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Abstract

Relating instrumentally measured to visually perceived colour-differences is one

of the challenges of advanced colorimetry. Lately, the use of color difference

formulas is becoming more important in the computer vision field as it is a key

tool in advancing towards perceptual image processing and understanding. In

the last decades, the study of contours of equal color-differences around certain

color centers has been of special interest. In particular, the contour of threshold

level difference that determines the just noticeable differences (JND) has been

deeply studied and, as a result, a set of 19 different ellipsoids of suprathreshold

color-difference is available in the literature. In this paper we study whether

this set of ellipsoids could be used to compute any color difference in any region

of the color space. To do so, we develop a fuzzy multi-ellipsoid model using

the ellipsoids information along with two different metrics. We see that the

performance of the two metrics vary significantly for very small, small, medium

and large color differences. Therefore, we also study how to adapt two met-

ric parameters to optimize performance. The obtained results outperform the

currently CIE-recommended color-difference formula CIEDE2000.
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1. Introduction

Improved correlation between visually perceived (∆V ) and instrumentally

measured (∆E) colour differences under specific illuminating and viewing con-

ditions is an important problem in modern colorimetry. This topic is gaining

more and more attention each day in the computer vision field as many recent5

image processing and computer vision techniques are using colour difference

formulas when addressing perceptual processing and understanding of digital

images [1]-[3]. For instance, advanced models of perceptual similarity of color

images iCAM [1] or S-CIELAB [2] try to represent the Human Visual Systems

mechanisms and are based on using appropriate Constrast Sensitivity Functions10

(CSFs) to remove all details in the images that cannot be perceived as well as

Color-difference formulas to perceptually characterize the differences which are

indeed observed, which has been found to be appropriate in general. In turn,

perceptual similarity measures assess how good are filtering methods, compres-

sion algorithms or demosicing methods from a perceptual point of view [3].15

Research on classical and modern datasets has shown that constant visual

differences (∆V ) with respect to a given colour centre do not correspond to con-

stant computed colour-differences (∆E) in a colour space [4, 5]. Traditionally,

points with a constant visual difference with respect to a fixed colour centre are

considered to be placed on the surface of an ellipsoid in a given colour space,20

but the orientation, shape, and size of this ellipsoid change with the fixed colour

centre [6, 7, 8, 9]. In short, to date we do not have a uniform colour space that

is well related to visual perception. The CIELUV and CIELAB colour spaces,

recommended by the CIE in 1976 [11], as well as other recent colour spaces

[12, 13] are only approximately uniform.25

However, we do have very precise information about threshold color-differences

in different regions of the CIELAB color space. In the work [14], 156 tolerances

each of equal visual color difference, ∆V , were found around 19 different color
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centers in the CIELAB color space. Later, in [8], these tolerances where used

to derive 19 ellipsoids around the 19 color centers studied. Moreover, these el-30

lipsoids were further tested in [9] and they showed a precise performance. This

implies that from each ellipsoid we may derive a local color-difference formula

that performs accurately for local threshold differences.

Besides, it is reasonable to assume that colour discrimination in a colour

space changes in a smooth and regular way. Thus, for example, experimental35

colour discrimination ellipses reported in previous experiments [6, 8, 10], in each

case follow a quite regular pattern in the CIE x,y chromaticity diagram, although

relevant differences (attributable to different parametric factors such as viewing

modes, sizes of colour-differences, etc.) may be noted when comparing ellipses

from different experiments.40

In this paper we study if the information in the set of 19 ellipsoids in [8]

can be used to build a general color difference formula just by combining the

local difference formulas derived from the ellipsoids. Such a model is based

on two assumptions: (i) threshold level color differences not close to any color

center may be interpolated from the color difference formulas of nearest color45

centers; (ii) larger and smaller color differences may be estimated by direct

linear scaling of the threshold level difference formula. These two assumptions

are described using vague terms which leads us to propose to use a fuzzy logic-

based approach. Fuzzy logic [15] has been successfully used in many areas of

science and engineering [16] including the analysis of color difference datasets50

[17, 18] as well as for color naming [19].

