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 Abstract 
 

Cardiovascular diseases represent the main cause of morbidity and mortality 
worldwide, causing around 18 million deaths every year. Among these diseases, the 
most common one is the ischaemic heart disease, usually referred to as myocardial 
infarction (MI). After surviving to a MI, a considerable number of patients develop 
life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, 
that is, weeks, months or even years after the initial acute phase. This particular 
type of VT is typically sustained by reentry through slow conducting channels (CC), 
which are filaments of surviving myocardium that cross the non-conducting fibrotic 
infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT 
episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed 
by catheterization in the electrophysiology (EP) laboratory, is commonly used to 
interrupt the electrical conduction through the CCs responsible for the VT 
permanently. However, besides being invasive, risky and time-consuming, in the 
cases of VTs related to chronic MI, up to 50% of patients continue suffering from 
recurrent VT episodes after the RFA procedure. Therefore, there exists a need to 
develop novel pre-procedural strategies to improve RFA planning and, thereby, 
increase this relatively low success rate. 

In the last decade, the field of computational cardiac EP has demonstrated 
the potential of 3D cardiac models to perform reliable in-silico (using computational 
simulation) studies, useful for both patient risk stratification and therapy planning. 
Hence, in this thesis, we have developed a full pipeline based on non-invasive 
clinical data for constructing personalized image-based 3D models of infarcted 
ventricles and torso in order to perform pre-procedural personalized in-silico EP 
studies aimed at RFA planning in cases of reentrant VTs related to chronic MI. 

First, we conducted an exhaustive review of the literature associated with 
the existing 3D cardiac models in order to gain a deep knowledge about their main 
features and the methods used for their construction, with special focus on those 
models oriented to simulation of cardiac EP. Later, using a clinical dataset of a 
chronically infarcted patient with a history of infarct-related VT, we designed and 
implemented a number of strategies and methodologies to (1) build patient-
specific 3D computational models of infarcted ventricles that can be used to 
perform simulations of cardiac EP at the organ level, including the infarct scar and 
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the surrounding region known as border zone (BZ); (2) construct 3D torso models 
that enable to compute the simulated ECG; and (3) carry out pre-procedural 
personalized in-silico EP studies, trying to replicate the actual EP studies conducted 
in the EP laboratory prior to the ablation. The goal of these methodologies is to 
allow locating the CCs into the 3D ventricular model in order to help in defining the 
optimal ablation targets for the RFA procedure. 

Lastly, as a proof-of-concept, we performed a retrospective simulation case 
study, in which we were able to induce an infarct-related reentrant VT using 
different modelling configurations for the BZ. We validated our results by 
reproducing with a reasonable accuracy the patient’s ECG during VT, as well as in 
sinus rhythm from the endocardial activation maps invasively recorded via 
electroanatomical mapping systems in this latter case. This allowed us to find the 
location and analyse the features of the CC responsible for the clinical VT. 
Importantly, such in-silico EP study might have been conducted prior to the RFA 
procedure, since our approach is completely based on non-invasive clinical data 
acquired before the real intervention. 

These results confirm the feasibility of performing useful pre-procedural 
personalized in-silico EP studies, as well as the potential of the proposed approach 
to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs 
in the future. Nevertheless, the developed methodology requires further 
improvements and validation by means of simulation studies including large 
cohorts of patients. Moreover, there still exist several challenging issues hampering 
the incorporation of simulation-based strategies into the current clinical workflow, 
such as the lack of robust methods for the full automated generation of 
personalized 3D cardiac models from medical imaging datasets, or the high 
computational burden and long computing times associated with the simulations 
required to faithfully reproduce the cardiac EP at the organ and torso level. 
Anyhow, the current rapid advance of numerical methods and computing 
architectures is expected to overcome these drawbacks in the near future, thus 
enabling the use of approaches based on computational cardiac EP for risk 
stratification and therapy planning in the clinical environments. 
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 Resumen 
 

Las enfermedades cardiovasculares constituyen la principal causa de morbilidad 
y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. 
De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente 
denominada como infarto de miocardio (IM). Tras superar un IM, un considerable 
número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente 
mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años 
después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una 
reentrada a través de canales de conducción (CC), filamentos de miocardio 
superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los 
fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la 
ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado 
mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente 
para interrumpir de manera permanente la propagación eléctrica a través de los CCs 
responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir 
mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los 
pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de 
ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento 
para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito 
relativamente baja. 

En la última década, el campo de la EF cardíaca computacional ha demostrado 
el potencial de los modelos cardíacos 3D para realizar estudios in-silico (mediante 
simulación computacional) fiables, de utilidad tanto para la estratificación del riesgo 
como para la planificación de terapias. Así pues, en esta tesis hemos desarrollado toda 
una metodología, basada en datos clínicos no invasivos, para construir modelos 3D 
basados en imagen de ventrículos infartados y torso para realizar estudios in-silico de 
EF personalizados y pre-procedimiento destinados a la planificación de ARF en casos de 
TVs reentrantes relacionadas con IM crónico. 

En primer lugar, realizamos una revisión exhaustiva de la literatura referente a 
los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento 
de sus principales características y los métodos usados en su construcción, con especial 
atención sobre los modelos orientados a simulación de EF cardíaca. Posteriormente, 
usando datos clínicos de un paciente con historial de TV relacionada con infarto, 
diseñamos e implementamos una serie de estrategias y metodologías para (1) generar 
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modelos computacionales 3D específicos de paciente de ventrículos infartados que 
puedan  usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo 
la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) 
construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar 
a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar 
los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La 
finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D 
para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. 

Por último, a modo de prueba de concepto, realizamos el estudio retrospectivo 
por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con 
el infarto usando diferentes configuraciones de modelado para la ZB. Validamos 
nuestros resultados mediante la reproducción, con una precisión razonable, del ECG 
del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación 
endocárdica obtenidos invasivamente mediante sistemas de mapeado electroana-
tómico en este último caso. Esto permitió encontrar la ubicación y analizar las 
características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-
silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que 
nuestro planteamiento está completamente basado en datos clínicos no invasivos 
adquiridos antes de la intervención real. 

Estos resultados confirman la viabilidad de la realización de estudios in-silico de 
EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje 
propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación 
de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la 
metodología propuesta requiere de notables mejoras y validación por medio de 
estudios de simulación con grandes cohortes de pacientes. Por otra parte, aún existen 
varios retos que dificultan la incorporación de las estrategias basadas en simulación a 
la práctica clínica actual, tales como la falta de métodos robustos para la generación 
automatizada de modelos cardíacos 3D personalizados a partir de datos de imagen 
médica, o la elevada carga computacional y los largos tiempos de computación 
asociados a las simulaciones necesarias para reproducir fielmente la EF cardíaca a nivel 
de órgano y torso. Sin embargo, se espera que el actual rápido avance de los métodos 
numéricos y las arquitecturas de computación permita superar estos inconvenientes en 
un futuro próximo, habilitando así el uso de las estrategias basadas en la EF cardíaca 
computacional para estratificación de riesgos y planificación de terapias en los 
entornos clínicos. 
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 Resum 
Les malalties cardiovasculars constitueixen la principal causa de morbiditat i 

mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la 
més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de 
miocardi (IM). Després de superar un IM, un considerable nombre de pacients 
desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase 
crònica de l’IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. 
Aquest tipus concret de TV normalment s’origina per una reentrada a través dels canals 
de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l’infart 
fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d’evitar 
episodis recurrents de TV, l’ablació per radiofreqüència (ARF), un procediment 
mínimament invasiu realitzat mitjançant cateterisme en el laboratori de 
electrofisiologia (EF), s’usa habitualment per a interrompre de manera permanent la 
propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de 
ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM 
crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del 
procediment d’ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies 
pre-procediment per a millorar la planificació de l’ARF i, d’aquesta manera, augmentar 
la taxa d’èxit, que es relativament baixa. 

En l’última dècada, el camp de la EF cardíaca computacional ha demostrat el 
potencial dels models cardíacs 3D per a realitzar estudis in-silico (mitjançant simulació 
computacional) fiables i d’utilitat tant per a l’estratificació del risc, com per a la 
planificació de teràpies. Així doncs, en aquesta tesi hem desenvolupat tota una 
metodologia, basada en dades clíniques no invasius, per a construir models 3D basats 
en imatge de ventricles infartats i tors per a realitzar estudis in-silico de EF 
personalitzats i pre-procediment destinats a la planificació d’ARF en casos de TVs 
reentrants relacionades amb IM crònic. 

En primer lloc, realitzem una revisió exhaustiva de la literatura referent als 
models cardíacs 3D existents, amb la finalitat d’obtindre un profund coneixement de 
les seues principals característiques i els mètodes usats en la seua construcció, amb 
especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, 
usant dades clíniques d’un pacient amb historial de TV relacionada amb infart, 
dissenyem i implementem una sèrie d’estratègies i metodologies per a (1) generar 
models computacionals 3D específics de pacient de ventricles infartats capaços de 
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realitzar simulacions de EF cardíaca a nivell d’òrgan, incloent la cicatriu de l’infart i la 
regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors 
que permeten l’obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF 
personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF 
realitzats en el laboratori de EF abans de l’ablació. La finalitat d’aquestes metodologies 
és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius 
d'ablació òptims per al procediment d’ARF. 

Finalment, a manera de prova de concepte, realitzem l’estudi retrospectiu per 
simulació d’un cas, en el qual aconseguim induir la TV reentrant relacionada amb l’infart 
usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats 
mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així 
com en ritme sinusal a partir dels mapes d’activació endocardíac obtinguts 
invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. 
Això va permetre trobar la ubicació i analitzar les característiques del CC responsable 
de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat 
abans del procediment d’ARF, ja que el nostre plantejament està completament basat 
en dades clíniques no invasius adquirits abans de la intervenció real. 

Aquests resultats confirmen la viabilitat de la realització d’estudis in-silico de EF 
personalitzats i pre-procediment d’utilitat, així com el potencial de l’abordatge 
proposat per a arribar a ser en un futur una eina de suport per a la planificació de l’ARF 
en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia 
proposada requereix de notables millores i validació per mitjà d’estudis de simulació 
amb grans cohorts de pacients. D’altra banda, encara existeixen diversos reptes que 
dificulten la incorporació de les estratègies basades en simulació a la pràctica clínica 
actual, tals com la falta de mètodes robustos per a la generació automatitzada de 
models cardíacs 3D personalitzats a partir de dades d’imatge mèdica, o l’elevada 
càrrega computacional i els llargs temps de computació associats a les simulacions 
necessàries per a reproduir fidelment la EF cardíaca a nivell d’òrgan i tors. No obstant 
això, s’espera que l’actual ràpid avanç dels mètodes numèrics i les arquitectures de 
computació permeta superar aquests inconvenients en un futur pròxim, habilitant així 
l’ús de les estratègies basades en la EF cardíaca computacional per a estratificació de 
riscos i planificació de teràpies en els entorns clínics. 
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Chapter 1 

Introduction 

The first chapter of this doctoral thesis makes a brief introduction of a 
number of basic concepts that are closely related to the fundamentals of this 
work. Those concepts must be properly introduced, since we will be referring to 
them across the entire document. However, it is important to note that this 
chapter does not include a description of the state-of-the-art in cardiac 
computational modelling, as such analysis will be presented in Chapter 3. 

1.1.  The heart 
The heart is a vital organ that, as shown in Figure 1.1, is located within 

the rib cage, in the middle of chest, slightly shifted to the left side, surrounded 
by the lungs and leaned on the diaphragm. The main function of the heart is to 
pump the blood in order to ensure the blood distribution across the whole 
organism and, consequently, the oxygen and nutrients supply provided by the 
bloodstream to all the organs and tissues that comprise the human body. 
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As observed in Figure 1.2, the heart is composed of four chambers or 
cavities: the atria, which are the two superior cavities separated by the 
interatrial septum, and the ventricles, the two inferior chambers separated by 
the interventricular septum. The atria are the cavities that receive the blood 
from outside the heart, while the ventricles are the chambers that pump the 
blood from the heart to the rest of the organism. At the right side of the heart, 
the right atrium receives the deoxygenated blood from the rest of the body 
through the superior and inferior cava veins. Next, the blood passes to the right 
ventricle (RV) across the tricuspid valve and, then, the RV pumps the blood 
through the pulmonary artery, crossing the pulmonary valve, towards the lungs. 
At the left side, oxygenated blood coming from the lungs fills the right atrium 
through the pulmonary veins. After that, the blood crosses the mitral valve 
down to the left ventricle (LV), from where the blood is pumped through the 
aorta artery, after crossing the aortic valve, aiming to be distributed all over the 
organism, thereby irrigating organs and tissues. 

Figure 1.1. Illustration of the anatomical position of the heart within the human body, 
showing an anterior view with spread lungs in order to expose the heart. 
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The external surface of the heart is named epicardium, while the internal 

surface of each of the four cardiac chambers is known as endocardium. Figure 
1.3 shows the highly complex anatomical structure of the endocardial surfaces 
of both ventricles in the human heart. Such complexity is caused by the presence 
of two different types of structures emerging from the ventricular endocardia: 
papillary muscles and endocardial trabeculations. The papillary muscles are 
tissue prolongations joining the ventricular walls to the leaflets of the atrio-
ventricular valves (tricuspid and mitral valves) by means of fibrous filaments 
known as chordae tendineae. The endocardial trabeculations, or trabeculae 
carneae, are other kind of tissue prolongations that are thinner than papillary 
muscles. They also start from the ventricular wall, from which they can join 
another trabeculation or merge again with the wall at another site, even 
crossing to the opposite side of the cardiac cavity, thus giving rise to the complex 
tissue network that is appreciated in Figure 1.3. 

Figure 1.2. Representation of the anatomical structure of the human heart, showing a 
coronal cross-section of the organ including the main vessels. Image taken from the 
website of the Texas Heart Institute: 
   www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy/ 

http://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy/
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1.1.1.  Cardiac tissue structure 

The heart is a muscular organ and, therefore, it is mostly composed of a 
specialized muscular tissue known as cardiac muscle or myocardium. As the 
skeletal muscle, the myocardium is mainly formed by striated muscle fibres 
named cardiomyocytes or just myocytes, although they present several 
important differences with respect to the skeletal muscle fibres. However, 
despite myocytes comprised most of the myocardial tissue volume, it is also 
populated by other cell types, such as fibroblasts. Ventricular myocytes are 
elongated cells that normally have a single nucleus, showing an approximately 
prism-like shape (see Figure 1.4[b]), with an average length of about 100-150 
µm and a width usually ranging from 11 to 20 µm (Beuckelmann et al., 1992; 
Forbes and Sperelakis, 1984). To form the ventricular myocardium, such cardiac 
cells are arranged longitudinally so that the main axis of each myocyte is nearly 
parallel to the axis of its neighbouring cells, as shown in Figure 1.4. Moreover, 

Figure 1.3. Dissection of an explanted human heart. Anterior (right) and posterior (left) 
views of a coronal cross-section, exhibiting the highly complex anatomical structure of 
the endocardial surfaces of ventricles. Image adapted from the Atlas of Human Cardiac 
Anatomy, The Visible Heart Lab, University of Minnesota: 
   www.vhlab.umn.edu/atlas/sectioned/Heart0005-4chamber-vent.jpg 

http://www.vhlab.umn.edu/atlas/sectioned/Heart0005-4chamber-vent.jpg
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the ventricular myocytes are linked to each other through the gap junctions, 
specialized proteins that connect the intracellular spaces of neighbour cells, 
which are mainly concentrated at the so-called intercalated discs, the terminal 
ends of myocytes. 

 
In the late 60’s, Streeter et al. thoroughly studied the organization of the 

ventricular myocytes that compose the LV myocardium in a number of canine 
hearts (Streeter et al., 1969). They observed well-defined and regular patterns, 
revealing the rotation of the orientation of the cardiac muscle fibres across the 
ventricular walls, as a function of the transmural distance from endocardium to 
epicardium, and also along the longitudinal axis of ventricles, as a function of 

Figure 1.4. (a) Illustration representing the structure of the human cardiac muscle. (b) 
Microscopic image of an isolated human ventricular myocyte. Reproduced from 
(Beuckelmann et al., 1992). (c) Microscopic photograph of a stained sample of cardiac 
muscle, exhibiting myocytes nuclei (black arrows) and intercalated discs (white arrows). 
Image adapted from the Histology Learning System of Boston University: 
    www.bu.edu/histology/p/06303ooa.htm 

http://www.bu.edu/histology/p/06303ooa.htm
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the height relative to the apex-base axis. Furthermore, the authors 
characterized those patterns by defining a fibre angle, α, measured with respect 
to a local coordinates system referred to the epicardial surface, as represented 
in Figure 1.5. The rotational anisotropy of the cardiac fibre orientation observed 
by Streeter et al. was later confirmed both in dogs (LeGrice et al., 1995) and in 
other large mammals, including humans (Rohmer et al., 2007). Those structural 
patterns of the ventricular myocardial architecture, together with the 
characteristic shape of ventricular myocytes, have a great influence on heart 
function, since the contraction of the cardiac muscle is mainly caused by the 
shrinkage or shortening of myocytes along their longitudinal axes. 

Figure 1.5. Study on the cardiac fibres architecture in canine LV by Streeter et al. (a) 
Representation of a sequence of microscopic photographs from successive ventricular 
tissue sections taken from the endocardium to the epicardium, exhibiting the rotation 
of the cardiac fibre orientation as a function of wall depth. Tissue sections are parallel 
to the epicardial surface. (b) Illustration representing the characterization of the LV 
myocardial architecture by means of the fibre angle, α, defined with respect to the local 
orthogonal axes u,v,w  referred to the epicardial surface. Images adapted from (Streeter 
et al., 1969) 
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1.1.2.  Cardiac conduction system 

From the standpoint of the engineering, the heart may be described as 
an electromechanical pump, since its mechanical function as a blood pump is 
triggered by a previous electrical excitation. Under physiological conditions, 
such excitation begins at the primary pacemaker of the heart, the sinoatrial (SA) 
node, later reaches secondary pacemaker, the atrioventricular (AV) node, and 
lastly propagates across the ventricles through a network of specialized 
myocytes. Those structures, the two pacemakers along with the ventricular 
network, compose the so-called cardiac conduction system (CCS). As observed 
in Figure 1.6, the SA node is located within the myocardial wall of the right 
atrium near the entrance of the superior vena cava, while the AV node lies at 
the lower back portion of the interatrial septum. Both nodes are formed by a 
group of specialized cardiomyocytes that are capable of generating electrical 
impulses spontaneously and rhythmically with no need of external stimulation, 
thereby developing the cardiac pacemaker function. Nevertheless, as a primary 
pacemaker, the AV node is the main responsible to determine the cardiac 
rhythm under physiological conditions. 

 

Figure 1.6. Cardiac conduction system. Illustration of a coronal cross-section of the 
human heart, showing a representation of the structure of the cardiac conduction 
system (CCS). Image adapted from Cardiovascular system – the heart, Pearson 
Education, Inc.:   https://slideplayer.com/slide/8916387/ 

https://slideplayer.com/slide/8916387/
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The ventricles and the atria are electrically isolated between them, as 
they are physically separated by a non-conducting fibrous annulus. However, 
besides its secondary pacemaker function, the AV node also enables the 
electrical connection between atria and ventricles. Under physiological 
conditions, the electrical impulses delivered by the SA node spread across the 
atrial walls and, when they reach the AV node, it transmits those impulses to the 
ventricles through the ventricular network, thus ensuring a synchronized 
contraction pattern such that the atria contract first and the ventricles contract 
later in order to pump the blood efficiently. 

The ventricular network of the CCS is composed of a particular kind of 
myocytes known as Purkinje cells, which are highly specialized for a fast 
electrical conduction, significantly faster than in normal ventricular myocytes. 
Such network starts at the AV node, giving rise to the His bundle at the upper 
part of the interventricular septum. As shown in Figure 1.6, the His bundle 
divides into two branches, respectively known as left and right bundle branch, 
which run through the septum at subendocardial level towards the ventricles’ 
apex. In each ventricle, the corresponding bundle branch divides into a few main 
ramifications, which in turn keep dividing and anastomosing to form a complex 
network confined in subendocardial layers termed Purkinje network. This His-
Purkinje system is electrically isolated from the surrounding tissue all along its 
path, except for the terminal ends of Purkinje fibres, named Purkinje-
myocardium junctions (PMJ). Those numerous points, scattered all over the 
endocardium of both ventricles, are the sites where the electrical impulse 
coming from the AV node and rapidly transmitted through the His-Purkinje 
system is injected into the ventricular myocardium in order to trigger the 
activation that propagates across the entire ventricles. Such a synchronized 
electrical activation leads to a highly coordinated ventricular contraction, thus 
ensuring an effective mechanical performance of the heart as a blood pump. 

1.2.  Cardiac electrophysiology 
Electrophysiology (EP) is the branch of physiology that studies the 

electrical properties of cells and the electrical behaviour of biological tissues, 
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which is basically related to the ionic currents (i.e., fluxes of ions) that flow 
between neighbouring cells. As introduced in the section above, the heart 
behaves as an electromechanical pump and, hence, its electrical activity is an 
important matter of study. Therefore, the cardiac EP is the branch of EP that 
focuses on the study of the electrical behaviour of cardiac cells and tissues. 
However, the clinical cardiac EP, commonly referred to as cardiac EP or just as 
EP in the clinical environment, is the subspeciality of cardiology that deals with 
the study, diagnosis and treatment of the electrical cardiac disorders leading to 
pathological alterations of the heart rhythm. 

 
Regarding the electrical behaviour of cardiac cells, the cardiomyocytes 

that compose the contractile myocardium present at rest a considerable electric 
potential difference between the intra- and extracellular medium, leading to a 
considerably negative membrane resting potential of around –90 mV when the 

Figure 1.7. (a) Illustration of the myocyte cell membrane, showing a representation of 
transmembrane ion channels of sodium (Na+) and potassium (K+) and of Na+/K+ pump. 
Image taken from Wikiwand: www.wikiwand.com/en/Resting_potential. (b) Schematic 
diagram showing the main ion channels, pumps and exchangers embedded in the cell 
membrane of myocytes. Image taken from Physiome Project website: models.physiomepro 
ject.org/exposure/91d93b61d7da56b6baf1f0c4d88ecd77/difrancesco_noble_1985.cellml/view 

http://www.wikiwand.com/en/Resting_potential
https://models.physiomeproject.org/exposure/91d93b61d7da56b6baf1f0c4d88ecd77/difrancesco_noble_1985.cellml/view
https://models.physiomeproject.org/exposure/91d93b61d7da56b6baf1f0c4d88ecd77/difrancesco_noble_1985.cellml/view


Chapter 1 

12 

cell is electrically quiescent. Nevertheless, as represented in Figure 1.7, 
embedded in the cell membrane of myocytes there are a large amount of 
specialized proteins that, under certain conditions, enable the transference of 
specific ion species between the intra- and extracellular medium, mainly sodium 
(Na+), potassium (K+), calcium (Ca2+) and chloride (Cl–) ions. Those 
transmembrane structures are the main responsible for the active electrical 
behaviour of cardiomyocytes, which basically are of three different types: ion 
channels, pumps and exchangers (see Figure 1.7). 

When a cardiomyocyte in resting state is properly stimulated, it reacts by 
triggering an action potential (AP), which consists on temporal but significant 
changes in the myocyte membrane potential. As shown in Figure 1.8[a], first the 
myocyte depolarizes, that is, its membrane potential experiences a sharp 

Figure 1.8. (a) Action potential (AP) of a cardiomyocyte, showing the main ion currents 
responsible for each AP phase. Adapted from Anatomy & Physiology (chapter 19), Rice 
University: cnx.org/contents/FPtK1zmh@6.27:MCgS6S0t@3/Cardiac-Muscle-and-Electrical-Acti 
vity. (b) APs exhibiting distinct features depending on the associated type of cardiac cell. 
Image adapted from the online Textbook of Cardiology:  
   www.textbookofcardiology.org/wiki/Cardiac_Arrhythmias 

mailto:cnx.org/contents/FPtK1zmh@6.27:MCgS6S0t@3/Cardiac-Muscle-and-Electrical-Acti%20vity
mailto:cnx.org/contents/FPtK1zmh@6.27:MCgS6S0t@3/Cardiac-Muscle-and-Electrical-Acti%20vity
http://www.textbookofcardiology.org/wiki/Cardiac_Arrhythmias


  Introduction 

13 

change by which it becomes positive. This is known as the upstroke or 
depolarization phase of the cardiac AP, which is caused by the activation 
(opening) of the fast Na+ channels leading to a massive and very quick intake of 
Na+ ions, thereby making the electric potential of intracellular medium exceed 
that of the extracellular space. After that, there is a rapid inactivation of Na+ 
channels giving rise to the plateau phase, in which the membrane potential 
temporally remains positive and approximately constant due to the balance 
between the intake of Ca2+ ions and the efflux of K+ ions moving through their 
respective ion channels. Once the Ca2+ channels inactivate (close), the 
repolarization phase starts, since the K+ efflux continues and even increases 
because of the activation of more K+ channels, thus progressively reducing the 
membrane potential until reaching again the strongly negative resting potential. 
Thus, the distinct ion channels, which allow the passive diffusion of specific ions 
through the cell membrane, are the main responsible for the myocyte AP, while 
the ion pumps and exchangers are active transporters acting continuously in 
order to restore and maintain the adequate ion concentrations in the 
intracellular medium. Indeed, with the exception of pacemaker cells from SA 
and AV nodes (see Figure 1.8[b]) and Purkinje cells, in absence of stimulation 
the myocyte membrane potential remains nearly constant at the resting 
potential value due to the perfect balance between inward and outward ion 
currents. 

As can be appreciated in Figure 1.8[b], the distinct types of cardiac cells 
exhibit APs with different features, mainly differing in their AP duration (APD) 
and morphology as a result of different expression levels of specific ion channels 
in the cell membrane of each myocyte type. Note that the myocytes from SA 
and AV nodes, in addition to lacking a plateau phase, show a non-constant 
resting potential that progressively increases. This diastolic depolarization is the 
automatic mechanism that allows such cells to act as pacemakers, since their 
resting potential continue increasing until making those specialized myocytes 
depolarize and trigger an AP spontaneously after a certain time despite the 
absence of external stimulation. Purkinje cells can also trigger an AP sponta-
neously, although requiring a longer period without stimulation compared to 
pacemaker cells. 
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With respect to the electrical behaviour of cardiac tissue, the AP of a 
myocyte is able to propagate to the neighbouring ones, such that an AP in a 
ventricular myocyte, for instance, can propagate across the whole ventricular 
myocardium leading to a syncytium-like behaviour (functional syncytium). This 
electrical propagation is mediated by the gap junctions, which are 
transmembrane proteins that are shared by adjacent myocytes, such that their 
intracellular mediums are interconnected through these special channel 
proteins. Thereby, the changes in the intracellular ion concentrations associated 
with the myocyte AP, also affect the neighbouring myocytes, making them to 
develop an AP as well. However, the gap junctions are mostly concentrated in 
the intercalated discs located in the terminal ends of myocytes (see Figure 1.4). 
Consequently, the electrical propagation between adjacent myocytes and, 
hence, across the myocardial tissue, is up to three times faster along the 
longitudinal axis of myocytes than in the transverse directions (Clerc, 1976). 
Therefore, the electrical propagation in the myocardium is highly anisotropic 
due to the myocardial tissue architecture. 

1.2.1.  Action potential and myocyte contraction 

The mechanical behaviour of myocytes is mediated by the increase in the 
intracellular Ca2+ concentration during the AP plateau phase, which triggers the 
physiological mechanisms leading to myocyte contraction. Importantly, the 
influx of Ca2+ from the extracellular space is insufficient to cause an effective 
myocyte contraction. However, such Ca2+ intake triggers in turn a mechanism 
named calcium-induced calcium release. This mechanism consists of an 
important release of Ca2+ ions into the myocyte cytoplasm from the 
sarcoplasmic reticulum, which is an intracellular structure that basically acts as 
a calcium store. By means of this intracellular calcium release, the Ca2+ 
cytoplasmic concentration finally manages to rise up to the level required to 
trigger the mechanisms of myocyte contraction. Thus, the mechanical 
contraction of myocytes is caused by a previous electrical excitation, since the 
intracellular calcium release triggering the contraction mechanisms is associated 
with the depolarization of the myocyte membrane potential. 
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1.3.  Myocardial infarction 
Coronary arteries are the vessels that provide the blood supply to the 

cardiac muscle. Coronary artery disease occurs when any of those arteries is 
partially or completely obstructed, so that the blood flow within the 
myocardium decreases critically or even stops. This extremely serious 
circumstance makes a part of the cardiac muscle go into acute ischaemia due to 
the oxygen and nutrients deprivation as a consequence of the loss of blood 
supply. This cause-effect relationship is the reason why the coronary artery 
disease is also termed ischaemic heart disease or ischaemic cardiomyopathy. 

 
The most common reasons leading to coronary artery occlusion are 

related to atherosclerosis, which basically consists of cholesterol deposition 
within the artery lumen forming atherosclerotic plaques. Regardless the cause 
of the coronary artery blockage, when myocardial ischaemia persists for several 
minutes, it leads to an irreversible damage in the cardiac muscle known as 
myocardial infarction (MI), as illustrated in Figure 1.9. Indeed, the concept of MI 
is formally defined as myocardial cell death (i.e., myocytes necrosis) caused by 
a prolonged situation of myocardial ischaemia (Thygesen et al., 2019). 

Figure 1.9. Illustration of a myocardial infarction, showing the injured myocardium 
(highlighted in purple) as a consequence of the occlusion of a coronary artery caused by 
the formation of atherosclerotic plaques. Image adapted from Wikipedia: 
     https://en.wikipedia.org/wiki/Myocardial_infarction 

https://en.wikipedia.org/wiki/Myocardial_infarction
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Cardiomyocytes begin to die a few minutes after the onset of the blood 
supply deprivation and may continue dying during several hours (Thygesen et 
al., 2007). The extent of the myocardial damage mainly depends on three 
factors: (1) the exact location of the coronary artery occlusion, which 
determines the extension of tissue deprived of blood supply, (2) the severity of 
that occlusion (partial or complete) and (3) the time elapsed between the 
obstruction and reperfusion of the coronary artery, that is, the duration of the 
ischaemic event. 

1.3.1.  Myocardial infarction healing 

After the acute myocardial ischaemia phase, the inflammatory response 
derived from the tissue damage triggers a healing process that aims to “repair” 
the injured myocardium.  That MI healing process comprises various successive 
phases that evolve across several weeks (Arai, 2015; Daskalopoulos et al., 2012; 
Liehn et al., 2011). Therefore, a MI may be classified as acute, healing or healed 
as a function of the time elapsed from the obstruction of the coronary artery 
(Arai, 2015; Thygesen et al., 2007). Very basically, the final goal of the MI healing 
process is to replace the dead myocytes in the infarcted area by collagen fibres 
(replacement fibrosis), giving rise to the formation of a dense fibrotic core 
commonly known as infarct scar, which is unable to contract and develop 
electrical activity. Although it may vary depending on the extent of the injured 
area, among other factors (age, gender, race, genetics, etc.), in humans the MI 
healing process is expected to be completed in 5 to 6 weeks (Ertl and Frantz, 
2005; Thygesen et al., 2007). After that time, the formation of the fibrotic infarct 
scar is supposed to be finished, such that the MI is already in its healed stage, 
also commonly referred to as chronic MI. 

However, the tissue remodelling resulting from the MI healing process is 
not homogeneous. Surrounding the central fibrotic core, there exists a region 
that constitutes the transition between the infarct scar and the intact (healthy) 
myocardium named the border zone (BZ), also termed grey zone or peri-infarct 
zone. The BZ is composed of viable and still working myocardial tissue, although 
it exhibits an altered behaviour compared to the healthy myocardium. This 
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transition region is characterized by the presence of both EP and structural 
remodelling, since the electrical conduction properties and the composition of 
the myocardium in the BZ exhibit significant differences with respect to the 
healthy ventricular tissue. Concerning the EP properties, the AP of the surviving 
cardiomyocytes that populate the BZ are known to differ from the AP of healthy 
ventricular myocytes (Mendonca Costa et al., 2018). At the structural level, 
experimental studies have revealed the presence of fibrotic tissue infiltrated 
within the BZ, thus giving rise to an anomalous and heterogeneous myocardial 
composition in that region (de Jong et al., 2011; Rutherford et al., 2012; Seidel 
et al., 2016). Moreover, a slowing-down of the propagation of electrical 
wavefronts across the BZ has also been reported, probably as a consequence of 
the combination of electrical and structural remodelling (de Bakker et al., 1993; 
Nguyen et al., 2014). 

1.4.  Cardiac arrhythmias 
Cardiac arrhythmias are disorders of the electrical behaviour of the heart 

leading to abnormal rhythms of cardiac contraction, which can be slower or 
faster compared to the physiological rates, or simply irregular. Those 
arrhythmias characterized by an atypically slow cardiac rhythm are named 
bradyarrhythmias or bradycardias, which give rise to heart rates below 60 beats 
per minute (bpm). When the cardiac rhythm is too fast, typically above 100 bpm, 
such arrhythmias are termed tachyarrhythmias or tachycardias. On the other 
hand, fibrillation is an irregular and extremely rapid heart rhythm (more than 
300 bpm) that leads to an uncoordinated cardiac contraction, thus causing a 
poor mechanical performance of the heart as a blood pump. 
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The atria and the ventricles can suffer from cardiac arrhythmias 

separately, which are respectively known as supraventricular and ventricular 
arrhythmias. Therefore, a ventricular tachycardia (VT) is an atypically fast heart 
rate, although not necessarily irregular, originated by an abnormal activation of 
the ventricles that leads to an accelerated contraction rhythm. Indeed, VTs may 
be monomorphic or polymorphic, depending on whether the ventricular 
contraction is rapid and regular, or irregular as a consequence of a disorganized 
electrical activity in the ventricles. As shown in Figure 1.10, the collection of 
electrocardiographic signals registered on the body surface usually referred to 
as electrocardiogram (ECG), reveals how the patterns of electrical activity in the 
heart become increasingly disorganized when monomorphic VT, polymorphic 
VT and ventricular fibrillation are respectively compared. Monomorphic VTs 
show a regular morphological pattern, while the ECG signals associated with 
polymorphic VTs and ventricular fibrillations exhibit a morphology that is 
continuously changing as a result of an unorganized or even chaotic electrical 
activity in the ventricles. 

Figure 1.10. Electrocardiographic signals corresponding to the 12-lead ECG, revealing 
the electrical activity in the heart during monomorphic VT (left), polymorphic VT (centre) 
and ventricular fibrillation (right). Image adapted from (Issa et al., 2012) 
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1.4.1.  Mechanisms of cardiac arrhythmias 

The most common mechanisms leading to cardiac arrhythmias may be 
subdivided into focal activity due to abnormalities in the formation of the 
electrical impulses in the heart, such as abnormal automacity or triggered 
activity, and conduction disturbances giving rise to the phenomenon usually 
known as reentry (Antzelevitch and Burashnikov, 2011; Tse, 2016). 

Tachycardias induced by abnormal automaticity occur when cardiac cells 
different from the ones forming the two heart pacemakers (SA and AV nodes) 
begin to depolarize spontaneously, giving rise to the so-called ectopic beats. The 
propagation of such ectopic beats (also termed extrasystoles) across the cardiac 
tissue interfere with the normal electrical activity of the heart triggered from 
the CCS, thus leading to cardiac rhythm disorders. In the case of triggered 
activity, the cardiac cells exhibit an altered EP behaviour, such that they 
depolarize again during or immediately after the repolarization phase of a 
previous AP, giving rise to the so-called early and delayed afterdepolarizations, 
respectively. 

Reentry-mediated tachycardias, commonly referred to as reentrant 
tachycardias, arise from the presence of an obstacle, either anatomical or 
functional, that blocks the electrical propagation, or of regions exhibiting 
significant conduction delays. Under certain conditions, those conduction 
anomalies may give rise to the formation of circus-like electrical pathways, 
known as reentrant pathways or circuits, through which the activation 
wavefront can propagate repetitively, again and again, in an electrical loop 
around the propagation obstacle that leads to an accelerated cardiac rhythm. 

 

1.4.2.  Ventricular tachycardia related to chronic MI 

Several types of VT are specifically associated with each phase of the MI 
healing process, as well as with the acute myocardial ischemia (Janse and Wit, 
1989; Kaplinsky et al., 1981). Nevertheless, in this work we will focus on the 
reentrant monomorphic VT, which is a VT type whose mechanisms are typically 
related to the presence of a chronic (or healed) MI in the ventricular 



Chapter 1 

20 

myocardium (Aliot et al., 2009; de Bakker et al., 1988; Issa et al., 2012; Lazzara 
and Scherlag, 2003). 

 
In the presence of a chronic MI, the dense fibrotic infarct scar represents 

an anatomical/structural propagation obstacle. Furthermore, the geometry of 
an infarct scar can be highly irregular, which is usually intermingled with the 
viable (i.e., conducting) but remodelled myocardial tissue corresponding to the 
BZ. Several studies have described the BZ as a region of slowed conduction that 
is structurally heterogeneous, composed of surviving but electrically remodelled 
myocytes infiltrated with fibrotic patches and bundles extending from the core 
of compact fibrosis (infarct scar), thus resulting in a highly arrhythmogenic tissue 
(de Bakker et al., 1993; Nguyen et al., 2014; Rohr, 2012; Rutherford et al., 2012). 
Such a complex structure makes the infarcted region (including both infarct scar 

Figure 1.11. Mechanism of reentrant VTs related to chronic MI. Illustration showing the 
mechanisms leading to VT caused by reentry through the CCs that usually appear within 
the BZ due to its heterogeneous tissue composition. Images adapted from (Benito and 
Josephson, 2012) and  what-when-how.com/acp-medicine/ ventricular-arrhythmias-part-1/ 

http://what-when-how.com/acp-medicine/ventricular-arrhythmias-part-1/
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and BZ) highly prone to the formation of filaments or corridors of conducting 
tissue completely surrounded by non-excitable tissue (conduction obstacle). 
Frequently, those viable tissue strands crossing the infarct scar have two or 
more terminal ends that communicate between them different sites of the 
conducting myocardium that surrounds the infarcted area (see Figure 1.11). In 
such a case, these filaments electrically connect distant points of the conducting 
myocardium, forming the so-called isthmuses or conducting channels (CC). 
Hence, as illustrated in Figure 1.11, those CCs constitute electrical circuits that 
are potentially capable of supporting reentrant activities leading to VTs (Aliot et 
al., 2009; Benito and Josephson, 2012; de Bakker et al., 1988; de Chillou et al., 
2002). 

Therefore, several weeks after suffering from an acute ischaemic event 
causing a MI, when the healing process is already completed, and even months 
or years later (Issa et al., 2012), a significant number of patients develop life-
threatening VTs triggered by reentry through the CCs, as a consequence of the 
highly arrhythmogenic nature of remodelled and heterogeneous tissue that 
surrounds the non-conducting infarct scar, that is, the BZ. On the other hand, 
that kind of infarct-related reentrant VTs usually gives rise to a rapid but stable 
and well-organized electrical activity in the ventricles, since the activation 
wavefront travels repetitively following the same reentrant pathway supported 
by the CC responsible for the VT. Hence, such VTs are commonly identified as 
monomorphic VTs due to the stable and regular patterns observed in the 
morphology of the resulting ECG signals (see Figure 1.10) (Aliot et al., 2009; Issa 
et al., 2012). 

 

1.5.  Radiofrequency ablation 
The first clinical approach to treat most of cardiac arrhythmias relies on 

the administration of anti-arrhythmic drugs (Al-Khatib et al., 2018; Katritsis et 
al., 2017). Nonetheless, frequently those cardiac disorders cannot be properly 
controlled only by medication, since such drugs are in some cases unable to 
prevent recurrent arrhythmic episodes or are not well tolerated by the patient. 
In such cases, radiofrequency ablation (RFA) is a common alternative procedure 
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useful in the management of several types of both supraventricular (Calkins et 
al., 2012; Katritsis et al., 2017) and ventricular arrhythmias (Al-Khatib et al., 
2018; Aliot et al., 2009). 

 
RFA is a minimally invasive procedure performed by catheterization, 

which aims to electrically isolate regions triggering ectopic activity or to 
interrupt reentry circuits, in the case of reentrant arrhythmias. Using an ablation 
catheter (specific for ablation), the myocardial tissue is cauterized by applying 
radiofrequency energy (see Figure 1.12), such that the ablated tissue remains 
unable to propagate the electrical activity after the procedure (Morady, 1999). 
In the case of reentrant VTs related to chronic MI, the main objective of the RFA 
procedures is to interrupt or isolate the CCs that act as structural substrates for 
the reentry pathways (Aliot et al., 2009; Baldinger et al., 2016). Therefore, the 
CCs responsible for the infarct-related VTs are the RFA targets, aiming to 
permanently block the propagation through the reentrant circuits (Al-Khatib et 
al., 2018; Berruezo et al., 2015; Stevenson et al., 1993). 

 

Figure 1.12. Illustration of a RFA ablation procedure, showing the access of cardiac 
cavities via catheterization (left) and the myocardial tissue ablation by the application of 
radiofrequency (RF) energy through the ablation catheter. Image adapted from the 
website of The University of Chicago Medicine:  www.uchicagomedicine.org/conditions-
services/heart-vascular/arrhythmias/treatments/ablation-therapy 

http://www.uchicagomedicine.org/conditions-services/heart-vascular/arrhythmias/treatments/ablation-therapy
http://www.uchicagomedicine.org/conditions-services/heart-vascular/arrhythmias/treatments/ablation-therapy
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1.6.  Electroanatomical mapping 
Before any RFA procedure aiming for eliminating a cardiac arrhythmia, 

usually in the same session indeed, the electrophysiologists perform an 
intracardiac (i.e., invasive) EP study by means of diagnostic catheters, which are 
used to explore the cardiac cavities by recording the electrical activity of the 
myocardial tissue. The main goal of such EP study is to locate the origin of a focal 
activity or the location of a reentrant circuit based on the features the registered 
electrograms (EGM), that is, the electrical signals registered directly from the 
myocardium by the electrodes placed at the catheter tip (Arora and Kadish, 
1996). 

 
  

Figure 1.13. CARTO® 3 System. Screenshot of the console of CARTO® software, 
showing from two different perspectives the 3D surface representing the geometry of 
the LV endocardium, together with the EGM signals recorded by the intracavitary 
catheters. The 3D surface is rendered with transparency to allow the visualization of 
the catheter position, also displaying a colour-code corresponding to the peak-to-peak 
amplitude of the bipolar EGMs registered at each point in order to generate the 
electroanatomical map (EAM) of the LV. 
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The electroanatomical mapping (EAM) systems are advanced 
technological solutions that appeared in the late 90’s (Ben-Haim et al., 1996; 
Gepstein et al., 1997), which nowadays are commonly employed in the EP 
laboratory to guide RFA procedures aimed at treating both atrial (Calkins et al., 
2012) and ventricular arrhythmias (Aliot et al., 2009; Priori et al., 2015). Those 
EAM systems, such as CARTO® 3 (Biosense Webster, Diamond Bar, CA, USA)1, 
Rhythmia HDx™ (Boston Scientific, Marlborough, MA, USA)2 or EnSite 
Precision™ (Abbott, Chicago, Illinois, USA)3, have the ability to display the 
recorded EP data onto three-dimensional (3D) surfaces that represent the 
geometry of the mapped cardiac chambers, as observed in Figure 1.13. Such 3D 
surfaces are reconstructed thanks to the accurate tracking of the catheter 
position in every moment, which is performed by means of systems based on 
electromagnetic fields, rather than the traditional approach based on 
fluoroscopy (Ben-Haim et al., 1996; Gepstein et al., 1997). Therefore, EAM 
systems enable a seamless and really useful integration of the EP data recorded 
by the catheter with the spatial information related to the 3D cardiac geometry. 
Every registered EGM is linked to a particular point of the reconstructed 3D 
surfaces, thus generating the so-called electroanatomical maps (EAMs) by 
displaying the measured EP data mapped onto the 3D representations of the 
cardiac cavities (see Figure 1.13). Furthermore, these systems allow an 
important reduction of the radiation exposure due to fluoroscopy, both for the 
patient and for the health personnel performing the EP study. 

In the case of infarct-related VTs, EAM systems are considered as a really 
helpful tool to identify the precise location of CCs as RFA targets (Al-Khatib et 
al., 2018; Aliot et al., 2009), based on the abnormal features of the EGM 
registered from the infarcted region (Bogun et al., 2005; Gardner et al., 1985) in 
combination with its accurate position represented on the 3D reconstruction of 
the mapped cardiac chambers. 

                                                           
1 CARTO® 3 System:     www.biosensewebster.com/products/carto-3.aspx 
2 Rhythmia HDx™ Mapping System:    www.bostonscientific.com/en-US/products/capital-
equipment--mapping-and-navigation/rhythmia-mapping-system.html 
3 EnSite Precision™ Cardiac Mapping System:    www.cardiovascular.abbott/int/en/hcp/ 
products/electrophysiology/ensite-precision-cardiac-mapping-system.html 

http://www.biosensewebster.com/products/carto-3.aspx
http://www.bostonscientific.com/en-US/products/capital-equipment--mapping-and-navigation/rhythmia-mapping-system.html
http://www.bostonscientific.com/en-US/products/capital-equipment--mapping-and-navigation/rhythmia-mapping-system.html
http://www.cardiovascular.abbott/int/en/hcp/%20products/electrophysiology/ensite-precision-cardiac-mapping-system.html
http://www.cardiovascular.abbott/int/en/hcp/%20products/electrophysiology/ensite-precision-cardiac-mapping-system.html
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1.7.  Three-dimensional cardiac imaging 
Currently, 3D imaging modalities, such as computed tomography (CT) or 

magnetic resonance imaging (MRI), are widely used in clinical cardiology for the 
assessment of both cardiac structure and function (Constantine et al., 2004; 
Hundley et al., 2010; Sheth et al., 2015). However, due its position and 
orientation within the thorax, the heart is not aligned with the orthogonal axes 
of the human body: axial, sagittal and coronal planes. Therefore, the 3D images 
aimed at exploring the heart are usually reformatted (or directly acquired when 
possible) into the specific cardiac planes represented in Figure 1.14: short-axis, 
long-axis or two-chamber view, and four-chamber view, which correspond to 
the axial, sagittal and coronal planes of the heart, respectively. 

In the context of MI and their related VTs, the use of various modalities 
of 3D cardiac imaging also represents a common tool for diagnosis and therapy 
planning in the current clinical workflow (Baritussio et al., 2018; Mahida et al., 
2017). Those 3D imaging datasets allow the cardiologists to evaluate non-
invasively the myocardial ischaemic injury, as well as the contractility and 
mechanical performance of the infarcted ventricles. 

Figure 1.14. (a) Representation of the three orthogonal planes of the human body: axial, 
sagittal and coronal. (b) Illustration showing the orientation of the longitudinal axis of 
the heart with respect to the longitudinal axis of the body. (c) Definition of the three 
orthogonal planes of the human heart: short-axis (axial), long-axis or two-chamber 
plane (sagittal) and four-chamber plane (coronal). 
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Delayed enhancement-MRI (DE-MRI), also termed late gadolinium 
enhancement (LGE), is a MRI modality that enables assessing in-vivo and non-
invasively the precise location and extension of the damaged tissue (including 
the infarct scar and BZ) due to the hyper-enhancement of the infarcted region 
in the images (see Figure 1.15) caused by a gadolinium-based contrast agent 
(Doltra et al., 2013; Fieno et al., 2000; Kim et al., 1999a). In fact, cardiac DE-MRI 
is currently considered as the gold-standard test for in-vivo assessment of 
fibrotic scars and myocardial viability after MI in clinical settings (Jamiel et al., 
2017; Mahida et al., 2017; Patel et al., 2017). In combination with the contrast 
agent, this MRI modality provides a substrate characterization in the different 
stages of the MI, from the acute ischaemia to chronic MI, that has shown close 
correlation with histopathological analyses (Amado et al., 2004; Fieno et al., 
2000; Kim et al., 1999a; Wagner et al., 2003). 

 
 

Figure 1.15. Slices from a cardiac DE-MRI dataset, oriented in the three cardiac planes: 
short-axis (left), long-axis or two-chamber view (centre) and four-chamber plane (right). 
Red arrows indicate the hyper-enhanced regions in the images resulting from the 
presence of the gadolinium-based contrast agent within the infarcted myocardium. LV: 
left ventricle; RV: right ventricle; LA: left atrium; RA: right atrium. 
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Chapter 2 

Motivation and Objectives 

In this second chapter, we begin by outlining the background and the 
motivation that promoted the conception and the implementation of this thesis. 
After that, we describe the objectives pursued by this thesis, both the main 
general aim and the specific goals that must be fulfilled in order to reach the 
main objective. Lastly, we present a description of the structure of this 
document aiming to give an overview of how this thesis has been organized. 

2.1.  Motivation 
Despite the medical and technological advances, cardiovascular disease 

represents the leading cause of both mortality and morbidity in the world, being 
responsible for nearly 18 million deaths annually worldwide (WHO, 2018). A 
large number of deaths related to cardiac malfunction result from rapid 
tachycardias developed on the structurally diseased (remodelled) ventricular 
myocardium, such as ventricular fibrillation, which usually leads to sudden 
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cardiac death (Priori et al., 2001, 2015). Moreover, the morbidity associated 
with cardiac electrical disorders (i.e., cardiac arrhythmias) constitute a major 
burden on the health care system worldwide. Only in Europe the annual health 
care direct costs derived from cardiovascular disease is estimated to be of €111 
billion, increasing up to €210 billion when the overall impact on European 
economy is considered (Wilkins et al., 2017). Novel electrical therapies have 
rapidly proven to be cost effective and have become part of the international 
recommendations. However, the large amount of disparate data that may be 
currently considered by the electrophysiologists is overwhelming and, 
therefore, remain very difficult to integrate in order to be fruitfully used for 
patients’ stratification and therapies’ optimization. Hence, the high economical 
and epidemiologic burden associated with cardiovascular disease worldwide 
demands new methodologies and technology-based tools able to improve 
patient management and therapy planning. 

Among cardiovascular diseases, the ischaemic heart disease (or coronary 
artery disease) is the most common one (Abubakar et al., 2015; Nowbar et al., 
2014). After surviving to an episode of acute myocardial infarction (MI) due to a 
coronary artery occlusion, a considerable number of patients develop 
potentially lethal ventricular tachycardias (VT) during the chronic stage of the 
MI, that is, weeks, months or even years after the acute ischaemic event (Issa et 
al., 2012). Those VTs related to chronic MI are usually triggered by reentry 
(reentrant VTs), as a consequence of the highly arrhythmogenic nature of the 
heterogeneous and remodelled tissue composing the border zone (BZ) that 
surrounds the infarct scar (Aliot et al., 2009; de Bakker et al., 1988, 1993; Lazzara 
and Scherlag, 2003; Nguyen et al., 2014). Such infarct-related reentrant VTs are 
typically linked to well-defined reentrant circuits mediated by slow conducting 
channels (CC), formed by strands of surviving myocytes that traverse the non-
conducting infarct scar, thus leading to monomorphic VTs (Aliot et al., 2009; de 
Bakker et al., 1988; Issa et al., 2012). 

In those cases in which the anti-arrhythmic medication fails to prevent 
recurrent VT episodes, radiofrequency ablation (RFA) is commonly used in order 
to interrupt permanently the electrical conduction across the CCs acting as 
structural substrates for the reentrant circuit associated with the VT, thus 
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avoiding the reentrant activity responsible for the infarct-related VT (Baldinger 
et al., 2016; Berruezo et al., 2015; de Chillou et al., 2002; Stevenson et al., 1993; 
Wilber, 2008). 

Currently, cardiac delayed enhancement-MRI (DE-MRI) is widely used to 
explore the infarcted myocardium prior to the RFA procedures, since it provides 
a helpful and non-invasive characterization of the VT substrate, even allowing 
to differentiate between the infarct scar and the viable myocardial tissue 
corresponding to the BZ. Indeed, the potential usefulness of the pre-procedural 
substrate characterization and CCs delineation based on DE-MRI for planning 
and guiding ablation procedures aimed at infarct-related VTs has already been 
assessed in numerous studies (Andreu et al., 2011, 2015, 2017; Ashikaga et al., 
2007; Fernández-Armenta et al., 2013; Perez-David et al., 2011; Soto-Iglesias et 
al., 2016; Wijnmaalen et al., 2011; Yamashita et al., 2016). 

Following the usual approach, the patients suffering from recurrent 
infarct-related VTs are normally subject to an invasive electrophysiological (EP) 
study performed via catheterization immediately before the RFA procedure. 
During those EP studies, the interventional electrophysiologists try to induce the 
clinical VT previously undergone by the patient, by means of pacing protocols 
applied at selected sites of the ventricular myocardium. A positive induction of 
a monomorphic VT is considered as an evidence of the presence of a reentrant 
pathway responsible for the VT, likely mediated by a CC associated with the 
chronically infarcted myocardium (Pedersen et al., 2014; Priori et al., 2015). 
Then, the specialists usually compare the morphology of the ECG resulting from 
the induced VT with the ECG registered during the clinical VT episodes in order 
to discern whether both VTs match or, on the contrary, they are different VTs. 
In the case of positive correlation, the physicians aim to locate and ablate the 
CCs linked to the clinical VT in order to block the propagation through the 
reentrant circuit, thereby avoiding the reentry and, consequently, the recurrent 
VT onset. 

The electroanatomical mapping (EAM) systems are nowadays of great 
help in locating the critical CCs and defining the optimal ablation targets, 
because of their ability to integrate in an intuitive 3D representation the EP data 
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and the geometrical information registered by the diagnostic catheters during 
the EP study. They are especially helpful when the clinical VTs are unmappable 
due to non-inducibility (pacing protocols fail to induce the VT) or hemodynamic 
instability, since the EAM maps allow to correlate every registered electrogram 
(EGM) to a particular point onto the 3D representation of the mapped cardiac 
cavity, including those EGMs showing abnormal features typically associated 
with the CCs (Aliot et al., 2009; Marchlinski et al., 2000; Priori et al., 2015). 
Nevertheless, these EP studies are invasive, risky and very time-consuming. 
Moreover, despite the use of EAM systems, they show a relatively low success 
rate, since up to 50% of patients experience recurrent VT episodes after the RFA 
procedure, consequently needing for one or more successive re-interventions 
(Aliot et al., 2009; Baldinger et al., 2016; Gerstenfeld, 2013; Yokokawa et al., 
2013). 

In contrast to the invasive EP studies guided by EAM systems, an 
alternative non-invasive approach for the pre-procedural exploration of the 
target substrate, aiming for planning RFA procedures, is the use of personalized 
image-based 3D computational cardiac models able to perform accurate 
simulations of the EP behaviour of the heart. As a result of the intensive research 
in the field of computational cardiac EP, in the last decade these simulation-
based strategies have exhibited the potential to carry out reliable in-silico EP 
studies, which might be of great help in gaining insights into the mechanisms 
underlying to a wide variety of cardiac disorders (Arevalo et al., 2016; Krueger 
et al., 2013a; Lopez-Perez et al., 2015; Smith et al., 2011; Trayanova et al., 2012, 
2017; Trayanova and Boyle, 2013; Vigmond et al., 2009). Hence, these non-
invasive approaches could potentially improve the understanding and 
prediction capability of a number of pathological conditions related to cardiac 
EP and, therefore, aid in developing better strategies for the diagnosis, therapy 
planning and management of numerous cardiac diseases. 

Nonetheless, despite the considerable potential shown by those in-silico 
approaches, a number of important questions related to the necessary level of 
detail required by the computational cardiac models remain unanswered. Such 
issues concern the degree of anatomical and structural detail at organ and tissue 
level, respectively, as well as the biophysical faithfulness of the cardiac EP 
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modelling strategies. In the particular case of chronic MI, for instance, the 
influence on the mechanisms related to the onset and sustenance of reentrant 
VTs, derived from the specific manner in which the microscopic structural and 
functional tissue remodelling in the infarct BZ are included in the macroscopic 
3D models, still has to be fully investigated. In fact, the personalization and 
modelling of certain key components of the computational cardiac models are 
still challenging, as it is the case of the critical region of the infarct BZ (Mendonca 
Costa et al., 2018). On the other hand, the degree of model personalization 
necessary for accurate simulation of patient-specific VT episodes also remains a 
matter of debate. The question concerning the requirement of only 
personalized cardiac anatomy or, on the contrary, the additional need of 
incorporating functional personalization related to patient-specific cardiac EP, 
must also be clarified as an essential feature for the construction of 3D cardiac 
computational models aiming for therapy planning based on personalized in-
silico EP studies. 

