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Abstract

One of the most exciting aspects of transcriptome biology is the con-

textual adaptability of eukaryotic transcriptomes and proteomes by

post-transcriptional regulation (PTR). PTR mechanisms such as al-

ternative splicing (AS) and alternative polyadenylation (APA) have

emerged as tightly regulated processes playing a key role in gen-

erating transcriptome complexity and coordinating cell differentiation

or tissue development. However, how these mechanisms imprint dis-

tinct functional characteristics on the resulting set of isoforms to de-

fine the observed phenotype remains poorly understood. The num-

ber of PTR variants and their resulting range of potentially functional

consequences makes their functional validation an impractical task if

done on a case-by-case basis. Besides, the lack of isoform-oriented

functional profiling approaches has made that much of the compu-

tational work done to elucidate transcriptome-wide functional ques-

tions has either involved ad hoc computational pipelines applied to

specific biological systems or has relied on simple GO-enrichment

analysis that are not informative about the PTR impact on isoform

properties.

Thus, even though more than 60,000 publications on AS, a few num-

ber of existing isoforms have been associated with specific proper-

ties while the number of novel AS/APA variants with unknown and

even unexplored functions is exponentially increasing thanks to the

use of next-generation sequencing (NGS). Due to the technical limi-

tations of NGS to reconstruct the transcript structure, high-throughput

sequencing of full-length transcripts using third-generation technolo-

gies (TGS) is opening up a new transcriptomics era that enhances

the definition of gene models and, for the first time, enables to pre-

cisely associate functional events within the RNA molecule.



This thesis addresses three major challenges to the progression of

the study of isoform function. First, with the emergence and increas-

ing popularity of TGS, the accurate definition and comprehensive

characterisation of de novo transcriptomes is essential to ensure

the quality of any conclusions on transcriptome diversity drawn from

these data. The lack of long-read oriented quality aware analysis

motivated the development of SQANTI (https://bitbucket.org/

ConesaLab/sqanti), an automated pipeline for the structural charac-

terization and quality assessment of full-length transcriptomes. Sec-

ondly, the gene-centric nature of functional resources remained the

major limitation to the extended study of functional isoform variabil-

ity, especially for novel isoforms, which cannot be characterised by

static databases. Thus, we designed IsoAnnot, which dynamically

constructs an isoform-resolved rich database of functional annota-

tions by using as input transcript sequences and integrating infor-

mation disseminated across several databases and prediction meth-

ods. Finally, because no methods to interrogate the functional impact

of PTR were available, we developed novel approaches and user-

friendly tools such as tappAS (http://tappas.org/), designed to

facilitate researchers the transcriptome-wide functional study of context-

specific isoform regulation.

Thereby, this thesis describes the development of an analysis frame-

work that tackles the fundamental challenges of the isoform func-

tional analysis by providing a set of novel methods and tools that

offer an unique opportunity to explore how the phenotype is speci-

fied by altering the functional characteristics of expressed isoforms.

Applied to a murine neural differentiation system, our pipeline pro-

filed the effect of isoform regulation on the inclusion of several func-

tional elements within transcripts between motor-neuron and oligo-

dendrocyte differentiation systems and specifically, we discovered

isoform-specific transmembrane regions whose modulation by PTR

might contribute to control cell type-specific mitochondrial dynamics

during neural fate determination.

(https://bitbucket.org/ConesaLab/sqanti)
(https://bitbucket.org/ConesaLab/sqanti)
(http://tappas.org/)


Resumen

Uno de los aspectos más apasionantes de la transcripción es la plas-

ticidad transcriptómica y proteómica mediada por los procesos de

regulación post-transcripcional (PTR). Los mecanismos PTR como

el splicing alternativo (AS) y la poliadenilación alternativa (APA) han

emergido como procesos estrechamente regulados que juegan un

papel clave en la generación de la complejidad transcriptómica y

están asociados con la coordinación de la diferenciación celular o

el desarrollo de tejidos. Sin embargo nuestro conocimiento sobre

cómo estos mecanismos regulan las propiedades de los productos

resultantes para definir el fenotipo es aún muy reducido. La cantidad

de variantes existentes y el amplio rango de posibles consecuen-

cias funcionales, hacen su validación funcional una tarea impracti-

cable si se realiza caso por caso. Además, la falta de herramien-

tas para la evaluación funcional orientada a isoformas ha provocado

que gran parte del trabajo computacional haya empleado pipelines

ad-hoc aplicadas a sistemas biológicos especı́ficos o simplemente

hayan confiado en análisis de enriquecimiento GO, los cuales no

son informativos del impacto en las propiedades de las isoformas

que hay detrás de la regulación PTR.

De hecho, a pesar de las más de sesenta mil publicaciones relativas

al AS, muy pocas isoformas se han asociado con propiedades es-

pecı́ficas, mientras que el número de nuevas variantes AS/APA con

function desconocida crece exponencialmente debido a las técnicas

de secuenciación de segunda generación (NGS). Además, y debido

a limitaciones técnicas de las NGS para reconstruir la estructura

de los transcritos, las tecnologı́as de secuenciación de tercera gen-

eración (TGS) están definiendo una nueva era en la que, por primera



vez, es posible conocer la secuencia de elementos estructurales y

funcionales en los mRNAs.

En esta tesis se han abordado tres propósitos principales para poder

avanzar en el estudio funcional de las isoformas. En primer lugar,

con las TGS siendo cada vez más utilizadas, la evaluación de la

calidad de los transcriptomas de novo es esencial para asegurar la

fiabilidad de la diversidad transcriptómica encontrada. La falta de

análisis de calidad orientados a secuencias largas ha motivado el

desarrollo de SQANTI, una pipeline automatizado para la exhaus-

tiva evaluación de TGS transcriptomas. En segundo lugar, la infor-

mación a nivel de gen de la mayorı́a de bases de datos funcionales

sigue siendo el principal escollo para el estudio de la variabilidad en-

tre isoformas, especialmente en el caso de las isoformas nuevas, en

las que las bases de datos estáticas impiden su caracterización. Ası́,

hemos diseñado IsoAnnot, que construye una base de datos de an-

otaciones funcionales con resolución a nivel de isoformas integrando

información diseminada por múltiples bases de datos y métodos de

predicción. Finalmente, la indisponibilidad de métodos para estudiar

el impacto funcional de la regulación de isoformas, nos ha motivado

a desarrollar tappAS, una herramienta dinámica, flexible y diseñada

para facilitar el abordaje de este tipo de estudios.

Por lo tanto, durante esta tesis hemos desarrollado una infraestruc-

tura que resuelve los retos principales del análisis funcional de iso-

formas, proporcionando un conjunto de nuevos métodos y herramien-

tas que ofrecen una oportunidad única para explorar cómo el fenotipo

se especifica post-transcripcionalmente, mediante la alteración de

las propiedades funcionales de las isoformas expresadas. La apli-

cación de nuestro análisis a un doble sistema de diferenciación neu-

ronal en ratón definió el efecto de la regulación de isoformas entre

la diferenciación de motoneuronas y oligodendrocitos para múltiples

elementos funcionales. Entre ellos, hemos descubierto regiones

transmembrana que son diferencialmente incluidas en las isoformas

expresadas entre ambos tipos celulares y cuya regulación podrı́a

estar contribuyendo al control de las dinámica mitocondrial.



Resum

Un dels aspectes més emocionants de la biologia del transcriptoma

és l’adaptabilitat contextual de transcriptomes i proteomes eucari-

otes mitjançant la regulació post-transcripcional (PTR). Els mecan-

ismes PTR, com el splicing alternatiu (AS) i la poliadenilació alter-

nativa (APA), s’han convertit en processos molt regulats que juguen

un paper clau en la generació de la complexitat del transcriptoma

i en la coordinació de la diferenciació cel·lular o del desenvolupa-

ment de teixits. No obstant això, el nostre coneixement de com

aquests mecanismes imprimeixen caracterı́stiques funcionals difer-

ents al conjunt resultant d’isoformes per definir el fenotip observat

és encara escàs. El nombre de variants de PTR i les seues con-

seqüències potencialment funcionals fa que la validació funcional

sigui una tasca poc pràctica si es fa cas per cas. A més, la manca

d’enfocaments funcionals orientats a isoformes ha fet que gran part

del treballs computacionals per esbrinar qüestions funcionals a niv-

ell de transcriptoma siguen estratègies computacionals ad hoc apli-

cades a sistemes biològics especı́fics o bé basats en un simple

anàlisi d’enriquiment GO, que no aporten informació sobre l’impacte

de la PTR sobre les propietats de les isoformes.

Aixı́, malgrat les més de 60.000 publicacions existents sobre AS,

poques de les isoformes existents s’han associat a propietats es-

pecı́fiques, mentre que el nombre de noves variants AS/APA amb

funcions desconegudes i fins i tot inexplorades augmenta de manera

exponencial gràcies a la seqüenciació de nova generació (NGS). A

causa de les limitacions tècniques del NGS per reconstruir l’estructura

dels transcrits, la seqüenciació d’alt rendiment de transcrits de lon-

gitud completa mitjançant tecnologies de tercera generació (TGS)

obre una nova era en la transcriptòmica, ja que millora la definició



dels models genètics i, per primera vegada, permet associar amb

precisió esdeveniments funcionals dins de la molècula d’ARN.

Aquesta tesi aborda tres grans reptes per a progressar en l’estudi de

la funció de les isoformes. En primer lloc, amb l’aparició i la popular-

itat creixent del TGS, la definició precisa i la caracterització completa

dels transcriptomes de novo són essencials per garantir la quali-

tat de qualsevol conclusió sobre la diversitat del transcriptoma. La

manca d’anàlisis de qualitat orientats a lectures llargues va motivar

el desenvolupament de SQANTI (https://bitbucket.org/ ConesaLab /

sqanti), una estratègia computacional automatitzada per a la carac-

terització estructural i l’avaluació de la qualitat dels transcriptomes

de longitud completa. En segon lloc, els recursos funcionals exis-

tents centrats en el gen suposen una gran limitació per a l’estudi

extensiu de la variabilitat funcional de les isoformes, especialment

en les noves isoformes, que no es poden caracteritzar per bases de

dades estàtiques. Per tant, vam dissenyar IsoAnnot, que construeix

dinàmicament una base de dades amb anotacions funcionals a niv-

ell d’isoforma, que utilitza com a informació d’entrada les seqüències

dels transcrits i integra informació de diverses bases de dades i

mètodes de predicció. Finalment, com no hi havia cap mètode per

interrogar l’impacte funcional del PTR, vam desenvolupar nous enfo-

caments i eines fàcils d’utilitzar, com ara tappAS (http://tappas.org/),

dissenyada per facilitar als investigadors els estudis funcionals de

transcriptoma complet i de regulació d’isoformes en contexts es-

pecı́fics.

Per tant, aquesta tesi descriu el desenvolupament d’un marc d’anàlisi

que aborda els reptes fonamentals de l’anàlisi funcional d’isoformes,

proporcionant un conjunt de nous mètodes i eines que ofereixen una

oportunitat única per explorar com l’alteració de les caracterı́stiques

funcionals de les isoformes expressades defineix el fenotip. Apli-

cada a un sistema de diferenciació neuronal murina, la nostra es-

tratègia va descriure l’efecte de la regulació de les isoformes en la in-

clusió de diversos elements funcionals en els transcrits al comparar

els sistemes de diferenciació a motor-neurona i oligodendròcits i,



concretament, vam descobrir regions transmembrana especı́fiques

d’isoformes, la modulació de les quals per PTR podria contribuir a

controlar la dinàmica mitocondrial especı́fica del tipus cel·lular du-

rant la determinació del destı́ neuronal.
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1.1 Alternative Splicing

”DNA makes RNA makes protein.” For many years the central dogma of molec-

ular biology explained the flow of genetic information in this two-step process.

However, we now know that, after transcription, ribonucleaic acids (RNAs) un-

dergo a series of intertwining processes that allow the generation of multiple

messenger RNA (mRNA) types from only one pre-mRNA molecule. Thereby,

post-transcriptional regulation (PTR), which includes the control of splicing and

polyadenylation (polyA), provides cells with a mechanism to dramatically diver-

sity and fine-tune transcriptomes and proteomes [288].

The most well-studied PTR mechanism is the alternative splicing (AS). mRNA

splicing is a highly conserved biological process in which introns from nascent

RNA molecules are removed and exons are ligated to form mature mRNAs [242]

[297]. The basic patterns of AS include exon skipping, the use of alternative

5’ and 3’ splice sites, mutually exclusive exons, intron retention, and alterna-

tive splicing coupled with alternative first or last exons (Figure 1.1.A). Besides

these basic patterns involving the alternative use of single splicing events, eu-

karyotic transcriptomes can also combine several alternative events, resulting in

mRNA variants with complex splicing patterns [332] [289] (Figure 1.1.B). This

combinatorial control of AS provides a powerful mechanism for expanding the

regulatory and functional complexity of eukaryotic organisms from a reduced

number of genes. Genome-wide studies estimate that 90%-95% of multi-exon

human genes undergo some level of AS, most of them resulting in mRNA vari-

ants with tissue specific expression patterns [348] [237]. However, although AS

has been most frequently observed in vertebrates, it is also present in inverte-

brates (30% in Drosophila melanogaster [116][335]), plants (40%-60% in Ara-

bidopsis thaliana [170][204]) and fungi (50% in Verticillium dahliae [154]), and

so represents a widely used mechanism for the generation of molecular diversity

in eukaryotes.
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Alternative splicing regulation

Alternative splicing is regulated in a cell-type and developmental-stage specific

manner [374][348][94]. This regulation is dictated by a finely regulated pro-

gram of protein-RNA interactions that involves cis elements within pre-mRNA se-

quences and trans-acting factors that bind to these cis-elements [242][348] (Fig-

ure 1.1.C). Cis elements include the 5’ and 3’ splice sites (GU-AG dinucleotides)

that define the boundary of an intron with its upstream and downstream exon,

respectively, as well as the branch site (A) and polypyrimidine tract (Y(n)), both

Figure 1.1: Alternative splicing. Figure adapted from Park et al. [242]. A. Basic
and B. complex patterns of alternative splicing. Dark-blue boxes represent constitutively-
spliced exons. Red, light-blue, and green boxes represent alternatively spliced exons.
C. Alternative splicing is regulated by an extensive program of protein-RNA interactions
involving cis elements within pre-mRNAs and trans-acting factors that bind to these cis
elements.



1.1 Alternative Splicing 5

located upstream of the 3’ splice site [242]. These elements are all recognised

by the spliceosome (the core splicing mechinery), which plays an essential role

in defining exon and intron events [348]. Additionally, auxiliary cis elements in

exons or flanking introns can act as splicing enhancer elements (ESEs) or splic-

ing silencer elements (ESSs) to promote or repress exon splicing through their

interaction with trans-acting splicing regulators. These include RNA-binding pro-

teins (RBPs), whose combinatorial repertoire within pre-mRNAs determines the

splicing-site choice [242][108] and whose coordinated and close regulation is

essential to generate context-specific splicing programs such as those seen for

the MBNL gene in differentiated cells [132], RBFOX in brain development [115]

or NOVA in neurons [86].

Alternative polyadenylation

3’ end processing is an essential step of eukaryotic mRNA maturation, which

typically involves the cleavage of the 3’ end of pre-mRNAs and addition of a

poly(A) tail. A large proportion of eukaryotic genes can recognise multiple alter-

native polyA sites (PAS) within pre-mRNAs, a phenomenon known as alternative

polyadenylation (APA) [317]. Together with AS, APA is one of the main sources

of transcriptome and proteome diversity in several species. [317][385][386].

In mammalian systems, two different motifs are known to provide the signals

that define PASs: (1) the AAUAAA sequence located 20-30 nucleotides (nt)

upstream the cleavage site where the poly(A) is added, and (2) a GU-rich re-

gion downstream of the previous signal [21] [260]. In all cases, recognition of

these sequences by specific proteins leads to mRNA cleavage and subsequent

polyadenylation. However, the regulatory mechanisms governing global and

gene-specific APA are only starting to be deciphered.

Depending on the location of the PAS, APA can be classified into two major

categories. First, coding region-APAs (CR-APAs) are located within internal ex-

ons or introns and involve the alteration of the coding region. Thus, CR-APA gen-

erates proteins with different C terminals (Figure 5.24.B). Second, untranslated

regions (UTR) APAs (UTR-APAs) are located in the 3’ UTR and generate tran-

scripts with APA but identical coding regions (Figure 5.24.A) [52][76]. APA has
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recently emerged as a widespread mechanism to modulate RNA transcription

and fate by the generation of transcripts with alternative 3’ UTRs and protein-

coding potential. Context-specific global profiling studies have also illustrated

how APA landscape is tissue-specific [228] and its regulation plays key roles in

numerous physiological processes such as neurogenesis or cell differentiation

[153][103].
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Figure 1.2: Types of alternative polyadenylation. Figure adapted from Hardy et
al. 2016 [135] A. Untranslated region alternative polyadenylation (UTR-APA) involves
the presence of more than one cleavage site within the 3’ UTR whose alternative use
changes the 3’ UTR length. B. In coding-region alternative polyadenylation (CR-APA),
the use of polyA sites upstream to the 3’ UTR are used, which alters the resulting coding
sequence.
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1.2 High-throughput technologies to characterise tran-
scriptome complexity

The genome-wide analysis of transcriptomes has been performed using exon

microarrays first and more recently RNA-seq. The development of exon microar-

rays in the early 2000s allowed researchers to overcome the low-throughput

constraints of previous approaches such as the reverse transcription polymerase

chain reaction [251] (RT-PCR) and the sequencing of expressed sequence tags

[212](ESTs) and address the quantification and characterisation of global splic-

ing regulatory programs across many tissue types, organisms and physiological

stages [184]. However, since microarrays are based on sequence hybridisation,

they generate high levels of noise in expression estimates and cannot be used

to discover novel splicing events.

In the late 2000s sequencing experienced a revolution because of the emer-

gence of Next Generation Sequencing (NGS) platforms. Applied to the sequenc-

ing of RNA [220], high-throughput sequencing rapidly demonstrated its ability

to study transcriptome complexity and accurately quantifying splicing events

[348][237] and soon became the standard approach for transcriptome profil-

ing. NGS platforms have evolved and some of them, such as Roche/454 and

ABI/SOLiD, became quickly obsolete because of continuous improvements in

the technology. The most widely used NGS sequencing platforms are currently

those supported by Illumina, which are characterised by their high-throughput

and accuracy as well as the short length of sequenced reads (50-200 nt). To-

day, the new era of Illumina platforms (e.g. the NovaSeq6000 system) can reach

up to 10 billion sequenced single-reads per flow cell in a single run.

In transcriptomics, the standard procedure for transcript identification from

short-reads is either to map them to the reference genome followed by compu-

tational determination of the set expressed transcripts or, to infer them by de

novo assembly when no reference genome is available. However, even though

dozens of isoform reconstruction algorithms for short-read data have been pub-

lished (e.g., Cufflinks [323] for genome-guided reconstruction or Trinity[125] for

de novo assembly), accurate transcript inference remains far from accurate [305]
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[319]. This is mainly because short-reads do not usually span multiple splice

junctions. This breaks the continuity of the transcript sequence and hinders the

resolution of assembly ambiguities (Figure 1.3). Particularly complicated is the

analysis of complex transcriptomes where multiple, highly similar isoforms are

expressed from the same gene. Thus, despite being extremely valuable to iden-

tify and quantify individual splicing events, short-reads have serious limitations

in the full-length (FL) reconstruction of expressed transcripts.

Gene 

mRNA 

Isoforms 

Short-read 
technologies 

Long-read 
technologies 

 

Isufficient Connectivity  
Splice Isoform Uncertainty 

Full-length cDNA Sequence Reads 
Splice Isoform Certainty -  No Assembly Required 

Reads 
spanning 

splice 
junctions 

Figure 1.3: Differences between short-read and long-read sequencing approaches in
the characterisation of transcriptome complexity.

To overcome these short-read limitations in the identification of FL splicing

variants, Tilgner et al. developed a novel ”synthetic long-read” RNA-seq ap-

proach based on short-read sequencing [320], which became llumina’s TruSeq

synthetic long-read technology. This protocol divides the sample into small pools

containing a limited number of molecules (less than 1,000) which reduces the

probability of any one pool containing variants from the same gene. Hence, de

novo assembly of the short-reads generated from single pools greatly reduces

the issues of ambiguity arising from the use of short-reads. However, the as-

sumption that each pool contains only one RNA molecule per gene in each pool
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cannot be guaranteed, especially for genes with very high expression levels and

so, mis-assembly and repetitive-region problems associated with de novo as-

sembly algorithms remain [44].

Third Generation Sequencing (TGS) has recently emerged as a technology

capable of solving most of the issues of short-read data to define transcriptome

complexity. When applied to transcriptome sequencing, TGS provides both the

FL combination of splicing events of each expressed molecule without requiring

assembly steps, and detects variability at the 3’ ends [387][51], thus facilitat-

ing a comprenhensive analysis of the alternative PTR mechanisms that gen-

erate transcriptome complexity. The most notable TGS platforms are PacBio,

which was unveiled in 2010 by Pacific Biosciences [273] and the portable Min-

ION sequencer, presented by Oxford Nanopore Technologies (ONT) in 2014

[234]. PacBio generates reads averaging around 10 kb at the expense of a

higher error rate (15%) than short-reads. Nanopore technology produces even

longer reads (up to a few hundreds of thousand base pairs long), but with even

a lower read accuracy than PacBio.

PacBio RNA-seq (Iso-Seq) has been already used to resolve transcriptome

complexity across multiple organisms including human [319], insects [112], ani-

mals [178] and plants [84][1][347][53]). However, the MinION nanopore system

has been applied just in a few number of transcriptomic studies [113] [39] and,

often, has been used to only characterise a bunch of genes of interest [136] [29].

To date, more than 100 publications have reported using PacBio Iso-Seq, mak-

ing it the most proven and widely used technology to resolve isoform diversity at

complex loci and across multiple organisms.

1.2.0.1 PacBio Iso-Seq sequencing

PacBio sequencing is also known as single-molecule real-time (SMRT) sequenc-

ing because of its ability to read individual cDNA molecules while replication is

taking place. RNA sequencing (Iso-Seq) using PacBio SMRT relies on the FL

cDNA sample enrichment by using the the Clontech SMARTer PCR cDNA syn-

thesis kit, which generates around 60% of FL cDNA molecules. The bias of RSII
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systems towards preferentially loading smaller fragments requires sample size-

fractionation by BluePippinTM or SageELFTM systems (Figure 1.4.A). However,

the new Sequel system has a lower loading bias, which eliminates the size-

fractionation of transcripts smaller than <4kb and simplifies the Iso-Seq sample

preparation workflow.

Next, complementary DNA (cDNA) is converted into a SMRTbell library by

ligation with SMRTbell hairpin adapters (Figure 1.4.C), resulting in single-stranded

circular molecules that are subsequently attached to zero-mode waveguides

(ZMWs) and sequenced (Figure 1.4.B). Depending on the length of the molecule,

the polymerase may pass the sequence several times, generating reads that

are frequently longer than the FL cDNA sequence. The sequence generated

by each individual molecule pass is termed as subread while the consensus of

these passes is called a circular consensus sequence (CCS) read and is com-

puted bioinformatically (Figure 1.4.C). The FL status of a CCS requires both the

presence of both 5’ and 3’ SMARTer primers (ligated during retrotranscription

(RT)) and the polyA tail, which indicate the full-length cDNA sequencing and

the 3’ end mRNA completeness, respectively. Based on these signals, CCS

sequences can be catalogued into FL CCSs if the primers and the polyA tail

are present and into non-FL (nFL) CCSs when any of these elements is miss-

ing (nFL). Despite that, FL reads do not necessarily indicate the FL status of

the transcript molecule since thse signals do not guarantee 5’-end complete-

ness. Factors such as 5’-end degradation before RT or incomplete 5’-end RT

during library preparation result in the FL classification of reads originated from

incomplete 5’-end cDNAs.

The main limitation of PacBio sequencing is its high read-error rate. CCS

computation increases the quality of reads by taking advantage of the multi-

ple posible passes of the polymerase over the cDNA molecule. The shorter

the insert between the SMRTbellTM adapters, the higher number of full passes

through the molecule will be competed, and thus, the more accurate and con-

fident the read will be. Therefore, improvements in PacBio chemistry focus

on increasing sequencing lengths (now >10 kb in the Sequel System) to pro-
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duce CCSs with sufficient passes to eventually allow the direct determination of

isoform-resolved transcriptomes from single CCS reads without requiring extra

correction steps [64].

C	

B	A	
Total RNA 

poly A+ RNA 

Full Lengh 1st 
Strand cDNA 

Amplified cDNA 

Combined SMRTbell Library 

Optional Poly-A Selection 

Reverse Transcription 

Large-scale Amplification 

Size Selection 
(BluePippinTM, 

SageELFTM, or gel) 

SMRTbellTM Template Preparation 

SMRT Sequencing 

1-2	
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2-3	
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5-10	
kb	

3-6	
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Polymerase Read 
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Zero-Mode Waveguides Phospholinked Nucleotides 

Figure 1.4: PacBio Iso-Seq sequencing. A. Iso-Seq sample preparation workflow. B.
Single-molecule real-time (SMRT) templates are attached to the zero-mode waveguides
(ZMWs). When a nucleotide is incorporated by the DNA polymerase, the fluorescent tag
is cleaved off and monitored by the PacBio system in real time. SMRT cells contain up
to a million ZMWs. C. Definition of the circular template molecule, the polymerase read
and its set of subreads, and the bioinformatically generated circular consensus sequence
(CCS). The DNA template is labeleld in yellow and purple and the adapters in green.

Current CCS sequences are still insufficient for the study of transcriptome

complexity. This has boost the development of error-correction algorithms for

long-reads, most of them taking advantage of highly accurate short-reads, such

as LSC [12], proovread [130] and LoRDEC [286]. Moreover, three main pipelines

have been recently developed to deliver comprehensive and non-redundant sets

of high-quality FL isoforms by Iso-Seq data. These are described in the following

sections:



12 1. INTRODUCTION

IDP pipeline

The isoform detection and prediction pipeline (IDP) [13] was the first to appear

(in 2013). It is known as a “hybrid” approach because it relies on Illumina short-

reads to correct long-reads using the large-scale consensus (LSC) algorithm

[12] to align short-reads to long-reads, replacing any bases that do not match.

Complementary, short-reads are used to detect splice junctions by mapping

them to a reference genome with the SpliceMap tool [11]. Finally, IDP module is

run both to detect and predict isoforms.

Isoform are detected when an error-corrected long-read spans a reference

transcript from the 5’ end to 3’ end and so, the detection step requires a refer-

ence transcriptome. Conversely, isoforms are predicted when the combination

of spliced junctions is inferred by statistical modelling (using both short-read

junction and long-read genome alignment information), which allows the char-

acterisation of long transcript variants that are very difficult for PacBio to fully

sequence.

Iso-SeqTM Analysis

Iso-SeqTM RNA isoform sequencing analysis, also known as ToFU (for ‘Tran-

script isOforms: Full-length and Unassembled’), was presented by PacBio in

collaboration with other institutions of USA in 2015 [123]. The pipeline com-

prises two main steps. First, in the iterative clustering for error correction (ICE)

step, FL reads are divided into different clusters by similarity: reads clustered to-

gether are highly likely to belong to the same transcript variant and so they are

merged to correct randomly-distributed sequencing errors. Thus, ICE provides

high-quality, low error-rate consensus sequences and dramatically reduces the

number of redundant isoforms. Although ICE filters out non-FL reads because

they would otherwise cause the definition of incomplete isoforms, they are used

during ’Quiver polishing’ step to increase the coverage of detected isoforms

and further improve their quality. Iso-SeqTM is the only PacBio transcriptome-

definition approach able to correct sequencing errors and generate a set of

high-quality isoforms without using a reference genome.



1.2 High-throughput technologies to characterise transcriptome complexity 13

Even though Iso-SeqTM analysis can remove a high proportion of the redun-

dancy found in the data, some sequences may still be redundant isoforms. The

collapsing strategy implemented by PacBio (Cupcake) when reference-genome

is available groups together sequences with both an identical combination of

splice junctions (detected after sequence genome alignment) and 3’ and 5’

ends. However, while short sequence variations (>100 bp) at the 3’ end are

considered biological variability and maintained as different isoforms, Cupcake

minimise the definition of 5’-degraded sequences by evaluating more conserva-

tively differences at 5’ end (merging sequences with missing 5’ exons and or

less than 5000 bp difference if same 5’ end exon). For each group of redundant

sequences, the longest one becomes the representative isoform.

TAPIS

TAPIS (‘transcriptome analysis pipeline using isoform sequencing’) was devel-

oped in 2016 as a method for the identification of FL transcript isoforms and APA

events without using short-read sequencing [1]. TAPIS uses an iterative pro-

cess that alternates CCS mapping by GMAP [370] and error correction based

on comparison with the reference genome. During iterations, only sites that are

mapped with a high level of confidence are corrected. Because mismatches de-

tected close to the splicing sites are left uncorrected during the iterative process,

alignments with gaps are eventually evaluated and filtered using SpliceGrapher

[279] in order to minimise the number of false-positive splice junctions. Finally,

similar to Cupcake, TAPIS eliminates read redundancy by collapsing reads ac-

cording to the splice junction combination and PAS detected. Reads with iden-

tical intron patterns and 3’ ends (using 15 nt as a cutoff to define the PAS) are

grouped together. The largest CCS is defined as the representative transcript of

the redundant group.

An overview of the wide range of existing long-read applications and the set

of available bioinformatics tools and opportunities for research is reviewed in

Sedlazeck et al. [292] the we refer to this resource for further reading.



14 1. INTRODUCTION

1.3 Approaches for isoform quantification and differen-
tial isoform usage

Although RNA-seq accurately provides a relatively acurrate estimates of gene

expression, the deconvolution of the expression of a gene into the expression

of its isoform variants using short-reads is challenging because a high rate of

similarity prevents the uniquely association of short-reads with individual iso-

forms. Several approaches using RNA-seq data have been proposed, includ-

ing alignment-dependent tools such as RSEM [188], eXpress [275] or Cufflinks

[323] as well as alignment-free methods as Sailfish [245], Kallisto [32] and

Salmon [246]. Their comprehensive evaluation showed that RSEM and alignment-

free methods performed the best, both in terms of accuracy and computational

resources [387]. RSEM implements iterations of Expectation-Maximization (EM)

algorithms to assign genome-mapped reads to their originating isoforms. In con-

trast, Salmon, Sailfish and Kallisto rely on the so-called pseudo-alignment con-

cept, based on the idea that precise alignments are not required to assign reads

to founder isoforms. Pseudo-alignment does compromise the accuracy of ex-

pression estimates and considerably reduces computational time and memory

requirements.

Additionally, the detection of changes in the use of transcript variants be-

tween experimental conditions is key to define context-specific splicing pro-

grams. There are generally two main types of strategy for testing differences

in the relative abundances of gene isoforms between conditions, depending on

whether they require the estimation of isoform expression or not. The assembly-

based (or isoform deconvolution) strategies integrate isoform expression and

gene models to capture genes with differential isoform usage (DIU). Methods

such as CuffDIFF2 [323] or UITA [230] use information on isoform structure to

estimate the isoform expression levels that best explain the observed reads and

subsequently test genes for DIU between two experimental groups. However,

this strategy is usually hampered by the intrinsic limitations of short-read se-

quencing to correctly identify the structure and event combination of expressed
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isoforms and accurately quantify their absolute expression [64], a factor that re-

mains a challenge in complex models despite the large number of existing tools

[387].