In so doing, in Section 2 we derive local color difference formulas from the

ellipsoid information using two different metrics. The fuzzy model for combining

the local difference formulas is described in Section 3. Experimental results using

the color difference dataset used at developing the CIEDE2000 color difference55

formula [20] are provided in Section 4 where we also study how the metric

parameters that define size and shape of the ellipsoids can be adapted to improve

performance. Finally, conclusions are drawn in Section 5.
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2. Local color-difference formulas related to ellipsoids of supra-threshold

differences60

2.1. Notation

Let us first introduce some notation on color differences as follows:

Experimental observations of color differences are usually given either as

datasets or as single observations. Let us denote by S, a dataset consisting of a

number of color pairs, denoted as Si, each of them representing the perceptual65

colour difference between two colour samples. Each color pair in S is in turn

represented as a set Si = {Ai,Bi,∆Vi}, where Ai and Bi denote the CIELAB

coordinates of the two colour samples given by Ai = {a∗1i , b∗1i , L∗1i } and Bi =

{a∗2i , b∗2i , L∗2i }, and ∆Vi is the perceptual difference between Ai and Bi. For

convenience, let us denote by Ci the mean point between Ai and Bi given by70

Ci = (Ai + Bi)/2, and Di = Ai −Bi = {∆a∗i ,∆b∗i ,∆L∗i } the difference vector

between Ai and Bi.

Besides we will denote each ellipsoid by Ej where j = 1, ..., 19 are the 19

ellipsoids computed in [8]. The center of ellipsoid j will be denoted by OEj =

{a∗Ej , b
∗
Ej , L

∗
Ej}.75

2.2. Classical ellipsoid metric

Thus, according to [8] Eq. (2), we can compute the local color difference

between the samples in Si according to the ellipsoid Ej , denoted by ∆E
Ej
i , as

(∆E
Ej
i )2 = E11j (∆a∗i )

2+2E12j (∆a∗i )(∆b
∗
i )+2E13j (∆a∗i )(∆L

∗
i )+E22j (∆b∗i )

2+2E23j (∆b∗i )(∆L
∗
i )+E33j (∆L∗i )

2,

(1)

which, noted in matrix expression, is equivalent to obtaining (∆E
Ej
i )2 as the

matrix product (∆E
Ej
i )2 = DiMEjD

T
i , where80

MEj =


E11j E12j E13j
E12j E22j E23j
E13j E23j E33j

 (2)
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is the symmetric scalar product matrix associated to Ej and T denotes trans-

pose. The coefficients in Ej are obtained by fitting to experimental data [6, 7, 8]

so that the points at equal distance generate an ellipsoid analogous to the one

in Figure 1. It is interesting to note that coefficients E11j , E22j , E33j are related

to linear independency of color coordinates whereas E12j , E13j , E23j are related to85

correlation among the coordinates and geometrically describe the rotation of

the ellipsoid with respect to the reference system of the color space.

From another point of view we can also consider that an ellipsoid Ej is

characterized by its center OEj , an ortonormal reference system given by three

unitary ortogonal vectors U1
Ej ,U

2
Ej ,U

3
Ej , and the length of the semi-axis of90

the ellipsoid in the direction of each unitary vector denoted respectively by

L1
Ej ,L

2
Ej ,L

3
Ej .

Both Uk
Ej , k = 1, 2, 3 and LkEj , k = 1, 2, 3 can be obtained from MEj by

diagonalization. Uk
Ej , k = 1, 2, 3 are the eigenvectors of MEj and LkEj , k = 1, 2, 3

can be obtained from the eigenvalues λkEj , k = 1, 2, 3 as LkEj =
√

1
λk
Ej

.95

Given Uk
Ej and LkEj we can also calculate ∆E

Ej
i from Di by computing the

norm-2 of the vector resulting from first rotating Di to the reference system of

Uk
Ej of Ej and then scaling according to the ellipsoid semis axis as

∆E
Ej
i = ||λEjUTDi||2, (3)

where λEj is the diagonal matrix formed by the eigenvalues λkEj , k = 1, 2, 3.

This expression is equivalent to computing the classical ellipsoid metric, which100

is related in turn to ellipsoid implicit equation, from the rotated vector of dif-

ferences as follows:

D
Ej
i = UTDi, (4)

∆E
Ej
i =

√√√√ 3∑
k=1

D
Ej
i (k)

2

LkEj
2 . (5)
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Figure 1: Geometry generated by points of equal distance of 1 in a classical ellipsoid centered
at (0, 0, 0) with semi-axis equal to 1, 2, 3, respectively, and its 2D projection over the Z axis.

