

About Students’ Abstractions

Evaluation of Items Requiring Abstract Thinking Competence

Daniela Zehetmeier

Department of Computer Science and Mathematics, Munich University of Applied

Sciences and Department of Informatics, Technical University of Munich, Germany

Abstract

Abstract thinking is one of the most important competences in computer

science. When starting my research, there was no complete definition of the

competence nor was there a tool to assess first-semester students’

competence level. Thus, I developed a competence model of abstract thinking,

which allowed me to derive an assessment tool. In this work, I will present

first insights gained by analyzing the tests of 134 incoming students of

computer science and scientific computing. The analysis confirms the

assumption that incoming students often lack in this essential competence.

Moreover, the overemphasis of the data aspect of classes in object oriented

programming can be confirmed for university level education. Further

investigations will follow. In the future, the insights gained can be used to

develop teaching units or whole teaching concepts.

Keywords: Abstract Thinking; Assessment; Evaluation; Introductory

Programming; Novice Programming; Computing Education.

5th International Conference on Higher Education Advances (HEAd’19)
Universitat Politècnica de València, València, 2019
DOI: http://dx.doi.org/10.4995/HEAd19.2019.9393

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 1297

About Students’ Abstractions

1. Introduction

Literature and teaching experiences indicate that the competences of abstract, logical and

analytical thinking are highly important in computer science (Dörge, 2012, Computer

Engineering Curricula 2016, 2015, Society, Bourque, & Fairley, 2014). They are an

essential prerequisite to acquire computing competences. Nevertheless, lecturers often

observe a lack in these competences among first-semester students (Kramer, 2007, Thurner,

Böttcher, & Kämper, 2014). Besides logical and analytical thinking, abstract thinking is

less researched.

When looking at publications regarding the measurement of abstract thinking, like Kurtz

(Kurtz, 1980) or Or-Bach & Lavy (Or-Bach & Lavy, 2004), it is noticeable that there is no

definition stated the tool is based on, the tool is often not explicitly presented or the sample

sizes are very small. And many times, the methods applied are not appropriate to be applied

in first-semseter classes were the lack already exists, as they require experts knowledge

concerning software development. When used at the beginning of students studies, I would

mainly measure their professional knowledge. An approach that is appropriate for my

intended setting is described by Bennedsen & Caspersen (Bennedsen & Caspersen, 2006).

However, their study led to unexpected results and needs further revision. Thus, there is

still a research gap. Consequently, an assessment tool called Abstract Thinking Assessemnt

(ATA) has been developed, based on a well-research competence definition. The target

group of the assessment is the population first-semester students in computer science or

related topics, and thus, does not require any computer science specific knowledge.

2. Fundamentals

In order to interprete the data, it is crucial to know the definition underlying all problems

(called items) in the ATA. All items are based on the competence model described in

(Zehetmeier, Böttcher, Brüggemann-Klein, & Thurner, Defining the Competence of

Abstract Thinking and Evaluating CS-Students' Level of Abstraction, 2019). It consists of

the following three components:

- Identify commonalities in order to summarize them and to determine

differences to normalize them, e.g. by parametrisation.

- Decide which information is essential for the given purpose and which is not.

- Create theoretical relationships between items or processes.

Additionally, it is important to know how students’ answers to the 24 open-ended questions

have been interpreted. This was done using a coding manual. It describes two independent

perpectives: correctness and level of abstraction. Hence, two codes are assigned to each

answer. The coding manual used is shown in Table 1. More details regarding the

1298

Daniela Zehetmeier

development and application of the coding manual can be found in (Zehetmeier, Böttcher,

Brüggemann-Klein, & Thurner, 2019).

Table 1: Coding manual for dimension correctness and level of abstraction

(Zehetmeier, Böttcher, Brüggemann-Klein, & Thurner, Defining the Competence of Abstract

Thinking and Evaluating CS-Students' Level of Abstraction, 2019).

 Category Description Score

Correctness Empty Empty response field 0

 Regardless The answer is without regard to the question.