 

2.2.  Objectives 
The main general objective of this doctoral thesis is to develop a full 

pipeline, exclusively based on non-invasive clinical data, to generate patient-
specific 3D computational models of infarcted ventricles and torso able to 
perform personalized in-silico EP studies. Such studies must include 
computational simulation of cardiac EP at both organ (ventricles) and torso level 
in order to obtain the simulated ECGs, since their results must be compared to 
the non-invasive standard clinical recordings of the patient (i.e., the patient’s 
real ECG) aiming to replicate the decision-making process commonly followed 
by the specialists in the EP laboratory based on comparing the ECGs from clinical 
and induced VTs. The final goal is to develop a non-invasive strategy based on 
computational simulation capable of aiding electrophysiologists in the planning 
of RFA procedures aimed at reentrant VTs related to chronic MI, by means of 
pre-procedural (i.e., prospective) personalized in-silico EP studies. 
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2.2.1.  Specific objectives 

To achieve the main general objective of this thesis, we divided that 
major goal into the specific (partial) objectives listed below. 

• Comprehensive review of the existing bibliography related to the 
development of 3D cardiac computational models aimed at biophysical 
simulation, not restricted to, but specially focused on, the simulation of 
cardiac EP. This task was planned as the first specific objective of this 
thesis aiming to gain a deep knowledge about all the methods used and 
the features included in the 3D cardiac models previously developed for 
biophysical simulation, thereby serving as a guide to ensure a proper 
development of the subsequent stages of this thesis. 
 

• Definition of the non-invasive clinical datasets required to construct 
patient-specific 3D models of infarcted ventricles and torso. 

 
• Design and implementation of an approach to generate personalized 

and detailed 3D models of infarcted ventricles able to perform 
simulations of cardiac EP. 
 
 Definition and implementation of a methodology to obtain 3D 

reconstructions of patient-specific ventricles anatomy from clinical 
DE-MRI datasets. 

 
 Definition and implementation of a methodology to obtain 3D 

reconstructions of patient-specific infarction geometry from 
clinical DE-MRI datasets, including the infarct scar and the BZ. 

 
 Definition and implementation of a methodology to incorporate 

the cardiac fibres orientation into the 3D ventricular model. 

• Development and implementation of a novel image-based approach to 
include personalized patterns of structural remodelling within the 
region of the BZ. 
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• Development and implementation of a methodology to interpret the EP 
data invasively registered via CARTO® 3 System and to integrate them 
with the constructed 3D ventricular models, only for testing and 
validating purposes. 
 

• Design and implementation of a strategy to generate personalized 3D 
models of the torso from clinical imaging datasets. 
 

• Design and implementation of a strategy to model and reproduce, by 
using computational simulation, the EP behaviour of the following 
cardiac tissues in simulations at the organ level. 
 
 Healthy ventricular myocardium. 

 
 Dense fibrotic tissue, corresponding to the infarct scar. 

 
 Heterogeneous tissue corresponding to the BZ, defining several 

modelling approaches including different degrees of both 
electrical and structural remodelling. 

 
• Design and implementation of a methodology to compute the simulated 

ECGs using the built 3D torso models. 
 

• Definition of a simulation pipeline to assess the VT inducibility by means 
of personalized in-silico EP studies, making use of the 3D models of 
infarcted ventricles and torso previously developed. 
 

• Performance of a simulation case study aiming to assess the feasibility 
and the ability of the proposed approach to: 

 
 Reproduce the patient’s cardiac EP during sinus rhythm, 

including the ECG, as a first validation step for the developed 
approach. 
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 Replicate the infarct-related clinical VTs suffered by the patient, 
including the ECG, in order to test the predictive capability and 
accuracy of the developed approach. 
 

 Locate the CCs responsible for the clinical VTs to help in the 
definition of the optimal ablation targets prior to the actual RFA 
procedure, in order to assess the potential usefulness in therapy 
planning of the developed approach. 
 

 Additionally, this simulation case study will allow evaluating the 
arrhythmogenic impact of the different modelling approaches 
proposed for the BZ. 

 

2.3.  Structure of the thesis 
In this final section of this second chapter, we give an overview of the 

structure of this doctoral thesis, briefly describing the content of each of their 
main sections. This thesis document is composed of nine chapters, which are 
organized as follows. 

Chapter 1 – Introduction briefly addressed a number of concepts that 
compose the fundamentals of this thesis. Those concepts had to be clearly 
introduced, since we will be referring to them throughout the entire thesis 
document. 

Chapter 2 – Motivation and Objectives has exposed the rationale that 
promoted the development of this thesis, as well as the main goals that are 
expected to achieve. 

Chapter 3 – Three-dimensional Cardiac Computational Modelling 
presents a thorough review on the field of 3D cardiac models aimed at 
biophysical simulation, describing the evolution through the last decades of the 
features and methods associated with such models, with a special focus on their 
application to computational cardiac EP. It also presents a comprehensive table 
of 3D cardiac models, including detailed information about the features and 
methods related to each of the 60 models that we revised exhaustively. 
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Chapter 4 – Clinical Data describes the clinical dataset that we used in 
this thesis, together with the main methods that we employed in order to pre-
process those data. 

Chapter 5 – Three-dimensional Computational Models of Infarcted 
Ventricles and Torso presents a detailed description of the pipeline that we 
designed aiming to build patient-specific 3D models of infarcted ventricles and 
torso from clinical imaging datasets. 

Chapter 6 – Electrophysiological Modelling is devoted to describe the EP 
models, along with all the assumptions and strategies that we used to reproduce 
the human cardiac EP at both organ (ventricles) and body level by computational 
simulation. 

Chapter 7 – Personalized Electrophysiological Study using Computational 
Simulation provides a detailed description of the simulation pipeline proposed 
in this thesis to perform personalized EP studies by computational simulation, 
aiming for therapy planning in cases of infarct-related VTs. It also presents the 
results obtained from the simulation case study that we conducted in order to 
test the developed approach and, furthermore, a preliminary discussion about 
those results. 

Chapter 8 – Discussion presents a comprehensive critical discussion that 
addresses all the concerns raised in this thesis and compares it to the related 
literature. That chapter deals with the numerous methods used and decisions 
made in order to construct the 3D models and simulate the cardiac EP, as well 
as with the results obtained from the computational simulations performed, 
along with the conclusions derived from them. 

Finally, Chapter 9 – Conclusions and Perspectives exposes the main 
overall conclusions derived from the final results of this doctoral thesis, as well 
as a brief reflection on the future perspectives of the image-based simulation 
approach proposed, including the major improvements that it requires. 
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Chapter 3 

Three-Dimensional Cardiac 
Computational Modelling 

This chapter is based on a review article entitled “Three-dimensional 
cardiac computational modelling: methods, features and applications” (Lopez-
Perez et al., 2015), which was written by the author and both supervisors of this 
doctoral thesis and published in 2015 in the journal BioMedical Engineering 
OnLine, a peer-reviewed journal indexed in the JCR (journal citation reports). 
That publication was the result of the fulfilment of the task planned as the first 
objective for this thesis (see Chapter 2), which was a comprehensive analysis of 
the current state-of-the-art on three-dimensional (3D) cardiac computational 
modelling, as well as a thorough study of the evolution of such field of research 
from its beginning. 
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3.1.  Introduction 
This chapter presents a review of the methods used to construct 3D 

cardiac computational models, from their earliest developments (about fifty 
years ago) until today, also discussing their advantages and applicability to 
different areas. Since reviewing the entire literature related to the development 
of 3D cardiac computational models would be an insurmountable task, we 
conducted a systematic review based on an extensive bibliographic search, from 
which we finally chose 60 cardiac models. We consider that those 60 models are 
a representative set of examples that are suitable to outline the evolution of 3D 
cardiac computational modelling from its dawn. Therefore, we thoroughly 
analysed those representative models to explore the evolution of methods used 
to develop 3D cardiac models over the last decades. 

As a main result of this review work, we produced a detailed summary 
table (see Table 3.2 at the end of this chapter) that lists in chronological order 
the 60 reviewed 3D cardiac computational models, which were developed and 
published over the last fifty years. This table provides information about the 
main features and specific methods used in the different stages of the 
development process of each reviewed model, also describing their information 
sources and online availability. 

This chapter is organised as follows. First, we give a very brief overview 
of the current state of the art of 3D cardiac computational modelling. Then, we 
outline the evolution of 3D cardiac models from the ‘early era’ to the present 
days, focusing on the methods used for the computational reconstruction of 
cardiac anatomy. Later, we address the different stages of the development 
process of 3D cardiac models (3D reconstruction of cardiac anatomy, meshing, 
etc.), reviewing the available methods to construct models and to include 
certain heart features (fibre orientation, cardiac conduction system, ischaemic 
scars, etc.) in those computational models aimed at biophysical simulation, with 
especial attention to cardiac electrophysiology (EP). The next section briefly 
describes the available personalization approaches in 3D cardiac computational 
modelling. After that, we address some uses of 3D cardiac models by presenting 
examples related to several specific applications, focusing on cardiac EP 
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simulation and model-based image segmentation. Finally, this chapter exposes 
the table of 3D cardiac computational models, summarizing the key features of 
the 60 models the we thoroughly reviewed (Table 3.2). 

 

3.2.  Overview 
Some decades ago, the early 3D cardiac computational models only 

enabled to perform very simple computational simulations of cardiac EP or 
cardiac mechanics analysis. Nevertheless, at present the combination of 3D 
computational models and biophysical simulation can help to interpret jointly a 
variety of experimental data, thus contributing to the understanding, diagnosis 
and treatment of complex diseases such as cardiac arrhythmias. For this reason, 
3D cardiac computational modelling, sometimes also referred to as 
computational cardiology, is currently a rising field of research. 

Nowadays, 3D cardiac models are becoming increasingly complex and 
are being used in several areas, such as cardiac image segmentation, statistical 
modelling of cardiac anatomy, patient risk stratification or surgical planning. In 
fact, some model-based methods are already being tested in clinical 
environments for diverse applications: diagnosis based on automated 3D 
cardiac image analysis, therapy planning and guidance in procedures such as 
radiofrequency ablation (RFA), etc. Furthermore, the great progress of medical 
imaging technologies over the last decades has allowed the evolution from 
generic 3D cardiac models to detailed patient-specific models, which are 
capable of faithfully representing the anatomy and different cardiac features of 
a given alive subject. 

In conclusion, the integration of advanced 3D cardiac computational 
models into clinical environments is becoming more feasible due to the 
evolution of computing resources and the intensive research in fields such as 
computational simulation of cardiac EP and mechanics or model-based cardiac 
image analysis. 

 



Chapter 3 

40 

3.3.  Evolution of 3D models of cardiac anatomy 
The first step in the development process of a 3D cardiac model is the 

computational reconstruction of the heart anatomy by generating a 3D cardiac 
geometry. In this section, we present a brief survey of the evolution of 3D 
cardiac models, focusing on the methods used to build the computational 
reconstruction of cardiac anatomy, and highlighting the achieved level of 
anatomical detail. 

 
 

3.3.1.  Generic models 

The early 3D computational models of cardiac anatomy were simplistic 
models based on geometric shapes. As shown in Figure 3.1, most of them only 
included the left ventricle (LV), represented by two concentric ellipsoids 
truncated at the base level to roughly approximate the shape of the LV (Colli 

Figure 3.1. LV model based on ellipsoids of revolution truncated at the base, showing 
the subdivision of the ventricular wall into 198 hexahedral finite-elements. Reproduced 
from (Janz and Grimm, 1972) 
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Franzone et al., 1998; Ghista and Sandler, 1969; Janz and Grimm, 1972; 
Koushanpour and Collings, 1966; Van den Broek and Van den Broek, 1980). 
However, this approach is still in use for specific applications in which the 
anatomical realism is not crucial for the purpose of the model (Kerckhoffs et al., 
2003; Sermesant et al., 2006b). 

 
Later, anatomical models appeared aiming to represent cardiac anatomy 

in a more realistic fashion, although still with a low level of anatomical detail 
due to the poor quality of the data used to build them. They were usually 
constructed by manual drawing from histo-anatomical slices (Horan et al., 1978; 
Miller and Geselowitz, 1978; Okajima et al., 1968; Vetter and McCulloch, 1998) 
or from measurements taken on explanted hearts (Nielsen et al., 1991; Stevens 
et al., 2003), or by segmenting pictures of histo-anatomical slices (Aoki et al., 
1987; Freudenberg et al., 2000; Thakor and Eisenman, 1989; Trunk et al., 2007). 
Among these anatomical models, the most representative ones are two bi-
ventricular models highly referenced in the literature and very reused in later 
works. They are the rabbit model from University of California San Diego (Vetter 

Figure 3.2. Rabbit bi-ventricular model from University of California San Diego. Anterior 
(left) and postero-lateral (right) views of the fitted 3D finite-element mesh of the model 
showing interpolated fibres displayed on epicardial and endocardial surfaces. Adapted 
from (Vetter and McCulloch, 1998) 
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and McCulloch, 1998) (see Figure 3.2) and the canine model from University of 
Auckland (Nielsen et al., 1991). Their main contribution was the inclusion of 
realistic cardiac fibre orientation obtained from experimental measurements. 

The development of computer-aided design (CAD) tools enabled the 
construction of 3D cardiac models without any direct source of anatomical 
information (Bodin and Kuz’min, 2006; Harrild and Henriquez, 2000; Ruiz-Villa 
et al., 2009; Siregar et al., 1998). Their developers just took from the literature 
measurements of some anatomical details, such as chambers volumes or wall 
thickness, in order to virtually generate the model geometry. Figure 3.3 shows 
an example of a whole-heart CAD model (Siregar et al., 1998). 

 
Atrial 3D models began proliferating later than ventricular ones for 

several reasons, such as the challenges associated with its 3D reconstruction due 
to the high complexity and inter-subject variability of atrial anatomy. Figure 3.4 

Figure 3.3. Whole-heart CAD model. (a) Different views of the volume rendering of the 
3D cardiac model. (b) Wireframe representation showing the cardiac conduction system 
(CCS) included in the 3D model. (c) Wireframe representation showing the main cardiac 
vessels (aorta, pulmonary trunk and superior vena cava). Reproduced from (Siregar et 
al., 1998) 
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shows the first 3D cardiac computational model of human atria developed in 
2000 (Harrild and Henriquez, 2000). Probably, the higher lethality of ventricular 
disorders compared to atrial ones could be another important reason for this 
delay in the appearance of atrial models aimed at biophysical simulation. It 
seems logical to think that early 3D cardiac modellers preferred to devote their 
efforts to studies related to the most clinically relevant issues. Nevertheless, all 
kinds of model described above are present among reviewed 3D atrial models: 
geometric models (Blanc et al., 2001), CAD models (Harrild and Henriquez, 2000; 
Ruiz-Villa et al., 2009) and anatomical models from histo-anatomical slices 
(Seemann et al., 2006; Zemlin et al., 2001; Zhao et al., 2013). 

 
 

3.3.2.  Medical image-based models 

The evolution of medical imaging technologies introduced the possibility 
of building realistic 3D cardiac models from either in-vivo or ex-vivo images, as 
demonstrated by early works (Creswell et al., 1992) and (Lorange and Gulrajani, 
1993), respectively. Medical image-based 3D cardiac models have proliferated 
over the last two decades, due to the advance and consolidation of techniques 

Figure 3.4. Anterior (left) and posterior (right) views of a CAD model corresponding to 
the first 3D cardiac computational model of human atria. RA: right atrium. LA: left 
atrium. pects: pectinate muscles. SVC: superior vena cava. IVC: inferior vena cava. LPV: 
left pulmonary vein. RPV: right pulmonary vein. BB: Bachmann’s bundle. CT: crista 
terminalis. Reproduced from (Harrild and Henriquez, 2000) 
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such as magnetic resonance imaging (MRI) (Arevalo et al., 2008; Gurev et al., 
2011; Heidenreich et al., 2010a; Helm et al., 2005; Plotkowiak et al., 2008; Virag 
et al., 2002; Winslow et al., 2000) and computed tomography (CT) (Aslanidi et 
al., 2013; Deng et al., 2012), what led to the rise of 3D cardiac computational 
modelling. As will be discussed below, the development of new imaging 
modalities capable of providing structural and functional information of cardiac 
tissue was also a major breakthrough in 3D cardiac computational modelling. 

 
The increasing availability of in-vivo cardiac images, together with the 

rising trend towards personalized medicine, led to the appearance of patient-
specific models. They represent the cardiac anatomy of a specific human subject 
derived from in-vivo images, usually MRI (Appleton et al., 2006; Haddad et al., 
2005; Niederer et al., 2009) or CT (Romero et al., 2010; Yang et al., 2006). Figure 
3.5 shows a patient-specific bi-ventricular model built from in-vivo MRI 
(Niederer et al., 2009). Building this kind of model requires imaging techniques 
synchronised with the ECG and breathing in order to overcome the noise and 
motion artefacts due to the cardiac cycle and breathing movements. Such 
techniques have also enabled building dynamic models, which include the intra-
subject anatomical variations of the heart due to the cardiac cycle (Appleton et 
al., 2006; Haddad et al., 2005). 

Figure 3.5. Patient-specific bi-ventricular model. (a) Set of in-vivo cardiac MRI slices 
showing manually segmented epicardial contour. (b) 3D cardiac model overlaid on the 
MRI stack. (c) Finite-element mesh with tri-cubic Hermite elements showing lines 
corresponding to the main direction of cardiac fibre orientation at epicardial (yellow), 
mid-wall (green) and endocardial (purple) level. Reproduced from (Niederer et al., 2009) 
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Cardiac atlases also appeared thanks to the increasing availability of in-
vivo images. This kind of cardiac models are assembled by averaging several 3D 
cardiac image datasets from a population of subjects, thus generating a mean 
3D cardiac image or shape (for further details about cardiac atlases see section 
3.6.1). For instance, Lorenzo-Valdés et al. developed a bi-ventricular cardiac 
atlas from 14 manually segmented cine-MRI images (Lorenzo-Valdés et al., 
2002) and Ordas et al. constructed a whole-heart atlas using in-vivo multislice-
CT (MS-CT) images from 100 human subjects (Ordas et al., 2007) (see Figure 3.6). 

 
There are a few highly-detailed bi-ventricular models that deserve a 

special mention. All these models were built from very high-resolution ex-vivo 
MRI datasets (   ̴25 µm per slice) from small mammalian hearts (rat, rabbit, etc.), 
showing an outstanding level of anatomical detail, including papillary muscles, 
endocardial trabeculations and even intra-myocardial vessels. Some of them 
also include detailed information at the tissue level provided by histological 
sections with specific staining (Burton et al., 2006; Plank et al., 2009). Figure 3.7 
shows an example of a highly detailed rabbit bi-ventricular model (Bishop et al., 
2010). 

Figure 3.6. Whole-heart cardiac atlas constructed using MS-CT images from 100 human 
subjects. (a) Wireframe representation of the atlas showing the representation of the 
CCS included in the model at ventricular (left) and atrial level (right). (b) Wireframe 
representation showing the model of the main coronary vessels included in the cardiac 
atlas. (c) The four principal modes of variation of the whole-heart atlas. Adapted from 
(Ordas et al., 2007) 
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Figure 3.7. Highly detailed rabbit bi-ventricular model. (a) Sample of slices in different 
cardiac planes of very high-resolution ex-vivo MRI. (b) 3D rendering of the model, 
showing its high level of anatomical detail. (c) Detail of the tetrahedral finite-element 
mesh, showing the papillary muscles (green) and even the chordae tendineae (blue). 
Adapted from (Bishop et al., 2010) 
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Figure 3.8. Schematic 
representation of the 
pipeline to build a 3D 
cardiac computational. 
This flowchart shows the 
main stages in the 
construction process of a 
3D cardiac model aimed 
at biophysical simulation: 
3D cardiac geometry 
generation, meshing, CCS 
generation, myocardial 
structure generation, 
biophysical modelling 
(cardiac EP and 
biomechanics) and 
cardiac pathology 
modelling. Lines and 
arrows depict the 
relationships between 
different stages by means 
of partial results (grey 
boxes) and coupling steps 
(yellow boxes). For 
pathology modelling, the 
diagram shows different 
types (light orange 
boxes) and subtypes 
(brown boxes) of cardiac 
pathology that can be 
included in a cardiac 
computational model, as 
well as the stage of the 
development process in 
which each kind of 
pathology should be 
consider. Reproduced 
from (Lopez-Perez et al., 
2015) 
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3.4.  Elements of a 3D cardiac computational model 
In addition to the 3D geometry representing the cardiac anatomy, either 

fully or partially, every 3D cardiac computational model may also include many 
other elements: specific properties related to the cardiac tissue architecture, 
pathologies affecting the myocardial structure, biophysical models representing 
the EP or mechanical behaviour of the heart, etc.  

In this section, we review all the components needed to build a complete 
3D computational model of the heart aimed at biophysical simulation, paying 
special attention to cardiac EP. We also discuss which of those elements are 
necessary depending on the final purpose of the model, as well as the different 
existing approaches to incorporate them into the model. We assess the 
challenges associated with each step of the building process of a model, from 
the processing of raw clinical or biological data to the final application, including 
image segmentation, incorporation of cardiac substructures or volume meshing, 
among others. 

 

3.4.1.  Geometry 

As shown in Figure 3.8, the generation of a 3D cardiac geometry, usually 
represented by a 3D surface mesh, is the very first step in the construction 
process of any 3D cardiac computational model. The geometry of the heart is a 
key feature playing an important role in its electrical and mechanical behaviour, 
so 3D cardiac models must represent it accurately and realistically. 

In general, the geometry of 3D models usually represents one or several 
cardiac chambers (LV, bi-ventricular, atrial or whole-heart models). It can also 
include other anatomical structures, such as the great cardiac vessels, including 
outflow and/or inflow tracts (Ecabert et al., 2008, 2011; Trunk et al., 2007), the 
fibrous annulus of atrioventricular valves (Schulte et al., 2001; Wenk et al., 
2010), part of the coronary tree,  or some endocardial details such as papillary 
muscles and trabeculae carneae for ventricles or crista terminalis, pectinate 
muscles and fossa ovalis for atria (Ruiz-Villa et al., 2009; Seemann et al., 2006; 
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Figure 3.9. 3D cardiac geometry generation stage in the development process of 3D 
cardiac computational models. Diagram depicting the main alternatives to generate the 
3D surface mesh that represents the cardiac geometry, showing the sources of 
anatomical information (blue boxes) and the methods (green boxes) used for this task, 
including their possible options (brown boxes), as well as the kind of model (orange 
boxes) obtained by means of each method. Adapted from (Lopez-Perez et al., 2015) 

Zhao et al., 2013). However, it is important to note that the anatomical realism 
and accuracy required by a particular 3D cardiac model strongly depends on the 
intended final application, as well as its extension, in terms of cardiac chambers 
and structures included in the model. A study conducted by Bishop et al. 
concluded that the presence of trabeculations in a bi-ventricular model for EP 
simulation provides shortcut paths for excitation causing regional differences in 
electrical activation patterns after pacing compared to anatomically non-
detailed models (Bishop et al., 2010). Nevertheless, the structurally simplified 
models (without endocardial details or vessels) are well suited for a large range 
of 3D cardiac modelling applications aimed at EP simulation (Bishop et al., 2010). 
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The level of anatomical detail achieved by a certain 3D cardiac model also 
depends on the source of anatomical information and the methodology used to 
build it, as shown in Figure 3.9. Geometric or CAD models, which are built from 
population-based data just considering some measurements of cardiac 
chambers volume or wall thickness, usually show an “idealized” geometry that 
coarsely represent an actual cardiac anatomy (Siregar et al., 1998; Van den 
Broek and Van den Broek, 1980). They are normally used when no direct source 
of anatomical information is available or when the simplicity of the geometry is 
preferred to the anatomical realism for the purpose of the model (Blanc et al., 
2001; Kerckhoffs et al., 2003; Sermesant et al., 2006b). 

Histo-anatomical slices are a good source of anatomical data to construct 
3D cardiac models, as they can provide highly detailed information at both 
anatomical (Zhao et al., 2013) and histological level (Burton et al., 2006; Plank 
et al., 2009). However, there is usually a large gap between adjacent slices, thus 
leading to the loss of a great amount of information out of plane (Aoki et al., 
1987; Horan et al., 1978; Miller and Geselowitz, 1978), although it can be 
mitigated by means of interpolation techniques. 

As shown in Figure 3.9, medical image-based cardiac models can include 
patient-specific details obtained from clinical imaging data or population-based 
properties collected from ex-vivo datasets. Regarding in-vivo images, the main 
drawback comes from the fact that clinical imaging protocols usually provide 
sparse datasets with large gaps between slices. Most of clinical cardiac MRI 
sequences are acquired with a slice gap typically ranging from 8 to 10 mm, what 
often leads to the use of interpolation schemes in order to get smooth surfaces 
representing the cardiac anatomy (Appleton et al., 2006; Frangi et al., 2002; 
Schulte et al., 2001). However, in-vivo cardiac images can be currently acquired 
with much higher spatial resolution due the advance of imaging techniques in 
last decades. When high-resolution cardiac images are available, modellers have 
to deal with the segmentation of large stacks of tomographic slices, especially 
for very high-resolution ex-vivo datasets (Aslanidi et al., 2013; Bishop et al., 
2010; Deng et al., 2012; Plotkowiak et al., 2008) or cardiac atlases, whose 
construction involves segmenting numerous in-vivo datasets (Hoogendoorn et 
al., 2013; Ordas et al., 2007). Manual segmentation is a very time-consuming 
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and tedious task, besides requiring expertise, whereas automatic segmentation 
of cardiac images is still challenging, especially for in-vivo datasets. Nonetheless, 
clinical imaging techniques (mainly MRI and CT) are today the source of 
anatomical information most commonly used to generate the geometry of 3D 
cardiac computational models. 

Ex-vivo cardiac images can provide much higher spatial resolution than 
in-vivo datasets for several reasons: absence of motion artefacts, removal of 
surrounding tissue before the scan and lack of the limitations imposed by alive 
subjects (either human or non-human) regarding the acquisition time and the 
ionizing radiation dose, in the case of CT modalities. It allows highly detailed 
reconstructions of cardiac geometry, including structures very difficult to 
observe in in-vivo images, such as Bachmann’s bundle or pectinate muscles in 
the atria and endocardial trabeculations in the ventricles (Arevalo et al., 2008; 
Plank et al., 2009) or leaflets of the cardiac valves and the chordae tendineae 
(Bishop et al., 2010). Recently, ex-vivo micro-CT with iodine staining allowed 
reconstructing structures such as the atrioventricular node and atrial 
preferential conducting bundles (Aslanidi et al., 2013). Among all reviewed 
works, the segmentation of ex-vivo images was usually performed by bi-
dimensional (2D) semi-automatic approaches (slice by slice) combining classical 
image processing methods, such as region growing (Arevalo et al., 2008; Deng 
et al., 2012), snakes (Helm et al., 2005; Winslow et al., 2000) or level sets (Gurev 
et al., 2011; Plotkowiak et al., 2008). However, manual correction was needed 
in most cases after the automatic segmentation step (Arevalo et al., 2008; Deng 
et al., 2012; Gurev et al., 2011; Helm et al., 2005). For those models based on 
very high-resolution ex-vivo MRI, 2D semi-automatic segmentation was also 
applied based on thresholding and morphological operators (Burton et al., 2006) 
or complex pipelines using level sets (Bishop et al., 2010; Plank et al., 2009; 
Vadakkumpadan et al., 2009), although requiring a lower level of manual 
interaction in these cases. 

In-vivo images can provide both anatomical and functional patient-
specific information, thus enabling the characterization of cardiac motion 
(Hoogendoorn et al., 2013; Perperidis et al., 2005). The reviewed patient-
specific models based on in-vivo MRI were mostly assembled by manual 
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segmentation (Haddad et al., 2005; Niederer et al., 2009). Images provided by 
certain MRI modalities, such as cine-MRI, can be segmented by 2D automatic 
approaches combining morphological operators and snakes (Appleton et al., 
2006). 2D semi-automatic approaches based on snakes/level sets (Yang et al., 
2006) and even 3D automatic methods (Romero et al., 2010) were applied to in-
vivo MS-CT. Some cardiac atlases were also assembled from manually 
segmented MRI (Frangi et al., 2002; Lötjönen et al., 2004). Nevertheless, to 
facilitate the segmentation of large datasets, more complex approaches have 
been applied to assemble cardiac atlases such as, fitting of deformable models 
based on geometrical shapes followed by manual correction (Lorenz and von 
Berg, 2006), adaption of an initial mesh by piecewise affine transformation 
(Ecabert et al., 2008) or non-rigid registration with a previously manually 
segmented image (Hoogendoorn et al., 2013; Ordas et al., 2007; Perperidis et 
al., 2005). 

In conclusion, high-resolution ex-vivo datasets enable considerably more 
detailed reconstructions of cardiac anatomy than in-vivo images. However, in 
addition to the explantation of the heart, the organ must undergo a whole 
process of tissue preparation (fixation, chambers filling, etc.) before the 
acquisition of ex-vivo cardiac datasets, either ex-vivo images or histological 
slices. This process could alter several features of cardiac structures, such as 
shape, size, volume, etc., especially in the case of histological sections due to 
the deformation caused by the slicing process (Burton et al., 2014; Gibb et al., 
2012; Mansoori et al., 2007). Therefore, even though it is undoubtedly a good 
approximation, currently it remains unclear to what extent an ex-vivo derived 
geometry is relevant to the in-vivo function of the heart, as posed in (Creswell 
et al., 1992). To our knowledge, there is no literature addressing this issue 
thoroughly, so it is something to take into consideration when a 3D cardiac 
model based on ex-vivo images is used to perform computational simulation 
studies with potential clinical relevance. 

Cardiac models may also include the coronary tree, which is often 
virtually generated from the anatomical knowledge, manually segmented from 
pictures of histo-anatomical slices (Trunk et al., 2007) or fitted from a previous 
model (Lorenz and von Berg, 2006). The full coronary tree can be segmented 
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from very high-resolution ex-vivo MRI (Bishop et al., 2010; Burton et al., 2006; 
Vadakkumpadan et al., 2009). The main coronary arteries can be reconstructed 
from in-vivo MRI using complex segmentation pipelines (Haddad et al., 2005). 
However, high-resolution MS-CT has become the most common modality for in-
vivo assessment of the structure of coronary tree, since it allows segmenting 
part of the patient-specific cardiac vascular network (Hoogendoorn et al., 2013; 
Ordas et al., 2007). There are some applications in which the coronary tree 
might have a central role in the model, such as cardiac resynchronization 
therapy (CRT), where the implanted leads are spatially restricted to the lumen 
of some specific vessels (Niederer et al., 2012; Weese et al., 2013). Other 
authors have also studied the role played by blood vessels within the heart, and 
the changes in fibre orientation around them, in stabilizing arrhythmias, repor-
ting changes in wavefront curvature around the blood vessels (Gibb et al., 2009). 

3.4.2.  Meshing 

Despite 3D cardiac models with simplified geometries still play an 
important role for certain applications, mainly focused on mechanistic enquiry, 
current trends are moving towards complex and anatomically realistic patient-
specific models. In any case, to enable the mathematical resolution of complex 
biophysical problems by means of numerical methods, the volume of both 
anatomically simple and detailed cardiac models must be discretized, being 
represented by a number of discrete 3D elements as a result of a meshing 
process. Figure 3.10 gives an overview of the most common meshing options for 
3D cardiac computational models aimed at biophysical simulation. As shown, 
the geometry of cardiac models is usually represented by discrete 3D surface 
meshes resulting from the geometry generation stage, which later act as inputs 
for a volumetric mesh generator software (e.g. TetGen, NetGen, Tarantula). 
Among the existing spatial discretization techniques related to advanced 
numerical analysis, the finite-element method (FEM) is the most extended 
approach in 3D cardiac modelling for EP and mechanical simulation. A usual 
alternative to FEM method relies on grid-based meshes (finite-difference grid 
method), which can operate directly from a segmented image stack in order to 
discretize the volume (Plank et al., 2009) (see Figure 3.10). 
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For cardiac EP simulations, the most common meshing approach relies 

on unstructured volumetric FEM meshes consisting of linear elements, normally 
tetrahedral (Bishop et al., 2010) or hexahedral elements or even combinations 
thereof (Prassl et al., 2009). Note that, for the same number of nodes (i.e., the 
vertices of discrete FEM elements), tetrahedral-based meshes usually require a 
much larger number of elements than hexahedral meshes. Thus, the use of 
hexahedral elements is desirable to decrease the number of degrees of freedom 
of FEM models, even at the cost of a slightly poorer representation of subtle 
details of cardiac anatomy (Dux-Santoy et al., 2011; Heidenreich et al., 2010a). 
Moreover, the incorporation of fine anatomical structures (Purkinje tree, 
trabeculations, vascularization, etc.) to faithfully represent the cardiac anatomy 
also increases the number of degrees of freedom in 3D cardiac models. 

On the other hand, the nature of the cardiac EP processes to be simulated 
imposes strong restrictions on the features of discrete 3D elements of FEM 

Figure 3.10. Meshing stage in the development process of 3D cardiac computational 
models. Diagram describing the most common methods (green boxes) and options 
(brown boxes) to build the 3D volumetric mesh of a cardiac model, using the 3D surface 
mesh or the 3D segmented image resulting from the cardiac geometry generation as a 
starting point for the meshing process. Reproduced from (Lopez-Perez et al., 2015) 
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meshes, in order to ensure the numerical stability of the solution. The main 
reason is related to the depolarization phase of the action potential (AP) of 
cardiomyocytes, which shows a very fast upstroke that produces a step-like 
wavefront over a small spatial extent (ten Tusscher and Panfilov, 2006a). 
Therefore, when complex biophysical models are used for EP simulations, the 
equations must be solved with constraints in the range of 0.05-0.005 ms for time 
step (dt) and of 0.1-0.5 mm for spatial discretization (ds), that is, for the average 
edge size of discrete 3D mesh elements (Niederer et al., 2011; Plank et al., 2008). 
In the case of simplified or phenomenological cardiac EP models, such as the 
Eikonal approach, spatial and temporal discretization is less demanding (in the 
order of ds = 0.5 mm and dt = 1 ms), resulting in much faster computation times 
(see section 3.4.5 for more details about different approaches for cardiac EP 
modelling). 

Another extended computational representation of cardiac anatomy for 
mechanical problems is based on cubic Hermite elements, producing a smooth 
representation of the geometry that is well-suited to simulate large deformation 
mechanics by means of FEM methods (Lamata et al., 2011). Although that 
approach fails to faithfully represent the subtle anatomical details present in the 
heart, it provides a higher numerical accuracy for mechanical simulations than 
linear interpolation schemes in models based on tetrahedral or hexahedral 
elements (Pathmanathan et al., 2009). Indeed, models aimed at 
electromechanical simulations usually include two coupled FEM volumetric 
meshes: one consisting of linear elements aiming to solve the electrical 
component and another based on higher order elements (Kerckhoffs et al., 
2003) or Hermite interpolation functions (Gurev et al., 2011) for the mechanical 
problem. 

 

3.4.3.  Myocardial structure 

Cardiac myocytes (cardiomyocytes) are elongated cells arranged in a 
laminar sheet organization to form the ventricular myocardium (Anderson et al., 
2009; LeGrice et al., 1995). The direction of the longitudinal axis of cardiac 
myocytes, known as fibre orientation, strongly determines the patterns of 
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activation and spreading of the electrical activity in the myocardium, since the 
electrical propagation is 3 to 4 times faster along this axis than in the transverse 
directions (Clerc, 1976). Furthermore, myocardial contraction is mainly caused 
by a shrinkage of myocytes along its longitudinal axis, so fibre orientation has 
also a great influence on the mechanical behaviour of cardiac tissue. Hence, 
cardiac fibre orientation is a necessary element in models aimed at realistic EP 
and mechanical computational simulations. Cardiac fibre orientation may be 
included in 3D cardiac models by setting the direction of the longitudinal axis as 
a property of every element of the 3D volumetric mesh resulting from the 
meshing stage (see Figure 3.8). Thereby, one can define the preferential 
direction in which the electrical excitation or mechanical deformation at any 
node of the volume mesh will propagate to its neighbours. This sort of cardiac 
fibre definition is known as axisymmetric (transversely isotropic), since the 
transverse and normal sheet (transmural direction) fibre directions are 
considered to have the same diffusion coefficients. 

 
Figure 3.11 shows a schematic summary of the most common methods 

to obtain or estimate the cardiac fibre orientation within myocardial tissue, in 
order to map this information into 3D cardiac models. The most usual approach 

Figure 3.11. Myocardial structure generation stage in the development process of 3D 
cardiac computational models. Diagram showing the main sources of structural 
information at tissue level (blue boxes) and the methods (green boxes) used to obtain 
the cardiac fibre orientation to be included in a certain 3D cardiac model. Reproduced 
from (Lopez-Perez et al., 2015) 
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relies on rule-based algorithms, which estimate the fibre orientation associated 
with each element of the volumetric mesh of cardiac models from pre-
established patterns (Colli Franzone et al., 1998; Kerckhoffs et al., 2003; Ordas 
et al., 2007; Romero et al., 2010). Most of those rule-based methods are derived 
from Streeter’s findings, who thoroughly studied and characterized the 
myocardial tissue structure in canine ventricles (Streeter et al., 1969). Fibre 
orientation can also be obtained from measurements taken on explanted hearts 
(Deng et al., 2012; Nielsen et al., 1991), by analysing histological sections under 
microscope (Vetter and McCulloch, 1998) or by digital processing of volume 
images assembled from high-resolution pictures of very thin histological slices 
by means of the structure tensor method (Burton et al., 2006; Zhao et al., 2013). 

Diffusion tensor-MRI (DT-MRI), also called diffusion tensor imaging (DTI), 
is a MRI modality capable of tracking the diffusion of water molecules within the 
biological tissues. For cardiac DTI, it is well known that the direction of the 
primary eigenvector associated with each voxel of the acquired images matches 
the longitudinal axis of cardiac myocytes (Holmes et al., 2000; Hsu et al., 1998; 
Scollan et al., 1998). This information can be mapped into the volumetric mesh 
of 3D cardiac models to incorporate the cardiac fibre orientation (Arevalo et al., 
2008; Gurev et al., 2011; Plank et al., 2009; Sermesant et al., 2003). Ex-vivo 
cardiac DTI also provide anatomical information, thus avoiding the need to 
merge different image modalities in order to construct 3D cardiac models 
including fibre orientation (Heidenreich et al., 2010a; Helm et al., 2005). Peyrat 
et al. generated a statistical atlas characterizing the variability of cardiac fibre 
orientation using ex-vivo DTI from nine canine hearts (Peyrat et al., 2007). In 
later works, Toussaint et al. developed an approach to estimate the patient-
specific cardiac fibre orientation of the LV from a sparse set of 2D slices of in-
vivo DTI (Toussaint et al., 2010, 2013) by making use of the aforementioned 
statistical atlas of cardiac fibres (Peyrat et al., 2007). However, despite recent 
promising advances in this direction (McGill et al., 2015b, 2015a; Nguyen et al., 
2016; Stoeck et al., 2017), currently in-vivo cardiac DTI is not capable of 
providing full patient-specific fibre orientation of whole hearts due to its high 
sensitivity to motion artefacts. 
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Ex-vivo micro-CT with iodine staining is another image modality recently 
used to assess cardiac fibre orientation in certain critical regions of atrial tissue 
by means of the structure tensor method (Aslanidi et al., 2013). Nevertheless, 
in-vivo micro-CT is not feasible because of the high dose of ionizing radiation 
required by such technique. 

 
A few studies have compared the performance of rule-based methods to 

that of DTI-derived fibre orientation in the setting of EP simulations. Employing 
a unique 3D cardiac model (i.e., the same geometry in both cases), Bishop et al. 
showed that global electrical activation patterns simulated using a rule-based 
linear approach were very similar to those obtained with fibre orientation based 
on ex-vivo DTI, thus demonstrating the reliability of the former method for EP 
studies (Bishop et al., 2009). As shown in Figure 3.12, in a similar study Bayer et 
al. compared a novel rule-based method (Laplace-Dirichlet algorithm) to DTI-
derived fibre orientation (Bayer et al., 2012), reaching analogous conclusions 
with respect to (Bishop et al., 2009). 

Figure 3.12. Different methods to include cardiac fibre orientation in a 3D bi-ventricular 
model. Comparison between (a) a rule-based method (Laplace-Dirichlet) and (b) DTI-
based estimation of the myocardial fibre orientation for a 3D model of canine ventricles. 
Adapted from (Bayer et al., 2012) 
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In conclusion, currently there is no in-vivo technique capable of providing 
full patient-specific cardiac fibre orientation of the whole heart. However, rule-
based algorithms derived from prior knowledge of myocardial structure, such as 
Streeter’s data (Streeter et al., 1969), have demonstrated to be a suitable 
approach for cardiac EP simulation studies. 

 

3.4.4.  Cardiac conduction system 

The electrical activation of ventricles is initially triggered by the so-called 
cardiac conduction system (CCS). Along with the two primary pacemakers of the 
heart, the sinus and the atrioventricular (AV) nodes, the CCS consists of a 
heterogeneous and complex 3D network that combines subendocardial and 
free-running fibres formed by specialized myocytes. Under physiological 
conditions, the CCS ensures a paced and coordinated activation of the 
ventricular myocardium, making the heart to develop an efficient performance 
as blood pump (Dobrzynski et al., 2013). The His-Purkinje system, corresponding 
to the ventricular network of the CCS, is highly specialized for a rapid 
propagation of the AP with conduction velocities (CV) in the range of 2-4 m/s. 
Their fibres are isolated from surrounding myocardium by connective tissue 
sheaths all along the network, with the exception of terminal ends, thus allowing 
the AP propagation to the ventricular working myocardium at those connecting 
points called Purkinje-myocardium junctions (PMJs) (Tranum-Jensen et al., 
1991). The location of those PMJs plays a key role, since they are the sources of 
the early electrical activations that subsequently lead to the activation of the 
whole ventricles (Dobrzynski et al., 2013). 

Figure 3.13 shows the main steps and alternatives to generate CCS 
models aiming to be coupled to 3D cardiac models, as shown in Figure 3.8. Some 
3D cardiac models include the CCS at functional level, that is, excluding its 
anatomical structure, by considering altered endocardial properties that 
emulate faster activations (Chinchapatnam et al., 2009) or by defining on the 
endocardial surfaces a number of discrete early activation points, usually 
obtained from the literature (e.g. from (Durrer et al., 1970)) or from electrical 
recordings (Pollard and Barr, 1991). Simplified models that aim to mimic the CCS 
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structure can be constructed using different techniques, such as manual 
delineation of CCS networks on the endocardial surfaces of cardiac models 
(Romero et al., 2010) or fractal tree-like representations (Abboud et al., 1991). 
More complex algorithms to generate anatomical models of the CCS are based 
on numerous rules seeking to characterize its main structural features 
(Sebastian et al., 2013). Such rules are normally extracted from histological 
studies in explanted hearts from different mammalian species (rat, rabbit, dog, 
lamb, etc.). 

 
It is possible to visualize the CCS structure using ex-vivo microscopic 

images with specific markers, such as staining or connexin antibodies (e.g. 
(Garcia-Bustos et al., 2017, 2019)). Very high-resolution ex-vivo MRI has allowed 
locating a number of free-running Purkinje fibres by visual inspection (Bordas et 

Figure 3.13. CCS generation stage in the development process of 3D cardiac 
computational models. Diagram outlining several ways to generate CCS models to be 
coupled to 3D cardiac models. It shows the information sources (blues boxes), the partial 
results obtained (grey boxes) and the methods (green boxes) used to generate different 
kinds of CCS models (orange boxes). Reproduced from (Lopez-Perez et al., 2015) 
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al., 2011; Vadakkumpadan et al., 2009) and recently ex-vivo micro-CT with 
iodine staining has enabled an image-based semi-automatic reconstruction of 
the full CCS (Stephenson et al., 2012), all in small mammalian hearts. More 
recently, Stephenson et al. presented the first complete 3D representation of 
the human CCS structure, also generated from contrast-enhanced ex-vivo micro-
CT (Stephenson et al., 2017). However, reconstructing the CCS by means of in-
vivo imaging techniques is not feasible, since the microscopic dimensions of its 
structures are smaller than the maximum spatial resolution of current clinical 
imaging systems. 

Importantly, as shown in Figure 3.8, the electric connection between the 
CCS models and 3D cardiac anatomy requires specific computational models for 
PMJ coupling, due to the highly specialized inhomogeneous connection with  the 
ventricular working myocardium at those terminal points of the CCS. Those 
models try to reproduce the propagation delay at PMJs in healthy and 
pathological conditions, adding transitional regions or resistor elements to 
couple both cell types (Azzouzi et al., 2011; Berenfeld and Jalife, 1998; Boyle et 
al., 2010; Dux-Santoy et al., 2013). The determination of the location and density 
of PMJs remains highly challenging, so computational studies can provide 
insights into this important matter in both normal and arrhythmic scenarios 
(Behradfar et al., 2014). Nevertheless, some recent studies have proposed novel 
methods to estimate the location of PMJs clusters from in-vivo 
electroanatomical maps (EAMs) aiming to generate anatomical CCS models that 
attempt to functionally emulate the patient’s CCS (Barber et al., 2017; Cardenes 
et al., 2014; Palamara et al., 2014, 2015). 

Aside from the CCS structure, 3D cardiac models oriented to biophysical 
simulation must include specific AP models specially developed to capture the 
particular EP behaviour of Purkinje cells (DiFrancesco and Noble, 1985; Stewart 
et al., 2009). The most recently developed Purkinje AP models include the Ca2+ 
subsystem spatial organization and receptors distribution, which are unique to 
Purkinje cells (Li and Rudy, 2011; Passini et al., 2017), thus allowing a more 
accurate modelling of ventricular arrhythmias related to CCS and of interaction 
with drugs. A number of EP computational studies have already integrated 
realistic CCS models, both in structural and EP sense, to analyse its role in non-
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physiological scenarios, such as during ventricular arrhythmias (Behradfar et al., 
2014; Boyle et al., 2010), ventricular pacing (Romero et al., 2010) or in response 
to the administration of antiarrhythmic drugs (Dux-Santoy et al., 2011; Trovato 
et al., 2017). 

 

3.4.5.  Electrophysiology 

After modelling the 3D cardiac anatomy and defining the myocardial 
structure, those models aimed at computational simulation of cardiac EP require 
mathematical models that simulate the EP behaviour of myocardium. Figure 
3.14 briefly summarizes the main methods and options used to simulate the 
electrical behaviour of the heart by means of EP models. In the 70s and the 80s, 
these models usually had the form of cellular automatas (Miller and Geselowitz, 
1978; Moe et al., 1964), but this kind of rule-based paradigm was progressively 
substituted by equation-based approaches. As shown in Figure 3.14, the latter 
models consist of two main components: the cellular-level equations, 
corresponding to AP models aiming to reproduce the electrical behaviour of a 
single cardiac cell (e.g., a ventricular myocyte), and the tissue-level equations, 
which intend to simulate the interaction and propagation of the electrical 
activity between neighbouring cells. 

Over the past decades, extensive patch-clamp experiments revealing the 
dynamic properties of specific transmembrane ionic channels of cardiac 
myocytes (Sakmann and Neher, 1984) provided data to formulate 
comprehensive mathematical descriptions of the ionic currents that underlie 
the AP of cardiac cells. Cellular-level equations of AP models are usually based 
on the well-known Hodgkin and Huxley (HH) formalism, originally established 
more than 60 years ago (Hodgkin and Huxley, 1952). According to that 
formalism, the cellular AP is described by a system of non-linear first order 
ordinary differential equations (ODEs) that models the kinetics of individual 
ionic channels, pumps and exchangers, as well as their electrical interactions 
(Fink et al., 2011). The HH formalism is still in use to mathematically formulate 
these ionic currents, although currently a new paradigm based on Markov-type 
models has also been adopted to build more biophysically realistic models of 
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ionic channels (Rudy and Silva, 2006). Currently, AP models are highly specific, 
including models for several animal species, a variety of pathophysiological 
disorders and different portions of human heart in normal or diseased 
conditions: ventricles (Grandi et al., 2010; O’Hara et al., 2011; ten Tusscher et 
al., 2004), atria (Courtemanche et al., 1998; Grandi et al., 2011; Maleckar et al., 
2009; Nygren et al., 1998) and Purkinje cells (Sampson et al., 2010; Stewart et 
al., 2009) (see (Fink et al., 2011) and (Roberts et al., 2012) for a review on cardiac 
AP models). 

 

The ventricular myocardium is electrophysiologically inhomogeneous, as 
cardiac myocytes in different portions of the ventricles exhibit different ionic 

Figure 3.14. Cardiac electrophysiology modelling stage in the development process of 
3D cardiac computational models aimed at EP simulation. Diagram summarizing very 
briefly the main methods (green boxes) and options (brown boxes) to model cardiac EP 
by means of mathematical models from experimental data (blue box) provided by 
electrical activation maps at tissue level and patch-clamp experiments at cellular level. 
Reproduced from (Lopez-Perez et al., 2015) 
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currents affecting the features of their APs. EP heterogeneities in the ventricles 
include epicardial-endocardial (Liu et al., 1993), apico-basal (Szentadrassy et al., 
2005) and left-right (Volders et al., 1999) differences in ionic channels and, 
hence, in APs. The most recent AP models of human ventricles include some of 
these regional variations, as in the case of the models by ten Tusscher et al. (ten 
Tusscher et al., 2004; ten Tusscher and Panfilov, 2006b) and O’Hara et al. 
(O’Hara et al., 2011), which state different formulations for endocardial, 
epicardial and mid-myocardial myocytes to include the so-called transmural 
heterogeneity. In spite of the lack of experimental evidence on the anatomical 
boundaries of these different regions within the heart, the transmural 
heterogeneity has been considered in some 3D models of human ventricles 
(Heidenreich et al., 2010a), as well as other regional EP differences, such as 
Bachmann’s bundle, crista terminalis or pectinate muscles in atrial models 
(Ferrer et al., 2015b; Martinez-Mateu et al., 2018). 

At the tissue level, myocardial cells are electrically coupled, so that, 
under physiological conditions, ionic currents flow from each myocyte to its 
neighbouring ones. Therefore, a tissue-level model, in which axial currents flow 
between cells through low-resistance gap junctions, must accompany the 
cellular models mentioned above. That model should consider the inherently 
anisotropic behaviour of the myocardium due to the cardiac fibre orientation, 
as well as the fact that such tissue consists of two different media separated by 
cell membranes, referred to as intracellular and extracellular domains. The 
mathematical homogenization of this concept resulted in the so-called bidomain 
model, which was developed in the late 70s (Miller and Geselowitz, 1978). It 
consists of two partial differential equations (PDEs), allowing to calculate 
extracellular and intracellular potentials, respectively. Since membrane 
potentials depend on transmembrane ionic currents, consequently tissue-level 
equations are coupled to cellular-level ones. Hence, the complete model (cell 
and tissue level) is formed by a system of two PDEs and a certain number of 
ODEs, which are highly non-linear. Those two PDEs include different 
conductivity tensors for intracellular and extracellular domains, both 
determined by cardiac fibre orientation. Assuming equal anisotropy ratios for 
both domains, that is, both tensors are related by a constant, the two PDEs 
become uncoupled, so that the bidomain formulation is reduced to the so-called 
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monodomain model (Roth, 1988). One of the PDEs is of the reaction-diffusion 
type and includes all the ionic current ODEs in its independent term. This system 
must be solved to compute transmembrane potentials, after which extracellular 
potentials are directly derived from the second PDE. 

Those AP models that include a specific formulation for each individual 
transmembrane ionic channel are commonly known as ionic models. This kind 
of models usually have a large number of state variables and, consequently, of 
ODEs as well. The ionic AP model of human ventricles by O’Hara et al., for 
instance, includes 48 state variables (O’Hara et al., 2011). The equation systems 
combining those ODEs (ionic AP model) with the PDEs (tissue-level model) pose 
a mathematically challenging problem that requires numerical methods to be 
solved (e.g. FEM method), thus turning into a highly demanding computational 
task. For those reasons, the implementation of EP simulations on 3D cardiac 
models necessarily requires high-performance computing (HPC) techniques. 

Several alternatives have been proposed to overcome such limitation, 
though at the cost of losing realism in the mathematical description. The so-
called phenomenological models, for instance, substitute the actual ionic 
current descriptions by simple mathematical equations to reduce the number 
of state variables. Historically, the first of these simplified models was developed 
in 1961 by FitzHugh (FitzHugh, 1961), which later was further improved and 
adapted to cardiac AP (Aliev and Panfilov, 1996; Mitchell and Schaeffer, 2003). 
However, there is no biophysical correlation between ionic currents and the 
mathematical terms of this kind of models, so that they are unable to simulate 
complex dynamic patterns of excitation and repolarization of cardiac tissue, 
such as rapid pacing or reentrant activities. The evolution of those purely 
phenomenological models resulted in the so-called minimal models, which try 
to gain some biophysical sense by associating each term to actual but simplified 
ionic currents (Bueno-Orovio et al., 2008; Fenton and Karma, 1998; Mitchell and 
Schaeffer, 2003). On the other hand, another simplification that affects the 
propagation part of the phenomenon is the so-called Eikonal approximation. It 
replaces the reaction-diffusion equation with an Eikonal equation, which is 
simpler and based on a Huygens approach (Colli Franzone et al., 1990; Keener, 
1991). More recently, Relan et al. proposed a new strategy combining both 
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assumptions, that is, minimal plus Eikonal models (Relan et al., 2011). This 
approach gives rise to a hybrid framework that may combine models with 
different levels of detail, including detailed biophysical models, with a relatively 
low computational demand (Camara et al., 2011). 

 

3.4.6.  Electromechanical coupling 

Although mentioned, modelling of cardiac mechanics lacks a specific 
section in this chapter, as it mainly focuses on 3D models for cardiac EP 
simulation. Very briefly, it involves the use of biomechanical models at organ 
level, using the equations of continuum mechanics to describe the organ 
deformation resulting from the active tension generated by the myocytes, and 
models of myocyte contraction at cellular level that include myofilaments 
models at subcellular level depicting the actin-myosin interactions and its 
calcium-based activation system (e.g. (Mullins and Bondarenko, 2013; Rice et 
al., 2008)) (see (Trayanova and Rice, 2011) for a review). 

However, it is important to highlight that every 3D cardiac model aimed 
at electromechanical (EM) computational simulation must include the EM 
coupling, also known as excitation-contraction coupling (Jafri, 2012; Williams et 
al., 2010), as shown in Figure 3.8. The electrical activation of myocytes is the 
event that triggers their mechanical contraction by means of the Ca2+ cycling 
(i.e., the release and reuptake process of intracellular Ca2+), which is the 
responsible for the initiation of actin-myosin interactions that ultimately lead to 
myocytes shortening (Pfeiffer et al., 2014). 

On the other hand, cardiac models oriented to EM simulation may also 
include the mechano-electric feedback (see Figure 3.8). Acute changes in 
ventricular mechanics can affect the cardiac EP (Pfeiffer et al., 2014; Quinn et 
al., 2014) due to mechanisms such as stretch-activated ion channels (Craelius et 
al., 1988; Kohl et al., 1999) or mechanical modulation of cell calcium handling, 
even causing mechanically triggered arrhythmias (Kohl et al., 2005). 
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3.4.7.  Pathology 

An important number of diseases can cause structural remodelling at 
both tissue and whole heart level, as well as functional remodelling at tissue and 
cellular level affecting the electrical and mechanical performance of the heart. 
Therefore, 3D cardiac models aimed at studying the effects of such diseases by 
computational simulation should include both types of remodelling at the 
corresponding levels. 