In Figure 1 we can see the ellipsoid geometry generated by the points at

equal distance of 1 for an ellipsoid centered in (0, 0, 0) with semi-axis equal to

1, 2, and 3, respectively.105

All four equations 1, 2, 3, and 5 are equivalent for computing ∆E
Ej
i using the

classical ellipsoid distance model. Indeed, if we were just interested in using the

classical distance we could just use equation 1 and save computations to obtain

Uk
Ej and LkEj . But obtaining them provides us with the needed information to

use alternative metrics as the one we use in the following section.110

2.3. Standard fuzzy metric in ellipsoid context

Fuzzy metrics are a tool within the fuzzy set and fuzzy logic framework

which have been thoroughly studied from the theoretical point of view [21, 22]

and that have shown interesting properties with respect to classical metrics.

Basically, a fuzzy metric is a function M(x,y, t) in ]0, 1] that measures the115

closeness or similarity of two objects x,y with respect to a context parameter

t. There are a few performance differences among fuzzy metrics and classical

(Minkowski) metrics being the two most relevant ones that: (i) fuzzy metrics

use a context parameter t that make the metric be adaptive to context; and (ii)

fuzzy metrics use t-norms for conjunction, for instance when used in a vector120

context, whereas classical metrics use summation. These two points make fuzzy

metrics to perform different from classical metrics [16], being more interesting

those applications where context information, t, is available.
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Figure 2: M(x, y, t) as a function of |x− y| for t = 5 (solid), t = 10 (dashed), t = 20 (dotted).

A classical fuzzy metric is the so-called standard fuzzy metric [21] given by

M(x, y, t) =
t

t+ |x− y|
, (6)

where x and y are two scalar values and | · | denotes the absolute value. It125

can be seen how the difference between x and y is measured with respect to t.

The larger the difference, the larger the dissimilarity. Increasing the value of t

makes M to be less sensitive to changes in |x− y| and makes higher the global

similarity computed, as can be seen in Figure 2.

In the context of an ellipsoid of suprathreshold color differences Ej we have130

available three pieces of information: the center of the ellipsoid OEj , the vectors

Uk
Ej , k = 1, 2, 3 that describe rotation of the ellipsoid, and the ellipsoid semi

axis LkEj , k = 1, 2, 3 that characterize the sensitivity that should be taken into

account relative to the directions of Uk
Ej . The sensitivity in each direction is

explicitly taken into account in equation 5 in a linear way, given that differences135

in each direction are divided by that direction semi axis length. On the other

hand, we could make an analogous measurement using the standard fuzzy metric

but in this case the sensitivities are taken into account in a non-linear way as

the curve in Figure 2 shows. The details of this processing are the following:

First we rotate the vector Di to the reference system of Ej obtaining D
Ej
i as140

D
Ej
i = UTDi, (7)
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where U is the ortonormal rotation matrix having as columns the vectors

Uk
Ej . Then, the difference computed using the standard fuzzy metric [21] in

direction k is given by

∆EFM
Ej
i (k) =

κLkEj
κLkEj + D

Ej
i (k)

, k = 1, 2, 3, (8)

where κ is an scaling parameter that we set κ = 9 so that when LkEj = D
Ej
i (k)

we have ∆EFM
Ej
i (k) = 0.9.145

Finally, according to [21] we need to use a continuous t-norm ∗ to combine

the differences in each direction for which we use the classical product t-norm

[15] as follows:

∆EFM
Ej
i =

3∏
k=1

EFM
Ej
i (k). (9)

In this way, this metric takes into account the information of directional

sensitivity in an ellipsoid in a different way. The main differences with respect150

to the classical ellipsoid metric are: First, that the sensitivities are taken into

account in a non-linear way, since differences are not scaled with respect to

sensitivity but measured with respect to the sensitivity; Second, we can see in

Figure 3 that the geometry generated by points at equal distance is no longer an

ellipsoid. The diamond-like shape geometry indicates that this metric is more155

sensitive to differences appearing in diagonal directions in the color space than

when the difference is only in one of the axis directions.

