexity of current software systems and the fact that their non-functional requirements
have become very relevant to the user are challenges to be faced in all software development.
Software Architectures and AOSD have emerged to overcome these needs. In order to take
advantage of Software architectures and AOSD, several approaches have emerged to combine
both approaches providing all their advantages together. However, these approaches usually
extend architectural models without connectors and mainly follow an asymmetric model. They
are only focused on a single specific purpose: analysis, evolution or development of software
architectures without attempting to provide complete development and maintenance support
following the MDD process. Furthermore, these approaches always introduce the notion of
aspect by using original architectural concepts, despite the fact that they do not provide the
suitable semantics for aspects. This thesis presents the MDD support for the PRISMA
approach, a new software development approach that integrates Software Architectures and
AOSD to fulfil these needs.
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The PRISMA MDD provides complete support during the development and maintenance
processes of software following the MDD paradigm. The PRISMA MDD approach is
presented as an important advance in the combination of the aspect-oriented paradigm and
software architectures. The PRISMA approach integrates an aspect-oriented symmetric model
with an architectural model that has the notion of connector. The MDD advantages that this
combination of software architectures and AOSD provides to the definition of coordination
models have been presented. In addition, a detailed analysis about how to improve coordination
models from this combination has been done.

In PRISMA, aspects and software architectures are smoothly integrated with a clear
semantics, which has been formalized using a Modal Logic of Actions and m-calculus. In
addition, the PRISMA metamodel allows the definition the PRISMA models and to establish
its properties in a precise way. This metamodel and formalization have facilitated the
automation and maintenance tasks of PRISMA software architectures since the main goal of
this thesis was to define the MDD support of the PRISMA approach.

Another important characteristic of PRISMA that has facilitated the definition of the
PRISMA MDD process is the PRISMA Aspect-Oriented Architecture Description Language
(AOADL) [Per06d], which supports the PRISMA model [Per05a]. This AOADL allows the
definition of PRISMA aspect-oriented software architectures, not only providing components
and connectors as first-order citizens of the language, but also provides aspects and interfaces.
The structure, design and maintainability of architectures specified in the PRISMA AOADL
are improved by defining and reusing entities at different levels of granularity (interfaces,
aspects, components, connectors and systems). This improvement is possible since (1)
AOADL provides interfaces and aspects, (2) weavings are defined outside aspects, (3) aspects
are defined independently of architectural elements, and (4) architectural elements are defined
without being aware of the architectural elements that are connected to them. As a result, an
interface can be used by several aspects, an aspect can be used by several architectural
elements, and an architectural element can be used by several software architectures. In

addition, the precise semantics of the PRISMA AOADL and its independence of technology
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provide the opportunity to validate PRISMA software architecture properties and to compile
models for different programming languages and platforms.

In order to improve this reusability and the development time of the PRISMA MDD
approach. This thesis has defined a novel way of integrating COTS into software architectures.
This integration is feasible using aspects as COTS wrappers. Specifically, a new kind of aspect
called integration_aspect has been defined to specify the COTS that it wraps and to specify the
integration process with the rest of software architecture. In the same way as other aspects,
integration aspects must be imported by an architectural element in order to publish their
services through ports that enable their communication with other architectural elements.
Moreover, it is presented how the use of COTS is supported by the PRISMA methodology
thanks to the facilities that the PRISMA CASE provides. This is an important characteristic
since COTS are widely used, and any development approach that needs to reduce development
time must provide it.

This independency and reusabilily properties of PRISMA elements has facilitated the
definition of a flexible verification process. This thesis has defined a complete verification
process to be supported by the PRISMA MDD approach. This verification process has
classified PRISMA constraints into hardconstraints and weakconstraints. From  this
classification the PRISMA verification process takes a step forward and the partial and
incremental verification has been proposed instead of only taking into account the complete
verification of the model.

Since the use of a formal language is a hindrance for many users, PRISMA provides a
graphical AOADL to describe formal software architectures using a fiiendly graphical
notation. Finally, it is important to mention that the PRISMA AOADL has great expressive
power to specify more features and requirements related to the software system by means of
aspects. Therefore, PRISMA AOADL is not only able to specify simple architectural systems
for academic projects such as pipelines, filters, blackboards, etc, but it is also able to completely
specify complex software systems. In addition, this expressive power permits to have enough

information for the code generation task of the PRISMA model compiler.
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The MDD approach proposed in this thesis is based on the models hierarchy of PRIMA
and the code generation techniques. The PRISMA model is a metamodel that permits the
definition of PRISMA type models whose instantiation defines PRISMA configuration
models. PRISMA configuration models define specific systems. PRISMA applies MDD to
define type models from its metamodel, and to define configuration models from type models.
In addition, PRISMA approach has created a set of transformation patterns to transform
PRISMA models into its AOADL specifications and into C# code. PRISMA applies these
transformation patterns during the development process in order to automatically generate
applications from its PRISMA architectural models and to show the formal specification of its
models.

PRISMA CASE is a framework that provides complete support for the PRISMA MDD
approach. It is composed of a set of tools that is suitably integrated to provide a unique
framework that gives support for the user throughout the software life cycle. This integration
also provides top-down traceability during the different stages of the software life cycle and
facilitates the maintenance of the developed software products. This set of tools includes the
PRISMA Type Modelling Tool with its code generation patterns, the PRISMA Configuration
Modelling Tool with its code generation patterns, the generic Graphical User Interface for
PRISMA applications, and the middleware PRISMANET. The PRISMA Types and
Configuration Modelling Tools give support for the development of PRISMA software
architectures following the MDD approach and using the PRISMA AOADL in a graphical
way. As a result, PRISMA offers mechanisms to develop software architectures in a more
intuitive and friendly way and mechanisms to verify their models. In addition, the code
generation patterns that PRISMA modelling tools offer allow automatically generate
executable C# code on PRISMANET firom the specified graphical models. Thus, PRISMA
CASE deals with the traceability between software architectures and implementation and
reduces the time and cost invested in the development and maintenance processes. PRISMA
CASE provides a generic Graphical User Interface to execute software architectures. This is an
important advantage because it is a simple way of validating that software architectures provide

the behaviour expected by the user without having to develop a customized graphical user
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interface. All the tools and mechanisms that PRISMA CASE provides make PRISMA a well-
supported approach for developing aspect-oriented software architectures following the MDD
approach.

Just as important is the methodology that has been defined to guide the user during the
MDD process of PRISMA software architectures. This methodology is supported by the
PRISMA CASE and consists of six stages that define how to specify software architectures
from scratch or how to reuse software by importing PRISMA architectural elements and
aspects and COTS, and how to obtain the final code from these specifications. These stages are
the following: detection of architectural elements and aspects, type architectural modelling,
type code generation, configuration modelling, configuration code generation and execution.
These six stages are applied by the analyst of the software system in an iterative and an
incremental way depending on his/her needs. As a result this methodology allows the
development and maintenance of software systems in a simple and flexible way.

All the contributions of this thesis of master have been demonstrated using the TeachMover
robot case study. The reuse capabilities of the PRISMA model have been presented by means
of the TeachMover case study. The TeachMover architecture has also helped to present the
capabilities of the PRISMA modelling tool and the verification process. The case study has
been totally specified and its code has been generated and executed by PRISMACASE using
COTS and without COTS.

The contributions of this thesis of master are based in the previous PRISMA contributions
that have been published in the following publications:

JOURNALS

> Nour Ali, Jennifer Pérez, Cristobal Costa, Isidro Ramos, Jose Angel Carsi, Distributed
Replication in Aspect-Oriented Software Architectures using Ambients, Journal IEEE
América Latina, Vol. 5, Issue 4, July 2007. (In Spanish)
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INTERNATIONAL CONFERENCES

>

216

Jennifer Pérez, Nour Ali, Jose Angel Carsi, Isidro Ramos, Designing Software
Architectures with an Aspect-Oriented Architecture Description Language, 9th
Symposium on the Component Based Software Engineering (CBSE), Springer Verlang
LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Sweden,
June 29th-July 1st, 2006.

Nour Ali, Jennifer Pérez, Cristobal Costa, Isidro Ramos, José Angel Carsi, Mobile
Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on
Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227
pp. 3748, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20,
2006.

Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, 4 Modelling Proposal for
Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer
Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area),
March 27th-30th, 2006.

Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for
Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp.
1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)
Jennifer Pérez, Manuel Llavador, Jose A. Carsi, Jose H. Canos, Isidro Ramos,
Coordination in Sofiware Architectures: an Aspect-Oriented Approach, Fifth Working
IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society
Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November,
2005 (position paper)

Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsi, Integrating Ambient Calculus in
Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-
7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005 (position paper)
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Jennifer Pérez, Nour Ali, Cristobal Costa, Jos¢ A. Cars, Isidro Ramos, Executing Aspect-
Oriented Component-Based Software  Architectures on .NET Technology, 3rd
International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic,
May-June 2005.