Buzzword

0

 False An answer is false, if it is deficient or partly deficient from

a professional perspective.

0

 Correct An answer is correct, if it is accurate and complete from a

professional perspective.

1

Level of

Abstraction

Empty Empty response field 0

Regardless The answer is without regard to the question.

Buzzword

0

 Concrete The answer describes the given examples using everyday

or well-known terms.

1

 Specific The answer depicts a rule or a rule set, which can only be

applied to the given examples.

2

 Generic The answer depicts a rule or a rule set, which can be

applied to the given examples and beyond that.

3

3. Analysis

Data collection took place in winter semester 2018/19 right after the beginning of students’

studies using the ATA. The population that forms the basis for these analysis are 134 first-

year students in the bachelor programs of computer science and scientific computing at the

Munich University of applied sciences. All assessments have been coded by me. Based on

these data, known hypothesis and misconception regarding abstract thinking are

investigated.

3.1 Deficites in the Competence of Abstract Thinking

Thurner et al. (Thurner, Böttcher, & Kämper, 2014) report a deficit in the competence of

abstract thinking among the first-year students in computer science or related topics. So far,

1299

About Students’ Abstractions

no tool existed to collect data and to verify this hypothesis. With help of the newly

developed ATA and the data collected, the hypothesis can now be verified.

For the evaluation, the Levels of Abstraction have been transformed into dichotomous

scores 0 and 1. Students achieved a point, if their answer is at least on a specific level.

Level specific describes answers containing rules or rule sets, but can only be applied to the

given examples. Answers are valued 0 if they describe an abstraction by using unspecific

terms, describing the given examples or express actions step by step.

Figure 1 depicts an exploratory analysis of students’ competence of abstract thinking. The

x-axis depicts the percentage threshold representing the percentage of answers that needs to

show abstract thinking competence. For each threshold it is evaluated how many of the

students exeed the threshold. Consequently, every entry in the heatmap represents the the

percentage of students exceeding the threshold.

According to commonly chosen 50% threshold, 73% of the students would exeed the

threshold. This indicates a rather small deficit among the cohort. However, this analysis

solely focusses on the level of abstraction and not on the correctness of the abstraction

build. By including this facet the picture is a different one (see Figure 2).

Figure 1: Development of student populations’ success rate, if the threshold of answers that need to show the

competence of abstract thinking is increased continuously from 0% to 100%.

Figure 2: Development of student populations' success rate, if the threshold of answers that need to be correct and

that show the competence of abstract thinking is increased continuously from 0% to 100%.

When again using the 50% threshold, only 30% of the students are able to exeed the

threshold. This analysis reveals a major deficit in students' initial competence. This might

be one explanation for the failure rate in the end-of-term exam, which could lead to the high

drop out most computer science programs are facing with.

1300

Daniela Zehetmeier

3.2 Misconception of Overemphasising Data Aspect of Classes

Besides hypotheses, there are known misconceptions in literature that are interesting for

educational research in computer science. One that is related to abstract thinking

competence is that students at school often overemphasize the data aspect of objects

(Humbert, 2006). For university education it is interesting whether students at university

still have this misconception as this influences how object-oriented programming is

introduced.

The ATA contains two questions that allow insights into the type of characteristics students

use intuitively to describe collections of similar objects. Derived from the competence

model students need to describe commonalities and differences among objects and

processes. For static artefacts, questions focus on summarising depictions under one

umbrella term or on naming common details. Either way, students need to identify common

and different characteristics.

A typical task in computer science that requires this part of the competence is the

development of classes. Programmers need to find an appropriate name for the class

representing several objects. Moreover, each class containes attributes and methods

describing common characteristics.

Without any computer science specific knowledge students cannot write proper classes in a

specific programming language, but they are able to find an umbrella term or list common

characteristics of given objects. The ATA asks students to name characteristics of several

instances of (1) lego bricks and (2) vehicles (two items). Their answers were categorised

into five categories:

Table 2: Coding manual for answers concening the 'Vehicle-Item'.