In the following, we will consider both ∆E
Ej
i in Eq. 5 and ∆EFM

Ej
i as pos-

sible local color differences that are combined to derive a general color difference

computation using the framework described in the following section.160

3. A fuzzy soft-switching model for color differences in a multi-ellipsoid

context

Now, let us consider that we have N ellipsoids denoted by Ej , j = 1, ..., N

and so N different ∆E
Ej
i , j = 1, .., N (and ∆EFM

Ej
i ) to predict the color dif-
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Figure 3: Geometry generated by points of equal fuzzy metric distance of 0.9 centered at
(0, 0, 0) with semi-axis equal to 1, 2, 3, respectively, and its 2D projection over the Z axis.

ference for each color pair Si. In the following we detail how to combine all165

∆E
Ej
i to obtain the general difference ∆Ei by means of a weighted average that

constitutes a soft-switching model. An analogous computation should be made

for ∆EFM
Ej
i to obtain ∆EFMi.

The general equation for the soft-switching model is given as

∆Ei =

∑N
j=1WjRj∆E

Ej
i∑N

j=1WjRj
, (10)

where each local difference ∆E
Ej
i is weighted according to two criteria: close-170

ness of Si to OEj represented by Wj and reliability of Ej given by Rj . Since

close is a vague term, it can be represented as a fuzzy set and so Wj can be set

using a S-type fuzzy membership function representing the fuzzy set close [15]

as

Wj = 1− µ(||Ci −OEj ||, α, γ), (11)

where || · || denotes the Euclidean norm and µ is an S-type membership175
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function given by

µ(x, α, γ) =



0 if x ≤ α

2
(
x−α
γ−α

)2
if α < x ≤ α+γ

2

1− 2
(
x−γ
γ−α

)2
if α+γ

2 < x ≤ γ

1 if x > γ

(12)

We set α = 1 and γ = 5 so that when computing the color difference for

a given pair only those ellipsoids at less than 5 CIELAB units of distance are

given non-null weights and all ellipsoids at less than 1 unit of distance are given

the maximum weight of 1. Figure 4 shows this behaviour.180

However, since we do not have enough ellipsoids to densely cover the whole

color space, it may happen that no ellipsoids are found at less than 5 units of

distance from a given pair. In such a case we set α to the distance of the closest

ellipsoid in the space and γ to the distance of the sixth closest ellipsoid so that

we use always five ellipsoids with non-null weights, including one of them with185

weight 1. The setting of these parameters only affects the performance if γ

was set so that only one or two ellipsoids were used, which should be avoided.

Alternatively, including more ellipsoids does not have a great influence since

those additional ones would be further than the rest and so given very little

weight, but it seems less reasonable to use many of them. It is important to190

note that when computing color differences of pairs in a dataset our method has

a different behaviour for those pairs with close ellipsoids than for the rest. So,

it is interesting to analyze the performance of our method both for the whole

dataset as well as separately for pairs with or without close ellipsoids, as we do

in the following section.195

Furthermore, the weight Rj is included because it has been found [8] that not

all ellipsoids fit the data in the same degree and that not all ellipsoids are totally

reliable [9] so we use Rj to modulate the importance of each ellipsoid used. Each

Rj will be set based on experimental observations in the next section.

Finally it is worth to point out that this model is not a closed color difference200
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Figure 4: Wj obtained using the fuzzy set close over ||Ci −OEj ||.

formula but an open model that relies on the color differences predicted by a

set of ellipsoids to compute a kind of hybrid color difference measure. This

means that if we change the set of ellipsoids, as we do in the next section, the

performance may differ significantly.

4. Experimental results and refinements of the method205

To assess the performance of the two color difference formulas proposed, ∆E

and ∆EFM , we use the so-called COM dataset [23]. However, since the data

with which the ellipsoids that we used here were fitted [14] is included in the

COM, we must remove this data from the dataset and use for the assessment the

remaining of the dataset that from now on we will call Reduced COM (RCOM).210

We compare the performance of ∆E and ∆EFM with that of the currently

CIE-recommended color difference measure CIEDE2000 (∆E00) [20]. As figure

of merit we use the STRESS measure proposed in [24], which is currently the

measure of reference in the literature and for which we can perform statistical

significance test to evaluate different performances. Also, we are interested in215

comparing the performance of the different formulas for the subsets of pairs

in RCOM with and without close ellipsoids. For this we also use STRESS

but setting the auto-scaling parameter F within STRESS to the value used
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when computing STRESS for the whole dataset. This implies that we are not

using STRESS but a variant of it that illustrates how much a particular subset220

contributes to the STRESS of the global dataset. If we let F free for the subsets,

the results could be significantly different since each subset would use a different

scaling and the value of STRESS in the subsets could be inconsistent with that

of the whole dataset.