Nour Ali, Jennifer Pérez, Isidro Ramos, Aspect High Level Specification of Distributed
and Mobile Information Systems, Second International Symposium on Innovation in
Information & Communication Technology ISSICT, pp. 14, Amman, Jordania,21-22,
April, 2004.

Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsi , Aspect Reusability in Software
Architectures, 8th International conference of Software Reuse (ICSR), July, 2004 (poster)
Elena Navarro, Isidro Ramos, Jennifer Pérez, Goals Model-Driving Sofiware
Architecture, 2nd International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 205-212, ISBN:0-9700776-9-6, May 5-8,
2004, Los Angeles, CA, USA.

Nour Hussein, Josep Silva, Javier Jaen, Isidro Ramos, Jose Angel Carsi ,Jennifer Pérez ,
Mobility and Replicability Patterns in Aspect-Oriented Component- Based Software
Architectures, 15th TASTED International Conference, Parallel and Distributed
Computing and Systems (PDCS), ACTA Press, ISBN: 0-88986-392-X, ISSN: 1027-
2658, pp. 820-826, Marina del Rey, California, USA, 3-5, November 2003,

Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, Elena Navarro , PRISMA:
Towards Quality, Aspect Oriented and Dynamic Sofiware Architectures, 3rd 1IEEE
International Conference on Quality Software (QSIC 2003), IEEE Computer Society
Press, pp.59-66, ISBN: 0-7695-2015-4, Dallas, Texas, USA, November 6 - 7, 2003.

Elena Navarro, Isidro Ramos, Jennifer Pérez, Sofiware Requirements for Architectured
Systems, 11t h IEEE International Requirements Engineering Conference (RE'03), IEEE
Computer Society Press, pp. 365-366, ISSN: 1090-705X, ISBN: 0-7695-1980-6,
Monterey, California, 8-12 September 2003 (Poster)
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INTERNATIONAL WORKSHOPS

>

Jennifer Pérez, Nour Ali, Jose A. Carsi, Isidro Ramos, Dynamic Evolution in Aspect-
Oriented Architectural Models, Second European Workshop on Software Architecture,
Springer LNCS 3527, pp.59-16, ISSN: 0302-9743, ISBN: 3-540-26275-X , Pisa, Italy,
June 2005.

Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, PRISMA: Development of
Sofiware Architectures with an Aspect Oriented, Reflexive and Dynamic Approach,
Dagstuhl Seminar N° 03081, Report N° 36 "Objects, Agents and Features",Copyright (c)
IBFI gem. GmbH, Schloss Dagstuhl, D-66687 Wadem, Germany . Eds.H.-D. Ehrich
(Univ. Braunschweig, D), J.-J. Meyer (Utrecht, NL), M. Ryan (Univ. of Birmingham,
GB), pp. 16, Germany, January, 2003.

Jorge Ferrer, Angeles Lorenzo, Isidro Ramos, José¢ Angel Carsi, Jennifer Pérez,
Modeling Dynamic Aspects in Architectures and Multiagent Systems, Logic Programming
and Software Engineering (CLPSE), pp. 1-13, Copenhagen, Denmark, affiliated with
ICLP, july 2002.

NATIONAL CONFERENCES

>

218

Nour Ali, Jennifer Pérez, Cristobal Costa, Isidro Ramos, José Angel Carsi, Distributed
Replication in Aspect-Oriented Software Architectures using Ambients, X1 Conference on
Software Engineering and Databases (JISBD), pp. 379-388, ISBN: 84-95999-99-4, Sitges,
Barcelona, October 2006. (In Spanish)

Cristobal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsi, Isidro Ramos, PRISMANET
middleware: Support to the Dynamic Evolution of Aspect-Oriented Sofiware
Architectures, X Conference on Software Engineering and Databases (JISBD), pp. 27-34,
ISBN: 84-9732-434-X, Granada, September, 2005. (In Spanish)



Conclusions and Further Research

Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sanchez, Barbara
Alvarez, Development of a Tele-Operation System using the PRISMA Approach, VIII
Conference on Software Engineering and Databases (JISBD), pp. 411-420, ISBN: 84-
688-3836-5, Alicante, November, 2003. (In Spanish)

Jennifer Pérez, Isidro Ramos , Angeles Lorenzo, Patricio Letelier, Javier Jaén, PRISMA:
OASIS PlatfoRm for Architectural Models, VI Conference on Software Engineering and
Databases (JISBD), pp. 349-360, ISBN: 84-688-0206-9, El Escorial (Madrid), November,
2002. (In Spanish)

NATIONAL WORKSHOPS

>

Cristobal Costa, Jennifer Pérez, Jose Angel Carsi, Towards the Dynamic Configuration
of Aspect-Oriented Software Architectures, IN Workshop on Aspect-Oriented Software
Development (DSOA), XI Conference on Software Engineering and Databases (JISBD),
Technical Report TR-24/06 of the Polytechic School of the University of Extremadura,
pp-35-40, Sitges, Barcelona, Octubre, 2006. (In Spanish)

Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose A. Carsi, Aspect-Oriented
C#t Implementation of a Tele-Operated Robotic System, 11l Workshop on Aspect-Oriented
Software Development (DSOA), X Conference on Software Engineering and Databases
(JISBD), pp. 53-59, ISBN: 84-7723-670-4, Granada, September, 2005. (In Spanish)
Jennifer Pérez,Nour H. Ali, Isidro Ramos, Jose A. Carsi, PRISMA: Aspect-Oriented and
Component-Based Software Architectures, Workshop on Aspect-Oriented Software
Development (DSOA), Conference on Software Engineering and Databases (JISBD),
Technical Report TR-20/2003 of the Polytechic School of the University of Extremadura,
pp. 27-36, Alicante, November, 2003. (In Spanish)

M?* Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsi, DIAGMED. An
Architectural model for a Medical Diagnosis, IV workshop DYNAMICA — DYNamic
and Aspect-Oriented Modeling for Integrated Component-based Architectures, pp. 1-7,
Archena, Murcia, November, 2005. (In Spanish)
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>

Rafael Cabedo, Jennifer Pérez, Jose A. Carsi, Isidro Ramos, Generation and Modelling
of PRISMA Architecture using DSL Tools, IV Workshop DYNAMICA — DYNamic and
Aspect-Oriented Modeling for Integrated Component-based Architectures, pp.79-86,
Archena, Murcia, November, 2005. (In Spanish)

Nour Ali, Jennifer Pérez, Jose A. Carsi, Isidro Ramos, Mobility of Objects in the
PRISMA Approach, 11 workshop DYNAMICA — DYNamic and Aspect-Oriented
Modeling for Integrated Component-based Architectures, pp. 111-118, Almagro, Ciudad
Real, April, 2005.

Jennifer Pérez, Rafael Cabedo, Pedro Sanchez, Jose A. Carsi, Juan A. Pastor, Isidro
Ramos, Barbara Alvarez, PRISMA Architecture of the Case Study: an Arm Robot, 11
workshop DYNAMICA — DYNamic and Aspect-Oriented Modeling for Integrated
Component-based Architectures, Conference on Software Engineering and Databases
(JISBD), pp. 119-127, Malaga, November 2004. (In Spanish)

Nour Ali Jennifer Pérez, Cristobal Costa, Jose A. Carsi, Isidro Ramos, Implementation
of the PRISMA Model in the .Net Platform,I1 workshop DYNAMICA — DYNamic and
Aspect-Oriented Modeling for Integrated Component-based Architectures, Conference on
Software Engineering and Databases (JISBD), pp. 119-127, Malaga, November, 2004.
Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose A. Carsi, Jennifer Pérez,
Distribution Patterns in Aspect-Oriented Component-Based Sofiware Architectures, IV
Workshop Distributed Objects, Languages, Methods and Environments (DOLMEN),
pp.74-80, Alicante, November, 2003.