As shown in Figure 3.8, simulation-oriented models can include 
functional remodelling (electrical or mechanical) by adapting the biophysical 
models that reproduce the EP behaviour at cell or tissue level. In the case of EP 
models, it generally involves modifications in parameters associated with the 
equations of certain ionic currents to reflect the effects of the EP remodelling at 
cellular level, previously studied by voltage- or patch-clamp experiments, as for 
example done in (Cabo and Boyden, 2003). A similar approach is used for genetic 
mutations, whose effects on cardiac EP are usually introduced as changes in the 
conductance or kinetic parameters of those ionic currents directly affected by a 
particular mutation (Clancy and Rudy, 2001). At the tissue level, the most 
common approach to include the EP remodelling consists in modifying the 
conductivity parameters of the tissue-level model, thus altering the intensity of 
current flows between neighbouring cells and, consequently, the CVs. Left 
bundle branch block (LBBB), for example, may be considered as a functional 
alteration at the tissue level included in the Purkinje 3D cardiac model (Reumann 
et al., 2007). Functional remodelling can also affect the EM coupling. In heart 
failure, for instance, Ca2+ cycling is altered resulting in impaired contractility 
(Marks, 2013; Pfeiffer et al., 2014), what increases the risk of extrasystoles 
(ectopic beats) and arrhythmia due to mechano-electric feedback (Hansen et al., 
1990; Wang et al., 1994). In this regard, Trayanova et al. have studied these 
arrhythmogenic mechanisms by computational simulation using 3D cardiac 
models (Trayanova et al., 2010). 

Structural remodelling can affect cardiac anatomy at both organ and 
tissue level. As shown in Figure 3.8, the geometry of 3D models must include 
every pathological variation of cardiac anatomy at whole organ level caused by 
any disease, either affecting the volume, shape or wall thickness of any cardiac 
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chamber. There are examples of models showing left atrium dilation caused by 
sustained atrial fibrillation (Ruiz-Villa et al., 2009), right ventricle (RV) 
hypertrophy (Heidenreich et al., 2010a), hypertrophic and dilated 
cardiomyopathy in LV (Romero et al., 2010) or LV wall thinning due to chronic 
myocardial infarction (MI) (Wenk et al., 2010). At the tissue level, cardiac 
pathologies can also alter the myocardial structure (see Figure 3.8), which 
collaterally leads to functional disorders, since it alters the electrical propagation 
patterns and the mechanical performance of the myocardium. Several 3D 
models, for instance, include the cardiac fibre orientation disarray typically 
associated with infarcted myocardial regions (Wu et al., 2006), both from ex-
vivo DTI (Arevalo et al., 2008; Vadakkumpadan et al., 2009) and from histological 
studies (Rutherford et al., 2012), aiming to assess by computational simulation 
the influence on the electrical propagation of such kind of structural remodelling 
at the tissue level. 

Infarct scars, the chronic ischaemic injuries resulting from the 
replacement fibrosis associated with the MI healing process, may be included in 
3D models to assess its influence on the EP and mechanical performance of the 
heart. These fibrotic lesions are usually segmented from in-vivo delayed 
enhancement-MRI (DE-MRI) (Arevalo et al., 2016; Ashikaga et al., 2013; Deng et 
al., 2018; Pashakhanloo et al., 2018; Prakosa et al., 2018) and, less frequently, 
from ex-vivo DTI based on the fractional anisotropy (Arevalo et al., 2008; 
Vadakkumpadan et al., 2009) and from anatomical MRI based on wall thinning 
(Wenk et al., 2010). Image-based reconstruction provides accurate information 
about the extension and location of ischaemic injuries within the geometry of a 
given 3D model, also allowing to differentiate between the infarct scar (fibrotic 
core) and the border zone (BZ), which is the remodelled but still working tissue 
surrounding the infarct scar. In addition, mathematical models used for 
biophysical simulations must consider the functional remodelling associated 
with the infarcted cardiac tissue. For EP simulations, infarcted cardiac models 
usually include EP remodelling in the BZ reflecting the slowed conduction (tissue 
level) and the changes in the AP (myocyte level) experimentally observed, as for 
instance done in (Arevalo et al., 2013; Ashikaga et al., 2013; Deng et al., 2016; 
Ringenberg et al., 2014). 
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Cardiac tissue can also undergo diffuse myocardial fibrosis, a kind of 
structural remodelling related to aging and also to a broad variety of cardiac and 
systemic diseases: hypertension, diabetes, dilated and hypertrophic 
cardiomyopathy, chronic renal insufficiency, atrial fibrillation, etc. The progress 
of diffuse fibrosis may lead to mechanical disorders, such as systolic and diastolic 
dysfunction (Martos et al., 2007), and turns the myocardium into a more 
arrhythmogenic substrate (Sridhar et al., 2017; ten Tusscher and Panfilov, 2007). 
Therefore, 3D models can include this kind of fibrosis in order to study its 
influence on the cardiac performance by computational simulation, e.g. in 
(McDowell et al., 2011). 

3.4.8.  Example of a 3D cardiac computational model 

Figure 3.15 shows an example of a 3D bi-ventricular computational 
model oriented to cardiac EP simulation, which includes all components 
previously described in this chapter. The geometry of ventricles and that of the 
infarct scar are patient-specific, both segmented from the same in-vivo DE-MRI 
image stack. The cardiac geometry was manually delineated with a high level of 
anatomical detail, including papillary muscles and main endocardial 
trabeculations, as show in Figure 3.15[a]. The infarct scar was semi-
automatically segmented using the standard deviation (SD) from remote 
method (Kim et al., 1999a), applying two distinct thresholds to differentiate the 
infarct scar from the BZ. The FEM volumetric mesh was built using voxels, that 
is, regular hexahedral elements with an edge length size of 0.4 mm, aiming to 
decrease the number of degrees of freedom in the computational model, 
yielding a mesh composed of 3.2 million elements (voxels) and 3.5 million nodes 
(element vertices). 

The rest of the elements of this 3D cardiac model, including the CCS, 
cardiac fibre orientation and biophysical models of cardiac EP, are generic 
instead of patient-specific, as they derive from population data. Cardiac fibre 
orientation was computed for every volume mesh element by means of a rule-
based algorithm (Sebastian et al., 2009) relying on Streeter’s findings (Streeter 
et al., 1969). For the CCS, an automatic algorithm based on a priori anatomical 
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knowledge obtained from dissection data (Sebastian et al., 2013) was used to 
generate an anatomical model of the His-Purkinje network specific for this 
particular bi-ventricular model, which was later coupled to the endocardial 
surfaces of the volume mesh. 

 
Concerning the final application of this 3D bi-ventricular model, a specific 

FEM solver called ELVIRA (Heidenreich et al., 2010b) was employed to perform 
computational simulations of cardiac EP with a time step (dt) of 0.02 ms. 
Regarding the biophysical models, the monodomian approach (Roth, 1988) was 

Figure 3.15. Example of a 3D bi-ventricular patient-specific computational model, 
showing its main elements and final application. (a) Geometry of human ventricles with 
highly-detailed endocardium, highlighting details such as septal papillary muscle (red 
arrow) and moderator band in the RV (black arrow). (b) Cardiac fibre orientation 
generated by a rule-based algorithm. (c) Anatomical CCS model coupled to endocardial 
surfaces. (d) Myocardial infarction showing the infarct scar (red) and the BZ (blue). (e) 
FEM volume mesh composed of regular hexahedral elements. (f) Biophysical 
computational simulation of cardiac EP, showing an activation map of the ventricles 
after delivering a single stimulus at the His bundle. Reproduced from (Lopez-Perez et al., 
2015) 
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used to simulate the electrical propagation at the tissue level. Two different 
ionic models were chosen to simulate the APs of cardiac cells: a model of human 
Purkinje cells for the CCS (Stewart et al., 2009) and a model of human ventricular 
myocyte that includes the transmural heterogeneity, that is, with different AP 
features for endo-, mid- and epicardial cells (ten Tusscher and Panfilov, 2006a). 
Furthermore, the functional remodelling associated with MI was considered at 
the tissue level. The conductivities modulating the CVs were reduced aiming to 
emulate the slowed conduction in the BZ, while they were set to zero within the 
infarct scar to completely cancel the propagation across that region. 

 

3.5.  Personalization of 3D cardiac computational 
models 
Patient-specific cardiac modelling can pave a new avenue of possibilities 

in cardiology, since it is able to integrate anatomical and functional information 
from a certain patient provided by different types of medical studies, tools and 
technologies in an intuitive and easily comprehensible fashion. This might help 
physicians to jointly assess a variety of data derived from multiple diagnostic 
techniques, including different imaging modalities, ECG recordings, invasive 
electrical recordings, such as electrograms (EGM) or EAMs, etc. It could be very 
helpful in risk stratification, therapy planning, surgical guidance or follow-up, for 
instance. However, currently only a few cardiac features can be completely 
personalized. Hence, this section is devoted to briefly outline the 
personalization approaches that are currently available in 3D cardiac 
computational modelling. Table 3.1 summarizes those current personalization 
possibilities for 3D cardiac models. 

The anatomy can be personalized for a specific subject by building a 
patient-specific model from in-vivo images, including the patient’s pathological 
variations of cardiac anatomy. Some types of structural remodelling at the tissue 
level may also be personalized, such as the location and extension of infarct 
scars, which can be accurately reproduced from in-vivo images (e.g. DE-MRI as 
used in (Ashikaga et al., 2013; Ringenberg et al., 2014; Ukwatta et al., 2016)) or 
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from EAMs recorded during RFA procedures. T1 mapping is an emerging MRI 
modality able to quantitatively assess the level of diffuse fibrosis in-vivo (Dass et 
al., 2012; Mewton et al., 2011). This novel technique might allow including the 
patient-specific level of diffuse fibrosis in 3D cardiac models in a quantitative 
fashion. 

Features Technique Invasiveness 

Anatomy Segmentation from in-vivo image Non-invasive 

Fibre orientation Image-based estimation 
  (in-vivo DTI) Non-invasive 

Cardiac conduction system PMJs from EAMs Invasive 

Pathology 
Structural 

remodelling 

Anatomical variations Clinical image-based Non-invasive 

Localised fibrosis 
Image-based (e.g. DE-MRI) Non-invasive 

EAMs Invasive 

Diffuse fibrosis Image-based (T1 mapping MRI) Non-invasive 

Electro- 
physiology 

Action potential 
EGMs  (estimation) Invasive 

ECG  (estimation) Non-invasive 

Heterogeneity NO  

Elect. remodelling NO  

Genetic mutations NO  

Conduction velocities 
Global: ECG Non-invasive 

Local: EAMs Invasive 

APD restitution curve EAMs Invasive 
Extracellular ion 
concentrations 

Blood test (electrolyte 
concentrations) (time-variant) Invasive 

Activation pattern 
ECG or BSPM Non-invasive 

EAMs Invasive 

Cardiac 
mechanics 

Biomech. Model Dynamic image-based Non-invasive 

Material properties NO  

Boundary conditions Dynamic image-based Non-invasive 
Table 3.1. Current personalization possibilities in 3D cardiac computational modelling. 
This table shows the techniques that are currently available to personalize different 
features and components of 3D cardiac computational models aimed at biophysical 
simulation, specifying whether the technique is invasive or non-invasive. Reproduced 
from (Lopez-Perez et al., 2015) 

The CCS and cardiac fibre orientation are two paramount elements of 3D 
simulation-oriented cardiac models that cannot be completely personalized yet. 
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Making use of highly dense EAMs it is possible to locate a set of early activation 
points on the endocardial ventricular surfaces, which are supposed to correlate 
to PMJs. Such information can be directly used as a functional CCS (Pop et al., 
2011a) or to generate an anatomical CCS model by an inverse estimation of the 
patient’s His-Purkinje network attempting to reproduce the patient-specific 
electrical activation pattern (Barber et al., 2017, 2018; Cardenes et al., 2014; 
Palamara et al., 2014). Nonetheless, currently there is no in-vivo imaging 
modality with sufficient spatial resolution to enable a detailed visualisation of 
the CCS structure. For fibre orientation, only sparse 2D DTI slices can be acquired 
in-vivo, allowing to estimate the patient’s fibre orientation of the LV from a fibre 
atlas (Toussaint et al., 2010, 2013). However, it is worth mentioning that very 
recently there has been several promising advances in relation to in-vivo cardiac 
DTI (McGill et al., 2015b; Nguyen et al., 2016; Nielles-Vallespin et al., 2017; 
Stoeck et al., 2017). 

Regarding cardiac EP, patch-clamp experiments are the only technique 
capable of providing detailed information about ionic currents, which requires 
the isolation of single cells from tissue samples. Then, the patient-specific 
transmembrane current dynamics cannot be measured and, hence, the 
mathematical models aiming to reproduce the AP at cellular level (e.g. ionic 
models) cannot be customized. Due to the same reason, there is no possibility 
to personalize the electrical remodelling derived from any disease, the effects 
on cardiac EP of a genetic mutation or the electrical heterogeneity between 
different regions, such as the transmural heterogeneity in ventricular 
myocardium. However, cardiac modellers do have the opportunity to choose 
the EP model at cellular level that best matches the patient’s AP features from 
among a set of existing models, even accounting for the EP remodelling 
associated with certain genetic disorders such as Brugada syndrome, thus 
obtaining a patient-group customization instead of patient-specific (Britton et 
al., 2013; Krueger et al., 2013b, 2013a; Muszkiewicz et al., 2016). Moreover, a 
coarse overall customization of the AP model can be included based on the APD 
value estimated from EGM recordings (Chen et al., 2016; Western et al., 2015) 
or even from the ECG (Gillette et al., 2017, 2018). Making use of Eikonal models 
at the tissue level, a few works have estimated the patient-specific electrical 
activation patterns and wave propagation CVs in ventricular myocardium, either 



Chapter 3 

74 

globally from ECG or body surface potential maps (BSPM) or locally (as spatially 
varying parameters) via EAMs (Sermesant et al., 2008), even considering the 
uncertainty due to the sparsity and noise of clinical data (Konukoglu et al., 2011). 
In subsequent studies, such approach was improved in order to personalize the 
CVs and APD restitution curves for bi-ventricular models (Chen et al., 2016; 
Relan et al., 2011) from the patient’s ECG and the isochrones provided by in-vivo 
non-contact endocardial LV mapping (Lambiase et al., 2004), which were utilized 
to estimate certain EP parameters for a simplified AP model (Mitchell and 
Schaeffer, 2003). At the tissue level, some specific electrical pathways can be 
located in a given patient by means of EAMs, such as the main inter-atrial 
connection (Krueger et al., 2013b, 2013a) or reentry channels responsible for 
infarct-related ventricular tachycardias (VT) (Fernández-Armenta et al., 2013; 
Perez-David et al., 2011). Finally, extracellular ion concentrations can be 
estimated and set into an AP model from the measurement of blood electrolyte 
concentrations, although they are highly time-variant (Krueger et al., 2013b, 
2013a). 

For cardiac mechanics, the most common personalization approach 
consists of adjusting some parameters of biomechanical models from the 
information obtained via segmented dynamic images: cine-MRI, tagged-MRI, 
dynamic-CT, ultrasound images, etc. Thereby, those parameters may be 
adapted aiming to make the 3D model reproduce the patient-specific cardiac 
motion as accurately as possible (Sermesant et al., 2008). Boundary conditions 
for mechanical simulations can be estimated from dynamic images as well. 

 

3.6.  Applications of 3D cardiac computational models 
Currently, computational clinical cardiology is a rising field of research 

with a large number of potential applications. Cardiac image analysis, including 
segmentation, and computational simulation of cardiac biophysics are two well-
established applications of 3D cardiac models. Cardiac EP simulation, for 
instance, is becoming a powerful tool to gain insight into multiple electrical 
cardiac disorders at both tissue and whole organ level. The main reason is that 
a wide variety of experiments cannot be conducted in-vivo due to unacceptable 
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risk to the patient, ethical reasons, lack of suitable techniques, inability to 
control all variables, etc. By contrast, 3D cardiac computational models enable 
to perform in-silico experiments making use of computational simulation in an 
easy and absolutely safe manner, with a complete absence of risk and keeping 
all variables under control. To give evidence of that, we present in this section 
numerous examples taken from the literature of several specific applications, 
mainly related to cardiac EP simulation and model-based image analysis, with 
the aim to exhibit the potential usefulness of 3D cardiac computational 
modelling into clinical environments as a powerful tool to aid in the prevention, 
diagnosis, treatment and follow-up of cardiac diseases. 

3.6.1.  Cardiac image segmentation 

One of the most challenging tasks in the development of patient-specific 
models is the segmentation of in-vivo cardiac images. A broad variety of 
methods have been proposed (see (Petitjean and Dacher, 2011) for a review on 
cardiac MRI segmentation), although it seems that the recently appeared 
approaches based on deep learning techniques are currently outperforming all 
precedent ones (Bernard et al., 2018). However, among such precedents, one of 
the most advanced approaches proposed so far for the automation of this task 
relies on the paradigm of model-based segmentation. It has been widely applied 
to in-vivo cardiac image segmentation and analysis (Frangi et al., 2001) and 
requires the use of a reference model to act as a template. 

Deformable models are always based on an initial mesh (template) that 
resembles the target objects (i.e., the cardiac structures to be segmented), 
which is used as an initialization for the segmentation process. This initial mesh 
can be built using any methodology: ellipsoid-based model (Sermesant et al., 
2006b) (see Figure 3.16), image-based model (Schulte et al., 2001; Sermesant et 
al., 2003), assembled from dissection data (Sermesant et al., 2006a), etc. Briefly, 
the initial mesh is first placed, either manually or automatically, within the 
cardiac image stack to be segmented overlapping the cardiac anatomy. Then, it 
is deformed driven by the intensity levels of the cardiac image in an iterative 
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process, until reaching a certain optimum point with the ultimate goal of fitting 
the initial mesh to the patient-specific cardiac anatomy. 

 
The mean shape or image resulting from a cardiac atlas can also be used 

as a segmentation tool by deforming it to match the target image, usually by 
non-rigid registration (Lorenzo-Valdés et al., 2002). The so-called statistical 
cardiac models (or statistical atlases) appeared as an evolution of cardiac 
atlases. They are a wide range of models mainly represented by statistical shape 
models (Frangi et al., 2002; Hoogendoorn et al., 2013; Lötjönen et al., 2004; 

Figure 3.16. (a) Initial mesh (geometrical model based on ellipsoids) of a bi-ventricular 
deformable model for cardiac MRI segmentation, including cardiac fibre orientation 
(black lines) and AHA regions (colour code). (b) 3D surfaces of the model. MRI slices in 
the cardiac short-axis (c) and four-chambers plane (d), showing the contours before (red) 
and after (blue) the local deformation of the initial model mesh in order to match the 
patient-specific cardiac anatomy. Adapted from (Sermesant et al., 2006b) 
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Perperidis et al., 2005), although there are other types such as active 
appearance models (Mitchell et al., 2000, 2002) or active shape models (Ordas 
et al., 2003). These model-based segmentation approaches rely on a priori 
statistical knowledge about cardiac anatomy and certain features of cardiac 
images. This knowledge derives from the statistical characterization of the 
anatomical variations (and image features) included in the population used to 
construct the atlas, usually including both healthy volunteers (normal shaped 
hearts) and patients with different pathological variations of cardiac anatomy. 
Figure 3.17 shows the mean shape and the statistical characterization of a 
whole-heart statistical atlas (Hoogendoorn et al., 2013). The dimensionality of 
the resulting variance and co-variance matrix is usually limited using principal 
components analysis (PCA) (Ecabert et al., 2008; Frangi et al., 2002; Lötjönen et 
al., 2004; Perperidis et al., 2005). The prior anatomical knowledge derived from 
this process is used to enhance the accuracy of the segmentation or analysis of 
a specific image modality and to increase its robustness when certain 
information in the image is poor or missing (see (Young and Frangi, 2009) for a 
review). The shape-constrained deformable model developed by Ecabert et al. 
is a mixed approach (Ecabert et al., 2008), which includes prior anatomical 
knowledge provided by a point distribution model (PDM) derived from a cardiac 
atlas. Although the particular method can vary depending on the model type, 
normally the image information (e.g., intensity levels) drives the segmentation 
process, while prior anatomical knowledge is simultaneously used to constraint 
the fitting process. That is why a statistical model is unable to recognize those 
anatomical variations that were not learned from its training set. Therefore, the 
power of statistical atlases as segmentation tools strongly depends on the 
population chosen for the atlas development. In addition, atlases are modality-
specific since they learn from the grey levels specifically associated with a 
particular imaging technique. Moreover, most of the statistical models include 
the endocardial surfaces of all cardiac chambers covered by the model, but only 
the epicardium of the LV (Ecabert et al., 2008; Frangi et al., 2002; Hoogendoorn 
et al., 2013). This is because of the high complexity and inter-subject variability 
of the anatomy of RV and atria what, together with the thinness of their walls, 
complicates the statistical characterization of those cardiac chambers. Finally, 
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the Cardiac Atlas Project4 (Fonseca et al., 2011), led by the University of 
Auckland, must be highlighted within this epigraph. It provides a wide database 
of cardiac images available online aiming to promote a collaborative 
development of anatomical and functional statistical atlases for both healthy 
and pathological hearts. 

 
 

3.6.2.  Simulation of cardiac electrophysiology 

3.6.2.1.  Simulation of acute ischaemia 

Significant changes affecting ionic currents and concentrations, AP 
features and tissue structure occur within the first 10-15 minutes after the 
occlusion of a coronary artery, corresponding to the phase of acute ischaemia. 
Those changes, along with the heterogeneous nature of them, predispose the 
ventricular myocardium to potentially lethal reentrant arrhythmias (Janse and 
Kleber, 1981). In the past decades, the mechanisms underlying the 
arrhythmogenicity associated with acute myocardial ischaemia have been 
theoretically studied using model-based computational simulation (Ferrero et 
al., 2014). The effects of acute ischaemia are of multiscale nature (Ferrero et al., 
                                                           
4  Cardiac Atlas Project.   http://www.cardiacatlas.org/ 

Figure 3.17. Whole-heart cardiac atlas constructed using in-vivo high-resolution MS-CT 
from 138 human subjects. (a) Mean shape of the whole-heart atlas. (b) First two modes 
of variation of the spatio-temporal whole-heart statistical atlas (µ represents the mean 
shape and √𝝀𝝀 is the standard deviation) at end-diastolic phase of cardiac cycle. Adapted 
from (Hoogendoorn et al., 2013) 

http://www.cardiacatlas.org/
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1996, 2003; Romero et al., 2009; Shaw and Rudy, 1997; Tice et al., 2007; Trénor 
et al., 2007) and that is why 3D cardiac models have recently been used to study 
its effects at whole organ level by computational simulation of cardiac EP. 

Heidenreich et al. used a 3D heterogeneous model of regionally 
ischaemic human ventricles to study the dynamics of ischaemic reentrant 
pathways by EP simulation (Heidenreich et al., 2012). This work predicted the 
appearance of figure-of-eight reentrant wavefronts crossing the central 
ischaemic zone, formed in the epicardial surface due to the prolonged refractory 
period of mid-myocardial layers. Moreover, this allowed to hypothesized that 
focal activity experimentally observed in the epicardium might be caused by 
reentrant wavefronts propagating in the mid-myocardium that re-emerge in the 
epicardial surface. Finally, the thin surviving layer (washout zone) present in the 
endocardial ischaemic BZ appears to protect the myocardium against the 
perpetuation of those reentrant wavefronts that cross the central ischaemic 
zone. 

Three-dimensional cardiac models have also been used for simulations 
of global ischaemia in the context of cardiac defibrillation. Rodríguez et al. used 
a 3D model of rabbit ventricles to assess the effects of ischaemia on the lower 
and upper limits of vulnerability to reentry induced by electric shocks (Rodríguez 
et al., 2004). This study highlighted the importance of the transmural electrical 
events, the spatial extent of the shock-end excitation wavefronts and the slower 
recovery from shock-induced positive polarization in the mechanisms 
responsible for the limits of vulnerability. 

3.6.2.2.  Ablation of chronic myocardial infarction 

When the acute phase of ischaemia ends, the healing process of the 
ischaemic tissue (now infarcted) begins and infarct-related ventricular 
arrhythmias can take place weeks, months or even years after the coronary 
occlusion (Lazzara and Scherlag, 1984). Therefore, computer simulations may be 
of great interest in the chronic period of myocardial infarction (MI) as a tool to 
aid clinicians during ablation interventions. Below we introduce some examples 
of EP simulation studies using 3D models of infarcted ventricles. 
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Vigmond et al. simulated reentrant mechanisms on a 3D image-based 
model of canine infarcted ventricles, including the infarct scar and BZ with 
electrical remodelling (Vigmond et al., 2009). Rantner et al. assessed the 
mechanisms of defibrillation efficacy using a model of rabbit infarcted ventricles 
(Rantner et al., 2012). Pop et al. tested the ability of computer simulations based 
on DTI images to predict the VT circuits previously measured in swine hearts by 
experimental EP studies (Pop et al., 2011a). Similarly, using 3D models of swine 
ventricles including electrically remodelled BZs and infarct scars, Ng et al. 
induced VTs in computational models with different configurations of the 
infarcted region, proving that both infarct scars and peri-infarct zones (the BZ) 
are needed for VT generation (Ng et al., 2012). They obtained similar reentrant 
circuits in both computational and experimental EP studies, showing that image-
based modelling might be helpful in planning of RFA procedures. Indeed, several 
works have already tested the feasibility of 3D simulation based on in-vivo DE-
MRI images to estimate ablation targets in human subjects undergoing infarct-
related VTs (Arevalo et al., 2013; Ashikaga et al., 2013), emphasizing the 
effectiveness of this computational strategy. More recently, further 
retrospective studies with larger cohorts have demonstrated the potential 
usefulness of image-based computational simulation in risk stratification and 
therapy planning for infarcted patients with or without prior history of VT 
(Arevalo et al., 2016; Deng et al., 2016; Prakosa et al., 2018; Trayanova et al., 
2017). 

 

3.6.2.3.  Cardiac resynchronisation therapy 

CRT has become an established therapy to treat certain patients with 
heart failure suffering from conduction abnormalities, such as LBBB. Clinical 
trials evaluating CRT have demonstrated that a significant number of patients 
with heart failure and wide QRS do not respond to this therapy as positively as 
expected, especially patients with MI. A number of studies have used 3D cardiac 
models to provide insight into the complex mechanism that govern CRT efficacy 
by means of computational simulation, aiming to understand the pathophysio-
logy of cardiac asynchrony to further improve CRT. 
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Reumann et al. designed a computational model, including different 
degrees of LBBB (0%, 20% and 40%), aiming to optimize the atrioventricular and 
interventricular (VV) delays, which are key parameters of CRT devices that 
require a tailored set-up (Reumann et al., 2007). Kerckchoffs et al. used an 
electromechanical model of canine heart to study the effect of the pacing site 
and infarct location (anterior, inferior, posterolateral or diffuse fibrosis) on 
regional mechanics and global haemodynamics (Kerckhoffs et al., 2007, 2009). 
They concluded that response to CRT was poorer in hearts with LBBB and large 
infarcted regions. Romero et al. assessed the effect of ventricular morphology 
(normal, dilated or hypertrophied) on the VV delay in order to obtain an optimal 
LV synchronization (Romero et al., 2010). The main conclusion was that the 
distance from the LV lead to the pacemaker and CCS, related to the thickness of 
the LV lateral wall, introduces a large delay that needs to be compensated by a 
pre-activation of the LV lead. Sermesant et al. developed a personalization 
strategy for anatomy and function aiming to predict the response to CRT in-silico 
(Sermesant et al., 2012). Personalized heart models reproduced acute effects of 
pacing on pressure development for several pacing conditions on two patients, 
achieving good agreement with invasive haemodynamic measurements. More 
recently, Okada et al. also built 3D personalized models of nine patients with 
heart failure and conduction blocks in order to reproduce the response to CRT 
by electromechanical simulation, showing the potential of such approach as a 
supporting tool for clinical decisions (Okada et al., 2017). Very recently, Carpio 
et al. carried out a simulation study using an image-based anatomically detailed 
ventricular model coupled to a CCS model, aiming to assess the efficacy of CRT 
depending on the placement of pacing leads (Carpio et al., 2019). Moreover, 
they simulated the ECG by means of a 3D torso model, taking the QRS shortening 
in response to CRT as a measure to quantify the therapy effectiveness. As 
shown, 3D cardiac computational models oriented at biophysical simulation are 
being widely used to study the mechanisms underlying the efficacy of CRT and 
even tested as a promising tool to help in the proper identification of candidates 
for CRT (Lee et al., 2018). 
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3.7.  Conclusions 
3D computational models of cardiac anatomy and function have 

significantly benefited from the revolution of medical imaging systems, as the 
advances on patient-specific modelling have enabled the use of 3D heart models 
reconstructed from clinical MRI or CT scans. A further development of 
techniques able to build 3D personalized cardiac models is expected to have a 
great impact on diagnosis, therapy planning and prevention of cardiac disorders. 
Current 3D cardiac models have achieved a remarkable structural and 
biophysical detail, providing a multi-parametric source of information that 
integrates multimodal images (ex-vivo and in-vivo), one-dimensional signals and 
biophysical data into a common spatio-temporal coordinate system, which is 
already helping to gain insights into several cardiac disorders, e.g., into 
mechanisms of arrhythmia in several diseased settings. The incorporation of 
critical cardiac structures, such as the CCS, cardiac fibre orientation and the 
coronary tree, will facilitate further biophysical modelling. The next step 
towards the translation of this approach into clinical environments are the 
automation and scalability of model-building procedures, allowing to easily 
process large-scale image databases. The evolution of the high-performance 
computing (HPC) technologies, such as graphical processing units (GPUs), are 
also expected to speed up the solving processes of biophysically detailed 3D 
simulations of cardiac function by means of affordable computing architectures, 
thus making the computational cardiac EP compatible with the clinical 
environment and its restricted time frames. 

 

3.8.  Table of 3D cardiac computational models 
Table 3.2, built as a main result of this review work, is a large table 

specifically designed to give a complete summary about the reviewed models. 
In this table, all reviewed 3D cardiac computational models (60 models) appear 
sorted by chronological order in an attempt to outline the evolution of this kind 
of models over the last five decades. 
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Table 3.2 provides information about the data source and methods used 
to develop each one of the 60 reviewed 3D cardiac models, as well as their main 
features, final application and online availability. First column in Table 3.2, 
named ‘Kind of model’, corresponds to a proposed classification based on the 
level of anatomical realism achieved by the model and the method used for the 
3D reconstruction of cardiac anatomy. Second column, called ‘Species 
(anatomy)’, specifies the animal species whose anatomy was modelled. Under 
the heading ‘Model extension’, we detail the cardiac chambers and structures 
included in each model. Next two columns provide information about the source 
of the ‘Anatomical information’ and the ‘Segmentation method’ (for image-
based models) used to build every model, respectively. The column labelled as 
‘Meshing’ shows the approach used to generate the 3D computational model 
from the reconstructed cardiac geometry and, if reported, some details such as 
the mesh resolution. ‘Fibre orientation’ and ‘CCS’ (cardiac conduction system) 
columns report whether or not these features are included in the model and, if 
so, the approach used to include them. ‘Endocardium detail’ column gives 
information about the level of anatomical detail achieved in the reconstructed 
endocardial surfaces, in both ventricles and atria. Next column, named ‘Other 
features’, collects miscellaneous information, such as the inclusion in the model 
of ischaemic scars, some kind of anatomical variation, labelling of interesting 
anatomical regions, etc. ‘Model purpose’ column specifies the final application 
for which each model was originally developed. The last column, ‘Online’, 
reports whether the model is available online, providing the link if so. 

Note that the information related to most of the columns of Table 3.2 
was previously addressed in a specific subsection of this chapter (see section 
3.4), where we discuss why certain features or methods are needed or 
convenient for particular applications. 

Additionally, Table 3.3 describes the meaning of all acronyms and 
abbreviations used to encode the information contained in Table 3.2. 
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Kind of model 
Geom Geometrical shape-based model (ellipsoid-based) 
SAnat Simple anatomical model 

IM Image-based model 
PS Patient-specific model 

CAD CAD model 
Def Deformable model 
Stat Statistical cardiac model 
At Cardiac atlas 

Dyn Dynamic model 
HD High level of anatomical detail 
LD Low level of anatomical detail 

Model extension 
LV Left ventricle model 
BV Bi-ventricle model 
A Bi-atrial model 

WH Whole heart model 
GCV Great cardiac vessels 
pCT Part of coronary tree 
fCT Full coronary tree 
OE Only endocardium 

OEp Only epicardium 
EpLV Only epicardium for LV 
EpV Only epicardium for ventricles 
Fan Fibrous annulus of atrio-ventricular valves 

Anatomical information 
ExpM Experimental measurements taken from explanted hearts 

ML Measurements taken from the literature 
pHD Pictures of heart dissections 

HS (n,mm) Histo-anatomical slices.  n: number of slices.  mm: slice thickness. 
pHS (n,mm) Pictures of histo-anatomical slices 

pHS-St (n,mm) Pictures of histo-anatomical slices with special staining 
eMRI (n,mm) Ex-vivo MRI 
iMRI (n,mm) In-vivo MRI 

N-iMRI (n,mm) In-vivo MRI.  N: population size (for atlases) 
eCT (n,mm) Ex-vivo CT 
iCT (n,mm) In-vivo CT 

N-iCT (n,mm) In-vivo CT 
VLV In-vivo ventriculograhy of the LV (cine-angio-cardiography) 

Table 3.3. (part 1 of 3) List of acronyms used to encode the information shown in the 
table of reviewed 3D cardiac computational models (Table 3.2). 
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Segmentation method 
 MD Manually drawn 

M Manual segmentation 
SA2D Semi-automatic 2D (slice by slice), with some manual interaction 
A2D Automatic 2D, without any manual interaction 

SA3D Semi-automatic 3D segmentation, with some manual interaction 
A3D Automatic 3D segmentation, without any manual interaction 

CM Classical image processing methods 
      (thresholing, edge detection, morphological op., etc. ) 

CTS Colour-thresholding segmentation 
RG Region growing 
SN Snakes 
LS Level sets 

MBS Model-based segmentation 
Reg Registration with a previously manually segmented image 
Fit Fitting an initial mesh to the target image 

Meshing 
CA (n,mm) Cellular automaton.   n: number of cells.  mm: spatial resolution. 

 sFEM-t (el,n,mm) Surface finite element mesh with triangular elements. 
   el: number of elements.  n: number of nodes.  mm: spatial resolution 

  vFEM-h (el,n,mm) Volumetric finite element mesh with hexahedral elements 
 vFEM-t (el,n,mm) Volumetric finite element mesh with tetrahedral elements 

  sFEM-H (el,n,mm) Surface finite el. mesh based on cubic Hermite basis functions 
  vFEM-H (el,n,mm) Volumetric finite el. mesh based on cubic Hermite basis functions 

vFDG (mm) Volumetric finite difference grid.  mm: spatial resolution. 
Vox (mm) Voxels-based volumetric model (not FEM).  mm: spatial resolution. 

Fibre orientation 
RBM By a rule-based method based on Streeter’s findings 
DTI From ex-vivo DTI images 
SH From the same heart used for the anatomical reconstruction 
DH From a different heart than used for the anatomical reconstruction 

DExp From direct experimental measurements 
Lit (sp) Taken from the literature.   sp: species 
IM3D From the volumetric image assembled from histological slices 

Table 3.3. (part 2 of 3) List of acronyms used to encode the information shown in the 
table of reviewed 3D cardiac computational models (Table 3.2). 
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Cardiac conduction system 

AP (n) CCS emulated by activation points on the endocardial surfaces. 
    n: number of activations points 

Dur From the activation maps obtained by Durrer et al. 1970 
HPS His-Purkinje fibres 
AVN AV (atrioventricular) node 
SAN SN (sino-atrial) node 
Purk Only Purkinje fibres 

AK (sp) From the anatomical knowledge.  sp: species 
N-PMJ Purkinje-muscle junctions. N: number of PMJs 

Atr Atrial conduction bundles: crista terminals, Bachmann’s bundle and 
pectinate muscles 

hrMRI Free-running Purkinje fibres from high-resolution ex-vivo MRI 
Endocardium detail 

Pap Papillary muscles 
TC Trabeculae carnae 
Pec Pectinate muscles 
CT Crista terminalis 
FO Fossa ovalis 

CTen Chordae tendineae 
Other features 

LAR Labelling of anatomical regions 
TH Electrophysiological transmural heterogeneity in ventricular wall 

RVH RV hypertrophy 
LVH LV  hypertrophy 
LVD LV dilation 
LAD Left atrium dilation 
ISC Infarct-derived ischemic scar in LV, including core and border zone 

MCC (n) Motion due to the cardiac cycle.  n: number of phases 
LT Labelling of tissues (histological information) 

Model purpose 
MA Mechanical analysis 
EP Simulation of cardiac electrophysiology 
EM Simulation of cardiac electro-mechanics 

Mec Simulation of cardiac mechanics 
MBS Model-based segmentation 

MBS-TCM Model-based segmentation with tracking of cardiac motion 
Table 3.3. (part 3 of 3) List of acronyms used to encode the information shown in the 
table of reviewed 3D cardiac computational models (Table 3.2). 
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Chapter 4 

Clinical Data 

In this chapter, we describe and discuss the clinical data that we used to 
develop our 3D computational models of patient-specific infarcted ventricles 
and torso aimed at the computational simulation of cardiac electrophysiology 
(EP). 

4.1.  Introduction 
It is really important to highlight that the main restriction that we 

imposed on the design of our approach was that it should exclusively rely on 
non-invasive clinical data. Our final goal is to test the feasibility of performing 
reliable in-silico EP studies prior to radiofrequency ablation (RFA) procedures 
(i.e., prospective studies) by means of personalized 3D computational models of 
ventricles and torso. Thus, the use of data invasively recorded during the 
intervention to build such models would be a clear contradiction, as it would 
only allow retrospective studies with no usefulness for personalized therapy 
planning. That said, we did include data invasively registered via cardiac 
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catheterization in our work. However, such data were only used for validation 
purposes, aiming to test the performance of the built 3D computational models, 
as will be explained in detail in following chapters. 

 

4.2.  Clinical data 
In this work, we used a set of anonymized clinical data from a 58-year-

old male patient referred for RFA procedure aiming to terminate a 
monomorphic ventricular tachycardia (VT) related to a large chronic myocardial 
infarction (MI), which was located at the posterior wall of the left ventricle (LV). 
It is important to highlight the fact that the patient suffered the acute episode 
of myocardial ischaemia causing the MI 11 years before the clinical VT episode 
related to the MI. Hence, there was no doubt about the chronicity of the MI, 
which evidently was in its chronic (or healed) stage. 

 
As shown in Figure 4.1, the clinical dataset used for this study included: 

(1) clinical high-resolution cardiac DE-MRI, (2) whole-torso anatomical MRI, (3) 
electroanatomical maps (EAM) invasively recorded via CARTO® 3 System 
(Biosense Webster, Inc., Diamond Bar, CA, USA) (Gepstein et al., 1997) and (4) 
12-lead ECG signals registered during the RFA procedure both in sinus rhythm 
and during VT episodes induced by pacing protocols. In addition, some clinical 
ECG recordings were provided, both in sinus rhythm and during clinical VT (see 

Figure 4.1. Schematic representation of the clinical dataset used in this work. 
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Figure 4.2). It must be highlighted that all those data were not specifically 
generated for research purposes, but they were collected in a clinical 
environment as part of its daily routine. 

 
 

4.3.  Cardiac DE-MRI 
Regarding cardiac imaging techniques, delayed enhancement-MRI (DE-

MRI) is an image modality that enables in-vivo evaluation of the tissue damaged 
by an ischaemic episode leading to MI, that is, the infarct scar and border zone 
(BZ). This visualization is possible due to the hyperenhancement of the infarcted 
region in the images caused by the gadolinium-based contrast agent (Doltra et 
al., 2013; Fieno et al., 2000; Kim et al., 1999a). In fact, it is currently considered 
as the gold-standard test for in-vivo assessment of infarct scar and myocardial 
viability after MI in clinical settings (Jamiel et al., 2017; Mahida et al., 2017; Patel 
et al., 2017). Cardiac DE-MRI provides substrate characterization after MI that 
has shown close correlation with histopathological analyses (Amado et al., 2004; 
Fieno et al., 2000; Kim et al., 1999a; Wagner et al., 2003), which even allows 
differentiating between the infarct scar and the BZ. Furthermore, the usefulness 

Figure 4.2. Fragments of scanned clinical ECG recordings showing the signals from 
precordial leads both in sinus rhythm (left) and during the clinical VT episode (right). 
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of MRI-based substrate characterization and conducting channels (CC) 
delineation for planning and guiding ablation procedures aimed at infarct-
related VTs has been tested in numerous studies (Andreu et al., 2011, 2015, 
2017; Ashikaga et al., 2007; Fernández-Armenta et al., 2013; Perez-David et al., 
2011; Soto-Iglesias et al., 2016; Wijnmaalen et al., 2011; Yamashita et al., 2016). 

 
In our particular case, a few days before the RFA procedure aimed at 

eliminating the clinical VT suffered by the patient, the cardiac DE-MRI was 
acquired in the standard axial plane by a MRI scanner Magnetom Avanto 1.5T5 
(Siemens Healthineers, Erlangen, Germany) using a phased-array body surface 
coil, about 15 minutes after the administration of the gadolinium-based contrast 
MultiHance (gadobenate dimeglumine, 529 mg/ml) (Bracco Diagnostics Inc., 
Monroe Township, New Jersey, USA). The acquisition was synchronized with 
both ECG (ECG-gated) and breathing (navigator-gated), imaging the heart at the 
end-diastolic phase of cardiac cycle, with a trigger time delay of 685 ms for a 
nominal R-R interval of 928 ms along the acquisition. The DE-MRI stack 

                                                           
5 MRI scanner Siemens Avanto 1.5T (Siemens Healthineers, Erlagen, Germany) 

www.siemens-healthineers.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-
scanner/magnetom-avanto 

Figure 4.3. Cardiac DE-MRI stack. Views of DE-MRI slices in standard planes: (a) coronal, 
(b) sagittal and (c) axial planes and (d) 3D view of orthogonal standard planes. 

http://www.siemens-healthineers.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-avanto
http://www.siemens-healthineers.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-avanto
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comprised 96 slices of 256×256 pixels encompassing the whole heart (ventricles 
and atria) with a pixel size of 1.4×1.4 mm in plane, a slice thickness of 1.4 mm 
and no gap between adjacent slices, thus resulting in an isotropic voxel of 1.4 
mm3. 

 

4.3.1.  Myocardial viability assessment 

The assessment of myocardial viability performed in the clinic based on 
the DE-MRI revealed that the MI extended over 7 out of the 17 segments of the 
left ventricle (LV) model of the American Heart Association (AHA). Myocardial 
regions that appear affected in the DE-MRI were basal and medial segments of 
both inferoseptal (segments 3 and 9) and inferolateral walls (segments 5 and 11) 
and all segments (basal, mid and apical) of inferior wall (segments 4, 10 and 15), 
which correlates with the occlusion of the right coronary artery (Ortiz-Pérez et 
al., 2008). 

 

4.4.  Whole-torso anatomical MRI 
Cardiac DE-MRI images acquired in clinical environments do not usually 

cover the whole torso, as they focus on the cardiac chambers. In addition to the 
ventricular model, we needed to develop a 3D model of the torso in order to 
perform computational simulations of cardiac EP at whole body level, that is, to 
compute simulated ECGs. Thus, we were also provided with an anatomical MRI 
covering the entire torso, from the neck to the waist (see Figure 4.4). That 
whole-torso MRI was acquired in the coronal plane, with a slice thickness of 10 
mm. This is much coarser than the resolution of the cardiac DE-MRI stack, 
although it is within the usual range of spatial resolution for clinical anatomical 
MRI scans. Such anatomical MRI stack comprised 16 slices of 320×320 pixels 
with an in-plane resolution of 1.25×1.25 mm. Therefore, the volume dataset was 
composed of irregular voxels sizing 10×1.25×1.25 mm, thereby resulting in a 
resolution in coronal slices (Figure 4.4[a]) much finer than in axial (Figure 4.4[b]) 
and sagittal (Figure 4.4[c]) planes. 
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4.5.  Electroanatomical maps 
Since their appearance in the late 90’s (Ben-Haim et al., 1996; Gepstein 

et al., 1997), electroanatomical mapping (EAM) systems have become a useful 
tool to guide RFA procedures, being increasingly used in interventions aimed at 
assessing both atrial (Calkins et al., 2012) and ventricular arrhythmias (Aliot et 
al., 2009; Priori et al., 2015). During the EP studies performed via catheteriza-
tion, these systems create in real-time 3D maps of every assessed cardiac 
chamber, which integrates all EP information recorded by the sensors and 
electrodes placed at catheter tip. In the case of infarct-related VTs, EAM systems 
are considered as a helpful tool to identify CCs as RFA targets based on the 
abnormal features of the electrograms (EGM) in such regions (Bogun et al., 
2005; Gardner et al., 1985), especially when clinical VT is unmappable due to 
haemodynamic instability or non-inducibility in the EP laboratory (Al-Khatib et 
al., 2018; Aliot et al., 2009; Marchlinski et al., 2000; Priori et al., 2015). 

Figure 4.4. Whole-torso anatomical MRI. Views of MRI slices in standard planes: (a) 
coronal, (b) axial and (c) sagittal planes and (d) 3D view of orthogonal standard planes. 



Clinical Data 

99 

In our case, in-vivo EP data were invasively recorded by CARTO® 3 System 
using the NaviStar® ThermoCool® catheter (Biosense Webster, Inc., Diamond 
Bar, CA, USA) including a 3.5-mm open-irrigated tip, which can act as diagnostic 
and ablation catheter (Abdelwahab and Sapp, 2007). In Figure 4.5, one can 
observe the holes at catheter tip for saline irrigation during RFA. That catheter 
has a tip electrode and three additional ring electrodes referred to as M1 (tip 
electrode), M2, M3 and M4 from more distal (closer to the tip) to more proximal 
(farther from the tip), respectively. Thus, it records four unipolar EGMs and two 
bipolar (M1-M2 and M3-M4). As shown in Figure 4.5, those four electrodes are 
not equidistant, since the M2-M3 spacing is 5 mm while M1-M2 and M3-M4 
spacing is 2 mm, respectively. Moreover, the catheter tip includes a pressure 
sensor to ensure a proper contact between the catheter and the myocardial wall 
during the mapping process. 

 
For each studied cardiac chamber, CARTO® 3 System generates a 

triangle-based 3D surface mesh representing the geometry of the mapped 
anatomical surface (see Figure 4.6). Those meshes include every measurement 
point (hereinafter referred to as CARTO® points) as a vertex of the 
corresponding mesh. Besides recorded signals (bipolar and unipolar EGM signals 
and 12-lead ECG), additional data is associated with each CARTO® point, such as 
local activation time (LAT) annotation in ms, peak-to-peak voltage amplitude 
values for bipolar (BiP) and unipolar (UniP) signals measured in mV from distal 
EGMs (M1-M2 and M1, respectively), electrodes position (x, y, z coordinates) 
and contact pressure in grams. 

Figure 4.5. Picture of the NaviStar® ThermoCool® catheter (Biosense Webster, Inc., 
Diamond Bar, CA, USA), showing its 3.5-mm open-irrigated tip with holes for saline 
irrigation during ablation and its four electrodes: M1, M2, M3 and M4. 
Image adapted from:    www.biosensewebster.com/emea/ 

https://www.biosensewebster.com/emea/
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Figure 4.6. Posterior view of the 3D triangle-based surfaces extracted from CARTO® data 
files and converted into VTK file format, representing LV and RV endocardial surfaces 
(top) and ventricular epicardium (bottom). All CARTO® points recorded during the EP 
study are displayed as coloured spheres on the corresponding 3D surface: yellow for LV 
endocardium, green for RV endocardium and white for epicardium. Colour code 
displayed on the surfaces represents BiP (peak-to-peak bipolar potentials in mV) 
measured from distal bipolar EGM (M1-M2). Regions with BiP values under 0.5 mV are 
considered as non-excitable tissue corresponding to dense fibrotic scars, whereas values 
in the range 0.5-1.5 mV are considered to be part of the BZ. 
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In this case, the EAMs generated during the EP study contained 847 
CARTO® points in total: 315 points from LV endocardium, 78 points from right 
ventricle (RV) endocardium and 454 points from epicardium. Those EAMs were 
acquired in sinus rhythm, including for every CARTO® point 18 different signals 
(12-lead ECG, four unipolar EGMs and two bipolar EGMs) that were recorded 
during 2.5 seconds at a sampling rate of 1 kHz. Regarding epicardial mapping, it 
was performed by accessing pericardial space through percutaneous (non-
surgical) transthoracic subxiphoid approach by means of puncture using an 
epidural needle (Brugada et al., 2003; Sosa and Scanavacca, 2005; Tedrow and 
Stevenson, 2009; Yamada, 2014), following the access procedure originally 
described by Sosa et al. (Sosa et al., 1996, 2000). In Figure 4.6, one can observe 
that the most densely mapped regions (high concentration of CARTO® points) 
are located on the posterior wall of the LV, at both endocardial and epicardial 
level, matching the cardiac segments affected by the MI according to the 
myocardial viability assessment based on the DE-MRI (see section 4.3.1). This is 
because the main goal of the EP study conducted immediately prior to the RFA 
procedure was to detect CCs of viable tissue crossing the infarct scar as ablation 
targets, since they usually act as structural substrates for the reentrant 
pathways responsible for monomorphic VTs (Baldinger et al., 2016; Berruezo et 
al., 2015; de Chillou et al., 2002). 

We implemented a tailored code in MATLAB® (The MathWorks Inc., 
Natick, MA, USA) to automate the process of reading the huge amount of data 
files generated by CARTO® 3 System during the EP study (more than 40,000 plain 
text ASCII files in our case) and to extract the information from them, including 
surface meshes and all data associated with every CARTO® point. Our code 
converts all surface meshes from CARTO® format into VTK file format (The 
Visualization Toolkit)6 and encapsulates all signals and additional data in custom 
data structures to store them in a few MAT files, which is the file format for 
binary data container native to MATLAB®. 

  

                                                           
6 The Visualization Toolkit (VTK).  www.vtk.org 

http://www.vtk.org/
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We also created a MATLAB® GUI (graphic user interface) to visualize all 
the data linked to each CARTO® point, as well as all the registered signals (both 
ECG and EGMs) and the location of the assessed point on the surface mesh 
representing the mapped cardiac surface (see Figure 4.7). 

 
 

Figure 4.7. (Top) Custom MATLAB® GUI created to visualize all signals (ECG and EGM) 
and additional information associated with each CARTO® point. (Bottom) MATLAB® 
rendering of the 3D CARTO® surface representing the geometry of the LV endocardium 
with the assessed point highlighted in red and the rest of CARTO® points displayed in 
blue. 
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4.5.1.  Post-processing of CARTO® data 

LAT annotations provided by CARTO® 3 System represent the time 
difference between two distinct events: (1) the detection by the catheter 
electrodes of the arrival of an activation wavefront spreading through the 
myocardium and (2) a stable reference point defined on a certain ECG signal. 
Therefore, a negative LAT value means that the local activation happens before 
the event associated with the reference point (see Figure 4.8[a], for instance), 
while a positive value means that it happens after, usually corresponding to the 
so-called late potentials (see Figure 4.8[b]). In this case, the electrophysiologists 
chose the peak of the R wave in the precordial lead V5 as a reference point. 
Importantly, all signals (both ECG and EGMs) related to each CARTO® point were 
recorded during 2.5 seconds, with 2 seconds recorded just before the reference 
point (R-wave peak in V5 signal) and 0.5 seconds after that. 

During the EP study, LAT annotations were automatically determined by 
the Confidense™ module of CARTO® 3 System. To ensure the accuracy of the EP 
data as much as possible, we carefully checked all those annotations one by one, 
correcting them when necessary. First, we removed all points with peak-to-peak 
amplitude under 0.5 mV in distal bipolar EGM (M1-M2), as they are considered 
as non-excitable tissue corresponding to the dense fibrotic scar (Marchlinski et 
al., 2000; Soejima et al., 2002) where LAT annotations make no sense since local 
activation is assumed not to happen (see Figure 4.8[d]). For healthy EGMs (see 
Figure 4.8[a], for instance), we used a custom MATLAB® code to automatically 
place a new LAT annotation on the deflection of distal bipolar signal (M1-M2) 
closest to the point of maximum negative slope in distal unipolar signal (M1) 
(Paul et al., 1990; Spach et al., 1979; Stevenson and Soejima, 2005). Those new 
annotations showed good agreement with LAT annotations determined by 
Confidense™ module in most cases. However, such criterion is not reliable for 
points showing noisy and fractionated signals (see Figure 4.8[c]), typically 
located at the BZ surrounding the infarct scar (Aliot et al., 2009). In those cases, 
we replaced LAT annotations manually under the close supervision of a well-
trained electrophysiologist, who also reviewed LAT annotations for healthy 
EGMs. That expert also suggested us to remove a number of points showing 
highly fragmented bipolar EGMs in order to reduce the uncertainty degree that 
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Figure 4.8. Examples of signals provided by CARTO® system, all of them recorded from 
LV endocardium and showing measured values for: BiP, UniP and LAT. The four graphs 
display the signals corresponding to the precordial lead V5 (green), distal unipolar EGM 
(M1) (orange) and distal bipolar EGM (M1-M2) (blue), showing 200 ms prior to R-wave 
peak in V5 lead (reference point for LAT measurement) and 200 ms after it. Dashed 
vertical lines represent the R-wave peak automatically detected by CARTO® system 
(black) and the estimated time for tissue activation (LAT annotation) after the checking 
process (red). (a) Example of healthy EGM, showing a typical high-amplitude biphasic 
bipolar EGM that happens notably before the QRS complex. (b) Example of late potential 
that normally correlates with regions of slowed conduction, in which tissue activation 
happens after the QRS complex. (c) Example of low-amplitude fractionated bipolar 
potential usually associated with regions of tortuous conduction due to the presence of 
interstitial or patchy fibrosis, for which LAT annotation may be unreliable. (d) Example 
of very low-amplitude bipolar potential typically related to non-excitable tissue (e.g., 
fibrotic scars), for which LAT annotation makes no sense. 
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is unavoidably linked to this kind of in-vivo data. Moreover, we discarded those 
points whose LAT value exhibited a poor coherence with their closest 
neighbours even after the checking process. After this thorough revision of LAT 
annotations, we only preserved 385 out of the 847 original CARTO® points: 84 
for LV endocardium, 49 for RV endocardium and 252 for epicardium. 

Finally, we shifted all LAT values to set the LAT of the earliest activated 
point (most negative LAT value) to 0 ms. That point, with a measured LAT value 
of -68 ms, was located on the septal region of the LV endocardium at mid-apical 
level, matching the onset region of the physiological activation sequence in 
human ventricles (Durrer et al., 1970; Opthof et al., 2017). The latest activated 
point, which as expected was located on the epicardial surface within the BZ 
near the scarred tissue, had a measured LAT value of 68 ms, that is, 136 ms after 
the activation onset. It means that local activation happened 68 ms after the R-
wave peak in V5 lead. Evidently, myocardial regions with such a delayed 
activation do not contribute to the electrical activity manifested in the QRS 
complex of ECG signals (see Figure 4.8[b], for instance). Those activations 
normally correspond to late potentials, defined as isolated potentials occurring 
more than 10 ms after of the QRS complex, which are usually associated with 
the slowed conduction tissue composing the BZ and surrounding the infarct scar 
(Aliot et al., 2009). 
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Chapter 5 

Three-Dimensional 
Computational Models of 

Infarcted Ventricles and Torso 

In this chapter, we explain how we built our anatomically detailed 
patient-specific 3D ventricular model from the cardiac DE-MRI stack, including 
the 3D reconstruction of the heterogeneous remodelling related to the 
myocardial infarction (MI), considering the differentiation between the infarct 
scar and the surrounding border zone (BZ). We also describe how we mapped 
the CARTO® data onto the surface of the 3D ventricular model in order to 
integrate such information into the computational model. Furthermore, we 
address the construction of the 3D torso model aimed at computational 
simulation of cardiac electrophysiology (EP) at the body level, that is, to 
compute the simulated ECG. 