In contrast to the assembly-based approaches, exon-based methods quan-

tify single splicing events such as exons or junctions and them individually com-

pare their relative abundances across conditions. These approaches skip iso-

form quantification and take advantage of the greater accuracy of short reads in

the quantification of individual events, which can simply be addressed by count-

ing how many reads map to each feature, as performed by tools such as HTSeq-

count [262]. The abundance of specific splicing events is generally described as

the percentage splice-in (PSI), which denotes the percentage of isoforms that

include the splicing event (exon or junction) compared to the gene’s total isoform

population. Differential splicing (DS) is then estimated as the difference of these

relative inclusion levels between two given conditions (∆PSI) [348] [335]. How-

ever, this approach neither accounts for biological variability between replicates

nor estimates the uncertainty of the difference. To try to tackle this limitation,

the SUPPA2 method [325] monitors the uncertainly level of each observed ∆PSI

value to infer the biological relevance of splicing changes. Similarly, several

methods including DEXSeq [6] and DSGSeq [353] adopt a similar idea to de-

tect differentially spliced genes based on single events but fit regression models

directly onto read counts instead of using ∆PSI to determine the significance

of DS. Several alternatives such as the diffSplice function from the limma R

package [274] and rDiff [87] are also available. Even though these exon-based

approaches accurately quantify single splicing events, they are only appropriate

for studying the inclusion and exclusion of specific exons but cannot resolve the

actual behaviour of transcript molecules or be used to investigate the cis-acting

regulation of events within transcripts.
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1.4 Functional impact of isoform regulation

Studies of isoform regulation have progressed from the evaluation of single splic-

ing or APA events to genome-wide analysis describing global post-transcriptional

patterns and their context-specific regulation. Published data indicate that post-

transcriptional patterns in metazoan organisms constantly change in response

to environmental stresses [255] and that the regulation of specific AS or APA pro-

grams are essential for lineage determination, cell differentiation and tissue or

organ development [18]. Moreover, the functional relevance of these PTR mech-

anisms is further supported by the large number of human diseases that have

been associated with splicing abnormalities such as mutations or dysregulation

of cis-acting sequence elements, trans-acting factors or spliceosome compo-

nents and include neurodegenerative disorders, the autism spectrum disorder,

neuromuscular abnormalities, diabetes and cancer [18][291][58][70]. Further-

more, experimental validation of hundreds of isoforms has revealed the wide

range of effects arising from the expression of alternative isoforms [165][304].

AS or APA events can modulate transcript expression levels by subjecting mR-

NAs to nonsense-mediated decay (NMD), impacting the function of gene prod-

ucts by modifying the amino acid (aa) sequence (Figure 1.5.A), or, shorten-

ing/lengthening 5’ and 3’ UTRs, which are essential for the regulating the mRNA

fate (Figure 1.5.B).

1.4.0.1 Functional impact on protein properties

Hundreds of experimental validations of isoform variants have shown that the

magnitude of AS regulation ranges from subtle functional effects to completely

losses of function, as seen in apoptosis genes [333]. Protein isoforms may

even acquire novel functions different from the canonical isoform of same gene

[165][304]. The functional impact of protein isoforms can alter enzymatic activity

by deletion of the active site or loss of the substrate binding region, both pre-

venting product formation (Figure 1.5.A.1). Different transcription factors (TF)

components can also undergo AS, producing well-studied effects in TF activity
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such as DNA-binding modulation (Figure 1.5.A) or transactivation domain struc-

ture alterations, influencing the activation of transcription polymerase II (Figure

1.5.A.2).

proximal 
cleavage site 

A.       PTR protein-level functional impact 
    

(4) Changes in intracellular localization 

(3) Loss of PP binding motif 

(1) Loss of active site 

Enzyme 

Substrate 

Protein 1 Protein 2 
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(2) Change in TFs 

B.      PTR transcript-level functional impact 

mRNA stability 

mRNA translation 

Protein 
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export distal cleavage 

site usage 
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Figure 1.5: Functional impact of isoform modifications. Figure modified from Kele-
men et al. [165]. A. Functional divergence of protein isoforms. AS and APA events
impact proteins and lead to (1) the loss of active sites, thus altering enzymatic activity,
(2) changes in transcription factors affecting the DNA binding domain, the transactivation
domain or transcriptional cofactor binding, (3) the regulation of protein-protein interac-
tions and (4) changes in the intracellular localisation of proteins. B. Functional effect of
transcript isoforms. UTR regulation of transcripts involves the gain and loss of cis ele-
ments which alters mRNA stability, localisation or tranlation rates by interacting with trans
elements such as RBPs, miRNAs or long non-coding RNAs.

Moreover, aside from modulating of protein properties and activation levels,

intracellular protein localization is also subjected to regulation by APA and AS,

what can lead to the acquisition of new functions or new protein interactions.

Alteration of nuclear localisation signals (NLSs), post-translational modification

(PTMs) or protein interaction sites can lead to the re-distribution of protein iso-
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forms among different cellular compartments (Figure 1.5.A.4). Skipping of trans-

membrane regions can also result in the loss of protein attachment to cell mem-

branes and the generation of soluble forms which may acquire novel functions

and interaction partners (Figure 1.5.A.4).

Finally, alternative exons can encode complete or partial interaction domains,

modulating interactions with other proteins. In most cases the binding affinity is

modulated but not completely abolished. Similarly, binding of low molecular-

weight ligands or hormones can be influenced by splicing events. A classical

example of this is the insulin receptor, in which an exon skipping generates a

receptor with a higher affinity to IGF-II [22] (Figure 1.5.A.3).

Even though changes caused by individual splicing isoforms interfere with

almost every biological function [165][304] (Figure 1.5.A), the contribution of AS

to proteome diversity and complexity remains controversial. Tress et al. claim

that, although extensive AS is found in higher eukaryotes, currently available

proteomics data provides little evidence that most transcript variants are actu-

ally translated into functional proteins and suggest that most detected variants

are not functional [324]. In contrast, based on evidence from several studies for

active translation of variants and their presence in polysome fractions [105][306]

or bound to ribosomes [358], others claim that gene isoforms significantly con-

tribute to both proteome composition and diversity [27]. Indeed, recent large-

scale proteomic studies suggest that the proteome actually explains a significant

proportion of RNA-level diversity [196].

1.4.0.2 Functional impact on UTR properties

Not all transcript variants necessarily result in the production of new protein

isoforms. Alternative transcription initiation (ATI), AS and especially APA con-

tribute to transcriptome complexity by generating isoforms with different UTRs

which can potentially affecting mRNA metabolism or protein localisation [93]

[316] (Figure 1.5.B).

Modulating the availability of post-transcriptional control elements within mRNA

UTRs, such as microRNAs or RBP recognition sites, by the shortening or length-

ening of UTRs can produce changes in mRNA half-life, translation efficiency,
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mRNA export, isoform localisation and AS regulation. Moreover, the alternative

processing of UTRs can even lead to the alteration of the RNA secondary struc-

ture, which is essential for controlling the initiation of translation [131]. While

3’ UTRs are preferentially regulated by APA events, 5’ UTRs are modulated by

AS and ATI. The most well-known effect is the inclusion of uORFs, repressive

elements found within the 5’ UTR of invertebrate mRNAs that mediate the trans-

lational repression of the main coding sequence (CDS) [55]. The role of UTR

regulation has been highlighted in neurons. While 5’ UTR length modulation

influences global translation, transcripts with alternative, extended 3’ UTRs ac-

cumulate regulatory sequences that are crucial to drive cell-type specific trans-

lation [25].

1.4.0.3 Nonsense-mediated decay

Changes caused by individual splicing isoforms can also regulate gene expres-

sion by triggering mRNAs to the nonsense-mediated mRNA decay (NMD) path-

way [248]. NMD was originally discovered as a cellular surveillance pathway

that safeguards the quality of mRNA transcripts in eukaryotic cells. Thus, in

abnormal contexts NMD degrades mRNAs with premature termination codons

(PTCs), preventing the accumulation of such transcripts and the truncate pro-

teins they encode [201]. However, recent studies have shown that NMD has

a much broader role by regulating the stability of many intact transcripts in

order to post-transcriptionally modulate gene expression levels by altering the

mRNA splicing pattern. Thus, coupled to AS, NMD has recently emerged as an

expanded and conserved mechanism of gene expression regulation in natural

contexts and across multiple organisms [248][201].
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2.1 Motivation

A wealth of knowledge has been gathered about how AS and APA are regu-

lated and sufficient evidence exists on the importance of these changes for the

cellular physiology [18][52]. However, our understanding of how these mech-

anisms imprint distinct functional characteristics on the resulting set of tran-

script isoforms and lead to the observed phenotype is still very limited. Only a

few transcript variants have been associated with specific properties [304][165]

while the number of isoforms with unknown and even unexplored functions is

exponentially increasing due to the discovery of hundreds new variants by high-

throughput technologies [296][319][1][13]. Thus, even though more than 60,000

publications on AS, we still do not know the functional impact of most alterna-

tively spliced exons or APA sites. Currently, it is clearly impractical for any single

research group to individually test the differential function of all known isoforms.

Even restricting the study to a particular set of genes (for example TFs or ki-

nases), the remaining number of variants and the range of potentially functional

consequences would still make this an experimentally impractical task if done

on a case-by-case basis.

At computational level, some recent studies have carried out genome-wide

functional studies of isoform regulation. For example, Buljan et al. revealed that

the enrichment of spliced exons in disordered regions mediates new protein in-

teractions [37]. Yang et al. and Ellis et al. showed the impact of splicing variants

on the rewiring of protein-protein interaction networks in a tissue-specific man-

ner [377][94]. Moreover, APA has been highlighted as an spread mechanism to

escape microRNA regulation [206][142][26] and both 3’ and 5’ UTR regulation

has been associated with widespread translation changes in Embryonic Stem

Cells [369] and neuronal differentiation [25]. Nevertheless, much of the work

done to answer transcriptome-wide questions in the functional impact of AS and

APA have either involved ad hoc computational pipelines applied to specific or-

ganisms, biological systems and functional properties, or rely on simple GO-

enrichment analysis of the set of genes regulated by AS or APA. Comparatively,

a lot is already known about the functional consequences of differential gene
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expression patterns thanks to the widely extended use of accurate RNA se-

quencing technologies to measure gene expression levels and the availability of

user-friendly bioinformatics tools that support the functional profiling of deferen-

tially expressed genes for virtually any organism. However, no similar situation

exists for the genome-wide functional study of differential isoform usage.

Therefore, although the wealth of data suggest that alternative splicing has

important physiological functions and a rapid progress has been made in the

development of tools for characterising splicing events and profiling their dynam-

ics, strategies for interrogating alternative isoforms from a functional perspective

are still lacking. In consequence, assessing if differential isoform usage is im-

pacting specific functional features such as PTMs or NLSs, or detecting genes

modulating mRNA stability by differential availability of UTR AU-rich elements

are currently tasks difficult to address. Thus, the development of bioinformat-

ics approaches facing some of the main challenges associated with the isoform

analysis becomes essential to dynamically and routinely interrogate the context-

specific functional effect of isoform regulation.

In this thesis we develop a new bioinformatics paradigm for studying the po-

tential functional impact of isoform regulation based on three main pillars: the

accurate definition of de novo isoform-resolved transcriptomes by TGS tech-

nologies (Chapter 3), the dynamic annotation of transcript and protein isoforms

with rich functional information (Chapter 4) and the development of approaches

that, by integration of expression dynamics and functional annotation, provide

transcriptome-wide insights into the context-specific effect of AS and APA on

isoform properties (Chapter 5). In Chapter 6 we describe the application of our

analysis framework to a multiple time-course differentiation system that includes

neural precursor cells (NPCs), motor-neurons (MNs) and oligodendrocyte pro-

genitor cells (OPCs) in order to decipher the functional effect of isoform regula-

tion on neural cell fate determination.
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2.2 Aims

1) To accurately define and quantify transcriptomes generated by long-

read sequencing.

High-throughput sequencing of full-length transcripts using long-reads has

paved the way for the discovery of thousands of novel transcripts and the

study of transcript co-occurring events. Advances in sequencing technol-

ogy have created a need for studies and tools that can characterise the

isoform diversity generated by long-reads. In particular we address the

following aims:

• Comparatively assess alternative pipelines for the definition of tran-

scriptome complexity using PacBio Iso-Seq data.

• Develop a strategy to comprehensively characterise and describe the

composition and quality of FL transcriptomes.

• Create a bioiformatics pipeline for quality control of long-read data

and curation of full-length transcriptomes.

• Evaluate the ability of long-reads to accurately estimate isoform ex-

pression levels and predict protein-coding potential.

2) To implement a pipeline for the extensive functional annotation of

gene products at isoform-resolution

Even though a wide range of sources providing functional information at

gene-level are available, the systematic annotation of functional properties

at isoform resolution, especially in the case of novel isoforms, is one of

the major limitations to address the genome-wide functional profiling of

post-transcriptional regulation. Three sub-aims are considered:

• Rich characterization of transcript and protein isoforms using sequence-

based predictors annotating a wide range of functional and regulatory

properties.
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• Development of a strategy that overcomes disparities between databases

and project experimental functional features compiled from gene-centric

databases onto query isoforms.

• Adaptation of the approach to be potentially applied to any organism,

independently of the transcriptome novelty rate.

3) To develop an analysis framework to address the functional impact

of context-specific isoform regulation.

Despite several tools exist for characterizing AS and APA events and for

modelling isoform regulation, we still lack genome-wide strategies to inter-

rogate alternative isoforms from a functional perspective. We address this

challenge by focusing on the following aspects:

• Design an approach to measure the functional transcriptome com-

plexity resulting from APA, AS and ATI mechanisms by systematically

capturing the functional feature divergence between gene isoforms.

• Develop new approaches to study the context-specific effect of iso-

form regulation on gene properties by profiling the inclusion or exclu-

sion of functional features and UTR shortening and lengthening.

• Adaptation of methods to three different experimental designs: pair-

wise analysis, single-series time courses and multiple-series time

courses.

• Implementation of this analysis framework in a user-friendly software

to facilitate research on isoform function to the broad scientific com-

munity.

4) Understand the functional consequences of isoform usage regula-

tion on neural cell fate determination.

Extensive work in the past few decades has focused on understanding the

molecular mechanisms of neural cell fate decisions. However, the post-

transcriptional landscape underlying fate determination and its functional

impact remains poorly understood. In this thesis we use the developed
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computational approaches to study the process of neural differentiation

from Neural Progenitor Cells to Oligodendrocyes and Motor neurons as a

proof of principle of the power of functional isoform profiling to understand

basic cellular processes. This specific aims consists of the following steps:

• Definition of neural transcriptome complexity using PacBio Iso-Seq

sequencing and characterisation of functional isoform divergence.

• Characterise and profile the effect of post-transcriptional regulation

on the inclusion of functional elements between the glial and the neu-

ronal differentiation.

• Capture post-transcriptionally regulated events that could potentially

generate cell-type specific functional readouts for their subsequent

experimental validation.

2.3 Main contributions

During the course of this thesis I have delivered a number of contributions in

the form of manuscripts, posters and talks where high-throughput sequencing

technologies are used to study fundamental aspects of cell biology. Moreover,

I have contributed to teaching of NGS and transcriptomics methods through

participation as lecturer in courses and the direct supervison of Master students.

2.3.1 Journal papers

1. de la Fuente L, Conesa A, Lloret A, Badenes ML and Gabino R. Genome-

wide changes in histone H3 lysine 27 trimethylation associated with bud

dormancy release in peach.

Tree Genetics and Genomes, 11(3), 2015.

2. Ogando, J, Tardáguila M, Dı́az-Alderete A, Usategui A, Miranda-Ramos V,

Martı́nez-Herrera DJ, de la Fuente L, Garcı́a-León, MJ. and Moreno MC,

and Escudero S, Cañete JD, Toribio ML, Cases I, Pascual-Montano A,

Pablos JL, Mañes S. Notch-regulated miR-223 targets the aryl hydrocar-

bon receptor pathway and increases cytokine production in macrophages
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from rheumatoid arthritis patients.

Scientific Reports, 6:20223, 2016.

3. Tardáguila M*, de la Fuente L*, Marti C, Pereira C, Pardo-Palacios FJ, Del

Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K, Edelmann

M, Ezkurdia I, Vazquez J, Tress M, Mortazavi A, Martens L, Rodriguez-

Navarro S, Moreno-Manzano V, Conesa A.

*Joint first authorship.

SQANTI: extensive characterization of long-read transcript sequences for

quality control in full-length transcriptome identification and quantification.

Genome Research,28(7):1096, 2018.

4. Martı́n-Expósito M, Gas ME, Mohamad N, Nuño-Cabanes C, Pascual-

Garcı́a P, de la Fuente L, Merran J, Chaves-Arquero B, Corden J, Conesa

A, Pérez-Canadillas JM, Bravo J, Rodrı́guez-Navarro S.

Mip6 maintains low levels of Msn2/4 dependent mRNAs through its inter-

action with Mex67 (Submitted)

5. de la Fuente L*, Tardaguila M*, Del Risco H, Tarazona S, Salmeron P,

Moreno V and Conesa A.

*Joint first authorship.

tappAS: a comprehensive computational framework for the analysis of the

functional impact of differential splicing. (In preparation)

2.3.2 Conferences

• HiTSeq14, 22nd Annual International Conference on Intelligent Systems

for Molecular Biology (ISMB). Boston, USA. June, 2014. “Functional Alter-

native Splicing Analysis Using Long Read Technologies” (Oral Communi-

cation).

• SMODIA15, Statistical Methods for Omics Data Integration and Analysis

workshop. Valencia, Spain. September, 2015. “Functional Annotation of

Sequenced Transcripts at Isoform Resolution” (Poster).
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• NGS’16, Next Generation Sequencing Conference in Genome Annotation.

Barcelona, Spain. April, 2016. “Functional Analysis of Sequenced Tran-

scripts at Isoform Resolution” (Poster).

• JBI2016, XIII Symposium on Bioinformatics. Valencia, Spain. May, 2016.

“FAIR: Functional Analysis at Isoform Resolution” (Oral Communication).

• ECCB16, 15th European Conference on Computational Biology. The Hague,

Netherlands. September, 2016. “FAIR, Functional Analysis at Isoform

Resolution.” (Poster).

• PacBio User Group Meeting SMRT Informatics Developers Conference.

Barcelona, Spain. Septiembre, 2016. “Decoding the functional and regula-

tory impact of alternative splicing by using Iso-seq.” (Oral Communication).

• I Congreso Nacional Biomedicina Jtóvenes Investigadores en Valencia. Va-

lencia, Spain. Octubre, 2016. “Decoding the functional and regulatory

impact of alternative splicing by using long-read sequencing..” (Oral Com-

munication).

• RNA-SIG 2017, 25th Conference on Intelligent Systems for Molecular Biol-

ogy and the 16th European Conference on Computational Biology (ISMB17).

Prague, Czech Republic. July, 2017. “T2GO, deciphering the functional

and regulatory impact of differential splicing.” (Poster).

• HiTSeq17, 25th Conference on Intelligent Systems for Molecular Biology

and the 16th European Conference on Computational Biology (ISMB/ ECCB

17). Prague, Czech Republic. July, 2017. “SQANTI, extensive character-

ization of long read transcript sequences to remove artifacts in transcrip-

tome identification and quantification.” (Oral Communication).

• Florida Genetics Symposium. Florida, USA. October, 2017. “T2GO, deci-

phering the functional and regulatory impact of differential splicing.” (Poster

Communication).
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• Bioinformatics@Valencia Meeting. Valencia, Spain. July, 2018. “TappAS:

Tool for the functional analysis of alternative isoform usage.” (Poster).

• 2nd International Caparica Conference in Splicing. Lisbon, Portugal. July,

2018. “Regulation of 3’ untranslated regions along neural differentiation

systems.” (Oral Presentation).

• JBI2018, XIV Symposium on Bioinformatics. Granada, Spain. Novem-

ber, 2018. “Bioinformatics approach to decipher the functional conse-

quences of post- transcriptional regulation in neural differentiation sys-

tems.” (Poster).

• JBI2018, XIV Symposium on Bioinformatics. Granada, Spain. Novem-

ber, 2018. “tappAS: a comprenhensive computational framework for the

analysis of the funciotnal impact of differential splicing”(Poster).

2.3.3 Awards

• ISCB NGS’16 Conference on Genome Annotation, Barcelona.

F1000 Presentation Prize.

2016

• 14th edition of the ISMB RNA-SIG meeting, Prague, Czech Republic.

Poster winner prize.

2017

• Florida Genetics Symposium, University of Florida, USA.

Poster winner prize.

2017

• 2nd International Caparica Conference in Splicing, Portugal.

Winners of the Call for conference grants sponsored by the RNA

Society and the ProteoMass Scientific Society.

2018
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2.3.4 Software

• de la Fuente L, Tardaguila M, and Conesa A.

SQANTI, platform-independent tool.

https://bitbucket.org/ConesaLab/sqanti

• de la Fuente L, Tardaguila M, Del Risco H, Tarazona S, Salmeron P, Moreno

V and Conesa A

TappAS, platform-independent application.

http://tappas.org/

2.3.5 Master’s Thesis Supervisions

• Alberto Manuel Lerma Aguilera.

Consecuencias funcionales de la regulación del splicing alternativo medi-

ado por RBPs en sistema de diferenciación neuronal.

Master’s degree in Bioinformatics, University of Valencia

2018

• Francisco Jose Pardo Palacios

Transcriptome reconstruction with Iso-Seq: a comparison of approaches

using public data.

Master’s degree in Integrated Systems Biology, University of Luxembourg.

2017

2.3.6 Teaching

• Biotechnology BSc (Polytechnic University of Valencia, Valencia). From

2015 to 2018 (120 hours). Lectures on “Genomics and Bioinformatics”.

• Bioinformatics MSc (University of Valencia, Valencia). 2018. Lectures on

“In Silico studies in Biomedicine”.

I have also demonstrated the state of the art in omics analyses to the scien-

tific community by teaching as part of different courses organised at the Centro

de Investigación Prı́ncipe Felipe [Prı́ncipe Felipe Research Centre], in Valencia,

Spain.:
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• International Course of Massive Data Analysis (Centro de Investigación

Prı́ncipe Felipe, Valencia). 2014 , lecture on “ChIP-seq Analysis.

• The Genomics of Gene Expression RNA-seq course (Centro de Inves-

tigación Prı́ncipe Felipe, Valencia). 2014 and 2015 editions , lectures on

“Bedtools Visualisation”, “Transcript Assembly Quantification”, “Count Ex-

traction”, “Full RNA-seq Analysis”.

• Multi-omic Integrative Anaylysis of Gene Expression (Centro de Investi-

gación Prı́ncipe Felipe, Valencia). 2017 and 2018 editions , lectures on

“NGS pipelines”, “Proteomics”, “Matching omics”, “RNA-seq ChIP-seq

Omics Integration”, “Hands on Multiomics Integration”.
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Palacios FJ, Del Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K,

Edelmann M, Ezkurdia I, Vazquez J, Tress M, Mortazavi A, Martens L, Rodriguez-

Navarro S, Moreno-Manzano V, Conesa A. *Joint first authorship.

SQANTI: extensive characterization of long-read transcript sequences for qual-

ity control in full-length transcriptome identification and quantification. Genome

Research, 28(7):1096, 2018.
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3.1 Introduction

During last years, there has been increasing interest in the use of single-molecule

sequencing to characterise the transcriptome diversity generated by AS in ani-

mals and plants as this it allows direct sequencing of full-length splicing variants,

eliminating the need for short-read assembly and transcript reconstruction. Two

different long read transcriptome sequencing platforms are currently available:

PacBio [319][296], and Nanopore [234], being PacBio RNA-seq (Iso-Seq) the

technology with the highest number of publications so far.

Although PacBio Iso-Seq technology has proven useful for unravelling iso-

form diversity at complex loci, it suffers from a relatively high raw error rate

(∼15% [42]) and has a lower throughput compared to Illumina. Different meth-

ods for transcriptome definition using Iso-Seq have recently been developed,

each using different strategies and combining different sources of data to over-

come the limitations of single-molecule sequencing, while leveraging its capac-

ity to generate full-length transcripts (Further details into alternative methods in

Section 1.2.0.1).

During last years, several studies have reported thousands of new transcripts

accumulated in known genes by long-read technologies [296][320][13] [1] [347].

Sequencing the transcriptome of hESCs with long reads followed by IDP anal-

ysis identified over 2,000 novel transcripts (∼30%), and discovered new genes

that were proven to be functional [13]. Tilgner et al. used PacBio to sequence

the GM12878 cell line, and found about 12,000 novel transcripts fully supported

either by previous splice-site annotations or by Illumina reads, although they

did not study detected novel junctions in detail [319]. From nearly 1M sorghum

PacBio long-reads, 11,342 novel transcripts (∼40% of detected isoforms) were

found in combination with the application of a splice-junction quality filter (Splice-

Grapher [279]); of these, 6/6 random transcripts were confirmed by PCR. Finally,

a maize multi-tissue transcriptome analysis identified over 111,151 transcripts

from among 3.7M CCS, most of which were novel and tissue-specific [347].

Despite the authors found that between 10% and 20% of the PacBio junctions

didn’t show coverage by Illumina reads and around 1% were non-canonical,
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they did not report the number of affected transcripts or carried out any further

experimental validation. Despite most of these long-read transcriptome papers

propose classification strategies to call novel genes by comparing defined iso-

forms to reference annotations in a intron-based mode, they lack in the descrip-

tion and sub-classification of the type of novelties introduced by transcripts not

matching the splice pattern of annotated references. None one of these studies

performed any in-depth characterisation of these novel transcripts and junctions

that could have revealed any potential biases and would have justified their anal-

ysis strategies. Thus, implementing a comprehensive, quality aware analysis of

single molecule sequencing is fundamental at a time when long read methods

are becoming more popular and important conclusions on transcriptome diver-

sity can be drawn from these data.

In this chapter, we compare different strategies for transcritpome definition

using long-read technologies and define an analysis framework for generating

curated transcriptomes at isoforms resolution (Figure 3.1). Moreover, we de-

velop SQANTI (Structural and Quality Annotation of Novel Transcript Isoforms),

a pipeline that maximise the analytical outcome of long-read technologies by

providing the tools which can deliver quality-evaluated and curated full-length

transcriptomes. SQANTI was implemented as a open source software, and is

available at https://bitbucket.org/ConesaLab/sqanti. SQANTI has been applied

to multiple organisms and long-read sequencing platforms that will be presented

and briefly discussed during this chapter.
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Figure 3.1: Chapter 1 analysis workflow. An strategy of analysis and quality control of
PacBio Iso-Seq data was implemented to characterise and asses the results provided by
alternative PacBio definition pipelines. Based on several quality attributes, we designed
an approach to filter artefactual isoforms. Isoform validations by RT-PCR were performed
in order to evaluate filtering perfomance and compare it to alternative strategies described
in literature. We evaluated open reading frame prediction on PacBio curated transcrip-
tomes as well as the accuracy of PacBio data to quantify and capture low expressed
isoforms. Finally, we assessed the impact of using a reduced and specific transcriptome
on the performace of short-read based isoform quantification methods. The SQANTI tool
was implemented to automatically carry out the quality control and curation of long-read
based transcriptomes.
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3.2 Data

A murine neural differentiation system was used to assess long-read sequencing

transcriptomes and to develop pipelines for the quality-control and characterisa-

tion of transcripts. We chose this system due to the extensive splicing program

repeatly identified during brain development in mammals. In addition, we also

used public datasets from long-read technologies and from different organisms

to validate the use of the pipelines we developed in subsequent analyses.

3.2.1 Neural System in mouse

Experimental design

Neural precursor cells (NPCs) were isolated from the subventricular zone of

4-day old c57/BL6 mice and were cultured as neurospheres in media supple-

mented with EGF and bFG. Oligodendrocyte progenitor cells (OPCs) were gen-

erated in vitro from NPCs by adding all-trans retinoic acid (ATRA) to the culture

medium, as previously described by Keirstead et al. [164]. To account for biolog-

ical variability, these In vitro differentiation assays were performed in 2 biologi-

cal replicates at the Neuronal and Tissue Regeneration Lab headed by Victoria

Moreno.

Library preparation and sequencing

Total RNA was transcribed using the Clontech SMARTer cDNA synthesis kit

which, unlike commonly used cDNA synthesis methods, enriches the full-length

cDNAs contained in the final sample. Full-length cDNA from NPCs and OPCs,

two biological replicates each, was obtained and split to prepare Illumina and

PacBio sequencing libraries.

Iso-Seq libraries were sequenced on the PacBio RS II platform using the

P4-C2 chemistry. To prevent the preferential sequencing of shorter transcripts

caused by loading bias, we used a BluePippin device to produce three transcript-

size fractions (1–2 kb, 2–3 kb, 3–6 kb). A total of 8 SMRT cells per sample were

sequenced (1–2 kb: 3 SMRT cells, 2–3 kb: 3 SMRT cells, 3–6 kb: 2 SMRT cells)

following the Iso-Seq PacBio sequencing protocol.
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We also sequenced the same samples using the Illumina Nextseq instrument

in combination with Nextera tagging and 250 paired-end sequencing, which

yielded around 60M single-end reads per sample. PacBio sequencing was per-

formed at the ICBR sequencing facility at the University of Florida and Illumina

data was generated at the University of California Irvine.

3.2.2 Public datasets

3.2.2.1 Maize PacBio

Maize, specifically the B73 cultivar, is a well-studied crop of agricultural rele-

vance. Wang et al. performed deep-sequencing of in six different maize tissues:

root, pollen, embryo, endosperm, immature ear, and immature tassel [347].

PacBio sequencing was performed using RS II platform with P6-C4 chemistry

and 47 SMRT cells. Tissue-specific barcodes were added before pooling for

amplification and size-fractionation (<1, 1-2, 2-3, 3-5, 4-6 and >5 kb) was per-

formed using a SageELF device before sequencing. We selected ear tissue for

the purposes of this Chapter as Wang et al. reported a high level of ear-specific

splicing variants. SRP067440 and E-MTAB-3826 are the accession numbers for

Iso-Seq and Ilumina data, respectively.

3.2.2.2 MCF-7 Human PacBio

Pacific Bioscience has made different datasets available to the scientific commu-

nity (https://github.com/PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-

Transcriptome). Among them, the MCF-7 human breast cancer cell line has

one of the highest sequencing depths. We used the most recent release (from

2015) of this dataset consisting of 28 SMRT cells. MCF-7 was sequenced by us-

ing P5-C3 chemistry and sizing was performed by using the SageELF platform

(fractions: 1-2 kb, 2-3 kb, 3-5 kb, and 5-10 kb).

Illumina reads were not available from the same biological original material.

However, numerous Illumina datasets have been generated for this stable im-

mortal cell line and we used the short-read datasets (SRX426377) published
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by Schueler et al. [290]. Of note, Weirather et al. [359] used this combina-

tion of PacBio and Illumina MCF-7 datasets to develop a PacBio-based fusion

transcript discovery tool.

3.2.2.3 B-cell mouse nanopore

To evaluate the ability of Nanopore technology to identify and quantify isoforms

in complex gene models, Byrne et al. performed single-cell sequencing using

the MinION Nanopore sequencer [39]. Libraries from seven FACS-sorted B1a

cells were generated in a multiplexed manner following the ONT library prepara-

tion protocol. ONT reads were processed using the Metrichor cloud platform 2D

wokflow and subsequently aligned to the genome using BLAT software [166].