TECHNICAL REPORTS

>
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Rafael Cabedo, Jennifer Pérez, Isidro Ramos, The application of the PRISMA
Architecture Description Language to an Industrial Robotic System, Technical Report,
DSIC-II/11/05, pp.180, Polytechnic University of Valencia, September 2005. (In Spanish)
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> Cristobal Costa, Jennifer Pérez, Jose Angel Carsi, Study and Implementation of an
Aspect-Oriented Component-Based Model in .NET technology, Technical Report, DSIC-
11/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish)

» Jennifer Pérez, Nour Ali , Jose A. Carsi, Isidro Ramos, PRISMA Architecture of the
Robot 4U4 Case Study, Technical Report DSIC-11/13/04, pp. 72, Polytechnic University
of Valencia, 2004. (In Spanish)

» Jennifer Pérez, Isidro Ramos, OASIS as a Formal Support for the Dynamic, Distributed
and Evolutive Hypermedia Models, Technical Report DSIC-11/22/03, pp. 144, Polytechnic
University of Valencia, October 2003. (In Spanish)

»  Jennifer Pérez, Isidro Ramos, Jose A. Carsi, A Compiler to Automatically Generate the
Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-
11/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish)

In addition to be well supported the contributions of this thesis of master by the previous
PRISMA publications. The contributions of this thesis that have beeen published or submitted

in the following publications:

JOURNALS

» Jennifer Pérez, Jose A. Carsi, Isidro Ramos, Model-Driven Development of Aspect-
Oriented Sofiware Architectures, The Computer Journal, Oxford Journal, (JCR 2006:
0.593) (submitted)

> Jennifer Pérez, Nour Ali, Jose A. Carsi, Isidro Ramos, Barbara Alvarez, Pedro Sanchez,
Juan A. Pastor, Integrating Aspects in Software Architectures: PRISMA Applied to
Robotic Tele-operated Systems, Joumnal of Information and Software Technology,
Elsevier, (JCR 2006: 0.726) (accepted, to be published)
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INTERNATIONAL CONFERENCES

» Jennifer Pérez, Isidro Ramos, Jose A. Carsi, Taking Advantage of COTS for Developing
Aspect-Oriented Sofiware Architectures, Working IEEE/IFIP Conference on Software
Architecture (WICSA), IEEE Computer Society, Vancouver, BC, Canada, 18 — 21
February 2008. (submitted)

INTERNATIONAL WORKSHOPS

» Jennifer Pérez, Carlos E. Cuesta, Aspect-Oriented Connectors for Coordination,
International Workshop on Synthesis and Analysis of Component Connectors (SYANCO
2007), Joint to The 6th joint meeting of the Furopean Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC-
FSE, ACM Digital Library, Dubroknik, Croacia, September 3-4, 2007.

NATIONAL CONFERENCES

» Jennifer Pérez, Cristobal Costa, Jose A. Carsi, Isidro Ramos, Verification of Aspect-
Oriented Architectural Models, X1 Conference on Software Engineering and Databases
(JISBD), Zaragoza, Spain, 12-14 Septermber. (In Spanish)

> Jennifer Pérez, Cristobal Costa, Jose A. Carsi, Isidro Ramos, PRISMA CASE, XII
Conference on Software Engineering and Databases (JISBD), Zaragoza, Spain, 12-14
Septermber. (Demonstration, In Spanish)

10.2. FURTHER RESEARCH
The PRISMA MDD approach opens a perfect setting for further research. All the parts that the
PRISMA MDD approach is composed of can be extended in order to face new challenges.
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PRISMA has been applied to both: the tele-operation domain and the electronic bank
domain. However, other domains can have other specific properties that are not taken into
account in PRISMA. As a result, the application of the PRISMA model to other domains can
assist us in defining new aspects that can introduce new properties of modelling and differences
in aspect specifications. In fact, PRISMA only supports the definition of software architectures
that are locally executed, despite the fact that most software architectures have a distributed
nature. For this reason, we are currently working on introducing distribution and mobility
properties in PRISMA using aspects [Ali05a], [Ali03], [Ali06], [AliO5b]. In addition, until
now, PRISMA has been applied to software architectures that do not require persistence.
However, information systems usually store their information in secondary memory. As a
result, persistence is another important property that the model should support. There are other
concepts from software architectures that PRISMA does not provide such as views and
architectural patterns. In the long term, these concepts should also be defined in PRISMA.

The PRISMA model extensions imply modifications in the PRISMA AOADL at its
different levels of abstraction (types and configuration) and at its different kinds of
representation (textual and graphical). PRISMA AOADL supports cardinality constraints to
define systems, but it should be extended to support other kinds of constraints as well.

Since PRISMA does not yet provide model checking mechanisms to check the properties
of its architectural specifications such as reachability, deadlock detection and liveness, these
model checking techniques should also be applied to PRISMA. With regard to the verification
process associated to the PRISMA MDD process, the verification of the configuration models
is not supported. Ass a result, it is necessary to provide the needed verification mechanisms for
configuration models and to define the complete verification process.

Future work will exploit the results of the coordination model formalization to show the
effects of combining several complex aspects, and will consider also the combination with the
influence of assertions in the Modal Logic of Actions provided in architectural elements, as
well as the possibility of extending this to a temporal logic such as the modal p-calculus, which
has already been made for recent work in PiLar [Cue04], [Cue(02]. Also, a detailed comparison

with the formalization and capabilities of some other n-calculus-based ADLs, such as Leda
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[Can01], [Can00], PiLar [Cue04], [Cue02]or t-ADL [Oqu04a] will be carried out, studing the
extent in which our results can be provided as extensions to non-symmetric, non-aspect-
oriented existing ADLs.

Another important property of software systems is the continuous evolution that they
undergo. Development frameworks must provide mechanisms to support evolution and to
facilitate the software maintenance. As a result, PRISMA must be able to support the evolution
of aspect-oriented software architectures. The division of the PRISMA architecture
specifications into two levels of abstraction opens the opportunity to distinguish between the
evolution of types and the evolution of a specific architecture. Despite the fact that the
PRISMA evolution services have been identified and included in the PRISMA metamodel to
modify software architectures, this only permits its modification at modelling time. However,
since there are a lot of software systems that cannot stop their execution to be modified, run-
time evolution must be provided. This run-time evolution is usually called dynamic
configuration. Therefore, we are currently working on defining mechanisms to dynamically
execute evolution services at run-time. Over the long term, our work with regard to software
evolution will be related to the data evolution problem of software architectures, where we will
apply our previous experience on data migration and data evolution of object-oriented
conceptual schemas [Per02a], [Per02b], [Per02c].

For the application of PRISMANET, there are a lot of lacks that must be dealt with in the
near future. The most important ones are the support of transactions and fault tolerance. In the
long term, PRISMANET must also provide distributed and evolution mechanisms to the
architectural elements. Automatic code generation of other programming languages and
technologies is future work that could imply the implementation of other middlewares if
required by the new technological platforms. Furthermore, an abstract middleware that would
hide the differences between the different platforms could also be developed.

The PRISMA methodology does not support the identification of architectural elements
and aspects from the requirements specification. As a result, one future work is to integrate
ATRIUM [Nav03] with PRISMA to provide complete support to every stage of the software

life-cycle (from requirements to implementation).
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In addition, the extension of PRISMA methodology also offers opportunities for future
work. This extension can consist of providing mechanisms that will take into account product
family modelling as well as the variability that software architectures of this kind would
introduce at the PRISMA modelling stage. Yet another task is to create a repository with a
query language and metadata description of the architectural elements and aspects to improve
reusability even more. The incorporation of COTS introduces the possibility of importing web
services in PRISMA, making the study of PRISMA as a Service-Oriented Architecture (SOA)
necessary. Therefore, another interesting task is to analyze what implications the SOA support
will have for the PRISMA model and the PRISMANET implementation.

Finally, it is necessary to evaluate PRISMA using different applications and case studies in
order to perform a quantified evaluation of the approach. A comparison of aspect-oriented and
non-aspect oriented applications is necessary to be able to measure the advantages that
PRISMA provides in comparison with other approaches. This measurement should be made
taking into account different case studies and domains in order to have a wide sample that will
allow us to get a set of well based conclusions.

Some of these research works have already started, especially those that improve the MDD
support. For this reason, there are contributions about the maintenance and evolution support of
the PRISMA MDD approach that have beeen published, but they are not included in this thesis
of master. These publications are the following;

INTERNATIONAL CONFERENCES

» Cristobal Costa, Nour Ali, Jennifer Pérez, Jose A. Carsi, Isidro Ramos, Dynamic
Reconfiguration of Sofiware Architectures through Aspects, In: Oquendo, F. (ed.) 1st
European Conference on Software Architecture (ECSA’07). LNCS, vol. 4758, pp. 279-
283 Springer, Aranjuez, Madrid Spain, 24-26 September 2007 (To appear)

» Cristobal Costa, Jennifer Pérez, Jose A. Carsi, Dynamic Adaptation of Aspect-Oriented
Components,10th International ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE’07), Springer Verlag, LNCS 4608, ISSN 0302-9743, ISBN
978-3-540-73550-2 , Tufts University, Medford (Boston area), Massachusetts, USA , 9-

11 July 2007.
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APPENDIX A

PRISMA CODE GENERATION
PATTERNS

This appendix presents the code generation patterns to generate the C# from PRISMA
types models.