Although presented here in a considerably further extended fashion, it 
must be noted that part of the content of this chapter was already included in a 
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research article entitled “Personalized cardiac computational models: from 
clinical data to simulation of infarct-related ventricular tachycardia”, which was 
recently published in the indexed international journal Frontiers in Physiology in 
May 2019 (Lopez-Perez et al., 2019). 

 

5.1.  3D patient-specific ventricular model 
Briefly, we generated a 3D patient-specific bi-ventricular model (i.e., a 3D 

computational reconstruction of the patient’s cardiac anatomy) by segmenting 
the desired cardiac structures on the DE-MRI slices, including the 3D geometry 
of the remodelling associated with the MI. The process to create such 
personalized 3D model from the images involved several steps, as it is explained 
in the sections below. 

 

5.1.1.  Pre-processing of the cardiac DE-MRI 

Before segmenting the cardiac anatomy to create the 3D reconstruction 
of the ventricles, we performed a pre-processing of the DE-MRI stack aiming to 
ease the segmentation task. Firstly, we upsampled the image stack by linear 
interpolation to yield an isotropic resolution of 0.35 mm3, from the coarser 
original resolution of 1.4 mm3. After that, we rotated the DE-MRI stack from the 
standard axes (axial, sagittal and coronal) shown in Chapter 4 (see Figure 4.3) to 
the cardiac planes (short axis, long axis and four-chamber view), as observed in 
Figure 5.1. For that task, we used the software Gimias (Larrabide et al., 2009)7, 
which allowed to define the cardiac orthogonal axes and perform the 3D 
multiplanar reconstruction of the DE-MRI stack. Next, we downsampled the 
reformatted dataset, but only along the short axis, so that the resulting image 
stack comprised 110 short-axis slices with slice thickness of 1.4 mm and in-plane 
resolution of 0.35×0.35 mm. 

                                                           
7 Gimias.  www.gimias.org/ 

http://www.gimias.org/
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5.1.2.  3D reconstruction of the ventricles 

We imported the reformatted DE-MRI stack in DICOM format into the 
software Seg3D (Scientific Computing and Imaging Institute, University of Utah, 
USA) (Seg3D, 2013)8 to perform highly detailed segmentation of whole 
ventricles by manually outlining the contours of epicardium and both 
endocardia, including papillary muscles and main trabeculations (see Figure 
5.2). We mainly performed the manual segmentation on cardiac short-axis slices 
(Figure 5.2[a]), although we also used the other two cardiac planes (long axis 
[Figure 5.2[b]] and four-chamber view [Figure 5.2[c]]) to make corrections and 
refine certain regions not clearly visualized in short-axis view, such as mitral and 
aortic valves or the apices of both ventricles. As shown in Figure 5.2, we 
segmented the DE-MRI differentiating several cardiac structures: LV 
myocardium (including septum), RV myocardium and papillary muscles and 
main endocardial trabeculations for LV and RV. For both myocardia (LV and RV), 

                                                           
8 Seg3D.  www.sci.utah.edu/software/seg3d.html 

Figure 5.1. Cardiac DE-MRI stack rotated from standard to cardiac planes with Gimias. 
Different views of reformatted DE-MRI stack showing slices in the three orthogonal 
cardiac planes: (a) short axis, (b) long axis or two-chamber view, (c) four-chamber view 
and (d) 3D view of orthogonal cardiac planes. 

http://www.sci.utah.edu/software/seg3d.html
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we first outlined endocardial and epicardial surfaces on short-axis slices 
independently. Later, by means of logical operations, we created new ROIs 
(region-of-interest) just enclosing the myocardium of each ventricle, as they 
appear in Figure 5.2. It is important to remark that an expert in cardiac imaging 
checked and validated all segmentations in order to ensure the fidelity of the 3D 
reconstruction of the patient-specific anatomy. 

 
After the manual segmentation process, we merged all cardiac structures 

segmented separately to create a unique ROI enclosing the complete ventricular 
anatomy, including myocardia, papillary muscles and endocardial trabeculations 
of both ventricles. From this new ROI we generated a 3D isosurface still using 
Seg3D (see Figure 5.2[d]) and exported it as a triangular surface mesh in VTK 
format (see Figure 5.3[a]), thereby creating a raw version of the 3D surface 
model of the whole ventricles. Next, we edited the 3D surface model with 

Figure 5.2. Manual segmentation process of cardiac DE-MRI slices performed with 
Seg3D. Contours highlighted in distinct colours show the different cardiac structures 
segmented independently: LV myocardium including the septum (red), RV myocardium 
(blue) and papillary muscles and endocardial trabeculations of LV (yellow) and RV 
(green). The four panels show segmented slices of the DE-MRI stack in different cardiac 
planes: (a) short axis, (b) long axis or two-chamber view, (c) four-chamber view and (d) 
rendering of the isosurfaces generated from segmentations (LV in red and RV in blue) 
displayed on an anterior 3D view of the orthogonal cardiac planes. 
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ParaView (Kitware Inc., New York, USA)9 to perform a global smoothing in order 
to counteract the staircase effect resulting from the isosurface generation from 
a voxel-based data volume (see Figure 5.3). Then, we exported the smoothed 
version of the 3D surface model from ParaView in STL file format 
(StereoLithography) (3D Systems, Rock Hill, South Carolina, USA)10. Later, we 
edited the STL surface model with Blender (Blender Foundation, Amsterdam, 
The Netherlands)11 aiming to check, refine and correct defects in the mesh at 
local level. 

 
As shown in Figure 5.3, our patient-specific model of the ventricles 

included the four heart valves: both atrioventricular vales, mitral (LV) and 
tricuspid (RV), and both semilunar valves, aortic (LV) and pulmonary (RV). In 
order to fully characterize our 3D model of the ventricles in an anatomical sense, 
we furthermore made some measurements from the segmented volume 
dataset. Cardiac cavity (blood pool) and myocardial tissue (cardiac muscle) 
respectively exhibited volumes of 176 ml and 163 ml for LV and of 77 ml and 53 

                                                           
9 ParaView.  www.paraview.org/ 
10 3D Systems. www.3dsystems.com/quickparts/learning-center/what-is-stl-file?smtNoRedir=1 
11 Blender.  www.blender.org/ 

Figure 5.3. 3D surface model of ventricles generated from DE-MRI segmentation. 
Antero-basal view of the 3D surface model, showing four holes corresponding to the 
four cardiac valves: mitral and aortic for LV, and tricuspid and pulmonary for RV. (a) Raw 
3D isosurface as it was generated by Seg3D, showing a notable staircase effect. (b) Final 
version of the 3D surface model after global smoothing with ParaView and local 
refinement with Blender. 

http://www.paraview.org/
http://www.3dsystems.com/quickparts/learning-center/what-is-stl-file?smtNoRedir=1
http://www.blender.org/
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Figure 5.4. Histogram of edges length from the hexahedra-based volume mesh of the 
3D ventricular model. 

ml for RV. Thus, the volume of the entire myocardium (both ventricles) was 216 
ml. Importantly, those volumes correspond to the end-diastolic phase of cardiac 
cycle, since it is the phase in which the DE-MRI was acquired. 

 

5.1.2.1.  Volume mesh generation 

The final version of the 3D surface model (see Figure 5.3[b]) was edited 
using Gmsh software (Geuzaine and Remacle, 2009)12 in order to convert it from 
STL into MESH file format13. Then, it served as an input for the software 
MeshGems-Hexa (Distene S.A.S., Bruyeres-le-Chatel, France)14, which is a 
hexahedral volume mesh generator based on octree method (Schneiders, 2000). 
Among other parameters used to control the volumetric meshing process, we 
set a value of 0.4 mm as the desired element size (i.e., edge length). As a result, 
we obtained a hexahedra-based volume mesh comprised of 4 million nodes 
(vertices) and 3.71 million hexahedral elements. 

 
  

                                                           
12 Gmsh.  gmsh.info/ 
13 MEDIT: An interactive mesh visualization software.  hal.inria.fr/inria-00069921/document 
14 MeshGems-Hexa: Volume Hexahedral Mesh Generation. 
        www.meshgems.com/volume-meshing-meshgems-hexa.html 

http://gmsh.info/
https://hal.inria.fr/inria-00069921/document
http://www.meshgems.com/volume-meshing-meshgems-hexa.html
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Figure 5.5. Hexahedra-based FEM volume mesh of the 3D patient-specific ventricular 
model. Anterior (left) and posterior (right) views of a coronal cross-section (four-
chamber view) of the 3D ventricular model. Various cardiac regions are tagged with 
different colours: septum (blue), LV free wall (cyan), RV free wall (green) and papillary 
muscles and main endocardial trabeculations of LV (yellow) and RV (red). One can 
observe the high level of anatomical detail achieved for both endocardia, showing 
details such as the moderator band (black ellipse) bridging the septum and RV free wall. 

By means of a custom MATLAB® code, we translated the volume mesh 
from MESH into VTK file format and measured element edges length to assess 
the elements size dispersion. As shown in Figure 5.4, from over 11.72 million 
edges forming the volume mesh, most of them had a length of around 0.4 mm, 
yielding an average edge length of 0.38 mm. Note that the number of edges with 
a length below 0.4 mm, that is, smaller than the desired size, was much larger 
than the amount of greater ones. As deduced from the histogram of edges 
length (Figure 5.4), the mesh generation algorithm preferentially tended to split 
long edges creating shorter ones, thereby trying to avoid edges larger than the 
user defined value (0.4 mm). The explanation is that, in the vast majority of 
cases, those hexahedra located on (or adjacent to) the surface of the 3D 
ventricular model were compressed or split during the meshing process in order 
to fit the subtle details of the reconstructed cardiac anatomy, such as the 
endocardial trabeculations, what led to the shortening of the edges of such 
external elements. The result of such a fine fitting process can be appreciated in 
Figure 5.5, where the hexahedral volume mesh shows the high level of 
anatomical detail achieved by our 3D ventricular model, as well as their smooth 
surfaces accurately reproducing the complex anatomy of both endocardia. 
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Finally, we imported the volume mesh into ParaView to perform a mesh 
quality test (see Figure 5.6). We chose the scaled Jacobian as a quality metric, a 
parameter with values ranging from -1 to +1 that is very commonly used for the 
assessment of 3D unstructured FEM (finite-element method) meshes (Knupp, 
2000, 2003). The scaled Jacobian measures the deformation degree of each 
volumetric element with respect to the ideal one, which is a perfect cube in the 
case of hexahedral meshes. In our volume model, all hexahedral elements 
showed positive values for scaled Jacobian, with more than 99% of them having 
values greater than 0.5, what guaranteed the suitability of the volume mesh for 
FEM solvers. This is because most of the hexahedra were nearly perfect cubes 
(scaled Jacobian close to +1), while only the most external elements were 
deformed to fit the shape of the original template, that is, the 3D surface model, 
as clearly appreciated in Figure 5.6. 

 

Figure 5.6. Hexahedra-based FEM volume mesh of the 3D ventricular model. (a) 
Posterior view of a coronal cross-section (four-chamber view) of the volume mesh 
showing papillary muscles and main trabeculations on the endocardia of both ventricles. 
As shown, there are elements with values of scaled Jacobian notably lesser than 1 only 
on endo- and epicardial surfaces. Blocks extracted from the LV free wall (b) and septum 
(c) show that only those hexahedra closest to the surfaces are deformed, whereas all 
hexahedral elements in the interior of ventricular walls are nearly perfect cubes with 
values for scaled Jacobian close to 1. Two detailed views on different regions of 
epicardial (d) and endocardial (e) surfaces of LV reveal the good adaptation of the 
external hexahedra to the fine cardiac anatomy represented by the 3D surface model. 
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5.1.3.  3D reconstruction of infarct scar and border zone 

As explained in Chapter 1 (see section 1.4.2), VTs related to chronic MI 
usually result from the reentrant activity sustained through conducting channels 
(CC), whose substrate is commonly linked to the remodelled BZ intermingled 
with the fibrotic infarct scar (Aliot et al., 2009; de Bakker et al., 1988). Therefore, 
since our final goal was to reproduce the mechanisms associated with infarct-
related VTs using computational simulation, our 3D ventricular model required 
the incorporation of 3D representations of the patient-specific geometry of the 
heterogeneous tissue remodelling derived from the MI, differentiating between 
the infarct scar, which is a dense fibrotic core, and the BZ, which is the 
remodelled but still functional tissue that surrounds the infarct scar. 

We created such 3D representations of the infarct scar and BZ by 
segmenting the slices of the cardiac DE-MRI using a custom MATLAB® imple-
mentation of the so-called standard deviation (SD) method, a semi-automatic 
algorithm specifically developed for MI segmentation from DE-MRI images (Kim 
et al., 1999a). To apply the SD method, first we had to perform a manual pre-
processing of every DE-MRI slice. As shown in Figure 5.7, within the region 
previously delineated as LV myocardium, we manually defined two new sub-
regions on each short-axis slice of the DE-MRI stack. We traced (1) a region 
containing exclusively healthy tissue, usually referred to as remote myocardium 
ROI in the context of SD method, and (2) another one encompassing the 
infarcted myocardium along with some adjacent areas of normal tissue near the 
MI (infarcted ROI). Slice by slice, we computed the mean and SD values of the 
pixel intensity levels (i.e., grey levels) within the remote ROI. To classify the 
pixels belonging to the infarcted ROI of each short-axis slice based on grey levels, 
SD method defines thresholds by adding a certain number of times (N) the SD 
value above the mean value of the remote ROI of the same slice, so that 
thresholds are calculated as mean+N×SD. Then, applying those thresholds to the 
infarcted ROI of each slice, the algorithm automatically classified as dense 
fibrotic scar all pixels exceeding the threshold defined as mean+3×SD of the 
intensity levels of the remote ROI. Pixels with values between mean+2×SD and 
mean+3×SD were classified as BZ, while pixels under mean+2×SD were 
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considered as healthy tissue (Fieno et al., 2000; Kim et al., 1999a; Kolipaka et al., 
2005; Perez-David et al., 2011; Yan, 2006). 

 

Figure 5.7. Segmentation process from DE-MRI slices of the heterogeneous remodelling 
related to the MI, including infarct scar and BZ. Each row shows examples of the two 
steps of segmentation process on short-axis DE-MRI slices at basal (top), mid-ventricular 
(middle) and apical (bottom) level of ventricles. Left column shows the first step that 
involves the manual definition of remote (green) and infarcted ROIs (yellow) within the 
LV myocardium ROI (red), also displaying the RV myocardium ROI (cyan). Right column 
shows the segmentation ROIs for infarct scar (purple) and BZ (yellow) resulting from the 
application, within the infarcted ROI, of the thresholds determined by SD method from 
the remote ROI of each slice. 
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Figure 5.8. 3D representation of the heterogeneous remodelling associated with the MI 
reconstructed from DE-MRI images, including infarct scar and BZ. Top row (a) displays 
the 3D surface corresponding to the infarct scar (red), while the surface in the middle 
row (b) represents the whole ischaemic injury (blue), enclosing both the scar and the BZ. 
Both rows (a and b) show a representation of the volumetric binary masks created by 
the segmentation process (left column) and posterior views of the refined version of the 
3D surfaces generated from those binary masks, both alone (middle column) and 
displayed into the 3D surface model of ventricles rendered with transparency (right 
column). Bottom row (c) shows the overlap of both 3D surfaces, representing the infarct 
scar (red) and the entire MI (transparent blue), respectively. The space enclosed by the 
whole MI surface and not covered by the infarct scar surface corresponds to the BZ, 
which surrounds the scar as can be appreciated. 
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As a result of this slice-wise semi-automatic segmentation process based 
on SD method, we obtained two different volumetric binary masks specifying 
those voxels of the DE-MRI that were classified as infarct scar and BZ, 
respectively. As shown in Figure 5.8, from both binary masks we generated two 
different isosurfaces enclosing the region representing the 3D geometry of the 
infarct scar and the whole MI (infarct scar and BZ together), respectively. For 
this task, we used the isosurface command, which is a MATLAB® built-in 
function. Those 3D surfaces, exported from MATLAB® in VTK format, were 
subject to a process of global smoothing (with ParaView software) and local 
refinement (with Blender software) similar to that described for the ventricular 
model in the section above. 

Measurements taken from the segmented 3D dataset revealed that the 
entire MI extended over a volume of 40 ml, with 26 ml corresponding to the 
infarct scar and 14 ml to the BZ, thus comprising 16% and 8.5% of the volume of 
LV myocardium, respectively. Hence, the whole infarcted area, including infarct 
scar and BZ, encompassed 24.5% of the cardiac muscle composing the LV 
myocardium. 

 

5.1.3.1.  Mapping of the myocardial infarction into the 3D 
ventricular model 

Finally, we mapped the infarct scar and BZ into the volume mesh of the 
3D ventricular model using another custom MATLAB® code, which labelled 
every node and hexahedral element as infarct scar, BZ or healthy tissue, 
depending on its position relative to the 3D surfaces representing the scar and 
the whole MI. To do so, we implemented the even-odd rule, a well-known 
algorithm for inside-outside testing in the field of computer graphics. Applying 
such method, for each node of the volume mesh we assessed whether it lied 
inside or outside the two target surfaces. We considered as infarcted tissue (i.e., 
dense fibrosis) all nodes lying inside the scar surface, while those ones located 
between both surfaces, that is, outside the scar but inside the whole MI surface, 
were tagged as BZ. Lastly, we labelled as healthy tissue all the remaining nodes, 
that is, all those nodes lying outside the surface enclosing the whole MI. To 
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Figure 5.9. 3D patient-specific geometry of the heterogeneous remodelling associated 
with the MI, mapped into the hexahedral volume mesh of the 3D ventricular model. In 
all panels the infarct scar (dense fibrotic core) is represented in red and the BZ in blue. 
(a) Posterior view of the whole volume mesh and (b) anterior view of a coronal cross-
section (four-chamber plane) showing the 3D distribution of infarct scar, BZ and healthy 
tissue (beige). (c) Posterior and (d) anterior views of those hexahedral elements labelled 
as infarct scar and BZ extracted from the 3D volume mesh. Posterior view of the 
hexahedral elements corresponding to the scar (e) and BZ (f) displayed into the 3D 
surface model of the ventricles rendered with transparency. 
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classify the hexahedral elements of the volume mesh, we followed the same 
approach by assessing the position of the centroid of every element. Figure 5.9 
shows the result of this labelling process of the volume mesh for the 3D patient-
specific geometry of the heterogeneous remodelling (infarct scar and BZ) 
associated with the MI. In Figure 5.9 it can be observed the high complexity of 
the 3D geometry of infarct scar and BZ, as well as the intermingling between 
both types of tissue and also between them and the healthy myocardium. 

 

5.1.3.2.  Structural remodelling in the border zone 

Several studies have described the BZ as a region of slow conduction, 
composed of surviving but remodeled myocytes with infiltration of bundles of 
fibrosis extending from the core of compact fibrosis (infarct scar), all of which 
gives rise to a highly arrhythmogenic tissue (de Bakker et al., 1993; Nguyen et 
al., 2014; Rohr, 2012; Rutherford et al., 2012). Experimental observations based 
on histological sections have witnessed the presence of fibrosis infiltrated within 
the infarct BZ (de Bakker et al., 1988; Rutherford et al., 2012; Smith et al., 1991; 
Tschabrunn et al., 2016), mainly showing the appearance of patchy and 
interstitial fibrosis. Importantly, it is considered the most arrhythmogenic kind 
of fibrosis, as the presence of patchy fibrosis increases the susceptibility to 
unidirectional blocks due to source-sink mismatches resulting from sudden 
changes in the 3D geometry of excitable tissue. In addition, it slows down the 
conduction because of the propagation delays caused by the tortuous pathways 
that the activation wavefront is forced to take, also leading to electrogram 
(EGM) fragmentation due to the impaired activation of the myocardium 
infiltrated with fibrotic tissue (de Bakker et al., 2005; de Jong et al., 2011; 
Dhanjal et al., 2017; Nguyen et al., 2014). 

Considering what is mentioned above regarding the structural 
remodelling in the BZ, we tried to reproduce the configuration of fibrosis in the 
BZ caused by the healing process of the MI based on the available clinical data, 
aiming to replicate it as patient-specific as possible. For this purpose, we 
implemented a MATLAB® code for mapping the grey intensity levels of the DE-
MRI into the volume mesh of our 3D ventricular model, as shown in Figure 5.10. 
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First, we overlapped the volume dataset of DE-MRI onto the volume mesh. Since 
we generated the 3D ventricular model directly from the DE-MRI, that first task 
aiming to register both datasets did not require any transformation. Then, we 
just sought the DE-MRI voxel closest (in terms of Euclidean distance) to the 
centroid of each hexahedron to assign a grey level to every hexahedral element 
of the 3D ventricular model. Note that voxels of DE-MRI (isotropic voxels with 
edge length of 1.4 mm) are notably larger than volume mesh elements 
(hexahedra with average edge length of around 0.4 mm). Therefore, the 
intensity level associated with each DE-MRI voxel belonging to the ventricular 
myocardium was assigned to a cluster of volume elements that might comprise 
up to 64 hexahedra. This is the reason that explains the “stratified” appearance 
of the grey intensity levels along the LV long axis when displayed over the 3D 
ventricular model (see Figure 5.10). 

 
Finally, we generated different levels of fibrosis (10%, 20% and 30%) 

within the BZ based on the grey intensity levels mapped from the DE-MRI. 
Among the elements of volume mesh previously labelled as BZ, we defined as 
fibrotic those ones associated with the highest intensity levels, in an amount 

Figure 5.10. Grey intensity levels of the DE-MRI mapped into the hexahedral volume 
mesh of the 3D ventricular model, showing a postero-basal view of the whole model 
(left) and a basal view of a cross-section in the short-axis plane (right). The latter view 
shows the thinning (atrophy) of posterior, postero-lateral and postero-septal walls of 
the LV as a consequence of the healing process of the MI, as well as the concentration 
of high-intensity levels (closer to white) in those regions due to the accumulation of 
gadolinium-based contrast agent. 
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Figure 5.11. 3D fibrosis distributions resulting from the image-based incorporation of 
several degrees of structural remodelling within the BZ: (a) 10%, (b) 20% and (c) 30% 
fibrosis. All panels show a posterior view of the 3D surface model of ventricles (rendered 
with transparency) together with those hexahedral elements labelled as BZ (blue) and 
fibrosis (orange), extracted from the volume mesh of ventricular model. Left column 
shows both the BZ and fibrosis, while right column only shows fibrotic elements. 
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depending on the desired fibrosis level. In other words, we labelled as fibrotic a 
percentage of volume elements belonging to the BZ that matched the specified 
fibrosis density. For a fibrosis degree of 10%, for instance, among all hexahedral 
elements corresponding to the BZ, we considered as fibrotic the 10% of them 
matching those ones with the highest MRI-derived grey intensity levels. 

As shown in Figure 5.11, our approach of image-based generation of 
different fibrosis levels within the BZ resulted in clusters (or patches) of fibrotic 
tissue. Hence, this strategy produced a distribution that may be classified as 
patchy fibrosis, usually defined as a mixture of bundles of myocardial and 
fibrotic tissue (de Jong et al., 2011), which is similar to those fibrosis patterns 
experimentally observed in the BZ of infarcted ventricles (de Bakker et al., 1988; 
Rutherford et al., 2012; Smith et al., 1991; Tschabrunn et al., 2016). 

 

5.1.4.  Labelling of the 3D ventricular model 

After the meshing process generating the hexahedral volume mesh of the 
3D ventricular model, we enriched the computational model by attaching to the 
mesh a set of useful labels and data. We performed such labelling process by 
means of another tailored MATLAB® code, which went through the whole 3D 
model adding several labels and data fields to every node and element 
(hexahedra) of the volume mesh. Labels attached to the mesh encode 
information about mesh quality metrics, such as the scaled Jacobian (Figure 5.6) 
or the aspect ratio between the shortest and the largest edge of each 
hexahedral element, specific cardiac regions (Figure 5.5), grey intensity levels 
mapped into the model from the DE-MRI (Figure 5.10) and normalized distance 
from the apex to the base of the ventricles (Figure 5.12[a]) as well as between 
endocardial and epicardial surface (Figure 5.12[b]). Other fields also provide 
essential information about cardiac tissue, such as the heterogeneous 
remodelling associated with the MI (infarct scar and BZ) (Figure 5.9), transmural 
EP heterogeneity of ventricular myocardium and the orientation of cardiac 
fibres, as will be described in Chapter 6 (see Figure 6.1 and, Figure 6.3 
respectively). As explained in the corresponding sections above, the generation 
of each one of these labels and data fields required the implementation of a 
specific algorithm. 
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5.1.5.  CARTO® data integration 

As already explained in Chapter 4 (see section 4.5), CARTO® 3 System 
generates surface meshes representing the 3D geometry of every mapped 
cardiac cavity, each of which contains all CARTO® measurement points recorded 
during the mapping process. In our case, there were three surfaces: LV 
endocardium, RV endocardium and epicardium (see Figure 4.6 in Chapter 4). 
However, the 3D position and orientation of such set of surfaces did not match 
the surfaces of the 3D ventricular model derived from the DE-MRI stack. 
Therefore, to align the three CARTO® meshes with our 3D patient-specific 
ventricular model, we needed to apply to those surfaces a rigid transformation 
(i.e., translation and rotation only, without scaling), which was determined by a 
MATLAB® implementation of the ICP (iterative closest point) algorithm (Besl and 
McKay, 1992). To compute the rigid transformation, we applied the ICP 
algorithm to the CARTO® surfaces for both endocardia (LV and RV) jointly, while 
the nodes (vertices) of the endocardial surfaces of the 3D ventricular model 
were considered as the target point cloud. Then, we applied to the CARTO® 

Figure 5.12. Labels attached to the volume mesh of the 3D computational model of 
ventricles. Posterior views of coronal cross-sections (four-chamber plane) of the 3D 
ventricular model with colour codes corresponding to the labels linked to mesh nodes 
providing information about the normalized distance (a) from the apex to the base of 
ventricles (i.e., the plane of mitral valve) and (b) from endocardial to epicardial surface. 
Note that, in the region of septum, we considered the LV side as the endocardial surface 
and the RV side as the epicardium. 
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surface representing the epicardium the same transformation computed for 
both endocardia to complete the registration between CARTO® surfaces and our 
3D ventricular model, as observed in Figure 5.13. 

Figure 5.13. Registration process between CARTO® surface meshes and the 3D 
ventricular model. Posterior view of the 3D surface model of ventricles rendered with 
transparency, showing registered CARTO® surfaces for both (a) endocardia and (b) 
epicardium, as well as (c) checked CARTO® measurement points projected onto the 3D 
model, with spheres representing CARTO® points recorded from LV endocardium (red), 
RV endocardium (blue) and epicardium (green). 
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Finally, after the surfaces registration process, we projected all 
measurement points from each CARTO® mesh to the closest surface node of the 
3D ventricular model, in terms of Euclidean distance. Importantly, we only 
projected onto the ventricular model those CARTO® points preserved after the 
checking process described in Chapter 4 (see section 4.5.1). Thereby, we got all 
checked CARTO® measurement points mapped onto the external surfaces of our 
3D ventricular model, as displayed in Figure 5.13. 

 

5.1.6.  Candidates for conducting channels 

As can be observed by visual inspection (see Figure 5.9), the 3D 
reconstruction from DE-MRI of the heterogeneous remodelling associated with 
the MI revealed the presence of an isthmus at epicardial level. It was completely 
surrounded by dense scar and mainly composed of BZ intermingled with some 
patches of healthy tissue. We can define such structure as a corridor or channel 
of surviving tissue that crosses the infarct scar with a trajectory that was 
approximately aligned with the apex-base direction, although with a slight 
inclination such that the upper side (the most basal extreme) was closer to the 
septum while the lower end (the most apical extreme) pointed towards the 
lateral wall of the LV. Regarding its size, the path of that isthmus had a length of 
39 mm and it presented a quite regular width with an average of 7.5 mm, both 
measured on the epicardial surface. However, there was an intramural 
strangulation (also observable at epicardial level) located just at the lower side 
(apical end) of the isthmus, whose section width decreased to about 2 mm. Both 
shape and features of such structure match the definition of a CC, thus 
constituting a potential substrate for supporting reentrant VTs (de Bakker et al., 
1988; Fernández-Armenta et al., 2013). 

Furthermore, as appreciated in Figure 5.14[a], the integration of CARTO® 
data onto the 3D model showed good spatial correspondence between such 
epicardial isthmus and the location of a particular set of projected CARTO® 
points. Those points were tagged by the electrophysiologists, during the RFA 
procedure, as candidates to be part of a slow CC due to the characteristics of 
their bipolar EGMs (low voltage, fragmented and split signals, late and isolated 
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potentials, etc.) (Bogun et al., 2005; de Chillou et al., 2002). Figure 5.14[b] shows 
a section of such epicardial isthmus in the short-axis cardiac plane revealing its 
non-transmurality, since its structure never reaches the endocardial surface 
along its path, which is completely covered by scarred tissue at the endocardial 
side. On the other hand, in Figure 5.14[b] one can observe again the thinning 
(i.e., atrophy) of posterior, postero-lateral and postero-septal walls of the LV as 
a consequence of the healing process of the MI, matching the regions classified 
as infarct scar and BZ from the DE-MRI. 

 
 

5.2.  3D torso model 
In this section, we address the building process of the 3D torso model, 

including the reconstruction of the torso geometry from the whole-torso 
anatomical MRI and, subsequently, the generation of the FEM volume mesh. 

Figure 5.14. (a) Postero-lateral view of the 3D ventricular model showing a possible 
epicardial CC mainly composed of BZ (blue) intermingled with some patches of healthy 
tissue (beige) and completely surrounded by infarct scar (red). This epicardial isthmus 
closely matches the location of a set of projected CARTO® points (green spheres) tagged 
as candidates to be part of a CC according to the features of their EGMs. (b) Axial cross-
section (short-axis plane) of the 3D ventricular model, showing a section of the structure 
candidate for epicardial CC (see black circle) that reveals its non-transmurality, as no 
point of its trajectory reaches the endocardial surface. 
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5.2.1.  3D reconstruction of torso geometry 

The whole-torso MRI stack was acquired in the coronal plane with a slice 
thickness of 10 mm, which is within the usual range for standard spatial 
resolution of clinical MRI scans, as commented in Chapter 4 (see section 4.3 for 
more details). From such anatomical MRI stack, we roughly segmented the main 
organs (lungs, liver, heart) and anatomical structures (bones, body contour, 
blood pools, great vessels) by manual delineation using the Seg3D software, as 
shown in Figure 5.15[a]. From those segmentations we also generated 
isosurfaces, as observed in Figure 5.15[b]. However, the low resolution of torso 
MRI hampered a detailed reconstruction of some important structures, so we 
decided to reuse a detailed torso model previously developed by other 
researchers from our group (Ferrer et al., 2015a). Thus, the idea was to fit the 
existing detailed torso model to our patient-specific image-based coarse torso. 
To carry out this task, first we placed a set of landmarks on the 3D surfaces 
representing the organs and anatomical structures included in both torso 
models. Then, we registered and fitted the surfaces of the detailed torso model 
to our image-based coarse torso (Figure 5.15[b]) by applying a linear transfor-
mation (translation, rotation and scaling) determined from the landmarks by 
means of a custom MATLAB® code based on Procrustes analysis (Goodall, 1991; 
Gower, 1975). 

After the fitting process, we replaced the ventricles in the fitted detailed 
torso model by our patient-specific 3D ventricular model. Later, we edited the 
fitted surface meshes with Blender in order to remove some intersections 
between the ventricular model and surrounding organs. Therefore, all organs 
and anatomical structures included in the 3D torso model (torso contour, bones, 
lungs, liver and atria) resulted from the fitting process performed to adapt a 
previously constructed 3D model to the patient’s anatomy, except for the 
ventricles and its blood pools, which corresponded to the patient-specific 3D 
ventricular model built from the DE-MRI stack. 
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5.2.2.  Volume mesh generation 

Once the surfaces of the detailed torso model were fitted to the patient’s 
torso reconstruction, including the 3D surface of the patient-specific 3D 
ventricular model (see in Figure 5.16[b]), we used those surfaces  as a template 
to generate a tetrahedra-based volume mesh (see in Figure 5.16[c]) by means 
of an open-source C++ library called TetGen (Si and Gärtner, 2005)15. As a result, 
we obtained a volume torso model consisting of 1.26 million nodes and 7.38 
million tetrahedral elements. 

Unlike the hexahedral mesh of the 3D ventricular model (see Figure 5.4), 
the tetrahedra-based volume mesh of the torso model presented an important 
dispersion of edges length. As shown in Figure 5.16[a], most of the edges in the 

15 TetGen.  wias-berlin.de/software/index.jsp?id=TetGen&lang=1 

Figure 5.15. Generation process of the 3D torso model. (a) Slice of whole-torso 
anatomical MRI in coronal plane, showing manually delineated contours of several 
organs and anatomical structures: body contour (purple), collarbones (green), lungs 
(blue), ribs (orange), epicardium (red) and liver (yellow). (b) Raw isosurfaces (exported 
from Seg3D) resulting from the segmentation of low-resolution whole-torso MRI, 
showing bones, lungs, epicardium and liver within the body contour rendered with 
transparency. 

http://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
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Figure 5.16. Volume mesh of the 3D torso model. (a) Histogram of edges length of 
tetrahedra-based volume mesh of torso model. (b) 3D surfaces defining the organs and 
tissues included in the existing detailed torso model after the fitting process to our 
imaged-based coarse torso. It includes body contour (rendered with transparency), 
bones, lungs, liver and ventricles (in red) corresponding to our 3D patient-specific model. 
It also includes atria and blood pools of the four cardiac chambers, although they are 
not visible in this view. (c) Cross-section in coronal plane of the volume mesh of 3D torso 
model, showing the edges of tetrahedral elements. Observe the refinement of 
tetrahedral elements in the region of ventricles, what results in edges in that region 
shorter than in the rest of the volume mesh. 
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tetrahedral mesh of the torso model have a length of around 0.55 mm, although 
they ranged from 0.1 to 9 mm. Such a wide range results from the refinement 
of the torso mesh in and around the region of the ventricles for the sake of 
accuracy of numerical solutions (see Figure 5.16[c]), whilst there is a coarsening 
of the elements far from the heart in order to reduce the computational burden. 
In fact, 2.72 million out of 7.38 million tetrahedra in the torso model correspond 
to the ventricular myocardium, which is a large amount considering the volume 
of ventricles relative to that of the whole torso. This was the result of imposing 
severe restrictions on elements size only in the region corresponding to the 
ventricular myocardium, defined by the 3D surface of the patient-specific 
ventricular model, in order to yield a spatial resolution (i.e., edges length of 
tetrahedral elements) in such region similar to that of the hexahedral mesh of 
our 3D model of ventricles. To do so, we used a set of input parameters for the 
meshing algorithm of TetGen that allow controlling the meshing process at both 
global and local level. As will be discussed in detail in Chapter 7 (see section 7.4), 
the problem of passive propagation of extracellular potentials, which only 
comprises the diffusion phenomenon without reaction component, does not 
require such a fine spatial resolution outside the heart as reaction-diffusion 
problem does within the ventricular myocardium (Prassl et al., 2009). 
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Chapter 6 

Electrophysiological 
Modelling 

This chapter addresses all the considerations and decisions that we made 
in order to biophysically model the electrophysiological (EP) behaviour at the 
different levels of biological organization: cell, tissue, organ and whole body. 
This is a necessary step aiming to perform multiscale computational simulations 
of cardiac EP making use of the 3D models of the ventricles (organ level) and 
torso (body level), whose building processes were described in Chapter 5. 

Although presented here in a considerably further extended fashion, it 
must be noted that part of the content of this chapter was already included in a 
research article entitled “Personalized cardiac computational models: from 
clinical data to simulation of infarct-related ventricular tachycardia”, which was 
recently published in the indexed international journal Frontiers in Physiology in 
May 2019 (Lopez-Perez et al., 2019). 
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6.1.  Cellular level 
As previously discussed in Chapter 3 (see section 3.4.5), there are several 

approaches to computationally model the cardiac EP at the cellular level that try 
to reproduce the action potential (AP), the ionic currents and the dynamic 
changes in ion concentrations of a particular cell type, which can present 
different degrees of mathematical complexity and physiological realism. In our 
case, we aimed to study the mechanisms associated with infarct-related 
reentrant VTs using computational simulations, which seem to correlate with a 
number of underlying mechanisms at the cellular level, such as (1) AP duration 
(APD) adaptation due to rapid pacing rates, (2) electrotonic interactions 
between cells with different EP features, and (3) generation of repolarization 
dispersion due to APD heterogeneities potentially leading to functional 
propagation block, among others. Consequently, at the cellular level we 
required the use of complex ionic AP models, i.e., models including a specific 
mathematical description for the ionic current flowing through each type of 
transmembrane channel. These models are the most suitable ones for faithfully 
replicating the mechanisms involved in the onset of infarct-related reentrant 
VTs. 

 

6.1.1.  Healthy myocardium. Transmural heterogeneity 

To reproduce the EP behaviour of the cardiomyocytes (cardiac muscle 
cells) which form the healthy myocardium, we used the well-known ten 
Tusscher model of human ventricular AP (ten Tusscher and Panfilov, 2006b), 
considering the EP transmural heterogeneity of the ventricular myocardium 
(Antzelevitch et al., 1999; Drouin et al., 1995). As shown in Figure 6.1, we defined 
three different transmural layers for endo-, mid- (M cells) and epicardial 
myocytes within the volume mesh of the 3D ventricular model, spanning 17%, 
41% and 42% of the ventricular wall thickness, respectively. These values were 
estimated from the data reported by several experimental studies (Sicouri et al., 
1994; Sicouri and Antzelevitch, 1991; Yan et al., 1998), which in addition had 
been used in previous simulation studies (Dux-Santoy et al., 2011, 2013). As an 
exception, the septum comprised a mid-myocardial layer in its interior and 
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endocardial layers at both LV and RV sides, excluding epicardial myocytes (see 
Figure 6.1). Moreover, for papillary muscles and endocardial trabeculations we 
considered endocardial myocytes exclusively. 

 
 

6.1.2.  Infarct scar 

Among other causes, the infarct scar results mainly from the deposition 
of collagen fibres along the healing process of the myocardial infarction (MI), 

Figure 6.1. EP transmural heterogeneity of ventricular myocardium. Views of the 3D 
ventricular model corresponding to cross-sections in four-chamber (upper left) and 
short-axis (lower left) planes, showing the distribution of the three different kind of 
ventricular myocytes: endo-, mid- (M cells) and epicardial cells. Graphics on the right 
side represent the AP reproduced by ten Tusscher model (ten Tusscher et al., 2004) for 
the three distinct cell types stimulated at different BCLs (basic cycle length). 
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aiming to replace the myocardial necrosis (replacement or scarring fibrosis) 
caused by severe ischaemic injury leading to irreversible cell damage. Such MI 
healing process gives rise to the formation of a dense and compact core of 
fibrotic tissue (Sutton and Sharpe, 2000). Therefore, in the chronic stage of the 
MI, when its healing is already completed, the infarct scar is mostly formed by 
an extracellular matrix composed of collagen fibres (Cleutjens et al., 1999; 
Daskalopoulos et al., 2012; van den Borne et al., 2010), so macroscopically it 
may be considered as an inactive tissue, both electrically and mechanically. 

Hence, we considered the infarct scar as a non-excitable tissue and, 
consequently, we modelled it as an electrical insulator at both cellular and tissue 
level. Then, we modelled the infarct scar in such a way that, in simulations at 
tissue/organ level, that region of the ventricular model acts as a fixed obstacle 
within the myocardium that blocks the propagation of the activation wavefront, 
since it cannot propagate across an electrically inactive tissue. To do so, we just 
defined an internal boundary in the 3D ventricular model and imposed no-flux 
boundary conditions at the interface between the dense fibrotic core (infarct 
scar) and the surrounding tissue, which mainly corresponded to the BZ. 

 

6.1.3.  Infarct border zone 

As described in Chapter 5 (see section 5.1.3.2), the BZ surrounding the 
infarct scar is a heterogeneous region comprised of viable but remodelled 
myocardium, intermingled with fibrotic tissue. Therefore, the BZ is an 
electrophysiologically altered tissue that combines the presence of structural 
remodelling in the form of patchy fibrosis (Rutherford et al., 2012; Tschabrunn 
et al., 2016), with electrical remodelling at ionic/cellular level, since the surviving 
myocytes appear to exhibit EP characteristics different from those of healthy 
cells (Dun et al., 2004; Jiang et al., 2000; Pu and Boyden, 1997). Hence, as part 
of the EP modelling process at the cellular level, in the region of BZ we had to 
deal with two different tissues composed of distinct kind of cells: remodelled 
myocytes and fibrotic tissue. 
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6.1.3.1.  Electrical remodelling in the border zone 

Several experimental studies have reported electrical remodelling in the 
BZ, describing significant differences in the EP features of myocytes taken from 
the viable but still working myocardium of the BZ, compared to cells from the 
intact myocardium, that is, not infarcted tissue. To include such electrical 
remodelling of the BZ in the 3D computational model of infarcted ventricles, we 
generated a modified version of the ten Tusscher model (ten Tusscher and 
Panfilov, 2006b) aiming to reproduce the altered EP behaviour of the surviving 
myocytes in the BZ. In this respect, we considered the reduction in the 
conductance (𝑔𝑔) of certain transmembrane ionic channels reported by several 
patch-clamp experiments available in the literature, all of them using cells 
harvested from the epicardial BZ of canine infarcted hearts. According to those 
data, which are gathered in Table 6.1, the conductance of peak sodium current 
(𝐼𝐼𝑁𝑁𝑁𝑁) was reduced to 38% of its normal value (0.38 × 𝑔𝑔𝑁𝑁𝑁𝑁) (Pu and Boyden, 
1997) and L-type calcium current (𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶) to 31% (0.31 × 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶) (Dun et al., 2004). 
Moreover, rapid and slow delayed rectifying potassium currents (𝐼𝐼𝐾𝐾𝐾𝐾 and 𝐼𝐼𝐾𝐾𝐾𝐾) 
were reduced to 30% and 20% of their normal values (0.3 × 𝑔𝑔𝐾𝐾𝐾𝐾  and 0.2 × 𝑔𝑔𝐾𝐾𝐾𝐾), 
respectively (Jiang et al., 2000). 

Current              Modification Data source 

𝑰𝑰𝑵𝑵𝑵𝑵 ↓62% → 0.38 × 𝑔𝑔𝑁𝑁𝑁𝑁  (Pu and Boyden, 1997) 

𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪 ↓69% → 0.31 × 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶  (Dun et al., 2004) 

𝑰𝑰𝑲𝑲𝑲𝑲 ↓70% → 0.3 × 𝑔𝑔𝐾𝐾𝐾𝐾 
(Jiang et al., 2000) 

𝑰𝑰𝑲𝑲𝑲𝑲 ↓80% → 0.2 × 𝑔𝑔𝐾𝐾𝐾𝐾 

Table 6.1. Reductions in the conductance of several ionic channels incorporated to the 
ten Tusscher model of human ventricular AP in order to reproduce the electrical 
remodelling in the BZ. 

Those changes give rise to a decrease in the upstroke velocity and 
maximum amplitude of the AP, mainly caused by the downregulation of 𝐼𝐼𝑁𝑁𝑁𝑁, as 
well as to an increase in the APD relative to the normal values because of the 
reduction in repolarizing potassium currents 𝐼𝐼𝐾𝐾𝐾𝐾 and 𝐼𝐼𝐾𝐾𝐾𝐾. As appreciated in 
Figure 6.2, the main effect of the applied changes was the prolongation of the 
APD, which affects in a similar degree both a single isolated cell and a cell
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embedded in a 3D tissue, i.e., completely surrounded by other cells. Specifically, 
that 3D tissue was composed of voxels (regular hexahedra) with an element 
edge length of 0.4 mm. Table 6.2 shows a quantitative analysis of the changes 
experienced by several important AP features, resulting from the modifications 
incorporated to the ten Tusscher model in order to reproduce the electrical 
remodelling in the BZ. It displays the changes both for a single isolated cell and 

Figure 6.2. Comparison between APs generated by the original version of ten Tusscher 
model (ten Tusscher and Panfilov, 2006b), used in our simulations for healthy 
myocardium, and APs resulting from our modified version of such model for the 
remodelled BZ. Left column shows APs from a simulation with a single isolated cell, after 
stabilizing the model at a BCL of 800 ms, while right column displays APs registered from 
a cell embedded in a 3D tissue (i.e., surrounded by other cells) composed exclusively of 
remodelled myocytes. 
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for a cell embedded in the 3D tissue mentioned above, which was formed by 
remodelled myocytes exclusively. 

Single isolated cell Cell embedded in a 3D tissue 

Feature Healthy Border Zone Change Healthy Border Zone Change 

En
do

ca
rd

iu
m

 

Maximum 
amplitude 37.78 mV 23.75 mV – 37.1% 25.03 mV 17.08 mV – 31.7%

Maximum 
upstroke vel. 92.66 mV/ms 70.17 mV/ms – 24.3% 61.26 mV/ms 47.30 mV/ms – 29.5%

Average 
upstroke vel. 40.51 mV/ms 26.58 mV/ms – 34.4% 20.62 mV/ms 17.90 mV/ms – 13.2%

APD at 90% 299 ms 398 ms + 33.1% 304 ms 404 ms + 32.9% 
Resting 

potential – 85.23 mV – 85.77 mV – 0.64% – 85.26 mV – 85.78 mV – 0.61%

M
 c

el
ls

 

Maximum 
amplitude 36.22 mV 21.50 mV – 40.6% 25.20 mV 16.53 mV – 34.4%

Maximum 
upstroke vel. 92.27 mV/ms 71.15 mV/ms – 22.9% 80.05 mV/ms 36.74 mV/ms – 54.1%

Average 
upstroke vel. 40.44 mV/ms 26.84 mV/ms – 33.6% 26.66 mV/ms 14.48 mV/ms – 45.7%

APD at 90% 389 ms 491 ms + 26.2% 394 ms 494 ms + 25.4% 
Resting 

potential – 85.10 mV – 85.89 mV – 0.94% – 85.13 mV – 85.91 mV – 0.91%

Ep
ic

ar
di

um
 

Maximum 
amplitude 35.47 mV 20.47 mV – 42.3% 23.86 mV 15.96 mV – 33.1%

Maximum 
upstroke vel. 91.80 mV/ms 71.01 mV/ms – 22.6% 83.68 mV/ms 57.09 mV/ms – 31.7%

Average 
upstroke vel. 40.22 mV/ms 26.59 mV/ms – 33.9% 26.08 mV/ms 16.47 mV/ms – 36.8%

APD at 90% 298 ms 393 ms + 31.9% 302 ms 394 ms + 30.5% 
Resting 

potential – 85.18 mV – 85.90 mV – 0.84% – 85.21 mV – 85.91 mV – 0.82%

Table 6.2. Changes in AP properties produced as a consequence of the modifications 
applied to the ten Tusscher model in order to include the electrical remodelling in the 
BZ, compared to the control version (not modified) used for healthy myocardium. This 
table shows measures resulting from a simulation with a single isolated cell (after 
stabilizing ionic models at a BCL of 800 ms) and from a cell embedded in a 3D tissue (i.e., 
surrounded by other cells) composed exclusively of remodelled myocytes. 

6.1.3.2.  Structural remodelling in the border zone 

Several experimental studies have observed the presence of electrical 
coupling between surviving myocytes and fibroblasts within the BZ in infracted 
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ventricles from distinct mammalian species (Camelliti et al., 2004; Mahoney et 
al., 2016b; Schwab et al., 2013). Thus, we decided to assess the potential 
arrhythmogenic effect of such heterocellular interaction in our simulations, in 
which fibroblasts are expected to act as electrical sources or sinks, depending 
on the AP phase of the coupled myocytes, thereby affecting propagation (Rohr, 
2012). To do so, we modelled the patchy fibrosis in the BZ as a passive tissue 
able to interact electrotonically with the adjacent myocytes, instead of conside-
ring it as an electrically inactive tissue, as in the case of the infarct scar. Thus, to 
model at the cellular level the EP consequences of the presence of electrically 
passive fibrotic tissue within the BZ, we used the MacCannell model for human 
ventricular fibroblast (MacCannell et al., 2007) in order to consider the 
electrotonic interaction between myocytes and fibroblasts in human ventricles. 

 

6.2.  Tissue and organ level 
To perform computational simulations of cardiac EP at both tissue and 

organ level, it is necessary to choose a mathematical model to recreate the 
electrical interaction between neighbouring cardiac cells, since such interaction 
is what ultimately leads to the electrical propagation across the myocardial 
tissue. In addition, to obtain physiologically realistic propagation patterns by 
computational simulation with our 3D ventricular model, we had to set a 
number of parameters aiming to consider some features inherent to the cardiac 
muscle, which strongly determine the electrical propagation. 

 

6.2.1.  Electrical propagation across the myocardium 

From a biophysical point of view and focusing on its EP behaviour, the 
cardiac muscle can be modelled as a reaction-diffusion system composed of a 
large set of single cells that are electrically coupled between them through the 
gap junctions, which are specialized proteins communicating the intracellular 
spaces of neighbouring myocytes. When a cardiomyocyte is electrically 
stimulated with intensity enough (i.e., above a critical threshold), such cell 
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depolarizes triggering an AP. This is the reaction phenomenon, since the 
myocyte reacts to the change in its transmembrane potential caused by the 
applied stimulus. Then, the difference in transmembrane potential between the 
excited cell and its neighbours, which are electrically coupled to the first one, 
generates ionic currents flowing between such cells, giving rise to the diffusion 
phenomenon.  Such diffusive ionic currents continue flowing until making the 
neighbouring myocytes depolarize and develop APs as well, thereby leading to 
the reaction phenomenon, again. Thus, under physiological conditions, this 
reaction-diffusion process continues until the initial stimulus propagates 
through the entire myocardium. 

The reaction phenomenon of that process is mathematically represented 
by means of ionic models that simulate the EP behaviour of myocytes, mimicking 
their AP as a reaction to a proper stimulus (see section 6.1). Therefore, it is 
necessary to include another mathematical model to cover the diffusive part of 
this biophysical process, which must be able to simulate the electrical 
propagation in the myocardium, that is, the ionic diffusion from each myocyte 
to the neighbouring ones. 

The most widely used approach for the biophysical representation of the 
reaction-diffusion process of electrical propagation in cardiac muscle is the so-
called bidomain model (Geselowitz and Miller, 1983). As introduced in Chapter 
3 (see section 3.4.5), this model considers the cardiac tissue as an excitable 
continuum medium composed of two domains (intra- and extracellular) 
represented as volumetric conductors that coexist in space, although separated 
by cell membranes. The mathematical formulation of the bidomain model 
relates intra- (𝑉𝑉𝑖𝑖) and extracellular (𝑉𝑉𝑒𝑒) potentials by means of the two partial 
differential equations (PDE) written below. 

∇ · (𝑫𝑫𝒊𝒊 ·  ∇𝑉𝑉𝑚𝑚)  +  ∇ · (𝑫𝑫𝒊𝒊 · ∇𝑉𝑉𝑒𝑒)  =   𝐶𝐶𝑚𝑚  
  𝜕𝜕𝑉𝑉𝑚𝑚  
𝜕𝜕𝜕𝜕

 +  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉𝑚𝑚, 𝑣𝑣) 
 

Eq. 6.1 

∇ · (𝑫𝑫𝒊𝒊 · ∇𝑉𝑉𝑚𝑚)  +  ∇ · �(𝑫𝑫𝒊𝒊 + 𝑫𝑫𝒆𝒆) · ∇𝑉𝑉𝑒𝑒�  =   0 Eq. 6.2 

In these two equations (Eq. 6.1 and Eq. 6.2) the transmembrane voltage, 
𝑉𝑉𝑚𝑚, is defined as follows: 
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𝑉𝑉𝑚𝑚  =   𝑉𝑉𝑖𝑖  −   𝑉𝑉𝑒𝑒 Eq. 6.3 

The right side of Eq. 6.1 corresponds to the reaction term, where 𝐶𝐶𝑚𝑚 is 
the electrical capacitance of cell membranes, which are considered as dielectric 
barriers separating two conductive mediums (intra- and extracellular spaces), 
what matches the definition of an electrical capacitor. 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 represents the ionic 
current flux through the cell membrane, which is described by the ionic model 
used at the cellular level. The ionic flux depends on the transmembrane voltage, 
𝑉𝑉𝑚𝑚, and a set of state variables (𝑣𝑣) included in the model itself. In both PDEs (Eq. 
6.1 and Eq. 6.2), 𝑫𝑫𝒊𝒊 and 𝑫𝑫𝒆𝒆 represent the volume-averaged conductivity tensors 
of intra- and extracellular spaces, respectively. Note that the bidomain model 
assumes different conductivities and anisotropy ratios for those two spaces, 
that is, for the intra- and extracellular domains (Johnston, 2016; Roth, 1992). 

The main drawback of the bidomain model is the high computational 
burden associated with the challenging task of solving numerically an equation 
system consisting of a non-linear parabolic PDE (Eq. 6.1) coupled to an elliptic 
PDE (Eq. 6.2). The most widespread alternative to overcome this problem is the 
use of the monodomain model (Potse et al., 2006; Roth, 1988), which is a 
simplification derived from the bidomain approach. Such simplification comes 
from the assumption that variations of extracellular potential, 𝑉𝑉𝑒𝑒, are negligible, 
such that variations of transmembrane voltage, 𝑉𝑉𝑚𝑚, are mainly determined by 
the changes in the intracellular potential, 𝑉𝑉𝑖𝑖. Hence, the negligible impact of 𝑉𝑉𝑒𝑒 
on 𝑉𝑉𝑚𝑚 allows uncoupling the two PDEs of the bidomain model. Mathematically, 
those assumptions translate into considering that conductivity tensors of the 
two domains included in the bidomain model (𝑫𝑫𝒊𝒊 and 𝑫𝑫𝒆𝒆) are parallel and with 
equal anisotropy ratios, so that they are proportional, that is, related by a 
constant 𝜆𝜆 as shown in Eq. 6.4. 

𝑫𝑫𝒆𝒆  =   𝜆𝜆 · 𝑫𝑫𝒊𝒊 Eq. 6.4 

Using this expression (Eq. 6.4) to substitute 𝑫𝑫𝒆𝒆 in Eq. 6.2 and combining 
the result with Eq. 6.1 in order to remove 𝑉𝑉𝑒𝑒, we obtain the following equation 
that represents the monodomain model: 
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𝛻𝛻 · (𝑫𝑫 · 𝛻𝛻𝑉𝑉𝑚𝑚)   =    𝐶𝐶𝑚𝑚  
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝜕𝜕

 +  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉𝑚𝑚, 𝑣𝑣) Eq. 6.5 

In this expression (Eq. 6.5) 𝑫𝑫 is the equivalent conductivity tensor of the 
monodomain approach, which is defined as follows: 

𝑫𝑫 =  
𝜆𝜆

 1 + 𝜆𝜆 
· 𝑫𝑫𝒊𝒊 Eq. 6.6 

Hence, the monodomain formulation describes the reaction-diffusion 
process of electrical propagation in cardiac muscle by means of a single 
parabolic PDE (see Eq. 6.5), whose right term represents the reactive part of the 
problem, while the left term corresponds to the diffusion phenomenon. 

Despite not being as biophysically precise as the bidomain approach, the 
monodomain model is very frequently used in simulation studies of cardiac EP, 
since it is much less computationally demanding. Moreover, it is widely assumed 
that, in the absence of externally applied currents, the monodomain model is a 
valid and accurate approximation for computational studies focused on the 
electrical propagation in cardiac tissue, showing no significant differences 
compared to the results derived from bidomain approach (Potse et al., 2006). In 
fact, the bidomain model is considered to be strictly necessary only in scenarios 
in which the assumption of negligible variations of the extracellular potential, 
𝑉𝑉𝑒𝑒, is not applicable, usually due to the presence of externally applied currents 
affecting the extracellular medium (Smaill and Hunter, 2010), such as 
simulations related to cardiac defibrillation (Rantner et al., 2012; Trayanova et 
al., 2002). 