Reads from cell number 1 (SRA accession number SRR4048177) were down-

loaded and used to assess out pipeline on Nanopore data.
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3.3 Methods

3.3.1 Transcriptome definition using Iso-Seq PacBio long-reads

In this work we comprehensively evaluated and compared three alternative pipeli−

nes for the definion of Iso-Seq transcriptomes in order to pinpoint their strengths

and weaknesses. Before running these alternative tools, we performed sev-

eral raw PacBio data preprocessing steps using functions in the PacBio Iso-Seq

bioinformatics toolkik to trim primers, generate Consensus Circular Sequences

(CCS) and evaluate CCS full-lengthness.

Regarding CCS generation, we set a minimum predicted accuracy of 0.8

(Iso-Seq Analysis predicted accuracy of a read - ranging from 0 to 1) and a mini-

mum number of 0 full-passes as parameters. This latter setting meant that all the

ZMWs produce a CCS, even if the polymerase did not replicate the entire insert

located between the two SMRTbell adapters. However, in specific subsequent

evaluations, we increased the number of full-passes to 1, retaining consensus

sequences only for the molecules that were entirely sequenced. We used de-

fault parameters to classify CCSs into full-length (FL) and non-full length (nFL)

sets, remove chimeral sequences and trim the SMARTer primers. Moreover, we

also implemented proovread [130] to correct PacBio read errors by short-read

data. The error rate decrease was assessed by identifying the number of mist-

maches and indels contained in the proovread output sequences after reference

genome alignment by GMAP [370]. We used preprocessed Iso-Seq data as the

input for the three different isoform-definition pipelines considered in this work:

IDP [13], ToFU [123] and TAPIS [1].

The ToFU pipeline [123] was used to generate the set of consensus iso-

forms, specifiying the Quiver polishing option. high-quality (HQ) polished iso-

form sequences were aligned to the reference genome (mm10) and subse-

quently collapsed with the cDNA Cupcake collapse function (https://github.

com/Magdoll/cDNA_Cupcake/wiki) to remove isoform redundancy. Because 5’

end completeness cannot be verified, stringent parameters (1000 bp) and a 5’

merge option were used to avoid the definition of false-positive alternative TSSs.

We maintained the 100 bp cutoff at the 3’ end to define isoforms with the same

https://github.com/Magdoll/cDNA_Cupcake/wiki
https://github.com/Magdoll/cDNA_Cupcake/wiki
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polyA site. This resulted in the ”ToFU” set of non-redundant full-length tran-

scripts.

For IDP pipeline [13], we used the SpliceMap aligner [279] with the default

mammalian parameters to map short reads to the reference genome, thus al-

lowing splice junction detection. In addition, we error corrected the CCS long-

reads with short-read data by using the LSC algorithm [12], following the IDP

guidelines. Finally, we input splice-junction coverage information, short-read

corrected long-reads and both the reference genome and the murine RefSeq

[235] gene models into the IDP tool. We used the following parameters to ob-

tain the set of predicted and detected isoforms: GMAP as the aligner, maximum

posteriori probability as the MAP expression-estimator approach, and a mini-

mum isoform fraction of 0.05.

Finally, we ran TAPIS using default parameters except that only the set of

full-length classified long-reads were provided in order to minimize the number

of detected incomplete isoforms. Murine RefSeq gene models were the input for

the TAPIS collapsing step using the default parameters. In all cases, the mm10

reference genome assembly was used.

3.3.2 Iso-Seq PacBio evaluation of isoform quantification and de-
tection

In addition to accurate identification of transcript sequences, accurate expres-

sion level estimation of splicing variants is essential to study their role and rel-

evance. Since transcript isoform quantification by Illumina is limited by the high

levels of ambiguity generated by short reads during isoform identification, we

evaluated whether PacBio reads could be used to quantify the expression of

transcripts. Isoform expression using long and short read data was evaluated by

computing pairwise correlations between sequencing replicates. We also sep-

arated the transcripts into high, medium, and low expression levels to account

for the influence that different noise levels (associated with high and low isoform

expression) could have on this correlation. Isoforms estimations on short-reads

were computed using the ENCODE3 pipeline consisting in the combination of
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STAR [83] as mapper and RSEM as quantification algorithm [188]. Isoform ex-

pression estimations using PacBio reads alone were estimated by extracting the

number of full-length reads associated with each defined isoform, and normaliz-

ing the values with the total number of FLs in the sample.

Secondly, to evaluate how the magnitude and nature of the transcriptome af-

fects quantification, we compared expression levels obtained using as reference

either the complete mouse transcriptome (ReT) or the set of transcripts identi-

fied by PacBio (PbT). We defined the most expressed gene transcript (MET) as

the gene transcript with the highest average TPM value across all the samples

and compared METs between quantification results using the ReT and the PbT

transcriptomes. This analysis evaluates if quantification on PacBio transcripts

would have a minor or a significant impact in the redistribution of gene expres-

sion across isoforms.

3.3.3 Classification of transcripts to describe long-read captured
novelty

To characterize the nature and magnitude of the novelty found by long-read

sequencing, we developed a classification scheme that capture the range and

main characteristics of novel calls. This scheme compares identified transcripts

to reference annotations in a splice-junction (SJ) based mode (Figure 3.2).

PacBio transcripts matching a reference transcript at all splice junctions were

labelled as full splice match (FSM), while transcripts matching consecutive, but

not all, splice junctions of the reference transcripts were designated as incom-

plete splice match (ISM). Besides, ISM isoforms were divided into different sub-

categories depending on their type of incompleteness (3’ end incomplete, 5’ end

incomplete, internal fragment). Moreover, ISM transcripts with 95% or more of

their sequence within the UTR3 sequence of their cognate reference transcript

are labeled UTR3 Fragment. Monoexonic transcripts matching a monoexonic

reference were included in the FSM category whereas those matching a multi-

exonic reference were placed into the ISM group (Figure 3.2).
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Furthermore, novel transcripts overlapping reference genes were classified

into two categories: novel in catalogue (NIC) and novel not in catalogue (NNC).

NIC transcripts contain new combinations of already annotated JSs in the as-

socitated reference gene or novel SJs formed from already annotated donors

and acceptors (NIC subcategory). On they contrary, NNC transcripts contain

donors and/or acceptors not previously seen in the reference-gene annotations

(Figure 3.2).

Finally, transcripts in novel genes were classified as intergenic, if lying outside

the boundaries of an annotated gene, and as genic intron if lying entirely within

the boundaries of an annotated intron. In addition, the genic genomic cate-

gory encompasses transcripts with partial exon and intron/intergenic overlap in

a known gene (Figure 3.2). Finally, we labeled transcripts as fusion if they span

two annotated loci, and as antisense when poly(A)-containing transcripts over-

lap the complementary strand of an annotated transcript (Figure 3.2). In addition

to classification, which is based on SJs, we also added other features to facilitate

the identification of novel alternative polyadenylation sites (PASs) or fragmenta-

tion levels at the ends of transcripts. Hence, the minimum distance of transcript

3’/5’ ends to the reference transcript 3’/5’ ends were annotated.

3.3.4 Extensive isoform characterisation as a means for quality
control

To capture different sources of artefacts, from library preparation to data prepro-

cessing, we defined a quality-evaluation strategy for long-read transcripts based

on the definition of a wide range of attributes to characterise several aspects of

isoforms and their associated SJs. Appendixes 1 and 2 show the total set of

defined features. Among them we highlight:

1. SJ status: We categorized canonical junctions as those with the combi-

nation of GT at the beginning and AG at the end of the intron as well as GC-AG

and AT-AC pairs, which together represent more than 99.9% of all human introns

[240]. Any other possible combination is labelled as non-canonical splicing.
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2. SJ support: The number of uniquely-mapping short-reads at each de-

fined junction was estimated using the STAR aligner [83]. Furthermore, to ac-

count for the relative expression level of transcripts, we defined the relative cov-

erage of a splice junction as its short-read coverage normalised to the total

expression of all the transcripts in which it is present. We summarised the sup-

porting junction information for each transcript by defining the minimum sample

coverage, as the lowest number of samples showing the presence of a SJ from

among all the junctions present in a transcript; the minimum coverage was the

lowest number of short reads supporting the presence of a SJ within the tran-

script and the minimum coverage position was the position of the junction in the

transcript with the minimum coverage.

3. Reverse transcriptase template switching: An RNA with two direct

repeats is a potential template for reverse transcriptase swithching (RTS) from

one repeat to other. This causes gaps during cDNA synthesis [60][145], that

when sequenced result in false transcript detections. These gaps are enriched

for non-canonical junctions. To detect this problem, we developed an algorithm

that identifies junctions that are likely to derive from a RTS event. The algorithm

analyses all the junctions for possible RTS event and checks for a direct repeat

pattern at the end of the SJ 5’ exon which must match the pattern at its 3’ end

SJ intron. Three parameters control pattern matching: (1) the minimum num-

ber of matching nucleotides (4-10 nucleotides); (2) the amount of wiggle room

allowed from the ideal pattern location (0-3 nucleotides); (3) the allowance of

single mismatch or indels or not. In this Chapter, we used repeat sequences at

least 8-bases long, allowed a maximum wiggle of 1, and did not permit any mis-

matches. We assumed that the FSM transcripts with the highest mean expres-

sion in each gene would act as templates for RTS and were therefore excluded

from the analysis.

4. Bite junction: We defined junctions whose associated intron completely

overlaps an annotated intron and that partially overlaps the 3’ and 5’ annotated

exons as bite junctions.
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5. FL isoform coverage: The amount of FL support is representative of

the confidence level in an isoform. FL-count information is provided through the

ToFU pipeline and therefore, are only available for ToFU-defined isoforms.

6. Intra-priming/off-priming: We also evaluated possible off-priming of

the oligo(dTs)in A-rich regions of the mRNA template to account for internal

poly(A) priming during reverse transcription [221]. To investigate these events,

we calculate the percentage of adenine (A) within a established window down-

stream of the genomic coordinates corresponding to the 3’ end of the long-read

defined transcripts. We set a window size of 20 nucleotides.

3.3.5 Using quality control features to build a filter of isoform arte-
facts

We developed a machine learning (ML)-based filtering method to discriminate

potential transcript artefacts from true novel transcripts. The approach takes

advantage of the total set of long-read quality control (QC) attributes previously

defined for quality evaluation. To make the classifier generally applicable and

independent from the availability of validation results, we defined a ”best guess”

of true (positive set) and artefact (negative set) transcripts based on the informa-

tion obtained from the classification of the long-read sequencing transcriptome.

FSMs (whose splicing patterns are identical to the reference ones) were used

to define the set of positive transcripts while NNC-NC transcripts (which contain

novel and non-canonical SJs) were used as the negative set. It is important to

mention that the labelled sets (FSM and NNC–NC) only applied to multi-exonic

transcripts and hence, this classifier cannot be applied to single-exon isoforms.

The labeled data was then separated into to sets: the training set for classi-

fier training (80% of the data) and the test set for subsequent evaluation of the

classifiers (20% of the data). Algorithms were ran using down-sampling to bal-

ance the positive and negative sets and applying a 10x cross-validation. From

the total set of transcript descriptors previously defined, we selected 16 vari-

ables. Attributes related to reference transcripts or those given a structural clas-

sification were removed because they discriminate between novel and known
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transcripts and consequently, are irrelevant to the classifier. Variables related to

canonical junction status were also excluded because they were used to define

the positive and negative transcript sets. Finally, variables with near-zero vari-

ance or with a correlation coefficient higher than 0.9 in the labeled sets were

also removed.

After evaluating different ML methods, we selected the tree-based Random

Forest learning method because it performed the best in our pilot tests (data not

shown). We ran 500 trees and artefacts were defined as those transcripts with

a probability for positive classification exceeding 0.75. The performance of this

ML classifier was evaluated in the test set by using ROC analysis.

Moreover, we evaluated alternative single-feature filtering methods described

in the literature and our ML classifier using a set of 67 PacBio-defined tran-

scripts that were validated by reverse transcription PCR (Further details in Sec-

tion 3.4.4). The confusion matrix shown below 3.1 illustrates the potential clas-

sification errors.

Actual values
Positives Negatives

P N
Positives True Positives False Positives

Predicted P’ TP FP
values Negatives False Negatives True Negatives

N’ FN TN

Table 3.1: Confusion matrix for two-class classifications

The following performance indicators were used:

• Recall, also known as the sensitivity or the true positive rate (TPR):

recall =
TP

TP + FN

• Precision, also known as the positive predicted value:

precision =
TP

TP + FP

• The false discovery rate (FDR), the percentage of FPs from the total

number of detections:



3.3 Methods 49

FDR =
FP

TP + FP
=
FP

P ′

• The F1-score, the harmonic mean of the recall and precision parameters.

F1score =
2TP

2TP + FP + FN
= 2.

recall.precision

recall + precision

• The receiver operating characteristic curve (ROC) is a graphical plot

that illustrates the diagnostic ability of a binary classifier system as its dis-

crimination threshold varies. The area under the curve (AUC) measures

the classifier’s ability to distinguish classes. AUC ranges between 0 and 1

[101].

We excluded the transcripts assessed by RT-PCR from the training set to

prevent biases during the evaluation of the ML classifier.

3.3.6 Open reading frame prediction benchmarking and assess-
ment of UTR/ORF variability in PacBio-defined transcriptomes

The GeneMarkS-T algorithm (GMST) [30] was used to predict the open reading

frame (ORF) in PacBio transcripts by using AUGs as the initial codon. Because

GMST can predict ORFs in incomplete transcripts, incomplete 5’ transcripts may

produce some truncated ORFs. In these cases, the first in-frame downstream

methionine was detected and identified as the start codon.

We defined different event that characterise the changes between ORF se-

quences in order to benchmark the ORF prediction algorithms and to study up-

stream ORF (uORF) variability in PacBio-defined transcriptomes. Microexon

definition was restricted to novel amino-acid (aa) stretches obtained by in-frame

indels or to substitutions up to 27 nt (9aas) according to previously published

work [149]. N-terminal or C-terminal deletions were labeled as N-Ter deletion

and C-Ter deletion, respectively. Indels and substitutions greater than 9 aas,

whether combined with N-Ter and C-Ter deletions or not, were labelled as major

changes. Finally, ORFs without sequence overlapping were deemed as no align

ORFs.

To assess the coding prediction results, we performed comparisons between

the predicted sequence and its reference ORF sequences for isoforms belongu-

ing to reference-associated catergories (FSM, ISM and 3’UTR fragment). To
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study to what extent alternative splicing affects the coding region of novel tran-

scripts, we compared the predicted ORFs with the ORF encoded by the prin-

cipal isoform (PI) of each gene. PIs were defined based on the information

retrieved from the APPRIS database [277] - which defines the PI ORF as the

ORF isoform with the highest functional load and cross-species conservation. A

non-redundant ORF database encompassing the set of predicted proteins from

our neural transcriptome was generated for subsequent classification into three

groups: (1) Principal Isoform ORF if annotated as such by APPRIS, (2) Alterna-

tive ORF if found in Ensembl or RefSeq databases without being the PI, and (3)

Novel ORF if the protein was present only in our mouse PacBio data. Alternative

and Novel ORFs sets were then compared based on the gene PI ORF. Finally,

UTR variability was also evaluated by considering UTRs to be different if they

started in different genomic coordinates or if they shared a common start point

but had a difference longer than 30 nt.
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3.4 Results

3.4.1 PacBio Iso-Seq sequencing quality

We used PacBio to sequence both Neural Progenitor Cells (NPCs) and Oligo-

dendrocyte Precursors Cells (OPCs), two biological replicates per condition, in

8 SMRT cells each. SMRT cells were pre-processed independently obtaining

about half a million of circular consensus sequences (CCS) per sample, where

length distribution matches the expected fractionation pattern (Figure 3.3.A). FL

classification yielded 544,184 FL-catalogued CCSs, 25% of the total CCSs that

decreased to 11% in 3-6 kb fraction (Figure 3.3.B). This low rate of FL PacBio-

catalogued transcripts could be the result of degradation of cDNA during library

preparation and pre-processing or due to incomplete sequencing. To further in-

vestigate this, we ran CCS computing and FL classification tools by changing

the minimum number of passes to 1, thereby preventing the generation of CCSs

when the sequencing did not reach a full pass of the molecule. We found a

dramatic decrease on the number of CCSs (30% of total CCSs obtained with

a 0-passes setting, Table 3.3.B) and a concomitant increase in the proportion

of FL reads (74% of FL reads, Figure 3.3.B). Hence, these results revealed

that the high rate of nFL reads in our samples was a consequence of incom-

plete molecule sequencing instead of caused by cDNA degradation during li-

brary preparation. To further check the quality of RNA before RT and library

preparation as well as confirming the true full-length status of isoforms, we run

Blast [4] against RefSeq reference. We found about 60% of FL CCSs with at

least a 90% coverage hit, that agrees agreement with the expected FL enrich-

ment levels of Clontech protocol in FL cDNA and verifies the high quality of our

FL reads.

3.4.2 Transcriptome complexity and transcript full-lengthness as-
sessment across alternative pipelines

Once the quality of the raw Iso-Seq data was evaluated, the PacBio CCSs were

pooled together to obtain a total of 544,184 FL and 1,427,731 nFL reads. The

PacBio reads were then processed by three alternative Iso-Seq transcriptome
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Sample # Passes  # CCS # FL non Chimeric # FLnc with 90 % coverage hit
 NSC1 0 380307 98989 (26.03 %) 54431 (55 %)
 NSC2 0 602546 157558 (26.15 %) 82062 (53 %)
 OPC1 0 553031 167320 (30.26 %) 96124 ( 59 %)
 OPC1 1 178619 131986 (74 %) -
 OPC2 0 511642 120317 (23.52 %) 69632 ( 59 %)
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Figure 3.3: Raw Iso-Seq data quality. A. CCS length distribution in function of the
fractionation size of each sequenced SMRT cell. B. Number of CCS, FL non chimeric
yield and proportion with Blast identity above 90% for each of samples being studied.
One OPC replicate was analysed twice using alternative values for the number of passes
required to generate a CCS.

definition pipelines: ToFU, IDP and TAPIS, which identified 16,106, 13,525 and

91,428 isoforms, respectively, indicating that a huge difference in the magnitude

of the transcriptomes is obtained by the alternative strategies.

To understand the nature of these differences, we performed an extensive

characterisation of transcriptome composition, as described in methods section.

ToFU transcritome characterization

The ToFU pipeline generated 33,635 high-quality, but redundant isoforms. Sub-

sequent alignment against the reference genome (assembly mm10) and col-

lapsing in order to remove redundancy generated a final murine neural transcrip-

tome, which included 16,106 unique transcripts resulting from the expression of

7,704 different genes. Classification of ToFU isoforms showed that a small pro-
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portion of isoforms fell outside the boundaries of known genes (640 isoforms

belonging to 511 novel genes, 6% of the total number of expressed genes).

Moreover, in terms of splicing diversity, we found remarkable differences be-

tween known and novel gene models. While novel genes showed low levels of

alternative splicing, 50% of known genes had at least two splicing variant (Fig-

ure 3.4.A). Furthermore, only 13.8% of the novel isoforms had SJs, indicating

that mono-exon isoforms were clearly enriched in novel genes.

Based on the structural classification of isoforms, 49% of them were classi-

fied as FSM (Figure 3.4.B) and the total transcripts mapping a known reference

(FSM, ISM and UTR3-fragment) accounted for 60% of the transcriptome. ISM

transcripts might be a combination of biological shorter versions of long refer-

ence transcripts and partial fragments resulting either from incomplete retrotran-

scription or mRNA decay. Our analysis showed that PacBio transcripts classi-

fied as ISM or UTR3-fragment matched reference transcripts that were longer

(t-test, p = 0, Figure 3.4.C) and had more exons (t-test, p = 0, data not shown)

than FSM sequences, suggesting that they are enriched in retrotranscription

fragments. Novel transcripts assigned to known genes (NIC, NNC) made up

35.6% of our sequences (Figure 3.4.B), a proportion higher than expected in

well-studied model organisms as mouse. Transcripts from novel genes (Inter-

genic and Genic Intron categories) represented about 2.3%. Other categories

as antisense and fusion isoforms only accounted for 1.1% and 0.4%, respec-

tively (Figure 3.4.B). Although most isoform categories had a similar median

length (Figure 3.4.D), genic intron transcripts were found significantly shorter

(t-test p = 1.421e-15), and almost entirely composed of single exons (data not

shown) without any predicted coding sequence (Figure 3.4.B), suggesting the

accumulation of non-coding transcriptional events.

Regarding expression features across the transcript categories, transcript

expression levels were significantly lower in ISM, NIC and NNC categories than

in the FSM set (t-test p < 2.2e-16 for all comparisons) and were significantly

lower for novel genes compared to annotated genes (t-test p < 2.2e-16 for both

comparisons), confirming that the novel isoforms discovered in model organ-
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SEQUENCING TRANSCRIPTOMES
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Figure 3.4: Characterisation of the ToFU-defined transcriptome. A. Distribution of
the number of variants derived from annotated and novel genes. B. Distribution of tran-
scripts among the set of defined structural categories. C. Length of the reference tran-
scripts to which FSM, ISM, and UTR3 Fragment PacBio transcripts matched. D. Length
of the PacBio transcripts by structural categories. E-F. Overlap at 3’ and 5’ ends between
the FSM transcripts and their respective matched reference transcripts.
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isms such as mouse are usually minor isoforms of genes already described in

reference databases.

In terms of transcript full-lengthness, the majority of our FSM transcripts

showed a complete or close to complete 3’ end overlap with the 3’ end of the

matched reference transcript: 76% had an exact 3’ end match and 16% were

within 20 nt upstream of the annotated 3’ end (Figure 3.4.E). This contrasts with

the lower proportion of FSM transcripts showing a complete overlap with their

reference 5’ ends (35%) and the higher number of transcripts falling short by

40 to 100 nts (50%, Figure 3.4.F). This finding concurs with the strategy used

during cDNA library preparation and with the Iso-SeqTM analysis pipeline be-

cause both steps have less control over completeness at 5’ ends (Oligo(dT)

primming and polyA tail identification to control 3’ completeness). Interestingly,

851 and 1,361 FSM transcripts had 3’ end and 5’ end positions that extended

beyond the matched reference transcript, while 1,610 and 1,439 of our FSM se-

quences were shorter by more than 100 nt at their 3’ and 5’ ends, respectively.

These cases could potentially represent alternative polyadenylation/alternative

TSS events.

IDP transcritome characterization

Error correction of long-reads by LSC yielded 99.2% of CCSs corrected by short-

reads. This set of LSC corrected long-reads and the set of splice junctions de-

tected by SpliceMap were fed to the IDP tool, resulting in the detection of 12,521

isoforms and the prediction of 4,387 isoforms. After removing redundancy be-

tween the detection and prediction IDP modules, we obtained 13,525 unique

transcripts.

In contrast with the results from ToFU, most of the isoforms we identified by

IDP were classified as FSMs (96%, Figure 3.5.A). Only 4% of the transcripts

were catalogued as novel isoforms from known genes (Figure 3.5.A). Remark-

ably, the majority of them were categorized as NICs and 97% of them were

composed of known junctions in a novel combination. Moreover, the IDP did not

identify any isoform outside the boundaries of kwown genes and consequently,
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all the isoforms belonged to previously annotated genes. Surprisingly, all of the

3’ and 5’ ends of the IDP-defined transcripts perfectly matched the reference

ends (data not shown).

TAPIS transcritome characterization

Out the aprroximately 204,984 (94,5%) FL CCSs that were properly mapped

to the reference genome, a total of 57,776 transcripts originated from 14,775

expressed genes were defined by TAPIS. Regarding transcript classification, a

small proportion of the total defined transcripts belonged to novel genes (6.5%,

Figure 3.5.B). Similar to the ToFU strategy, the novel genes were characterized

by including mono-exon transcripts (data not shown) and a reduced number of

splicing variants compared to the high number of transcript variants detected

in annotated genes (median = 4 isoforms, Figure 3.5.C). Surprisingly, just 9%

of the isoforms fell into the FSM category (Figure 3.5.B) and almost 70% were

classified as NNC category, as characterized by using novel splicing sites.

Moreover, it should be noted that novel transcript categories as NIC, NNC

and Genic Genomic showed a higher length distribution compared to the FSM

category (Figure 3.5.D, t-test p < 2.2e-16), which contrasts with the results ob-

tained using the ToFU strategy. Moreover, the FSM category showed drastic

higher gene expression distribution in comparison to the rest of categories (t-test

p < 2.2e-16 for all comparisons), again revealing the minor expression status of

transcripts not yet annotated in public databases.

Finally, as seen for the ToFU pipeline and in agreement with our cDNA library

preparation, the 3’ end overlaps for the FSM transcripts was almost complete

but was less so for the 5’ ends (35% of the transcripts overlapped the annotated

TSS).

Comparative Overview

We systematically compared the strategies in order to highlight the advantages

and disadvantages of each transcriptome-definition strategy. For comparative

purposes, two isoforms were considered identical across pipelines if they shared

the exact splicing junction linkage which enables the association of known and



3.4 Results 57

A B

C D

E F

Figure 3.5: Characterisation of transcriptomes defined by IDP and TAPIS. A-B. Dis-
tribution of transcripts among the set of defined structural categories for IDP and TAPIS
transcriptomes, respectively. C. Distribution of the number of variants derived from the
annotated and novel genes present in the TAPIS transcriptome. D. Length of the PacBio
transcripts based on the structural categories in the TAPIS transcriptome. E-F. Overlap
at 3’ and 5’ ends between the FSM transcripts and their respective matched reference
transcripts in the TAPIS transcriptome.
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novel isoforms across pipelines, thus excluding mono-exonic genes from this

comparison.

First, we compared the approximate number of genes and transcripts (known

and novel) identified by the three different approaches ((Figure 3.6.A). Even

though around 7,000 genes were identified by each of the different pipelines, the

very high number of transcripts found by TAPIS, as well as its high proportion

of novel isoforms (89.7% novel transcripts) stood out compared to the other

pipelines (Figure 3.6.A). Moreover, while a roughly equal proportion of novel and

known isoforms were identified by ToFU, IDP identified fewer novel transcripts

(4% novel isoforms, Figure 3.6.A).

To further investigate the differences between pipelines and their nature, we

compared the sets of detected genes, transcripts and SJs. Recall rates were

calculated (Figure 3.6.B) to evaluate the ability of each pipeline to identify the

same genes, transcripts or junctions described by other strategies. When known

genes detected by each pipeline were compared, the recall rate by at at least

one other pipeline reached a mean value close to 90% (Figure 3.6.B), revealing

that the three pipelines mostly agree in the set of detected genes. Among them,

ToFU shows the highest number of detected known genes that are also captured

by the other two pipelines (72.33%), suggesting a higher sensitivity compared

to the other two strategies. However, this consensus was no longer achieved

at the transcript level, mainly because of the incredibly high discovery rate of

TAPIS (Figure 3.6.B). Thus, although IDP and ToFU reached more than 70%

recall between pipelines, the recall rate of TAPIS was only 13%, meaning that

only 13% of transcripts defined by TAPIS were identified by another strategy.

When all the novel isoforms were removed from the analysis and the recall rate

was calculated considering only known transcripts, the recall rates of ToFU and

TAPIS reached 94% and 89%, respectively (data not shown), revealing the high

intersection of known isoforms. Meanwhile, IDP pipeline detected mamy more

known transcripts that any other strategy, but only 67% of them were also found

by TAPIS and/or ToFU.
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Next, we analysed differences in the expression levels for different groups of

intersection isoforms. Interestingly, the expression of isoforms found by TAPIS

were lower than that of the other pipelines. Because TAPIS generated a higher

transcript-per-gene ratio, the same short reads were assigned to a more com-

plex gene model with an increased number of alternatively-spliced isoforms,

likely resulting in a significantly decreased expression at the transcript level. In

contrast, the expression levels of isoforms found by more than one pipeline were

higher than the those identified by just one approach (Figure 3.6.C).
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Figure 3.6: Comparison of alternative methods for defining Iso-Seq PacBio tran-
scriptomes. A. Distribution of the number of genes and transcripts, novel and known
obtained with the different approaches. B. Recall summary between approaches at the
gene, transcript and splice-junction levels. C. Transcript expression distribution for the
different intersected sets. D. Illumina short-read splice-junction support across these dif-
ferent pipelines. E. Distribution of canonical and non-canonical splicing motifs across the
junctions which are supported or not supported by short reads. F–G. Histograms repre-
senting the differences in the detected and reference ends for each method in the TSS
and the TTS, respectively.
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We characterised each SJ based on their short-read support and splicing

motif and found important differences in the fraction of supported SJs across

pipelines, with the TAPIS pipeline standing out because almost 50% of the SJs

in this pipeline were not supported by Illumina data (Figure 3.5.D). Moreover, al-

most 60% of the SJs detected by TAPIS were not detected by the other pipelines,

in contrast to the 10% of junctions specific only to the ToFU and IDP pipelines

(Figure 3.5.B). Furthermore, splicing junction categorisation revealed that in all

cases, more than 98% of the supported junctions presented the most com-

mon canonical motif (GT-AG; Figure 3.5.E). In contrast, unsupported SJ splic-

ing motifs were more diverse; this was especially the case in TAPIS, in which

80% of all unsupported junctions present a non-canonical splicing motif (Figure

3.6.E). Thereby, TAPIS detected more than 68,000 non-canonical and unsup-

ported junctions, which represents the 40% of the total detected junctions. In

contrast, IDP did not retrieve any non-canonical sites either in supported or non-

supported categories because the aligner discards them before the isoforms are

defined.

Because one of the most important aspects of Iso-Seq is the theoretical abil-

ity to capture entire transcripts from end to end, the full-lengthness status of iso-

forms was compared among pipelines using only the set of FSM transcripts. As

we have already mentioned, FSM isoforms identified by IDP perfectly matched

both the TSS and TTS reference sites (Figure 3.6.F-G), suggesting that the ref-

erence information was preferentially used and may have biased results and

hidden potential APAs and alternative TSS events. In contrast, both Tappis and

ToFU did find transcript end variability between discovered and annotated tran-

scripts (Figure 3.6.F-G), which might represent alternative TSSs and TTSs or

be a consequence of mRNA degradation prior to sequencing.

In conclusion, the loci detected by these alternative approaches for Iso-Seq

transcriptome reconstruction almost always coincide but differ in the magnitude

and nature of the transcript isoforms they define. This reveals that the com-

putational pipeline chosen strongly impacts transcriptome reconstruction. The

IDP strategy is highly dependent on reference information resulting on transcript
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calls tha faithfully match annotated transcripts (96%) and have very little 3’/5’

end variability. IDP was also unable to detect any of the 16 novel PCR-validated

transcripts, suggesting that this method is highly restrictive for novel isoform

calling. In contrast, TAPIS works without short-read data. The tool returns sig-

nificantly more transcripts (91,428) most of which are NNCs (66%). It also has

the lowest recall rate (13%) of all the pipelines and identified a high proportion

of unsupported non-canonical junctions (40%). We conclude that TAPIS might

have a high rate of false calls. Finally, ToFU defined a balanced proportion of

novel/known transcripts and had the best recall rates at the gene, transcript, and

splice-junction level, without relying on short-read sequencing or high-quality

transcriptome annotation.

These results indicate that, ToFU provides high flexibility to generate full-

length transcriptomes without requiring prior knowledge or the need for short-

read sequencing data. Hence, ToFU appears to be the best existing pipeline for

the purposes of general transcriptome definition using Iso-Seq PacBio data and

so we chose this pipeline as baseline for further analyses.