A.1. INTERFACES

Pattern 1: Interfaces

PRISMA Metamodel in DSL Tools Graphical Metaphor

Interfacel &
Interfaces o F
& | Inkerface | .
T - =I Service
ISarvices ] -
i |

4 | IService

= Inkerfaces
= Interfacel (Interface)
IServices
Transformation
Description

This pattern details how to generate the C# code from an interface.
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Template

using System;
using PRISMA;
namespace <#=this.Model.Name#>
{
<#
SortedList servicelist = new SortedList();
foreach (Interface interfaz in this.Model.Interfaces)

{

#>
public interface <#=interfaz.Name#>
{
<#
foreach (Service servicio in interfaz.IServices)
{
#>
AsyncResult

<#f=servicio.Name#> (<#=CommaSeparatedArguments (servicio.Arguments) #>) ;

<# if (!servicelist.Contains (servicio.Name) )
servicelList.Add (servicio.Name, servicio) ;

}
#>
}

<#
}
foreach (Service servicio in servicelist.Values)
{
#>
public delegate AsyncResult

<#f=servicio.Name#>Delegate (<#f=CommaSeparatedArguments (servicio.Arguments) #>);

Case Study

Description

This pattern is illustrated using the interface ImotionJoint of the TeachMover case
study. This interface specifies the services that are required to move and stop the
TeachMover robot.

The representation of the ImotionJoint in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.
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Graphical representation

IMotion Joink (Interface)
= 15ervices
=] moveJoink (IService)

IMationJaink s :
FHen-an = [=I- Argurnents
= Service MNewSteps (Argument)
moveloink - Speed (Argument)
skop [=1- stop (IService]

i Arguments

Result of the pattern execution

using System;
using PRISMA;
namespace RobotJoint
{
public interface IMotionJoint
{
AsyncResult moveJoint (int NewSteps, int Speed);
AsyncResult stop();
}

public delegate AsyncResult moveJointDelegate (int NewSteps, int
Speed) ;

public delegate AsyncResult stopDelegate();
}

Related Patterns

There are no related patterns
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A.2. ASPECTS

Pattern 2:Aspects

PRISMA Metamodel in DSL Tools Graphical Metaphor

S O
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" M e ) i
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Canskraints
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Preconditions

Protocol Aspecthame (Protocol)
i Transactions

Sr—— e i aluations
s iy

Transformation

Descripcion

This pattern details how to generate the C# code from an aspect. Specifically, it only
generates the structure of the aspect, the internal code of this structure is generated
by other patterns related to it.
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Template

using System;

using PRISMA;

using PRISMA.Aspects.Types;
using PRISMA.Exceptions;
using System.Collections;

namespace <#=this.Model.Name#>

{

<#
foreach (Aspect aspect in this.Model.Aspects)
{
#>
[Serializable]
public class <#=aspect.Name#>
<#=aspect.Concern#>Aspect<#=CommaSeparatedNames3 (aspect.Interfaces) #>
{
<#
/* Internal code generation of the aspect
=Y
}/* endforeach (Aspect aspect in this.Model.Aspects) */
#>
}
Case Study
Description

This pattern is illustrated using the aspect FJoint of the TeachMover architectural
model. The representation of the FJoint in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Representacion

Floint =

SUbStat

A )=
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SubStateMewPos SubStateMotify

= attributes
halfsteps: integer
= Servicer

currentPasition
rewPosition
= Waluations
[ none Begin ] halfStepsi=IniPas
[ In currentPasition ] Pos:=halfSteps
[ InnewPasition ] halfStepsi=halfSteps HiewSteps
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= Constraints

= Playedroles
URROS
QRoS

= Transzactions
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[=]- FJaink {Aspeck)
[#- AServices
[+ Attributes
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- Protocol Floint (Prokocoly | Concern IF:UT“W'
. FillZalor LightskyElue
Transe_u:tmns p— ==
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Result of the pattern execution

using System;

using PRISMA;

using PRISMA.Aspects.Types;
using PRISMA.Exceptions;
using System.Collections;

namespace RobotJoint
{
[Serializable]
public class FJoint : FunctionalAspect, IQueryPos, IUpdatePos

{

}
}

Related patterns

Pattern 3, Pattern 4, Pattern 5, Pattern 6, Pattern 7, Pattern 8, Pattern 9, Pattern 10,
Pattern 11, Pattern 12, and Pattern 13.

A.2.1. Attributes

Pattern 3:Attributes

PRISMA Metamodel in DSL Tools Graphical Metaphor

Aspects
W Aspect
=t
Attributes -
P
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Wariable
4

t Attributes
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= Aspect {fAspect)
i [ AServices
B Aiktributes

Transformation

Description

This pattern details how to generate the C# code from an attribute. There are three
kinds of attributes: Constant, Variable and Derived. The code generation for derived
attributes is still not supported. Constant and Variable attributes follow the same
pattern because there are no differences in their code generation.

Template

<#

SortedList attributes=new SortedList () ;

foreach (DSIC.ISSI.PrismaDSL.DomainModel.Attribute atribute in
aspect.Attributes)

{

attributes.Add (atribute.Name,null) ;
#>
<#=DomainToType (atribute.Domain) #> <#=atribute.Name#>;
public <#=DomainToType (atribute.Domain) #>

<#=atribute.Name.Substring (0, 1) .ToUpper () #><#=atribute.Name.Substring (1) #>
{
get { return <#=atribute.Name#>; }
}
<#
}
#>

Case Study

Description

This pattern is illustrated using the attribute halfSteps of the aspect FJoint of the
TeachMover architectural model. The halfSteps is an Integer attribute to store the
position of the Joint. The representation of the attribute halfSteps in the PRISMA
model and the C# code generated from this model by applying this pattern are
presented following.

Representation
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SUbStat
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FIOINT

SubStatelewPos
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halfSteps: integer

SubStateMotify
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(=1~ Flaink (Aspect)
=- Akkribukbes

halfsteps (Mariable)

halfSteps Yariable

=

Marne

Diarnain
Tathull

inteqger
halfSteps
True

Result of the pattern execution

int halfSteps;
public int HalfSteps
{

}

get { return halfSteps; }

Related Patterns

Pattern 2.
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A.2.2. Protocol

Pattern 4:Protocols

PRISMA Metamodel in DSL Tools Graphical Metaphor
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TransactionModifier In

Transformation

Description

This pattern details how to generate the C# code from the protocol of an aspect.
Specifically, it only generates the set of states that compose the protocol.

Template
#>
enum protocolStates
{
<#=CommaSeparatedNames (aspect.Protocol.States) #>
}

protocolStates state;
private protocolStates State(
get { return state;}
set { state=value;
this.StateName=state.ToString();
}
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<#

Case Study

Description

This pattern is illustrated using the protocol of the aspect FJoint of the TeachMover
architectural model. The representation of the states of the protocol in the PRISMA
model and the C# code generated from this model by applying this pattern are
presented following.

Graphical representation

FJaink

24
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FIOINT PCQ3

SubstateMewPos SubstateMokify

Result of the pattern execution

enum protocolStates
{

FJOINT, POS, END, SubStateNewPos, SubStateNotify, SubStateQuery
}
protocolStates state;
private protocolStates State(

get { return state;}

set { state=value;

this.StateName=state.ToString() ;
}

Related Patterns

Pattern 2.
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A.2.3.Services

A.2.3.1. Begin

Pattern 5: Begin Services

PRISMA Metamodel in DSL Tools Graphical Metaphor

Service
==l

i

Arguments

( Argument
SH=HE
Domain
—{ AService
S

E| Aspect (Aspect)

{ [l AServices

E Beqgin (Begin)

: 5----Arguments

Pattern

Description

This pattern details how to generate the C# code from the service Begin of an
aspect. This service acts as the constructor of the aspect. This generation follows
four steps: 1) To establish the initial state of the aspect, 2) To generate the code of
the valuations associated to the Begin service, 3) To generate the information of the
played roles of the aspect adding the priority to each service that compose them., 4)
to indicate which is the state that is reached after the Begin execution. This pattern
does not generate the code for the second step because the valuations of all services
are generated by other pattern.

Template

<#
foreach (AService service in aspect.AServices)
{
if (service is Begin)
{
#>
public <#=aspect.Name#> (<#=CommaSeparatedArguments (service.Arguments) #>)
base ("<#=aspect.Name#>")
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State = protocolStates.<k-Service.StateHasState[0].Source.Name#>; |

#>
PlayedRoleClass <#= #> = new
PlayedRoleClass ("<#= #>m) ;

<#

>

<#= #>.AddMethod ("<#=servic.Name#>", <#=ServiceIn.ToString () .ToL

<#

#>

this.playedRoleList.Add (<#=playedRole.Name#>) ;

#>
this.statelist=new ArrayList();

>

this.stateList.Add ("<#=Element.Name#>") ;
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#>
AddPriorityService (protocolStates.<#=stateHasState.Source.Name#>.ToString(),

<#=playedRole.Name#>.PlayedRoleName, "<#=stateHasState.Service.Name#>",
<f=stateHasState.Priority#>);

<#

}
#>
State = protocolStates.<#=service.StateHasState[0].Target.Name#>;
}
<#
}/* endif (service is Begin) */

Case Study

Description

This pattern is illustrated using the service Begin of the aspect FJoint of the
TeachMover architectural model. The representation of the Begin of the FJoint in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.