Therefore, given its proven validity and its significantly lower 
computational cost compared to the bidomain approach, we chose the 
monodomain model for the electrical propagation in cardiac tissue for our 
simulations at the organ level, as is usually the case in most of the simulation 
studies related to infarct-derived VTs (see (Arevalo et al., 2016; Deng et al., 
2016; Prakosa et al., 2018; Ringenberg et al., 2014), for instance). 
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6.2.2.  Factors affecting electrical propagation 

Under physiological conditions, electrical propagation through the 
myocardium is inherently anisotropic due to several reasons: (1) the elongated 
shape of cardiomyocytes, (2) their arrangement to compose the myocardial 
tissue, mainly defined by cardiac fibre orientation, and (3) the spatial 
distribution of gap junctions along cell membranes, which are significantly more 
concentrated in the terminal ends of myocytes, the so-called intercalated discs, 
than in their lateral sides. The combination of these factors results in an 
axisymmetrically anisotropic propagation in the myocardium, as the electrical 
current flows between neighbouring myocytes around three times faster 
through the intercalated discs (i.e., along longitudinal axes of myocytes) than 
across the myocytes lateral sides (Clerc, 1976). 

Taking into consideration all the factors mentioned above, we modelled 
the electrical behaviour of the ventricular myocardium as an axisymmetrically 
anisotropic medium, where electrical wavefront propagates faster along the 
longitudinal axis of myocytes than in any transverse direction, that is, all 
directions perpendicular to the longitudinal axis of cardiac fibres. Consequently, 
in order to replicate such an anisotropic behaviour, we had to define two key 
properties in our 3D computational ventricular model: the cardiac fibre 
orientation, defined as the direction of the longitudinal axis of each myocyte, 
and two different conduction velocities (CV), referred to as longitudinal and 
transverse CV, respectively. 

In the context of EP modelling at tissue level, CVs refer to the different 
velocities at which the electrical wavefront propagates through the myocardium 
in each direction. Longitudinal CV controls the propagation along the direction 
of cardiac fibres, while transverse CV affects the propagation in every direction 
perpendicular to the cardiac fibres. However, we cannot (and should not) 
directly assign the desired values for CVs. Such velocities depend heavily on 
conductivity values, which are parameters that must be set for the 
mathematical approach used at tissue level, that is, the monodomain model in 
our case. Nevertheless, they also depend on (1) the spatial discretization, 
corresponding to the volume mesh resolution determining the average distance 
between neighbouring nodes, and on (2) the anisotropy of myocardial tissue, 
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represented by the cardiac fibre orientation defining the preferential 
propagation direction. The volume mesh resolution, resulting from the meshing 
process, is known and fixed (element size cannot be modified), with an average 
edge length around 0.4 mm in the 3D ventricular model. Hence, it is necessary 
to assign the appropriate values for longitudinal and transverse conductivities 
in order to obtain the desired CVs along cardiac fibres and in directions 
perpendicular to them, respectively. 

Importantly, cardiac fibre orientation and conductivities are both 
parameters that we defined for every hexahedral element of the 3D ventricular 
model individually. Therefore, this approach allowed us to define and control 
CVs at local level (element by element), enabling the incorporation of 
heterogeneities of CVs in different regions, such as healthy myocardium and BZ. 
In the case of conductivity values, we assigned a certain set of values to each 
region, that is, the same values to all those mesh elements belonging to a given 
kind of tissue (healthy, remodelled BZ and fibrosis). 

With respect to the mathematical model that simulates the electrical 
propagation at tissue level, the equivalent conductivity tensor, 𝑫𝑫, is the element 
of the monodomain approach (see Eq. 6.5 and Eq. 6.6) that mathematically 
considers the cardiac fibre orientation and conductivities, both of which are 
parameters that were incorporated to the 3D computational model of infarcted 
ventricles. Conceptually, 𝑫𝑫 is a tensor computed for each element of the volume 
mesh from the conductivity values and the cardiac fibre orientation associated 
with the corresponding element, such that it describes how the electrical activity 
in a certain node of a volume element affects (or propagates to) the adjacent 
nodes. From the standpoint of the electrical activity, the degree of influence of 
the activity in a mesh node on another node depends mainly on the relative 
position/distance between those two nodes. Under the assumption of 
axisymmetric anisotropy, the more aligned the line linking both nodes with 
respect to the longitudinal cardiac fibre direction, the higher the influence of 
each node on the other or, in other words, the faster the electrical propagation 
between them. Moreover, for a given conductivity, the distance separating 
adjacent nodes (i.e., the mesh resolution) also determines the CV at local level, 
since it affects the accuracy of the numerical methods used to solve the problem 
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of electrical propagation at tissue level. That is the reason why the volume mesh 
of the 3D cardiac model must have a restricted variability in edges length, aiming 
to avoid unexpected CV heterogeneities due to the elements size dispersion. 

 

6.2.3.  Myocardial tissue architecture. Cardiac fibre orientation 

The process of including cardiac fibre orientation in the 3D ventricular 
model consisted of assigning to every hexahedral element of the volume mesh 
a unit vector defining the direction of the longitudinal axes of ventricular 
myocytes in the corresponding anatomical region (see Figure 6.3), which 
matches the preferential direction of conduction and electrical propagation. 
Thus, to include the anisotropy of the ventricular cardiac muscle, we wrote a 
custom MATLAB® code implementing the rule-based method proposed by 
Sebastian et al. (Sebastian et al., 2009) to generate the cardiac fibre orientation, 
which relies on the widely accepted histological studies reported by Streeter et 
al. (Streeter et al., 1969). To replicate the patterns described by Streeter et al. 
for the orientation of ventricular fibres, Sebastian et al. defined helix (𝛼𝛼ℎ) and 
transmural (𝛼𝛼𝑡𝑡) angles in local coordinates as follows: 

𝛼𝛼ℎ   =   1.9 𝑤𝑤 +  0.86 Eq. 6.7 

𝛼𝛼𝑡𝑡   =   0.215  𝜙𝜙2  +   0.0089 𝜙𝜙 −   0.0093 Eq. 6.8 

These angles (𝛼𝛼ℎ and 𝛼𝛼𝑡𝑡) were defined such that the vector 𝒗𝒗��⃗  defining 
the cardiac fibre orientation for each element of the volume mesh is given by 
the following expression: 

𝒗𝒗��⃗   =   [ tan𝛼𝛼𝑡𝑡 , 1,  tan𝛼𝛼ℎ  ] Eq. 6.9 

In Eq. 6.7, 𝑤𝑤 is the normalized distance between endocardium and 
epicardium (𝑤𝑤 = 0 at endocardial surface and 𝑤𝑤 = 1 at epicardium), while in 
Eq. 6.8, 𝜙𝜙 corresponds to a polar angle that measures the distance with respect 
to the base of the ventricles. More precisely, 𝜙𝜙 represents the angle formed by 
the plane perpendicular to the LV long axis and the line linking the centroid of 
each hexahedral element and the centre point of the mitral valve. 
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Therefore, the direction of the vector assigned to each hexahedron of the 
volume mesh, in order to define the cardiac fibre orientation, depends on two 
parameters related to the position of the element centroid relative to the 
transmural depth and to the apex-to-base axis (i.e., cardiac long axis), 
respectively. However, both angles (helix and transmural) were defined into a 
local coordinates system referred to the plane of endocardial surface at local 
level. Hence, once the vector defining the fibre orientation for a given 
hexahedral element was computed (Eq. 6.9), we had to apply a linear 
transformation to translate it into the global coordinates system, in addition to 
normalizing the vector 𝒗𝒗��⃗  to get the unit vector. 

 

Figure 6.3. Representation of the cardiac fibre orientation included in the 3D 
computational model of ventricles. Left anterolateral view of the 3D ventricular model, 
displaying lines that represent the vectors defining the orientation of cardiac fibres on 
three layers at different transmural depths. One can observe the rotational variation of 
cardiac fibres (rotational anisotropy) along the transmural direction from endocardium 
to epicardium. 
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The strategy to assign the cardiac fibre orientation to the whole 
ventricular myocardium, including both ventricles, consisted on applying the 
described methodology in two steps: first we generated the fibre orientation for 
the LV, including the septum, and then for the RV free wall. As a result, we 
obtained a 3D distribution of cardiac fibres (unit vectors) representing the 
structure of the ventricular myocardium, which showed the rotational variation 
along the transmural direction, reproducing the rotational anisotropy described 
by Streeter et al., as observed in Figure 6.3. 

 
In papillary muscles and endocardial trabeculations, cardiac fibres are 

known to be mostly aligned parallel to the longitudinal axis of those anatomical 
structures (Greenbaum et al., 1981). Aiming to replicate such configuration, we 
performed the topological skeletonization of the volume mesh to extract the 
medial axes (skeleton) of each of those endocardial structures. As observed in 

Figure 6.4. Cardiac fibre orientation assigned to papillary muscles and endocardial 
trabeculations. Basal view of the 3D surface model of ventricles (rendered with 
transparency) showing blue lines that represent the vectors incorporated to the 
computational model in order to define the cardiac fibres within the endocardial 
structures. As observed, more clearly in the RV, the direction of such vectors tend to be 
parallel to the longitudinal axis of the corresponding papillary muscle or trabeculation. 
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Figure 6.4, this enabled a proper assignment of fibre orientation within 
endocardial structures by aligning cardiac fibres with the axes resulting from the 
skeletonization process. Finally, we performed a Gaussian smoothing with a 3D 
kernel to soften abrupt transitions in fibres direction between the myocardial 
wall and papillary muscles and trabeculations, as well as at the junctions 
between the septum and the RV free wall. 

 

6.2.4.  Conduction velocities 

As explained above (see section 6.2.2), longitudinal and transverse CVs 
mainly depend on the values set for longitudinal and transverse conductivities, 
respectively, as well as on the spatial resolution of the volume mesh. However, 
even using a same volume mesh with fixed cardiac fibre orientation, the 
relationship between a given set of conductivities for the monodomain model 
and the resulting CVs is not linear, which in fact is supposed to be quadratic. 

 
  

Figure 6.5. 3D slab model (20×20×6 mm) used to adjust conductivity parameters, 
showing the edges of voxels that form the volume mesh. Colour code represents the 
activation map (i.e., the activation time at which the propagation wavefront reached 
each node of the mesh) resulting from the application of a single stimulus on the lower 
left edge of the slab model (see red line). As observed, propagation is notably faster 
along the fibre orientation (see black arrow) than in the directions transverse to them. 
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Hence, due to the complex relationship between the different factors 
affecting the CVs (see section 6.2.2), we decided to perform a series of test 
simulations on a 3D slab model (20×20×6 mm) in order to set the desired CVs 
empirically and precisely. Such model was composed of regular hexahedral 
elements, that is, perfect cubes (voxels), with a fixed edge length of 0.4 mm (see 
Figure 6.5), thus matching the average edge length of hexahedra in the volume 
mesh of 3D ventricular model. The use of regular elements, with all of them 
showing the same shape and size, allowed us to make very accurate measures 
of CVs. In addition, we assigned fixed fibre orientation along the X-axis for all 
voxels (see Figure 6.5) to control the propagation within the 3D model and, 
thereby, measure accurately the CVs resulting from each tested set of 
conductivities. 

As a procedure to adjust the CVs to the desired values, we applied a single 
stimulus on an edge of the 3D slab model and let it propagate through the whole 
model for each tested set of conductivity values. Once computed the activation 
map resulting from propagation of the applied stimulus (see Figure 6.5) and 
knowing the fibre orientation, calculating the CVs (both longitudinal and 
transverse) for a given set of conductivities was a trivial task. 

 

6.2.4.1.  Conduction velocities in healthy myocardium 

For healthy myocardium, we performed the adjustment process of CVs 
explained above using the ten Tusscher model for human ventricular myocyte 
(ten Tusscher and Panfilov, 2006b) and the monodomain approach at tissue 
level (Roth, 1988). As a result, we set conductivity parameters to 0.24 S/m and 
0.0455 S/m for longitudinal (𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) and transverse (𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) conductivities, 
respectively. They resulted in a CV of 0.68 m/s along the cardiac fibre direction 
(longitudinal CV) and of 0.26 m/s in all transverse directions (transverse CV), 
values consistent with experimental measurements in human ventricles 
(Taggart et al., 2000), as well as in other large mammals (Caldwell et al., 2009). 
Importantly, we tested such set of conductivities with the three distinct versions 
of ten Tusscher model (endo-, mid-, epicardial myocytes) and the differences in 
resulting CVs were negligible. 
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6.2.4.2.  Conduction velocities in the border zone 

Within the heterogeneous infarct BZ, we had to deal with two different 
tissues: the electrically remodelled myocardium and the electrically passive 
fibrotic tissue, which represents to the structural remodelling in the BZ. For the 
remodelled myocardium, by means of the adjustment process of CVs described 
above, we set conductivity parameters to 0.05 S/m and 0.015 S/m for 
longitudinal (𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) and transverse (𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) conductivities, respectively. Testing 
those values on the 3D slab model (see Figure 6.5), in combination with our 
modified version of ten Tusscher model for remodelled BZ (see section 6.1.3.1), 
we obtained CVs of 0.17 m/s in the longitudinal direction and of 0.065 m/s in 
the transverse directions. This means a reduction of approximately 75% with 
respect to the values of both CVs in healthy tissue. Thus, the CVs in the 
remodelled BZ were isotropically reduced to 25% of those of healthy 
myocardium. As in the case of healthy myocardium, we found no significant 
differences in CVs when compared the three cell types of the modified version 
of ten Tusscher model (endo-, mid- and epicardial myocytes) with the same set 
of values for conductivities. 

We also tested the conductivity values adjusted for the BZ with the 
original ten Tusscher model (not modified), resulting in velocities of 0.225 m/s 
and 0.09 m/s for longitudinal and transverse CVs, respectively. This entails a 
reduction of 67% for longitudinal CV and of 65% for transverse CV, instead of 
75% as in the case of our modified version of ten Tusscher model. Furthermore, 
testing the conductivity values used for healthy tissue (see section 6.2.4.1) with 
the remodelled version of ten Tusscher model, we obtained values of 0.54 m/s 
and 0.186 m/s for longitudinal and transverse CVs, respectively. Such values 
mean a reduction of 21% in longitudinal CV and of 28.5% in transverse CV, thus 
confirming the fact that electrical remodelling at the cellular level affects the 
propagation at tissue level. Such effect is a direct consequence of the reduction 
in peak sodium current, 𝐼𝐼𝑁𝑁𝑁𝑁, incorporated in order to reproduce the electrical 
remodelling in the BZ (see section 6.1.3.1). This modification results in a lower 
excitability of cardiomyocytes and, consequently, in a slower propagation 
between neighbouring cells within the BZ due to the altered EP behaviour at the 
cellular level. 
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Tissue Conductivities 
Ionic model (ten Tusscher) 

Control version Remodelled version 

Healthy tissue 
𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.24 S/m 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.68 m/s 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.54 m/s 

(↓21%) 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.0455 S/m 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.26 m/s 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.186 m/s 
(↓28.5%) 

BZ with CVs 
reduced to 25% 

(CVs = 0.25 × CVHealthy) 

𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.05 S/m 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.225 m/s 
(↓67%) 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.17 m/s 
(↓75%) 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.015 S/m 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.09 m/s 
(↓65%) 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.065 m/s 

(↓75%) 

BZ with CVs 
reduced to 50% 

(CVs = 0.50 × CVHealthy) 

𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.12 S/m  
Not tested 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.345 m/s 
(↓50%) 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.03 S/m 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.13 m/s 
(↓50%) 

BZ with CVs 
reduced to 75% 

(CVs = 0.75 × CVHealthy) 

𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.22 S/m 
Not tested 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0.515 m/s 
(↓25%) 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.0485 S/m 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0.195 m/s 
(↓25%) 

Table 6.3. Values of conductivities used in computational simulations at the organ level 
both for healthy myocardium and for different degrees of remodelling in the BZ at tissue 
level. This table also shows the CVs resulting from the combination of such 
conductivities with the control (not modified) and the remodelled version of ten 
Tusscher model along with the reduction relative to the CVs in healthy tissue. 
 

As we will explain in detail in the next chapter (Chapter 7), we also 
performed a few additional simulations in order to test different values for 
conductivities in the BZ, all of them using our remodelled version of ten Tusscher 
model. Besides the reduction to 25%, we also tested CVs in the BZ reduced to 
50% and to 75% with respect to CVs of healthy myocardium. For a reduction of 
50% in CVs (𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.345 m/s and 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.13 m/s) we set conductivity 
parameters to 0.12 S/m and 0.03 S/m for longitudinal and transverse 
conductivities, respectively. To reduce CVs only to 75% (𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.515 m/s and 
𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.195 m/s) we set conductivities to 0.22 S/m and 0.0485 S/m for 
longitudinal (𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) and transverse (𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) directions, respectively. Table 6.3 
shows all values of conductivity parameters used in our computational 
simulations at the organ level, together with the resulting CVs depending on the 
version of the ionic model at the cellular level: control (not modified) or 
remodelled version of ten Tusscher model. 
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Regarding fibrotic regions within the BZ, represented by the MacCannell 
model of ventricular fibroblast, they behave as a passive tissue that only enables 
passive propagation due to electrotonic conduction (i.e., only diffusion without 
reaction), rapidly leading to conduction blocks within the fibrotic tissue due to 
the attenuation of propagated potentials. Therefore, a specific CV defined for 
the fibrotic tissue might appear an irrelevant parameter. Nevertheless, the 
conductivity value assigned to fibrotic elements determines the coupling degree 
between myocytes and fibroblasts, thus defining the magnitude of the 
electrotonic interaction between fibroblasts and adjacent myocytes 
(MacCannell et al., 2007), with fibroblasts acting as electrical sources or sinks 
depending on the AP phase (Rohr, 2012). Then, we considered fibrosis in the BZ 
as an isotropic tissue, that is, with the same conductivity for longitudinal and 
transverse directions. We assigned a conductivity of 0.1 S/m for fibrotic 
elements within the BZ, what means a reduction of about 60% with respect to 
the longitudinal conductivity (not CV) in healthy myocardium. 

 

6.3.  Whole body level: 3D torso model 
In relation to the EP properties of the torso, we considered a specific 

conductivity for each one of the organs and tissues included in the 3D torso 
model, aiming to compute the ECG signals to be registered on the body surface. 
As described in Chapter 5, we used the software TetGen to perform the volume 
meshing of the 3D torso model, using as a template the set of surfaces 
representing the different organs and tissues included in the model (see Figure 
5.16[b]). Besides generating the tetrahedral volume mesh, TetGen also labelled 
every tetrahedral element in order to assign it to a specific region, using the 
mentioned surfaces as a reference. Therefore, each tetrahedral element of the 
volume mesh resulting from the meshing process, was assigned to a certain 
organ or anatomical structure. Importantly, all those elements not included in 
any specific anatomical structure after this first step of the labelling process, 
were finally tagged as general torso. Figure 6.6 shows the result of the labelling 
process of the tetrahedral volume mesh of the 3D torso model. The smoothness 
of the external surface of the region of ventricles, compared to the rest of 
structures, is a consequence of the refinement of tetrahedral elements in that 
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Figure 6.6. Anterior view of the tetrahedral volume mesh of the 3D torso model, 
showing all organs and anatomical structures included in the model, which are displayed 
over a coronal cross-section of the portion of volume mesh labelled as general torso that 
shows the edges forming the tetrahedral elements. Different colours indicate which 
organ or anatomical structure each tetrahedral element was assigned to, as a result of 
the labelling process of volume mesh: lungs (orange), bones (yellow), liver (purple) and 
ventricles (red). Although not visible in this view, atria and blood pools of the four 
cardiac chambers are also included in the 3D torso model. 

region for the sake of numerical accuracy, as commented in Chapter 5 (see 
section 5.2.2). 

Conductivity values assigned to different organs and tissues were taken 
from the literature (Bradley et al., 2000; Bressler and Ding, 2006; Gabriel et al., 
1996; Klepfer et al., 1997; MacLeod et al., 1991), with bones and blood having 
the lowest and the highest conductivity, respectively (see Table 6.4). As in 
(Klepfer et al., 1997), for the region labelled as general torso, that is, the space 
not included in any particular organ or anatomical structure, we set a 
conductivity of 0.239 S/m. Such value was calculated as an average of the 
conductivities of several other tissues, including the skeletal muscle that was not 
considered as a specific region in the 3D torso model. 
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Furthermore, we considered isotropic propagation for all of the organs 
and tissues included in the 3D torso model, except for the ventricular 
myocardium. Indeed, we did not assign predetermined conductivity values to 
those tetrahedra corresponding to the ventricular myocardium. Instead of that, 
we used a custom MATLAB® code to map the conductivities assigned to the 
hexahedral elements of the 3D computational ventricular model into the 
tetrahedral elements of torso model corresponding to ventricular myocardium. 
Thus, we kept the heterogeneities at tissue level represented by different 
conductivity parameters for healthy tissue, remodelled BZ and patchy fibrosis, 
as well as the myocardial anisotropy defined by the cardiac fibre orientation in 
order to account for the anisotropic propagation within the ventricular tissue. 

Organ / Tissue Conductivity (S/m) 

Bones   2.0 × 10-2 

Liver 2.77 × 10-2 

Lungs 3.89 × 10-2 

Blood 70.0 × 10-2 

Atrial myocardium 45.9 × 10-2 

General torso 23.9 × 10-2 
Table 6.4. Conductivity values assigned to the different organs and tissues included in 
the computational 3D torso model. 
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Chapter 7 

Personalized 
Electrophysiological Study 

using Computational Simulation 

This chapter is devoted to present our pipeline of computational 
simulation of cardiac electrophysiology (EP), which aims to perform reliable 
personalized in-silico EP studies of infarct-related ventricular tachycardias (VT). 
First, we give information about the software and hardware we used to perform 
our computational simulations of cardiac EP. Then, we describe our simulation 
pipeline at the organ level, detailing which kind of simulations we conducted 
and how we carried them out aiming to replicate the clinical VT suffered by the 
specific patient, whose data were used to build the 3D ventricular model. 
Moreover, we explain the approach used to conduct the simulations at the torso 
level in order to compute the simulated ECGs registered on the body surface. 
Finally, we present a detailed report of the main results derived from our 
simulations of cardiac EP, at both organ (ventricles) and body level (torso), as 
well as a comprehensive discussion on those results. 
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Although presented here in a considerably further extended fashion, it 
must be noted that part of the content of this chapter was already included in a 
research article entitled “Personalized cardiac computational models: from 
clinical data to simulation of infarct-related ventricular tachycardia”, which was 
recently published in the indexed international journal Frontiers in Physiology in 
May 2019 (Lopez-Perez et al., 2019). 

 

7.1.  Simulation software 
To perform simulations at the organ level, as well as the test simulations 

with the 3D slab model described in Chapter 6 (see section 6.2.4), we used a 
software called ELVIRA (Heidenreich et al., 2010a), which was created by 
researchers from the Group of Structural Mechanics and Materials Modelling of 
the University of Zaragoza (Zaragoza, Spain) in collaboration with the Centre for 
Research and Innovation in Bioengineering (Ci2B) from the Polytechnic 
University of Valencia (Valencia, Spain). It is a FEM solver written in FORTRAN 
90 (IBM, Armonk, NY, USA) and specifically developed for solving the anisotropic 
reaction-diffusion equation of the monodomain model for cardiac EP (see Eq. 
6.5 in Chapter 6) by means of parallel computing, making use of the operator 
splitting technique (Keener and Bogar, 1998). Therefore, every simulation 
performed with ELVIRA is solved using the monodomain approach at the tissue 
level (Roth, 1988). 

Regarding our particular simulations, we applied the conjugate gradient 
method with an integration time step (dt) of 0.02 ms to compute the numerical 
solution of our EP problems. On the other hand, spatial discretization is 
determined by the spatial resolution of the FEM volume mesh that defines the 
geometry of the problem. Thus, in all of our simulations, spatial discretization 
was of 0.4 mm, both for organ simulations with the 3D ventricular model 
(average edge length of about 0.4 mm) and for test simulations with the 3D slab 
model (fixed edge length of 0.4mm). Furthermore, we used implicit integration 
for the parabolic partial differential equation (PDE) of the monodomain model 
(tissue level) and explicit integration with adaptive time stepping for systems of 
ordinary differential equations (ODE) associated with ionic models used at 
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cellular level: ten Tusscher model for human ventricular cardiomyocyte (ten 
Tusscher and Panfilov, 2006b) and MacCannell model for human ventricular 
fibroblast (MacCannell et al., 2007). 

With respect to the ionic models employed at cellular level, both the ten 
Tusscher model of human ventricular cardiomyocyte (ten Tusscher and Panfilov, 
2006b), used for healthy ventricular myocardium, and the MacCannell model of 
human ventricular fibroblast (MacCannell et al., 2007), used for fibrotic tissue in 
the BZ, were already implemented in ELVIRA. On the contrary, our modified 
version of ten Tusscher model for electrically remodelled BZ, described in 
Chapter 6 (see section 6.1.3.1), was not included in the original version of the 
solver. Hence, we had to modify the source code of ELVIRA in order to add an 
extra ionic model, what affected several modules of this software since its 
structure was not originally conceived to ease the addition of new models. That 
procedure involved recompiling the entire code of ELVIRA and testing the 
performance of the new extended version of such software before conducting 
our computational simulations at the organ level. 

 

7.2.  Simulation hardware 
To carry out our computational simulations of cardiac EP, performed with 

the software ELVIRA, we used three multi-CPU computers specifically designed 
for parallel computing, all of them running Scientific Linux (release 6.9, 
Carbon)16. All those machines had an identical architecture comprising 128 GB 
of RAM and 64-bit AMD processors with a total of 64 cores at 2.3 GHz (4 × AMD 
Opteron 6376 processor)17. Importantly, they did not work jointly as a HPC (high-
performance computing) cluster, so each simulation was computed on a single 
computer, what means that we were only able to perform one simulation at a 
time per machine. 

                                                           
16  Scientific Linux.   https://www.scientificlinux.org/ 
17  AMD Opteron 6376 processor.   https://www.amd.com/en/products/cpu/6376 

https://www.scientificlinux.org/
https://www.amd.com/en/products/cpu/6376
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Regarding the computational performance, simulating one second of EP 
activity on our 3D ventricular model (4 million nodes and 3.71 million hexahedral 
elements) with ELVIRA, usually took around seven hours of computing on one 
of the machines described above. 

 

7.3.  Computational simulation at the organ level 
All simulations at the organ level (ventricles) were performed on eight 

different versions of our patient-specific 3D ventricular model. The 
computational representation of both healthy myocardium and infarct scar 
remained unchanged across all model versions. Hence, the only difference 
between those eight model versions was the way of modelling the BZ. As shown 
in Table 7.1, we generated eight different representations of the BZ by 
combining the presence or absence of electrical remodelling in such region 
(modified or control version of ten Tusscher model, respectively) with four 
different levels of image-based patchy fibrosis: 0% (no fibrosis), 10%, 20% and 
30%. Such approach allowed us to independently assess the arrhythmogenic 
effect of structural (patchy fibrosis) and electrical remodelling within the BZ, as 
well as the combination of both factors. 

Model version Fibrosis level in BZ EP remodelling in BZ 

model #1 (noER+00fib) 0% 

NO 
model #2 (noER+10fib) 10% 

model #3 (noER+20fib) 20% 

model #4 (noER+30fib) 30% 

model #5 (ER+00fib) 0% 

YES 
model #6 (ER+10fib) 10% 

model #7 (ER+20fib) 20% 

model #8 (ER+30fib) 30% 
Table 7.1. Eight different versions of the computational model of ventricles used for 
simulations at the organ level, classified according to the kind of remodelling included 
in the BZ: electrical (EP) and/or structural (patchy fibrosis). Abbreviations:  noER – no 
electrical remodelling in BZ; ER – electrical remodelling in BZ; 00fib – 0% patchy fibrosis 
in BZ; 10fib – 10% patchy fibrosis in BZ; 20fib – 20% patchy fibrosis in BZ; 30fib – 30% 
patchy fibrosis in BZ. 
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Moreover, we used the same conductivity values for the BZ in all versions 
of the computational model, both for those versions including a combination of 
structural and electrical remodelling (models #6-8) and for those ones including 
only structural (models #2-4), only electrical (model #5) or no remodelling 
(model #1) in the BZ. Note that we reduced conductivities in the BZ with respect 
to the values used in healthy tissue, leading to a reduction in CVs within the BZ. 
Those CVs were consequently reduced to 25% or 35% with respect to healthy 
myocardium, that is, the conduction was 75% or 65% slower than in healthy 
tissue, depending on whether the model version included or not electrical 
remodelling in the BZ, respectively (for more details see section 6.2.4.2 in 
Chapter 6). However, for the sake of clarity, hereinafter we will refer to that 
feature as CVs reduced to 25%, using the abbreviation CVsBZ-25%, regardless of 
the mentioned model version includes electrical remodelling in the BZ or not. 
We will explicitly mention such difference along the text only when it is 
necessary to avoid any important misunderstanding. Therefore, we used the 
same set of reduced conductivities at the tissue level for the BZ in all versions of 
ventricular model, regardless of what kind of remodelling they included in the 
peri-infarct region corresponding to the BZ: electrical, structural (fibrosis), both 
or neither. 

After accomplishing our simulation pipeline (explained in sections below) 
with the eight model versions listed in Table 7.1, model #6 (ER+10fib) was 
revealed as one of the most pro-arrhythmogenic configurations among the eight 
tested settings, since it was one of the model versions most prone to inducing 
VTs in the in-silico tests. Thus, we decided to perform some additional 
simulations with the model #6 (ER+10fib) in order to study the effect of changing 
the conductivities within the BZ. More specifically, we tested two new sets of 
values for conductivity parameters, which in combination with our remodelled 
version of ten Tusscher model resulted in CVs in the BZ reduced to 50% and 75% 
with respect to CVs of healthy tissue, that is, with an electrical conduction 50% 
and 25% slower than in healthy myocardium, respectively (see Chapter 6, 
section 6.2.4.2). Hence, we performed simulations using the model #6 
(ER+10fib) with three different sets of CVs in the BZ, reduced to 25%, 50% and 
75% with respect to healthy tissue, which will be referred to throughout the text 
by the abbreviations CVsBZ-25%, CVsBZ-50% and CVsBZ-75%, respectively. 



Chapter 7 

162 

As we will describe in detail in the following sections, our pipeline of 
simulation of cardiac EP at the organ level included three main steps. First, we 
performed a stabilization of myocyte-fibroblast coupling, only for those model 
versions including fibrosis within the BZ (models #2-4 and #6-8). After that, we 
carried out a stabilization of the 3D ventricular model in sinus rhythm, also 
serving as a validation step. Finally, we applied protocols of programmed 
electrical stimulation (PES) on the stabilized ventricular model aiming to test VT 
inducibility in-silico, that is, by computational simulation. 

 

7.3.1.  Stabilization of myocyte-fibroblast coupling 

Adjacent myocytes and fibroblasts are known to interact by coupling and 
signalling between them in both healthy and diseased myocardium (Kohl and 
Gourdie, 2014; Mahoney et al., 2016b; Ongstad and Kohl, 2016). Electrotonic 
interaction induces changes in myocytes coupled to fibroblasts, such as 
elevation of resting potential (less negative) and APD reduction. These are the 
main consequences of the effect of fibroblasts, which act as electrical sources 
when coupled myocytes are in resting state, giving rise to resting potential 
elevation, and as electrical sinks along the activation and repolarization phases 
of surrounding myocytes, leading to APD reduction due to accelerated 
repolarization (MacCannell et al., 2007; Zeigler et al., 2016). Thus, we needed to 
stabilize these myocyte-fibroblast electrotonic couplings as a first step of our 
simulation pipeline to ensure that those interactions reach the steady state. 
Then, for all models including any level of patchy fibrosis in the BZ (10% [#2, #6], 
20% [#3, #7] or 30% [#4, #8]), we performed a first simulation of 1 second 
without applying any stimulus on the 3D ventricular model, aiming to reach the 
steady state in all myocyte-fibroblast couplings. 

 

7.3.2.  Sinus activation 

Once we had the patient-specific 3D ventricular model and the 3D torso 
model completely constructed and ready for simulations, as well as both models 
coupled as a whole, we tried to reproduce patient’s ECG in sinus rhythm by 
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computational simulation, as a strategy to test and validate the performance of 
our computational models. Nevertheless, replicating by computational simula-
tion an activation sequence matching the sinus activation of a particular subject 
is far from being a trivial task. 

In the human ventricles, electrical activation is known to be initially 
triggered from a number of sites located in subendocardial layers (next to the 
endocardial surfaces) due to the presence of Purkinje-myocardium junctions 
(Durrer et al., 1970; Opthof et al., 2017). We did not include cardiac conduction 
system (CCS) in our 3D ventricular model, but we did have endocardial EAMs 
with checked LAT annotations for both ventricles. Thus, we decided to use those 
CARTO® data to generate a stimulation sequence aiming to reproduce the 
patient’s activation pattern as accurately as possible. 

 
After the checking process described in Chapter 4 (see section 4.5.1), we 

preserved 133 endocardial CARTO® points (84 from LV and 49 from RV) mapped 
onto the endocardial surfaces of our 3D ventricular model, as shown in Figure 
7.1. In an attempt to reproduce patient’s activation sequence, we used those 
points as stimulation sites, applying a stimulus at each one of them at the time 

Figure 7.1. Patient-specific stimulation sequence derived from endocardial CARTO® 
maps recorded in sinus rhythm during the real EP study. Anterior (a) and posterior (b) 
views of a coronal cross-section (four-chamber plane) of the 3D ventricular model, with 
infarct scar represented in dark grey. Spheres correspond to CARTO® points projected 
onto LV (84 points) and RV (49 points) endocardial surfaces, with colour code 
representing LAT values for each point, which was measured from EGMs recorded via 
CARTO® system. 
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instant given by the checked LAT value associated with the corresponding endo-
cardial CARTO® point. Hence, the endocardial CARTO® point with the earliest 
LAT was the first stimulated site (i.e., activated at t = 0 ms) and the rest of points 
were sequentially stimulated until reaching the latest activated point (highest 
LAT value) according to recorded EAMs. The earliest activated points (lowest 
LAT values) were located at mid-apical level on septal wall of LV endocardium 
(see dark blue spheres in Figure 7.1[b]), while the latest activated points were 
on the posterior wall (see red and orange spheres in Figure 7.1[a]) within the 
region that surrounds the scarred tissue, which corresponds to the BZ. 

To perform simulations of sinus activation, we took the final state of the 
stabilization of myocyte-fibroblast coupling as the starting point (i.e., initial state 
for t = 0 ms), in the case of models including fibrosis within the BZ. Then, we 
applied the CARTO®-derived endocardial stimulation sequence to simulate six 
heartbeats at a basic cycle length (BCL) of 800 ms, thus matching patient’s heart 
rate in sinus rhythm (75 bpm) during the real EP study conducted prior to RFA 
procedure. This heart rate was measured from the ECG recordings included in 
the CARTO® data. Note that we simulated six beats, rather than only one, to 
stabilize the computational ventricular model in sinus rhythm before the 
application of pacing protocols for testing VT inducibility. Finally, we computed 
on the 3D torso model the extracellular potentials resulting from the simulated 
ventricular activity (this approach is addressed in section 7.4). Importantly, we 
only computed the extracellular potentials derived from the sixth sinus 
activation, thus obtaining simulated ECG for a single heartbeat with the aim to 
compare those simulated signals to patient’s recordings. 

Therefore, the aim of this sinus activation simulation was twofold: (1) 
stabilize the model prior to in-silico VT inducibility tests and (2) test and validate 
the performance of the developed computational models (ventricles and torso), 
including the EP modelling associated with them. Regarding this latter goal, the 
idea was to test the ability of our computational models (torso-ventricles set) to 
replicate the patient’s ECG in sinus rhythm. To do so, we stimulated the 
ventricular model by the patient-specific sinus activation sequence provided by 
CARTO® data, with the aim to compare the features of simulated and real ECGs 
and measure the correlation between them. However, it is important to remark 
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that this is a validation step that is not strictly necessary to explore the VT 
inducibility by in-silico tests. Thus, our simulation pipeline could seamlessly work 
without invasively recorded CARTO® data. 

7.3.3.  In-silico VT inducibility tests 

At the EP laboratory, electrophysiologists usually apply pacing protocols 
(PES protocols) specifically aimed at testing VT inducibility as part of the EP study 
conducted just before the RFA procedure. Hence, the final goal of our simulation 
pipeline was to reproduce in-silico those pacing protocols in order to test VT 
inducibility by means of computational simulation. Despite having the possibility 
of virtually testing any site in our 3D ventricular model, we selected two points 
from CARTO® EAMs that the electrophysiologists had chosen (and labelled) as 
pacing sites during the in-vivo EP study. The application of PES protocols at those 
two sites, both located on posterior LV wall, in the vicinity of infarct scar (see 
Figure 7.2), managed to successfully induce the patient’s clinical VT at the EP 
laboratory. One of those pacing sites, which we called endo#1, was located on 
LV endocardium at mid-basal level, within the BZ and almost completely 
surrounded by scar tissue (see green sphere in Figure 7.2[a]). The other site, 
called epi#1, was on the epicardial surface of LV posterior wall at mid-apical 
level, beneath the apical border of infarct scar (see red sphere in Figure 7.2[b]). 
After testing VT inducibility from those two pacing sites, we decided to add 
another point in order to assess the influence of the location of a given pacing 
site on VT inducibility. We also placed this third point on the epicardial LV 
posterior wall (epi#2), more precisely at basal level, above the basal side of 
infarct scar (see blue sphere in Figure 7.2[b]). 

To perform our in-silico tests of VT inducibility, we applied (simulated) 
PES protocols delivered from each one of the three chosen pacing sites (endo#1, 
epi#1 and epi#2) and, furthermore, on each one of the eight versions of the 
computational model of ventricles (versions #1-8, see Table 7.1). Therefore, we 
tested VT inducibility in 24 different settings. Importantly, we applied the same 
PES protocol used by electrophysiologists in the EP study undergone by the real 
patient prior to RFA procedure. First, starting from the final state of previous 
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Figure 7.2. Pacing sites for the application of PES protocols aiming to test VT inducibility 
by computational simulation. (a) Anterior view of a sagittal cross section (4-chamber 
plane) of the 3D ventricular model, showing the location of one of the pacing sites at 
endocardial level (endo#1) chosen by electrophysiologists during the real EP study. (b) 
Posterior view of the 3D ventricular model, showing two pacing sites at epicardial level, 
one of them selected by electrophysiologists (epi#1) and another added by us (epi#2). 
In both views of 3D model (a and b), dark grey region represents the infarct scar. 

stabilization in sinus rhythm (six heartbeats), we paced the ventricles with a 
train of six stimuli delivered from the tested pacing site at a BCL of 600 ms (S1 
phase), followed by a single premature stimulus coupled at a shorter interval (S2 
phase). We began applying the S2 stimulus coupled at 400 ms after the last S1 
stimulus. Then, if VT was not induced, we repeated that stimulation protocol 
(S1 followed by S2) reducing the coupling interval (CI) between last S1 
and S2 stimulus in steps of 10 ms each time. We continued reducing the S1-
S2 interval until reaching positive VT induction or propagation block at pacing 
site, i.e., S2 stimulus failed to propagate because the myocardial tissue at 
pacing site still remained in refractory period. In the latter case, when VT was 
non-inducible by means of a single S2 stimulus, we repeated the PES 
protocol adding another premature stimulus (S3 phase) after the S2 phase, 
with both S2 and S3 stimuli coupled at the same CI. That is, the coupling time 
between S2 and S3 stimuli was the same as the time elapsed from the last 
S1 stimulus to S2. When a PES protocol including S3 phase was unable to 
induce VT, then we assumed negative result for VT inducibility test for the 
assessed setting: PES protocol applied at a given pacing site (three distinct 
locations) on a certain version of ventricular model (eight different versions 
depending on BZ modelling). 
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7.4.  Computational simulation at the torso level. 
Simulation of the ECG 
To obtain the simulated ECG signals registered on the body surface, first 

we had to compute extracellular potentials, 𝑉𝑉𝑒𝑒, in ventricular myocardium and 
then compute the extracellular potentials generated by that electrical activity in 
the ventricles across the entire 3D torso model (from the heart up to body 
surface). Nevertheless, extracellular space is missing in monodomain model, 
which we used at the tissue level for our organ simulations (see Chapter 6, 
section 6.2.1). Therefore, for that task we used an approximation of the 
bidomain model, which was proposed by Keller et al. (Keller et al., 2010) and 
already used in previous works by our group (Ferrer-Albero et al., 2017; 
Martinez-Mateu et al., 2018). Such approximation of the bidomain model 
comprises several steps that we explain below. 

First, we interpolated transmembrane potentials, 𝑉𝑉𝑚𝑚, computed for the 
ventricle domain (simulation at the organ level), from the nodes of the 
hexahedral mesh of the 3D ventricular model to those nodes of the tetrahedral 
mesh of 3D torso model labelled as ventricular myocardium. Note that 
transmembrane potentials in the ventricles, 𝑉𝑉𝑚𝑚, were previously computed by 
simulation at the organ level, using monodomain model by means of ELVIRA 
solver. Then, combining the elliptic partial differential equation (PDE) of 
bidomain model (see Eq. 6.2) and the assumptions on conductivity tensors (𝑫𝑫𝒊𝒊 
and 𝑫𝑫𝒆𝒆) from monodomain approach (Eq. 6.4 and Eq. 6.6) (see equations in 
Chapter 6, section 6.2.1), we obtain the following expression that relates 
transmembrane voltage, 𝑉𝑉𝑚𝑚, and extracellular potentials, 𝑉𝑉𝑒𝑒, within the 
ventricles domain (Ω𝐻𝐻). 

𝛻𝛻 · (𝑫𝑫 · 𝛻𝛻𝑉𝑉𝑒𝑒)   =  
 − 1 
 1 + 𝜆𝜆 

 𝛻𝛻 · (𝑫𝑫 · 𝛻𝛻𝑉𝑉𝑚𝑚)      𝑖𝑖𝑖𝑖      Ω𝐻𝐻  Eq. 7.1 

𝑫𝑫 is the equivalent conductivity tensor of monodomain model and 𝜆𝜆 is 
the constant of proportionality that relates the conductivity tensors 𝑫𝑫𝒊𝒊 and 𝑫𝑫𝒆𝒆. 

Then, to solve Eq. 7.1 in order to compute extracellular potentials, 𝑉𝑉𝑒𝑒, 
from the interpolated transmembrane voltage, 𝑉𝑉𝑚𝑚, we considered that the 
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ventricles were isolated from the rest of torso model and immersed in a non-
conducting bath, what results in Neumann boundary conditions on the interface 
between ventricles and surrounding medium (∂Ω𝐻𝐻) defined as follows: 

𝒏𝒏𝑯𝑯 · (𝑫𝑫 · 𝛻𝛻𝑉𝑉𝑒𝑒)   =   0      𝑜𝑜𝑜𝑜      𝜕𝜕Ω𝐻𝐻  Eq. 7.2 

In that equation (Eq. 7.2), 𝒏𝒏𝑯𝑯 is the unit vector normal to the external 
surface of ventricles, 𝜕𝜕Ω𝐻𝐻, pointing outwards. 

Once extracellular potentials in the ventricles, 𝑉𝑉𝑒𝑒, were computed, then 
we did consider the whole 3D torso domain (Ω𝑇𝑇) to compute such potentials 
from the ventricles up to the torso surface. Considering the torso as a solid 
conductor, we computed extracellular potentials in the torso domain by means 
of the following Laplace equation: 

∇ · (𝑫𝑫𝑻𝑻 · 𝛻𝛻𝑉𝑉𝑇𝑇)   =   0      𝑖𝑖𝑖𝑖      Ω𝑇𝑇  Eq. 7.3 

In such equation (Eq. 7.3) 𝑉𝑉𝑇𝑇 represents extracellular potentials within 
the domain of torso model (except for the ventricles) and 𝑫𝑫𝑻𝑻 is the 
heterogeneous conductivity tensor of the 3D torso model defining the 
conduction properties specific to each organ/tissue. 𝑫𝑫𝑻𝑻 was computed for every 
tetrahedral element of the volume mesh of the 3D torso model using the 
different conductivities chosen for each kind of tissue, considering isotropic 
conduction all over the torso except for the region of ventricular tissue, where 
we preserved the axisymmetric anisotropy inherent to cardiac muscle (see 
Chapter 6, section 6.3). 

To obtain extracellular potentials, 𝑉𝑉𝑇𝑇, all over the torso, we solved Eq. 7.3  
by applying Dirichlet boundary conditions to force the continuity of extracellular 
potentials at ventricles-torso interface (𝜕𝜕Ω𝐻𝐻𝐻𝐻), as shown in Eq. 7.4. In addition, 
we considered that the torso was surrounded by a non-conducting medium, 
thus imposing Neumann boundary conditions on the external surface of torso 
model (𝜕𝜕Ω𝑇𝑇), as defined in Eq. 7.5, where 𝒏𝒏𝑻𝑻 is the unit vector normal to the 
torso surface pointing outwards. 
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                                           𝑉𝑉𝑒𝑒  =   𝑉𝑉𝑇𝑇          𝑜𝑜𝑜𝑜      𝜕𝜕Ω𝐻𝐻𝐻𝐻 Eq. 7.4 

𝒏𝒏𝑻𝑻 · (𝑫𝑫 · 𝛻𝛻𝑉𝑉𝑇𝑇)   =   0      𝑜𝑜𝑜𝑜      𝜕𝜕Ω𝑇𝑇 Eq. 7.5 

Finally, we addressed this problem by means of the FEM method, using 
the conjugate gradient method and incomplete Cholesky decomposition as a 
preconditioner for computing a numerical solution. In addition, we used a 
temporal resolution of 1 ms and the heterogeneous spatial resolution defined 
by the edges length of the tetrahedral volume mesh of torso model, as described 
in Chapter 5 (see section 5.2.2). 

 
As in the case of the software ELVIRA, the MATLAB® code that we used 

to compute extracellular potentials across the torso model by means of this 
approximation of bidomain model, was originally implemented by researchers 
from the University of Zaragoza (Zaragoza, Spain). However, we had to 

Figure 7.3.  Anterior view of 3D torso model, showing the 3D surfaces that represents 
all organs and tissues included in that model: torso contour (rendered with 
transparency), bones, lungs, liver and ventricles. Although not visible in this view, atria 
and blood pools of four cardiac chambers are also included in 3D torso model. Blue 
spheres on torso surface represent the location of the six virtual electrodes defined for 
the registration of simulated ECG signals, matching the standard positions of precordial 
leads. 
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thoroughly modify the original version of that MATLAB® code in order to adapt 
it to our 3D models (ventricles and torso) and our simulation settings, as well as 
to parallelize the code aiming to speed up the computation of extracellular 
potentials within the 3D torso model. 

ECG signals represent the manifestation of the electrical activity of the 
heart registered on the body surface. Then, after computing the extracellular 
potentials in the entire torso model resulting from the electrical activity in the 
ventricles, to obtain the simulated ECG signals we defined six virtual electrodes 
on the torso surface, that is, we selected six nodes of the volume mesh located 
on the 3D model surface. The location of those virtual electrodes corresponds 
to the standard positions of the six precordial ECG leads, as shown in Figure 7.3. 
Therefore, simulated ECG signals correspond to the extracellular potentials, 𝑉𝑉𝑇𝑇, 
generated by the previously simulated electrical activity in the ventricles, 
registered onto torso surface with a temporal resolution of 1 ms. 

 

7.5.  Computational simulation results 
This section gathers a detailed description of all the results derived from 

the different steps of the simulation pipeline described above, both at the organ 
(ventricles) and at the torso level (simulated ECGs). 

 

7.5.1.  Stabilization of myocyte-fibroblast coupling 

As observed in Figure 7.4, even in the absence of external stimulation, 
the significant difference in resting potential between coupled myocytes 
(around –85 mV) and fibroblasts (around –49 mV) initially generated a current 
flowing from fibroblasts to myocytes with enough intensity to trigger an AP in a 
number of myocytes, thereby generating several activation wavefronts 
spreading through the entire ventricular myocardium (see Video S118). Thus, in 

                                                           
18  Video S1:   Stabilization of myocyte-fibroblast couplings on model #3 (noER+20fib). 

https://youtu.be/f8_QJSOsqQ4 

https://youtu.be/f8_QJSOsqQ4
https://youtu.be/f8_QJSOsqQ4
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this case fibroblasts act as electrical sources, since current flows from fibroblasts 
to surrounding myocytes. 

 
After such initial multi-foci ectopic-like activation (Figure 7.4), all 

myocyte-fibroblast couplings remained stable in absence of stimulation. In 
Figure 7.5, it is observed how the abrupt transitions in resting potentials around 
the fibrotic patches within the BZ at the beginning of the simulation on model 
#3 (noER+20fib), turns into much smoother potential gradients in the steady 
state reached as a result of that stabilization process. Therefore, the final state 
of these stabilization simulations later served as a starting point (i.e., initial state 
for t = 0 ms) for the following ones in our simulation pipeline. 

Figure 7.4. Multiple spontaneous activations during the stabilization process of 
myocyte-fibroblast electrotonic couplings. Posterior view of the 3D ventricular model 
corresponding to a computational simulation on model #3 (noER+20fib), without any 
stimulus applied on the model. It corresponds to the potential map at 20 ms of 
simulation, showing multiple foci of ectopic-like activations generated due to 
electrotonic interaction between myocytes and fibroblasts in the region corresponding 
to the BZ. The large grey region in the 3D ventricular model represents the infarct scar, 
which constitutes an obstacle for electrical propagation since it was modelled as a non-
excitable tissue (electrical insulator). 
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Figure 7.5. Steady state after the stabilization of myocyte-fibroblast couplings on model 
#3 (noER+20fib). Top row shows potential maps at the beginning of the simulation (t = 
0 ms), while bottom row displays the same maps after the stabilization (t = 750 ms), 
when steady state has already been reached. Both rows show an anterior view of a 
coronal cross-section (4-chamber plane) of ventricular model (left panel) that exposes 
the endocardium of LV posterior wall and a posterior view of the model (right panel) 
showing the epicardial surface. Note that the tissue corresponding to the infarct scar 
was removed to allow a better visualization of the stabilization process of myocyte-
fibroblast coupling within the intramural layers. Comparing the potential maps on both 
rows, one can appreciate a notable difference in resting potentials in those regions 
infiltrated with patchy fibrosis (regions with elevated resting potentials). At the 
beginning of the simulation (top row), there are abrupt transitions around the fibrotic 
patches, showing two strongly differentiated resting potential levels, turning into much 
smoother potential gradients in steady state after the stabilization (bottom row). 
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7.5.2.  Simulations of sinus activation 

7.5.2.1.  Simulations at the organ level 

In this section, we present and compare the results of simulations of 
CARTO®-derived sinus activation, performed with all versions of the 3D 
ventricular model. The videos corresponding to each of those simulations are 
available online19, all of which show the propagation of the last of the six 
heartbeats simulated in sinus rhythm at a BCL of 800 ms (i.e., 75 bpm). 

 
Features of sinus activation simulated at the organ level 

Figure 7.6 and Figure 7.7 display activation maps (LATs) corresponding to 
the propagation of the sixth heartbeat simulated on model #1 (noER+00fib) and 
model #8 (ER+30fib), respectively. Note that they are the two model versions 
that represent the two opposite poles in relation to the remodelling level 
included in the BZ. That is, models #1 (noER+00fib) and #8 (ER+30fib) were 
respectively modelled with the lowest and the highest level of BZ remodelling, 
both electrical and structural (fibrosis). As shown, activation and propagation 
patterns are very similar for these two versions of the ventricular model, and 
also for the rest of them (see the videos). In both cases, as well as for the rest of 
model versions, activation begins at the endocardial surface of the LV side of the 
septum and the latest activated regions mainly concentrate around the infarct 
scar, matching the tissue corresponding to the BZ. In all simulations (with all 
model versions), 90% of excitable ventricular tissue (excluding the non-
conducting infarct scar) was activated in less than 100 ms, raising up to 95% of 
tissue in less than 120 ms. However, certain regions of the BZ show very late 
activation times, with the latest activated tissue corresponding to the epicardial 
isthmus in all cases (see Figure 7.6[d] and Figure 7.7[d]). In the worst case 
(model #8 – ER+30fib), the activation in such isthmus lasted up to 296 ms (see 
Figure 7.7 and Table 7.2). Therefore, activation maps from simulations of 
CARTO®-derived sinus activation were very similar for all versions of the 
ventricular model. The only remarkable difference between models was the 

                                                           
19  Sinus activation. Videos corresponding to the simulations of CARTO®-derived sinus 
activation.    https://www.youtube.com/playlist?list=PL98EKQIbetNobrKiaro9H3KI2FjcGpT7j 

https://www.youtube.com/playlist?list=PL98EKQIbetNobrKiaro9H3KI2FjcGpT7j
https://www.youtube.com/playlist?list=PL98EKQIbetNobrKiaro9H3KI2FjcGpT7j
https://www.youtube.com/playlist?list=PL98EKQIbetNobrKiaro9H3KI2FjcGpT7j
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total time that tissue corresponding to the BZ took to be fully activated. The 
highest LAT value, located within the epicardial isthmus in all cases, ranged from 
243 ms for model #1 (noER+00fib) to 296 ms for model #8 (ER+30fib) (see Table 
7.2). 

 
 
  

Figure 7.6. Activation maps resulting from the sixth heartbeat in simulation of CARTO®-
derived sinus activation on model #1 (noER+00fib), which is the model version with the 
lowest degree of BZ remodelling. Different views of the 3D ventricular model, showing 
anterior (a) and posterior (b) views of a coronal cross-section (4-chamber plane) that 
exhibit endocardial and transmural activation, as well as anterior (c) and posterior (d) 
views of the whole model displaying epicardial activation. The earliest activated regions 
are on the LV side of septum, while the latest one is the epicardial isthmus crossing the 
infarct scar. The grey region in the model corresponds to the infarct scar modelled as a 
non-conducting tissue (electrical insulator). 
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Factors affecting the propagation in the BZ during sinus activation 

Those significant differences in the delayed activation of the BZ can be 
appreciated in the plots of Figure 7.8, which represent the evolution of the 
activation of BZ tissue for all model versions during the last beat in sinus 
activation simulations. In all cases, those plots show a quite similar linear 
evolution of BZ activation at the beginning, followed by a final segment in which 
activation times increase exponentially, with notable differences between 
distinct model versions. Such differences in the final phase of the activation 
were caused by both electrical remodelling and the presence of patchy fibrosis 
in the BZ. Note that electrical remodelling promoted longer activation delays 
than fibrosis, as quantitatively summarized in Table 7.2. Anyhow, those longer 
delays in model versions including electrical remodelling (models #5-8) were 
expected. Remember that the set of reduced conductivities used in the BZ made 
CVs in that region decrease to 25% with respect to healthy tissue (i.e., 75% 
slower conduction) because of partial inactivation of peak sodium current (INa) 
associated with the electrical remodelling included in models #5-8. By contrast, 
the absence of electrical remodelling (i.e., no inactivation of INa) enabled a 
slightly better conservation of CVs for the same set of conductivity values, so 
that in models #1-4 CVs in the BZ were only reduced to 35% with respect to 
healthy tissue (i.e., 65% slower conduction). 

Nevertheless, neither electrical remodelling nor fibrosis had an impact 
on activation as large as the one caused by the different CVs used in the BZ 
(different conductivities, actually). As expected, the data collected in Table 7.3 
confirm the great influence on the activation delays in the BZ resulting from the 
reduction in CVs in that region. Thus, compared with electrical remodelling and 
presence of patchy fibrosis, the specific set of values chosen for CVs in the BZ 
was the factor that most deeply affected propagation in the BZ. This can be 
appreciated in Figure 7.8, where the three distinct plots for model #6 (ER+10fib), 
with different values for CVs in the BZ, notably differ from each other. 