3.4.3 Characterisation of ToFU-defined novel calls reveals enrich-
ment in artefacts

The descriptive analysis framework provided in previous section for ToFU tran-

scriptome readily indicates that our neural mouse transcriptome, obtained by

PacBio single molecule sequencing, recovered full-length transcripts and had

an important level of novelty (∼ 40%). Alignment of ToFU transcripts to the

reference genome showed an average percentage of identity above 99.8%, in-

dicating that most sequencing errors were corrected by the ToFU clustering ap-

proach. However, small indels (average size ∼ 1.2 nts) were still detected in

56.2% of the transcripts. To tackle this problem, we first attempted to correct

indels with matching Illumina short reads using Proovreads [130]. Although the

number of transcripts with at least one indel decreased to 2,550 (16% of tran-

scripts), this was still unsatisfactory for posterior ORF prediction since small

indels can provoke a frame shift and consequently a false prediction. Instead,

transcripts were corrected using the reference genome sequence. By virtue of
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this strategy, all indels inside exons were removed, and we obtained what we

called a corrected PacBio transcriptome.

To assess the quality and nature of novel calls, canonical status of SJ was

evaluated in first place. In our ToFU-defined transcriptome, the ratio of canoni-

cal versus non-canonical splicing events fitted the expected genome proportions

when looking at known splice junctions: out of 141,332 known splice junctions,

99.9% were canonical. However, deep inspection revealed that novel splice

junctions showed a very different distribution: out of 3,837 novel splice junctions

31% (1,188) were non-canonical. When analysed across the different transcript

categories, non-canonical splicing was maintained at low rates in FSM (0.1%)

and ISM (0.25%) transcripts, which was expected as both are formed entirely by

known splicing events (Figure 3.7.A). In NIC transcripts, comprising novel com-

binations of known splice junctions or novel splice junctions deriving from anno-

tated donors or acceptors, the percentage of non-canonical splicing was 0.15%

(Figure 3.7.A). However, in NNC transcripts, characterized by the introduction of

alternative donors and/or acceptors, we found 1,155 novel non-canonical junc-

tions, which represented 4.5% of total. Moreover, genic genomic, intergenic,

genic intron and Antisense transcripts, despite rarely being multi-exonic, showed

relatively high percentages of non-canonical splice junctions with 2.3%, 7.28%,

21.57% and 32.65% respectively (Figure 3.7.A). This unusually high level of non-

canonical junctions suggests that experimental artifacts might be accumulating

in these categories. Furthermore, when the percentage of transcripts showing at

least one non-canonical splice junction was considered, the proportion of NNC

affected compared to NIC transcripts became more evident, 41.5% vs. 1.47%,

respectively, strongly indicating that this NNC category of transcripts needed

deeper inspection.

Positional analysis of junctions along the transcript showed that, although

novel junctions could appear at any position in novel transcripts, there was a

higher concentration of occurrences towards 5’ ends, pattern which is not ob-

served for known - whether canonical or not - junctions (Figure 3.7.B, FET p

< 2.2e-16). This could either be the consequence of unannotated variability at
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5’ ends or higher accumulation of errors due to lower sequence support. The

ToFU pipeline is more permissive with clustering conditions at transcript ends

(E. Tseng, personal communication), which accounts for a higher probability of

errors at these areas.
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Figure 3.7: Splice junction characterisation in the corrected PacBio transcriptome.
A. Distribution of splice junction (SJ) types across structural categories. B. Distribution of
the SJs according to their distance to the transcription start site. C. Relative coverage by
short reads of SJs as a function of their class and distance to the TSS. (a.u.) arbitrary
units. D. Detection of RT switching direct repetitions across SJ types. E. Distribution of
Iso-Seq FL reads associated to each isoform across structural categories. F. Intrapriming
evaluation across structural subcategories.

Short-read junction coverage computed by STAR was used to calculate the

support level for novel junctions called by PacBio. Note that Illumina reads are
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not always equally distributed along the transcript length and are often less

abundant towards the 5’ ends, thus providing less support for junction valida-

tion. We found that, as suspected, splice junction support by short reads de-

creased towards the 5’ end of the transcripts, but was significantly higher for

known junctions (Figure 3.7.C, Wilcoxon Rank Sum test (WRS) p < 2.2e-16).

Novel canonical junctions were in general less frequently covered but still sig-

nificantly more supported than novel non-canonical junctions, which had hardly

any supporting reads if located within the first 120 nts of the transcript 5’ end

(Figure 3.7.C, WRS p < 2.2e-16).

Moreover, events which occur during RNA RT and library generation could

also explain this accumulation of non-canonical junctions. Prediction of RT

switching events confirmed the enrichment of RT switching in novel splice junc-

tions (Figure 3.7.D, FET p < 2.2e-16) and in NNC compared to NIC transcripts

(7.24% versus 1.98%, FET p < 2.2e-16). The described RT switching events

affect minor isoforms of genes co-expressed with a major isoform that serves as

the template for the intra-molecular switching. Accordingly, we found that NNC

transcripts are enriched for being minor transcripts of highly expressed genes

(data not shown).

The number of supporting FL reads (number of raw FL reads used to gener-

ate a given isoform) affects the capacity of the ToFU pipelines to correct errors

and consequently affects the quality level of the final defined isoform. Results

showed that FSM transcripts contain significant higher number of FL reads than

any other isoform category (Figure 3.7.E, t-test p < 2.2e-16 for all comparisons).

Nevertheless, although ISMs and NICs show similar distributions, NNCs present

a clear lower FL distribution and hence, a low chance to be error-corrected by

the ToFU pipeline.

Finally, A-rich genomic DNA regions downstream of the TTS were concen-

trated in the relatively minor transcript categories (Figure 3.7.F). Using a cut-

off of 60% adenines, a total of 601 transcripts were found to be intra-priming

candidates, which affected the antisense and genic intron categories in partic-

ular (50% and 30% of their transcripts were flagged). Remarkably, Incomplete
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Splice Match transcripts that were versions of the reference transcripts short-

ened at the 3 end and monoexon NIC transcripts with intron retention events

were also significantly enriched in intra-priming candidates (WRS p < 2.2e-16

for all tests).

Altogether, out results suggest that a fraction of the novel transcripts found

by ToFU pipeline could be technical artifacts that originated at the cDNA library

construction step or via less confident correction by ToFU at the 5’ ends of tran-

scripts.

3.4.4 Experimental validation of ToFU results verifies the presence
of novel-isoform artifacts

To shed light on whether the transcripts detected by the ToFU analysis were

correct or not we performed RT-PCR amplifications for a total of 67 mRNAs en-

compassing different categories: 23 FSM (3 with non-canonical splice sites), 12

NIC, 30 NNC canonical (11 of them containing at least one non-canonical splice

junction) and 3 Fusion. Importantly, we performed RT-PCRs both on the Clon-

Tech oligo(dT) enriched full-length cDNAs used for PacBio sequencing and, for

positive NIC/NNC/Fusion and 4 FSM transcripts, on new cDNA retrotranscribed

using random hexamers rather than oligo(dT) at both 42 ◦C and 50 ◦C. The ratio-

nale behind this approach was to test whether novel transcripts could have been

spuriously generated by RT switching-like mechanisms at the retrotranscription

step of the PacBio protocol. Since higher temperature and/or the use of random

hexamers would complicate the formation of secondary structures in the RNA

template, retrotranscription artifacts would be less favored in these conditions.

We validated by RT-PCR for all of the 23 FSM, including the 3 cases with

non-canonical junctions, (Figure 3.8.A) highlighting the high level of confidence

supporting these transcripts. Novel transcripts showed lower validation rates:

8/12 NIC, 1/3 Fusion and 6/30 NNC, highlighting the low detection rate within

NNC category (Figure 3.8.B). Importantly, 9 of these non-validated NNC tran-

scripts were amplified by oligo(dT) PCR but were lost when random hexamers

and higher temperatures were used (Figure 3.8.C), suggesting the possible oc-

currence of retrotranscription artifacts. Table 3.2 summarizes the results of the
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Figure 3.8: Representative examples of RT-PCR validation experiments. A. FSM
transcript with a noncanonical SJ successfully amplified at each PCR condition. B. Exam-
ple of a NNC transcript with a noncanonical SJ that failed to be amplified in the oligo(dT)
condition. C. Example of NNC transcript with noncanonical SJ amplified at oligo(dT) but
not when using Random Hexamers conditions.

Transcript type Positive Negative Total Positive Negative Total Overall validation

FSM 23 (3 nc) 0 23 4 (3 nc) 0 4 100%
NIC 10 1 11 8 2 10 67%
NNC 15 (3 nc) 15 (8 nc) 30 6 9 (3 nc) 15 20%
Fusion 1 2 3 1 0 1 33%
(nc) Trasncript with non-canonical junctions.

Random hexamersoligo (dT)

Table 3.2: Summary of RT-PCR isoform validation across different structural categories.
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PCR validation experiment. Our PCR results indicated that an additional fil-

tering strategy would be useful to remove artifactual transcripts from the ToFU

transcriptome output.

3.4.5 Machine learning enables accurate filtering of novel-isoform
artefacts

Previous work applied different criteria to discard artifacts from transcriptome

sequencing, including support by short reads [12], removal of transcripts with

non-canonical splicing [318] or filtering based on sequence features [279]. How-

ever, we found that these approaches do not fully capture the complexity of the

data. For example, a few known and NIC transcript junctions lack Illumina cover-

age (148 out of 67,610, and 20 out of 437 respectively), while most of the novel

non-canonical junctions did had supporting Illumina reads (543 out of 597). We

found that additional features such as RT switching direct repeats and low ex-

pression values accumulated in NNC transcripts, but were not exclusive to them.

Moreover, our RT-PCR analysis revealed an important number of transcripts (16)

having a full set of canonical junctions but failing validation. We hypothesized

that the set of quality control attributes and descriptors previously used to eval-

uate and characterize isoforms ought to be informative of transcript quality and

could be used to define a composite filter to remove artifact transcripts efficiently.

Thus, we decided to train a ML classifier based on these features. As pre-

viously described in Methods section, we defined the FSM transcripts as the

positive set (n = 7,774) and the NNC transcripts with at least one non-canonical

SJ as the negative set (NNC-NC, n=1,110). Figure 3.9.A. shows the features

selected by the classifier, with flags bite transcripts ranking first in order of impor-

tance which we interpret as an indication of the presence of novel SJs caused by

secondary RNA structures. Interestingly, five out of the eight top variables were

associated with junction expression, suggesting that junction coverage patterns

are some of the most useful characteristics for calling bona fide novel transcripts.

Application of the Random Forest classifier to our test set using a probability

for positive classification higher than 0.75 led to AUC of 99.54% for the receiver

operating curve (Figure 3.9.B, blue line), indicating that the created classifier
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Figure 3.9: Machine Learning (ML) filter performance. A. Ranking of variables ac-
cording to their relative importance for the ML classifier across different PacBio-defined
transcriptomes. In MCF7 dataset no full-length data were available. B. ROC curves of
the ML filter in our mouse transcriptome for the test set (blue line) and for the set of novel
isoforms assayed by RT-PCRs (red line).

performed well. We then applied this Random Forest classifier to our ToFU-

defined transcriptome using the same classification parameters we used in the

test set. Evaluation of the classifier on the set of 41 novel NNI/NNC isoforms

we had previously assayed by RT-PCR, gave an AUC 82.41% (Figure 3.9.B,

red line). This indicates that our classifier faithfully captured differences be-

tween our baseline set of positive and negative transcripts, and thus it can be

applied to efficiently discriminate true transcripts from artefacts within the set

of long-read novel sequences defined by ToFU. Additionally, we used RT-PCR

data to compare the performance of our ML method to two previous methods:

the non-canonical SJ filter (nc Filter) and SpliceGrapher. Our results indicate

that the classifier approach has a higher F1 score (71.7 versus 57.9 and 41.1

respectively), and a lower FDR (11% versus 53.3% and 58.8% respectively)

than alternative methods (Table 3.3). These notable FDR differences are mostly

due to a high rate of false canonical junction transcripts that are not discarded

by the prior approaches. Moreover, the ML filtering strategy was the only one

that succeeded in lowering both the non-canonical SJ and the no short-read
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coverage quality features in NNC transcripts to levels similar to those of the

high-confidence FSM category (Figure 3.10.A).

TP TN FP FN F-score FDR

ToFU + SQANTI Filter 8 26 1 6 71.7 11.1%

ToFU + nc Filter 14 11 16 0 57.9 53.3%

ToFU + SpliceGrapher 14 7 20 0 41.1 58.8%

(nc) Non-canonical junctions.

Table 3.3: Performance summary for alterantive artefact filtering methods. The ML-
based filter, the non-canonical filter, and SpliceGrapher were evaluated using the set of
novel isoforms assayed by RT-PCR. (TP) True Positive, (TN) True Negative, (FP) False
Positive, (FN) False Negative, (FDR) False Discovery Rate.

Based on these results, we curated our ToFU-defined transcriptome using

our classifier. In addition, we added intra-priming filters to discard transcripts

that could have undergone polyA intra-priming, which, as described in section

3.4.3, were enriched in the antisense and ISM categories. When we applied

this approach to the mouse neural transcriptome, this combination of ML and

intra-priming filters removed 4,134 novel transcripts (2,462 NNC, 1,281 NIC, 32

genic genomic, 36 fusion, 116 antisense, 25 intergenic, 129 genic intron and

53 ISM). The adjusted percentages of each category in our final curated tran-

scriptome were: 66.3% FSM, 14.1% ISM, 15.7% NIC, 2% NNC, 0.5% genic

genomic, 0.5% sntisense, 0.2% fusion, 0.3% intergenic and 1.4% genic intron

(Figure 3.10.B). Our filter had the strongest impact in the NNC transcript cat-

egory, which considerably diminished from 14% to 2%, while FSM increased

consequently from 49% to 66% in the curated transcriptome (Figure 3.10.B). In

our final dataset 9,626 transcripts (80.4%) are in known categories and 2,058

(17.1%) are novel transcripts of which 286 (2.3%) fall within novel genes.
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Figure 3.10: Comparison of results between alternative artifact filtering methods.
A. Evaluation of quality features in the FSM and NNC categories after the ML-based
method, the non-canonical filter, and SpliceGrapher. Statistical differences were test
using Fisher’s exact tests (FET), (***) P < 0.001, (ns) not significant. B. Structural classi-
fication of transcripts before and after application of our ML-based filter.
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3.4.6 PacBio sequencing unable to accurately quantify low-medium
expressed isoforms but capturing most transcriptional sig-
nal

Although Iso-Seq PacBio sequencing was effective in defining full-length tran-

scripts and discovering new splicing variants, its low throughput (compared to

short-read based sequencing technologies) may be insufficient to compute ac-

curate transcript level expression estimates. Transcript quantification evaluation-

revealed that replicate correlation was significantly lower when quantifiying with

PacBio FL reads (Figure 3.11.A) compared to short-read quantification, espe-

cially at the mid and lower expression ranges, where the correlation dropped

to nearly zero (Figure 3.11.B). Thus, our results show that the number of reads

would be insufficient for an accurate quantification of transcript expression quan-

tification at the PacBio’s current sequencing depth (0.5 M per sample),
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Figure 3.11: Correlation of expression estimates between OPC replicates at three
levels: low (black), medium (red) and high (green). A. Isoform expression quantifica-
tion using short-read data. B. Isoform estimations using PacBio FL data.

Another possible limitation of PacBio sequencing is that transcripts with low

expression levels could be difficult to detect because of their low-throughput

compared to short-read RNA-seq that generates millions of reads at a fraction

of the cost. To test this possibily, we mapped short-reads to both the RefSeq ref-

erence transcriptome (ReT, around 160,000 transcripts) and the curated PacBio-

defined transcriptome (PbT, 12,408 transcripts) ad evaluated the portion of the

signal hidden by PacBio. On average, 87% of our Illumina reads mapped to the

mouse genome. Transcriptome mapping results showed that 81.7% of reads
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had a hit to the ReT and 70.7% to our PbT respectively, indicating that only an

11% in transcriptional signal was missed when considering the PbT alone.

However, this difference in the number of mapped reads translates into a

much bigger difference in the number of detected transcripts, equating to 30,071

versus 11,921 transcripts at a 1 count threshold (Figure 3.12.A). This suggests

that ReT exclusive transcripts had lower expression than PbT, which we con-

firmed after analyzing transcript expression levels (Figure 3.12.B). At the gene

level, ReT-based quantification totally overlapped PbT except for 357 genes that

were a combination of novel, fusion and other reference genes. Further char-

acterisation of PacBio exclusive trancritps revealed that from a total of 3,447

transcripts absent from the ReT, 20.8% of them belong to Ensembl and RefSeq
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Figure 3.12: Isoform detection by Iso-Seq sequencing. A. Venn diagram of the num-
ber of reference transcripts captured by short-read mapping (red, ReT) or Iso-Seq long-
read sequencing (green, PbT). The upper part of the Venn diagram indicates the percent-
age of short reads mapped to each defined transcriptome is indicated. B. Expression
level distribution for ReT exclusive, PbT exclusive and shared transcripts. C. Classifica-
tion of transcripts exclusively detected by PacBio sequencing based on their presence in
reference databases and characterization of PacBio novelty . D. Number of genes and
transcripts detected by short-read mapping to the PbT and ReT, at increasing expression
level cut-offs. m.c., manually curated transcript.



3.4 Results 73

transcriptome references (Figure 3.12.C). However, the great majority of PbT

exclusive transcripts were catalogued as novel transcripts (n=2,728, 79%), most

of which were NIC transcripts generated by new combinations of already known

splice junctions (61%).

In addition, imposing a filter of 10 counts, we eliminate most of the ReT-

exclusive transcripts and made the number of transcripts and genes detected by

the two mapping approaches similar (Figure 3.12.D). Note that a minimum of 10

counts is required by popular differential expression algorithms such as edgeR

[276] to remove transcriptional noise. Furthermore, the proportion of genes with

multiple transcripts was almost identical for the PbT and the ReT at this 10

count threshold (Data not shown). We concluded that, at reasonable sequencing

depths for long and short-reads technologies (2M and 60M, respectively), the

PacBio transcriptome still captures nearly 90% of the transcriptional signal that

Illumina would find, is able to rescue transcriptional diversity not yet annotated by

the reference databases, and dramatically reduces the calls of transcripts with

very low expression levels that could be at the limits of accurate quantification.

3.4.7 Novel transcripts have a major impact on the accuracy of
transcriptome quantification by short reads

In order to investigate how the magnitude and nature of the transcriptome af-

fects quantification, we compared the quantification results when using a re-

duced transcriptome (our curated PacBio Transcriptome, PbT), and the total set

of Reference Isoforms (ReT). As explained in Section 3.3.2, we addressed the

evaluation of short-read quantification results by comparing the METs in each

transcriptome. The MET was the same for 3,976 genes when quantifying with

PbT and ReT. Interestingly, this was not the case for 1,433 genes, 996 of them

showing a PbT MET transcript already present in ReT but not quantified as MET.

For example, the signal peptidase complex subunit 2 gene (SPCS2) was ex-

pressed as one transcript in our PacBio neural transcriptome (PB.6460.1) and

had two transcripts in ReT quantification (NM 025668 and XM 006508117) (Fig-

ure 3.13.A1). PB.6460.1 is a FSM transcript of NM 025668 and both codify for
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the PI-ORF of the gene (ORF associated to the transcript defined as princi-

pal isoform by APPRIS [277] based on its functional load) but the 3’ exon of

PB.6460.1 is smaller, resulting in a 3’ UTR shorter by 1,340 nucleotides, (Figure

3.13.A1, red dashed box). This shorter 3’ exon is actually the annotated exon

of the RefSeq transcript, XM 006508117, which also uses two alternative 5’ ex-

ons. XM 006508117 was the MET in the ReT quantification while NM 025668

was estimated as poorly expressed (Figure 3.13.A2). Upon RT-PCR amplifica-

tion with transcript discriminating primers we confirmed the PbT and not the ReT

based quantification scheme (Figure 3.13.A3). When inspecting read coverage

at this locus we observed that neither the unique 5’ junctions of XM 006508117

nor the extra exonic sequence at the 3’exon of NM 025668 were covered by Il-

lumina short reads, while the short-read pattern nicely fits the PacBio transcript

model (Figure 3.13.A1). We speculate that this variability at the 3’UTRs creates

a conflict when resolving transcript quantification in the RefSeq gene model that

was decided in favour of transcript XM 006508117 by RSEM, as this transcript

has a more consistent 3’ end coverage. In summary, the transcript quantification

error of the SPCS2 gene when using a reference transcriptome as mapping tem-

plate was due to a discrepancy in the 3’ end annotation between the reference

and the actual expressed transcripts. Similar disagreement patterns were ob-

served for two additional genes, DHRS7B and BDKRB2 with similar outcomes

in terms of MET selection (data not shown).

To estimate how general this pattern was, for all the Mayor Expressed Tran-

script (MET) discrepant genes, we investigated the RefSeq curation status. The

majority of the discrepant genes (57.2%, n = 470 genes) corresponded to situ-

ations where the PbT MET was a FSM of a manually curated RefSeq transcript

and the ReT MET was not manually curated, as in the case of SPC2 gene. Fur-

thermore, in these cases, the RefSeq-based MET had significantly worse lowest

splice junction coverage and lowest mean exon coverage than the MET called

by the PbT quantification (Figure 3.13.B-C). Similarly to SPCS2, we found that,

for these 470 genes, the differences in the length at the 3 end between the MET

selected at PbT quantification and their matched RefSeq transcripts were signifi-
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cantly higher than in genes where both quantifications selected equivalent METs

(Figure 3.13.D). Moreover, these differences were also observed for transcripts

codifying for the PI-ORF of the genes, indicating that the extensive variability in

the 3’ ends that is not annotated in a global reference such as RefSeq is not

only restricted to secondary/alternative transcripts. These results demonstrate

the relevance of using a full-length reference transcriptome updated with novel

expressed transcripts for correct quantification estimates.
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Figure 3.13: Quantification problems caused by 3’ UTR variability. A. SPCS2 gene
as an example of how 3’ UTR variability in a PI-ORF leads to quantification errors.
A1.Transcripts associated with the SPCS2 according to PacBio sequencing (green), Ref-
Seq quantification (red), and the short-reads mapping profile at the SPCS2 locus (grey)
are shown. The positions of transcript-specific primers are indicated by arrows and dif-
ferences at the transcription termination sites are highlighted by a red dashed box; 0
indicates splice junctions lacking any short-read support. A2. Expression level of the
SPCS2 variant in the OPC condition. A3. Validation of SPCS2 transcript expression
by RT-PCR. PB.6460.1/NM 025668 were amplificated but XM 006508117 was not. B-D.
Characterisation of genes expressing different METs in the PbT and ReT transcriptomes.
B. Lowest SJ coverage by short reads in MET genes. C. Lowest mean exon coverage
by short reads in MET genes. D. Distance between the TTS of the MET genes and their
FSM references. (***) P < 0.001, (ns) not significant.



76
3. EXTENSIVE CHARACTERIZATION AND QUALITY CONTROL OF LONG-READ

SEQUENCING TRANSCRIPTOMES

3.4.8 Open reading frame prediction in long-read defined transcrip-
tomes

The availability of a full-length corrected and curated transcriptome allows us to

predict ORFs with high confidence while also annotating the 3’ and 5’ UTRs.

GMST ORF prediction in our curated long-read neural transcriptome generated

9,269 non-redundant ORFs in a total of 10,813 coding transcripts (90.3% of the

total transcripts). Most FSM, NIC and NNC transcripts were predicted to have

ORFs (97%, 90%, 87.8% and 92.8%, respectively), while the remaining cate-

gories were mostly non-coding. To evaluate ORF prediction results, we selected

FSM, ISM and 3’UTR fragment subsets representing variants already annotated

in reference transcriptomes. The comparison between predicted and reference

coding status revealed a very high true-positive rate and a low true-negative rate

for the FSM and ISM subset (Table 3.4). These results are in agreement with

the protein-coding transcript enrichment performed in the polyA purification step

and demonstrates the capacity of GMST to predict the coding region when the

isoform has coding potential. Besides, the high FN ratio observed in the 3’ UTR

fragment subset also suggests that ORF predictors are specific because ORFs

in regions devoid of coding potential such as 3’ UTRs cannot be predicted (Table

3.4).

Coding Non Coding Coding Non Coding Coding Non Coding

Coding 93.7% 1.2% 86.1% 8.4% 18.3 % 80.2%
Non Coding 3.3% 1.8% 3.9% 1.6% 0% 1.5%

FSM (7,899 Iso) ISM (1,392 Iso)

Reference

Predicted Predicted Predicted

3'UTR Fragment (339 Iso)

Table 3.4: Confusion matrices evaluating coding prediction across FSM, ISM and UTR3
fragment transcripts.

Moreover, to assess the quality of predictions we compared the protein se-

quence of true positive cases against their cognate references (Figure 3.14.A):

for the FSM subset we found 90.5% of ORFs identical to the reference pro-

tein and 7.8% showing a shorter N-Terminus. Instead, for ISM category, just

14.8% of ORFs were identical to the reference protein and remarkably 55%
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showed a shorter N-Terminus and 21.6% had a shorter C-Terminus, certifying

their fragmented status. Actually, comparison of the size of the N-Ter deletions

between FSM and ISM ORFs classified as N-Ter Deletion reflectes that, when

present, the shortening of the N-Terminus was much smaller in FSM ORFs (Fig-

ure 3.14.B). Finally, the 3’UTR fragment subset were highly enriched in pre-

dicted ORFs with major changes (exceeding 70%) or which do not aligning

with the matched reference ORFs (30%), indicating that they are enriched in

non-coding retrotranscription/degradation fragments. Our results demonstrate

that the GMST algorithm can accurately predict the coding sequence in full-

length sequenced isoforms and provide true partial coding sequences in cases

of partially-sequenced isoforms.
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Figure 3.14: ORF predictor benchmarking. A. Types of differences between predicted
ORFs and matched reference ORFs. B. Size of N-Ter deletions for FSM and ISM tran-
scripts.

3.4.9 Open reading frame diversity generated by novel long-read
defined isoforms

Most of the novel transcripts from the mouse neural transcriptome belong to

existing genes (98%). We studied to what extent alternative splicing modifies

both coding and non-coding regions of transcripts, and how it impacts the PI

of the gene. Approximately, 36% of the genes expressed in our system were

multi-isoform genes; of these, 1836 expressed the transcript corresponding to
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the gene PI and in 592 cases (32%), the PI isoform (57%) was expressed with

multiple, distinct UTR regions. Transcripts corresponding to predicted alternative

ORFs were expressed in 1,429 genes and in contrast, the UTRs of these non-PI

transcripts were much less variable, with only 9% of them showing multiple 3’ or

5’ UTR variants. Hence, our neural transcriptome shows a significantly higher

regulation of UTRs in PI ORFs than in alterantive ORFs, suggesting that further

transcriptional regulation of alternative forms might not be required to modulate

their functionality.

Finally, evaluation of protein differences in our set of curated transcripts re-

garding the PI of the gene showed that most of the predicted alternative (Alt-

ORF; n = 2127) and novel ORFs (Novel-ORF; n = 1194) are distributed between

N-terminal truncations (around 37% for both categories) and major changes

(around 53% for both categories) with an enrichment of microexons differences

in Alt-ORFs regarding to Novel ORFs (12% vs 3%, respectively).
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3.4.10 SQANTI tool

Given the success of the strategies we followed in this work for the in-depth

characterisation and curation of long-read transcriptomes, we decided to imple-

ment our analysis into an easy-to-use python tool called Structural and Quality

Assessment of Novel Transcript Isoforms (SQANTI). SQANTI is implemented in

Python with calls to R for statistical analyses and to generate descriptive plots.

SQANTI has two major functions: sqanti quality control and sqanti filtering (Fig-

ure 3.15).
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Figure 3.15: SQANTI workflow. SQANTI comprises two main functions: sqanti qc.py
uses a FASTA file with transcript sequences, the reference genome in FASTA format,
a GTF annotation file, and optionally, full-length and short-read coverage files as in-
puts. It returns a reference-corrected transcriptome, two characterisation files contain-
ing structural classification, transcript and junction-level quality descriptors, and a final
QC graphical report. sqanti filter.py uses the reference-corrected transcriptome and the
transcript-level attributes file and returns a matching learning-curated transcriptome from
which artefacts have been removed.
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3.4.10.1 SQANTI quality control

The SQANTI inputs are: a transcript dataset (in gtf or fasta file formats), a

genome annotation, and a genome sequence, and it returns a reference-corrected

transcriptome and a wide set of transcript and junction attributes in two tabulated

text files.To correct transcriptomes, SQANTI aligns sequences to genome refer-

ences using the GMAP algorithm [370] to obtain a gtf file and a subsequent fasta

file and avoiding indels along the exons defined by the alignment step.

A fundamental goal of long-read transcriptome sequencing is to capture the

extent of transcriptome complexity while still obtaining full-length transcripts.

Thus, SQANTI includes metrics to readily study these aspects as well as to pro-

vide a deep classification of transcripts by comparing input isoforms to reference-

gene models (Figure 3.2).

Furthermore, QC evaluation of transcripts is sometimes essential to the de-

tection of anomalies in the data or reconstruction pipelines. Thus, all the QC

descriptors mentioned and described during this chapter are evaluated and pro-

vided along with the SQANTI output files. Appendixes 1 and 2 list the set of

descriptors computed by SQANTI at the transcript and junction levels. These

files contain 33 and 20 fields, respectively; the first three fields identify the tran-

script in the reference genome and the remaining fields describe different tran-

script/junction properties, making a total of 47 SQANTI descriptors.

Moreover, different options can be set to allow users to adjust the evaluation

to suit their needs; examples of these options include: the SJ sequences that

SQANTI considers as canonical, the size of the genomic DNA window screened

for adenine content downstream of TTSs, and alignment parameters. Moreover,

extra data can be provided as input so that SQANTI provides an even more ex-

tensive QC analysis. These optional inputs that can be useful in the assessment

of quality of the tested transcriptome include FL number, junction coverage, and

expression quantification data (Figure 3.15).

Thus, in summary, SQANTI QC is implemented in a function called sqant qc.py

which performs the following tasks: (1) transcript sequence correction based

on the provided reference; (2) comparison of sequenced transcripts with the
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current genome annotation to generate gene models and classify transcripts

according to SJs; (3) ORF prediction using GMST [30]; (4) prediction of RT-

switching events; (5) QC characterisation via the analysis of several transcript

and junction-level attributes.

3.4.10.2 SQANTI filter

After reference-guided error correction, artefacts may still be present in the re-

sulting transcriptome. SQANTI removes potential artefact transcripts by apply-

ing a ML classifier based on the SQANTI features generated beforehand (Figure

3.15). The definition of the true and the artefact sets can be provided by the user

when a set of reliable sequences known to be true isoforms and another set of

sequences known to be artefacts are available. If not, SQANTI infers these

sets by defining FSM transcripts as the positive set and NNC transcripts with

at least one non-canonical junction as the negative set. The ML filter trains a

Random Forest classifier based on the user’s data and following the strategy

described above. Hence, SQANTI returns a curated transcriptome from which

artefact transcripts have been removed. The SQANTI filter also includes an op-

tion to discard transcripts flagged as intra-priming candidates (60% adenines at

the genomic 3’ end of isoforms) and the curated transcriptome obtained can be

evaluated by using the SQANTI QC function to verify the improvement in qual-

ity parameters. The SQANTI filter has been implemented in a function named

sqanti filter.py which uses sqanti qc.py output information to perform filtering of

potential artefacts.