Category Example(s)

Missing / Regardless Empty, “I don’t know”, Car

Component Tires, Windows, Seats

Attribute Colour, Weight, HP

Behaviour Drives, consume fuel

Others Number of Tires, Car type, Carries people

Most of these categories can be mapped to a specific programming construct, e.g.

components are translated into association and behaviour is represented by methods. With

this analysis I want to evaluate, which type or construct students spontaneously use to

describe object. As depicted in Figure 3 students most often choose components or

1301

About Students’ Abstractions

attributes as characteristics. This indicates that the misconception of overemphasizing the

data storage aspect of objects (Humbert, 2006) is also present in the student puopulation.

Consequently, students do not focus on the dynamic aspect of objects intuitively.

Figure 3:Percentage of the type of characteristic students used to describe several.

4. Conclusion and Future Work

The data reveals that students in computer science are not well prepared regarding their

competence of abstract thinking. They are either able to describe “abstractions” (not

necessarily on a high level of abstraction) correctly or they are able to specify an

abstraction on a high level of abstraction, but building a correct abstraction on a high level

seems challenging for them. However, such abstractions form the basis for the subsequent

implementation in a specific programming language.

Thus, I agree with Or-Bach and Lavy (Or-Bach & Lavy, 2004) to discuss both, modelling

and implementation in the lecture. I would suggest to put more emphasis on the modelling

at the beginning of a CS-1 class, as the model is the basis for the implementation. Lectures

need to put more emphasize on teaching abstract thinking competence and the processes

behind, since this is one of the fundamental mental processes in the modelling phase. A

useful technique to teach mental processes is cognitive apprenticeship (Collins, Brown, &

Holum, 1991).

The analysis of the data also revealed that students intuitively use attributes and

components to describe characteristics of similar objects. They rarely name behavioural

characteristics. This finding should influence the introduction to object-oriented

programming. Commonly, attributes and methods are introduced early and quickly,

1302

Daniela Zehetmeier

whereas the topic components occur later in the curriculum and often with extensive

explanations. Due to the findings, components could be taught much earlier in the

curriculum as students are familiar with the concept. Lecturers should put more emphasis

on teaching methods and spend more time on this topic.

Acknowledgement

This work was supported by the German Federal Ministry of Education and Research

(BMBF), grant no. 01PL16025, as part of the “Qualit¨atspakt Lehre” (“Teaching Quality

Initiative”) program. Thank you for your support.

References

Bennedsen, J., & Caspersen, M. E. (2006, 6). Abstraction Ability As an Indicator of

Success for Learning Object-oriented Programming? SIGCSE Bull., 38, 39-43.

doi:10.1145/1138403.1138430

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking

visible. American educator, 15, 6-11.

Humbert, L. (2006). Informatische Bildung: Fehlvorstellungen und Standards. MWS --

Münsteraner Workshop zur Schulinformatik 2006, (pp. 37-46).

Kurtz, B. L. (1980). Investigating the relationship between the development of abstract

reasoning and performance in an introductory programming class. ACM SIGCSE

Bulletin, 12, pp. 110-117.

Or-Bach, R., & Lavy, I. (2004, 6). Cognitive Activities of Abstraction in Object

Orientation: An Empirical Study. SIGCSE Bull., 36, 82-86.

doi:10.1145/1024338.1024378

Thurner, V., Böttcher, A., & Kämper, A. (2014, 4). Identifying base competencies as

prerequisites for software engineering education. Global Engineering Education

Conference (EDUCON), 2014 IEEE, (pp. 1069-1076).

doi:10.1109/EDUCON.2014.6826240

Zehetmeier, D., Böttcher, A., Brüggemann-Klein, A., & Thurner, V. (2019). Defining the

Competence of Abstract Thinking and Evaluating CS-Students' Level of Abstraction.

Conference on Software Engineering Education and Training (CSEE&T).

1303