Another important effect, specifically caused by the presence of patchy 
fibrosis in the BZ, was the generation of patches of non-activated tissue (see 
black patches in Figure 7.7). Such regions were never activated (transmembrane 
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potential did not reach the level of 0 mV) because of clustered accumulations of 
fibrotic elements modelled as fibroblasts, which caused blocks of the electroto-
nic propagation within those fibrotic patches due to the rapid decrease of 
propagated potentials. Although there are subtle differences depending on the 
presence of electrical remodelling and the degree of reduction in CVs, in all cases 

Figure 7.7. Activation maps resulting from the sixth heartbeat in simulation of CARTO®-
derived sinus activation on model #8 (ER+30fib), which is the model version with the 
highest degree of BZ remodelling. Different views of the 3D ventricular model, showing 
anterior (a) and posterior (b) views of a coronal cross-section (4-chamber plane) that 
exhibit endocardial and transmural activation, as well as anterior (c) and posterior (d) 
views of the whole model displaying epicardial activation. The earliest activated regions 
are on the LV side of septum, while the latest one is the epicardial isthmus crossing the 
infarct scar. The grey region in the model represents the infarct scar modelled as a non-
conducting tissue (electrical insulator). Black patches correspond to not activated pieces 
of tissue due clustered accumulations of fibrotic elements (mesh elements modelled as 
fibroblasts) within the BZ. 
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the percentage of non-activated tissue is slightly lower than fibrosis level within 
the BZ (see Table 7.2 and Table 7.3). This indicates that only a little number of 
fibroblasts were depolarized (i.e., their transmembrane potentials exceed the 
level of 0 mV) when they were reached by the propagation wavefront. 

 

Figure 7.8. Evolution of the activation of tissue corresponding to the BZ, resulting from 
the sixth heartbeat in simulations of sinus activation, performed with all versions of our 
3D ventricular model. Note that in those model versions including any level of patchy 
fibrosis in the BZ, the portion of successfully activated tissue could not reach 100% due 
to accumulations of fibrotic elements (mesh elements modelled as fibroblasts) within 
the BZ. 
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Repolarization dispersion around the infarct scar during sinus activation 

Besides the activation maps, we also represented APD maps of all 
simulations of sinus activation to study the repolarization patterns. Figure 7.9 
and Figure 7.10 show the APD maps resulting from the sixth heartbeat in 
simulations of CARTO®-derived sinus activation on all model versions with 
CVsBZ-25%. As observed, those APD maps reveal a remarkable repolarization 
dispersion (or APD heterogeneity) around the infarct scar, caused by both 
electrical remodelling and the presence of fibrosis in the BZ. 

  Fibrosis level in the BZ 

  0% 10% 20% 30% 

No EP remod. 
in the BZ 

Max. LAT 243 ms 264 ms 266 ms 269 ms 

% of BZ activated 100% 91.2% 82.5% 74.5% 

With EP remod. 
in the BZ 

Max. LAT 270 ms 289 ms 293 ms 296 ms 

% of BZ activated 100% 90.2% 81.3% 73% 

Table 7.2. Activation of the BZ in CARTO®-derived sinus activation simulations, 
performed with all model versions with CVsBZ-25%. This table gathers information 
about the total time (max. LAT) that electrical propagation took to fully activate the BZ 
tissue, as well as the percentage of such tissue (% of BZ activated) that was successfully 
activated (i.e., depolarized) depending on fibrosis level in the BZ. 

 CVs in the BZ with respect to CVs in healthy tissue 

 CVsBZ-25% CVsBZ-50% CVsBZ-75% 

Max. LAT 289 ms 222 ms 192 ms 

% of BZ activated 90.2% 92.2% 93.4% 

Table 7.3. Activation of the BZ in CARTO®-derived sinus activation simulations, 
performed with model #6 (ER+10fib) and different values for CVs in the BZ: CVsBZ-25%, 
CVsBZ-50% and CVsBZ-75%. This table collects information about the total time (max. 
LAT) that electrical propagation took to fully activate the BZ tissue, as well as the 
percentage of such tissue (% of BZ activated) that was successfully activated (i.e., 
depolarized) depending on the degree of reduction in CVs of the BZ. 

The incorporation of electrical remodelling, described in Chapter 6 (see 
section 6.1.3.1), transformed the BZ into a region where APDs were longer than 
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Figure 7.9. APD maps showing the epicardial surface of the posterior wall of ventricular 
model, exhibiting notable differences in repolarization patterns resulting from sinus 
activation simulations between four versions of the model, combining two different 
levels of image-based patchy fibrosis (0% and 10%) with and without electrical 
remodelling in the BZ. These maps correspond to the sixth heartbeat in simulations of 
CARTO®-derived activation sequence at BCL of 800 ms (75 bpm). Both electrical 
remodelling and the presence of patchy fibrosis in the BZ affected APDs in that region, 
creating repolarization dispersion around the infarct scar. The little black regions in the 
two model versions including 10% fibrosis in BZ (bottom row) correspond to patches of 
not activated tissue due to accumulations of fibrotic elements (fibroblasts). 

in healthy tissue. As expected, this affected the repolarization patterns, since it 
created regions with longer APDs around the infarct scar, thus increasing 
repolarization dispersion in that region of the ventricular model. This effect can 
be well appreciated in Figure 7.9 by comparing the APD maps from model #1 
(noER+00fib) and model #5 (ER+00fib), or from model #2 (noER+10fib) and 
model #6 (ER+10fib). 
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In contrast, the existence of patchy fibrosis within the BZ caused the 

opposite effect, as it induced APD reduction around the fibrotic patches, what 
also increased the dispersion in repolarization patterns. This was caused by the 
electrotonic load exerted on myocytes by the adjacent fibroblasts, which acted 
as electrical sinks leading to a faster repolarization of such myocytes and, 

Figure 7.10. APD maps showing the epicardial surface of the posterior wall of ventricular 
model, exhibiting notable differences in repolarization patterns resulting from sinus 
activation simulations between four versions of the model, combining two different 
levels of image-based patchy fibrosis (20% and 30%) with and without electrical 
remodelling in the BZ. These maps correspond to the sixth heartbeat in simulations of 
CARTO®-derived activation sequence at BCL of 800 ms (75 bpm). Both electrical 
remodelling and the presence of patchy fibrosis in the BZ affected APDs in that region, 
creating repolarization dispersion around the infarct scar. The increase of fibrosis level 
progressively shortens APDs in certain regions of the BZ, also expanding the patches of 
non-activated tissue (black regions) due to accumulations of fibrotic elements 
(fibroblasts). 
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consequently, to shorter APDs. See, for instance, the effect of introducing 10% 
patchy fibrosis in the BZ on APD maps in Figure 7.9. The higher the fibrosis level 
within the BZ, the greater the APD reduction in such region and, consequently, 
the greater the repolarization dispersion generated around the infarct scar. One 
can clearly note this effect by observing the evolution of APD maps as a function 
of fibrosis level within the BZ in Figure 7.9 and Figure 7.10. The amount and size 
of patches of non-activated tissue due to clustered accumulations of fibrotic 
elements also increased depending on the fibrosis level in the BZ (see black 
patches on APDs maps in Figure 7.9 and Figure 7.10). 

Therefore, the combination of those two opposite effects (APD increase 
caused by electrical remodelling and APD decrease induced by patchy fibrosis) 
led to strong dispersion in repolarization patterns in the region of BZ, which 
might result in a considerable increase in the arrhythmogenic potential of the 
viable but remodelled tissue that surrounds the infarct scar (Hegyi et al., 2018; 
Kléber and Rudy, 2004; Laurita and Rosenbaum, 2000). Furthermore, probably 
due to the morphological (geometrical) features of the epicardial isthmus, such 
APD heterogeneity appeared to be especially important around the two 
terminal ends of that structure, as appreciated in APD maps from models #5 
(ER+00fib) and #6 (ER+10fib) (see Figure 7.9) or from models #3 (noER+20fib) 
and #7  (ER+20fib) (see Figure 7.10). 

 

7.5.2.2.  Simulations at the torso level. Simulated ECGs 

Regarding the simulations of cardiac EP at the torso level, Figures 7.11, 
7.12 and 7.13 show simulated ECGs computed from precordial leads, obtained 
with all versions of the ventricular model, also showing patient’s ECG to 
compare it with simulated ones. We obtained those ECG signals by computing 
across the 3D torso model the extracellular potentials (see section 7.4) resulting 
from the sixth heartbeat in simulations of CARTO®-derived sinus activation. As 
observed in those three figures, our body level approach (with ventricular model 
stimulated by CARTO®-derived activation sequence) allowed obtaining ECGs in 
sinus rhythm with precordial leads showing good signal correlation with real 
ECGs (see legends in figures), as well as very similar R-wave progression. Signal 
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correlation between simulated and real ECGs ranged from 80% to 96% for V1 
(Figure 7.11), V4 (Figure 7.12), V5 and V6 (Figure 7.13). However, these values 
fell to around 70% for V2 (Figure 7.11) and V3 (Figure 7.12), in which the QRS 
complex presented a biphasic polarity in the real ECG that simulated signals 
could not properly reproduce. V2 and V3 showed a little negative S wave in 
simulated signals that is much less pronounced than in real ones. Nevertheless, 
the width of QRS complex in simulated signals was highly similar to that of real 
ECG in all precordial leads. 

 
Influence of BZ remodelling on simulated ECG in sinus rhythm 

Comparing simulated ECGs resulting from model versions with and 
without electrical remodelling in the BZ (see Figures 7.11, 7.12 and 7.13), 
inclusion or absence of such kind of remodelling did not appear to have an 
important impact on simulated ECGs in sinus rhythm. Conversely, the presence 
of fibrosis in the BZ did cause a significant ST segment deviation in the simulated 
signals, whose polarity matched that observed in real ECGs in all precordial 
leads. See ST elevation in V1 (Figure 7.11) or depression in V5 and V6 (Figure 
7.13), for instance. This is the manifestation at the torso level (i.e., on simulated 
ECGs) of the early repolarization of the tissue around the infarct scar induced by 
the fibroblasts infiltrated within the BZ. As observed in Figure 7.14, in model #1 
(noER+00fib) repolarization has not begun yet at instant t = 250 ms. By contrast, 
at the same time instant, model versions including any fibrosis level in the BZ 
(models #2,3,4) do show pieces of tissue around the infarct scar in which 
repolarization process has already begun, thus giving rise to a ST segment 
deviation in simulated ECGs. Furthermore, Figure 7.14 shows that the higher the 
fibrosis level included in the BZ, the earlier the start of repolarization process 
around the infarct scar because of a stronger electrotonic load caused by a larger 
amount of infiltrated fibroblasts that act as electrical sinks. 
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The most important difference between real and simulated ECGs, which 
affected all precordial leads, was related to the repolarization phase. There was 
a good coincidence in T wave polarity between real and simulated ECGs in all 
precordial leads, except for V1 in which simulated signals showed a biphasic T 
wave that differed from the real one (see Figure 7.11). However, in all precordial 
leads from all model versions, simulated ECGs showed a delayed T wave with 
respect to real signals. This is most probably due to the fact that the waveform 
of the T wave strongly depends in the regional differences in APD, and we must 
remember that the simulated AP waveforms were not patient-specific. As in the 
case of ST segment, electrical remodelling in the BZ seemed to cause no 
significant impact on the repolarization phase of simulated ECGs, that is, on the 
T wave of simulated signals. Nonetheless, again the presence of fibrosis in the 
BZ did have certain effect on the T wave magnitude, which was particularly 
notable on V1 (Figure 7.11), V4 (Figure 7.12), V5 and V6 (Figure 7.13). 

 
Impact of CVs in the BZ on simulated ECGs in sinus rhythm 

Additionally, aiming to assess the impact of changes in CVs in the BZ on 
simulated ECGs, we computed the ECGs resulting from our sinus rhythm 
simulation on model #6 (ER+10fib) with different sets of values for CVs in the BZ. 
Figure 7.15 and Figure 7.16 show the real ECG at precordial leads compared with 
simulated signals obtained from the sixth heartbeat in simulations of CARTO®-
derived sinus activation on model #6 (ER+10fib) with CVsBZ-25%, CVsBZ-50% 
and CVsBZ-75%. As observed in such figures, those changes in CVs had a slight 
effect on the simulated signals, as manifested by insignificant changes in 
coefficients of signal correlation for all precordial leads (see plots legends). 
When we increased CVs in the BZ from 25% to 50% or 75% with respect to 
healthy tissue, it resulted in a subtle reduction in QRS complex width in the 
simulated signals for all precordial leads, with no notable differences between 
models with CVsBZ-50% and CVsBZ-75%. Moreover, only on V2 and V3 (Figure 
7.15) distinct values for CVs in the BZ appeared to have a slight impact on ST 
segment deviation. With respect to repolarization phase, the increase of CVs in 
the BZ slightly affected T wave magnitude, again with no significant differences 
between models with CVsBZ-50% and CVsBZ-75%. 
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Figure 7.14. Potential maps corresponding to time instant t = 250 ms in simulations of 
CARTO®-derived sinus activation, performed on the four versions of ventricular model 
that did not include electrical remodelling (ER) in the BZ (models #1,2,3,4). As observed 
in these posterior views of the ventricular model, the higher the level of image-based 
patchy fibrosis included in the BZ, the earlier the repolarization of the BZ tissue that 
surrounds infarct scar. The grey region in the model represents the infarct scar modelled 
as a non-conducting tissue (electrical insulator). 
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Figure 7.15. Simulated ECGs resulting from the sixth heartbeat in simulations of 
CARTO®-derived sinus activation. Signals corresponding to V1, V2 and V3 precordial 
leads, comparing real ECG (black) with ECGs simulated by means of model #6 (ER+10fib) 
with CVsBZ-25%, CVsBZ-50% and CVsBZ-75%. Cross-correlation coefficients (CORR) are 
included in the legend of every plot. 
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Figure 7.16. Simulated ECGs resulting from the sixth heartbeat in simulations of 
CARTO®-derived sinus activation. Signals corresponding to V4, V5 and V6 precordial 
leads, comparing real ECG (black) with ECGs simulated by means of model #6 (ER+10fib) 
with CVsBZ-25%, CVsBZ-50% and CVsBZ-75%. Cross-correlation coefficients (CORR) are 
included in the legend of every plot. 
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7.5.3.  In-silico VT inducibility tests 

7.5.3.1.  Simulations at the organ level 

Aiming to test VT inducibility by computational simulation (in-silico tests), 
we simulated the application of PES protocols (the same protocol used at EP 
laboratory) on the eight different versions of our patient-specific ventricular 
model, from three distinct pacing sites for each model version. Table 7.4 
summarizes the results of those in-silico tests, all of them with CVsBZ-25% (i.e., 
CVs 75% slower than healthy tissue). From those 24 different simulation settings 
(eight model versions and three pacing sites) we obtained positive VT induction 
in six of those scenarios and negative results in the rest of them. As shown in 
Table 7.4, we achieved positive VT induction with four out of the eight versions 
of ventricular model (models #4-7) and only from two out of the three tested 
pacing sites (endo#1 and epi#1). Importantly, those two pacing sites were the 
same points from where VT was successfully induced in the real study 
performed in the EP laboratory. On the contrary, the application of PES protocol 
from pacing site epi#2, which was not tested in the clinic, was unable to trigger 
VT on any ventricular model version. The videos corresponding to all simulations 
that succeeded in VT induction are available here20, and also several videos 
showing simulations of VT tests with negative result are available online21. 

 
In-silico tests leading to positive VT induction 

Regardless of the pacing site and the ventricular model version, all 
induced VTs showed a common mechanism that always resulted in the same 
infarct-related monomorphic VT. Figure 7.17 displays several potential maps 
corresponding to different time instants of the simulation resulting from 
applying PES protocol at pacing site epi#1 on model #6 (ER+10fib), leading to 
positive VT induction (see Video S222). On the other hand, Figure 7.18 shows the 
                                                           
20  Positive VT induction. Videos of all those simulations that resulted in a positive VT 
induction.  www.youtube.com/playlist?list=PL98EKQIbetNq4MdEMpVkOd6bx0TQNYDXZ 
21  Negative VT induction. Videos of eight different simulations that resulted in a 
negative VT induction.   
      www.youtube.com/playlist?list=PL98EKQIbetNpgBP8NT9CpQ2WmhqOPhSeR 
22  Video S2. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1. 

https://youtu.be/1LepgvOTBJI 

https://www.youtube.com/playlist?list=PL98EKQIbetNq4MdEMpVkOd6bx0TQNYDXZ
https://www.youtube.com/playlist?list=PL98EKQIbetNpgBP8NT9CpQ2WmhqOPhSeR
https://youtu.be/1LepgvOTBJI
http://www.youtube.com/playlist?list=PL98EKQIbetNq4MdEMpVkOd6bx0TQNYDXZ
http://www.youtube.com/playlist?list=PL98EKQIbetNpgBP8NT9CpQ2WmhqOPhSeR
https://youtu.be/1LepgvOTBJI
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VT induced from pacing site endo#1 on model #7 (ER+20fib) (see Video S323). 

Model 
version 

Pacing Site 

endo#1 epi#1 epi#2 

model #1 
(noER+00fib) 

no VT 
fail at 370 ms 

no VT 
fail at 340 ms 

no VT 
fail at 350 ms 

model #2 
(noER+10fib) 

no VT 
fail at 330 ms 

no VT 
fail at 320 ms 

no VT 
fail at 350 ms 

model #3 
(noER+20fib) 

no VT 
fail at 320 ms 

no VT 
fail at 280 ms 

no VT 
fail at 350 ms 

model #4 
(noER+30fib) 

no VT 
fail at 310 ms 

Stim : 
CI : 
CL : 
HR : 

S3 
290 ms 
510 ms 
117 bpm 

no VT 
fail at 350 ms 

model #5 
(ER+00fib) 

no VT 
fail at 380 ms 

Stim : 
CI : 
CL : 
HR : 

S2 
360 ms 
506 ms 
118 bpm 

no VT 
fail at 350 ms 

model #6 
(ER+10fib) 

Stim : 
CI : 
CL : 
HR : 

S3 
370 ms 
526 ms 
114 bpm 

Stim : 
CI : 
CL : 
HR : 

S2 
360 ms 
526 ms 
114 bpm 

no VT 
fail at 350 ms 

model #7 
(ER+20fib) 

Stim : 
CI : 
CL : 
HR : 

S3 
370 ms 
520 ms 
115 bpm 

Stim : 
CI : 
CL : 
HR : 

S2 
360 ms 
520 ms 
115 bpm 

no VT 
fail at 350 ms 

model #8 
(ER+30fib) 

no VT 
not tested until failure 

no VT 
not tested until failure 

no VT 
fail at 350 ms 

Table 7.4. Results of in-silico tests of VT inducibility performed on the eight versions of 
ventricular model and from three distinct pacing sites, with CVsBZ-25%. In cases of 
positive VT induction, this table details premature stimulus (S2 or S3) responsible for the 
unidirectional block triggering reentrant VT, CI at which such stimulus was delivered, 
and CL and heart rate (HR) associated with induced VT. For cases of negative VT 
induction, we also include the CI at which premature stimuli failed to propagate. 

23  Video S3. Positive VT induction on model #7 (ER+20fib) from pacing site endo#1. 
https://youtu.be/qshQTkZPE0k 

https://youtu.be/qshQTkZPE0k
https://youtu.be/qshQTkZPE0k
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Figure 7.17. (see description on the next page) 
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Figure 7.17. (see figure on the previous page) Reentrant monomorphic VT induced in-
silico on model #6 (ER+10fib) by PES protocol delivered from pacing site epi#1. Posterior 
views of 3D ventricular model displaying potential maps at different time instants of the 
PES protocol leading to positive VT induction. White arrows indicate propagation 
direction. (a) After S1 phase, only one premature stimulus S2 was applied at CI of 360 
ms (see dashed white ellipse). (b) Wavefront generated by S2 stimulus causes functional 
propagation block at the lower side of epicardial isthmus (see white circle), while it 
continues propagating all around infarct scar (grey region). (c) Wavefront propagates 
across lateral wall of LV, surrounding the scar. It travels from the lower (apical) towards 
the upper (basal) side of MI. Observe that propagation wavefront could not enter 
epicardial isthmus through its lower end because of functional propagation block, 
caused by S2 stimulus. (d) Wavefront reaches the upper side of epicardial isthmus after 
surrounding the infarct scar along the LV lateral wall. (e) Wavefront enters through the 
upper side of epicardial isthmus, propagating across the channel until leaving it through 
its lower side (unidirectional functional block). Then, it propagates again around the 
scar, thus triggering reentrant activity that will lead to a self-sustained monomorphic 
VT. (f) Activation map (LATs) of a cycle of induced VT, confirming that epicardial isthmus 
constitutes a CC that acts as structural substrate for this infarct-related monomorphic 
VT. For a more comprehensive analysis of this simulation, see Video S2. 
 

Figure 7.18. (see figure on the next page) Reentrant monomorphic VT induced in-silico 
on model #7 (ER+20fib) by PES protocol delivered from pacing site endo#1. Posterior 
views of 3D ventricular model displaying potential maps at different time instants of the 
PES protocol leading to positive VT induction. White arrows indicate propagation 
direction. (a) The propagation wavefront generated by second premature stimulus S3, 
applied on the endocardium, reaches epicardial surface (see dashed white circle). 
Simultaneously, the wavefront resulting from the first premature stimulus S2 still 
continues propagating across the ventricles, such that it is entering through the two 
ends of epicardial isthmus, what will lead to a collision inside the channel. (b) The 
wavefront generated by S3 stimulus causes propagation block at the lower side of 
epicardial isthmus (see white circle). At the same time, the wavefront is trying to enter 
the channel through its upper end, while it also propagates around the infarct scar, such 
that a collision will happen at LV lateral wall. (c) Wavefront was able to enter through 
the upper end of epicardial isthmus, so it propagates across the channel in downward 
direction. Furthermore, tissue surrounding the lower end of isthmus is almost 
completely repolarized. (d) Wavefront coming from inside the channel was also able to 
cross the lower end of isthmus (unidirectional functional block), thus propagating again 
all around the infarct scar. (e) Propagation wavefront surrounds the scar and enters 
again through the upper side of epicardial isthmus, thus triggering reentrant activity that 
will lead to a self-sustained monomorphic VT. (f) Activation map (LATs) of a cycle of 
induced VT, confirming that epicardial isthmus constitutes a CC that acts as structural 
substrate for this infarct-related monomorphic VT. For a more comprehensive analysis 
of this simulation, see Video S3. 

https://youtu.be/1LepgvOTBJI
https://youtu.be/qshQTkZPE0k
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Figure 7.18. (see description on the previous page) 
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The propagation pattern depicted in Figure 7.17, resulting from S2 
stimulus delivered from point epi#1 (Figure 7.17[a]), shows how the functional 
propagation block appeared at the lower (apical) side of the epicardial isthmus 
(Figure 7.17[b]), thus impeding the entry of the wavefront through its lower end. 
Meanwhile, propagation wavefront continued propagating around infarct scar 
(Figure 7.17[c]), such that it reached the upper (basal) side of MI and entered 
epicardial isthmus through its upper end (Figure 7.17[d]), triggering the onset of 
reentrant activity. Then, the wavefront propagated across the isthmus in 
downward direction to later leave it through its lower end (Figure 7.17[d]), 
confirming that previous propagation block was a functional unidirectional 
block. After that, the activation wavefront travelled around the infarct scar and 
entered again through the upper side of epicardial isthmus, thus leading to self-
sustained reentry. This corroborated that the epicardial isthmus actually was a 
slow conducting channel (CC), which acted as a structural substrate that 
supported the reentrant activity related to this particular VT, as we previously 
hypothesized in Chapter 5 (see section 5.1.6). Therefore, such epicardial CC 
enabled the perpetuation of self-sustained reentry on model #6 (ER+10fib), 
responsible for an infarct-related monomorphic VT with a cycle length (CL) of 
526 ms (see Table 7.4). Figure 7.17[f] displays the activation map (LAT) of a VT 
cycle, which is characterized by a clockwise macroreentrant propagation pattern 
supported by the epicardial CC, with the wavefront entering CC through its 
upper end and leaving it through the lower one. 

On the other hand, Figure 7.18 depicts the propagation pattern resulting 
from S3 stimulus applied at pacing site endo#1 (Figure 7.18[a]) on model #7 
(ER+20fib). In this case, although the propagation pattern leading to the onset 
of reentrant activity supported by the epicardial CC is different compared to the 
previous one, the specific event that triggered such reentry was exactly the 
same. In this simulation, S3 stimulus caused functional unidirectional 
propagation block at the lower end of epicardial CC (Figure 7.18[b]), as S2 
stimulus did in the case of model #6 (ER+10fib) paced from epi#1 (Figure 
7.17[b]). This allowed the wavefront to cross the CC from upper to lower side 
(Figure 7.18[c]), such that it was able to leave CC through its lower end and 
propagate around the infarct scar (Figure 7.18[d]). Finally, the S3 stimulus 
delivered from endo#1 on model #7 (ER+20fib) triggered the same reentrant 
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pattern (Figure 7.18[e]) previously observed on model #6 (ER+10fib) (Figure 
7.17[d]). Indeed, comparing activation maps representing a VT cycle displayed 
in Figure 7.17[f] and Figure 7.18[f], no appreciable variation is observed. Both 
maps are characterized by an identical clockwise macroreentrant propagation 
pattern supported by the epicardial CC, with similar LAT values. The only notable 
difference is the amount of non-activated tissue (black patches) depending on 
patchy fibrosis level included in the BZ of each model version: 10% and 20% 
fibrosis for model #6 (ER+10fib) and model #7 (ER+20fib), respectively. 

 
Impact of CVs in the BZ on VT inducibility 

After performing all simulations for testing VT inducibility under the 24 
different settings detailed in Table 7.4, we chose model #6 (ER+10fib) and pacing 
site epi#1 to perform some additional tests. These extra simulations aimed to 
study the influence of different CVs in the BZ on VT inducibility, as well as on the 
features and mechanisms related to induced VTs. As shown in Table 7.5, in-silico 
test on model #6 (ER+10fib) with CVsBZ-50%, also resulted in positive VT 
induction (see Video S424). In this case, the reentry leading to infarct-related VT 
was triggered again by unidirectional functional propagation block at the lower 
end of epicardial CC, caused by the second premature stimulus (S3 phase) 
applied at a CI of 320 ms. Note that such interval was notably shorter than the 
successful one in the case of model #6 (ER+10fib) with CVsBZ-25% (CI of 360 ms, 
see in Table 7.5), in which furthermore VT was induced by a single premature 
stimulus (S2 phase) with no need for a second one. Moreover, as a result of 
faster conduction across the BZ and, consequently, through the epicardial CC, 
induced VT was also faster, with a CL of 425 ms. It is significantly shorter (around 
20% shorter) compared to the cycle of VT induced with CVsBZ-25%, which 
provided VT with CL of 526 ms (see Table 7.5). However, in the test on model #6 
(ER+10fib) with values for CVsBZ-75% (i.e., CVs 25% slower than in healthy 
tissue), the result of VT inducibility was negative. As shown in Video S525, in 

                                                           
24  Video S4. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1, with  
   CVsBZ-50%.    https://youtu.be/13Td_t8MWOE 
25 Video S5. Negative VT induction on model #6 (ER+10fib) from pacing site epi#1, with  
    CVsBZ-75%.   https://youtu.be/HMMrHHb3YqM 

https://youtu.be/13Td_t8MWOE
https://youtu.be/HMMrHHb3YqM
https://youtu.be/13Td_t8MWOE
https://youtu.be/HMMrHHb3YqM
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which even a third premature stimulus (S4 phase) was applied at a CI of 310 ms, 
with this model configuration propagation block never happened at any of the 
epicardial CC ends. Finally, premature stimuli failed to propagate at pacing site 
at a CI of 290 ms, without having been able to trigger any kind of reentrant 
activity at any longer CI. 

CVs in the BZ Results 

Reduced to 25% 
(CVsBZ-25%) 

Stim : 
CI : 
CL : 
HR : 

S2 
360 ms 
526 ms 
114 bpm 

Reduced to 50% 
(CVsBZ-50%) 

Stim : 
CI : 
CL : 
HR : 

S3 
320 ms 
425 ms 
141 bpm 

Reduced to 75% 
(CVsBZ-75%) no VT  –  fail at 290 ms 

Table 7.5. Results of in-silico tests of VT inducibility performed on model #6 (ER+10fib), 
with three different sets of values for CVs in the BZ: CVsBZ-25%, CVsBZ-50% and CVsBZ-
75%. In those three simulations, PES protocols were applied at pacing site epi#1. In cases 
of positive VT induction, this table details the premature stimulus (S2 or S3) responsible 
for the unidirectional block triggering reentrant VT, CI at which such stimulus was 
delivered, and CL and heart rate (HR) associated with induced VT. For cases of negative 
VT induction, CI at which premature stimuli failed to propagate is specified. 

 
Repolarization dispersion as a mechanism related to VT 

Figure 7.19 displays APD maps resulting from the propagation of the last 
S1 stimulus applied at pacing site epi#1, corresponding to the four ventricular 
model versions that enabled positive VT induction in in-silico tests with CVsBZ-
25%. As observed, all those models present significant repolarization dispersion 
around the infarct scar, either caused by (1) high levels of patchy fibrosis (30%) 
in the absence of electrical remodelling (model #4 – noER+30fib), (2) electrical 
remodelling with no fibrosis in the BZ (model #5 – ER+00fib) or (3) the 
combination of both factors (models #6 [ER+10fib] and #7 [ER+20fib]). In spite 
of exhibiting considerable differences between them, APD maps from models 
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Figure 7.19. APD maps resulting from the propagation of the last stimulus of S1 phase 
delivered from pacing site epi#1. These maps correspond to posterior views of the four 
ventricular model versions that enabled positive VT induction in in-silico tests. All of 
them reveal significant repolarization dispersion around the infarct scar, either caused 
by high fibrosis level (model #4 – noER+30fib), by electrical remodelling (ER) (model #5 
– ER+00fib) or by combination of both factors in the BZ (models #5 [ER+00fib] and #6 
[ER+10fib]). Furthermore, at both sides of epicardial isthmus, there are regions with 
longer APDs compared to surrounding tissue, thus giving rise to strong repolarization 
gradients at the two terminal ends of CC. Black regions correspond to not activated 
tissue due to fibrosis accumulation. 
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Figure 7.20. APD maps resulting from the propagation of the last stimulus of S1 phase 
delivered from pacing site epi#1. These maps correspond to posterior views of three out 
of the four ventricular model versions that resulted in negative VT induction in in-silico 
tests. Model #1 (noER+00fib) presents quite regular repolarization pattern due to the 
absence of remodelling in the BZ. By contrast, the maps for models #3 (noER+20fib) and 
#8 (ER+30fib) do reveal notable repolarization dispersion, mainly caused by the 
presence of fibrosis in the BZ. However, they do not show large repolarization gradients 
at any of the two epicardial CC ends. Black patches correspond to not activated tissue 
due to fibrosis accumulation. 

#5 (ER+00fib), #6 (ER+10fib) and #7 (ER+20fib) share a common feature. At both 
terminal ends of the epicardial CC, such maps revealed the presence of regions 
with longer APDs compared to surrounding tissue. This caused large 
repolarization gradients at both sides of the CC. By contrast, in model #4 
(noER+30fib) such repolarization gradients at terminal ends of epicardial 
isthmus are not so evident. It is noteworthy that, among the four model versions 
that provided positive VT induction from point epi#1 in the in-silico tests, model 
#4 (noER+30fib) was the only version in which VT could not be induced by a 
single premature stimulus S2. Model #4 (noER+30fib) required a second 
premature stimulus (S3 phase), along with a notably shorter CI (see Table 7.4), 
to give rise to a unidirectional propagation block at the lower end of the CC 
leading to the macroreentry responsible for infarct-related VT, as can be 
appreciated in Video S626. Thus, it seems very likely that the lack of remarkable 
repolarization gradients at any side of the CC resulting from the propagation of 
the last S1 stimulus, was the main reason why model #4 (noER+30fib) needed a 
S3 stimulus with a shorter CI to succeed in inducing VT in the in-silico tests. 

 
  

                                                           
26  Video S6. Positive VT induction on model #4 (noER+30fib) from pacing site epi#1. 

https://youtu.be/nJAsVjX_67A 

https://youtu.be/nJAsVjX_67A
https://youtu.be/nJAsVjX_67A
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The APD maps shown in Figure 7.20, also resulting from the propagation 
of the last S1 stimulus from point epi#1, correspond to three of those ventricular 
model versions that failed to induce VT in in-silico tests, from any of the three 
tested pacing sites. As a consequence of the absence of any type of remodelling 
in the BZ (only reduction in CVs), model #1 (noER+00fib) exhibited a quite 
regular repolarization pattern around the infarct scar. It only showed a subtle 
APD gradient at the interface between the infarct scar and the excitable tissue 
that surrounded it. Conversely, models #3 (noER+20fib) and #8 (ER+30fib) did 
reveal considerable APD heterogeneity around the scar, mainly caused by 
presence of patchy fibrosis within the BZ, in both cases. Nonetheless, in contrast 
to that observed in Figure 7.19, neither of those APD maps (models #3,8) 
presented regions with APDs significantly longer than their surrounding tissue 
at any of the epicardial CC ends. Therefore, regardless of the degree of APD 
heterogeneity shown in APD maps, the propagation of the last S1 stimulus 
across those three model versions (models #1,3,8) was unable to cause 
considerable repolarization gradients at any of the two terminal ends of the CC. 
It seems highly probable that such feature is strongly correlated with the 
inability of those model versions to succeed in any of the in-silico tests of VT 
inducibility. They never gave rise to unidirectional blocks leading to the onset of 
reentrant activity, regardless of the pacing site from which PES protocols were 
delivered. 

 
Factors affecting the propagation in the BZ during PES protocol 

Regarding the activation of tissue corresponding to the BZ, which 
includes the epicardial CC that supported the macroreentrant activity 
responsible for the monomorphic VT, Figure 7.21 displays the evolution of the 
activation during the propagation of the last S1 stimulus applied at pacing site 
epi#1, on each one of the eight ventricular model versions with CVsBZ-25%. In 
all cases, activation of the BZ looks quite linear, except for a very small final 
segment in which activation times increased exponentially. As in the case of 
sinus activation, inclusion of electrical remodelling did not appear to cause a 
great impact on the activation of BZ during the S1 phase of PES protocols. It 
simply introduced slight activation delays with respect to models without that 
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sort of remodelling, as well as little reductions in the amount successfully 
activated tissue (i.e., depolarized) for a given fibrosis level in the BZ. Again, this 
was the main consequence of combining electrical remodelling in the BZ with a 

Figure 7.21. Evolution of the activation of tissue corresponding to the BZ, resulting from 
the last stimulus of S1 phase (six stimuli at BCL of 600 ms) applied at pacing site epi#1. 
Plots correspond to simulations of VT inducibility tests performed on all versions of the 
3D ventricular model with CVsBZ-25%. Note that in those model versions including any 
level of patchy fibrosis in the BZ, the portion of successfully activated tissue could not 
reach 100% due to accumulations of fibrotic elements (mesh elements modelled as 
fibroblasts) within the BZ. 
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set of reduced conductivities. In model versions without electrical remodelling 
(models #1-4), such lower conductivities resulted in CVs in the BZ reduced to 
35% with respect to healthy myocardium (that is, 65% slower conduction). 
Instead, the same conductivity values made CVs in the BZ decrease to 25% with 
respect to healthy tissue (i.e., 75% slower conduction) in models #5-8, due to 
the partial inactivation of sodium peak current (INa) associated with the electrical 
remodelling introduced in that region. 

On the other hand, introduction of fibrosis did clearly affect propagation 
across the BZ, depending on the fibrosis level. It seems that the electrotonic load 
exerted on myocytes by those fibroblasts infiltrated in the BZ slowed down 
propagation in that region, as reflected by the evolution of slopes in Figure 7.21. 
Another important influence of the presence of fibrosis was the proportional 
increase of the amount of not activated tissue as a function of fibrosis level, due 
to clustered accumulations of fibrotic elements within the BZ. However, the 
combination of such circumstance with the slowing-down of propagation across 
BZ, curiously prevented the introduction of any fibrosis level from causing 
significant variations in the total time needed to fully activate the conducting 
portion of BZ tissue, as appreciated in Figure 7.21. An additional unexpected 
effect observed in Figure 7.21, was the fact that activation plots for models with 
10% and 20% fibrosis in the BZ, did not differ significantly between them, except 
for the final segment related to the specific amount of not activated tissue. 
Hence, both levels of image-based patchy fibrosis (10% and 20%) caused very 
similar degree of slowing-down of propagation in the BZ, regardless of the 
presence or absence of electrical remodelling. 

In summary, electrical remodelling introduced slight activation delays 
affecting the total time needed to fully activate the BZ tissue, while the presence 
of fibrosis slowed down the propagation across the BZ, but without causing 
significant increases in the total activation time due to reductions in the fraction 
of excitable tissue in the BZ. With respect to model #8 (ER+30fib), it was a special 
case that we will discuss below, since that configuration gave rise to permanent 
propagation blocks that strongly altered propagation patterns within the BZ. 
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Figure 7.22 shows the evolution of BZ activation, also during the 
propagation of the last S1 stimulus delivered from point epi#1, corresponding in 
this case to model #6 (ER+10fib) with the three different set of values for CVs in 
the BZ that we tested. As expected, the increase in CVs of BZ, from 25% to 50% 
and 75% with respect to healthy tissue, speeded up propagation across the BZ, 
and also produced slight increments in the amount of activated tissue in such 
region. This latter effect was a consequence of the increase in the conductivities 
that affect myocyte-fibroblast couplings. This allowed the depolarization 
(activation) of a slightly larger number of coupled fibroblasts, due to their 
stronger electrotonic interaction as electrical sinks, which in turn was induced 
by those higher conductivity values. Moreover, it should be highlighted that the 
increment in CVs in the BZ from 25% to 50% with respect to healthy tissue 
caused an impact on propagation greater than the increase from 50% to 75%. 
This suggests that the relationship between CVs at the tissue level and the global 
acceleration or deceleration of propagation across the entire BZ is non-linear in 
our ventricular model, that is, it is not proportional. 

 
 
  

Figure 7.22. Evolution of the activation of tissue corresponding to the BZ, resulting from 
the last stimulus of S1 phase (six stimuli at BCL of 600 ms) delivered from pacing site 
epi#1. Plots correspond to simulations of VT inducibility tests performed on model #6 
(ER+10fib) with CVsBZ-25%, CVsBZ-50% and CVsBZ-75%. 



Chapter 7 

204 

Propagation in the BZ during VT 

The evolution of the activation during a cycle of the infarct-related 
monomorphic VT of the tissue composing the BZ, is shown in Figure 7.23, for all 
those ventricular model versions that provided positive VT induction in in-silico 
tests, including model #6 (ER+10fib) with CVsBZ-50%. To define that VT cycle, 
we took as a starting point the moment in which the propagation wavefront 
leaves the epicardial CC through its lower end, after crossing it in downward 
direction (from base to apex), as it is represented in Figure 7.17[f] and Figure 
7.18[f]. Thus, the end of the VT cycle corresponds to the time instant when the 
wavefront coming from the interior of the CC reaches again its lower end, after 
completing the pathway of the macroreentry responsible for the VT. As one can 
observe, model #6 (ER+10fib) with CVsBZ-50% is the model version with the 
fastest propagation across the BZ due to increased CVs and, consequently, with 
the shortest VT cycle length (see Table 7.5). The other four model versions 
(models #4-7), all of them with CVsBZ-25%, just present subtle differences in the 
length of VT cycle, from 506 to 526 ms (see Table 7.4). According to our 
definition of the VT cycle, the final segment of the activation plots corresponds 
to the activation of the tissue that forms the epicardial CC. As shown in Figure 
7.17[f] and Figure 7.18[f], at around 400 ms, the CC that crosses the infarct scar 
is nearly the only fraction of myocardial tissue that has not been activated yet. 
In this final segment one can appreciate the main differences between the four 
activation plots displayed in Figure 7.23. In that final part, the almost linear trend 
turns into an exponential increase of activation times, coinciding with the 
activation of the epicardial CC. Thus, it indicates that the remodelling included 
in the BZ, based on the DE-MRI in the case of fibrosis, strongly affects 
propagation across the epicardial CC that supports infarct-related VT. 
Furthermore, these plots reflect again the fact that the higher the fibrosis level, 
the smaller the portion of successfully activated tissue due to accumulations of 
fibrotic elements within the BZ. With respect to the quasi-linear segment, there 
seems to be no significant differences in the initial activation of BZ between 
models #5 (ER+00fib) and #6 (ER+10fib) (RM20). However, there is a surprisingly 
high coincidence in the evolution of the initial activation of BZ between model 
#4 (noER+30fib) and model #7 (ER+20fib). 
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Factors leading to negative VT induction in in-silico tests 

Focusing now on unsuccessful VT tests, there were four versions of 
ventricular model (models #1,2,3 and #8) that failed to induce VT in all in-silico 
tests, from every pacing site. Actually five, if we include tests from point epi#1 
performed on model #6 (ER+10fib) with CVsBZ-75%. As previously mentioned, 
model #8 (ER+30fib) was a special case, since that configuration produced 
permanent bidirectional blocks at the lower side of epicardial CC, even blocking 
the propagation of stimuli of S1 phase, regardless of pacing site (see Video S727 
and Video S828). 

The application of PES protocols from pacing site epi#2 never managed 
to induce VT in any case. Regardless of model version, premature stimuli (S2-S3) 
delivered from epi#2 were unable to cause a functional propagation block at any 

                                                           
27  Video S7. Negative VT induction on model #8 (ER+30fib) from pacing site epi#1. 
 https://youtu.be/DDr1Ag_XSSE 
28  Video S8. Negative VT induction on model #8 (ER+30fib) from pacing site endo#1. 
 https://youtu.be/mxE9i4ANqXg 

Figure 7.23. Evolution of the activation of tissue corresponding to the BZ during a cycle 
of infarct-related monomorphic VT, corresponding to all those versions of 3D ventricular 
model that enabled positive VT induction in in-silico tests. 

https://youtu.be/DDr1Ag_XSSE
https://youtu.be/mxE9i4ANqXg
https://youtu.be/DDr1Ag_XSSE
https://youtu.be/mxE9i4ANqXg
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of the epicardial CC ends (see Video S929, for instance). Only applying a third 
premature stimulus (S4 phase) we were able to induce propagation block at the 
upper (basal) end of CC on model #5 (ER+00fib). However, that functional block 
did not trigger reentrant activity, since the propagation wavefront derived from 
S4 stimulus could not enter the CC through its lower side, because it collided 
with the wavefront generated by S3 stimulus that still was propagating across 
the CC in downward direction (see Video S1030). Furthermore, premature stimuli 
(S2-S3) applied at point epi#2 failed to propagate at the same CI (350 ms) for 
every model version. This feature indicates that such pacing site was placed out 
of the BZ or, in other words, it was located in a region of healthy tissue. That is 
the reason why the different versions of remodelling included in the BZ, both 
electrical and structural (in the form of patchy fibrosis), did not alter APDs in 
that piece of tissue across model versions. Consequently, refractory periods in 
such region remained unaltered, thus avoiding the variation of the minimum 
tolerated CI for premature stimuli as a function of the model version, as it did 
occur in tests performed from points endo#1 and epi#1 (see Table 7.4). 
 

In the case of VT in-silico tests with PES protocols applied from epi#1, the 
final result was negative for models #1 (noER+00fib), #2 (noER+10fib) and #3 
(noER+20fib) (see Table 7.4), because premature stimuli never managed to 
cause functional propagation blocks at any of the epicardial CC ends, thus pre-
venting the onset of the reentry leading to infarct-related VT. As shown in Video 
S1131, the propagation wavefront derived from the two premature stimuli (S2-
S3) delivered from epi#1 entered the CC through its lower end, so that a collision 
against the wavefront that surrounded the infarct scar always happened at the 
upper side of channel. This behaviour suggests that the inability of PES protocols 
to cause functional propagation blocks at any of the epicardial CC ends, 
especially at the lower one in this particular case, was strongly related to the 
absence of large APD gradients at those regions, as observed in Figure 7.20. 

                                                           
29  Video S9. Negative VT induction on model #6 (ER+10fib) from pacing site epi#2. 
 https://youtu.be/m11Z1QdmHNU 
30  Video S10. Negative VT induction on model #5 (ER+00fib) from pacing site epi#2. 
 https://youtu.be/XWC9MMWigh0 
31  Video S11. Negative VT induction on model #3 (noER+20fib) from pacing site epi#1. 
 https://youtu.be/iMUctH2WiRM 

https://youtu.be/m11Z1QdmHNU
https://youtu.be/XWC9MMWigh0
https://youtu.be/iMUctH2WiRM
https://youtu.be/iMUctH2WiRM
https://youtu.be/m11Z1QdmHNU
https://youtu.be/XWC9MMWigh0
https://youtu.be/iMUctH2WiRM
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As for pacing site endo#1, negative results were similar to those of point 
epi#1, although including model #4 (noER+30fib) in this case (see Table 7.4). The 
main difference with respect to pacing from epi#1 is the fact that the wavefront 
generated by stimuli applied at endo#1 entered the CC through its two terminal 
ends, so  that collision always took place inside the channel, near to its central 
part, as displayed in Video S1232. By contrast, on model #5 (ER+00fib) the second 
premature stimulus (S3 phase) delivered from endo#1 did produce functional 
propagation block at the lower end of the epicardial CC, while the propagation 
wavefront entered through the upper side. However, that situation finally 
resulted in non-sustained reentry, since propagation was blocked again when 
the wavefront coming from inside the CC attempted to pass through its lower 
end (see Video S1333). Therefore, in that case, the generation of bidirectional 
block at the lower side of the CC aborted the onset of self-sustained reentrant 
activity able to trigger an infarct-related VT. Importantly, in spite of being 
bidirectional, it was a functional (not structural) propagation block that only 
appeared as a result of the configuration of that particular VT test (model #5 
[ER+00fib] paced from point endo#1), in contrast to the permanent bidirectional 
block observed in all in-silico test on model #8 (ER+30fib). 

7.5.3.2.  Simulations at the torso level. Simulated ECGs 

After completing all in-silico tests of VT inducibility at the organ level, we 
used the 3D torso model to compute extracellular potentials all over the torso 
to obtain the simulated ECGs. We computed the six precordial leads of 
simulated ECGs for all induced VTs, aiming to compare those simulated signals 
to patient’s recordings and, thereby, assess the degree of similarity between 
real and simulated signals. Indeed, this is exactly how electrophysiologists 
determine at EP laboratory whether a particular VT induced by means of PES 
protocols matches the clinical VT previously suffered by the patient or, on the 
contrary, if it is a different VT. They just compare the ECG registered during the 

32  Video S12. Negative VT induction on model #6 (ER+10fib) from pacing site endo#1. 
https://youtu.be/lV_hen97G8M 

33  Video S13. Negative VT induction on model #5 (ER+00fib) from pacing site endo#1,  
     due to bidirectional functional propagation block.    https://youtu.be/xtdoWtn-DGs 

https://youtu.be/lV_hen97G8M
https://youtu.be/xtdoWtn-DGs
https://youtu.be/lV_hen97G8M
https://youtu.be/xtdoWtn-DGs
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induced VT with the recordings of clinical VT in order to visually inspect the 
correlation between them. Hence, as a final step of our pipeline based on 
computational simulation, making use of our 3D torso model we computed 
simulated ECGs to reproduce that diagnostic test. Moreover, in such a way we 
fulfilled our initial premise of only including non-invasive clinical data in our 
pipeline, since simulation results can be evaluated and validated against non-
invasive recordings, such as ECG, rather than against invasively recorded 
datasets, as it is the case of EAMs. 

Simulated ECGs resulting from in-silico induced VTs 

Figures 7.24, 7.25 and 7.26 show signals corresponding to the six 
precordial leads of ECGs, computed from VTs induced on models #4-7 and, in 
addition, on model #6 (ER+10fib) with CVsBZ-50% (instead of CVsBZ-25%). 
Together with those signals, such plots also represent a fragment of the real ECG 
registered in the EP laboratory during one of the episodes of positive VT 
induction along the EP study. Importantly, such real VT was considered the same 
as the clinical one by the experienced electrophysiologists who performed EP 
study and posterior RFA procedure. On the other hand, note that two distinct 
versions of the ventricular model (models #6 [ER+10fib] and #7 [ER+20fib]) 
enabled positive VT induction from more than one pacing site, from endo#1 and 
epi#1. Nevertheless, since the induced VT was always the same, characterized 
by the clockwise macroreentrant pattern through the epicardial CC, all VTs 
induced on a certain model version showed exactly the same features regardless 
of the pacing site at where PES protocol was applied, as detailed in Table 7.4. 
That is the reason why we do not show simulated ECGs computed from models 
#6 (ER+10fib) and #7 (ER+20fib) twice, because there is no difference 
between simulated signals for VTs induced from endo#1 and epi#1 on the 
same model version. 
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Figure 7.24. ECGs during clinical and in-silico induced VTs. Signals corresponding to V1 
and V2 precordial leads, displaying real ECG (black) and ECGs simulated with different 
versions of ventricular model. Simulated ECGs correspond to all model versions that 
enabled positive VT induction by in-silico tests: models #4 (noER+30fib) (orange), #5 
(ER+00fib) (blue), #6 (ER+10fib) (light green) and #7 (ER+20fib) (magenta). ECG 
computed from model #6 (ER+10fib) with CVsBZ-50% (instead of CVsBZ-25%) is also 
represented (cyan). Resampled versions of simulated ECGs obtained from model #6 
(ER+10fib), with CVsBZ-25% (red) and CVsBZ-50% (dark green), are displayed together 
with patient’s ECG (black) to ease the visual comparison of waveforms between real 
signal and simulated ones. 
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Figure 7.25. ECGs during clinical and in-silico induced VTs. Signals corresponding to V3 
and V4 precordial leads, displaying real ECG (black) and ECGs simulated with different 
versions of ventricular model. Simulated ECGs correspond to all model versions that 
enabled positive VT induction by in-silico tests: models #4 (noER+30fib) (orange), #5 
(ER+00fib) (blue), #6 (ER+10fib) (light green) and #7 (ER+20fib) (magenta). ECG 
computed from model #6 (ER+10fib) with CVsBZ-50% (instead of CVsBZ-25%) is also 
represented (cyan). Resampled versions of simulated ECGs obtained from model #6 
(ER+10fib), with CVsBZ-25% (red) and CVsBZ-50% (dark green), are displayed together 
with patient’s ECG (black) to ease the visual comparison of waveforms between real 
signal and simulated ones. 
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Figure 7.26. ECGs during clinical and in-silico induced VTs. Signals corresponding to V5 
and V6 precordial leads, displaying real ECG (black) and ECGs simulated with different 
versions of ventricular model. Simulated ECGs correspond to all model versions that 
enabled positive VT induction by in-silico tests: models #4 (noER+30fib) (orange), #5 
(ER+00fib) (blue), #6 (ER+10fib) (light green) and #7 (ER+20fib) (magenta). ECG 
computed from model #6 (ER+10fib) with CVsBZ-50% (instead of CVsBZ-25%) is also 
represented (cyan). Resampled versions of simulated ECGs obtained from model #6 
(ER+10fib), with CVsBZ-25% (red) and CVsBZ-50% (dark green), are displayed together 
with patient’s ECG (black) to ease the visual comparison of waveforms between real 
signal and simulated ones. 
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A first conclusion that one can draw by observing the regular pattern of 
all simulated ECGs is the fact that induced VT undoubtedly corresponds to a 
monomorphic VT, as the ones typically derived from infarct-related reentrant 
activities supported by CCs associated with healed or chronic MIs (Aliot et al., 
2009; de Bakker et al., 1988). For model versions with CVsBZ-25%, one can 
observe subtle differences between models in the frequency of the simulated 
signals, with very little variations in heart rates just ranging from 114 bpm 
(model #6 – ER+10fib) to 118 bpm (model #5 – ER+00fib), as specified in Table 
7.4. Thus, model #6 (ER+10fib) with CVsBZ-50% provided a considerably faster 
VT, showing a heart rate of 141 bpm (see Table 7.5), which is about 23% faster 
than the case with CVsBZ-25%. 

 
Impact of BZ remodelling on simulated ECGs from in-silico induced VTs 

Regarding ECG morphology, signals resulting from model versions with 
CVsBZ-25% are very similar between them. Only simulated ECG from model #5 
(ER+00fib) showed some worth-mentioning differences in the main upstroke on 
V3 and V4 leads (see Figure 7.25) and, although less pronouncedly, also on V5 
and V6 (see Figure 7.26). Such differences correlate with the fact that model #5 
(ER+00fib) was the only model version with no fibrosis in the BZ that provided 
positive VT induction in in-silico tests. Consequently, it was the model version 
leading to the fastest VT, with CL of 506 ms and heart rate of 118 bpm (see Table 
7.4), and also the only one in which the whole BZ tissue was successfully 
activated (see Figure 7.23). Furthermore, such main upstroke in signals of V3, 
V4, V5 and V6 leads corresponds exactly to the time window during which the 
propagation wavefront (1) approached the basal side of the MI, after 
surrounding the infarct scar in apex-to-base direction, then (2) entered through 
the upper end of the epicardial CC and, finally, (3) crossed the CC downwards 
until reaching its lower side (see Video S1434, from t = 2110 ms to t = 2340 ms, 
for example). This observation further confirmed the strong influence of 
remodelling in the BZ, specially the presence of fibrosis, on the propagation 
across the epicardial CC in our ventricular model. Moreover, model #5 

                                                           
34  Video S14. Positive VT induction on model #5 (ER+00fib) from pacing site epi#1. 
 https://youtu.be/u8NAd3TvQ0g 

https://youtu.be/u8NAd3TvQ0g
https://youtu.be/u8NAd3TvQ0g
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(ER+00fib) was also the only model version leading to positive VT induction that 
did not experience early repolarization in the tissue surrounding the infarct scar, 
because of the absence of patchy fibrosis within the BZ, as observed in APD 
maps displayed in Figure 7.19. Therefore, such lack of early repolarized regions 
in model #5 (ER+00fib) also influenced the morphology of simulated ECGs, 
thereby intensifying differences in the waveform of computed signals with 
respect to those models including fibrosis in the BZ (models #4,6,7). Such an 
important impact of the presence of fibrosis in the BZ on simulated ECGs was 
already observed in the signals computed from simulations of sinus activation, 
in which fibrosis led to significant deviations of ST segment (see section 7.5.2.2). 

 
Influence of CVs in the BZ on simulated ECGs from in-silico induced VTs 

Besides showing a higher frequency, ECGs computed from the VT 
induced on model #6 (ER+10fib) with CVsBZ-50% exhibited some notable 
morphological differences with regard to signals computed from model versions 
with CVsBZ-25%. Those discrepancies are mainly notable on V2 (see Figure 7.24) 
and V3 leads (see Figure 7.25), and also on V4 in a lesser extent. Such deviations 
in simulated ECGs between model #6 (ER+10fib) with CVsBZ-50% and the rest of 
model versions were caused by a shift during the VT cycle in the synchronization 
of activation-repolarization pattern of BZ with respect to the pattern of healthy 
tissue. This was a consequence of modifying CVs in the BZ, what strongly altered 
propagation in that region, while keeping CVs in the healthy tissue, where 
activation-repolarization pattern remained nearly unchanged. Let us take the 
signal corresponding to V3 lead to illustrate such discrepancies, in which the 
major difference is in the trough located between the two positive peaks that 
appears in each VT cycle (see Figure 7.25). In the signal obtained from every 
model version with CVsBZ-25%, such trough is considerably deeper than in the 
signal resulting from model #6 (ER+10fib) with CVsBZ-50%. In all model versions, 
that point on V3 corresponds to the moment in which ventricular tissue is almost 
completely repolarized after the activation derived from previous VT cycle, as 
shown in Figure 7.27. If we observe the potential map corresponding to that 
instant on model #6 (ER+10fib) with CVsBZ-25% (see upper panel in Figure 7.27, 
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Figure 7.27. Potential maps during VT cycle, corresponding to model #6 (ER+10fib) with 
CVsBZ-25% (upper panel) and CVsBZ-50% (lower panel). Each panel shows an anterior 
(left) and a posterior (right) of ventricular model, displaying potential map 
corresponding to the instant of VT cycle associated with the point marked by a dashed 
line on precordial lead V3. As observed in posterior views, the propagation wavefront 
associated with reentrant activity is not as spread around infarct scar in the case of 
CVsBZ-25% (see in Video S2) as in model version with CVsBZ-50% (see in Video S4), while 
repolarization pattern is exactly in the same state in both cases (look at potentials 
around tricuspid valve). 

https://youtu.be/1LepgvOTBJI
https://youtu.be/13Td_t8MWOE
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or look for t = 2580 ms in Video S235), we can moreover see that propagation 
wavefront has already leaved the CC through its lower end and it is propagating 
across the conducting tissue located below the infarct scar. However, if we 
inspect the same moment in VT cycle on model #6 (ER+10fib) with CVsBZ-50% 
(see lower panel in Figure 7.27, or look for t = 2560 ms in Video S436), we can 
clearly appreciate that the propagation around the infarct scar is further spread 
in this case. It was a result of a faster conduction across BZ and, consequently, 
across the epicardial CC supporting the reentry responsible for VT. Therefore, 
those important variations in the activation pattern associated with the 
reentrant activity with respect to the repolarization pattern of the rest of 
myocardial tissue, arisen as a consequence of varying CVs only in the BZ, gave 
rise to those significant differences observed in the waveform of several 
precordial leads. 