3.4.10.3 Diagnostic plots

SQANTI provides a graphical report generated by R that shows the different

evaluated attributes which helps the user to understand the quality and char-

acteristics of the transcriptome, including the distribution of transcript lengths,

expression levels, number of exons, the position of junctions, full-lengthiness,

and other quality features such as the proportion of non-canonical junctions,

evidence of RT switching, and junction coverage by short reads. In addition,

SQANTI provides most of these graphs with a transcript category breakdown
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in order to facilitate quality assessment of the transcriptome obtained by sin-

gle molecule sequencing. SQANTI is available at https://bitbucket.org/

ConesaLab/sqanti.

3.4.11 Generalization of the SQANTI approach

To assess the general usefulness of SQANTI, we applied our approach to pub-

lic datasets from alternative organisms and long-read sequencing technologies

(Section 3.2.2).

First, SQANTI was used to analyse human (MCF7 cells) and maize (ear tissue)

PacBio datasets (Figure 3.16, A-B). Results indicated that the transcriptome

composition in these datasets was substantially similar to our observation for

the mouse transcriptome: a significant number of novel transcripts in known

genes (50.4% and 38% for MCF7 and ear tissue, respectively, Figure 3.16, A-B)

and enriched in low quality features (Figure 3.16.C-D). In each case, we ap-

plied the SQANTI filtering approach by training our ML classifier in each case

with their sets of FSM and NNC-NC transcripts using default values to remove

intra-priming events. As with the mouse data, we obtained high AUC values in

the test sets (99.3% for maize ear and 99.7% for MCF-7) and we succeeded

in removing a considerable amount of low quality novel transcripts while con-

trolling their enrichment in low quality features (Figure 3.16, C-D). Furthermore,

analysis of the importance of SQANTI descriptors for the ML classifier in these

datasets with respect to the mouse data revealed noticeable differences (Figure

3.9.A), although in general the top-ranked classification features coincided (i.e.

the top three variables were shared among datasets). For example, the number

of FL reads was not a highly ranked feature for the maize ear data, probably

because the sequencing depth of this dataset was lower and it was absent from

the MCF-7 dataset because these values were not available.

Additionally, we assessed the performance of SQANTI when using alterna-

tive long-read technologies such as Nanopore. As expected, its higher error rate

is probably the cause of the high number of NNC isoforms and exacerbated lev-

els of non-canonical junctions (28.5%) we observed with this technology (Figure

https://bitbucket.org/ConesaLab/sqanti
https://bitbucket.org/ConesaLab/sqanti
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3.17, A). In particular, unlike TSS bias distribution for ToFU PacBio isoforms, we

found a similar non-canonical distribution along transcript sequences (Data not

shown). We should remember that we hypothesize that the clustering conditions

at transcript ends in the ToFU pipeline is more permissive, thus generating this

biased positional pattern. Moreover, Nanopore data showed an exacerbated

representation of genes with more than 6 isoforms, even in novel genes (Figure

3.17, B). This is probably because there is no collapsing step to remove redun-

dancy in the Nanopore processing pipeline. Finally, the levels of intra-priming

detected for this dataset were low (Figure 3.17, C), possibly because of the dif-

ferent cDNA synthesis conditions or preprocessing/filtering read steps in PacBio.

Thus, the results of the quality assessment performed by SQANTI greatly help

to reveal the characteristics of each particular dataset.
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Figure 3.16: SQANTI performance on alternative PacBio datasets. A. SQANTI char-
acterisation of the ToFU-defined transcriptome for the MCF7 human PacBio dataset. B.
SQANTI characterisation of the ToFU-defined transcriptome for the maize ear PacBio
dataset. C. SQANTI filter results on the MCF7 transcriptome. D. SQANTI filter results on
the maize ear transcriptome. * p < 0.05, ** p <0.01, *** p < 0.001. ns = not significant.
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Figure 3.17: Quality control performance by SQANTI on Nanopore sequencing
data. A. Rate of transcripts containing non-canonical junctions across SQANTI structural
categories. B. Distribution in the number of isoforms per gene across novel and reference
genes. C. Intra-priming characterization across SQANTI structural subcategories.

Altogether, this section shows that the SQANTI QC framework is a very use-

ful tool for revealing the structural composition of transcriptomes obtained from

long-read sequencing and for evaluating quality of novel calls across different

organisms and sequencing technologies.
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3.5 Discussion

Long-read sequencing technologies, such as the PacBio platforms or Oxford

Nanopore, have brought novel excitement into the challenge of describing the

complexity of the transcriptome of higher eukaryotes by providing new means

for sequencing full-length transcript models. While early papers concentrated

on demonstrating the dramatic enrichment in full-length transcripts achieved by

long reads [296] [326], there is an increasing number of publications that de-

scribe thousands of new transcripts discovered by this technology. Accordingly,

we found that, when sequencing the mouse neural transcriptome using PacBio,

a large number of novel transcripts could be detected. However, close inspec-

tion of these new transcripts revealed signs of potential errors that required a

thorough and systematic analysis of these sequences before making any new

transcript calls. This motivated the development of SQANTI, a new software for

the structural and quality analysis of transcripts obtained by long-read sequenc-

ing.

The three basic aspects of the SQANTI QC pipeline are (1) the classifica-

tion of transcripts according to the comparison of their junctions to a reference

annotation in order to dissect the origin of transcript diversity, (2) the compu-

tation of a wide range of descriptors to chart transcript characteristics, and (3)

the generation of graphs from descriptors data, frequently with a transcript-type

breakdown, to facilitate interpretation of the sequencing output and reveal po-

tential biases in the novel sequences. Using this analysis framework, we were

able to show that, at least in our mouse experiment, novel transcripts - especially

those in the NNC category - are typically poorly expressed transcripts of known

genes, consistent with previous reports [296][319][320]. We also observed that

novel junctions accumulate at the 5’ end of transcripts, have lower coverage by

Illumina reads, and are enriched in non-canonical splicing and direct repeats

typical of RT switching.

However, none of these features are exclusive of any of the novel transcripts

categories, which invites the question on how best to remove transcript artifacts.

This has been solved in the past by either eliminating all novel transcripts with at
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least one junction not supported by short reads [296], by systematically discard-

ing transcripts with noncanonical splicing [13], or by developing models to esti-

mate the likelihood of a certain splicing event [1]. In our case, we performed an

extensive PCR validation of transcripts belonging to different known and novel

types. We found a significant number of transcripts, both with canonical and

noncanonical junctions, that had complete junction support by Illumina and that

were amplified by RT-PCR of the sequenced cDNA library but that failed to be

validated when PCR conditions were adjusted to avoid secondary RNA struc-

tures. We concluded that these might be cases of retrotranscription artifacts,

which would have escaped filtering solely based on short-read support. This

result may suggest that a revision of library preparation protocols is needed,

which goes beyond the scope of this study. As an alternative, we were able to

combine our set of SQANTI descriptors with a machine learning strategy to build

a filter that discards poor quality transcripts with better performance than alter-

native existing approaches. Moreover, the SQANTI filter is data-adaptive, and

we showed that it can be successfully applied to other long-read transcriptomics

datasets and technologies.

Thereby, SQANTI is designed to leverage genome annotation data to charac-

terize and filter long-read transcriptomes. Where no genome is available or the

assembly is low-quality, reference-guided correction of transcript sequences will

be compromised and therefore also the accurate translation into ORFs. If, addi-

tionally, the gene content annotation is poor, this will impact SQANTI transcript

classification, leading to enrichment in novel isoforms and genes. In these con-

ditions, it might be difficult to define robust FSM positive and NNC-NC negative

training sets for the SQANTI classifier: the first set, because of the low num-

ber of known transcripts, and the second, because of poor correction of PacBio

sequences. Subsampling experiments showed that 150-200 training set tran-

scripts would be sufficient to obtain comparable performance to that in 6.3.B,

indicating that the SQANTI filter can be used confidently even when reduced

training sets are available. Furthermore, the SQANTI set of quality descriptors

will be extremely useful in these cases, as they will provide a comprehensive
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characterization of the quality of the transcript calls in situations where little ad-

ditional data is available. Finally, note that SQANTI is agnostic to the sequencing

technology that generated the transcripts and can accept transcript sequences

from other long-read approaches such as Nanopore and Moleculo (Illumina syn-

thetic long-read technology). Obviously, the results of the quality assessment

will vary as a function of the characteristics of the underlying technology.

The fundamental advantage of single-molecule, long-read technologies over

short reads is their direct detection of full-length isoform diversity including novel

transcripts. The availability of a curated full-length transcriptome data set of

our mouse neural tissue allowed us to explore these aspects confidently. We

found 2,058 novel transcript isoforms, representing 17% of total transcriptome

and most of them falling within reference genes, revealing the relevant tran-

scriptional signal hidden by reference gene models and highlighting the need of

long-read sequencing for whole transcriptome definition in tissues with extensive

post-transcriptional programs as brain.

We also show how high variability at transcript ends is a source of quantifica-

tion errors that can be alleviated when an expressed full-length reference tran-

scriptome is used. Our data suggests that unannotated alternative polyadenyla-

tion events are frequent in mammalian genomes, which, in turn, induce incorrect

quantification estimates. Full-length sequencing of the expressed transcriptome

readily identifies this 3-end diversity to provide the correct templates for tran-

script quantification. On the other hand, variability at the 5 end is still an is-

sue for full-length transcriptome sequencing, as biological variability cannot be

unequivocally differentiated from technical artifacts in cDNA library preparation

protocols. The SMARTer protocol typically used in PacBio sequencing may not

always capture the full extension of the 5’ ends due to transcript degradation or

incomplete retrotranscription. This may account for the lack of 5’-end coverage

observed in FSM and ISM transcripts. Trapping of the 5’ CAP prior to the syn-

thesis of the secondary cDNA strand has been shown to increase the overlap

of the 5 end without seriously compromising the yield of long reads [43] and in
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the future may represent the preferred form of library preparation to study 5-end

diversity.

In conclusion, the results presented in this chapter indicate that long-read

technologies, as any other large-scale genome technology, are subjected to the

accumulation of false positives if proper quality evaluations are not established.

However, provided adequate quality control, long-read technologies are effective

tools for the characterization of isoform-resolved transcriptomes, the accurate

estimation of isoform expression as well as enhancing the study of the biological

significance of isoform diversity. Due to effectiveness of SQANTI to maximize

the analytical outcome of long-read technologies and deliver quality-evaluated

transcriptomes, PacBio recommends it as the standard quality control tool for

best practices to analyse Iso-Seq data.



Chapter 4

In-silico annotation of
isoforms with functional and
regulatory features
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4.1 Introduction

Functional profiling is by far the most widely adopted genome-wide approach

for those interested in characterising the functional relevance of gene expres-

sion regulation [64]. This has been possible by the availability of structured and

precisely vocabulary describing the functional properties of gene products such

as Gene Ontology (GO) [10], the Kyoto Encyclopedia of Genes and Genome

(KEGG) [158][159][160] or Reactome [98]. Despite these resources currently in-

clude rich annotation for most model species, functional entries are still recorded

at the gene level. Thus, even though both AS and APA mechanisms have

emerged as central mechanisms of proteome and transcriptome diversity and

playing a key role in lineage determination, cell differentiation or tissue devel-

opment [18][52], current gene-centric annotation information impedes to study

the functional consequences of differential splicing in specific contexts and con-

ditions of interest. Therefore, there is a great need for databases and methods

that provide isoform-resolved functional information of gene products.

Trying to cope with functional annotation at isoform resolution, a series of

prediction methods have recently appeared [191], [199] [239] [91]. Unlike gene

function prediction, computational methods for predicting isoform function are

limited by the little functional information available at the isoform level, which

makes traditional supervised learning algorithms such as Bayensian networks

not directly applicable [190]. Thus, alternative approaches such as the Multi-

ple Instance Learning (MIL) [41] have been recently adopted to deliver isoform-

resolved function based on GO terms by mining multiple mouse and human

RNA-seq datasets. However, these methods are limited by: (1) the lack of

isoform-level gold-standard functional annotation, hindering the evaluation of

prediction results and limiting the accuracy of these methods [192]; (2) their

high sensitivity to the initial isoform labels inherited from their host genes [199];

(3) the need of large datasets to increase the applicability and reliability of these

methods, given that most isoforms are known to be tissue- or developmental-

stage specific [94] [374] and their number is steadily growing as the result of ap-

plication of long-read technologies; (4) the high dependency of these methods
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on the complexity of the gene annotation reference being used (e.g. RefSeq,

GENCODE, Ensembl, etc).

Moreover, genome-wide studies indicate that alternative exons do not radi-

cally change or disrupt the function of gene products [351][280] but they do intro-

duce elements that modulate properties such as its enzymatic activity, binding

or stability. Hundreds of experimental validations have demonstrated that almost

all aspects of protein functions are influenced by alternative splicing [165][304],

making the traditional GO annotations not granular enough to characterise the

functional properties that differentiate isoforms.

In that direction, UniprotKB [66] annotates a large set of functional domains,

motifs and topological regions along protein sequences. UniprotKB is biased

towards the annotation of canonical isoforms and fails to capture the divergence

between isoform proteins. In contrast, the APPRIS [278][277], ASPicDB [205],

VastDB [311] databases provide important resources of isoform-resolved func-

tional information by annotating structural information, domains, transmembrane

regions or intracellular location for the different protein isoform sequences de-

fined in reference databases. Nevertheless, the annotation in both these re-

sources is highly biased towards capturing protein-level differences and ignore

how AS/APA mechanisms impact the accumulation of regulatory elements in

mRNA UTRs to control essential properties as stability, translational efficiency or

localization of mRNAs [206][287][151][182][7]. Moreover, the applicability of all

these databases, including ASpedia [147] is limited because they are restricted

to the annotation of reference gene products in a few range of organisms as

human or mouse. Thereby, they cannot cope with the dynamics of the transcript

novelty being identified by current sequencing technologies, both in model and

non-model organisms [52] [347] [1].

In this chapter we detail the development of IsoAnnot, a new pipeline for the

functional characterization of isoforms which relies on the annotation of isoforms

as a combination of domains, motifs and functionally relevant sites. IsoAnnot

considers an extensive variety of functional properties, both at RNA and protein
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level, to capture the widest possible range of the functional divergence originat-

ing by AS and APA mechanisms. The main advantage of IsoAnnot is its ability

to annotate splicing variants based on sequence, thus eliminating the need for

large experimental datasets and increasing the scope of the method to annotate

novel isoforms obtained from long-read sequencing, both from model and non-

model organisms. IsoAnnot provides a dynamic pipeline to extensively annotate

isoforms by integrating multiple state of the art sequence predictive tools and

are complemented with functional information collected from databases such as

UniprotKB and PhosphositePlus, adding experimentally validated elements to

our annotation.
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4.2 IsoAnnot pipeline

The IsoAnnot pipeline (Figure 4.1) was developed to populate splicing isoforms

with rich functional information at the RNA and protein level. Importantly, all

the functional labels annotated at isoform variants are defined by protein/RNA

coordinates which enables the direct mapping of splicing events to functional

elements. IsoAnnot is a pipeline comprising several modules that integrate

annotations derived from experimentally validated information stored in public

databases and tools based on sequence-prediction.

4.2.1 Input data

IsoAnnot requires three unique pieces of information as input data (Figure 4.1):

1. Isoform sequences, either de novo or from reference databases.

2. The predicted or reference ORF sequence associated with query isoforms

in order to annotate functional labels at the coding part of isoforms.

3. Gene Models in GTF format so that functional information from public

databases can be transferred and for the prediction of nonsense-mediated

decay (NMD).

4.2.2 Functional annotation at transcript isoform resolution

Untranslated regions (UTR) of mRNAs play crucial roles in the fate of mRNAs

by the presence of cis-regulatory elements and the availability o binding sites

for RNA-binding proteins (RBP) and microRNAs [206][287][151][182][7]. Hence,

annotation of isoform-especific regulatory elements becomes essential to char-

acterize the functional properties of UTRs and facilitate the understanding of the

influence of APA/AS mechanisms in mRNA fate. IsoAnnot implements differ-

ent approaches to generate extensive annotation of RNA regulatory features at

isoform resolution (Figure 4.1).
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Figure 4.1: Overview of the IsoAnnot pipeline. Isoform-resolved functional annotation
is generated by individual interrogation of isoforms using a wide range of methods that
generate functional labels at the transcript and protein level.
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4.2.2.1 Cis-acting UTR regulatory elements

During last decades, specific functional and regulatory elements at UTR regions

have been identified and characterized. Different databases have comprehen-

sively gathered this information and several tools have been developed to an-

notate them at input RNA sequences. Among them we find RegRNA 2.0 [46],

AURA2 [71], AREsite2 [99], UTRsite [252], UTRscan [208] and ScanForMotifs

[24], each of them involving a different set of regulatory elements. The ScanFor-

Motifs tool was implemented to identify 3’ UTR motifs and UTRsite and UTRscan

were used to annotate 5’ UTR motifs in the IsoAnnot pipeline. Both are based

on the definition of regular expressions and position-frequency matrixes to iden-

tify regulatory signals inside query sequences. Positional motifs along isoform-

defined UTRs were parsed from output files and assigned independently to each

individual splicing variant by IsoAnnot. In the case of ScanForMotifs, a back-

ground expectation cut-off (E-value) of 0.175 was used to filter out motifs with a

high probability of appearing by chance in a test set of human UTRs [24]. UTR

motifs were filtered according to the studied organism. Predicted 3’ UTR and 5’

UTR elements were labeled by IsoAnnot as two independent annotation layers

namely 3UTRmotif and 5UTRmotif, respectively.

4.2.2.2 Upstream open reading frame prediction

Upstream Open Reading Frames (uORFs), located in the 5’ UTR of mRNAs,

are another mayor category of post-transcriptional gene expression regulatory

elements. Furthermore, several experimental and bioinformatics studies have

revealed that almost half of human transcripts contain uORFs [330][19] and that

they are also a common control element in plants [321][342], thus, indicating a

conserved functional role. They are usually catalogued as translational repres-

sors because they impact expression of the primary ORF (which encodes the

main functional protein) by promoting mRNA decay or decreasing its translation

rate.

uORFs are defined as sequence elements with an initiation and a termi-

nationcodon in frame and upstream of the primary ORF. IsoAnnot uses the
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UTRscan tool [208] to annotate uORFs by prediction of ORFs (setting ATG as

start codon) at 5’ UTR regions of query transcripts. Hits are classified into uORF

annotation category.

4.2.2.3 Repeats and low-complexity elements

Repetitive DNA is a mayor component of eukaryotic genomes. Its regulatory

role in transcriptomes has recently been revealed by different studies. As ex-

ample, Chen et al.reported the gene silencing control effect of a pair of inverted

Alus (primate-specific retrotransposed elements) located in the 3’ UTR of EGFP

transcripts [50].

To account for the functional impact generated by the presence of repeat re-

gions across splicing variants, we implemented RepeatMasker [314], the most

commonly used program to search for repeats and low-complexity regions in ge-

nomic sequences. It provides a detailed report with information about the nature

and the location of each identified repeat within the input sequences. Default

cutoff (250) and sensitive mode were specified to guarantee a low proportion of

false matches. RMBlast algorithm (http://www.repeatmasker.org/RMBlast.html)

was chosen as the search engine to perform the identification of repeats and

RepBase database [16], version 20140131) as the repetitive DNA elements ref-

erence library. RepBase covers over a hundred model organisms and species

of interest including mammalian organisms and plants. Repeat elements were

categorized as repeat and subdivided into different groups depending on their

repeat class or family (low-complexity, LTR, SINE, Simple Repeat,etc).

4.2.2.4 miRNA binding sites

MicroRNAs (miRNAs) are trans-acing elements that post-transcriptionally regu-

late gene expression by mainly promoting mRNA degradation [14][128]. They

are non-coding single-strand RNA molecules (20-25 nt long) which interact with

target mRNAs by continuous base-pairing, usually at 3’ UTRs [100]. Binding

sites are denote as seed regions and are located in position 2-7 from 5’ end

of the miRNAs. Recent experiments have brought new insights into the modu-

lation of pairing affinity based on positional matching and secondary structure



98
4. IN-SILICO ANNOTATION OF ISOFORMS WITH FUNCTIONAL AND REGULATORY

FEATURES

and these have been used as rules for the development of predictive algorithms.

Thus, currently we find plenty of algorithms that provide miRNA-mRNA inter-

actions based on sequence, physical-chemistry properties or expression levels

[310], including DIANAmicroT [241], miRanda [97], miRDB [368], miRMap [334],

miRNAMap [146], Pictar2 [174], PITA [167], RNA22 [209], RNAhybrid [176] or

Targetscan [2][187]. Moreover, different databases, such as miRWalk [90][307],

miRecords [373], TarBase [293], miRTarBase [57] and starBase [189], collect

experimentally validated miRNA-mRNA interactions.

However, despite the efforts to collect and predict miRNA binding sites, the

miRNA-target annotation remains challenging because of the few number of

experimentally validated interactions and the high number of false positives pro-

duced by sequence based predictors. Furthermore, there is a lack of consensus

among existing predictions meaning that there is very little correlation between

predicted interactions. Moreover, the different nature of rules and scoring sys-

tems used to measure the probability of binding further complicates their com-

parison [310].

Because no method has proven preferential performance [310], several unions

and intersections between different sources of miRNA binding information has

been proposed as a way to improve prediction specificity and sensitivity [293]

[177]. A comparison of prediction algorithms by Sethupathy et al. showed that

the intersection of results from five different algorithms produced the highest

(66.7%) specificity values [293]. Another relevant drawback of several current

sources of miRNA binding sites is their lack of comprehensive information about

the location of the miRNA seed region in the targeted mRNAs, which is obli-

garoty for IsoAnnot annotation so that microRNA binding sites can be associ-

ated with specific splicing or APA events. Moreover, although recently high-

throughput RNA sequencing experiments have led to the definition of a large

set of miRNAs, the evidence for some of these flagged miRNAs is dubious

[355][134][36], meaning that they must be followed up in subsequent control

steps.
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To address these problems, we defined an isoform-resolved miRNA binding

annotation approach that considers:

1. Several sources of miRNA binding information to intersect results.

2. A microRNA binding site source with information about transcript coordi-

nates.

3. Data about miRNA evidence.

The approach comprises on four steps:

(a) Collecting miRNA binding data. The IsoAnnot miRNA binding approach

relies on the mirWalk2.0 database [90], whose predictions are derived from

several algorithms: miRWalk, Microt4, miRanda, mirbridge, miRDB, miRMap,

miRNAMap, Pictar2, PITA, RNA22, RNAhybrid and Targetscan. Moreover, miR-

Walk2.0 implements its own predictor, mirWalk, which provides positional in-

formation about the seed inside the predicted mRNA target. We downloaded

sequence-miRNA interaction information for the total set of annotated genes for

each the organism of study. A minimum seed length of 7 bp and a p-value

threshold of 0.05 were set as requirements to call miRNA binding sites.

(b) miRNA-binding site filtering: Following previous evaluations [293] [177],

we applied a filtering approach for miRNA binding sites based on the number of

sources reporting the association. This intersection method allow to decrease

the false positive rate and thus, increase the sensitivity. For a mRNA-miRNA

interaction to be reported, the association had to be predicted by a minimum

of 5 methods which had to include Targetscan, miRanda, and mirWalk, the last

one providing transcript coordinate information for miRNA binding sites. For ex-

ample, in mouse this approach reduced by 92% the number of binding sites

reported by 12 prediction methods, going from 33,298,719 to 2,480,531 associ-

ations.

(c) Control of miRNA evidence: MirBase [173], a searchable database of

published miRNA sequences and annotations, is currently the most complete
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database of precursorand mature miRNAs. Each miRBae entry represents a

hairpin portion of a miRNA transcript, with information on the genome location

and sequence of the mature miRNA sequence. All miRBase entries requires an

associated publication despite the criteria for calling miRNAs entries can be dif-

ferent. For that reason MirBase annotates the experimental evidence level (non-

experimental, cloned, Northern, qPCR, RAKE, miRNA-seq, etc) to each miRNA

entry. We parsed the miRBase database in order to define our set of high con-

fidence miRNAs by including only those entries with the following experimental

evidence: cloned, Northern, PCR, RT-PCR, qRT-PCR, 5’RACE, RTPCR, in-situ,

qPCR, miRAP cloned, 3’RACE, insitu, RACE, miRAP, primer-extension, RAKE.

Hence, the miRNA information returned from miRWalk2.0 was filtered according

to its miRNA confidence level.

(d) Genomic annotation of binding sites: Transference of miRNA binding

sites from source to query isoforms is performed by genomic mapping, ensuring

seed-region conservation in the 3’ UTR region of the query isoforms. As miRNA-

mRNA interaction sites are provided by mirWalk2.0 in transcript coordinates, we

mapped them to genomic coordinates based on the exon-intron information from

the mRNA template. MiRWalk2.0 also uses gene models from RefSeq version

61 as reference templates for the annotation of miRNA binding sites, and so

RefSeq 61 sequences and associated exon coordinates were downloaded and

used to obtain genome positional information for each reported miRNA binding

site, conserving strand and gap alignment information from the seed mapping.

(e) Isoform-specific transference: Finally, the transfer of miRNA binding

sites to query splicing variants is performed by using the genome-coordinate an-

notation generated in the previous step. Only complete, contiguous and strand-

specific matches of the seed region in the query isoform are annotated by IsoAn-

not. The miRNA binding sites are annotated in the final IsoAnnot output file as

miRNA binding site elements.
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4.2.2.5 RNA binding protein binding sites

RNA binding proteins (RBPs) are trans factors that bind to pre-mRNAs, and

play essential roles in the fate and metabolism of RNA, controlling processes

like transport, AS, RNA editing, polyadenylation, stabilisation, and localisation

[198][119]. To study the differential targeting of RPB on transcript variants and

their regulatory and functional implications, IsoAnnot incorporates data from

crosslinking immunoprecipitation (CLIP) sequencing, a technology widely used

for the transcriptome-wide identification of protein binding sites on RNAs [171].

We collected CLIP information data from CLIPdb [378], a public resource that

stores more than 426 CLIP datasets from 119 different RBPs in four different

organisms (mouse, human, worm and yeast) and several tissues. Data is gath-

ered from public repositories such as the Gene Expression Omnibus (GEO), the

National Center of Biotechnology (NCBI) and the European Nucleotide Archive

(ENA) from the European Bioinformatics Institute (EBI). Each CLIP dataset is

provided already analyzed by two alternative peak calling methods (Piranha,

Paralyzer, CIMS, CITS), whose choice depends on their specificity to the CLIP

technology used to generate the data (PAR-clip, HITS-CLIP or iCLIP).

Before mapping RBP binding sites to the IsoAnnot query sequences, we

assessed the quality of the data stored in CLIPdb. Characterisation of the RBP

binding patterns across replicates showed poor binding-site agreement as well

as high variation in the number and location of detected binding sites, which was

dependent on the peak-identification approach used (data not shown).

Given these limitations, we also considered the use of RBP binding site pre-

dictors such as DeepBind, FIMO or Tess. However, evaluation of results re-

vealed a large number of hits for most of the considered RBPs (Data not shown),

which is likely due to the short and degenerate nature of RBP motifs [196].

Therefore, our pipeline for annotating RBP binding sites uses CLIP data and

comprises two main steps:

(a) Curation of data from the CLIP database: To remove potential false-

positive binding sites and improve specificity, we filtered binding sites according

to their genomic intersection across alternative peak calling tools. Based on our
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evaluation of the CLIP data (data not shown), we established a 200 bp window

as the cutoff for considering binding sites as originating from the same event.

Thus, we minimised non-overlapping events resulting from small genomic shifts

during the definition of the binding site across peak-calling strategies and gen-

erate a set of confident binding sites that reduce the impact of using alternative

programs of analysis in the final outcome.

(b) Transfer of RBP binding-sites to query isoforms: We transferred RBP

binding sites to isoforms overlapping genomic positions. As RBPs are known to

bind the pre-mRNA in order to modulate processing mRNA steps such as alter-

native splicing, binding sites falling into intron regions were also considered and

annotated. Furthermore, each mRNA-RBP association is further catalogued

based on the mRNA region it binds: the 3’ UTR, the 5’ UTR or the CDS and the

intron or the exon. RBP binding sites are annotated within the RBP binding-site

category.

4.2.2.6 Polyadenylation signals

When using sequencing technologies, the identification of PAS is essential be-

cause this allows true APA sites to be discriminated from technical artefacts

such as fragmented 3’ ends, minimizing the definition of false APA novel tran-

scripts. In mammalian systems, two different motifs are known to provide the

signals for the definition of the polyadenylation site: (1) The ubiquitous AAUAAA

element, located 20-30 nucleotides upstream of the cleavage site where the

poly(A) is added, and (2) a more variable GU-rich sequence located immedi-

ately downstream of the previous one [21] [260]. In all cases, the recognition of

these sequences by specific proteins leads to mRNA cleavage and subsequent

polyadenylation. Methods as UTRscan [208] and ScanForMotifs [24], which

make use of sequence patterns and the PatSearch algorithm [252], are avail-

able to identify PAS elements in nucleotide sequences. IsoAnnot incorporates

both methods in order to identify the position of PASs from each individual query

isoform sequence and labels this annotation category as PAS.
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4.2.2.7 Nonsense-mediated decay

Given the spread and relevant role of NMD couple to AS in the regulation of

gene expression programs across eukaryotes and their functional implication in

a wide spectrum of biological processes and physiological circumstances (See

Section 1.4.0.3), IsoAnnot predicts isoforms containing a premature termination

codon (PTC) potencially leading to NMD using the 50-NT rule [389]: a termina-

tion codon that falls more than 50-55 nt upstream of an exon-exon junction is

a general indication of a PTC while normal termination codons are largely lo-

cated in the last exon. Isoforms with PTCs will be potential to be detected and

degraded via the NMD machinery [47][195].

4.2.3 Functional annotation at protein isoform resolution

To define functional regions inside the coding region of query isoforms, IsoAn-

not takes advantage of the wide range of predictive algorithms available and

the experimental information stored in UniprotKB [66] and PhosphoSitePlus

[143] databases. However, of note, the lack of positional information associ-

ated with predicted features considerably limits the spectrum of prediction tools

that IsoAnnot can use.

4.2.3.1 Pfam domains

Pfam is one of the largest collections of protein domain families [261]. Each

Pfam entry identifies a protein family domain that is represented by multiple

sequence alignments and a hidden Markov model (HMMs). Querying a given

protein sequence in the Pfam library of HMMs allows its different structural units

and domains to be determined.

We used InterProScan5 [263], a package that combines different tools for

proteins annotation and which includes a module for predicting functional do-

mains using the HMMER3 algorithm [102] that interrogates query protein se-

quences with the Pfam HMM database of domains (Pfam version 31). Inter-

ProScan5 was run locally for each query protein to retrieve positional informa-

tion about predicted domains. In-house parser algorithms for InterProScan XML
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files were then used to collect and adapt the results to the IsoAnnot output an-

notation file, in which Pfam predicted domains were catalogued as DOMAIN

entries.

4.2.3.2 Transmembrane domains

Transmembrane (TM) domains are stretches of approximately 25 hydrophobic

residues with an occasional polar residue of integral proteins that pass across

the membrane[268] and play an important role in signalling, molecule trans-

port, energy and cell adhesion [268]. A wide range of tools for predicting TM

regions are currently available (e.g., Phobius, TMHMM, Memsat). We auto-

matically annotate these domains along every query protein isoform by using

TMHMM (default parameters) [175] - the most widely used and best-performing

tool for the prediction of TM regions [214]. These TM regions are then annotated

as TRANSMEM in the final IsoAnnot functional annotation file.