First we study the performance using all 19 ellipsoids found in [8] without225

assigning any reliability weights Rj in Eq. 10, that is, setting Rj = 1,∀j =

1, ..., 19. STRESS for ∆E and ∆EFM are given in row 1 of Table 1. We can

see that performance is better for the subset of pairs with near ellipsoids (WN)

than for those without near ellipsoids (WON) as expected. Also, performance

of ∆EFM is better than ∆E. We would later discuss about this.230

Next, we want to quantify the relative importance of the ellipsoids used. For

this, we assess performance by removing one ellipsoid at a time so that we got

19 variants of the original model. When removing en ellipsoid we can assess its

importance for the model in terms of STRESS for the RCOM dataset as well as

for the WN and WON subsets. These results are also in Table 1 (rows 2 to 20).235

It is surprising to see that removing some ellipsoids improves performance of

the whole model. This does not mean that those ellipsoids are wrong but only

that either one or the other assumption behind the model does not hold in the

color region of that ellipsoid. That is, that ellipsoid does not predict well either

close larger/smaller than threshold color differences or further interpolated color240

differences. This is reflected in the performance for the WN and WON subsets.

We can see for instance that ellipsoid 3 works very well for the WN subset since,

if we remove it, STRESS for WN increases significantly. Analogous reasoning

can be made for ellipsoid 19 and WON subset. However, color differences near

ellipsoid 6 are better predicted from nearby ellipsoids than ellipsoid 6 itself,245

since removing it makes contribution to STRESS of WN to decrease. We have

seen that about half of these color pairs are much larger/smaller than threshold

which may indicate that linear scaling of threshold color differences predicted

by ellipsoid 6 is inaccurate. Similarly, ellipsoid 9 is not useful to predict further
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Table 1: Performance in terms of STRESS of ∆E and ∆EFM for all 19 ellipsoids and for
18 of them removing one at a time. STRESS is computed for the whole dataset and relative
contribution to STRESS is given for the subsets of pairs with near ellipsoids (WN) and without
near ellipsoids (WON).

Ellipsoid Datasets and ∆E Datasets and ∆EFM
removed RCOM WN WON RCOM WN WON

None 35.59 33.39 35.84 32.73 31.22 32.90
1 35.50 33.29 35.74 32.70 31.07 32.88
2 35.97 33.50 36.25 33.24 31.43 33.45
3 36.93 37.71 36.83 33.76 33.95 33.73
4 35.86 34.07 36.07 33.04 32.29 33.12
5 35.45 33.34 35.69 32.42 31.44 32.53
6 35.54 32.96 35.83 32.65 31.08 32.82
7 35.72 34.31 35.88 32.92 33.22 32.88
8 35.64 33.40 35.89 32.60 31.24 32.75
9 35.29 33.31 35.51 32.49 31.53 32.60
10 35.81 33.40 36.08 32.86 31.24 33.04
11 35.67 33.51 35.91 32.85 30.95 33.06
12 35.39 33.32 35.62 32.60 31.42 32.73
13 35.91 33.53 36.17 32.64 30.99 32.82
14 35.81 33.46 36.07 32.68 31.06 32.87
15 35.56 33.40 35.80 32.68 31.19 32.84
16 35.66 33.57 35.90 32.74 30.47 32.99
17 35.71 33.85 35.92 32.93 31.17 33.12
18 35.79 34.75 35.91 32.82 31.53 32.96
19 36.45 33.69 36.76 33.57 30.70 33.88

color differences since removing it makes contribution to STRESS of WON to250

decrease. Also, this may be due to the lack of a perfect uniformity in the color

space which may make some close ellipsoids to be incompatible in a hybrid

model such as the one we propose if the local non uniformity is more acute in

their region.

Now, we study whether we could remove several ellipsoids at the same time255

and improve overall performance. So, what we did was removing recursively

more and more ellipsoids until STRESS of the method becomes worse. We did

this separately for ∆E and ∆EFM following the STRESS decreasing order

according to Table 1. Finally, we select a group of 6 ellipsoids that removing

them at the same time improves performance of both ∆E and ∆EFM : the set260

includes ellipsoids {1, 5, 6, 9, 12, 15}, so the reduced set of ellipsoids is composed

13



Table 2: Performance in terms of STRESS of ∆E and ∆EFM for the reduced set of 13
ellipsoids and for 12 of them removing one at a time. Stress is computed for the whole dataset
and relative contribution to STRESS is given for the subsets of pairs with near ellipsoids
(WN) and without near ellipsoids (WON).