Graphical representation
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Result of the pattern execution

public FJoint (int IniPos) : base("FJoint")
{

State = protocolStates.FJOINT;
halfSteps=IniPos;

PlayedRoleClass UPPOS = new PlayedRoleClass ("UPPOS");
UPPOS.AddMethod ("newPosition"™, true);
this.playedRoleList.Add (UPPOS) ;

PlayedRoleClass QPOS = new PlayedRoleClass ("QPOS");
QPOS.AddMethod ("currentPosition", true);
this.playedRoleList.Add (QPOS) ;

this.statelList=new ArrayList();
this.statelList.Add ("FJOINT") ;
this.stateList.Add ("POS") ;
this.stateList.Add ("END") ;
this.statelList.Add("SubStateNewPos") ;
this.statelList.Add ("SubStateNotify") ;
this.statelList.Add ("SubStateQuery") ;

AddPriorityService (protocolStates.POS.ToString (), UPPOS.PlayedRoleName,
"newPosition", 1);

AddPriorityService (protocolStates.SubStateNewPos.ToString (),
QPOS.PlayedRoleName, "currentPosition", 1);

AddPriorityService (protocolStates.SubStateNotify.ToString(),
QPOS.PlayedRoleName, "currentPosition", 1);

AddPriorityService (protocolStates.POS.ToString (), QPOS.PlayedRoleName,
"currentPosition", 1);

AddPriorityService (protocolStates.SubStateQuery.ToString(),
QPOS.PlayedRoleName, "currentPosition", 1);

State = protocolStates.POS;
}

Related Patterns

Pattern 2, Pattern 9, and Pattern 10.
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A.2.3.2. Public Services

Pattern 6:Public Services

PRISMA Metamodel in DSL Tools Graphical Metaphor

Service
==l
A

Arguments

( Argument
SH=HE
Domain
Domain

—{ AService
S

E| Aspect (Aspect)
EI AServices

= Beqgin (Begin)
Arguments

Transformation

Description

This pattern details how to generate the C# code from a service of an aspect that is
published by one of the interfaces that the aspect imports. Specifically, it only
generates the head of the service and if the services is IN or OUT.

Template

<#
foreach (AService service in aspect.AServices)
{
if (! (service is Begin))

{

}/* endif (service is Begin) */
else
{
if (! (service is End))
{
#>

public AsyncResult

<ff=service.Name#> (<#=CommaSeparatedArguments (service.Arguments) #>)
{

<#

263




Model-Driven Development of Aspect-Oriented Software Architectures

#>

// Modo In
(Serviceln)

} //End modo IN
// Modo Out
else

{

#>

return
CallOutService (this.interfaceName ServiceOut,this.playedRoleName ServiceOut,

"<#=service.Name#>", this. aspectStateCareTaker ActiveTransaction,
<#=CommaSeparatedNames (service.Arguments) #>) ;

throw new Exception("This method doesn't have Service mode Out");
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<# }

}/* end if (! (service is End))*/
}/* endelse (service is Begin) */
}/*endforeach (AService service in aspect.AServices)*/
#>

Case Study

Description

This pattern is illustrated using the public service currentPosition of the aspect
FJoint of the TeachMover architectural model. The representation of the
currentPosition in the PRISMA model and the C# code generated from this model
by applying this pattern are presented following.

Representacion
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Result of the pattern execution

public AsyncResult currentPosition(ref int Pos)
{

// Modo In

if (Serviceln)

{
/* Checking if the state of the aspect is correct for the service
execution*/

/* Preconditions*/

/* Valuations */

/* Constraints*/

/* Execution of a service sequence of the protocol*/
/* Update of the state of the protocol */

}
// Modo Out
else

{
return
CallOutService (this.interfaceName ServiceOut,this.playedRoleName ServiceOut,

"currentPosition", this.aspectStateCareTaker.ActiveTransaction, Pos);

}

Related Patterns

Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12,and Pattern 13.

266




PRISMA Code Generation Patterns

A.2.3.3. Private Services
Pattern 7: Private Services
PRISMA Metamodel in DSL Tools Graphical Metaphor
Aspect A

Serwice
==l

o Ar

Domain

—{ AService
—ms

C Argument
=H=H
Domain

E| Aspect (Aspect)
E| AServices
[=I-Begin (Begin

L Arguments

Transformation

Description

This pattern details how to generate the C# code from a private service of an aspect.

Template

<#

foreach (AService service in aspect.AServices)

{
if (! (service is Begin))

{

}/* endif (service is Begin) */

else

{
if (! (service is End))

{

if (service.Modifier == AServiceModifier.none)

{
#>
public delegate AsyncResult

<#f=service.Name#>Delegate (<#=CommaSeparatedArguments (service.Arguments) #>) ;

<#

}//End if (service.Modifier

!= AServiceModifier.none)
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#>

public AsyncResult
<#=service.Name#> (<#=CommaSeparatedArguments (service.Arguments) #>)

{

<#
SortedList parameters=new SortedList () ;
foreach (Argument element in service.Arguments)
{
parameters.Add (element.Name, null) ;
}
/* Checking if the state of the aspect is correct for the service
execution */
/* Preconditions*/
/* Valuations */
/* Constraints*/
/* Execution of a service sequence of the protocol */
/* Update of the state of the protocol*/
if (service.Modifier == AServiceModifier.none)
{
#>
return null;
<#

}
}/* end if (! (service is End)) */
}/* endelse (service is Begin) */
}/*endforeach (AService service in aspect.AServices)*/
#>

Case Study

Description

This pattern is illustrated using the private service check of the aspect SMotion of the
TeachMover architectural model. The representation of the check private service in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.
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Graphical representation
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Result of the pattern execution

public delegate AsyncResult checkDelegate (int NewSteps, ref bool Secure);

public AsyncResult check(int NewSteps,

{

ref bool Secure)

/* Checking if the state of the aspect is correct for the service

execution*/
/* Preconditions*/
/* Valuations */

/* Constraints*/

/* Execution of a service sequence of the protocol*/

/* Update of the state of the protocol */

return null;

Related Patterns

Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13.
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A.2.3.4. Transactions

Pattern 8:Transactions

: :
PRISMA Metamodel in DSL Tools Graphical Metaphor
o
|\‘./|
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Transformation
Description

This pattern details how to generate the C# code from a transaction.This generation
si composed of three steps: 1) To generate the transaction definition, 2) To add the
services that the transaction that it is composed of, 3) To obtain the sequence of

execution.

Plantilla

<# foreach (DSIC.ISSI.PrismaDSL.DomainModel.Transaction transaction
in aspect.Transactions)
{
#>
public AsyncResult <#=transaction.Namef#>
(<#=CommaSeparatedArguments (transaction.Arguments) #>)

{

// Modo In
if (Serviceln)
{
<#
/* Checking if the state of the aspect is correct for the service
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if (state == protocolStates.<#-stateHasState.Source.Namet>)
{

aspectStateCareTaker.StartTransaction();

try
{
_
>

if (<=stateHasState.Condition#>)
{
<#

#>
InvokeOutService ("<t=stateHasState.PlayedRole.Interface.Name#>", "<#-StateHass

#>"I

"<#=stateHasState.Service.Name#>", this.aspectStateCareTaker.ActiveTransaction

’

<$=i #>) ;
<#
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/* Update of the state */
state = protocolStates.<#=

#>
InvokeOutService ("<#=subStateHasState.PlayedRole.Interface.Namet>",

"<#-subStateHasState.PlayedRole.Name#>", "<#=subStateHasState.Service.Name#>",

this.aspectStateCareTaker.ActiveTransaction,

<#= #>) ;
<#
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aspectStateCareTaker.CheckConsistence;

state = protocolStates.<#=subStateHasState.Target.Name#>;

}

catch

{

aspectStateCareTaker.SetConsistecy (false);
}
finally
{

aspectStateCareTaker.EndTransaction() ;

}
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<#

}
}
availableStates.Clear () ;
}/*endforeach transacction*/
#>
return null;

}

Case Study

Descripcion

This pattern is illustrated using the transaction dangerousChecking of the
TeachMover architectural model. The representation of the dangerousChecking in
the PRISMA model and the C# code generated from this model by applying this
pattern are presented following.