4.2.3.3 Signal peptide

Signal pepides are hydrophobic sequences found at the N-terminal of secretory

pathway proteins that promote their translocation to the reticulum membrane

[343]. Therefore, the presence of these motifs provide information about protein

localisation and their destination after synthesis. Many methods have been de-

veloped for signal peptide prediction, including SignalP, PrediSi, Phobious, and

Signal-BLAST. The IsoAnnot pipeline uses SignalP 4.0 [253] because of its high

prediction accuracy [169]. SignalP uses a neural network-based method that

allows to discriminate signal peptides from N-terminal transmembrane regions,

high hydrophobic regions, and non-contatining signal peptide proteins (cytoplas-

matic proteins). The IsoAnnot pipeline captures this signal peptide information

by locally running InterProScan5, which implements SignalP 4.0 with its default

parameters. We labeled this functional annotation layer as SignalP.

4.2.3.4 Coiled regions

The alpha-helical coiled coil is one of the principal structural subunits in proteins.

Their main characteristic is to follow a heptad repeat pattern of 3-4 residues
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whose composition and hydrophobicity is compatible with the structure of al-

pha helices. Despite their simplicity, coiled-coil motifs have been revealed as a

versatile folding motif with important roles in protein refolding processes, signal-

transducing events, molecular recognition systems and are involved in the me-

chanical stability and movement processes inside cells, among others [38].

IsoAnnot pipeline uses COILS [200] to predict protein coiled-coil regions.

COILS aligns query sequences to a database of known parallel two-stranded

coiled-coils and generates a metric that indicates the probability of a given se-

quence to form a coil structural motif by computing a similarity score and poste-

rior comparison to the distribution of scores in globular (non-coiled-coil proteins)

and coiled-coil proteins. Default parameters and local InterProScan5 were used

to ran COILS. Coiled regions were defined as Coiled-coil in the IsoAnnot output.

4.2.3.5 Disordered regions

It was recently discovered that alternatively-spliced exons are enriched in intrin-

sic disordered regions (IDRs) [62] [280] [250] [126]: protein regions that do not

adopt a well-defined conformation and have structural plasticity [331]. However,

their low evolutionary conservation difficulties their accurately prediction [331].

The IsoAnnot pipeline implements MobiDB Lite [258][224], a novel IDR predic-

tion software that combines 8 different predictors to derive a consensus pre-

diction that discriminates functional IDRs from ambiguous hits and outperforms

single methods when annotating long ID regions. InterProScan5, implement-

ing MobiDB Lite, was used to annotated IDRs along protein sequences, namely

DISORDERED in the IsoAnnot output file.

4.2.3.6 Nuclear localization signals

IsoAnnot also predicts the nuclear localization of proteins by annotating the

main elements promoting the subcellular movement to the nucleus: the nu-

clear localization signal (NLS). There have been many attempts to accurately

predict nuclear localisation of proteins. Despite several different signals have

been reported, most of prediction methods focused on the inference of the best-

characterized nuclear signal, the classical NLS (cNLS), which is recognised by
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importin-alpa [80]. cNLSs can contain one or two regions of basic amino acids

and thus are divided into monopartite and bipartite groups, respectively. How-

ever, the exact identification of NLSs in protein sequences is still a task difficult

to address due to the fact that NLSs are short and remain poorly defined, hin-

dering the design of accurate predictors [203]. Despite these drawbacks, some

NLS prediction tools have been developed, including PredictNLS [61], NucPred

[31], WoLF PSORT [144], cNLS mapper [172], NLStradamus [226]. Most of

them do not provide NLS positional information in the query protein sequence

and hence, cannot be used to associate these motifs to splicing events. Among

these tools, both cNLS mapper and NLStradamus are the only programs that

provide specific coordinates for predicted NLS motifs in proteins. However, we

discarded NLStradamus because it can only be applied to nuclear proteins and

IsoAnnot performs functional annotation of coding sequences without previous

knowledge.

Therefore, we decided to use cNLS mapper [172] in the IsoAnnot pipeline

to predict of cNLS signals. This tool calculates scores for NLS activity instead

of using the conventional similarity search or ML strategies. Following authors

recommendations, we set a minimum cutoff score of 6 to report sequences as

predicted NLSs; scores around 6 are indicators of proteins that are partially lo-

calized in the nucleus, while scores higher than 8 identify proteins with stronger

NLS activity and exclusively localized in the nucleus. IsoAnnot parses NLS map-

per output and extracts the exact localisation of each predicted cNLS signal,

recording it as NLS in IsoAnnot output.

4.2.3.7 Coordinate-based and in-frame transference of protein functional
features

In addition to prediction methods, some protein-centric databases contain a de-

tailed annotation of protein features. Their main drawback is that they are bi-

ased towards the annotation of the canonical or the best-documented isoform

and hence do not capture the the functional diversity of isoforms. Integration

of such a comprehensive set of high-quality manually annotated functional in-

formation is essential to improve the prediction of isoforms functions and their
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contextual modeling. Therefore, we added an extra layer of annotation to the

IsoAnnot pipeline to account for this by implementing a module that can assign

functional features from public databases to the set of query isoforms.

Resources of functional features

Two different sources of functional information were considered:

• UniProt Knowledgebase: The Uniprot Knowledgebase (UniprotKB) [8] is

the section of Uniprot that contains one of the main collections of functional pro-

tein information for more than 10k species. UniprotKB is divided into two sec-

tions: Swiss-Prot UniprotKB contains manually-annotated records while Trembl

UniprotKB contains computer-generated proteins enriched with automated clas-

sification and annotation data. Functional information for the representative

canonical sequence is stored in three main sections inside each protein entry:

comment lines (CC), feature table (FT) and keyword lines (KW). FT is the sec-

tion that systematically provides protein coordinates for functional information.

UniprotKB integrates the current state-of-the-art protein functional knowledge

that can be leveraged to generate a more meaningful functional labels for splic-

ing variants. Table 4.1 shows the different FT categories used for annotation in

query isoforms are shown.

• PhosphoSitePlus: Post-translational modifications (PTMs) play a funda-

mental role in the regulation of protein folding, protein targeting to subcellular

compartments and signalling. The gain or loss of PTM sites by post-transcriptional

mechanisms as APA/AS can increase their molecular versatility by affecting ei-

ther the contextual control of localisation or signaling of a given gene.

PhosphoSitePlus (PSP) [143] is the main resource dedicated to the annota-

tion of PTMs in mammalians. PSP data is mainly derived from mass spectrome-

try experiments and includes a wide range of PTM categories including glycosy-

lation, sumoylation, ubiquitination, methylation, phosphorylation and acetylation.

All of them were considered by IsoAnnot and catalogued as PTM in our output

annotation file.
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UniprotKb Section UniprotKb Subsection IsoAnnot Category Description

Regions Region REGION Region of interest in the sequence

Regions Coiled-coil COILED
Positions of regions of coiled coil within
 the protein

Regions Motif MOTIF
Short (up to 20 amino acids) sequence
 motif of biological interest

Regions Compositional bias COMP_BIAS Region of compositional bias in the protein

Regions Transmembrane TRANSMEM Extent of a membrane-spanning region

Regions Intramembrane INTRAMEM
Extent of a region located in a membrane 
without crossing it

Regions Calcium binding BINDING
Postion of calcium binding region within
 the protein

Regions Zinc finger BINDING
Position of ytpe of zinc fingers within the 
protein

Regions DNA binding BINDING
Position and type of zinc fingers within the 
protein

Regions Nucleotide binding BINDING Nucleotide phosphate binding region

Amino acid modification Cross-link BINDING
Residues participating in covalent linkage
 between proteins

Amino acid modification Modified residue PTM
Modified residues excluding lipids, 
gycans and protein cross-links

Amino acid modification Glycosylation PTM Covalently attached glycan groups

Amino acid modification Lipidation PTM Covalently attached lipid groups

Amino acid modification Disulfide bond PTM
Cysteine residues participating in covalent
 linkage between proteins

Sites Active sites ACT_SITE
Amino acid directly involved in the activity
 of an enzyme

Sites Metal binding SITE Binding site for a metal ion

Sites Binding Site SITE
Binding site for anychemical group 
(co-enzyme, prosthetic group, etc)

Sites Site SITE
Any interesting single amino acid site on 
the sequence

Table 4.1: Sequence annotations in the parsed UniprotKB database and transferred to
query isoforms by IsoAnnot pipeline. UniprotKB functional information describes regions
or sites of interest in protein sequences

As PhosphositePlus contains information only for mammalian genomes, it

will be considered by IsoAnnot pipeline when annotating mammalian proteomes.

Other databases as dbPPT for plants [54], dbPAF for animals and fungi [329] and

dbPSP for procaryotes [238] are being in process of implementation. Neverthe-

less, IsoAnnot currently considers PTM annotation for non-mammalian organ-

isms because UniprotKB provides PTM information for a wide range of available

species.
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Methodology

We obtained the information that describes protein functional features by pars-

ing UniprotKB and PhosphoSitePlus. In both cases, feature coordinates are

referenced to UniProt protein sequences. Therefore, we downloaded the Swis-

sprot, Trembl and VarSplice proteome sequences. Because we are developing

approaches to annotate query sequences without gene reference information,

the feature transference process must ensure that (1) the query and reference

proteins are translated from transcripts belonguing to the same genomic region,

and (2) that the feature protein region has a conserved location and ORF.

The first step in the approach is the genomic mapping of reference proteins to

genomic coordinates (Figure 4.2). UniprotKB does not contain information about

genomic features, but it does provide cross-reference information reporting the

association between UniProt proteins and Ensembl/RefSeq entries. Thus, we

parsed and used gene models and protein sequences from RefSeq and En-

sembl repositories together with cross-reference information in order to translate

Uniprot proteins containing functional features into genomic coordinates (Figure

4.2). However, because this step involves the integration of isoform information

from different databases (Figure 4.2), discrepancies in their isoform representa-

tion or ID matching possess significant hurdles and provoke some proteins and

features to be discarded from downstream analysis.

These discrepancies include protein differences between cross-linked UniProt

and Ensembl/RefSeq entries. We kept UniprotKB-Ensembl/RefSeq associa-

tions if the UniprotKB protein matched the protein encoded by the associated

Ensembl/RefSeq transcript and allowed a maximum of 3 nt mismatches in order

to account for genomic variability between sources. For example, in mouse, we

discarded 5% of UniProt entries due to missing cross-reference information and

7% because a lack of protein sequence matching, resulting in a total of 88%

of mouse UniProt entries translated into genomic coordinates. Next, the CDS

genomic positions of Ensembl/RefSeq transcripts were associated with UniProt

proteins in order to obtain the genomic coordinates of the containing Unipro-
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tKB or PhosphoSitePlus features (239159 unique functional features mapped to

genomic coordinates in mouse, Figure 4.2).

Functional Features location inside proteins Proteins 

UniprotKB 

Cross-reference inforrmation 

Swissprot Trembl VarSplice 

RefSeq 

Ensembl 

Proteins to genome coordinates 

PhosPhositePlus 

Feature location inside proteins to genomic coordinates 

Query 
Isoforms 

Frame-conserved transference of features to query proteins 

Functional features  

UniprotKB entry  ID             RefSeq/Ensembl ID 

Protein sequences 
+ 

Genomic coodinates 

Protein sequences 

Prtotein sequences 
+ 

Genomic coodinates 

Query Isoform 1 
 

Query Isoform 2 Query Isoform 3 

Canonical Isoform 
 

Figure 4.2: Pipeline for the isoform-resolved transference of protein functional informa-
tion contained in UniprotKB and PhosphoSitePlus resources to query isoforms, which
must to be defined by their genomic coordinates and ORF sequence.

Finally, query isoforms are interrogated for annotation with UniprotKB and

PhosphoSitePlus features by checking that feature coordinates overlap consec-

utive positions in the query CDS and that the reading frame meets. A splicing

event or APA event that either breaks the continuity of the feature or modifies the

reading frame provokes the feature to be discarded for annotation and is identi-

fied as a lost feature in the query sequence. Genomic coordinates for positive

features are recalculated according to the their position in the query sequence,

translated into protein coordinates and added to the IsoAnnot output file (Figure

4.2).

The IsoAnnot transfer pipeline is able to populate query sequences with

manually-curated features from public databases and resolve annotation at the

isoform-resolution level. The approach can be easily adapted to any other

source of protein functional features provided that genomic cross-reference in-

formation is available.
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4.2.4 Annotation of non-positional functional information

We complemented functional information at the isoform-resolution level with la-

bels that describe the processes and pathways in which those genes are in-

volved in, considering data from GO [10], Reactome [98] as well as the manual

annotation of protein complexes from CORUM 2.0 [283]. Despite these annota-

tion categories are not isoform specific because isoform resolution is limited in

source databases and thus they cannot be used to infer functional AS changes,

they contain relevant functional information to categorise genes with AS by their

participation in specific pathways or biological processes.

4.2.5 IsoAnnot output

All this functional information is stored in a gff-like file that precisely describes

the type, ID, position and source of each collected label, which facilitates com-

putational processing. Additionally, this file also contains information about the

structural characterization of isoforms (exons, CDS, UTRs), their mapping to

reference genes and proteins and their assignment to unique IDs, all of which

are essential to establish relationships between different isoforms regarding the

gene they belong to and the protein they are predicted to encode. For exam-

ple, different isoforms with identical CDS are easily identified in IsoAnnot output

since they share common CDS IDs (de novo IDs are automatically generated

for CDSs that are not annotated in reference databases and associated to novel

isoforms with identical CDSs).
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4.3 Results

The IsoAnnot pipeline was used and adapted to annotate different transcrip-

tomes depending on the studies and collaborative projects we were working

on. Both long-read defined transcriptomes and reference transcriptomes from

RefSeq and Ensembl databases were annotated at the isoform level. Morever,

even if IsoAnnot was created for the annotation of mammalian transcriptomes,

we are currently expanding it to generate comprenhensive annotation of non-

mammalian organisms. Isoform-resolved annotation results for alterantive tran-

scriptomes will be detailed ahead.

4.3.1 Functional annotation of PacBio-defined neural transcriptomes

In this thesis, we have used long-read technologies to define transcriptome com-

plexity in two different murine neural systems:

• Oligodendrocyte differentiation transcriptome (OLIGd): Following the

strategy defined in Section 3.15, we sequenced NPC and OPC samples using

PacBio Iso-Seq and pooled the results to define a transcriptome specific to the

oligodendrocyte lineage. A total of 11,970 splicing variants in 7,167 genes were

defined; 90.3% of the isoforms were predicted to be coding and 9,546 non-

redundant ORFs were obtained.

• Neural differentiation time course (NEURALtc): We induced NPCs to

differentiate into both OPCs and motor neurons (MNs), harvesting cells from

different time points and sequencing their transcriptome using PacBio IsoSeq.

This resulted in 34,104 transcript variants; 95.4% were catalogued as coding

transcripts and encoded 21,268 non-redundant ORFs.

We ran the IsoAnnot pipeline independently for both the OLIGd and NEU-

RALtc transcriptomes and generated output files which included about 1 M and

3 M elements describing functional and structural mRNA variants, respectively.

Among them, 386,114 and 1,171,622 elements represented positional func-

tional features in the OLIGd and NEURALtc transcriptomes, respectively. Ta-
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bles 4.2 and 4.3 show their respective classification into the different categories

considered by IsoAnnot at the transcript and protein levels.

Transcriptome Source Category #  Features # Isoforms 

ScanForMotifs PAS 8511 5750 (48%)

ScanForMotifs 3’ UTR motifs 11797 5325 (44%)

UTRscan/UTRsite 5’ UTR motifs 325 315 (3%)

UTRscan/UTRsite uORF 7444 3045 (25%)

RepeatMasker Repeats 19269 7245 (61%)

miRWalk/miRbase + in-house scripts 3’ UTR miRNA binding sites 106392 9474 (79%)

clipDB + in-house scripts RNA-binding sites 47821 7279 (61%)

ScanForMotifs PAS 53815 28629 (84%)

ScanForMotifs 3’ UTR motifs 39831 16873 (49%)

UTRscan/UTRsite 5’ UTR motifs 1069 1021 (3%)

UTRscan/UTRsite uORF 23983 11816 (35%)

RepeatMasker Repeats 57307 22214 (65%)

miRWalk/miRbase + in-house scripts 3’ UTR miRNA binding sites 288213 28400 (83%)

clipDB + in-house scripts RNA-binding sites 157663 22728 (67%)

OLGd                      
11970 isoforms 

7167 genes

NEURALtc         
34104 isoforms 
12563 genes

Table 4.2: IsoAnnot coverage results for features annotated at transcript level.

We found huge differences in the number of annotated elements between the

different functional layers (Tables 4.2 and 4.3). While categories such as miRNA

binding sites (3’ UTR miRNA binding sites) and PTMs include hundreds of thou-

sands of elements, others such as signal peptides (SIGNAL) or 5’ UTR motifs

included only hundreds of elements in very few isoforms. However, this variabil-

ity in the annotation coverage of the different functional/regulatory categories

certainly agrees with their biological role and their inclusion level in transcrip-

tomes. Signal peptides are only expected to be located in isoforms targeted to

the secretory pathway and proteins only need to contain one element to fulfil

this role. Consequently, we obtained very few genes with signal peptide fea-

tures (around 7% of genes for both annotated transcriptomes, Figure 4.3 A-B)

and each one had just one annotated signal peptide (Figure 4.4 A-B). In con-

trast, miRNA binding sites and PTMs are known to be widely expanded layers

of post-transcriptional and post-translational regulation, respectively. In aggree-

ment, they are contained in a vast array of genes (60% of genes for miRNA

sites and 75% for PTMs, Figure 4.3 A-B) and a median of 10 features per iso-
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form (Figure 4.4 A-B) arising from the known versatility of miRNAs and PTMs in

the regulation of single target isoforms.

Other categories as predicted Pfam domains appeared in more than 75% of

genes (Figure 4.3 A-B). However, even through Pfam domains populated most of

the defined genes, the third quartile for the distribution of the number of domains

per isoform was two for both annotated transcriptomes (Figure 4.4 A-B). This

aggrees with previous studies that showed an average of 3 domains per protein

with a predominance of single-domain proteins [121] [269].

IsoAnnot annotation also revealed relevant differences in the characteristics

of our defined transcriptomes such as PAS annotation. Our data revealed a

Transcriptome Source Category # Features #Isoforms 

In house scripts NMD 329 329 (3%)

PFAM-HMMER3 DOMAIN 20973 9608 (89%)

COILS + UniprotKB COILED 6669 2856 (26%)

TMHMM+ UniprotKB TRANSMEM 12543 2061 (19%)

SignalP SIGNAL 824 824 (8%)

MOBIDB DISORDERED 11256 5626 (52%)

cNLS mapper + UniprotKB NLS 7599 4297 (40%)

PSP + UniprotKB PTM 100804 8506 (79%)

UniprotKB COMBIAS 2260 1480 (14%)

UniprotKB MOTIF 6579 2897 (27%)

UniprotKB INTRAMEM 159 62 (0.6%)

UniprotKB ACTSITE 1770 1168 (11%)

UniprotKB BINDING 12790 3339 (31%)

In house scripts NMD 1349 1349 (4%)

PFAM-HMMER3 DOMAIN 63462 29296 (91%)

COILS + UniprotKB COILED 19882 8410 (26%)

TMHMM + UniprotKB TRANSMEM 41227 7003 (22%)

SignalP SIGNAL 3100 3100 (10%)

MOBIDB DISORDERED 39014 18492 (58%)

cNLS mapper +  UniprotKB NLS 14255 9227 (29%)

PSP + UniprotKB PTM 297294 25360 (79%)

UniprotKB COMBIAS 8876 5426 (17%)

UniprotKB MOTIF 18608 8481 (26%)

UniprotKB INTRAMEM 345 151 (0.5%)

UniprotKB ACTSITE 5110 3443 (11%)

UniprotKB BINDING 37219 9692 (30%)

OLGd                 
10813 coding 

isoforms              
7167 genes

NEURALtc            
32119 coding 

isoforms           
12563 genes   

Table 4.3: IsoAnnot coverage results for features annotated at protein level
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lower proportion of isoforms with PAS in the OLIGd transcriptome than in the

NEURALtc one (48% vs. 84%, Figure 4.2), likely because the higher proportion

of 3’ end incomplete isoforms in OLIGd. This correlates with the improvement

of the PacBio sequencing technology and the achievement of a higher sequenc-

ing depth in the NEURALtc transcriptome sequencing, as will be described in

Chapter of this thesis 6.

As previously described, functional labels were assigned to isoforms by fol-

lowing two main different approaches: a feature-transfer pipeline based on pub-

Figure 4.3: Number of genes annotated with each feature type at transcript and protein
level in (A) OLGd and (B) NEURALtc transcriptomes. Each different element is further
classified in function of the annotation method used for its association.
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lic databases and sequence prediction. Some functional categories such as

coiled-coil regions, transmembrane regions or NLSs were annotated by using

both approaches. We found a similar distribution of the number of elements

per isoform in these annotation layers (Figure 4.4 A-B) but a higher frequency

of annotated genes when using predictive methods (Figure 4.3 A-B) due to the

inherent limitation of transferred methods to only consider features and genes

contained in the set of databases used. Interestingly, the intersection of genes

containing elements annotated by the two different methodologies revealed that

around 90% of the elements recovered from databases overlap predicted ele-

ments (Figure 4.5), which supports the quality of the prediction algorithms.

Because PacBio-defined transcriptomes includes novel isoforms, we eval-

uated and compared the annotation coverage across novel and known iso-

form categories (reference annotated isoforms) to investigate if IsoAnnot transfer

methods are biased towards the annotation of known isoforms. We assume that

this kind of bias does not exist for prediction methods because they are based

on sequences.

First, isoforms from novel genes were compared to isoform from known

genes. We found that, at transcript level, novel gene isoforms in both transcrip-

tomes showed a slightly but consistent lower annotation coverage than those

from known genes, both for predicted elements such as UTR motifs and for

database-transfer elements such as miRNA or RNA binding sites (Figure 4.6.A-

B). Conversely, repeats seem to accumulate in isoforms from novel genes (Fig-

ures 4.6.A-B), which are highly enriched in non-coding mRNAs, especially in

the OLIGd transcriptome where only 19% of novel gene isoforms are coding.

This agrees with the reported enrichment of repetitive regions in non-coding

transcribed sequences [294]. At protein level, independently of the annota-

tion approach and category, a reduced number of coding isoforms from novel

genes contain protein features, indicating that, in general, coding isoforms in

novel genes usually have less functional loading (Figures 4.6.A-B). Moreover,

this trend is accentuated for categories annotated exclusively by transfer of ele-

ments from public databases (such as binding or compositional regions), where
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Figure 4.4: Distribution of the number of elements annotated for feature type at transcript
and protein level in (A) OLGd and (B) NEURALtc transcriptomes. Each different element
is further classified in function of the annotation method used for its association.

null feature coverage is reached in most cases (Figures 4.6.A-B). This verifies

the expected inability of transfer methods to populate novel isoforms with func-

tional information.

Secondly, the accurate annotation of features in novel isoforms of known

genes represents the major concern of functional annotation because their func-

tional underestimation might lead to notable biases in subsequent analyses de-

signed to assess functional diversity across splicing variants. At protein level,

the relationship between the feature coverage of known and novel variants (both
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from known genes) is maintained across all the categories in our annotation re-

sults: a slight decrease in the coverage of protein features for novel variants

versus known ones (Figure 4.6.A-B). This pattern is conserved independently

of the annotation method, suggesting that the higher feature coverage in known

isoforms results from the bias of reference transcriptomes to contain the iso-

forms with the highest functional load, generally defined as PI. Actually, the

CDSs of known isoforms were significantly shorter than CDSs predicted from

novel isoforms (Wilcoxon test p = 7.01e-83 and p < 2e-16 for SQANTI curated

NEURALtc and OLIGd transcritomes, respectively), what corralates with the re-

sulting pattern. In contrast, at transcript level, we did not find any shared pattern

between the different categories. However, it should be note the enrichment

of uORFs in novel isoforms, which is consistent across both transcriptomes, in

aggreement with the higher 5’ UTRs length of novel isoforms categories com-

pared with known isoforms (Wilcoxon test p = 1.22e-95 and p < 2e-16 for the

NEURALtc and OLIGd transcritomes, respectively).

COILED-COILS	
94 % curated elements were	

also predicted 	

TRANSMEMBRANE REGIONS	
90 % db elements were	

also predicted 	

NUCLEAR LOCALIZATION SIGNALS	
81 % db elements were	

also predicted 	

2447
31

132302 1079751179

38

527

Figure 4.5: Feature-annotated gene intersection between prediction and transference
strategies for different functional categories in OLGd transcriptome.

Taking together all the considered functional categories, except the PAS cat-

egory, whose presence is expected in all the detected isoforms, more than 90%

of mRNA variants and 80% of coding isoforms contain at least one transferred

annotation element from public databases and around 84% of trancripts variants

and more than 97% of coding variants were populated with predicted functional

and regulatory features. Moreover, in both PacBio-defined transcriptomes, we
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annotated 99% of isoforms with at least one functional or regulatory feature (Ta-

ble 4.4).
3.3.	IsoAnnot	in	PacBio	Transcriptomes	
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Figure 4.6: Annotation rates for each each functional label and isoform category in (A)
OLGd and (B) NEURALtc transcriptomes. The information about the novelty status of
isoforms was retrieved from SQANTI classification. Protein annotation rates are com-
puted considering the set of coding isoforms. Known Isoforms: isoforms annotated in
reference transcriptomes. Novel Isoforms: isoforms novel transcribed from genes anno-
tated in reference transcriptomes. Novel Gene Isoforms: novel isoforms from unknown
genes.
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Transcriptome Level Method

Transference 90.89

Prediction 80.10

Transference 82.33

Prediction 97.16

Transference 92.19

Prediction 84.55

Transference 81.78

Prediction 98.16

NEURALtc

Transcript  98.05

99.26

Protein  98.80

% Annotated 

OLGd

Transcript 98.08

99.73

Protein 98.20

Table 4.4: Proportion of isoforms annotated at the transcript and protein level for PacBio
transcriptomes
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4.3.2 Functional annotation of reference transcriptomes and pro-
teomes

As we previously detailed, IsoAnnot provides rich functional and regulatory an-

notation in isoforms derived from sequencing technologies. However, most tran-

scriptomics studies still consider gene models defined in reference databases

such as RefSeq or Ensembl. For that reason, we also ran IsoAnnot pipeline to

annotate diverse reference transcriptomes in different organisms.

Mammalian transcriptomes

Homo sapiens and Mus musculus are two mammalian organisms widely used

in research and so large transcripts and proteins sets are already available for

them in public databases. In this sense, two of the most relevant sources are

RefSeq, a non-redundant and well-annotated set of mRNA models (mRNAs and

protein sequences) maintained by NCBI and Ensembl, a European database

that contains gene models from multiple sources but which is less curated than

RefSeq. We used IsoAnnot to populate mouse and human reference models

(RefSeq78 and Ensembl86 annotation version) with rich regulatory and func-

tional annotation.

IsoAnnot highlighted two clear different patterns in transcript-level annota-

tions which were associated with these two different transcriptome sources, Ref-

Seq and Ensembl. mRNA variants from RefSeq obtained a richer annotation

level than those from Ensembl, pattern that maintaned across the two different

annotation strategies, transference and prediction (Figure 4.7). Moreover, the

annotation of many fewer elements in Ensembl isoforms also affected the PAS

category which coincides with the lower proportion of coding mRNAs found in

Ensembl versus RefSeq transcriptomes (50% vs. 70%, respectively, Table 4.6)

and the low curation level of Ensembl transcripts which led to the presence of

incomplete 3’ and 5’ mRNA ends. Hence, the nature of the Ensembl explains

why IsoAnnot provides a lower levels of feature coverage at transcript level.

However, the level of feature population at protein level was found similar

for both references sources with the exception of NMD category. Moreover, we
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found important coverage-level differences between mouse and human when

transference algorithms are used, in agreement with the higher amount of func-

tional information stored in public databases for human (239,159 vs 438,820

recovered functional features for mouse and human, respectively).

Figure 4.7: Proportion of isoforms annotated for different feature categories and anno-
tation methods in mouse and human reference transcriptomes. hs: Homo sapiens; mm:
Mus musculus; E: Ensembl; R: RefSeq

In summary, IsoAnnot provides rich functional information at the isoform-

resolution for well annotated mammmalian organisms. At the protein level, more

than 90% of coding isoforms were annotated with at least one functional feature

for both databases and organisms (Table 4.5). Despite this, differences associ-

ated with the definition, nature and proportion of non-coding isoforms between

alternative reference sources (Table 4.6) led to higher differences in the global

annotation coverage reached by IsoAnnot (70% vs 90% of isoforms with at least

one annotated element for Ensembl and RefSeq, respectively, Table 4.5).

Non-mammalian transcriptomes

Several recent projects studying AS in non-mammalian organisms in which our

group has been involved in, have highlighted the lack of isoform-resolved func-

tional annotation. Thus, IsoAnnot analysis was also applied to Drosophila melanogaster

(Flybase617), Arabidopsis thaliana (Ensembl34) and Zea mays (Ensembl34) or-

ganisms.
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Figure 4.8: Proportion of isoforms annotated for different feature categories and annota-
tion methods in non-mammalian reference transcriptomes

Annotation results (Figure 4.8) indicate a wide range of annotation levels in

each organism and with each annotation method (Figure 4.8). Remarkably, at

the transcript level, transference algorithms only provided a high coverage for the

fly reference transcriptome, mainly because, compared to plants, more miRNAs

for Drosophila melanogaster are found in public databases. At the protein level,

the main difference was the proportion of isoforms annotated with elements from

databases across organisms. We found that almost 50% of reference isoforms

in Arabidopsis thaliana were populated with experimental features, while this

figure was 25% for Drosophila melanogaster and was negligible for Zea mays

(Figure 4.8). These results agree with the their representation levels in the func-

tional databases we considered, such as UniprotKB (764 entries for Zea mays,

355 Drosophila melanogaster and 14830 entries for Arabidopsis thaliana).

Considering annotation results from both transfer and prediction methods,

the protein-level annotation depth obtained with our IsoAnnot pipeline for non-

mammalian references was much higher than that achieved at the transcript

level, reaching an average of 85% of protein isoforms with at least one annotated

functional element (Table 4.5).
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Transcript Level Protein Level Total

RefSeq78 90.24 96.38 94.66

Ensembl86 59.17 92.70 68.11

RefSeq78 94.42 98.19 96.40

Ensembl86 65.03 95.38 71.88

Arabidopsis 
thaliana Ensembl34 54.56 90.43 85.35

Zea mays Ensembl34 65.29 86.24 91.08

Flybase617 80.85 83.85 85.86Drosophila 
melanogaster

Organism Reference
% Isoforms Annotated

Mus musculus

Homo sapiens

Table 4.5: Proportion of isoforms annotated at the transcript and protein levels for the
different transcriptomes annotated by IsoAnnot pipeline.