Ellipsoids Datasets and ∆E Datasets and ∆EFM
removed RCOM WN WON RCOM WN WON

{1, 5, 6, 9, 12, 15} 34.43 32.96 34.59 31.74 31.89 31.73
{1, 2, 5, 6, 9, 12, 15} 34.82 33.15 35.01 32.34 32.11 32.37
{1, 3, 5, 6, 9, 12, 15} 36.56 38.06 36.38 33.45 35.90 33.15
{1, 4, 5, 6, 9, 12, 15} 34.96 33.74 35.10 32.12 32.89 32.03
{1, 5, 6, 7, 9, 12, 15} 35.38 36.05 35.30 32.47 34.95 32.17
{1, 5, 6, 8, 9, 12, 15} 34.73 32.96 34.92 31.68 32.04 31.64
{1, 5, 6, 9, 10, 12, 15} 34.70 32.99 34.89 31.91 32.04 31.90
{1, 5, 6, 9, 11, 12, 15} 35.09 32.99 35.32 32.10 31.42 32.18
{1, 5, 6, 9, 12, 13, 15} 34.60 32.94 34.78 31.68 31.55 31.69
{1, 5, 6, 9, 12, 14, 15} 34.71 32.89 34.91 31.83 31.71 31.84
{1, 5, 6, 9, 12, 15, 16} 34.88 32.77 35.11 32.20 30.72 32.37
{1, 5, 6, 9, 12, 15, 17} 35.54 33.69 35.75 32.98 31.96 33.09
{1, 5, 6, 9, 12, 15, 18} 34.74 34.07 34.81 31.96 32.24 31.93
{1, 5, 6, 9, 12, 15, 19} 35.44 33.05 35.71 32.80 31.00 33.00

by 13 ellipsoids {2, 3, 4, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19}.

Performance of ∆E and ∆EFM using the reduced ellipsoid set is given

in first row of Table 2. We can see that performance for both measures has

improved in about 1 STRESS unit for the RCOM dataset. Also, we see that265

performance has increased more for the WON subset than for the WN which

means that removing those ellipsoids improve the interpolation capability of the

whole system.

Besides, we want to study the importance of each ellipsoid in the reduced

set so that we could assign a weight Rj for each ellipsoid in Eq. 10 according to270

its importance within the model. For this, we remove one additional ellipsoid

in the reduced set at a time and see how performance changes (see Table 2 rows

2-14 and column 1 to see the ellipsoids removed in each case). We see that now

no significative improvement is obtained in any case. Moreover, there are a few

ellipsoids that if we remove them STRESS increases significantly. For instance,275

ellipsoids 3, 5, 17, and 19. However, there are other ellipsoids that removing

them does not influence STRESS that much, as it happens with ellipsoids 8, 13,

14



Table 3: Two assignments of weights for the reduced set of ellipsoids. In both cases we give
more weight to those ellipsoids that have the most influence in STRESS but in the light case
the relative differences in the weights given are smaller than in the heavy case.

Ellipsoid Light weights Heavy weights
2 0.90 0.75
3 1.00 1.00
4 0.80 0.50
7 0.90 0.90
8 0.70 0.30
10 0.70 0.30
11 0.90 0.75
13 0.60 0.10
14 0.70 0.30
16 0.90 0.75
17 1.00 1.00
18 0.90 0.75
19 1.00 1.00

or 14. So, we aim to assign a higher Rj weight to the former and a lower one

to the latter. We propose two different weight assignments given in Table 3. To

come up with this proposal we gave more importance to relative performance in280

the subset of WON than in the WN since it is in the WON where combination

of ellipsoids is more important given that more ellipsoids will be involved in the

computation and Rj weights are more relevant. We have assessed performance

when including these weights in the model. For ∆E STRESS drops from 34.43

to about 34.24 for both settings of weights whereas for ∆EFM STRESS drops285

from 31.74 to 31.39 and 30.86 when using the light weights and the heavy

weights, respectively, so we decided to use the latter.

Next, we compare the performance of ∆E and ∆EFM with the reference

color difference formula CIEDE2000 ∆E00. Results are given in Table 4. We

compare the performance in the RCOM dataset but also we compute the relative290

contribution to this value of STRESS of different subsets of interest: WN, WON

and 7 subsets of different ranges of ∆V . We can see that performances of ∆E

and ∆EFM are not far from that of ∆E00. In particular, ∆EFM is quite close.