Graphical representation

[>>

END

= Transactions

dangerousChecking

AspectPlayedRole  QUERYPOS

AspectService controlSpesed
AspectTransaction  dangerousChecking
Color Il clack
Conditian

Dashstyle Solid

1A _PlavedRale (nione)
Intasp_PlayedRole (none)
Inkeqgration_AServic (none)

Modifier In

Flayedrole QUERYPOS

Priority 1

Service controlSpesed
Transaction dangerousChecking

TransactionMaodifier In
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Result of the pattern execution

public AsyncResult dangerousChecking ()
{

// Modo In
if (Serviceln)
{
if( state != protocolStates.CHECKING
) throw new
InvalidProtocolStateException ("SMotion", "dangerousChecking") ;

if (state == protocolStates.CHECKING)

{
aspectStateCareTaker.StartTransaction () ;
try
{
controlSpeed(Steps, CurrentSpeed, Secure);
aspectStateCareTaker.CheckConsistence;
state = protocolStates.SubStatel2;

InvokeOutService ("IQueryPos", "QUERYPOS", "controlSpeed", this.aspectStat
eCareTaker.ActiveTransaction, Steps, CurrentSpeed, Secure);
aspectStateCareTaker.CheckConsistence;
state = protocolStates.CHECKING;
}
catch
{
aspectStateCareTaker.SetConsistecy (false);
}
finally
{
aspectStateCareTaker.EndTransaction () ;
}
}
}
}

Related Patterns

Pattern 2, Pattern 8, Pattern 9, Pattern 10, Pattern 11, Pattern 12, and Pattern 13.
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A.2.3.5.

Checking The Service Execution

Pattern 9: Checking The Service Execution

Target §§

FinalState
(=H=Ke

InitialState

==l

PRISMA Metamodel in DSL Tools Graphical Metaphor
n . Aspect A
Protocol ll‘.,)
T ;‘& - @ ASPECT State e
States % @

Properties

StateHasState
=

AspectService

Beqgin
_‘_S,‘ibState AspectTransaction
Color Il 6=k
Condition
DashStyle Solid
IA_PlayedRole {none)
Intasp_Flayedrole {none)
Integration_AService {none)
Modifier none
PlayedRole {none)
Priority 1
Service Begin
Transaction {none)
TransactionModifier In
.
Transformation
Description

This pattern details how to generate the C# code to check if the state of the protocol
allows the execution of a service.

Template

<#

bool isFirst = true;

{
if
{

(isFirst)

isFirst =

false;
availableStates.Add (stateHasState.Source.Name,null) ;

System.Collections.SortedList availableStates=new
System.Collections.SortedList () ;

/* Tratamiento de estado correcto para los servicios*/
foreach (StateHasState stateHasState in service.StateHasState)
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#>
if ( state != protocolStates.<#=stateHasState.Source.Name#>
<# }
else if(!availableStates.Contains (stateHasState.Source.Name) )
{
#>
&& state != protocolStates.<#=stateHasState.Source.Name#>
<#
availableStates.Add (stateHasState.Source.Name,null) ;
}
}
#>

) throw new
InvalidProtocolStateException ("<#=aspect.Name#>", "<#=service.Name#>") ;

<#

Case Study

Description

This pattern is illustrated using the service currentPosition of the aspect FJoint of
the TeachMover architectural model.

Graphical representation

Floint o
SUbStat
FI0INT éﬁEf

SubStatehewPos SubStateotify

= Services
Beqgin
End
currentPosition
newPosition

Result of the pattern execution

public AsyncResult currentPosition(ref int Pos)

{

if( state != protocolStates.SubStateNewPos
&& state != protocolStates.SubStateNotify
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&& state != protocolStates.POS

&& state != protocolStates.SubStateQuery

) throw new InvalidProtocolStateException ("FJoint","currentPosition");

Related Patterns

Pattern 6, Pattern 7, Pattern 8, and Pattern 14.

A.2.4. Preconditions

Pattern 10: Preconditions

PRISMA Metamodel in DSL Tools Graphical Metaphor
Aspect R
(_._.+ Aspect
[ Preconditions w [ —— )
e Service O /‘(3 )"
bd ( pservies ) ASPECT State e
H " = Preconditions
= Precu:unu:lltu:un (Class)

i Condition {value property)
ConditionAndService (value property)
Aspect3ervice (Value property)
Aspect (Reference property)

. Service (Reference property)

[l Aspects
i [ Aspect (Aspect)
[=)- Preconditions

. Precanditionl {Precondition)

Precondition] Precondition -

= [21]

AspeckService
Zondition
Marne

Service (none)

Transformation

Description

This pattern details how to generate the C# code from a precondition.
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Template

/* Comprobacién de las Precondiciones*/
foreach (Precondition precondition in service.Precondition)

{

#>
if (! (<#=precondition.Condition.Replace ("=","==") .Replace ("<>",6"!=") .
Replace ("<==","<=") .Replace (">==",">=") .Replace ("and", "&&") .
Replace ("oxr","||") .Replace ("AND", "&&") .Replace ("OR"," | |") #>))

throw new
InvalidPreconditionException ("<#=aspect.Name#>", "<#=service.Name#>") ;

<#
}

Case Study

Description

This pattern is illustrated using a precondition associated to the service newPostion
of the aspect F.Joint of the TeachMover architectural model. The representation of
the precondition in the PRISMA model and the C# code generated from this model
by applying this pattern are presented following.

Graphical representation

Flaint

»

SubStakeQuery

/_H Y
@ >(e)
FISINT END

SubstateblewPos SubsStateMotify

= Preconditions
newPosition if { NewSteps > -200 or New3etps <.

Preconditionl Precondition -
AspectService newPosition
Condition MewSteps > -Z00 or NewSetps = 200
Mame Preconditionl
Service newPosition
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Result of the pattern execution

public AsyncResult newPosition(int NewSteps)

{
if (! (NewSteps > -200 || NewSetps < 200))
throw new InvalidPreconditionException ("FJoint","newPosition");
}
Related Patterns

Pattern 2, Pattern 5, Pattern 6, and Pattern 7.

A.2.5. Valuations

Pattern 11: Valuations

PRISMA Metamodel in DSL Tools Graphical Metaphor

Aspect 2

= ) - NG %)
3 -

Valuations ASPECT Stat &!J
§‘§ [ aluation j L EMND
S
Service
%g» AService

[=- Valuation {Class) = Yaluations

i Condition (value property)
- Assignment (Value property)

- ConditionandAssignement (Yalue property) Properties
- Aspectervice (Yalue property) Yaluation  Valuation -
- ServiceModifier (Walue propert =
A property) :
- Aspect {Reference property)
. AspectService
i Service (Reference property’) :
Assignrnent
Condition
Mame ‘aluation
Service {none)
ServiceModifier

Transformation

Description

This pattern details how to generate the C# code from a valuation.
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Template

#>

<#
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Case Study

Description

This pattern is illustrated using a valuation of the service currentPosition of the
aspect FJoint of the TeachMover architectural model. The representation of this
valuation in the PRISMA model and the C# code generated from this model by
applying this pattern are presented following.

Graphical representation

Flaink a

Properties

SubSkatgiuery

Yaluation8 valuation -
F== |
® ) ®© | =@
FIOINT POIS : - ”
END AspectService currentPaosition
Assigniment Pos:=halfSteps
SubStateiewPos SubStaterlokify Canditian
- e [
=l Services i iti
e SErvice currentPosition
S ServiceModifier In
End
currentPosition
newPasition
I=I Valuations

[ mone Begin ] halfSteps:=IniPos
[ In currentPosition ] Pos:=halfSteps
[ In newPasition 1 halfSteps:=halfSteps+Mewsteps

Result of the pattern execution

public AsyncResult currentPosition(ref int Pos)

{

Pos=halfSteps;

Related Patterns

Pattern 2, Pattern 5, Pattern 6, and Pattern 7.
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A.2.6. Constraints
Pattern 12: Constraints
PRISMA Metamodel in DSL Tools Graphical Metaphor
Aspect a
o O ~(e)
ASPECT State END
(—-—-+ Aspect j
Constraints = Conskraints
W [ Constraink
@--Aspects

[l Constraint {Class)
Condition {Value property)
i fispeck (Reference properky)

(1 Aspect (Aspect)
EI C_Dnstraints

- Constraintl {Conskraint)

Constraintl Constraint -
=
Condition
Marmne Constraintl
Transformation
Description

This pattern details how to generate the C# code from a constraint.