 
Comparison between real and simulated ECGs during VT episodes 

The real VT induced and registered during the actual EP study undergone 
by the patient, which matches the clinical VT, is displayed in the upper plots in 
Figures 7.24, 7.25 and 7.26. It showed a frequency of 175 bpm, what means a 
VT cycle length of 340 ms. This is considerably faster than simulated VTs on any 
version of our ventricular model; around 50% faster with respect to models with 
CVsBZ-25% (114 - 118 bpm vs 175 bpm), and even 24% faster than VT induced 
on model #6 (ER+10fib) with CVsBZ-50% (141 bpm vs 175 bpm). 

Lastly, aiming to compare the morphology of precordial leads resulting 
from simulated VTs with the real ECG corresponding to clinical VT, we resampled 
signals obtained from model #6 (ER+10fib) with both CVsBZ-25% and CVsBZ-
50%. By doing so, we removed the frequency variability to ease the visual 
assessment. As appreciated in Figures 7.24, 7.25 and 7.26, such comparison 
revealed a high degree of similarity in the waveform of all precordial leads 
between ECGs of real and simulated VTs. Such good correlation was even higher 
                                                           
35  Video S2. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1, with  
     CVsBZ-25%.   https://youtu.be/1LepgvOTBJI 
36  Video S4. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1, with  
     CVsBZ-50%.   https://youtu.be/13Td_t8MWOE 

https://youtu.be/1LepgvOTBJI
https://youtu.be/13Td_t8MWOE
https://youtu.be/1LepgvOTBJI
https://youtu.be/13Td_t8MWOE
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in the case of model #6 (ER+10fib) with CVsBZ-25%, with all signals nearly 
reproducing every single deflection observed on each precordial lead of the real 
ECG. As already happened in the case of simulations of sinus activation, the 
major differences with respect to real ECG appeared in V2 lead (see Figure 7.24) 
and, to a lesser extent, also in V3 (see Figure 7.25). As observed, in the first of 
the two positive peaks appreciated in those precordial leads during each VT 
cycle, simulated signals showed an amplitude larger than that of real ECGs, being 
such deviation more marked on V2 than on V3. Therefore, in spite of 
considerable discrepancy in VT frequency, the morphology of ECGs resulting 
from simulated VTs exhibited very high correlation with patient’s ECG 
corresponding to real VT. 

 

7.6.  Discussion 
7.6.1.  Simulations of sinus activation 

Regarding personalization of cardiac sinus activation, some authors 
already exploited data from EAMs to adjust the electrical propagation using 
simplified EP models by adapting the so-called apparent conductivities (Chen et 
al., 2016; Chinchapatnam et al., 2008; Relan et al., 2011). On the contrary, from 
the beginning we decided to exclude every kind of invasively-recorded data from 
the design of our pipeline, so we refused to use the data provided by EAMs to 
personalize cardiac EP in our patient-specific computational model of the 
ventricles. The idea was to develop a pipeline to construct personalized 3D 
models able to perform prospective and predictive EP studies by computational 
simulation (in-silico studies) prior to RFA procedures, rather than retrospective 
studies after the interventions due to the need of using invasively-recorded EP 
data. Then, we simply benefited from CARTO® data to test and validate the 
performance of our body level approach (ventricles-torso coupled models) by 
means of simulated ECGs resulting from the sinus activation sequence provided 
by endocardial EAMs. However, the major limitation of EAMs is precisely the 
lack of automatic tools to annotate LATs accurately, especially in regions 
showing pathological EGMs due to the presence of fibrosis and scarred tissue, 
as well as to fit those data to a given 3D model. 
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Observations on simulations of sinus activation at the organ level 
 

At the organ level, activation maps (LATs) resulting from simulations of 
CARTO®-derived sinus activation on our ventricular model (see Figure 7.6 and 
Figure 7.7) were very similar across all model versions. The only considerable 
difference between them was related to the delays in late activation of BZ, 
especially in the epicardial isthmus of surviving tissue that crossed through the 
infarct scar. However, those simulations did show remarkable variations at the 
organ level in repolarization patterns around the infarct scar between different 
ventricular model versions (see APD maps in Figure 7.9 and Figure 7.10). 
Importantly, repolarization dispersion (i.e., APD heterogeneity) observed in APD 
maps was particularly pronounced around the two ends of the epicardial 
isthmus. This feature presumably had a great influence on the mechanism 
underlying unidirectional propagation blocks that triggered infarct-related 
monomorphic VTs in this particular case. 

 
Influence of BZ remodelling on simulated ECGs in sinus rhythm 
 

Concerning the various factors considered for the different ways of 
modelling the BZ, simulations of CARTO®-derived sinus activation sequence with 
the eight distinct versions of our ventricular model revealed that the presence 
of fibrosis was the only element that clearly had significant influence on results 
at the torso level, that is, on simulated ECGs. As shown in Figures 7.11, 7.12 and 
7.13, incorporation of any level of image-based patchy fibrosis (modelled as 
fibroblasts) had considerable impact on ST segment. The polarity of the ST 
segment deviation in simulated signals agreed with that observed in real ECG in 
all precordial leads. In the case of simulated ECGs, it was mainly caused by the 
early repolarization of the BZ tissue, resulting from the APD reduction around 
infarct scar due to the presence of fibrotic patches (see Figure 7.14). The 
electrotonic load exerted by fibroblasts infiltrated in the BZ, which acted as 
electrical sinks, accelerated the repolarization of surrounding myocytes, thus 
shortening their APDs. Therefore, such effect on ST segment in simulated ECGs 
was the manifestation at the torso level of that considerable repolarization 
dispersion observed around infarct scar (organ level), resulting from the 
presence of fibrosis within the BZ. Furthermore, fibrosis in the BZ also caused a 
subtle level-dependent effect on the T wave magnitude in simulated ECGs. 
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Impact of CVs in the BZ on simulated ECGs in sinus rhythm 

On the contrary, the different set of values tested for CVs in the BZ only 
had slight effect on the QRS complex duration and on T wave amplitude, while 
the inclusion of electrical remodelling did not seem to have any notable impact 
on ECGs simulated from CARTO®-derived sinus activation. Note that the volume 
of the BZ only corresponds to 8.5% of LV myocardium, falling to 6.5% with 
respect to the entire ventricular tissue including both ventricles (for more details 
see Chapter 5, section 5.1.3). Thus, it is not too surprising that certain kind of 
alterations in such a small ventricular region was not evidently reflected in a 
physiological phenomenon at the torso level, such as ECG in sinus rhythm. 

 
Repolarization phase in simulated ECGs in sinus rhythm 

The main general difference between real ECG and simulated signals, 
regardless of the specific version of ventricular model, was the delay of the T 
wave onset in simulated signals with respect to real ones. Since T wave 
corresponds to the repolarization of ventricles and this issue affected equally all 
model versions, it indicates that such delay was related to a modelling 
parameter associated not only with the BZ but with the whole ventricular tissue, 
that is, with the entire model. Hence, this suggests that APDs of ten Tusscher 
model (ten Tusscher and Panfilov, 2006b), which we used to reproduce the EP 
behaviour of human ventricular myocyte both for healthy tissue and for BZ, are 
longer than patient’s APDs. The implications of this difference in such an 
important EP feature will be discussed in more detail in the next section (see 
section 7.6.2). 

 
Sources of error affecting the simulated ECGs 

Simulated signals for V2 (Figure 7.11) and V3 (Figure 7.12) were the two 
precordial leads that exhibited the most significant differences compared to real 
ECG, not only in repolarization phase but also in QRS complex. In both precordial 
leads (V2 and V3), the real ECG showed a prominent negative S wave that our 
simulations at the torso level could not properly reproduce. However, 
considering that the real ECG was recorded during the EP study performed 
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immediately prior to RFA procedure, this might be caused (at least, partially) by 
the following circumstance. In the EP laboratory, a pad for defibrillation shocks 
is usually fixed on the left side of patient’s chest, thus forcing the relocation of 
V2 and (sometimes) V3 electrodes away from their standard positions. Thus, 
since we placed virtual electrodes for simulated ECG at the standard positions 
of precordial leads (see Figure 7.3), this is likely an important error source 
specifically affecting V2 and V3. Moreover, such hypothesis was further 
supported by the fact that V2 and V3 were also the most different signals 
obtained from simulated VTs compared to real ECG (see Figure 7.24 and Figure 
7.25). Therefore, it seems highly probable that V2 and V3 electrodes were not 
placed at its standard positions in the EP laboratory. This gives an idea of the 
importance of knowing the exact position of ECG electrodes from which signals 
were registered when the final goal of a simulation study on cardiac EP is to 
reproduce patient’s ECG. Indeed, electrodes misplacement is known to be an 
important source of intra-individual variability in ECG recordings (Kania et al., 
2014; Schijvenaars et al., 2008; Wenger and Kligfield, 1996). 

Another significant, and in our case unknown, source of variability 
affecting simulated ECGs is the position and orientation of the heart inside the 
torso model and, consequently, its position with respect to the location of 
precordial lead electrodes (Hoekema et al., 2001; MacLeod et al., 2000; Nguyên 
et al., 2015). Since we had to adapt an already existing torso model rather than 
creating a full patient-specific one, as shown in Chapter 5 (see section 5.2.1), it 
is possible that the geometrical position and orientation of ventricular model 
into the torso model did not match exactly the heart position into patient’s 
body. Hence, this represents an undetermined source of error that could alter 
simulated ECGs to a certain (and unknown) extent, affecting all precordial leads. 

 
Similarity between real and simulated ECGs in sinus rhythm 

Despite current limitations, including uncertainty in LAT annotations, 
possible precordial leads misplacement and possible inaccurate heart 
orientation into the torso model, together with the lack of any kind of 
personalization of cardiac EP, our body level approach provided interesting 
results for simulated ECGs obtained from patient-specific sinus activation 
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sequence. All precordial leads showed reasonably good signal correlation with 
real ECGs (between 80% and 96% for V1, V4, V5 and V6, and around 70% for V2 
and V3), as well as similar R-wave progression (see Figures 7.11, 7.12 and 7.13). 
This, along with good agreement in QRS complex duration, indicates that chosen 
values for CVs in healthy myocardium and for conductivities of organs and 
structures in 3D torso model seem to be within a proper range. Moreover, the 
coincidence in T wave polarity between real and simulated ECGs (except for V1) 
suggests an appropriate definition of transmural layers (endo, mid, epi), since 
transmural heterogeneity is known to have great influence on repolarization 
phase (i.e., on T wave) in organ-level simulations (Okada et al., 2011; Perotti et 
al., 2015). 

 
Usefulness of computing simulated ECGs in sinus rhythm 

In conclusion, we strongly believe that these attempts to replicate the 
patient’s ECG in sinus rhythm represent an important step in the validation of a 
pipeline like ours, which aims to reproduce the cardiac EP of a given patient as 
faithfully as possible in order to predict the mechanisms underlying a particular 
VT. Furthermore, it can be really helpful in adjusting some key parameters, such 
as CVs, APDs or transmural heterogeneity. However, this kind of validation 
processes are usually omitted in most of the studies that also aim for planning 
of RFA procedures or risk stratification, which commonly exclude 3D torso 
model from their approaches (see (Arevalo et al., 2016; Ashikaga et al., 2013; 
Cedilnik et al., 2018; Deng et al., 2016; Prakosa et al., 2018; Ringenberg et al., 
2014), among others). 

 

7.6.2.  In-silico VT inducibility tests 

The ultimate goal of our approach for computational simulation using 
image-based patient-specific 3D models was to reproduce clinical VTs in-silico 
aiming to study their related mechanisms and, mainly, to identify the pathways 
of reentry circuits responsible for those infarct-related VTs as ablation targets. 

  



Personalized EP Study using Computational Simulation 

221 

Ability to reproduce EP studies using computational simulation 

Certainly, there was significant discrepancy in frequency between 
simulated and real VTs. Nevertheless, according to the expert electrophysiolo-
gists involved in this project, the resemblance in the morphology of simulated 
and real ECGs was close enough (see Figures 7.24, 7.25 and 7.26) to conclude 
that both VTs (clinical and simulated) were exactly the same (or at least followed 
the same pathways). Only the V2 and V3 lead ECGs showed worth-mentioning 
differences with respect to the ECG of clinical VT. Such discrepancies were very 
likely caused by inaccurate placement of those two electrodes in the EP 
laboratory, as discussed above. Therefore, if this in-silico EP study (that is, our 
approach) had been performed prior to the RFA procedure, it would have 
allowed to detect the epicardial CC as the optimal ablation target in this 
particular case, as it actually was in the real EP study. It must be highlighted that 
it would have been possible, since our pipeline exclusively requires non-invasive 
data that are commonly registered before real EP studies. 

Furthermore, the in-silico tests of VT inducibility enabled positive VT 
induction from the two pacing sites (endo#1 and epi#1) that had previously 
triggered the VT in the EP laboratory in the real heart. Instead, the tests failed 
to induce VT from point epi#2, which was an extra point not tested in the real 
EP study that we added with the aim of assessing the influence of pacing sites 
location on VT inducibility. Hence, according to all those results, we can consider 
that our approach was able to accurately reproduce the outcomes of the real EP 
study, in this particular case. Note that it was possible even in spite of the lack 
of cardiac EP personalization and the considerable list of factors adding 
uncertainty to our simulation results, such as (1) the poor knowledge of the 
complex EP features of the BZ in human chronically infarcted hearts, (2) the 
exact location of electrodes for precordial leads or (3) precise position and 
orientation of heart inside the torso, among others. 

 
Similarity between real and simulated ECGs during VT episodes 

On the other hand, morphological correlation between real ECG and 
simulated ECGs (obtained from in-silico induced VTs) was higher in the case of 
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model versions with CVsBZ-25% than for model #6 (ER+10fib) with CVsBZ-50% 
(see Figures 7.24, 7.25 and 7.26). This might suggest that the ratio of CVs 
between BZ and healthy myocardium in patient’s ventricles was closer to 25% 
than to 50%. Nonetheless, the delayed T wave observed in ECGs derived from 
simulations of sinus activation (see Figures 7.11, 7.12 and 7.13), indicates that 
the APDs of patient’s heart were shorter than those of ten Tusscher model (ten 
Tusscher and Panfilov, 2006b), which we used to reproduce the AP of human 
ventricular myocyte. Thus, lower values for APDs would alter repolarization 
patterns during VT cycles in simulations at the organ level, what could evidently 
have considerable impact on the morphology of ECGs resulting from simulated 
VTs. Consequently, if APDs were changed in our ventricular model, the previous 
statement about CVs in patient’s heart would no longer be valid. In such a case, 
new simulations should be conducted to assess again VT inducibility, as well as 
activation-repolarization patterns during VT cycle and the morphology of 
simulated ECGs computed from in-silico induced VTs. 

Regarding the major discordance between simulated and real ECGs, 
which is the important difference in the frequency of in-silico induced VTs (114 
- 141 bpm) compared to real VT (175 bpm), we hypothesize that it probably 
arose from the complex interrelation between several EP features, such as APDs 
and (specially) CVs, both in BZ and in healthy myocardium, and the 
interconnection of all those factors with the overall EP behaviour at the organ 
level. It must be highlighted again that we did not personalize any EP parameter 
in our computational models, so that values for CVs and APDs, as well as 
organ/tissue conductivities in the torso model, were not customized but based 
on population data. Therefore, it is not surprising that our models were not able 
to accurately reproduce the highly complex relationship between those factors 
and the activation-repolarization patterns at the organ level, which becomes 
even more complex when the interrelation between the EP behaviour of BZ and 
healthy tissue must be considered. 

 
Relationship between CVs in the BZ and VT inducibility 

It is well-known that the QRS complex duration in the ECG is mostly 
related to the CVs in ventricular myocardium, since QRS corresponds to the 
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electrical activation of ventricles. Thus, QRS duration is assumed to match the 
time that ventricular myocardium takes to be fully activated. The higher the CVs 
in ventricles, the faster the electrical propagation across ventricular tissue and, 
consequently, the narrower the QRS complex in the ECG, and vice versa. Then, 
the high concordance of QRS complex duration between real ECG and simulated 
ECGs computed from simulations of CARTO®-derived sinus activation (see 
Figures 7.11, 7.12 and 7.13), indicates that the values chosen for CVs of healthy 
myocardium in our ventricular model (based on population data) must be close 
to real CVs in patient’s ventricles. Therefore, this suggests that the main factor 
hampering the induction of faster VTs in in-silico tests was specifically related to 
low values for CVs in the BZ, rather than a set of wrong values affecting the 
whole model including healthy myocardium. 

In any case, CL of all VTs induced in-silico (425 - 526 ms) was significantly 
longer than that of real VT (340 ms), or in other words, the reentrant activity 
responsible for clinical VT was faster than any of the simulated reentries. As 
discussed above, the most feasible reason to explain such a great difference is 
the fact that electrical conduction across BZ and, consequently, through the 
epicardial CC supporting reentrant activity, was slower in our ventricular model 
than in patient’s heart. That is the reason why an increase of CVs in the BZ in 
model #6 (ER+10fib) up to CVsBZ-50%, certainly resulted in a faster reentry (i.e., 
with shorter CL) (compare Video S237 to Video S438), although still 24% slower 
than real one. However, such modification of CVs gave rise to some changes in 
the waveform of several precordial leads, resulting in a poorer signal correlation 
between real and simulated ECGs (see Figures 7.24, 7.25 and 7.26). Moreover, 
in-silico tests were unable to induce VT on model #6 (ER+10fib) when CVs in the 
BZ were further increased to CVsBZ-75%, that is, when electrical conduction 
across BZ was only 25% slower than in healthy myocardium. In that case, 
premature stimuli (S2-S3) associated with PES protocols failed to propagate at 
pacing site (epi#1) at a CI of 290 ms, which was too short to induce VT in that 
model version. The wavefront resulted from any stimulus applied at a longer CI 

37  Video S2. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1, with 
     CVsBZ-25%.   https://youtu.be/1LepgvOTBJI 
38  Video S4. Positive VT induction on model #6 (ER+10fib) from pacing site epi#1, with 
     CVsBZ-50%.   https://youtu.be/13Td_t8MWOE 

https://youtu.be/1LepgvOTBJI
https://youtu.be/13Td_t8MWOE
https://youtu.be/1LepgvOTBJI
https://youtu.be/13Td_t8MWOE
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could not cause a functional propagation block at the lower end of the epicardial 
CC (see Video S539), as it did happen in other model versions leading to the onset 
of reentry. Hence, this suggests that the faster the electrical conduction in the 
BZ, the shorter the CI needed to generate a wavefront able to reach the lower 
end of the CC within the time window in which the tissue in that region is 
vulnerable to functional propagation blocks. Indeed, in the case of model #6 
(ER+10fib) with CVsBZ-25%, a single premature stimulus (S2) applied at a CI of 
360 ms was enough to trigger reentrant VT, while the same model version with 
CVsBZ-50% required a second stimulus (S3) delivered at a significantly shorter CI 
(320 ms) to produce functional propagation block in the epicardial CC. 
Therefore, the results of these computational simulations performed with 
different conductivity values highlighted the important influence of CVs in the 
BZ (which includes CCs) on those mechanisms leading to the initiation of infarct-
related reentrant VTs, as well as on the features of those VTs, such as their 
frequency or ECG morphology. 

 
Convenience of cardiac EP personalization 

Those results, together with the late repolarization responsible for the 
delayed T wave observed in simulated ECGs derived from simulations of sinus 
activation (see Figures 7.11, 7.12 and 7.13), supported again the conjecture that 
APDs in the patient’s ventricles were shorter than APDs of the ten Tusscher 
model (ten Tusscher and Panfilov, 2006b) used in our computational models. 
Hence, choosing an ionic model with basal APD shorter than the ten Tusscher 
one, both for healthy myocardium and for electrically remodelled BZ, would 
allow propagation of premature stimuli (S2-S3) applied at shorter CIs. Then, that 
modification in the EP modelling might enable the generation of functional 
propagation blocks, even in spite of relatively fast conduction across the BZ, thus 
triggering the onset of reentries that would lead to faster VTs due to higher CVs 
in the BZ. However, such hypothesis should be assessed by means of a new 
simulation study. The variation of APDs would also alter repolarization patterns, 

                                                           
39  Video S5. Negative VT induction on model #6 (ER+10fib) from pacing site epi#1, with  
     CVsBZ-75%.   https://youtu.be/HMMrHHb3YqM 

https://youtu.be/HMMrHHb3YqM
https://youtu.be/HMMrHHb3YqM
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as well as APD gradients around the epicardial CC ends, which seem to be 
strongly related to those functional blocks responsible for VT onset. 

As a conclusion, we believe that the incorporation to our pipeline of a 
coarse personalization process of certain parameters of cardiac EP, could likely 
improve the performance of our approach in terms of a more accurate 
reproduction of the EP behaviour of patient’s ventricles. Consequently, it might 
translate into higher similarity between in-silico induced VTs and clinical VTs 
and, thus, into an enhanced potential to predict optimal RFA targets. Maybe, 
some EP features, such as APDs or CVs of healthy myocardium, could be 
adjusted based on several measures from patient’s ECG in sinus rhythm (QRS 
duration, ST segment length, etc.). Perhaps, that customization process might 
even benefit from the recent paradigm of “populations of models” (Britton et 
al., 2013; Lawson et al., 2018; Muszkiewicz et al., 2016), simply by selecting that 
version of a given ionic model that better fits the specific features inferred from 
patient’s ECG. There are just a few precedents in this regard (Chen et al., 2016; 
Gillette et al., 2018; Relan et al., 2011), so further studies should be carried out 
to test those hypotheses about the convenience of coarsely personalizing 
cardiac EP from non-invasive datasets, as well as the expected impact of APDs 
and CVs in the BZ on VT features and even on VT inducibility. 

 
Ventricular model versions leading to positive VT induction 

Focusing on the simulation results at the organ level, we managed to 
induce infarct-related VT by means of in-silico tests in seven out of the 26 
settings that we assessed, including the two additional tests on model #6 
(ER+10fib) with increased CVs in the BZ. Those successful results were achieved 
on four (models #4-7) out of the eight versions of the ventricular model, with 
both CVsBZ-25% and CVsBZ-50%, and from two (epi#1 and endo#1) out of the 
three tested pacing sites. Among the four model versions that enabled positive 
VT induction, three of them (models #5,6,7) included electrical remodelling in 
the BZ. Model #4 (noER+30fib) provided positive VT induction exclusively from 
pacing site epi#1 (not from endo#1), being the unique successful configuration 
without electrical remodelling, although with the highest fibrosis level (30%) in 
the BZ. Furthermore, it was the only model version that required the application 
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of a second premature stimulus (S3 phase) from point epi#1 at CI of 290 ms, 
which is significantly shorter than the CI of 360 ms that was enough to trigger 
infarct-related VT on models #5,6,7 by means of a single premature stimulus (S2 
phase) from the same pacing site (see Table 7.4). 

 
Repolarization dispersion as a factor increasing susceptibility to VT 

The APD maps displayed in Figure 7.19, corresponding to the propagation 
of the last S1 stimulus across the four successful model versions, show that the 
three configurations with electrical remodelling (models #5,6,7) gave rise to 
large APD gradients around both terminal ends of the epicardial CC. Conversely, 
such feature was not so clearly appreciated on model #4 (noER+30fib). Those 
longer APDs at the CC ends and, consequently, longer refractory periods, made 
such regions especially prone to give rise to functional unidirectional 
propagation blocks, since those pieces of tissue needed more time to recover its 
excitability than the surrounding myocardium. Hence, the results of our 
simulation study indicate that, in the presence of a CC with slowed conduction 
that crosses the infarct scar, repolarization dispersion due to APD heterogeneity 
is an essential factor in promoting the onset of reentrant activity. Moreover, 
that repolarization dispersion around the ends of the CC, responsible for the 
strong APD gradients causing propagation blocks that triggered reentrant 
activity, correlates with the electrical remodelling in the BZ much closer than 
with the presence of patchy fibrosis. In other words, although based on a unique 
MI geometry, our simulation study suggests that the arrhythmogenic potential 
of a chronically infarcted human heart is more strongly correlated with the 
electrical remodelling in the BZ than with the existence of fibrosis in that region. 
This is in agreement with that observed in (Arevalo et al., 2013) and more 
recently discussed in (Trayanova et al., 2017). Such studies concluded that the 
presence of fibrosis within the BZ (randomly distributed patchy fibrosis, in those 
cases) is not an essential component in cardiac computational models aiming to 
predict infarct-related reentrant circuits, as long as electrical remodelling and 
reduction in CVs in the BZ are considered. In fact, model #5 (ER+00fib) provided 
positive VT induction from pacing site epi#1 by means of a single premature 
stimulus (S2). Concerning pacing site endo#1, model #5 (ER+00fib) was not able 
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to induce VT, although it did lead to the onset of non-sustained reentry due to 
the generation of functional (not permanent) bidirectional propagation block at 
the lower side of the epicardial CC (see Video S1340), while model #4 
(noER+30fib) never gave rise to any propagation block from endo#1. 

Influence of fibroblasts in the BZ on the mechanisms related to VT 

Nevertheless, despite failing from pacing site endo#1, it is true that 
model #4 (noER+30fib) enabled positive VT induction without electrical 
remodelling in the BZ from epi#1. In such a case, we hypothesize that the 
generation of the functional unidirectional propagation block that triggered 
reentry did not result from large APD gradients at the lower end of the CC, but 
otherwise from a combination of other kind of factors specifically related to the 
high fibrosis level (30%) within the BZ. As observed in Figure 7.21, our simulation 
results showed that the presence of infiltrated fibroblasts caused slowing-down 
of electrical propagation across the BZ depending on fibrosis level. Experimental 
studies with cultured cells confirm that such density-dependent deceleration of 
conduction derives from reduced excitability of cardiomyocytes associated with 
partial inactivation of their sodium channels (Miragoli et al., 2006). This is in turn 
caused by elevation of the resting potential of myocytes because of the 
electrotonic interaction with fibroblasts, whose resting potential is less negative 
than that of myocytes. In our pipeline, we could clearly observe such effect at 
the end of simulations aiming to stabilize myocyte-fibroblasts couplings within 
the BZ (see Figure 7.5). Moreover, a density of 30% fibrotic tissue in the BZ 
modelled as fibroblasts caused a significant APDs reduction around the infarct 
scar (see Figure 7.19), again as a result of the electrotonic interactions through 
heterocellular couplings (myocyte-fibroblast). Thereby, the consequent 
decrease in refractory periods allowed the feasibility of applying premature 
stimulus (S2-S3) at short CIs. In combination with slowed propagation and 
reduced excitability in the BZ, probably exacerbated at both sides of the 
epicardial CC due to source-sink mismatches, such a demanding pacing rates 
managed to stress the tissue at the lower end of the CC enough to finally induce 

40  Video S13. Negative VT induction on model #5 (ER+00fib) from pacing site endo#1, 
     due to bidirectional functional propagation block.    https://youtu.be/xtdoWtn-DGs 

https://youtu.be/xtdoWtn-DGs
https://youtu.be/xtdoWtn-DGs
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a unidirectional propagation block, thus giving rise to the self-sustained 
macroreentry responsible for monomorphic VT. 

 
Pro-arrhythmic effect of intermediate fibrosis levels in the BZ 

Focusing exclusively on those successful model versions that included 
electrical remodelling in the BZ (models #5-7), fibrosis was not strictly necessary 
to enable positive VT induction, as in the case of model #5 (ER+00fib). However, 
moderate fibrosis levels are thought to increase arrhythmogenicity, since it 
appeared to ease the onset of reentrant VTs in our simulation study. That was 
the case of models #6 (ER+10fib) and #7 (ER+20fib), with 10% and 20% image-
based patchy fibrosis within the BZ, respectively. They were the two only model 
versions that succeeded in in-silico tests with PES protocols delivered both from 
epi#1 and from endo#1. We think this synergic pro-arrhythmic effect of the 
combination of electrical remodelling and moderate densities of patchy fibrosis 
in the BZ may arise from several factors: (1) the additional slowing-down of 
propagation across the BZ induced by the presence of fibrosis (see Figure 7.21), 
(2) the formation of obstacles for electrical conduction due to clustered 
accumulations of fibrotic elements within the BZ (see black patches in Figure 
7.19), which distort and delay propagation wavefronts that are forced to 
surround such barriers (de Bakker et al., 1993; Dhanjal et al., 2017), and (3) a 
further decrease of tissue excitability because of the electrotonic interaction 
between fibroblasts and electrically remodelled myocytes in the BZ (Miragoli et 
al., 2006), what likely promotes the generation of those functional propagation 
blocks responsible for reentrant VTs (Xie et al., 2009; Zlochiver et al., 2008). 

 
Anti-arrhythmic effect of high fibrosis levels in the BZ 

In contrast, our simulation study revealed that the combination of 
electrical remodelling with higher fibrosis levels (30% or more) may become an 
obstacle to induce VT, rather than a pro-arrhythmic configuration. In our case, 
regardless of both the pacing site and the configuration of PES protocols 
(number of premature stimuli, CI length, etc.), model #8 (ER+30fib) gave rise to 
permanent bidirectional propagation block at the lower side of epicardial CC, 
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which prevented from the onset of sustained reentries. One might think that 
such effect was caused by massive accumulation of fibrotic elements at the 
lower side of the CC, thereby leading to a structural propagation block due to 
the formation of a physical barrier. However, model #4 (noER+30fib), which 
included exactly the same amount and image-based distribution of fibrotic 
elements as model #8 (ER+30fib), did not show any kind of persistent 
propagation block, even allowing positive VT induction from point epi#1. 
Therefore, that permanent block in model #8 (ER+30fib) was not a purely 
structural one but a functional bidirectional block specifically caused by the 
combination of electrical remodelling and 30% image-based patchy fibrosis in 
the BZ. The considerable accumulation of fibroblast around the lower end of the 
epicardial CC reduced the excitability of its still conducting tissue, due to partial 
inactivation of sodium channels caused by electrotonic myocyte-fibroblast 
interaction. Additionally, tissue excitability was further decreased as a 
consequence of the reduction in sodium channel conductivity associated with 
the electrical remodelling in the BZ. Hence, we finally concluded that the 
combination of all those effects resulted in such a strong inactivation of sodium 
channels that myocytes located at the lower terminal end of the epicardial CC 
became completely unable to trigger a depolarization, thus leading to the 
persistent functional propagation block in model #8 (ER+30fib). On the other 
hand, although model #4 (noER+30fib) did not show permanent blocks, it did 
exhibit the consequences of partial tissue inactivation induced by its high 
fibrosis level. Because of the intense electrotonic load exerted by such an 
important number of fibroblasts, every time that the propagation wavefront 
reached the lower end of the epicardial CC, it took notably longer to cross to the 
other side on model #4 (noER+30fib) than on any other model version, except 
for model #8 (ER+30fib), evidently. Moreover, this conduction delay at the lower 
side of the CC happened always, regardless of the propagation direction, both 
from inside the channel towards the apical side of MI and in opposite direction, 
as can be observed in Video S641. 

41  Video S6. Positive VT induction on model #4 (noER+30fib) from pacing site epi#1. 
https://youtu.be/nJAsVjX_67A 

https://youtu.be/nJAsVjX_67A
https://youtu.be/nJAsVjX_67A
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All those effects observed in our simulation study resulting from the 
combination of electrical remodelling and different fibrosis levels in the BZ 
match the conclusions reached in a previous work (McDowell et al., 2011). This 
is also a simulation study using a 3D model of infarcted rabbit ventricles built 
from high-resolution ex-vivo images, which included electrical remodelling 
similar to ours in the BZ. Additionally, that work assessed the influence on 
infarct-related arrhythmogenicity of various fibrosis levels (0%, 10% and 30%) 
within the BZ, introduced as randomly distributed diffuse fibrosis in that case. 
McDowell et al. concluded that intermediate densities of diffuse fibrosis (10%) 
in the BZ increases vulnerability to infarct-related VTs with respect to the case 
of no fibrosis. By contrast, they observed a protective role against VT as a result 
of high fibrosis levels (30%), due to the generation of persistent propagation 
blocks that hampered the onset of reentrant activities instead of promoting 
them. Therefore, our approach of image-based patchy fibrosis in the BZ of 
human chronically infarcted ventricles, resulted in a density-dependent impact 
on infarct-related arrhythmogenicity similar to that observed in that work as a 
consequence of random diffuse fibrosis in rabbit ventricles (McDowell et al., 
2011). 

 
Influence of pacing sites location on VT inducibility 

The absolute failure of pacing site epi#2, along with the fact that models 
#4 (noER+30fib) and #5 (ER+00fib) enabled positive VT induction from point 
epi#1 while they failed from endo#1, gives an idea of the key importance of the 
location of a given pacing site on the final result of VT inducibility tests. This is 
also endorsed by other unexpected results, as it was the case of model #5 
(ER+00fib) paced from point endo#1, which was the only configuration that gave 
rise to non-persistent functional bidirectional block at the lower side of the 
epicardial CC, thus avoiding the onset of sustained reentry (see Video S1342). 
Moreover, location of pacing sites may also have a great influence on the 
morphology of induced VTs. That is the reason why, in addition to the two pacing 
sites previously tested in the real EP study (epi#1 and endo#1), we added point 

                                                           
42  Video S13. Negative VT induction on model #5 (ER+00fib) from pacing site endo#1,  
     due to bidirectional functional propagation block.    https://youtu.be/xtdoWtn-DGs 

https://youtu.be/xtdoWtn-DGs
https://youtu.be/xtdoWtn-DGs
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epi#2 aiming to assess the feasibility of generating propagation blocks at the 
upper side of the CC, rather than at the lower one. Actually, despite the need of 
a third premature stimulus (S4 phase), pacing from point epi#2 did manage to 
create functional propagation block at the upper terminal end of the epicardial 
CC on model #5 (ER+00fib). However, it could not trigger VT because there was 
a collision at the lower side of CC that prevented from the onset of reentrant 
activity (see Video S1043). Anyhow, assuming that in some case propagation 
block at the upper side of the CC had been able to effectively trigger the onset 
of sustained reentry, the resulting monomorphic VT would have shown a 
different morphology. In such a case, the induced VT would have exhibited an 
anticlockwise macroreentrant propagation pattern, instead of the clockwise 
pattern described by the VT actually induced in the in-silico tests. Hence, it is 
evident that such a different propagation pattern would have significantly 
altered the morphology of the ECG associated with that VT episode. 

 
Impact of MI geometry on VT inducibility 

Besides the location of pacing sites, the geometry of the MI also plays an 
essential role in the mechanisms related to the initiation of reentrant VTs, 
especially the geometrical features of CCs crossing the infarct scar with the 
capability of acting as structural substrates for reentrant activity. In the case of 
our ventricular model, for instance, the particular geometry of epicardial CC was 
the main factor for which such structure was much more prone to generate 
functional propagation blocks at its lower side than at the upper one. The lower 
end of the epicardial CC presented a narrow funnel shape, notably narrower 
than the upper side (for more details of CC geometry see Chapter 5, section 
5.1.6). Furthermore, source-sink mismatches due to abrupt changes in the 
geometry of excitable tissue are widely considered as a really important factor 
in promoting functional propagation blocks (Ciaccio et al., 2018; Connolly et al., 
2015; Fast and Kleber, 1995). Therefore, due to its narrower section width giving 
rise to more abrupt changes in its geometry, it is very likely that the lower end 
of the epicardial CC was subject to a considerably more intense impact on 

                                                           
43  Video S10. Negative VT induction on model #5 (ER+00fib) from pacing site epi#2. 
 https://youtu.be/XWC9MMWigh0 

https://youtu.be/XWC9MMWigh0
https://youtu.be/XWC9MMWigh0
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propagation than the wider upper side, as a result of those source-sink 
mismatches. Both sides of the epicardial CC were affected to a similar extent by 
the reduction in CVs, large APD gradients mainly caused by electrical 
remodelling and partial tissue inactivation resulting in additional slowing-down 
of conduction due to fibrosis. Consequently, we finally concluded that the 
particular geometry of the epicardial CC appears to be the key element 
underlying the mechanisms by which unidirectional propagating blocks 
triggering self-sustained reentry, always happened at the lower side of the 
channel, thus determining the morphology of the monomorphic infarct-related 
VT, both in the clinic and in our simulation case study. 

This highlights the great influence of the geometrical characteristics of 
both infarct scar and BZ on VT mechanisms, as discussed in a very recent 
computational study aimed at assessing the impact on arrhythmogenicity of the 
3D architecture of viable tissue surrounding infarct scars (Pashakhanloo et al., 
2018). 
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Chapter 8 

Discussion 

In this chapter we will discuss in detail all the elements involved in the 
pipeline of personalized computational simulation of cardiac electrophysiology 
(EP) proposed in this work, including the clinical data, the methods used to carry 
out the main tasks related to the development of the 3D models and all the 
decisions made in order to computationally model the EP behaviour of the 
different regions included in the 3D ventricular model. In addition, we will 
comprehensively review the results obtained from the retrospective 
personalized in-silico EP study that we performed, as well as the conclusions 
derived from those results. Finally, we will deal with the major limitations 
associated with this work. 

Although presented here in a considerably further extended fashion, it 
must be noted that part of the content of this chapter was already included in a 
research article entitled “Personalized cardiac computational models: from 
clinical data to simulation of infarct-related ventricular tachycardia”, which was 
recently published in the indexed international journal Frontiers in Physiology in 
May 2019 (Lopez-Perez et al., 2019). 
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8.1.  Clinical data 
Since it is currently the gold-standard technique for in-vivo assessment 

of myocardial ischaemic injury in clinical environments (Jamiel et al., 2017; 
Mahida et al., 2017; Patel et al., 2017), cardiac DE-MRI is a routine imaging test 
for infarcted patients referred for RFA procedures (Al-Khatib et al., 2018; 
Pedersen et al., 2014; Priori et al., 2015). Therefore, the use of such image 
modality satisfies our requisite of exclusively using non-invasive clinical data 
aiming to enable the feasibility of performing prospective in-silico EP studies 
prior to RFA procedures. 

It is important to note that the accurate reconstruction of the 3D 
geometry of CCs is a critical element in generating 3D computational models of 
infarcted ventricles able to virtually reproduce clinical VTs (Deng et al., 2018; 
Pashakhanloo et al., 2018; Ukwatta et al., 2016), thus providing precise 
prediction of reentrant pathways to be ablated. Evidently, this is hardly possible 
by using low-resolution images, so achieving accurate 3D reconstructions 
requires image datasets of high resolution (Deng et al., 2015). In our particular 
case, we used a DE-MRI stack with isotropic voxel of 1.4 mm3, that is, with in-
plane resolution of 1.4×1.4 mm and spacing of 1.4 mm between consecutive 
slices. It is a relatively high resolution for in-vivo cardiac DE-MRI images, as they 
are usually acquired in the clinical environment with good in-plane resolution 
but showing gaps of 8-10 mm between slices. Nonetheless, cardiac DE-MRI with 
spatial resolution high enough to allow proper reconstructions of the 3D 
structure of CCs are clinically feasible, as it actually was in the case used in this 
work. 

Regarding the EAMs provided by CARTO® system, it must be highlighted 
that we did not use them for constructing or personalizing the 3D ventricular 
model of cardiac EP, but for testing and validation purposes only. Note that the 
stabilization of 3D ventricular models in sinus rhythm, which we carried out by 
using the CARTO®-derived sinus activation sequence, is not a necessary step 
prior to conducting in-silico tests of VT inducibility. In fact, among the previous 
simulation studies aimed at RFA planning for infarct-mediated reentrant VTs, 
none of them included a similar stabilization stage. Thus, we did not perform 
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the sinus activation simulations aiming for model stabilization itself, but for 
assessing the capability of the set formed by patient-specific 3D ventricular 
model and 3D torso model to reproduce patient’s ECG. 

On the other hand, in those RFA procedures aimed at terminating infarct-
related VTs, the myocardium affected by the MI (infarct scar and BZ) is the most 
thoroughly mapped region in order to find CCs across the scar as potential 
substrates for reentry (Baldinger et al., 2016; Pokorney et al., 2016; Soejima et 
al., 2002). In that region, most of EGMs show low amplitudes and/or very 
fractionated signals (Aliot et al., 2009; Bogun et al., 2005; Gardner et al., 1985), 
thus leading to a high uncertainty degree in LATs measurement. That is why we 
had to exclude such a large amount of CARTO® points: 462 points were removed 
out of a total amount of 847 included in the original CARTO® data. Nevertheless, 
the EAMs used in this work were recorded by the NaviStar® ThermoCool® 
catheter, which only enables point-by-point mapping process. Currently, there 
are catheters including multielectrode arrays with smaller electrodes (mini-
electrodes), such as the PentaRay® for CARTO® 3 System (Biosense Webster, 
Inc., Diamond Bar, CA, USA) or the IntellaMap Orion™ for Rhythmia HDx™ 
System (Boston Scientific, Marlborough, MA, USA) (Mantziari et al., 2015). Those 
multielectrode catheters allow acquiring much larger amounts of points (denser 
maps) and more precise EGM signal recordings (less noisy) due to their smaller 
sensing areas, thereby resulting in more accurate measurements of unipolar and 
bipolar voltages, LATs, activation patterns, etc. (Acosta et al., 2018; Josephson 
and Anter, 2015). 

 

8.2.  Patient-specific ventricular model 
This section addresses a number of issues related to the development of 

the patient-specific 3D ventricular model, specially focusing on the different 
features included in the model, such as the high level of detail in the 
reconstructed cardiac anatomy, the incorporation of cardiac fibre orientation, 
the method used to generate the personalized 3D geometry of the MI, including 
the infarct scar and the BZ, and the strategies employed to include patchy 
fibrosis within the BZ. 
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8.2.1.  Detailed endocardial anatomy 

From the anatomical point of view, we built a highly detailed patient-
specific 3D ventricular model. Unlike ours, most of the 3D models of human 
ventricles used in other works do not include papillary muscles and endocardial 
trabeculations, especially when they are based on in-vivo images. Subtlety and 
high inter-subject variability of endocardial structures add difficulty to the 
already challenging task of segmenting in-vivo cardiac imaging datasets. Lange 
et al., for instance, studied the impact on activation patterns of hearts suffering 
from left bundle branch block (LBBB) caused by endocardial details, including 
papillary muscles and false tendons. However, such structures were not 
segmented from images but synthetically added to a population of 3D human 
ventricular models derived from a statistical cardiac atlas (Lange et al., 2016). 

In our particular case, neither papillary muscles nor trabeculations 
appeared to have any significant effect on VT mechanisms. However, 
considerable influence on activation patterns of some endocardial structures, 
such as the moderator band in RV, has been observed both experimentally 
(Durrer et al., 1970) and by computational simulation (Bishop et al., 2010), as 
well as its potential role in VT settings (Bogun et al., 2008; Kim et al., 1999b; 
Walton et al., 2018). Hence, further investigations with large cohorts of patients 
would be required to assess the convenience of systematically including 
endocardial details in patient-specific models oriented to infarct-related VT 
simulations, as well as to evaluate to what extent it would be worth the effort. 

 

8.2.2.  Cardiac fibre orientation 

In our pipeline, cardiac fibre orientation defining myocardial architecture 
was generated and included in the 3D ventricular model by means of a rule-
based approach based on population data, as explained in Chapter 6 (see section 
6.2.3). Currently, the only option able to provide personalized information about 
myocardial structure is the use of diffusion tensor imaging (DTI). This is a MRI 
modality capable of measuring the diffusion of water molecules within biological 
tissues non-invasively, with the ability of revealing the direction of the 
longitudinal axis of myocytes within the myocardium (Holmes et al., 2000; Hsu 
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et al., 1998; Scollan et al., 1998). In fact, DTI-derived fibre orientation was used 
in various simulation studies aiming for infarct-related VTs performed 
with ventricular models built from ex-vivo images of different animal species 
(Arevalo et al., 2008, 2013; McDowell et al., 2011; Pashakhanloo et al., 2018; 
Pop et al., 2011a, 2011b). Unfortunately, despite several recent promising 
advances (McGill et al., 2015b, 2015a; Nguyen et al., 2016; Nielles-Vallespin 
et al., 2017; Stoeck et al., 2017), in-vivo cardiac DTI remains highly 
challenging due to the artefacts caused by cardiac motion. Indeed, even 
in ex-vivo settings, the acquisition of cardiac DTI sequences at a spatial 
resolution high enough to provide complete information about myocardial 
structure may take several tens of hours (Huang et al., 2019; Pashakhanloo et 
al., 2017, 2018). Nonetheless, an approach was proposed to estimate patient’s 
LV fibre orientation from a few 2D slices of in-vivo cardiac DTI (Toussaint et 
al., 2013) making use of a statistical atlas based on ex-vivo DTI from canine 
hearts (Peyrat et al., 2007). 

Anyhow, currently in-vivo cardiac DTI cannot be acquired with sufficient 
spatial resolution to provide full patient-specific fibre orientation and, 
furthermore, this technique is not clinically available, what is a requisite of our 
work. Moreover, some studies have compared simulation results performed on 
3D ventricular models using fibre orientation derived from both rule-based 
methods and ex-vivo DTI (Bayer et al., 2012; Bishop et al., 2009; Pop et al., 
2011b). In all cases, the minor differences found in electrical propagation 
patterns at global level were considered not significant, what confirms the 
validity and robustness of rule-based approaches based on experimental data 
for simulation studies of cardiac EP. 

An alternative to rule-based approaches is the use of atlases of cardiac 
fibre orientation generated from high-resolution ex-vivo DTI images (Lombaert 
et al., 2012; Peyrat et al., 2007; Vadakkumpadan et al., 2012). In such a case, the 
atlas is registered to the 3D geometry of a particular patient-specific ventricular 
model by means of transformation algorithms, with the final aim to map the 
fibre orientation into a target model (Ringenberg et al., 2014). Nevertheless, 
such approach is much more computationally expensive than rule-based 
strategies. Furthermore, as in the case of DTI-derived fibre orientation, the use 
of those atlases do not seem to provide any significant improvement to the 
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simulation results compared to validated rule-based methods, as discussed in a 
recent review on infarct-related VT simulation by Trayanova and colleagues 
(Trayanova et al., 2017). 

For the region of MI, we did not consider fibre orientation in the infarct 
scar because it was modelled as non-excitable tissue, so myocardial architecture 
in that region would have caused no impact on simulated propagation patterns. 
Concerning the BZ, both ex-vivo DTI (Winklhofer et al., 2014; Wu et al., 2006) 
and histological preparations (Rutherford et al., 2012; Tschabrunn et al., 2016) 
have revealed cardiac fibre disarray within the BZ, what would necessarily result 
in alterations of tissue anisotropy. Conversely, a recent study based on very 
high-resolution DTI observed good preservation of normal fibre orientation 
patterns in chronically infarcted regions, both in porcine and in human hearts 
(Pashakhanloo et al., 2017). Hence, there is no consensus about the 
preservation degree of cardiac fibre orientation within the BZ of healed 
infarctions. On the other hand, the study of the relation between fibre 
orientation within infarcted regions and ventricular arrhythmias has begun very 
recently (León et al., 2019), so that the potential role of the specific organization 
(or disorganization) of cardiac fibres in the BZ on infarct-related VT mechanisms 
or inducibility is still to be properly determined. Furthermore, none of those 
simulation studies using 3D models with myocardial architecture derived from 
ex-vivo DTI images has reported any significant influence on infarct-related VT 
mechanisms caused by such image-based fibre orientation patterns (Arevalo et 
al., 2008, 2013; McDowell et al., 2011; Pashakhanloo et al., 2018; Pop et al., 
2011a, 2011b). Therefore, because of the current uncertainty on this issue, we 
decided to keep in the BZ the physiological fibre orientation pattern provided by 
the rule-based method used in our pipeline, as recommended in the above-
mentioned review article (Trayanova et al., 2017). 

8.2.3.  Myocardial infarction segmentation 

We used the well-known SD method (Kim et al., 1999a) to perform the 
segmentation of the infarcted region from cardiac DE-MRI images aiming to 
generate 3D reconstructions of the patient-specific geometry of the infarct scar 
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and BZ, as described in Chapter 5 (see section 5.1.3). The SD method is a state-
of-the-art algorithm, which is based on a quite simple semi-automatic 
segmentation strategy based on thresholding. In fact, it involves a significant 
degree of previous interaction, usually performed manually, since it requires 
prior delineation of the LV myocardium, as well as the definition of two distinct 
ROIs (remote and infarcted) on every DE-MRI slice containing an infarcted area. 

However, while in-vivo cardiac DE-MRI is widely considered as the 
current gold-standard test to evaluate myocardial ischaemic damage non-
invasively (Jamiel et al., 2017; Mahida et al., 2017; Patel et al., 2017), there is a 
lack of consensus on the proper non-manual algorithm and thresholds for the 
delineation of MI contours from such image modality (Mesubi et al., 2015; 
Varga-Szemes et al., 2016). Consequently, in the two last decades a considerable 
amount of alternative methods have been developed aiming to segment the MI 
from cardiac DE-MRI datasets (see (Karim et al., 2016; McAlindon et al., 2015; 
Mesubi et al., 2015; Varga-Szemes et al., 2016) for a review on this topic), 
although it must be highlighted that many of them are variations of the original 
SD method. Nevertheless, full automated segmentation of MI from in-vivo 
cardiac DE-MRI is still an open challenge, while semi-automatic thresholding 
methods based on SD currently remain the most widely used strategies in 
clinical environments (Varga-Szemes et al., 2016). 

A few computational studies on 3D simulations of infarct-related VTs 
have assessed the impact on VT inducibility and features derived from the use 
of different methods and/or thresholds for the 3D reconstruction of MI from DE-
MRI images (Deng et al., 2018; Ng et al., 2012; Ukwatta et al., 2016). Those 
studies showed that defective 3D geometries resulting from inaccuracies in MI 
segmentation can significantly affect the inducibility and characteristics of 
simulated VTs. However, as an overall conclusion, the use of adequate threshold 
values appears to be a notably more influential factor than the choice of a 
particular segmentation method. Indeed, SD-based methods and even simpler 
thresholding algorithms, such as variations of the full-width-at-half-maximum 
(FWHM) strategy, remain commonly used in works aiming to study infarct-
related VTs by means of computational simulation with 3D models derived from 
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in-vivo cardiac DE-MRI datasets (Arevalo et al., 2016; Ashikaga et al., 2013; Chen 
et al., 2016; Deng et al., 2016; Prakosa et al., 2018). 

Importantly, evaluating the impact on simulation outcomes caused by 
the use of a certain segmentation algorithm was not included among the aims 
of this work, and neither the comparison between different methods. This, 
together with lack of consensus on a reference segmentation technique, finally 
led us to opt for the most standard approach for the segmentation of the 
infarcted region from DE-MRI images. Hence, we chose the original SD method 
(Kim et al., 1999a), as it currently remains the most used technique (Varga-
Szemes et al., 2016). Such algorithm is simple and, thus, straightforward to 
implement. In addition, it allows to easily discriminate between infarct scar and 
BZ by applying distinct thresholds. Furthermore, as commented above, its use 
remains widely spread both in clinical environments and in the computational 
cardiology field. 

Concerning the chosen thresholds, we used 3×SD and 2×SD above mean 
value for the infarct scar and the whole MI (enclosing both infarct core and BZ), 
respectively. Remember again that we did not aim to assess the influence of any 
segmentation parameter on the simulation results, so those thresholds were 
selected based on the related literature. Despite there is a considerable 
variability in the SD-based thresholds proposed in a large number of works, 
those values (3×SD and 2×SD) are widely used in experimental studies, likely 
being the most common ones for SD method ((Fieno et al., 2000; Hsu et al., 
2006; Kim et al., 1999a; Kolipaka et al., 2005; Mesubi et al., 2015; Perez-David 
et al., 2011; Yan, 2006), just to cite a sample of works using those values). 

 

8.2.4.  Fibrosis in the border zone 

A few previous simulation studies focused on mechanisms associated 
with infarct-related VTs have also included fibrosis within the BZ. Some authors 
incorporated random diffuse fibrosis modelled as electrically passive pieces of 
tissue (fibroblasts) in a 3D model of rabbit ventricles (McDowell et al., 2011) or 
micro-regions (patches) of non-conducting scarred tissue in a 3D canine model 
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(Arevalo et al., 2013). Similarly, a very recent work included randomly generated 
patterns of non-conducting fibrotic tissue within the BZ in a 3D model of 
infarcted rabbit ventricles (Campos et al., 2018). Another work faithfully 
reproduced the distribution of fibrosis in the BZ by means of highly detailed 3D 
models of wedge samples resulting from the reconstruction of high-resolution 
histological sections from two infarcted rat hearts, considering it as non-
conducting dense fibrotic tissue (collagen) intermingled with healthy myocardial 
tissue in the BZ (Rutherford et al., 2012). 

However, for obvious reasons, histological studies are not an option to 
personalize fibrosis patterns in image-based 3D cardiac models aiming to 
reproduce the cardiac EP of alive individuals. As commented above (see section 
8.1), DE-MRI is currently the gold-standard modality for the assessment of 
cardiac fibrosis from in-vivo images. Hence, in-vivo DE-MRI is at present the most 
reliable data source for the generation of personalized fibrosis patterns in 3D 
cardiac models, as in the case of our image-based approach for patchy fibrosis 
within the BZ. Indeed, using an image-based approach similar to ours, a recent 
work included realistic patterns of fibrosis based on DE-MRI images, although in 
that case the aim was to assess the impact on atrial fibrillation dynamics derived 
from different computational strategies to model the fibrotic tissue by means of 
a simulation study with a 3D model of the human left atrium (Roney et al., 2016). 

Nevertheless, in spite of being the reference technique, it is important to 
note that the gadolinium-based contrast agent used in DE-MRI studies is known 
to be non-specific for fibrosis, which indeed is an extracellular tracer (Saeed et 
al., 2001; Weinmann et al., 1984). Despite the underlying physiological 
mechanisms still remain to be fully elucidated (Kwong and Farzaneh-Far, 2011), 
gadolinium chelates are unable to cross the membrane of intact cells 
(Weinmann et al., 1984), so the hyperenhancement of signal intensity in DE-MRI 
images is commonly assumed to result from the diffusion of contrast agent 
through extracellular space (Mewton et al., 2011; Moon et al., 2004), which is 
expanded in the chronic fibrotic regions resulting from the MI healing process 
(Daskalopoulos et al., 2012; Hein and Schaper, 2001; Seidel et al., 2016). 
Moreover, each voxel of DE-MRI images is known to comprise thousands of cells 
of different types because of the limited spatial resolution of MRI techniques, 
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which is much larger than the size of cardiac cells, especially in in-vivo 
acquisitions (Hsu et al., 2006), thus leading to the so-called partial volume 
averaging effect (Varga-Szemes et al., 2016). Therefore, in accordance with 
histological observations, it is widely assumed that voxels showing intermediate 
intensity levels in DE-MRI images (usually classified as BZ) correspond to a 
mixture of myocytes and fibrotic tissue at microscopic scale (Hsu et al., 2006; 
Schuleri et al., 2009; Varga-Szemes et al., 2016). Then, regardless of the method 
used for MI segmentation, it seems reasonable to consider that those voxels 
identified as BZ showing the highest intensity levels within that region in DE-MRI 
images, probably correspond to pieces of myocardium composed of a mixture 
of tissue types where the percentage of fibrotic tissue is considerably high. 
Consequently, classifying those brightest voxels as fibrotic elements appears to 
be a suitable approach to define patient-specific fibrosis distributions in the BZ 
based on in-vivo DE-MRI images. 