By looking at performance in WN and WON we see that ∆E00 and ∆E perform

better for WN. In particular, ∆E00 yields less than 3.5 units of STRESS for WN295
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Figure 5: Fuzzy Sets used for classifying color differences.

than for WON. However, performance in ∆EFM is a little better for WON

than for WN meaning that the fuzzy metric somehow benefits the combination

of different ellipsoids of the color space. If we look at performance for different

ranges of ∆V , we see that minimum and maximum relative contribution to

STRESS of different subsets differ more in ∆EFM than in ∆E00 or ∆E. In300

fact, ∆EFM performs much worse for smaller color differences, but better for

medium differences. In general, a very different performance is observed for

∆E and ∆EFM . This means that they are not adapting the same to different

ranges of color differences. This means that if we are able to identify what

feature is making each metric behave better in each case, we may be able to305

improve their performance in general. In the following we pursue this target.

If we look at their definitions we see two differences between Eq. 5 and Eqs.

8-9 that may explain this: one of them is the different shapes of the geometry

generated by equally separated samples shown in Figs. 1-3. We saw that Eqs.

8-9 generate a diamond shape geometry that models a higher sensitivity to310

differences appearing in diagonal directions in the color space; and the other is

that Eq. 5 applies a linear scaling. That is, the square of the differences are

divided by the square of the ellipsoid semi axis in each direction. However, Eqs.

8-9 do not apply a linear scaling but a non-linear one according to Figure 2. As

a consequence, we think that by appropriately changing geometry and scaling315

for different ranges of ∆V can improve performance. In the following we detail

how can we incorporate this changes into ∆E and ∆EFM and we define two

improved metrics that we name ∆E∗ and ∆EFM∗
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Table 4: Performance in terms of STRESS of ∆E00, ∆E and ∆EFM for the reduced set of
13 ellipsoids. STRESS is computed for the whole RCOM dataset and relative contribution to
STRESS is given for the subsets of pairs with near ellipsoids (WN), without near ellipsoids
(WON), and for different ranges of ∆V color differences. ∆E∗ and ∆EFM∗ refer to the
variants of ∆E and ∆EFM proposed in equations (13)-(14).

Set #pairs ∆E00 ∆E ∆EFM ∆E∗ ∆EFM∗
RCOM 3501 29.37 34.24 30.86 32.46 27.61

WN 837 26.13 32.92 31.89 32.95 28.30
WON 2664 29.73 34.39 30.74 32.40 27.13

∆V ∈ [0, 0.5[ 464 32.51 34.77 57.71 45.44 46.05
∆V ∈ [0.5, 1.5[ 1528 30.61 35.08 41.33 36.34 34.53
∆V ∈ [1.5, 2.5[ 899 28.89 34.61 29.22 34.70 29.40
∆V ∈ [2.5, 3.5[ 329 28.76 33.28 23.83 28.81 24.71
∆V ∈ [3.5, 4.5[ 162 33.90 38.29 26.02 30.45 21.57
∆V ∈ [4.5, 5.5[ 71 28.44 35.03 34.23 33.67 27.19

∆V ≥ 5.5 48 23.37 26.56 33.19 30.61 28.08

We can introduce changes in geometry and scaling in Eq. 5 reformulating

this equation by including as parameters the power p applied to the differences320

and the root and adding a scaling factor s as follows:

∆E
Ej
i =

 3∑
k=1

D
Ej
i (k)

p(
sLkEj

)p
 1

p

. (13)

Thus, s controls the scaling factor applied in each case and p allows for

different geometries of equally distance samples so that for p < 2 geometries

tend to a diamond-like shape and for p > 2 the geometry tends to a rectangular

shape.325

Analogously, we can parametrize Eq. 8 as

∆EFM
Ej
i (k) =

κ
(
sLkEj

)p
κ
(
sLkEj

)p
+ D

Ej
i (k)p

, k = 1, 2, 3, (14)

where s and p play similar roles.