Template

{

throw new

<#

/* Comprobacién de las Restricciones de Integridad*/
foreach (Constraint constraint in aspect.Constraints)

#>
if (! (<#=constraint.Condition.Replace ("=","==") .Replace ("<>","!1=").
Replace ("<==","<=") .Replace (">==",">=") .Replace ("and", "&&") .
Replace ("oxr","||") .Replace ("AND", "&&") .Replace ("OR", " | |") #>))

InvalidIntegrityConstraintException ("<#=aspect.Name#>", "<#=service.Name#>") ;
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Case Study

Description

This pattern is illustrated using a constraint of the aspect FJoint of the TeachMover
architectural model. The representation of this contraint in the PRISMA model and
the C# code generated from this model by applying this pattern are presented
following.

Graphical representation

FJaink

b

SubStakgiuery

& >(e)
FIOIMT END:

SubStateMewPos SubstateMotify

1= Constraints
halfSteps = -200 and halfSteps < 200

Constraintl Constraint -

3=

=

Condition halfsteps = -200 and halfsteps < 200
Marme Constraink 1

Result of the pattern execution

public AsyncResult newPosition (int NewSteps)

{

if (! (halfSteps > -200 && halfSteps < 200))
throw new InvalidIntegrityConstraintException ("FJoint", "newPosition");
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Related Patterns

Pattern 2, Pattern 6, Pattern 7, and Pattern 8.

A.2.7.State of the Protocol

Pattern 13:State of the Protocol

PRISMA Metamodel in DSL Tools Graphical Metaphor
Aspect a
® O >(®)
ASPECT State END
(—-—-+ Aspect )
= Canstraints

Conskraints
w [: Conskraink
==L+

El Aspects

(=) Constraink (Class) Eéﬁ}slggnclétfrgﬁzct]

L Constraintl (Constraint)

Candition {Value praperty)
- hspeck (Reference property)

Constraintl Constraint -
+

Condition

MName Constraint1

Transformation

Description

This pattern details how to generate the C# code that permits the change of state
after a service execution.

Template

/* Update of the state of the protocol */
foreach (StateHasState stateHasState in service.StateHasState)
{
if (! (stateHasState.Source is SubState) &&
(stateHasState.Transaction ==null && (IsSequence > 0) ) )
{
if (stateHasState.Target is SubState)
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if (state == protocolStates.<#-stateHasState.Source.Namet>

state = protocolStates.<#=SubStateHasStateProtocol.Target.Namet>;

iiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#>
if (state == protocolStates.<#-stateHasState.Source.Namet>

#>

@6 <#-stateHasState.Conditiont>
w0
#> )

state = protocolStates.<#=
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Case Study

Description

This pattern is illustrated using the change of state that generates the service
currentPosition of the aspect SMotion of the TeachMover architectural model. The
representation of this change of state in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Como ejemplo de codigo generado para actualizar el estado de un aspecto
tras ejecutar un servicio, se puede observar el resultado obtenido en el
servicio “currentPosition” del aspecto “SMotion ™.

Graphical representation

»

END

Result of the pattern execution

public AsyncResult currentPosition(ref int Pos)

{

if (state == protocolStates.CHECKING )
state = protocolStates.CHECKING;

}

Related Patterns

Pattern 2, Pattern 6, Pattern 7, and Pattern 8.
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A.2.8. Processing of a service sequence

Pattern 14: Processing of a service sequence

PRISMA Metamodel in DSL Tools Graphical Metaphor

Aspect
SI=IE Aspect ¥
Pratocal
o1} Pratorel
SEHE

States 4
§|§ State i
Target . >. (®)
W ASPECT State EI‘;D

FinalStats

=Hes

InitialSkate

=tes

- _Su):state Properties
StateHasState
5

AspectService Beagin
AspectTransaction
Calar Il clack
Condition
DashStyle Solid
Ia_Playedrole (none)
IntAsp_Playedrale {none)
Integration_AService (none)
Modifier none
PlayedRale (none)
Priority 1
Service Beagin
Transaction (none)
TransactionModifier In

Transformation

Description

This pattern details how to generate the C# code from a service sequence of the
protocol.

Template

/* Processing of the executions of services that belong to a service sequence
of the protocol */

int IsSequence=0;
foreach (StateHasState stateHasState in service.StateHasState)
{
if (stateHasState.Transaction == null )
{
if (! (stateHasState.Source is SubState))
{
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if (state == protocolStates.<#-StateHasState.Source.Name#>)
{
state = protocolStates.<#=

if (<t=stateHasState.Condition#>)
{

{
<#=DomainToType (element.Domain) #> <#=element.Name#>=0;

InvokeOutService ("<#= #>",
"= #>ll,
nog— #>u’

this.aspectStateCareTaker.ActiveTransaction,

#>) ;
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state=protocolStates.<#=
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Case Study

Description

This pattern is illustrated using the sequence of services after the service MoveOk of
the aspect CProcressSUC of the TeachMover architectural model. The
representation of the sequence of services in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.

Graphical representation

4|

Substal

SubsSkatelpPos

Result of the pattern execution

public AsyncResult moveOk ()
{

// Modo In

if (Serviceln)

{

if( state != protocolStates.COOR

&& state != protocolStates.SubStateUpPos
) throw new InvalidProtocolStateException ("CProcessSUC", "moveOk") ;
if (state == protocolStates.COOR)

{
state = protocolStates.SubStateOkMove;

int NewSteps=0;

InvokeOutService ("IUpdatePos", "UPDATEPOS", "newPosition", this.aspectSta
teCareTaker.ActiveTransaction,NewSteps) ;
state=protocolStates.SubStateUpPos;

InvokeOutService ("IJoint","JOINT", "moveOk", this.aspectStateCareTaker.A
ctiveTransaction,null) ;
state=protocolStates.COOR;
}
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return null;

}
// Modo Out
else
{
return
CallOutService (this.interfaceName ServiceOut,this.playedRoleName ServiceOut,"
moveOk", this.aspectStateCareTaker.ActiveTransaction,null);

}

Related Patterns

Pattern 2, Pattern 5, Pattern 6, and Pattern 7.

A.3.SIMPLE ARCHITECTURAL ELEMENTS: COMPONENTS AND
CONNECTORS

Pattern 15: Simple Architectural Elements

PRISMA metamodel in DSL Tools Graphical Metaphor
lglal Conector
Aspects bi '/—\Aspec[ /]
Integration_As... H [M|
= m f, Port )
Wieavings
m (7774 Weaving w Component Component -
—€ Component \] :i m
B FillColor B steelue
i TN Coroonent
— =3 '—'j OutlineColor I clack
= ArchitecturalElement (Class) Sistem (none)

architecturalModel (Reference property)
Aspects (Reference property)

Ports (Reference property)

Weavings (Reference property)

Sistem (Reference property)
Integration_Aspects (Reference propetty)

Transformation

Description

This pattern details how to generate the C# code from a simple architectural
element. Specifically, it only generates the structure of the architectural model, the
internal code of this structure, that is, ports, aspects and weaving, is generated by
other patterns related to it.
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Template

using System;
using System.Reflection;

using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace <#=this.Model.Name#>
{
<#
foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)
{
if (architecturalElement is Component || architecturalElement is Connector)
{
#>
[Serializable]
public class <#=architecturalElement.Name#> : ComponentBase
<#
if (architecturalElement is Connector)
{
#>
, IConnector
<#
}
#>
{
public <#=architecturalElement.Name#>
(string name<#=ArchitecturalElementArguments (architecturalElement) #> )
base (name)

{

<#
/* Aspects */
/* Weavings */
/* Ports */
#>
}
}
<#
}/* endif (architecturalElement is Component || architecturalElement is

Connector) */

Case Study

Description

This pattern is illustrated using the component Actuator of the TeachMover case
study. The representation of the Actuator in the PRISMA model and the C# code
generated from this model by applying this pattern are presented following.
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Graphical representation

— Actuator El .ﬂ.:rchltecturaIEIements

Sistem Jaint - Actuator (Component)

Result of the pattern execution

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class Actuator : ComponentBase
{
public Actuator (string name ) : base (name)
{
/* Aspects */
/* Weavings */
/* Ports */

Related Patterns

Pattern 16, Pattern 17 and Pattern 18.
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A.4. COMPLEX ARCHITECTURAL ELEMENTS: SYSTEMS

Pattern 16: Systems

PRISMA Metamodel in DSL Tools Graphical Metaphor

Sistem

ArchitecturalElement j

o [ e EE

t—% Sistermn
=H=Ht

Architecturalgl, .
{ archiectraElement )

Properties

Sistem Sistem

Marne Siskem
Sistem (none)

Transformation

Description

This pattern details how to generate the C# code from a system.