On the other hand, we must remember that the intensity level of each 
DE-MRI voxel was assigned (mapped) to a cluster comprising several elements 
of the volume mesh of 3D model (up to 64 elements) due to the large size of 
voxels (1.4 mm3) relative to the size of hexahedral elements (about 0.4 mm3). 
This circumstance, along with the fact that those brightest voxels in the BZ are 
commonly surrounded by others with similar intensities, leads our image-based 
method to generate scattered fibrotic patches within the BZ, giving rise to 
patterns of patchy fibrosis similar to those observed in histological examinations 
(Rutherford et al., 2012; Schuleri et al., 2009). 

 

8.3.  Electrophysiological modelling 
In this section we discuss all the assumptions and decisions that we made 

in order to computationally model the EP behaviour of the different tissues and 
regions included in our patient-specific 3D model of the infarcted ventricles, 
comprising the EP features assigned to healthy ventricular myocardium, infarct 
scar and BZ. Moreover, we deal with the implications and consequences 
resulting from those assumptions and decisions related to the EP modelling. 
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8.3.1.  Healthy myocardium. Transmural heterogeneity 

As explained in Chapter 6 (see section 6.1.1), we considered the 
transmural EP heterogeneity of ventricular myocytes in our 3D model by 
defining three discrete layers for endocardial, mid-myocardial and epicardial 
cells, which encompassed 17%, 41% and 42% of myocardial wall thickness, 
respectively. Nevertheless, the actual distribution of those three different kinds 
of ventricular myocytes remains controversial, as well as the existence of M cells 
itself (Opthof et al., 2009, 2016). Moreover, a recent experimental study showed 
significant inter-subject variability in repolarization patterns (Opthof et al., 
2017), which are supposed to be determined by the distinct APDs associated 
with the different cell types. 

Anyhow, as a general rule, it is widely assumed that the repolarization 
starts at the epicardium and then proceeds to endocardium in human ventricles. 
The transmural EP heterogeneity in the ventricles (i.e., APD variation between 
neighbour layers) is usually considered to be the most likely responsible for that 
behaviour resulting in the T wave in ECG signals (Franz et al., 1987; Patel et al., 
2009). In fact, according to several computational studies, to reproduce positive 
T waves on precordial leads by simulation, the transmural heterogeneity 
(including M cells) must be considered in order to create a transmural 
repolarization gradient leading to repolarization patterns starting at epicardium 
(Hurtado and Kuhl, 2014; Okada et al., 2011; Perotti et al., 2015). Then, the 
correct polarity of T waves in the precordial leads of simulated ECGs resulting 
from our sinus activation simulations (shown in Chapter 7), indicates that the 
distribution that we chose for transmural layers seems to be a suitable 
approximation to computationally reproduce the physiological EP heterogeneity 
of human ventricular myocardium. Furthermore, the same percentages were 
used in previous simulation studies, also resulting in realistic positive T waves in 
the precordial leads of simulated pseudo-ECGs (Dux-Santoy et al., 2011, 2013). 

 

8.3.2.  Infarct scar 

Despite it is not an entirely acellular tissue (Rog-Zielinska et al., 2016; Sun 
et al., 2002), the region of infarct scar mostly correspond to extracellular matrix 
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composed of collagen (Cleutjens et al., 1999; Daskalopoulos et al., 2012; van den 
Borne et al., 2010). Nonetheless, a recent experimental study observed 
electrical conduction across the infarct scar due to its electrotonic properties, 
which were mainly attributed to the presence of fibroblasts in that region 
(Mahoney et al., 2016a), thus demonstrating that the scarred tissue is not 
completely electrically inactive. 

When the bidomain model is used, the infarct scar is usually modelled as 
a bath representing the extracellular space, which can exert a slight electrotonic 
effect over the surrounding tissue that depends on the conductivity values 
assigned to the scarred tissue (Connolly et al., 2015). However, we used the 
monodomain model, in which extracellular space is not represented. In such a 
case, a passive model at the cellular level combined with low conductivity values 
at tissue level could be used to account for the electrotonic load caused by the 
infarct scar (Deng et al., 2015; Ringenberg et al., 2014). In this regard, we 
performed some tests assigning the MacCannell model for cardiac fibroblast to 
the scar region, as previously done by others (McDowell et al., 2011). 
Nevertheless, the use of an ionic model, even being a passive one, necessarily 
involves the definition of a resting potential, which is about –49 mV for 
MacCannell model. As a consequence, when we computed the ECG, the 
resulting signals showed considerable distortion because of the presence of 
such a large region (infarct scar comprised 16% of LV myocardium in our model) 
that practically remained at resting potential at every moment along the 
simulation, thus producing a remarkable gradient that was captured by the ECG. 
Hence, this circumstance affected the cardiac dipole significantly at the organ 
level, giving rise to an important distortion in simulated ECG signals at the body 
level. 

That unwanted “side effect” would be critical for this work, since 
obtaining faithful simulations of the ECG is one of our main goals to be able to 
compare the simulation results with the patient’s non-invasive recordings, that 
is, with the clinical standard ECG. That is the main reason why we finally decided 
to disregard the subtle electrotonic effect of the infarct scar. Hence, we 
modelled the scar as a pure insulator by imposing no-flux boundary condition at 
the interface between scar and surrounding tissue, as previously done in many 
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other computational studies on infarct-related VTs (Arevalo et al., 2013, 2016; 
Ashikaga et al., 2013; Deng et al., 2018; Pashakhanloo et al., 2018; Prakosa et 
al., 2018; Rantner et al., 2012; Relan et al., 2011). 

 

8.3.3.  Infarct border zone 

With respect to the electrical remodelling in the BZ, it must be noted that 
all changes affecting the ionic channels that we considered in this regard, are 
based on experiments with cells harvested from epicardial BZs of canine hearts 
(Dun et al., 2004; Jiang et al., 2000; Pu and Boyden, 1997). As recently discussed 
elsewhere (Connolly and Bishop, 2016), it is unclear to what extent those data 
are representative of the electrical remodelling in the BZ of human hearts. The 
presence of epicardial collateral circulation in canine hearts, not present in 
humans, is known to influence the formation of the epicardial BZ in dogs 
(Schaper et al., 1988; Ursell et al., 1985), what could give rise to functional 
differences with respect to the surviving myocytes in human BZs. 

Moreover, those studies reporting experimental evidence of the 
electrical remodelling in canine BZs (Dun et al., 2004; Jiang et al., 2000; Pu and 
Boyden, 1997) were all performed a few days after the coronary occlusion, that 
is, still in the healing phase of MI rather than in its chronic stage. Indeed, results 
from other experimental studies suggest that the surviving myocytes in the BZ 
tend to progressively recover normal EP properties along the MI healing process, 
such that in the chronic stage of MI those myocytes may even exhibit AP 
features similar to those of the healthy tissue, as discussed in a very recent 
review article (Mendonca Costa et al., 2018). Despite this, those data have been 
widely used in previous computational studies (Arevalo et al., 2013, 2016; 
Ashikaga et al., 2013; Deng et al., 2015, 2018; Hill et al., 2016; McDowell et al., 
2011; Pashakhanloo et al., 2018; Prakosa et al., 2018; Rantner et al., 2012; 
Ringenberg et al., 2014), due to the lack of experimental data on the ionic 
(electrical) remodelling in the BZ of chronically infarcted human hearts. 

On the other hand, the slowed conduction across the BZ is widely 
considered as a key factor in promoting reentry through CCs crossing the infarct 
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scar, as it allows the working myocardium at the other side to recover its 
excitability before the arrival of the wavefront coming from inside the channel 
(de Bakker et al., 1993; Lazzara and Scherlag, 1984; Nguyen et al., 2014). 
However, the underlying mechanisms of this reduction in CVs are not totally 
clear yet. Several studies mainly blame this reduction on the presence of dense 
fibrosis (collagen) scattered within the BZ, as it forces the propagation 
wavefront to take tortuous pathways resulting in substantial conduction delays 
(de Bakker et al., 1993; Engelman et al., 2010; Rutherford et al., 2012). To 
reproduce such slowed propagation in the BZ computationally, some authors 
drastically reduced only the transverse CV (Arevalo et al., 2013, 2016; Deng et 
al., 2015, 2018; McDowell et al., 2011; Prakosa et al., 2018). This could represent 
the severe reduction measured in gap junctional conductance in canine BZs only 
in the transverse direction (Yao et al., 2003) and/or the loss of side-to-side 
coupling between adjacent layers of myocytes due to the isolating effect of 
infiltrated fibrotic tissue (Spach and Boineau, 1997). Downregulation and 
lateralization of connexin 43 (Cx43), the main protein constituting gap junctions 
in human ventricular myocytes, have been also experimentally reported in the 
BZ (Severs et al., 2008; Smith et al., 1991). Downregulation of Cx43 might result 
in an isotropic reduction of CVs and its lateralization would exacerbate this 
effect in the longitudinal direction, while keeping or even increasing the 
transverse CV. Nonetheless, part of those lateralized gap junctions in the 
remodelled cardiomyocytes of the BZ are thought to be non-functional 
(Matsushita et al., 1999). Moreover, disorganization of cardiac fibres in the BZ 
might importantly affect the electrical propagation across that region, as the 
ratio between CVs in the different directions is determined by the specific 
arrangement of cardiomyocytes composing the ventricular myocardium. Thus, 
any remodelling in the organization of cardiac fibres would consequently alter 
the electrical anisotropy of myocardial tissue. However, the existence of cardiac 
fibre disarray within the BZ is also controversial, since there are different 
experimental studies reporting contradictory results in relation to this issue, as 
discussed above (see section 8.2.2). 

In conclusion, the slowed conduction in the BZ seems to be the result of 
a really complex combination of structural, electrical, gap junction and cardiac 
fibre remodelling that is not well understood yet (de Bakker, 2017). Hence, 
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currently there is a lack of consensus on the proper way to model the BZ in order 
to reproduce such CVs reduction by replicating its underlying mechanisms in the 
computational cardiac models. In our particular case, in addition to the image-
based patchy fibrosis, we imposed an isotropic reduction of CVs in the BZ (both 
longitudinal and transverse CVs were reduced to 25% [CVsBZ-25%]), aiming to 
reproduce macroscopically the global effect of all those diverse factors affecting 
the propagation and promoting the reentrant activity, as previously done in 
other computational studies (Hill et al., 2016; Ringenberg et al., 2014). 

Regarding myocyte-fibroblast coupling, there is experimental evidence 
of the existence of this kind of heterocellular connection via gap junctions 
(connexins) in the remodelled myocardium resulting from MI (Camelliti et al., 
2004; Mahoney et al., 2016b; Schwab et al., 2013), as well as by tunnelling 
nanotubes (Quinn et al., 2016). However, the myocyte-fibroblast coupling in the 
BZ of chronic MIs has not been properly characterized by experimental studies 
in terms of density and distribution of functional gap junctions connecting both 
cell types (Ongstad and Kohl, 2016). Therefore, the magnitude and the 
anisotropy of the electrotonic load resulting from myocyte-fibroblast couplings 
in the BZ remain undetermined. Despite this, we considered this possible 
influence by modelling the fibrosis within the BZ using a passive fibroblast model 
(MacCannell et al., 2007) at the cellular level, as already done in (McDowell et 
al., 2011) and, more recently, in a simulation study using a detailed 3D atrial 
model (Godoy et al., 2018). Furthermore, we defined an isotropic low 
conductivity at tissue level for fibrotic patches, such that this conductivity value 
mainly affected the coupling between adjacent myocytes and fibroblasts within 
the BZ by modulating the magnitude of their electrotonic interaction. 

8.4.  Computational simulation of cardiac EP 
Regarding the computational simulation, below we comment on several 

concerns linked to the performance of our simulations of cardiac EP from the 
mathematical and computational points of view. After that, we present a 
thorough discussion about the simulation results obtained from the 
retrospective personalized in-silico EP study that we carried out in this work. 
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Furthermore, this discussion also addresses the conclusions derived from those 
simulations results in relation to the infarct-related VT mechanisms. 

 

8.4.1.  Numerical considerations 

The monodomain model is a widely used mathematical approach to 
simulate the propagation of electrical activation wavefronts across cardiac 
tissue. However, it derives from a simplification of the bidomain model, which 
is more physiologically realistic, although significantly more computationally 
demanding, as explained in Chapter 6 (see section 6.2.1). A computational study 
specifically aimed at this issue only found insignificant discrepancies between 
the activation patterns in simulations at the organ level derived from both 
bidomain and monodomain models (Potse et al., 2006). Consequently, the 
monodomain model is widely accepted as a valid approach for propagation 
studies, while the bidomain model is considered to be strictly necessary only for 
simulations in which external electric fields are applied, such as studies related 
to defibrillation shocks (Potse, 2012; Trayanova, 2011; Vigmond et al., 2009). In 
fact, the monodomain model has been used in numerous studies performing 
computational simulations of cardiac EP similar to ours (Arevalo et al., 2016; 
Ashikaga et al., 2013; Deng et al., 2015, 2018; McDowell et al., 2011; 
Pashakhanloo et al., 2018; Prakosa et al., 2018; Ringenberg et al., 2014). 

Concerning the spatial mesh resolution, recommended values for 3D 
simulations of cardiac EP based on FEM method are usually around 0.25 mm 
(Plank et al., 2008). Nonetheless, the developers of ELVIRA, the FEM solver used 
for our 3D simulations (Heidenreich et al., 2010a), performed several tests in 3D 
models with different spatial resolutions using the same AP model as we have 
used in this work (ten Tusscher and Panfilov, 2006b). They demonstrated that a 
spatial discretization of 0.4 mm (and even greater, up to 0.5 mm) is a suitable 
trade-off that ensures the stability of numerical solution, thereby allowing a 
substantial reduction in the number of degrees of freedom and, consequently, 
in the computational burden associated with the cardiac EP problem 
(Heidenreich et al., 2010a). 
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On the other hand, the use of a hexahedra-based mesh for the 
ventricular model provided a restricted variability of edges length, which tend 
to be wider in the case of tetrahedra-based meshes. In our 3D ventricular model, 
most of the volume elements nearly preserved the shape of a regular 
hexahedron (i.e., a perfect cube), since only the elements closest to the external 
boundaries were deformed in order to fit the smooth surface that faithfully 
represented the patient-specific anatomy, as shown in Chapter 5 (see figures in 
section 5.1.2.1). A reduced variability in element size is a critical feature of FEM 
meshes for cardiac EP problems in order to avoid unexpected and uncontrolled 
variations in CVs, which might lead to numerical artefacts or even propagation 
blocks, especially when the average edge length is relatively large (Prassl et al., 
2009). 

Regarding the integration time step (dt), we used a value of 0.02 ms, 
which is widely used in the field of computational cardiac EP in combination with 
the ten Tusscher model. Furthermore, this value was tested and validated by 
both the ELVIRA developers (Heidenreich et al., 2010a) and the authors of the 
AP model used in this work for human ventricular myocytes (ten Tusscher and 
Panfilov, 2006b). 

 

8.4.2.  Personalized in-silico EP study 

As demonstrated by the results analysed in Chapter 7, our approach was 
able to reproduce the clinical infarct-related VT of a particular patient by means 
of computational simulation of cardiac EP performed with the patient-specific 
3D model of ventricles constructed from clinical DE-MRI. Furthermore, we 
managed to replicate patient’s ECG, both in sinus rhythm and during a clinical 
VT episode. In the latter case, the ECG was reproduced with enough accuracy to 
undoubtedly identify the simulated VT as the same as the VT spontaneously 
suffered by the patient. In this work, we carried out a retrospective in-silico EP 
study aiming to test the ability of our approach to predict reentrant circuits 
through infarct scars as optimal ablation targets. Nonetheless, the design of our 
pipeline is completely based on non-invasively recorded data, basically high-
resolution clinical DE-MRI and standard ECG recordings, while EAMs provided 
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by CARTO® system were exploited exclusively for testing and validation 
purposes. Therefore, it might be perfectly used to perform prospective in-silico 
EP studies aiming to identify reentrant pathways, thus helping 
electrophysiologists in choosing optimal ablation sites prior to actual RFA 
procedures. Hence, we believe that the approach proposed in this work is 
capable of becoming a helpful tool for planning of RFA procedures aimed at 
eliminating infarct-related VTs. At least in this particular case, which has served 
as a proof-of-concept study, we can state that our pipeline would have been of 
great help in RFA planning. In such a case, electrophysiologists would have 
known the epicardial location of the structural substrate supporting the reentry 
responsible for the clinical VT prior to RFA procedure, instead of spending long 
hours mapping both endocardial and epicardial surfaces of the LV in the EP 
laboratory seeking for that epicardial CC. 

Nevertheless, as we have done in this work, the ability to reproduce 
infarct-related VTs by means of computational simulation using image-based 3D 
cardiac models has already been demonstrated in a number of previous studies. 
The first work in this regard, which appeared a decade ago, managed to induce 
infarct-related VTs by computational simulation on a 3D model of infarcted 
canine ventricles constructed from high-resolution ex-vivo images (Arevalo et 
al., 2008). In fact, many of those works rely on animal experiments and 3D 
ventricular models constructed from ex-vivo images of species such as swine 
(Deng et al., 2015, 2018; Pashakhanloo et al., 2018; Pop et al., 2011a), rabbit 
(McDowell et al., 2011) or dog (Arevalo et al., 2013). Much less common are 
those studies using in-vivo images from animal subjects (Ng et al., 2012). With 
respect to those works based on 3D models of human infarcted ventricles built 
from in-vivo images, most of them are retrospective studies (Ashikaga et al., 
2013; Cedilnik et al., 2018; Chen et al., 2016; Deng et al., 2016; Relan et al., 2011; 
Ringenberg et al., 2014), one of them performed on a quite considerable large 
cohort of 41 patients aiming for arrhythmia risk stratification rather than RFA 
planning (Arevalo et al., 2016). To our knowledge, currently only a very recent 
work has shown a prospective computational study performed with five human 
patients from two different hospitals, further supported by several 
retrospective studies with both human (21 patients) and animal (5 pigs) 3D 
models of infarcted ventricles (Prakosa et al., 2018). 
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Among those studies using human data, in addition to the number of 
patients ranging from only one (Relan et al., 2011) to 41 subjects (Arevalo et al., 
2016), such works mainly differ in the strategies used for modelling the EP 
behaviour of human ventricles, especially in the region affected by the chronic 
ischaemic heart disease comprising both infarct scar and BZ. Some of those 
works, seeking for a fast performance in computational simulations, benefit 
from simplified EP approaches such as the Eikonal propagation model (Cedilnik 
et al., 2018), even making a special effort to personalize human cardiac EP as 
much as possible by adjusting the parameters of simplified AP models (Chen et 
al., 2016; Relan et al., 2011). However, as in our case, many of those studies 
(Arevalo et al., 2016; Ashikaga et al., 2013; Deng et al., 2016; Prakosa et al., 
2018; Ringenberg et al., 2014) based their EP modelling strategies on ten 
Tusscher models of human ventricular AP (ten Tusscher et al., 2004; ten 
Tusscher and Panfilov, 2006b, 2006a), since it is a quite complete and validated 
ionic model capable of reproducing the complex EP phenomena underlying the 
mechanisms responsible for reentrant VTs, such as unidirectional propagation 
blocks. Thus, the major differences between these works are mainly related to 
the EP representation of the MI. Among them, the most usual way of modelling 
the MI region relies on considering the infarct scar as non-excitable tissue (i.e., 
an electrical insulator), including only electrical remodelling along with reduced 
conductivities in the BZ, with both regions segmented from in-vivo DE-MRI in all 
cases (Arevalo et al., 2016; Ashikaga et al., 2013; Deng et al., 2016; Prakosa et 
al., 2018). Note that those four works come from the same research team, the 
Trayanova’s Computational Cardiology Laboratory from Johns Hopkins 
University (Baltimore, Maryland, USA), which is by far the most active research 
group worldwide in this regard. Instead, in spite of using a very similar approach 
for BZ, Ringenberg et al. modelled the infarct scar as a passive resistor-capacitor 
tissue with very low conductivity values in order to account for a subtle 
electrotonic load exerted by the scarred tissue on surrounding viable 
myocardium (Ringenberg et al., 2014). 

Regarding the incorporation of fibrosis within the BZ, so far, no previous 
work using human data has considered such possibility in the context of RFA 
planning aimed at infarct-related VTs. Just a few studies performed on 3D 
models derived from ex-vivo images of animal infarcted hearts have previously 
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explored the arrhythmogenic effects of the presence of fibrosis within the BZ 
(Arevalo et al., 2013; McDowell et al., 2011). A 3D model of rabbit ventricles was 
used to study the arrhythmogenic impact of including diffuse and random 
arrangements of fibroblasts in the BZ (McDowell et al., 2011). Later, Arevalo et 
al. assessed the influence on arrhythmogenicity and induced VTs features 
derived from the presence of distinct densities of necrotic patches (non-
excitable tissue) randomly organized within the BZ of a 3D model of canine 
infarcted ventricles (Arevalo et al., 2013). The authors observed an increasing 
slowing-down of propagation across BZ depending on fibrosis level, thus leading 
to longer CLs for induced VTs and even preventing them at fibrosis levels higher 
than 60%. However, they finally concluded that such kind of fibrotic 
representation in the BZ was not a necessary element to reproduce real VT 
morphologies by means of computational simulation, as long as electrical 
remodelling and reduced conductivities are included in the BZ. 

Hence, our approach of including image-based fibrosis, leading to the 
generation of patient-specific fibrosis patterns within the BZ resulting in a 
patchy distribution modelled as fibroblasts clusters, is a novel contribution to 
the field of computational cardiology aimed at studying the mechanisms related 
to VTs in chronically infarcted human hearts. A recent work also used an image-
based method to define realistic patchy fibrotic patterns in a 3D cardiac model, 
but in a very different context related to a simulation study on persistent atrial 
fibrillation (Roney et al., 2016). On the other hand, as thoroughly discussed in 
Chapter 7 (see sections 7.5.3 and 7.6.2), the results of our in-silico tests of VT 
inducibility suggests a pro-arrhythmogenic effect linked to the presence in the 
BZ of intermediate densities (10%, 20%) of imaged-based fibrosis (fibroblasts 
clusters). Importantly, this is further consistent with the conclusions reached by 
McDowell et al., whose work was specifically aimed at assessing the 
susceptibility to infarct-related VT as a function of the degree of random diffuse 
fibrosis in the BZ (McDowell et al., 2011), also represented by MacCannell model 
of human ventricular fibroblast (MacCannell et al., 2007). 

The other strongly distinguishing feature of our work relates to the 
simulation of ECGs derived from the VTs induced in in-silico tests, which were 
computed by means of a 3D torso model. Evidently, this is not the first study in 
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providing simulated ECGs using a 3D torso model (see (Cardone-Noott et al., 
2016; Carpio et al., 2019; Sánchez et al., 2018), just for a few recent examples). 
Nevertheless, in the context of simulation studies aimed at RFA planning for 
infarct-related VTs, no previous work has provided simulated ECGs before, as 
we have done in an attempt to reproduce the patient’s ECG associated with the 
clinical VT that is expected to be eliminated by a RFA procedure. 

A reduced number of studies, focused on assessing the impact of various 
modelling approaches on infarct-related VT mechanisms and features, did 
obtain simulated pseudo-ECGs resulting from 3D models of animal infarcted 
ventricles (Arevalo et al., 2013; Deng et al., 2015; Pashakhanloo et al., 2018) and 
also of human hearts (Ukwatta et al., 2016). In all cases, extracellular potentials 
were calculated by considering the heart immersed in an isotropic and 
homogeneous conductive medium, rather than embedded in a 3D 
heterogeneous torso model. However, all of them simply showed simulated 
signals for a unique bipolar lead computed from two virtual electrodes 
arbitrarily placed around the ventricular model at a certain distance from the 
epicardial surface. In those cases, the aim was to analyse the morphologies of 
the various VTs induced on a same 3D ventricular model, or those of the same 
VT induced on different model versions (with distinct representations for scar 
and/or BZ, for instance) by comparing the resulting pseudo-ECGs. Therefore, in 
contrast to our pipeline, none of those works provided simulated signals suitable 
to be compared against patient’s ECG recordings. 

Among the previous computational studies aimed at replicating real 
infarct-related VTs, either clinical or experimentally induced, a subset of them 
were retrospective studies that made use of EAMs invasively recorded during 
the actual EP study in order to assess the correspondence between real and 
simulated VTs, using EP datasets from both swines (Deng et al., 2015, 2018; Ng 
et al., 2012) and human subjects (Cedilnik et al., 2018; Chen et al., 2016). In such 
cases, researchers directly compared the real activation patterns (LATs) 
obtained via mapping systems (CARTO®, Rhythmia™, EnSite™), recorded from 
endocardial and/or epicardial surfaces during the arrhythmic events induced in 
the EP laboratory, with those patterns resulting from VTs induced on image-
based 3D models by computational simulation. This kind of comparison, 
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performed qualitatively in all of those works, basically allowed the authors to 
evaluate the spatial closeness between the organizing centres of real and 
simulated VTs, as well as the direction in which the propagation flowed around 
such centres. Nevertheless, besides being unfeasible for prospective studies due 
to the need of using data from real EP studies, this methodology must deal with 
an important drawback even in retrospective cases. Frequently, VTs induced in-
vivo in the EP laboratory cannot be properly mapped (unmappable VTs) due to 
several reasons (Alzand et al., 2011; Fernández-Armenta et al., 2015), such as 
the spontaneous ending of reentrant activity (non-sustained VT) that hinders 
the mapping process, the need of reverting the patient to sinus rhythm because 
of haemodynamic instability and the resulting perfusion compromise during the 
VT episode (non-tolerated VT), or simply the failure in inducing the clinical VT in 
the actual EP study. Therefore, in many cases the direct comparison between 
activation patterns from real and in-silico induced VTs would not be a feasible 
option, as usually EAMs cannot be suitably recorded during in-vivo induced VT 
episodes, if inducible. 

In conclusion, our approach is (to our knowledge) the first one in 
providing a method to evaluate the correlation between clinical and simulated 
infarct-related VTs that is entirely based on non-invasive clinical standard ECG 
recordings, instead of needing EAMs invasively registered during the actual EP 
study, what furthermore would severely restrict the predictive capability of 
prospective in-silico EP studies for planning RFA procedures. Thus, in the case of 
monomorphic VTs typically associated with reentrant activities through the scar 
of chronically infarcted hearts (de Bakker et al., 1988), our approach would allow 
the electrophysiologists to compare the morphologies of simulated and real 
ECGs in order to discern whether an in-silico induced VT matches a particular 
clinical VT. Thereby, in the case of positive match, electrophysiologists would 
receive precise information about the location of the reentrant circuit to be 
ablated, before taking the patient to the EP laboratory. Evidently, such kind of 
information would enable a better planning of the RFA procedure in advance. It 
would be of great help to target a restricted area to be mapped, to decide 
whether the case requires an endocardial or epicardial approach (or both) and 
to select appropriate pacing sites before the intervention. Consequently, such 
an accurate pre-procedure planning might likely translate into a considerable 
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shortening of procedure duration, a decrease of the risk of intra-operative 
complications and, mainly, a significant improvement in success rate of RFA 
procedures aimed at eliminating infarct-related VTs, thus leading to the 
subsequent reduction in the number of successive reinterventions (Aliot et al., 
2009; Baldinger et al., 2016; Gerstenfeld, 2013; Yokokawa et al., 2013). 

 

8.4.3.  Infarct-related VT mechanisms 

In this section we will focus on the mechanisms associated with the 
initiation and maintenance of infarct-related reentrant monomorphic VTs. 
According to our EP study by computational simulation, in presence of CCs 
traversing the scar in chronically infarcted ventricles, the most influential factors 
in VT promotion are the reduction in CVs and the repolarization dispersion (APD 
heterogeneity) within the BZ that surrounds the fibrotic core (i.e., the infarct-
scar), along with the geometrical features of the CC comprising the structural 
substrate for reentrant activity. Furthermore, although based on a single MI 
geometry, the conclusions derived from our simulation results are in agreement 
with most of the previously published observations in both experimental and 
computational studies, as comprehensively discussed in Chapter 7 (see section 
7.6.2). 

Besides contributing to the self-sustenance of reentrant activity through 
CCs because of slowed conduction across them, thus enabling tissue 
repolarization at the other side, our results showed that the reduction in the CVs 
of BZ may also have a significant impact on VT inducibility and VT features, as 
seen in the in-silico tests performed on model #6 (ER+10fib) with three different 
value sets for CVs in the BZ. When we used CVsBZ-75% (i.e., conduction across 
BZ was 25% slower than in healthy myocardium), in-silico tests failed to induce 
VT. In contrast, model #6 (ER+10fib) with CVsBZ-50% did provide positive VT 
induction. However, it required a more stressful pacing protocol than the case 
of CVsBZ-25%, also giving rise to notable alterations in the morphology of 
simulated ECGs and, consequently, resulting in a lower resemblance between 
simulated and clinical VT. 
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Regarding the two main factors creating repolarization dispersion around 
the infarct scar, our results suggest that the APD increase associated with 
electrical remodelling in the BZ has a notably more pro-arrhythmogenic effect 
than the APD shortening induced by infiltrated fibroblasts. Among the four 
versions of our patient-specific ventricular model providing positive VT 
induction (models #4-7), only model #4 (noER+30fib) lacked electrical 
remodelling in the BZ, requiring the highest fibrosis level (30%) and more 
stressful pacing protocols to give rise to the functional propagation block 
triggering reentrant VT. On the contrary, models #5 (ER+00fib), #6 (ER+10fib), 
#7 (ER+20fib), all of them including electrical remodelling, presented larger APD 
gradients at both CC ends, thereby facilitating the formation of functional 
unidirectional propagation blocks leading to VT onset. Nonetheless, the 
combination of electrical remodelling and intermediate densities (10%, 20%) of 
fibroblasts infiltration within the BZ, arranged as a function of our image-based 
approach, showed a synergic impact on arrhythmogenicity. That is the main 
reason why models #6 (ER+10fib) and #7 (ER+20fib) were revealed as the two 
most arrhythmogenic configurations. 

On the other hand, the APD reduction resulting from the presence of 
patchy fibrosis in the BZ, modelled as fibroblasts clusters, enabled the 
propagation of premature stimuli (S2-S3) at shorter CIs from pacing sites located 
within the region subject to fibrosis influence, thus allowing the application of 
more stressful PES protocols. In fact, this was the mechanism that enabled the 
VT onset on model #4 (noER+30fib) when it was paced from point epi#1. 

The considerable impact of pacing sites location on VT inducibility was 
also observed in our simulation study. The absolute failure of pacing site epi#2, 
together with the different results yielded by in-silico VT tests with PES protocols 
released from sites epi#1 and endo#1, confirmed the key importance of pacing 
sites location. Indeed, one of the major advantages of in-silico EP studies 
compared to real ones relates to the feasibility of conducting VT inducibility 
tests from a large number of pacing sites in an absolutely harmless scenario 
(Arevalo et al., 2016; Prakosa et al., 2018). Obviously, a simulation study does 
not involve the considerable risk of intra-procedural complications that might 
arise from an extensive pacing approach in the EP laboratory. 
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Lastly, in spite of carrying it out on a unique MI geometry with a single 
CC, our simulation study allowed us to witness the crucial relevance of the 
geometrical characteristics (shape and size) of the CC supporting the reentrant 
activity responsible for an infarct-related VT. In our particular case, the 
generation of marked APD gradients at both terminal ends of the epicardial CC 
was the mechanism that ultimately led to unidirectional functional propagation 
blocks and, consequently, to the reentrant VT initiation. In addition to APD 
increase associated with electrical remodelling, the source-sink mismatches due 
to steep changes in the geometry of excitable tissue were strongly related to the 
genesis of such a pro-arrhythmic effect specifically located at the two CC ends. 
Furthermore, there existed a severe narrowing in the viable tissue at the lower 
(apical) end of the epicardial CC, so that tissue expansion was even more abrupt 
there than in upper side, thus leading to a deeper impact of structurally induced 
source-sink mismatches on the propagation through the lower side of the CC. 
That is the reason why the propensity to functional propagation blocks was 
much higher at the lower end of the epicardial CC compared to its upper side. 
Hence, these results corroborate the great influence on VT inducibility and VT 
morphology derived from the geometry of the viable (i.e., excitable) tissue 
surrounding infarct scar, as also observed in a number of previous simulation 
studies on infarct-related VT mechanisms (Arevalo et al., 2013; Deng et al., 2018; 
Pashakhanloo et al., 2018; Ringenberg et al., 2014; Ukwatta et al., 2016). 

 

8.5.  Limitations 
Undoubtedly, the major limitation of this work corresponds to the fact 

that it is based on only one case (one patient) and, hence, on a unique MI 
geometry that, in addition, presented a sole CC (epicardial isthmus) giving rise 
to a single VT morphology. Importantly, the main goal of this project was to 
develop a pipeline able to reproduce patient’s VTs by computational simulation 
of cardiac EP, not only at the organ level (simulation on 3D ventricular model) 
as others have previously done, but also at the body level by replicating patient’s 
ECGs recorded during clinical VT episodes. Then, according to the results shown 
in Chapter 7 and discussed in sections above, we can state that the feasibility of 
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reproducing patient’s ECGs by means of our computational simulation approach 
with enough accuracy to be compared against actual patient’s recordings, 
especially those corresponding to clinical VTs, has been assessed and proved 
thanks to this single case. Nevertheless, a single-case study like this must be 
considered as a proof-of-concept study showing results that, although 
promising, are still preliminary. There is no doubt about the compulsory need of 
conducting further retrospective studies including a large number of cases 
(patients) in order to improve and validate our pipeline. Those studies should 
also consolidate (or modulate) our conclusions concerning the relation between 
the mechanisms triggering infarct-related VTs and the factors influencing them, 
as well as the decisions made about the proper cardiac EP modelling for this 
particular kind of in-silico studies. 

Some structural features of the patient-specific 3D ventricular model 
could not be personalized. That is the case, for instance, of cardiac fibre 
orientation defining myocardium architecture, which were generated by means 
of a rule-based method derived from population data. However, it does not 
appear to have a significant impact on simulation studies on cardiac EP like this 
one, as discussed in section 8.2.2. 

On the other hand, currently the electrical propagation through 
ventricular myocardium is known to be characterized by three distinct 
conductivities in longitudinal, transverse (within myocardial sheets) and normal 
(along transmural direction) axes (Caldwell et al., 2009; Hooks, 2007). Recent 
computational studies have shown the impact on propagation patterns that 
might result from considering such full electrical anisotropy, both in simulations 
at the organ level in healthy ventricles (Cardone-Noott et al., 2016; Johnston et 
al., 2016) and in simplified models of cardiac tissue under diseased conditions 
(Johnston et al., 2018). Instead, we considered a unique conductivity for all 
directions perpendicular to myocyte longitudinal axis, as it has been commonly 
assumed in most of the 3D computational studies of cardiac EP so far. Hence, 
the incorporation of full anisotropy to the cardiac EP modelling of our pipeline 
might be one of the future improvements, as well as the study of its influence 
on infarct-related VT inducibility. 
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Another limiting factor in our approach is the absolute lack of 
personalization of cardiac EP. A few simulation studies aimed at infarct-related 
VTs have already included personalization methods relying on EP data provided 
by EAMs invasively recorded in real EP studies (Chen et al., 2016; Pop et al., 
2011a; Relan et al., 2011). However, such strategies clash with our requisite of 
exclusively using non-invasive data, thus becoming incompatible with the 
feasibility of performing prospective in-silico EP studies. Nonetheless, a coarse 
personalization process of cardiac EP based on non-invasive data might likely 
improve the performance of our approach by leading to better correlation 
between real and simulated ECGs and, consequently, to an enhanced potential 
to predict reentrant pathways as optimal ablation targets, as already addressed 
in Chapter 7 (see section 7.6.2). Such cardiac EP personalization step could rely 
on the recent paradigm of population of models (Britton et al., 2013; Lawson et 
al., 2018; Muszkiewicz et al., 2016), just choosing, among the various versions 
of a certain ionic model, the most suitable one for each case. Some preliminary 
results from an interesting ongoing work in this regard have been very recently 
published, which proposes a workflow for patient-specific parameterization of 
ventricular models of cardiac EP using non-invasive standard ECG recordings 
(Gillette et al., 2017, 2018). 

Concerning the cardiac conduction system, we did not even consider the 
presence of His-Purkinje network within the patient-specific 3D ventricular 
model. It is known that His-Purkinje system may participate in the mechanisms 
responsible for various modalities of ventricular arrhythmias (Haissaguerre et 
al., 2016; Nogami, 2011), even in infarct-related VTs giving rise to a particular 
sort of monomorphic VT with relatively narrow QRS complexes (Bogun et al., 
2006). However, such subtype of VTs with reentrant circuits necessarily 
mediated by a portion of His-Purkinje network in chronically infarcted ventricles 
is not so common, probably as a consequence of the longer APD of Purkinje cells 
and the conduction delays at Purkinje-myocardial junctions. Thus, the inclusion 
of a model of His-Purkinje system in the ventricular model was not expected to 
have a significant impact on the infarct-related VT mechanisms that we aim to 
reproduce by our simulation approach. Anyhow, currently there is no in-vivo 
imaging modality capable of providing information about the patient-specific 
geometry of His-Purkinje network. There are a few recent works proposing 
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approaches to infer models of His-Purkinje system from the early activated 
regions automatically located on endocardial EAMs (Barber et al., 2017, 2018; 
Palamara et al., 2015; Vergara et al., 2014). It is important to note that such 
methods are based on an inverse problem that is inherently ill-posed, so that 
the degree of correspondence between the inferred model and the real 
structure of patient’s His-Purkinje network is uncertain. Furthermore, the use of 
any of those approaches would be in conflict with our requirement of only using 
non-invasive clinical data collected prior to the RFA procedure. Then, the only 
alternative available to account for the cardiac conduction system in our 
pipeline would be to include a fully synthetic His-Purkinje model coupled to the 
3D ventricular model. Nevertheless, in such a case the extent to what the impact 
on simulation results derived from such artificial His-Purkinje network (if any) 
would be faithfully replicating the influence of the patient’s cardiac conduction 
system in such scenario, could not be determined. 

A limitation not intrinsically associated with our pipeline but affecting in 
the particular case of the retrospective in-silico EP study presented here, was 
the poor quality of the whole-torso anatomical MRI stack. The low resolution of 
such image dataset hampered the construction of a fully patient-specific 3D 
torso model, thus leading to the need of adapting a previously built torso model, 
as shown in Chapter 5 (see section 5.2). Apart from the loss of specific 
anatomical details of the particular patient being subject of our in-silico EP 
study, the major drawbacks might relate to the inaccurate position and 
orientation of the ventricles into the 3D torso model. As discussed in Chapter 7 
(see section 7.6.1), a considerable distortion of the simulated ECG signals 
registered at the external surface of torso model could arise from such 
deviations in the 3D geometrical position of ventricular model with respect to 
the torso. However, according to the acceptable results obtained from the 
simulations at the body level (i.e., simulated ECGs) shown in Chapter 7, 
especially in the case of simulated VTs exhibiting a morphology very similar to 
that of clinical VT, those possible geometrical inaccuracies did not seem to cause 
a significant impact on simulation results in this particular case. 

Finally, besides requiring several improvements and further validation by 
means of larger retrospective studies, the integration of the pipeline proposed 
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in this thesis into the clinical workflow is still far from being feasible. Once a 
patient suffering from infarct-related VT is referred for RFA, the DE-MRI is 
usually acquired just a couple of days prior to the procedure. Unfortunately, the 
manual processing of MRI datasets required to build patient-specific 3D 
computational models of infarcted ventricles and torso is a very time-consuming 
task, which in addition requires expertise. Furthermore, the performance of 
realistic simulations of human cardiac EP at both organ and torso level involves 
a heavy computational burden, because of the need of using detailed ionic 
models capable of reproducing the complex EP phenomena underlying the 
mechanisms responsible for infarct-related VTs onset. Therefore, conducting a 
prospective in-silico EP study aimed at planning a RFA procedure within a 
clinically assumable time frame, would require highly proficient staff working 
hard with HPC (high-performance computing) resources, all of which are not 
commonly available in current clinical environments. 
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Chapter 9 

Conclusions and Perspectives 

In this final chapter, we present the conclusions drawn from this work, 
which proposes a full pipeline for computational simulation of cardiac 
electrophysiology (EP) aiming to perform personalized in-silico EP studies on 
infarct-related ventricular tachycardias (VT) by means of image-based 3D 
models. We also discuss the possible perspectives regarding the future 
evolution of the proposed methodology, as well as the improvements that 
should be included in order to enhance the performance and reliability of this 
approach, aiming to evolve towards the feasibility of its introduction into clinical 
environments. 

9.1.  Conclusions and contributions of the thesis 
The main general aim of this doctoral thesis was to assess the feasibility 

of building 3D models (ventricles and torso) capable of supporting personalized 
in-silico EP studies aiming to plan radiofrequency ablation (RFA) procedures for 
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infarct-related VTs, with the restriction of exclusively using non-invasive data 
registered prior to the therapeutic intervention. To evaluate this, first we 
developed a full pipeline to construct patient-specific 3D models of infarcted 
ventricles based only on high-resolution clinical DE-MRI images. From those 
images we generated personalized computational 3D reconstructions of the 
cardiac anatomy and of the chronic myocardial infarction (MI) geometry, even 
including personalized image-based fibrosis patterns within the border zone 
(BZ), as described in Chapter 5. Secondly, we designed an approach to 
computationally model the cardiac EP aiming to reproduce, as faithfully as 
possible, the EP behaviour of chronically infarcted ventricles by computational 
simulation, considering both the infarct scar and the BZ, as shown in Chapter 6. 
After that, we performed a single-case feasibility study in order to test the 
developed methodology. We carried out a retrospective in-silico EP study 
consisting of applying by computational simulation the same pacing protocols 
employed by the specialists in the EP laboratory for testing the inducibility of 
infarct-related VTs. As part of the simulation-based EP study, we moreover 
computed the simulated ECGs resulting from the in-silico induced VTs making 
use of a 3D torso model. This allowed to compare the simulated ECGs against 
the patient’s clinical recordings as a method to evaluate the degree of similarity 
between real and simulated VTs. Additionally, we assessed several strategies for 
the EP modelling of the BZ, incorporating electrical remodelling and different 
levels of structural remodelling (in the form of image-based fibrosis) to that 
region, aiming to study the arrhythmogenic impact of those distinct BZ 
configurations. 

According to our results, shown in Chapter 7 and discussed in Chapter 8, 
the pipeline proposed in this work was able to induce the clinical VT suffered by 
the patient in the in-silico inducibility tests performed in our single-case study. 
In addition, our approach was also able to reproduce the morphology of the 
monomorphic VT in the simulated ECGs computed by means of the 3D torso 
model, such that the simulated VT was unequivocally identified as the same as 
the clinical one, thereby providing the accurate location of the conducting 
channel (CC) that should be ablated to terminate the VT. Indeed, the location 
within the 3D ventricular model of the epicardial CC, responsible for the 
reentrant activity leading the infarct-related VT, highly correlated with the 
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ablation sites chosen by the electrophysiologists in the actual RFA procedure, 
who successfully removed VT inducibility from the patient by ablating in regions 
corresponding to the two terminal ends of the epicardial isthmus. 

Therefore, the single-case retrospective study performed in this work has 
given a proof of the feasibility of developing patient-specific 3D computational 
models from non-invasive clinical data aimed at simulation of the patient’s EP 
by means of the proposed pipeline. Hence, it seems to have the potential to 
become a powerful tool for therapy planning in the near future. This approach 
could help to improve the success rate of RFA procedures aiming for infarct-
related VTs, which currently remains relatively low, since it is estimated that up 
to 50% of patients continue suffering from VT after the procedure. Therefore, 
the prospective and personalized in-silico EP studies might help in reducing the 
usual need of successive re-interventions, as well as to reduce the procedure 
duration and, consequently, the risk to the patient of intra- and post-procedural 
complications. 

Concerning the overall performance of our pipeline, it was able to 
reproduce the patient’s ECG both in sinus rhythm and in clinical VT with 
acceptable fidelity, considering the lack of personalization of the myocardial 
architecture (i.e., cardiac fibre orientation) and mainly of the cardiac EP, which 
was entirely based on population data. When pacing protocols give rise to 
positive VT induction in the EP laboratory, electrophysiologists usually compare 
the resulting ECG to that registered during clinical VT episodes as a method to 
discern whether both VTs match or not, which in turn is part of the process of 
selecting the optimal ablation targets. Hence, our pipeline completely based on 
non-invasive clinical data has the potential to replicate such process in-silico, 
thus further endorsing the idea that it might become a helpful tool in therapy 
planning prior to RFA procedures aimed at finishing infarct-related VTs. 

Certainly, in the case of the in-silico EP study presented in this work, we 
used the EP data provided by CARTO® system, which were invasively recorded 
during the in-vivo EP study conducted immediately before the real RFA 
procedure. Nonetheless, as already highlighted in previous chapters, we used 
those datasets solely for testing and validation purposes. Indeed, the stage of 
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ventricular model stabilization in sinus rhythm might be removed from our 
simulation pipeline with no significant consequences, since it is not necessary at 
all for performing the subsequent stage of in-silico tests of VT inducibility. Thus, 
even omitting such simulation step, our approach could be used in prospective 
personalized in-silico EP studies aiming to predict the CC supporting the clinical 
VTs in order to help in finding the optimal ablation sites. In such a case, the 
proposed pipeline would only require the following non-invasive clinical data: 
(1) high-resolution clinical DE-MRI for building the patient-specific 3D model of 
infarcted ventricles, (2) clinical structural MRI to construct the personalized 3D 
torso model, and (3) patient’s ECG recorded during clinical VT episodes. Then, it 
might be seamlessly applied prior to the actual EP study for aiding in therapy 
planning, that is, for planning the RFA procedure, not only by revealing the exact 
location of those CCs responsible for the clinical VTs that must be eliminated, 
but also by providing really useful information for deciding whether the 
approach should be endocardial, epicardial or both. 

Regarding the EP mechanisms underlying the onset of reentrant infarct-
related VTs, we assessed the arrhythmogenic potential derived from the 
incorporation of different kinds and degrees of remodelling within the BZ. 
However, from the functional perspective, the computational modelling of the 
BZ remains a challenging task because of the lack of reliable data from 
experimental studies on chronically infarcted human hearts, especially in 
relation to the electrical remodelling and the myocyte-fibroblast electrotonic 
interactions. In our in-silico case study, in addition to the reduction of CVs 
resulting in slowed propagation across the BZ, the most pro-arrhythmogenic 
factor was the repolarization dispersion around the infarct scar, that is, the APD 
heterogeneity within the BZ. In spite of causing opposite effects, both types of 
remodelling increased the repolarization dispersion in the BZ, since the electrical 
remodelling led to APD prolongations while patchy fibrosis, modelled as 
electrically passive fibroblasts, gave rise to density-dependent APD shortenings. 
In our case study, both remodelling types enabled by itself the formation of 
unidirectional functional propagations blocks triggering the infarct-related VT. 
However, in the absence of electrical remodelling, the ventricular model 
required a high fibrosis density in the BZ (30% image-based patchy fibrosis) to 
enable the VT induction by means of pacing protocols. Indeed, the most pro-
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arrhythmogenic BZ configurations were those including the conjunction of both 
factors, combining the electrical remodelling with intermediate fibrosis levels 
(10% and 20%) in the BZ. In those 3D ventricular model versions including such 
BZ configurations, both kinds of remodelling interact synergistically leading to 
an important dispersion in the repolarization patterns around the infarct scar, 
thus increasing the arrhythmogenic potential in that key region. Furthermore, 
they gave rise to APD gradients that were especially large in the vicinity of both 
extremes of the epicardial CC, thereby making those critical sites more prone to 
the formation of functional unidirectional propagation blocks. As a 
consequence, those model versions experienced a significant increase in their 
susceptibility to the onset of reentries through the epicardial CC, thus triggering 
the reentrant monomorphic VTs typically suffered by chronically infarcted 
patients. 

On the other hand, it is essential to highlight the cardinal importance of 
the precise and personalized 3D reconstruction of both ventricular anatomy and 
MI geometry from in-vivo high-resolution images in order to accurately predict 
the reentry pathways responsible for the clinical VTs as ablation targets by 
means of in-silico EP studies. Although relying on a unique MI geometry, our 
simulation case study allowed to observe the significant relevance in reentrant 
VT scenarios of the source-sink mismatches related to sudden changes in the 
geometry of excitable tissue. Therefore, the 3D structural features (geometry, 
shape, size, etc.) of the CCs crossing the infarct scar play a key role in the 
susceptibility to the onset of reentrant VTs. Thus, besides the appropriate EP 
modelling, an accurate and personalized reconstruction of the 3D structure of 
the MI is also required, including the complicated interpenetration between the 
infarct scar and the surrounding viable tissue giving rise to the formation of CCs. 
Such a precise reconstruction of the MI geometry is crucial for faithfully 
reproducing by computational simulation the patient’s cardiac EP mechanisms 
leading to the onset of the infarct-related clinical VTs. 

In recent years, there have been promising advances in the field of 
computational cardiology, especially in relation to the computational cardiac EP. 
Unfortunately, there remain several challenging issues that continue hampering 
the incorporation into the common clinical workflow of the image-based 3D 
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cardiac models aiming for personalized in-silico EP studies as a useful tool for 
diagnosis and therapy planning. There is a lack of precise and easy-to-use tools 
for fully automated generation of cardiac computational models including 
accurate 3D reconstructions of the patient-specific anatomy and MI geometry 
from in-vivo high-resolution image datasets, especially from MRI modalities 
such as cardiac DE-MRI. Indeed, currently this is a time-consuming task that, in 
addition, requires expertise in cardiac image processing. Nonetheless, future 
improvements in the quality and resolution (both spatial and temporal) of in-
vivo cardiac imaging techniques, as well as the standardization of their 
acquisition protocols, are expected to be of great help in overcoming this 
important challenge. 

Another major drawback is the current high computational cost of 3D 
simulations of cardiac EP at the organ and body (torso) levels. A prospective in-
silico EP study aiming to thoroughly test VT inducibility from a patient-specific 
3D model of infarcted ventricles involves a considerable number of multi-scale 
simulations of cardiac EP. Moreover, such simulations must account for a high 
degree of biophysical detail aiming to reproduce the complex EP mechanisms 
underlying the onset of infarct-related VTs. As a result, those biophysically 
realistic simulations of cardiac EP require long computing times on high-
performance computing (HPC) resources, which furthermore must be managed 
by proficient computer scientists with expertise in computational cardiac EP. 
Nevertheless, as in the case of the automated methods for generating 3D 
models from in-vivo cardiac images, the expected evolution and optimization of 
(1) computing architectures, such as those based on graphical processing units 
(GPUs), (2) numerical techniques and (3) mathematical approaches for cardiac 
EP modelling, will likely aid in increasingly reducing the computational burden 
of such simulations and, thereby, speeding them up, as well as in expanding their 
accessibility to personnel with little experience in computational cardiac EP. 

Consequently, in spite of the upcoming clinical advances that the field of 
computational cardiac EP seems to promise, the feasibility of performing 
prospective personalized in-silico EP studies aiming for therapy planning within 
the narrow time frame usually elapsed between the diagnosis and the 
therapeutic intervention in patients undergoing life-threatening cardiac 
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disorders, remains nowadays extremely challenging in the current clinical 
environments due to the high demands of such studies, in terms of long 
simulation times, cutting-edge computing technology and degree of interaction 
by expert operators. 

 

9.2.  Future perspectives 
Despite its promising preliminary results, our approach is still far from 

being ready for its application in clinical environments aiming to perform 
prospective in-silico EP studies for planning RFA procedures oriented at 
eliminating infarct-related VTs. In addition to the limiting factors inherently 
linked to the field of computational cardiac EP discussed above, our pipeline 
evidently needs further improvements and validation. 

The ability of the proposed approach to replicate infarct-related clinical 
VTs by computational simulation, including the ECG morphology, should be 
exhaustively assessed and validated by means of further retrospective studies 
with large patient cohorts. Moreover, such retrospective studies might be really 
useful not only for evaluating the overall performance of our methodology, but 
also as a testing bench for increasingly calibrating our pipeline by defining the 
best modelling strategy for each aspect. For instance, they would be of great 
help in revealing which is the most appropriate EP modelling scheme for the BZ, 
in terms of conduction velocities (CV) reduction, level of imaged-based patchy 
fibrosis, magnitude of myocyte-fibroblast electrotonic interaction, etc. 
Additionally, we might even test other alternatives for fibrosis within the BZ, 
such as considering it as dense necrotic patches modelled as non-conducting 
pieces of tissue. Those studies would also allow clarifying whether it is worth 
making the additional effort needed to include the papillary muscles and 
endocardial trabeculations in the patient-specific 3D ventricular models in order 
to predict reentrant pathways. 

On the other hand, in its current state, our pipeline demands a high 
degree of manual interaction. Therefore, despite the lack of fully automated 
methods commented above, we should explore semi-automatic segmentation 
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approaches in order to decrease the necessary interaction, thus accelerating the 
building process of 3D models (infarcted ventricles and torso) and, in the case 
of MI segmentation, reducing or even removing the potential inter-operator 
variability resulting from the manual pre-processing required by the standard-
deviation (SD) method. In this regard, our approach might benefit from the very 
recently appeared strategies for advanced image processing applied to cardiac 
MRI datasets based on the deep learning paradigm. 

As already discussed in previous chapters, we strongly think that the 
performance of our approach might really benefit from the incorporation of 
some kind of strategy aiming to coarsely personalize the cardiac EP. However, 
such personalization strategy should necessarily rely on non-invasive EP data, 
such as standard clinical ECG recordings or, maybe, the emerging technique of 
ECG imaging (ECGi), which has recently shown promising advances in 
representing the activation maps at the organ level by reconstructing them from 
body surface potential maps (BSPM). Otherwise, in the case of methodologies 
based on invasive data such as electro-anatomical maps (EAM), they could not 
be applied for prospective in-silico EP studies aimed at RFA planning prior to the 
actual procedure. 

Another important feature that we think we should include in the 
pipeline is the integration of an automated methodology to generate extensive 
pacing schemes. One of the main advantages of the personalized in-silico EP 
studies is the absolute absence of risk to the patient, what consequently brings 
the possibility of implementing comprehensive VT testing strategies by 
delivering programmed electrical stimulation (PES) protocols from a large 
amount of pacing sites. As discussed in Chapters 7 and 8, the location of the 
pacing sites may significantly influence the final result of VT inducibility tests. 
Indeed, one of the issues leading to the relatively poor success rates of RFA 
procedures in the context of infarct-related VTs is the frequent inability to 
induce the clinical VTs during the real EP study, thereby complicating the 
election of the optimal ablation targets aiming to terminate those clinical VTs. 
Hence, the computational EP studies might help to considerably diminish the 
probability of failing to induce the clinical VTs because of the improper choice 
of the few pacing sites that are usually tested in the in-vivo EP studies for safety 
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reasons. Therefore, the generation of a large set of pacing sites by means of an 
automatic algorithm, strategically placing points all over the surface of the 
patient-specific 3D ventricular model regardless of the location and extension of 
the MI, would be a really advantageous strategy in order to maximize the 
probability of success of our approach in the personalized in-silico EP studies. 

Furthermore, the application of such an extensive pacing schemes could 
be highly beneficial not only for therapy planning, but also for risk stratification 
in chronically infarcted patients with no prior history of spontaneous infarct-
related VTs. Since the pipeline proposed in this work just require non-invasive 
data (high-resolution clinical MRI scans and standard ECG recordings), our 
approach might be used to assess the probability of developing all possible 
reentrant VTs that could potentially derive from the specific MI geometry of a 
particular subject, with no kind of risk, trouble or serious discomfort for the 
patient. 
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