Organism Reference # Transcripts # Coding Transcripts

RefSeq78 106060 75700 (71.37%)

Ensembl86 115988 55863 (48.16%)

RefSeq78 150558 107211 (71.21%)

Ensembl86 188667 85103 (45.10%)

Arabidopsis thaliana Ensembl34 54013 48321 (89.46%)

Zea mays Ensembl34 138049 133111(96.42%)

Mus musculus

Homo sapiens

Flybase617 34740 30353 (87.37%)Drosophila 
melanogaster

Table 4.6: Number of transcripts and the proportion of coding transcripts for the reference
transcriptomes annotated by the IsoAnnot pipeline.
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4.4 Discussion

Thousands of tissue- and developmental-specific splicing events and alterna-

tive polyadenylation sites have been identified during last years through the

use of high-thoughput transcriptomics technologies. Among these technolo-

gies, single-molecule sequencing of full-length transcripts using long reads has

paved the way for the accurate discovery of the huge isoform diversity expressed

in both well-annotated species and non-model organisms [319][112][178][84][1]

[347][53].

Being able to routinely characterize de novo transcriptome diversity, the main

challenge is now to determine how isoform variants impact gene properties to

drive context-specific cellular phenotypes. Protein-protein interaction domains

[94][37][59], intrinsically disordered regions [126] [37] and nonsense-mediated

decay [201] [391] [69] have been described as some of the main properties al-

tered by alterantive processing of pre-mRNAs. Moreover, experimental isoform

validations have shown that isoform diversity affect almost all types of transcript

and protein functional features including linear motifs, miRNA targets sites, AU-

rich elements or sites of post-translational modification [165][304]. However, tra-

ditional functional databases are biased to the annotation of the canonical, the

most prevalent, the best documented and often the longest isoform so that pro-

jection of features onto splicing or alternative polyadenylated variants becomes

a manually, time-consuming and tedious task for the scientific community study-

ing the functional divergence of isoforms. Despite the need of databases and

methods providing isoform-resolved functional information has been alleviated

thanks to the appearance of some resources such as APPRIS [278][277], AS-

PicDB [205], VastDB [311] or ASpedia [147], they are static and are restricted to

the functional analysis of already annotated variants in well-studied organisms

as human.

In this chapter, we developed IsoAnnot, a dynamic pipeline that provides

extensive isoform-resolved annotation of novel transcriptomes with both coding

and non-coding functional elements. Moreover, each feature is defined by its
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coordinates, what greatly facilitates the systematic functional comparison of iso-

forms. Additionally, IsoAnnot output displays the structural characterization of

gene models together with automatic relationship information between genes,

transcripts and proteins. This is achived by the mapping of sequences to refer-

ence protein and transcript IDs and generating unique sequence IDs for novel

products, making the study of isoform diversity straightforward for the research

community.

Application of IsoAnnot pipeline to the characterization of both long-read

and reference transcriptomes demonstrated the comprenhensive and rich an-

notation achieved. In the case of model organisms as mouse, we found a that

90% of isoforms derived from PacBio sequencing and RefSeq repositories were

populated with functional features. In contrast, the annotation of mouse En-

sembl gene products hardly reached 70% of transcripts, in aggreement with

their higher rate of non-coding transcripts (52% of non-coding mRNAs) and

their decreased curation level (27% of coding mRNAs with incomplete ends)

compared to RefSeq and Iso-Seq derived models. Thus, IsoAnnot results high-

lighted some annotation biases consequence of the specific characteristics of

each considered transcriptome, demonstrating that the annotation depth is in-

fluenced by the nature of the input transcritpome.

IsoAnnot-derived annotations are the result of many sources of data which

are divided into two main categories: (i) the sequence prediction methods which

provide an efficient way to obtain uniform annotation coverage across novel and

known transcripts and independently the amount of functional data in public

databases, and (ii) methods projecting functional labels from public databases

that complement isoform annotation with experimental and curated data but are

highly influenced by the organism under study. This is the case of non-model

organisms as Zea mays, for which the small scale of curated records collected

in databases as UniprotKB (1,832 funtional features) limits the population of iso-

forms with curated functional information. On the contrary, transcriptomes from

model organisms as mouse, human are extensively annotated by transfer meth-

ods due to the accumulation of experimental evidence in public databases as
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UniprotKB. Even so, we found differences between mouse and human trans-

fer annotation as a result of the difference in the number of elements collected

in the considered databases (524,791 features in human vs 281,588 in mouse).

Thus, our results highlighted that, as expected, IsoAnnot annotation with curated

functional information is strongly influenced by the organism under study.

Moreover, we assessed the possible underestimation of annotated features

in novel isoforms from known genes when using transfer methods, which would

bias downstream analysis evaluating the functional diversity of splicing variants.

Despite our pipeline revealed a richer protein annotation in known isoforms,

the pattern was identical for features recovered from transfer and prediction ap-

proaches, indicating that the lower annotation of novel isoforms is likely caused

by their own nature. Moreover, this agrees with the longer predicted CDS of

known isoforms, indicating that reference transcriptomes are enriched in iso-

forms with the highest functional load. Oppositely, novel genes failed to obtain

functional labels from public databases, verifying the inability of transference

methods to annotate elements in non-reference locus. Additionally, we found an

over-representation of non-coding feature categories in novel genes, in agree-

ment with their higher proportion of non-coding transcripts compared to known

genes. All together, we can conclude that prediction methods become the main

source of functional information when annotating non-model organisms or novel

isoforms.

As IsoAnnot was primary developed for the annotation of mammalian tran-

scriptomes, most of the considered databases and prediction tools are mam-

malian oriented. Currently, IsoAnnot is in process of expansion to generate

a more extensive isoform annotation in plants and invertebrates. As exam-

ple, UTR motif or miRNA annotation in plants would greatly be enhanced if

specific databases and tools such as ExactSearch [127], a plant specific 3’

UTR motif prediction, were incorporated. Moreover, in next updates, we also

plan to maintain and expand our pipeline by adding new prediction algorithms

and databases covering additional transcript and proteins properties including

protein-protein interaction databases ( such as IBIS Shoemaker2012[300] or In-
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tAct [139]), cross-species conservation, structural information (Interactome3D

[217]), linear motifs (ELM database [81]) or mitochondrial targeting (TargetP

[95]). Finally, currently IsoAnnot is being implemented as a web-based tool

to facilitate experimental biologists to dynamically characterize isoform proper-

ties from customized sets of isoforms such as long-read derived transcriptomes

across a wide range of organisms.

In conclusion, our results indicate that, despite the nature of the transcrip-

tome influences feature coverage, IsoAnnot is able to extensively characterize

the functional properties of isoforms without introducing biases that could af-

fect the reliability of results obtained during the study of the functional impact

of AS/APA events. Hence, we think that IsoAnnot, a pipeline that dynamically

constructs an isoform-level functional database, potentially applicable to any or-

ganism and novel isoforms, is intent of become a gold-standard tool for the func-

tional characterization of isoforms. IsoAnnot is able to overcome the limitations

of current static databases that either support the annotation of novel events nor

several organisms and greatly facilitate biologists and the bioinformatics com-

munity to go further in the genome-widstudy of the functional consequences of

post-transcriptional mechanisms as APA and AS at genome-wide level.



Chapter 5

Comprehensive framework
for the functional analysis of
alternative isoform usage
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5.1 Introduction

One of the most exciting aspects of transcriptome biology is the contextual

adaptability of eukaryotic transcriptomes and proteomes by AS/APA mecha-

nisms. The study of AS and APA mechanisms as a fundamental component

of transcriptome biology has traditionally been addressed either by a detailed

molecular characterization of context-specific events on single genes [165][304]

or by genome-wide studies trying to find global patterns and their phenotypic

association [93][348][265][374][311]. The computational approach has been

greatly dominated by the analysis of the occurrence of alternative process-

ing events, such as exon spiking, intron retention and polyadenylation sites ,

and the identification of changes in the usage of these events between condi-

tions [362][33][197][372][149][367]. In parallel, many studies have been con-

ducted to understand the molecular mechanisms behind the dynamic change of

AS/APA patterns, which allowed the identification of a large number of RNA

binding factors as principal regulators of transcript pre-processing decisions

[380][362][366][281][390]. As a consequence, during the last decade, a myr-

iad of tools have been developed to address the analysis of the structural and

regulatory aspects of alternative transcript preprocessing and have shaped our

current understanding about transcriptome complexity and dynamics.

However, studies on the context specific functional impact of ASA/APA are

more limited. First, experimentally, just a bunch of differential splicing events

has been experimentally validated and associated with particular properties

[165][304] due to the lack of genome-wide approaches able to experimentally

determine the functional impact of isoform regulation. Second, at the compu-

tational level, even though high-throughput technologies have the ability to ac-

curately reflect the isoform content of individual tissues, developmental stages

or environment changes, only a few bioinformatics groups have undertaken the

genome-wide study of the alternative isoform usage from a functional perspec-

tive. These studies have provided relevant insights into the functional impact of

AS, such as how spliced exons are enriched in disordered regions mediating
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new protein interactions [37], its impact on the dynamic regulation of protein-

protein interaction (PPI) networks in a tissue-specific manner [376][94] or the

loss of domains leading to the rewiring of PPI in cancer [59]. Similarly, APA has

been postulated as a mechanism to escape microRNA regulation by shorten-

ing 3’ UTR regions [142][109], ATI has been revealed to regulate the inclusion

of uORFs that control translational rates [179][356] or NMD has been claimed

as an important mechanism of gene expression regulation in cancer and neural

systems [150][391]. However, much on the work done to answer transcriptome-

wide questions on the functional role of isoform regulation have either involved

ad hoc computational pipelines applied to specific biological systems and or-

ganisms, address only particular types of events, or interrogate only a limited

number of functional properties such as AltAnalyze, which integrates differential

splicing (DS) with protein domains, miRNA-binding sites and molecular interac-

tions [96] or SpliceR [337] which predicts protein coding potential and NMD in

DS genes. Moreover, recently Tranchavent et al. published the Exon Ontology

[322], a resource to study functional enrichment of exon sets based on their an-

notation with protein functional domains. Using this tool authors were able to

show different molecular functionalities directly associated to changes in exon

inclusion levels between epithelial and mesenchymal cells. However, the tool

does not have isoform resolution, fails to reveal the interconnectivity of func-

tional elements at transcript isoform sequences, does not address the analysis

of regulatory signals at alternative UTRs and is just implemented for mouse and

human.

Thus, the major shortcoming that has hampered the extended study of the

contextual functional impact of isoform regulation is the lack of friendly bioin-

formatics tools able to take advantage of current sequencing technologies to

define, in silico, the potential contextual changes in functional properties trig-

gered by post-transcriptional regulation. Most isoform analysis accomplished by

groups who are inexperienced in bioinformatics currently rely on typical gene-

based functional enrichment analysis of AS-regulated genes, which disregard

the majority of the functional potential of the eukaryotic proteome and failing to
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accurately model the contextual functional consequences of alternative isoform

usage in all its complexity.

In this chapter we developed a genome-wide bioinformatics analysis frame-

work to interrogate the potential impact of alternative isoform usage on gene

functional properties and the generation of high-confidence functional hypothe-

ses to be validated experimentally. This framework relies on three main pillars:

(1) the use of long-read sequencing capable of accurately defining full-length

transcripts and their UTR/coding status (Chapter 3), (2) the use of extensive

and diverse functional and regulatory annotation at the isoform-resolution level

(Chapter 4) and (3) the development of methods to systematically capture func-

tional differences between alternative isoforms as well as statistically evaluate

and define the contextual modulation of gene properties triggered by AS, APA

or ATI regulation. We have implemented this analysis framework in a user-

friendly software called tappAS (www.tappas.org) which is accessible to the

broad scientific community, thereby facilitating the genome-wide functional im-

pact of context-specific isoform regulation. We applied our isoform-aware func-

tional profiling approach in a glial differentiation system and experimentally ver-

ified some of our findings.
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5.2 Methods

In order to study the context-specific functional effect of alternative isoform reg-

ulation, we have developed a novel pipeline for the Functional Analysis of Al-

ternative Isoform Usage (Figure 5.1), which is divided into three main modules

(Figure 5.1). Module 1 defines and measures the functional divergence among

gene isoforms within the overall transcriptome. Module 2 focuses on the evalua-

tion of expression levels to understand transcriptome dynamics at different levels

of resolution. Finally, Module 3 addresses the integration of functional, structural

and isoform expression data to unravel the potential effect of differential isoform

usage on gene properties (Figure 5.1). The methodology includes already ex-

isting methods as well as novel approaches specially designed to tackle the

aforementioned functional transcriptomics questions. Moreover, three different

experimental designs were considered: pairwise, single-series time course and

multiple-series time course designs, thereby providing a broad scope for its ap-

plication.

5.2.1 Input data

Three pieces of information are required to use our analysis framework (Figure

5.1): (1) An accurate characterization of gene models, including structural def-

inition of transcripts and CDSs and standardized nomenclature; (2) The avail-

ability of rich functional annotation at the isoform-resolution. In Chapter 4 we

presented IsoAnnot, a pipeline specifically designed to retrieve extensive func-

tional annotation at isoform resolution; (3) An accurate estimation of expression

levels at transcript level. Isoform quantification is required in raw count format

and two replicates per condition are mandatory for the use of our framework.

5.2.2 Module 1: Isoform functional diversity

To understand functional and regulatory variability between isoforms derived

from the same gene, we developed the Functional Diversity (FD) analysis.

FD identifies the nature and measures the magnitude of changes triggered by

alternative processing of transcripts by systematically evaluating and comparing
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isoforms from a functional (positional functional features), regulatory (positional

regulatory features) and structural (CDS, UTRs and PolyA sites) perspectives.

 
Differential Isoform Usage 

 

Feature Diversity 
 

Signals/domains/… 
 

Structural Diversity 
 

APA/UTR/CDS 

Module 1:  Isoform Functional Diversity 

Isoform 2 

Isoform 2 

Module 2: Transcriptome dynamics 

Differential Expression 
 

Transcript/Gene/CDS level 

Module 3: Functional impact triggered by APA/AS 

Differential Feature Inclusion Differential polyadenylation 

Differential Isoform 
Usage 
 

Transcript/CDS level 
Switching events 
Total usage change 
 

 

Isoform 1 

Varying 

Varying 

Varying 
 Cond1       Cond2 

Ex
pr

es
si

on
 

Isoform switching 

Differentially 
expressed 
isoforms 

INPUT DATA 

Isoform-resolved 
functional annotation 

Isoform 2 

Isoform 2 

Isoform 1 

Ex
pe

ri
m

en
ta

l d
es

ig
n:

 P
ar

w
is

e 
An

al
ys

is
, S

in
gl

e/
M

ul
tip

le
 T

im
e 

Co
ur

se
 A

na
ly

si
s Gene Models 

Isoform 2 

Isoform 3 

Isoform 1 

Isoform quantification 

Isoform 2 
Isoform 3 

Isoform 1 

… 

UTR shortening/lengthening Co-feature regulation 

Varying Feature 

 T1    T2     T3 

Ex
pr

es
si

on
 

IncF 

ExcF 

Late inclusion feature 
T3 favored  

Switching event 

 T1    T2     T3 

Ex
pr

es
si

on
 

ProximalPA 

DistalPA 

PolyA switching 
Varying PolyA site 

Genomic  

ProximalPA DistalPA 

Figure 5.1: Overview of the Functional Analysis of Alternative Isoform Usage.
Three main pieces of input data are required: gene models, isoform expression and func-
tional annotation at the isoform-resolution level. Methods included in the three analysis
modules were adapted to work with both pairwise and time course experimental designs.

5.2.2.1 Structural diversity

The Structural Diversity analysis, part of the FD analysis (Figure 5.2), aims

to capture genes with isoforms presenting alternative coding sequences, UTR

lengthening/shortening or alternative polyA sites. Structural Diversity catalogues

genes as a function of the structural part modulated by alternative pre-mRNA

processing.



136
5. COMPREHENSIVE FRAMEWORK FOR THE FUNCTIONAL ANALYSIS OF

ALTERNATIVE ISOFORM USAGE

Alternative polyadenylation

In order to detect APA events, polyA sites are identified as the last genomic

position of transcript isoforms and evaluated in a pairwise mode by computing

the polyA distance between each pairwise combination of isoforms expressed

by a given gene (Figure 5.2). mRNA cleavage is not an exact process and can

occur within a small window of positions [247]. To take into account this cleavage
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Figure 5.2: Functional Diversity Overview. Gene models and functional annotation is
translated into genomic coordinates for subsequent pairwise isoform comparison. While
Structural Diversity involves the determination of alternative polyadenlylation, coding se-
quence (CDS) modification or UTR lengthening/shortening, Feature Diversity focuses on
the gain/loss of functional features.
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variability, the PacBio Iso-SeqTM Analysis (Cupcake) discriminates independent

polyA sites by collapsing mRNA variants with a 3’ end distance lower than 100

bp. Additionally, Rot et al. considered that auxiliary cleavage RNA motifs appear

approximately up to 75 nt upstream and 50 nt downstream of each cleavage site

[21][299] and defined independent sites as those located at least 125 nt apart

[281]. Therefore, to focus APA analysis in independent polyA sites and remove

cleavage variability, our FD analysis labels pair of isoforms undergoing APA by

establishing a minimum 100 bp genomic distance (default value) between polyA

sites.

UTR length varying

UTR length is obtained from IsoAnnot structural information for subsequent pair-

wise comparison between coding isoforms derived from the same gene. Pairs

of isoforms with 3’/5’ UTR differences above a user-specified cutoff (75 bp as

default cutoff) are labelled as 3’ UTR length varying/5’ UTR length varying, re-

spectively (Figure 5.2).

Coding sequence varying

CDSs variability is determined by comparing CDSs both at the sequence and

genomic coordinate levels, ensuring that identical CDSs generated from alter-

native but synonymous events are described as varying. Non-coding isoforms

are discarded from CDS diversity analysis.

5.2.2.2 Feature diversity

Feature diversity was developed to identify functional and regulatory elements

altered across isoforms. In the same way that structural diversity is evaluated,

feature diversity is assessed by comparing each pair of isoforms transcribed

from the same gene. However, because isoforms can be annotated with different

features, FD individually compares each feature ID present in the transcriptome

(Figure 5.2).

Two different approaches are considered in order to classify a feature as

varying. The first approach, namely Positional Varying (Figure 5.2) compares
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features by genomic position. In this case, FD maps features to genomic coordi-

nates and classifies them as varying if coordinates are not equivalent between

isoforms. The second approach, namely Quantitative Varying (Figure 5.2), does

not consider genomic coordinates but rather, quantitatively compares the num-

ber of elements associated to the feature ID in question within each splicing

variant. We considered both approaches because of their complementary goal

as well as their different suitability depending on the feature under study. For

example, translational repression correlates with the number of uORFs present

in the transcript [55] and so analyzing the density of uORFs at transcripts, rather

than comparing their genomic position is a more meaningful way to evaluate

their putative effect on the translational rate and, consequently, to detect iso-

forms pairs with varying uORF repressiveness. Similarly, differential stability

rates across transcript variants can be assessed by quantitatively comparing

the number of predicted AU-elements along the UTR region of isoforms. In con-

trast, other features such as PTMs are potentially recommended to be analyzed

by the positional varying strategy because of the functional independence of

most PTMs located at a given protein sequence.

Finally, non-positional features describing transcript characteristics are eval-

uated by presence/absence of annotation. NMD transcript status is a straight-

forward case of non-positional feature whose classification as varying is based

on a lack of NMD status agreement between the pair of isoforms under study.

5.2.2.3 Overall rate of diversity

FD analysis is applied to all genes described in the studied transcriptome. As

previously mentioned, pairwise comparisons are performed for all the combi-

nations of transcript isoforms in a gene. Gene-level overall varying rates are

computed per each individual functional category (instead of feature ID) as the

percentage of genes with at least one positive (varying) pair-wise comparison.

The background is the set of genes annotated with elements associated with the

studied category.

Even though genes may code for several isoforms, often only one of them is

very different from the others. In these cases, the gene level strategy to assess
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variation at the transcriptome-wide level might cause overestimation of the func-

tional complexity triggered by AS or APA events: although most of the isoform

pairwise comparisons between gene isoforms are not varying, the final gene re-

sult is varying because of a single highly different isoform. Moreover, the number

of isoforms defined for a gene affects the number of pairwise comparisons, the

chance of a gene to acquiring a varying pairwise comparison and consequently,

its detection as varying. Thus, we also estimate the overall varying rate of each

feature as the percentage of pairwise comparisons catalogued as varying, re-

moving the bias associated to low frequent but rare splicing events as well as

discarding the influence of the number of isoforms per gene on the chance to

call a gene varying.

5.2.3 Module 2: Transcriptome dynamics

Module II provides tools for studying transcriptome dynamics, including changes

in isoform usage and modulation of their absolute levels. To this end, both es-

tablished methods and novel approaches are used in Module II.

5.2.3.1 Differential expression

Differential expression (DE) analysis in our pipeline comprises three steps:

(a) Data preprocessing: Low-count isoform filtering and normalisation proce-

dures are performed by using NOISeq R package ([312]). We skipped normal-

ization step in those cases where the methods required raw count data.

(b) Aggregation of expression values: we provide expression values at the

transcript, gene and CDS-levels with the aim of studying expression dynam-

ics at different resolutions as a function of the purpose of interest. Because

only transcript-expression levels are provided as input, gene-level estimations

are generated by collapsing the expression levels of their expressed transcripts

variants. Similarly, CDS expression levels are estimated by collapsing the ex-

pression of transcripts annotated to have identical coding sequences. This col-

lapsing ability stems from using well-structured data as an input, in which the
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identity relationships between gene transcripts and CDSs are robustly identi-

fied.

(c) Algorithms for DE: after revising the literature, we decided to include

NOISeq [312] and maSigPro ([63]) methods for the analysis of DE in experi-

mental designs involving two conditions and time course series, respectively. As

expression values were computed at the isoform, CDS and gene level, we ap-

plied DE methods to the detection of differentially expressed genes (DGE), dif-

ferentially expressed isoforms (DIE) and differentially Expressed CDSs (DCE),

with the latter being informative of the transcriptional regulation associated with

specific coding sequences.

5.2.3.2 Differential isoform usage

Our pipeline estimates post-transcriptional regulation by testing the Differential

Usage of Isoforms (DIU), i.e. the changes in the relative abundance of isoforms

derived from the same gene. Note that DIU differs from DIE in that the latter

only entails changes in the absolute expression of individual isoforms and does

not necessarily involve a change in their relative proportion (Figure 5.3).

Several methods have been proposed to test differences in the usage of iso-

forms, as detailed in Section 1.3, Chapter 1. However, most of them are focused

on detecting the differential inclusion of single events as exons or splice junc-

tions and ignore the exon composition of the full length transcripts. In contrast,

our framework has been specially designed to analyze full-length transcript mod-

els, and leverage long read sequencing technologies where the exact combina-

tion of exons is unambiguously determined. Hence, we considered the analysis

of differential usage of full-length isoforms, instead of single events, which pro-

vides a more informative approach to understand the combinatorial regulation

of exons and polyA sites and dynamics of transcriptome complexity.

Our pipeline to study DIU includes:

(a) Alternative Aggregation Levels: like DE, we evaluate the differential us-

age of gene products at the CDS and transcript levels. The differential coding se-

quence usage (DCU) was implemented in our pipeline so that post-transcriptionally
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Figure 5.3: Differential Isoform Usage (DIU) defintion in A. Pairwise, B. Single-time
course and C. Multiple-time course experimental designs.

regulated genes involving alteration of the coding sequence could be discrim-

inated. Consequently, a novel layer of understanding is added to the differ-

ential usage analysis that measures the coding impact. Of note, as transcript

expression levels, CDS-computed expression levels are not a direct measure-

ment of protein levels because mRNA stabilisation and translation rate can vary

across transcript isoforms, meaning that protein levels do not directly correlated

to mRNA levels.

(b) Isoform prefiltering: genes in mammalian transcriptomes usually express

a high number of isoforms. However, one of them usually accumulates the ma-

jor proportion of gene expression [122] and becomes the major isoform. Hence,

the remaining isoforms, although detected, have low expression levels. When

the minor isoform appears with small expression changes between conditions

but they are in the opposite direction to the predominant isoform, significant
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isoform:condition coefficients may appear during the GLM fitting used by the

differential-usage methods considered in this Module (Figure 5.3.A). This sce-

nario is exacerbated when using reference transcriptomes and its influence de-

creases when using PacBio-defined transcriptomes because of the decreased

capacity of long-read technologies to detect low-expression isoforms [313]. To

avoid the detection of DIU genes because of the ’flat’ behaviour of minor iso-

forms, an isoform filtering step before gene modelling can be applied (Figure

5.4.A). This filtering follows two alternative approaches. The first approach con-

siders the proportion of the gene expression accounted by each isoform and

filters those that do not reach a minimum expression rate. By default, isoforms

accumulating less than 10% of the expression of the gene in all the studied con-

ditions are considered as negligible and consequently discarded previous to DIU

analysis:

(
Eig∑n
i=1Eig

< p

)
γj

being Eig is the expression value for isoform i and gene g, j the experimental

condition, n is the number of isoforms in g, and p is the threshold level.

The second filtering approach, instead of using proportions, considers the

fold-change of the minor isoforms in relation to the major one. Minor isoforms

are discarded when their expression levels in all the considered are below a

specified fold-change (FC) threshold (default FC=2).

(c) Algorithms for DIU: appropriate algorithms for DIU must meet three re-

quirements (1) biological variability between replicates should be taken into ac-

count, (2) the significance of DIU must be estimated and (3) the algorithm must

accept transcript level expression values. Based on these set of requirements

and the results shown from a recent evaluation of DIU methods performed by

Merino et al. [207], we chose DEXseq [6] to detect DIU in case-control exper-

imental designs. In addition, we also used the recently released isoMaSigPro
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approach [233] for DIU testing in time-course experimental designs. Both meth-

ods assess DIU by fitting generalised linear models (GLMs) and testing the sig-

nificance of the isoform-condition interaction coefficient. These methods were

adapted for use with transcript and CDS estimations.

(d) Major isoform switching and total usage change: DE methods provide

fold-change rates measuring the strength of the change these complement the

level of statistical significance. Additionally, differential splicing methods interro-

gating single splicing events describe the magnitude of change by computing the

difference in the relative abundance of a each single splicing event (e.g: ∆PSI,

variation in the proportion spliced-in). However, DIU analysis test in a unique

model the relative behaviour of multiple isoforms, what hampers the definition of

a single measure describing the differential behaviour of them across conditions.

Although the coefficient values for fitted GLMs used in this module are a good

measure for describing isoform expression patterns, most users find them quite

difficult to interpret. Thus, new metrics which catalogue the differential behavior

of isoforms are necessary.

We define the total usage change as a measure of the magnitude of the re-

distribution of expression between isoforms across each pair of conditions con-

sidered. Because the absolute gene expression levels may be different across

conditions, the total-change values are always represented as a function of the

gene expression FC. We define isoform usage as the relative expression of iso-

form i in gene g. The total usage change is defined as:

n∑
i=1

|

Isoform Usage C1︷ ︸︸ ︷
E1ig∑n
i=1E1ig

−

Isoform Usage C2︷ ︸︸ ︷
E2ig∑n
i=1E2ig

| × 0.5

where Eig is the expression value for isoform i and gene g.

Additionally, major isoform switching was defined for genes which switched

their most expressed isoform. When analyzing case-control and single series

time course experimental designs, the major isoform for each gene is cata-

logued as the one with the highest mean expression across conditions, while
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other isoforms of the gene are called minor forms. A major isoform switch is

then associated with genes whose major isoform becomes minor at time point

or any condition (Figure 5.4.B). In multiple time-course series where two differ-

ent groups are compared over time, the definition of the major isoform is defined

for each experimental group (Figure 5.4). Thus, major isoform switching events

are associated with genes with a different predominant isoform between experi-

mental groups.
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isoforms with low expression before differential isoform usage analysis and decreases
the chance of genes being called DIU without relavant isoform usage regulation. B.
Determination of major switching events in time course data.
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5.2.4 Module 3: Functional impact triggered by isoform regulation

In Module 3 we included new methods to study the contextual modelling of the

functional effect triggered by differential isoform usage based on the evaluation

the alteration of functional and regulatory elements such as PTMs or UTRs.

5.2.4.1 Differential feature inclusion

The Differential Feature Inclusion (DFI) analysis implements an approach to

detect positionally-annotated functional features that are significantly altered or

disrupted across isoforms in time and which thus, modulate the functional and

regulatory outcome of the gene in different experimental conditions.

The process of detecting the differential inclusion of features between con-

ditions consists of several steps. First, like the FD analysis detailed in Section

5.2.2.2, each gene is evaluated for the gain or loss of annotated positional fea-

tures across gene isoforms (Figure 5.5.A). Changes in the feature between iso-

forms can vary from subtle disruptions to complete skipping. Two scenarios for

flagging varying features are considered, to adapt the analysis to different types

of variation:

1. Feature disruption: A feature is catalogued as varying when genomic posi-

tions across isoforms do not exactly match. Any slight difference between

isoforms flags the feature as varying. This would be the most sensitive

case of varying since it enables to test the regulation of features with sub-

tle alterations or disruptions across isoforms.

2. Feature exclusion: Feature disruptions across isoforms are not flagged

as varying but total feature losses and gains. Thus, only completely ex-

cluded/included features are subsequently tested for DFI.

Features catalogued as varying for each gene are subjected to expression

aggregation, under the assumption that the level of functionality of the gene in

the tested feature can be estimated from the abundance of the isoforms includ-

ing the feature. Expression for isoforms which partially or completely disrupt a

feature (depending on the feature varying option) are collapsed to generate a
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Feature-Including Variant; otherwise expression is associated into the Feature-

Excluding Variant (Figure 5.5.B). After this transformation, the expression matrix

is composed of the set of Feature-Including and Feature-Excluding Variants for

all the detected varying features of each gene while observations remain as the

different conditions under study. Making use of statistical techniques used by the

well-established DEXSeq and maSigpro packages for pairwise and time-course

experimental designs, respectively, we test the differential inclusion of features

by fitting a generalised linear model:

g
(
µ̂f g

)
= β̂0 + β̂1Cf g + β̂1Tf g + β̂2Ff g + β̂3Cf g·Ff g+

β̂3Cf g·Tf g + β̂3Ff g·Tf g + β̂3Ff g·Tf g·Cf g + ε̂i (5.1)

where g characterises the GLM, µij=E(yfg) the expected value of expres-

sion yfg for observation g and feature f, Cfg is the binary variable that identifies

the experimental condition, and Ffg is the variable that identifies the variant

(Feature-Excluding or Feature-Including Variant).

We individually model each gene-feature (Figure 5.5.C) and evaluate the sig-

nificance of the interaction condition-variant or condition-variant-time, depending

on the experimental designed considered. We control the false positive rate by

applying isoform filters (Section 6.3) and FDR corrections. When different func-

tional annotation categories are considered (domains, UTR motifs, disordered

region, etc.) we test them independently.

DFI analysis is complemented with additional metrics that make results more

meaningful:

• Feature inclusion levels: the magnitude of the feature’s inclusion is com-

puted as the relative abundance of the Feature-Including Variant for each

condition studied.

FIf g =
EIncfg

EIncfg + EExcfg

where EInc is the expression value for the Feature-Including Variant and

EExc is the expression value for the Feature-Excluding Variant for gene g

and positional feature f.
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Figure 5.5: Differential feature inclusion. A. The functional diversity of each gene
expressing multiple isoforms is evaluated to determine features which vary between iso-
forms. B. Isoform expression levels are collapsed as a function of the status of the fea-
ture being considered and expression is aggregated into two main variants, the Feature-
including Variant and the Feature-excluding Variant. C. Varying features are tested for Dif-
ferential Feature Inclusion. Significance and complementary attributes as major switch-
ing events are output. D. Conditions and time points in which the feature’s inclusion is
enhanced are detected. G: gene; F: feature; I: isoform;

• Major variant switching: major switching events are identified following the

rules explain in Section 5.2.3.2. Thus, major switching events reveal fea-

tures going from a predominant to a minor relative abundance across con-

ditions. major switching features characterize tissue/stage-specific func-

tional outcomes.