Template

using
using

using
using
using
using
using

System;
System.Reflection;

PRISMA;
PRISMA.Aspects;
PRISMA.Aspects.Types;
PRISMA.Components;
PRISMA.Middleware;

namespace <#=this.Model.Name#>

{
<#

foreach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements)

{
if
{

(architecturalElement is Component || architecturalElement is Conector)
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}
else
{

if (architecturalElement is Sistem)

{

Sistem system = architecturalElement as Sistem;
#>

[Serializable]
public class <#=architecturalElement.Name#> : SystemBase
{
public <#=architecturalElement.Name#> (string

name<#=ArchitecturalElementArguments (architecturalElement) #>) : base (name)

{
<#
/* Aspects */
/* Weavings */
/* Ports */

#>

<#
}/*if (architecturalElement is Sistem)*/
}
}/* endforeach (ArchitecturalElement architecturalElement in
this.Model.ArchitecturalElements) */
#>
}

Case Study

Description

This pattern is illustrated using the system Joint of the TeachMover architectural
model. The representation of the Joint in the PRISMA model and the C# code

generated from this model by applying this pattern are presented following.

Graphical representation

Jaink Joint Sistem -
=
Fill Zolor [ vightrellow .
ame ﬁt [=]- ArchitecturalElements
OutlineCalar Elack. : . .
aistem (rone) - Jaink (Siskem)
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Result of the pattern execution

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class Joint : SystemBase

{

public Joint (string name) : base (name)
{

/* Aspects */

/* Weavings */

/* Ports */

Related Patterns

Pattern 17, Pattern 18, and Pattern 19.
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A.5. IMPORTATION OF ASPECTS FROM AN ARCHITECTURAL
ELEMENT

Pattern 17: Aspects Importation

PRISMA Metamodel in DSL Tools Graphical Metaphor
---------------------------------- ASDECt &
o "
ArchitecturalElament i
1,_____+___________________________J,'
Aspects —
ASPECT State \EP:D
Transformation

Description

This pattern details how to generate the C# code from the importation of aspects
that makes an architectural element.

Template
<#
foreach (Aspect aspect in architecturalElement.Aspects)
{
#>
AddAspect (new <#=aspect.Name#> (<#=AspectArguments (aspect) #>)) ;
<#
} /* endforeach (Aspect aspect in this.Model.Aspects)*/
#>
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Case Study

Description

This pattern is illustrated using the importation of the aspect SMotion from the
connector CnctJoint of the TeachMover architectural model. The representation of
this aspect importation in the PRISMA model and the C# code generated from this
model by applying this pattern are presented following.

Graphical representation

Shotion

= Crctlaint o Eﬁ

Result of the pattern execution

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class CnctJoint : ComponentBase , IConnector

{

public CnctJoint (string name, int IniMin, int IniMax, int IniPos )
base (name)

{
AddAspect (new CProcessSUC());
AddAspect (new SMotion (IniMin, IniMax, IniPos));
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Related Patterns

Pattern 14, and Pattern 15.

A.6. WEAVINGS

Pattern 18: Weavings

PRISMA Metamodel in DSL Tools

Graphical Metaphor

-,
{ architecturalElement |

Weavings
( Weaving
=i

Paintrutdspect
Aspect

PointcutService

L

AService
J

PointcutTransa. ..

(@

Transaction_ )

Sourcedspect
Aspect

SourceService
AService

SourceTransact...
Transaction_

i

ascT

.—'q." b—.-:c : : . mH )—“‘ .

|Weaving Weaving

2
AhdviceParameters
AndviceService
AddviceTransac
AdviceServiceParametres
APoincutParameters
APoinkcutService

APainkcutTransaction
ArchElemadviceAspect
ArchElemPointcutAspect
ArchitecturalElement: {roney
Condition

weavng
(Operator before
PoinkcutAspect (none)
PaointcutService (nione)
Pointcut Transackion {none)
SourceAspect (none)
Sourceservice (nione)
SourceTransaction {rone)

Transformation

Description

This pattern details how to generate the C# code from weaving.

Template
<#
foreach (Weaving weaving in architecturalElement.Weavings)

{

if ( weaving.Operator.Equals (WeavingOperator.before) ||
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weaving.Operator.Equals (WeavingOperator.after) ||
weaving.Operator.Equals (WeavingOperator.insteadof) )
{
#>
AddWeaving (GetAspect (typeof (<#=weaving.SourceAspect.Concern#>Aspect)),

"<#=weaving.SourceService.Name#>", "<#=weaving.APoincutParameters#>",
WeavingType.<#=weaving.Operator.ToString () .ToUpper () #>,

GetAspect (typeof (<#=weaving.PointcutAspect.Concern#>Aspect)),
"<#=weaving.PointcutService.Name#>",
"<#=weaving.AAdviceParameters#>");

<#
}
else
{
//E1l separador dentro de la condicién debe ser un espacio.
string parametro condicion=weaving.Condition.Split (' ') [0];
string operador=weaving.Condition.Split ("' ") [1];
string valor condicion=weaving.Condition.Split (' ') [2];
#>

WeavingType weavingType =
WeavingType.<#=ChangeWeavingType (weaving.Operator.ToString()) #>
("<#=parametro condicion#>",

WeavingType.OperatorType.<#=ChangeOperator (operador) #>,
<#=valor condicion#>);

AddWeaving (GetAspect (typeof (<#=weaving.SourceAspect.Concern#>Aspect)),

"<#=weaving.SourceService.Name#>", "<#=weaving.APoincutParameters#>",
weavingType,

GetAspect (typeof (<#=weaving.PointcutAspect.Concern#>Aspect)),
"<#=weaving.PointcutService.Name#>",
"<#=weaving.AAdviceParameters#>");

<#

}
}/* endforeach (Weaving in architecturalElement.Weavings) */
#>

Case Study

Description

This pattern is illustrated using the Beforelf weaving betweem the aspects
CProcessSUC and CnctJoint of the TeachMover architectural model. The
representation of this weaving in the PRISMA model and the C# code generated
from this model by applying this pattern are presented following.
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Graphical representation
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AbdviceService
AddviceTransac
AdviceServiceParametres
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APaintcutService
APaintcutTransaction
ArchElemadvicedspect
ArchElemPointcutAspect
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Condition
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SourceService
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MewSteps, Secure
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Mewsteps,Speed
maveJoink
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Result of the pattern execution

using
using
using
using
using
using

System.Reflection;
PRISMA;
PRISMA.Aspects;
PRISMA.Aspects.Types;
PRISMA.Components;
PRISMA.Middleware;

namespace RobotJoint

{

[Serializable]

public class CnctJoint ComponentBase
{
public CnctJoint (string name, int
base (name) {

WeavingType weavingType=

, IConnector

IniMin, int IniMax,

int IniPos )

WeavingType.BEFOREIF VALUE ("Secure",WeavingType.OperatorType.Equality, true);
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AddWeaving (GetAspect (typeof (SafetyAspect)), "check","NewSteps, Secure",
weavingType,

GetAspect (typeof (CoordinationAspect)), "movedJoint",
"NewSteps, Speed") ;

Related Patterns

Pattern 14, and Pattern 15.

A.7. PORTS

Pattern 19:Ports

PRISMA Metamodel in DSL Tools Graphical Metaphor
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Transformation

Description

This pattern details how to generate the C# code from a port of an architectural
element.
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Template

<#
foreach (Port port in architecturalElement.Ports)
{
if (port.PlayedRole !=null)
{
#>

InPorts.Add ("<#=port.Name#>", "<#=port.Interface.Name#>",
"<#=port.PlayedRole.Name#>") ;

OutPorts.Add ("<#=port.Name#>", "<#=port.Interface.Name#>",
"<#=port.PlayedRole.Name#>") ;

<#
}
else if (port.IA PlayedRole !=null)
{
#>
InPorts.Add ("<#=port.Name#>", "<#=port.Interface.Name#>",

"<#=port.IA PlayedRole.Name#>");

OutPorts.Add ("<#=port.Name#>", "<#=port.Interface.Name#>",
"<#=port.IA PlayedRole.Name#>");

<# }
}/* endforeach (Port port in architecturalElement.Ports) */
#>

Case Study

Description

This pattern is illustrated using the port PUpPos of the CnctJoint connector of the
TeachMover architectural model. The representation of the PUpPos in the
PRISMA model and the C# code generated from this model by applying this pattern
are presented following.

Graphical representation
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Result of the pattern execution

using System.Reflection;
using PRISMA;

using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace RobotJoint
{
[Serializable]
public class CnctJoint : ComponentBase , IConnector

{

public CnctJoint (string name, int IniMin, int IniMax, int IniPos )
base (name) {

InPorts.Add ("PUpPos", "IUpdatePos", "UPDATEPOS");
OutPorts.Add ("PUpPos", "IUpdatePos", "UPDATEPOS");

Related Patterns

Pattern 14, and Pattern 15.
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