We do not have much information to set s and p except that we hypothesized

that they should be different for different sizes of color differences so, we propose

to use a simple fuzzy rule based system for the setting including these 4 rules:330

17



1. IF ∆V is very small THEN set s = a and p = e

2. IF ∆V is small THEN set s = b and p = f

3. IF ∆V is medium THEN set s = c and p = g

4. IF ∆V is large THEN set s = d and p = h

Given that ∆V is very small, small, medium, and large are vague statements335

we model them by using 4 different fuzzy sets shown in Figure 5. Given that

∆V is unknown, we need here to use an estimation of it for which we use ∆E00,

but any other color difference could be used instead given that we do not need a

very accurate estimation at this point. For each color pair, fuzzy logic inference

process determines the certainty of the antecedent of the rule using the certainty340

association depicted in Figure 5. The certainty of the antecedent is assigned to

the consequence. Finally s and p are determined by averaging a− d and e− h

using as weight the respective certainties in each case. This means that there is

a smooth linear transition between the 4 considered values for s and p. We will

name the color difference measures derived from this model ∆E∗ and ∆EFM∗.345

We set a, b, c, d, e, f, g, h separately for ∆E∗ and ∆EFM∗ by finding sub-

optimal performance in terms of STRESS through extensive experimentations.

Optimal performance is very difficult to determine since Stress is prone to many

local minima. In the optimization, we restricted a−d and e−h to be monotonic

for consistency and to avoid data over-fitting. We determine that an appropriate350

setting for ∆E∗ is a = 1.3, b = 1.9, c = 2.1, d = 2.8 and e = 1.9, f = 1.5, g =

1.2, h = 1.2. This means that scaling is set so that global sensitivity decreases

as ∆V increases and that the geometry tends from ellipsoidal to diamond-like as

∆V increases, as it can be seen in Figure 6. With this setting the performance

of ∆E∗ is almost 2 STRESS units better than ∆E, as it is shown in Table 4. For355

∆EFM∗ we found a = 3.9, b = 3.9, c = 1.1, d = 0.2 and e = 0.8, f = 0.5, g =

0.3, h = 0.2. In this case we see that same pattern with respect to the exponent

p that determine the geometry but now the scalings are decreasing. This can

be interpreted as the original metric ∆EFM having too much sensitivity for

small ∆V which is corrected by using large scales in this cases and too little360
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sensitivity for large ∆V which is increased by using a scaling factor lower than

1. With this setting the performance of ∆EFM∗ is more than 3 STRESS units

better than ∆EFM and almost 2 units better than ∆E00 (see Table 4).

From a statistical point of view we can analyze whether the STRESS differ-

ences observed are significant using the F-test of significance at 95% confidence365

level as explained in [24]. This F-test shows that the differences in terms of

STRESS between ∆E∗ and ∆EFM∗ and ∆E00 are statistically significative at

95% confidence level, which means that ∆E∗ is not good enough to be consid-

ered an alternative to ∆E00 and ∆EFM∗ is significantly better than ∆E00 in

terms of STRESS.370

A downside of the proposed method is the high number of parameters in-

cluded which arises some uncertainty on the possibility of data overfitting. ∆E00

is already a complex color-difference formula including 20 fitting parameters, al-

though some of them interact and kl, kc, kh are fitted to a special case. In the

proposed method we have 13 weights in Table 3 that, despite we did not nu-375

merically fit to any data we did set to 6 different levels. Also, we have the

8 scaling-power parameters a − h that were indeed fitted, which increases the

number of parameters to 21. We can reduce this number and so increase the

confidence on absence of data overfitting by removing the Rj factors. If we do

this, STRESS for ∆E∗ and ∆EFM∗ increase to 33.37 and 27.97, respectively,380

which, in terms of F-test, is not significative at a 95% confidence level. Thus,

the number of parameters drops to just 8.

5. Conclusions

In this paper we have proposed a model to combine local threshold color dif-

ference information to build two different color difference formulas. For this we385

have used the classical ellipsoid metric and a fuzzy metric that models and anal-

ogous reasoning but in a different way. We have found that there are significant

performance differences between the two metrics for different color difference

ranges. This has led us to study how to change the metric parameters to op-
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Figure 6: 2D projection of the geometry generated by points of equal ∆E∗ of 0.5, 1.5, 3.5 and
5.5 centered at (0, 0, 0) with semi-axis equal to 1, 2, respectively.

timize performance. We have proposed a simple fuzzy rule system to set the390

metric parameters. As a result, we have obtained a significant improvement

in global performance that even outperforms the currently CIE-recommended

color-difference formula CIEDE2000. This implies a new look at the problem of

color-differences since with the parameters adapting to size of the difference be-

ing measured it turns into a 4-D problem instead of the common 3-D approach.395
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