• Favored condition: we characterise the direction in which isoform regula-

tion promotes the inclusion of the feature and define the transition points

or conditions in which the feature inclusion is enhanced (Figure 5.5.D).

• coDFI: coDFI is assessed by estimating how frequently two different fea-

tures are differentially co-regulated across genes. We test their associ-

ation using a Fisher Exact Test and applying multiple testing correction

through the Benjamini-Hochberg procedure. CoDFI is computed for each

pair of feature IDs and only features detected as DFI in at least 5 genes

are considered.
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5.2.4.2 Differential polyadenylation and UTR lengthening

We developed the Differential Polyadenylation (DPA) analysis, a method to

test the regulation of polyA sites by leveraging the transcript resolution of PacBio

long reads. As seen in Chapter 3, Pacbio sequencing faithfully identifies polyA

site variability, which leads to a significant improvement of isoform expression

estimations [313] and thereby, provides an accurate measure of polyA site usage

to be contextually modelled by our DPA analysis.

Although there are some exiting methods designed to infer differential APA

sites by using RNA-seq data, each of them has its own limitations: several eval-

uate polyA usage differences without accounting for biological variability or de-

termining the significance level of the APA modulation [9][129][372][354], some

approaches do not deal with multiple polyA sites [372], or just support certain

organisms [371] and most of them just consider pairwise experimental designs

[9][129][354], which limits meaningful studies across multiple conditions. Our

DPA analysis addresses the contextual modelling of APA in different experimen-

tal designs and provides statistical significance levels while considering several

polyA sites per gene. The approach includes the following steps:

a. Defining a library of polyA sites

Gene models provided by the user are used to define the set of polyA sites that

are interrogated for DPA. DPA analysis is coupled to the evaluation UTR length-

ening/shortening and so non-coding isoforms as well as predicted nonsense-

mediated decay variants are discarded. To build the polyA site database, the

genomic coordinate of the last position of the remaining transcript isoforms is

extracted. Note that, unlike recently developed tools [129], polyA sites in ter-

minal exons with different 5’ start sites are also considered, what includes the

analysis of CDS-APAs and polyA sites in isoforms originated through combina-

tion of APA and AS events. Thus, all cleavage sites from stable and coding

mRNAs, independently of their splice junction pattern are included in the library

of polyA sites so wide APA/UTR regulation is considered.
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Next, we perform a series of filtering and collapsing steps in order to define

the proximal and distal polyA site for each gene (Figure 5.6.A). First, indepen-

dent cleavage sites are defined by merging polyA sites located within a 75 bp

window (more details in Section 5.2.2.1). Resulting sites are then filtered based

on the relative polyA site expression levels. To avoid the definition of a minor

polyA site as a distal or proximal site, the proportion-based filtering method (See

Section 5.2.3.2) is applied and so, only polyA sites accumulating at least 10%

(default threshold) of total gene expression at least in one condition remain for

further classification into distal (dPA) or proximal sites (pPA) (Figure 5.6.A). In
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Figure 5.6: Differential Polyadenylation analysis (DPA). A. Definition of the library of
polyA sites. Long-read gene models are used to define the expressed polyA variability.
DPA analysis performs a series of filtering and collapsing steps in order to define the
proximal (pPA) and distal (dPA) polyA sites. B. Expression associated to the dPA and the
pPA is estimated by collapsing associated isoforms and subsequently modelled across
conditions to detect differentially polyAdenylated genes (DPA genes). Different metrics
as the distal polyA site usage (DPAU) and analysis including the polyA switching, the
clustering of DPA genes or the principal component analysis on DPAU levels improve the
comprenhensive analysis of DPA in different experimental designs.
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genes with more than two polyA sites, some in-between sites remain unclassi-

fied. In those cases, we perform a final merge of unlabelled sites by assigning

them to the most proximal or distal neighbouring site (Figure 5.6.A).

b. Estimation of polyA site associated expression levels and relative us-
age

Per-gene and per-sample distal and proximal polyA site expression levels are

computed by collapsing the expression levels of the associated set of transcript

isoforms into polyA site distal and proximal variants. We calculate the relative

usage of polyA sites by calculating the relative expression of the distal site over

the total polyA site expression level of the gene:

DPAU =
EdPA

EdPA + EpPA

DPAU refers to the distal poly(A) usage and dPA and pPA to the variants

defined for distal and proximal polyA sites.

c. Differential polyadenylation and polyA site switching

Like DFI, we also evaluated DPA by fitting regression models to capture signif-

icant condition-variant interactions. We based our approach on DEXSeq and

Iso-maSigPro for pairwise and time-course series analysis, respectively (Figure

5.6.B). Genes with significant DPA are further assessed for polyA site switching

to detect changes in the dominant polyA site across time points or conditions

(for further details, see Section 5.2.3.2).

d. APA regulatory dynamics

Characterisation of APA programs requires methods that extract common polyA

usage patterns across the genes expressed in the system of study. We use two

methods to characterise the genome-wide APA landscape: (1) The Hierarchi-

cal Clustering approach identifies groups of genes with similar DPAU profiles

over time. Thus, clustering is only applied when time course series are consid-

ered. Genes with DPA FDR values under the threshold specified by the user



5.2 Methods 151

(default=0.05) integrate the set of DPAU profiles used as input for clustering pro-

filing (Figure 5.6.B); (2) multivariate principal component analysis is performed

on centered and arscine-transformed DPAU values in order to explore sample

relationships related to their APA patterns (Figure 5.6.B).

e. Detecting lengthening and shortening of 3’ UTRs

APA regulation is highly coupled with UTR modulation since mRNA polyadeny-

lation cleavage site largely determined the 3’ UTR length. Comparing polyA

sites from isoforms containing identical CDS end positions (UTR-APA) allows

the direct association of distal/proximal polyA site usage and UTR lengthen-

ing/shortening events, respectively. However, in cases of CR-APAs, where the

polyA site position alters the coding region, it is impossible to directly infer the

relationship between distal polyA site and 3’ UTR lengthening. As our DPA

analysis assesses polyA site regulation independently of the coding sequence,

we profile 3’ UTR lengthening/shortening by computing the UTR weighted arith-

metic mean at each considered condition, using relative isoform usage values

as weights:

UTRw =

∑n
i=1 Uig·UTRig∑n
i=1 UTRig

being U the relative usage of isoform i in gene g and UTR its associated UTR

length.

Thereby, UTRs from highly expressed isoforms will contribute in a higher

proportion to the final UTR mean length. Comparison of weighted UTRs across

conditions will be informative about genes which have undergone UTR shorten-

ing and lengthening events. Statistical differences are tested by using Wilcoxon

rank sum test.
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5.2.5 TappAS software implementation

Our framework for the functional analysis of isoforms was implemented in a Java

GUI application namely tappAS. Making use of extensive functional annotation

at isoform resolution and RNA-seq isoform expression data, tappAS provides

the set of methods and approaches described in this chapter together with com-

plementary functionalities (normalisation, PCA analysis, venn diagrams, a visu-

alisation engine...) that enable the easy formulation of many diverse functional

hypotheses about the role of isoform regulation in a given system of study.

A B 

C D 

Figure 5.7: TappAS interface. A. Project definition. B. Structured project data and
graphical summary. C. Differential feature inclusion analysis dialogue. D. Differential
feature inclusion results, isoform-resolved functional annotation display and multiple-time
course expression profile for the Feature-Excluding and Feature-Including Variants.

Analysis in tappAS is organized as projects, which require two pieces of

information: an experimental design file and a transcript expression data. It
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accepts pairwise analysis and single and multiple time-course experimental de-

signs. Users can provide their own isoform-resolved functional annotations or

can choose one from among the multiple pre-annotated transcriptomes for dif-

ferent organisms provided by tappAS.

The tappAS interface has two main panels: the upper panel shows struc-

tured project data and statistical results in tabular format. Being a modern GUI

application, tappAS provides a rich set of features via a JavaFX platform. These

features include data tables with customisable columns which can be sorted and

filtered; all the application data and images can be exported to files, the windows

are resizable and can be zoomed, context-sensitive help and menus are avail-

able; data can be drilled down, and displays or individual projects tabs can be

customised.

The bottom tappAS panel integrates a comprehensive set of data visualisa-

tion tools to help recognise patterns and better understand results and func-

tional isoform variability. It also provides project summary plots, PCA plots,

cluster network graphs, Venn diagrams, and exploratory results charts. The

tappAS visualisation engine is especially designed to display isoform variability

in a user-friendly manner, so that functional and structural differences between

isoform variants can easily be visualized and identified. However, the main char-

acteristic of our visualization engine is the mapping of the set of isoform-specific

functional and regulatory features. It comprehensively and dynamically displays

the whole catalogue of isoform-resolved annotations features at both transcript

and protein isoforms, greatly facilitating their study and comparison.

Implementation of the approaches described in this chapter together with the

complementary filtering, clustering, normalization, data managing and visualisa-

tion features make tappAS an outstanding and unique application for studying

isoform complexity and dymamics from a functional point of view.
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5.3 Data

We demonstrated the Functional Analysis of Alternative Isoform Usage pipeline

described in this chapter using a case-control experimental designed. Because

this methods leverage long-read technologies to define transcriptome complex-

ity, we used the experimental designed detailed in Chapter 3, Section 3.2.1 in-

volving two different cell types, Neural Precursor Cells (NPC) and Oligodendro-

cyte Progenitor Cells (OPCs). The expressed transcriptome was defined by us-

ing the PacBio sequencing and includes 11,970 transcripts in 7,167 genes (see

Chapter 3). Transcripts were functionally annotated by IsoAnnot (see Chap-

ter 4) which generated more than 1M of labels. Isoform-level quantification was

computed using RSEM [188] following ENCODE guidelines. Other experimental

designs are considered in Chapter 6.
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5.4 Results

5.4.1 The impact of neural trancriptome complexity on functional
diversity

We ran FD analysis to understand how isoform diversity impacts the coding and

regulatory potential of our neural transcriptome. Structural diversity (100 bp for

both UTR length cutoff and PolyA site cleavage variability) revealed that around

75% of genes that express more than one isoform code for varying predicted

proteins (Figure 5.8.A), representing 24% of the total expressed genes. More-

over, coding sequence modulation was a greater source of transcriptome diver-

sity than UTR variation in our neural system (Proportion test p < 2.2e16). Even

so, variability at UTR length and polyadenylation sites was present only around

45% of multi-isoform genes, without significant differences between the number

of 5’ and 3’ UTR varying genes (Figure 5.8.A). Statistical testing for gene over-

lapping across different structural categories (multiple intersection test, [350])

revealed that co-regulation of both transcript ends is far less significant than

the simultaneous regulation of a single UTR and the coding sequence (Figure

5.8.B). Moreover, the coding region was altered in 78% of UTR-varying genes,

suggesting that UTR length modulation is frequently coupled with coding se-

quence alteration, likely promoted by CR-APAs. Figure 5.8.C shows an example

of a gene which tappAS identifided as containing APA, 3’ UTR, 5’ UTR and CDS

variants.

To determine the impact of these structural differences on functional and

regulatory properties we performed the quantitatite FD analysis on this set of

positionally-annotated features. Looking at features annotated at the transcript

level, we found that the NMD had the highest rate of variation (95% of multi-

isoform genes). Moreover, almost 100% of genes containing NMD isoforms

code for multiple isoforms, indicating that in our neural system NMD-targeted

isoforms are usually co-expressed with functional isoforms. Moreover, UTR mo-

tifs, show a high rate of differential isoform inclusion (55% and 90% of multi-

isoform genes for 3’ and 5’ UTR motifs, respectively, Figure 5.8.A). Among

3’ UTR motifs, GU-rich (GREs) was the category with the highest enrichment
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Figure 5.8: Functional diversity in our neural PacBio-defined Transcriptome. A.
Based on the set of genes which express more than one isoform, varying rates per cate-
gory (protein, transcript, or structural-level) and feature level were identified. B. Intersec-
tion between genes varying in different structural categories. The significance level was
tested by using the SuperExactTest R package [350]. C. Example of a gene detected as
CDS, UTR and APA varying.

in varying elements (FET p = 3.10e-3, FDR = 0.08, 63% of varying features

in genes expressing multiple isoforms). GREs have recently been associated

with mRNA stabilisation [339] and have also been reported as the targets of

RNA-binding proteins (RBPs) which are post-transcriptional regulators of polyA,

mRNA decay, translation, and pre-mRNA processing [338]. Among the set of

160 genes with differential inclusion of GRE elements in our neural system, we

found splicing regulators as Rbm4 (Figure 5.9.B), which is involved in muscle
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cell differentiation, and transcription factors such as Tcf12 (Figure 5.9.A) which

plays an important role in controlling proliferating of neural stem cells and pro-

genitor cells during neurogenesis [328].

Varying region enriched in 
 GU-rich elements 

A 

B 

Varying GU-rich feature 

Figure 5.9: Examples of genes which express isoforms-specific inclusion of GU-rich
elements.

We also ranked miRNAs as a function of their enrichment in alternative

isoform targeting. The top five (Figure 5.10.A) included miR-335, which has

been associated with oligodendrocyte differentiation [23] and mir-590-3p which

presents the higher number of isoform-specific binding sites in our neural system
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(Figure 5.10.A). Moreover, mir-590-3p, is strongly associated with proliferation

and differentiaion processes [85], and is up-regulated in retinoic acid treated

cells [225] - the same treatment our OPCs received. Thus, annotation data

reveal a potential isoform-specific layer of expression-regulation involving miR-

590-3p binding site gains/losses by alternative processing of immature mRNAs.

Interestingly, from the 70 genes in our system with isoform-specific inclusion of

mir-590 binding sites, we found examples already described in the literature,

such as the transcription factor Zfp143 (Figure 5.9.C) in which regulation of

the 3’ UTR impacts on miR-590-3p targeting has been previously characterized

[225]. Moreover, Nogando et al. reported the co-exclusion of mir-590 binding

sites with AU-Rich elements, which also agrees with our results (Figure 5.9.C)

and boost the potential impact of UTR regulation on the Zfp143 transcript fate.

miRNA p-value odds ratio # genes

mmu-miR-335-3p 0.0015 2.01 47

mmu-miR-590-3p 0.0014 1.70 70

mmu-miR-221-3p 0.0064 2.06 30

mmu-miR-511-5p 0.0138 1.79 34

mmu-miR-881-3p 0.0194 1.73 33

Protein Feature FET p-value odds ratio

PTM 5.7e-19

DISORDER 1.51e-04

MOTIF 1.79e-02

SIGNAL 2.92e-02

COILED 4.61e-02

TRANSMEM 95.49e-01

INTRAMEM 9.35e-01

LIGAND	BINDING 9.98e-01

ACT_SITE 9.99e-01

DOMAIN 1.00e+0

Varying 
mir-590-3p 
binding site 

Varying  
AU-rich 
element 

A 

B 

Figure 5.10: Functional impact on miRNA binding site targeting. A. Top 5 miRNAs in
differential isoform targeting. Relative over-representation of varying elements by miRNA
was evaluated by Fisher Exact Tests (FET). B. The transcription factor Zfp143 has two
alternative polyA sites that generate alternative UTRs containing a differential miR-590
binding site and an AU-rich element.

FD assessment on coding features showed that post-translational modifica-

tions (PTMs) varying the most across protein isoforms (49.07%, Figure 5.8.A)

and have the highest relative enrichment across categories (FET FDR = 5.7e-
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19) in contrast to PFAM domains, the category with the lowest inclusion rates in

multiple-isoform genes (27.25%, Figure 5.8.A). However, as mentioned in meth-

ods Section 5.2, quantitative FD does not consider partial feature disruptions.

Positional versus quantitative FD at the coding level revealed significant changes

in the proportion of varying genes for PFAM domains (Proportion Test: p-value

= 2.6 e-18) and intrinsically disordered regions (IDRs, Proportion Test: p-value

= 6.8 e-18), where positional varying reaches 62.97 % and 50.28 %, respec-

tively (Figure 5.11.A). To understand whether the different PFAM families share

this behaviour or, or the contrary, total and partial domain removal depends

on the PFAM under study, we interrogate PFAMs at ID level. Among the 15

PFAM families with the highest isoform gain/loss frequency (Figure 5.11.B) cat-

egories like zinc finger and KRAB box domains are usually completely contained

in alternatively spliced regions because the varying rate only slightly increases

when partial disruptions are considered. Figure 5.12A-B shows two examples

that illustrate the complete loss of the KRAB box and zinc finger domains in

two alternatively spliced transcription factors. In contrast, kinase domains seem

to frequently undergo domain disruptions rather than domain skips (Prop.test

p.value kinase domains p = 0.02, Figure 5.11.B), likely modulating rather than

abolishing its functional role. Genes such as Cdk10 and Rbm39 undergo partial

kinase-domain deletions (Figure 5.13. A-B).

Moreover positional FD identifies IDRs as having the highest representa-

tion of disrupted features in our neural system (FET FDR = 1.06e-20, Figure

5.11.A) and this effect is accentuated when considering the absolute number of

disrupted features (FET FDR = 3.186575e-311, Figure 5.11.C). These findings

agree with previous studies reporting their enrichment in alternatively spliced

regions [280] [37] [62].

Remarkably, we found a highly significant inclusion association between vary-

ing IDRs and other varying elements (Figure 5.14), whose presence in IDRs has

already been reported such as phosphorilation sites (FET FDR = 2e-67, [148])

or Nuclear Localization Signals (NLS, FET FDR = 3e-45, [82], [375]). Rbm39

is an example of a completely excluded IDR feature which is associated with
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several PTMs, an NLS and a small-ligand binding motif (Figure 5.13.B). Thus,

FD analysis of our neural transcriptome confirmed the role thay IDRs play in the

allocation of PTMs and linear motifs as NLSs as well as their clear association

to alternatively-spliced regions.

Finally, at the trancript level, as expected, predicted polyA signal annota-

tion is the most affected category when moving from quantitative to positional

FD mode (Figure 5.11.A), most likely because this positional change underlies

APA events, an extensive post-transcriptional regulation mechanism in our neu-

ral transcriptome. Therefore, our proposed methods for FD interrogation allows

analysis to be adapted according to the biological question at hand or the char-

acteristics and regulatory mechanism of the functional category being studied.

Taken together, FD analysis indicated that almost 90% of the multi-transcript

genes defined in our PacBio-defined neural transcriptome have coding or non-

coding feature labels that vary across their isoforms, suggesting that down-

stream isoform analysis to interrogate the impact of relative isoform usage in

defining cell identity is meaningful.
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Protein Feature FET p-value odds ratio
PTM 5.7e-19 8.87e-02
DISORDER 1.51e-04 1,06E-20
MOTIF 1.79e-02 9.98.e-01
SIGNAL 2.92e-02 3.80e-01
COILED 4.61e-02 9.40e-01
TRANSMEM 95.49e-01 9.07e-01
INTRAMEM 9.35e-01 9.83e-01
LIGAND	BINDING 9.98e-01 1.00e-00
ACT_SITE 9.99e-01 1.00e-00
DOMAIN 1.00e+0 3.15e-03
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Figure 5.11: Quantitative versus positional feature diversity. A. Proportion of genes
with varying features when considering partial disruptions (positional) or complete feature
skips (quantitative). B. Number of genes which partially or completely skip domains for
the 15 PFAM families with higher positional variation rates. C. Ratio of features in multi-
isoform genes detected as varying by the positional diversity analysis. Non-parametric
proportion tests were used to test for differences in proportions across methods. (***) p
< 0.001; (**) p < 0.01; (*) p < 0.05.
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Figure 5.12: Complete domain removal by alternative splicing events captured by
the quantitative FD analysis. A. Deletion of a KRAB box domain at the N-terminal
resulting from an exon-skipping which caused a downstream start coding. B. Complete
loss of a Zinc Finger domain caused by an exon-skipping splicing event.
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Varying Kinase domain

Varying disordered region
Varying Kinase domain

B	

A	

Figure 5.13: Partial disruption of kinase domains captured by positional functional
diversity analysis. A. N-terminal disruption of a kinase domain in the Cdk10 gene.
B. Rbm39 undergoes an exon-skipping event which caused the truncation of a kinase
domain. In addition, N-terminal protein disruption leads to the complete removal of a
disordered region enriched in post-translational modifications.
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Figure 5.14: Co-inclusion of isoform-specific intrinsically disordered regions and other
categories. Fisher exact test analysis was performed for each sub-category to evaluate
their overrepresentation in intrinsically disordered region varying genes. P-values were
corrected according to the false discovery rate. The dot colour identifies the category of
the tested feature, the size of dots is associated with the significance level.
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5.4.2 Multi-layer analysis of alternative isoform usage

DE analysis showed a high proportion of differential genes between NPC and

OPC cells (3765 genes, FDR<0.05 and FC>1.5), 32% of them expressing al-

ternative isoforms. Additionally, our analysis identified two sets of genes that,

despite not presenting gene expression changes, have differentially expressed

isoforms (27% and 19% of multi-isoform genes with DIE and DCE isoforms,

respectively), highlighting the significant proportion of genes that might be ex-

clusively subjected to post-transcriptional regulation.

To capture the actual proportion of the transcriptome regulated by DIU be-

tween NPCs and OPCs, we ran our set of tools implemented on tappAS (FDR <

0.05). Out of 1,205 differentially expressed multi-isoform genes, 292 were iden-

tified as post-transcriptionally regulated (Figure 5.15.A). Additionally, 248 genes

were captured in the set of genes without overall changes in gene expression

levels, revealing that in our system, approximately 50% of DIU genes are not

transcriptionally regulated (Figure 5.15.A). However, 163 of the total DIU genes

were not detected when isoforms with low relative abundance were discarded

from out analysis (0.1 for the minor isoform proportion threshold), highlighting

the relevance of applying filtering strategies based on expression proportions

in addition to common absolute low count approaches, in order to capture the

most relevant post-transcriptional regulation signal. Two examples are shown in

Figure 5.16.

Applying DCU analysis, we discriminated 133 genes whose post-transcriptional

regulation does not involve changes in the CDS (Figure 5.15.A). An example

that illustrates this behaviour is the myoneurin gene (Mynn, Figure 5.17). Three

transcript isoforms were detected for Mynn via PacBio sequencing, one of them

with a longer coding sequenced generated by an exon inclusion that leads to

the insertion of a zinc-finger PFAM domain (Figure 5.17.C). Even though post-

transcriptional regulation is detected at the transcript level (Figure 5.17.A), pre-

dicted CDSs co-express across conditions. Thus, Mynn did not involve the dif-

ferential usage of alternative coding sequences (Figure 5.17 B).
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Figure 5.15: Multi-layer analysis of differential isoform usage contributing to the com-
prenhensive understanding of post-transcriptional regulation by AS and APA mecha-
nisms. A. Venn diagram showing the intersection between different sets of multi-isoform
genes tested for differential isoform usage. B. Representation of the proportion of ex-
pression redistributed between isoforms (Usage Change measure) in function of gene
expression fold-changes. Genes with a switching in the major-expression isoform across
conditions are represented in orange.

Finally, out of the 411 DIU genes, a relevant 30% undergo a major isoform

switching between NPC and OPC conditions (Figure 5.15.A) despite the mean

of the total usage change for DIU genes is around 20% (Figure 5.15.B). Glyr1,

which switches its most abundant transcript and protein isoforms between con-

ditions (Figure 5.18.A-B) is an example of a gene exclusively regulated by alter-

native splicing (insertion of a microexon in OPCs) without changes in its gene

expression levels.

To try to link post-transcriptonal regulation with function, we ran common

approaches as the functional enrichment (FE) and gene-set enrichment (GSE)

analyses for all of the above differential analysis results but using, as novelty,

all the functional categories available in our IsoAnnot annotation file, including
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DIU	q-value	=	3.04	e-02	
DIU	q-value	=	3.47	e-06	

A B 

Figure 5.16: Isoform prefiltering of minor isoforms remove false positive DIU calls. Two
false positive DIU genes are shown. Their isoforms are differential expressed but not
differentially usage.
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Figure 5.17: The Mynn gene undergoes A. differential usage of expressed isoforms but
B. predicted coding sequences show the same behaviour across conditions. C. Transcript
and coding region view. An exon-skipping event at the 5’ end and alternative polyAdeny-
lation events generate three different isoforms and two alternative coding sequences.

positional feature annotations. Thus, the power of the dense transcript-level an-

notation of functional elements could be used to interrogate differential-splicing

functional outcomes.

The set of DE genes are enriched in numerous transcriptionally regulated

processes, functions and pathways (FDR < 0.05) that agree with the phenotypic

differences expected between the two cell types, such as cell motility, homeosta-

sis, glia cell projection, and lipid metabolic processes. However, to specifically

capture the functional contribution of AS/APA regulation to transcriptional reg-
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Figure 5.18: Major isoform switching detected in the Glyr gene at both A. the transcript-
isoform level and B. the coding-sequence level.

ulation, the FE was assessed by testing DIU genes against DE genes. Inter-

estingly, we found processes involved in 3’-end mRNA processing, RNA binding

and mRNA splicing (Figure 5.19), indicating that the post-transcriptional machin-

ery accomplishes a high degree of self-regulation between NPCs and OPCs.

For example, both Tardbp and Srsf3, are splicing factors differentially spliced

between our two cell types (FDR DIU p = 2.45e-07 and p=4.78e-05 forTardbp

and Srsf3, respectively) and whose binding sites were actually found enriched in

DIU genes (Figure 5.19) and thus, enrichment methods operating over extensive

functional annotation link the post-transcriptional regulation of the splicing factor

Tardbp with its own role as post-transcriptional regulator. Moreover, when we

reduced the set of tested genes to DCU genes, structures and cellular compo-

nents associated with neural development such as synapses (FDR = 0.02), neu-

rite/axon outgrowth (growth cone FDR = 0.01) and cell movement (cell leading

edge FDR = 0.02) appear additionally over-represented (Figure 5.20). Remark-

ably, positional features showed the highest level of enrichment in DCU genes

when compared to DE genes including NLSs (FDR = 3.2e-09,NLS), IDRs (FDR



168
5. COMPREHENSIVE FRAMEWORK FOR THE FUNCTIONAL ANALYSIS OF

ALTERNATIVE ISOFORM USAGE

= 1.86e-12) and coiled regions (FDR = 5.36e-07). Genes with NMD isoforms

were also significantly enriched (NMD, FDR = 1.61e-11), which correlates with

their post-transcriptional origin.
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Figure 5.19: Functional enrichment of DIU genes. Functional categories available
in our IsoAnnot annotation file were tested for functional enrichment using Fisher exact
tests. The significant sub-categories are shown in the graphic plot. The dots are coloured
according to their functional category and their size indicates their level of significance
(FDR).

In conclusion, DIU between neural cell types mainly impacts the auto-regulation

of mRNA processing while DIU specifically altering the gene coding potential

are highly associated with neural-specific compartment-related genes. More-

over, certain functional features as NLSs, IDRs and phosphorilation site appear

highly accumulated in genes undergoing alternative transcript processing regu-

lation.
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5.4.3 Impact of differential isoform usage on functional properties

To understand the functional impact of DIU, we applied the DFI analysis (see in

Section 5.2.4.1), which identified significantly regulated functional features for a

total of 380 genes, almost 80% of the DIU genes detected in the previous sec-

tion, highlighting the capacity of our framework to detect the regulation of func-

tional properties in most of post-transcriptionally regulated genes. DFI features

were distributed in all the considered categories (Figure 5.21.A), with significant

relative enrichment for uORFs (FET p = 5.25e-121), RBP binding sites (FET p

= 2.46e-07), regions of compositional bias (FET p = 4.06e-03) and IDRs (FET p

= 5.02e-03). To remove the bias of some features to appear repeatedly DFI in a

gene because of their multiple occurrences, we collapsed results at gene level,
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thus finding again IDRs and 5’ UTR elements such as uORFs as the categories

most overrepresented in differential inclusion (Figure 5.21. B).

Attending to cell-type preferential usage of features, IDR gains and losses

were equally distributed in both OPCs and NPCs while signal peptides were

found preferentially included in OPCs (Binomial test with probability of succcess

0.5, FDR = 2.10e-2, Figure 5.21.C). At transcript-level annotation miRNA binding

sites, uORFs or RBP binding sites are more frequently included in OPCs (Figure

5.21.C, Binomial test with probability of succcess = 0.5, FDR miRNA binding =

3.85e-08, FDR RBP binding = 5.85e-31, FDR uORF = 4.09e-4), suggesting a

potential UTR lengthening.

Remarkably, the differences in feature inclusion rates of most categories are

around 20%, indicating that alternative isoform processing do not trigger dra-

matic feature gains and losses between NPCs and OPCs but, in aggreement

with differential isoform usage results detailed in Section 5.4.2, slightly modu-

late their inclusion levels. However, Kruskal test revealed significant differences

across categories (Figure 5.21.D, Kruskal test p = 4.30e-18). Coiled regions

and IDRs were identified as the feature categories with a significant higher

differential-inclusion levels between cell types (Mann-Whitney test disordered

FDR = 3.63e-07, coiled FDR= 5.43e-06).

MAP4, a microtubule-associated protein, illustrates the usual complexity of

loci and the ability of our DFI analysis to capture features differentially regulated

across different conditions or cell types. The Map4 gene expresses 10 transcript

isoforms (6 of them representing novel variants discovered by PacBio sequenc-

ing) which encode 10 predicted protein variants. Figure 5.22.A-B shows the 5

top expression isoforms, revealing different splicing events whose combination

leads to a high level of transcriptome and predicted proteome complexity. DFI

analysis for Map4 identified several protein elements with differential inclusion

rates between NPCs and OPCs: IDRs, a NLS (score=5.2), several phosphory-

lation sites and a tubulin-binding domain (PF00148) (Figure 5.22.C). The latter

was detected preferentially included in OPCs as consequence of the predom-

inant usage of isoforms containing 4 tubulin motifs in OPCs (Figure 5.22.B-C)
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which may lead to improved MAP4 binding in OPCs. This regulation pattern

correlates with the known continuous enrichment of MAP4 protein isoforms con-

taining 4 binding domains during development [48]. Moreover, family-related

microtubule-associated genes such as Mapt can modulate its microtubule bind-

ing properties by skipping a tubulin-binding domain [186] reinforcing the idea that

the regulation of Map4 pre-processing increase its microtubule binding through

the inclusion of a fourth domain. Regarding phosphorilation sites, evidence of
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Figure 5.21: Differential Feature Inclusion results between NPCs and OPCs. A.
Distribution of the number of features in transcriptome across categories and distribu-
tion of differentially included features. The relative over-representation of DFI features in
specific categories was statistically evaluated by using Fisher Exact tests to capture en-
riched categories with Benjamini-Hochberg multiple testing correction. B. Distribution of
the number of genes with annotated features in transcriptome across categories regard-
ing the distribution of genes with significantly regulated features for each category. Over-
representation test performed as above. C. Distribution of DFI features between favored
in OPCs and NPCs. Binomial test with probability = 0.5 and Benjamini-Hochberg multiple
testing correction was applied to capture categories enriched in cell-type specific inclu-
sions. D. Absolute levels of differences in inclusion levels across the cell types. Differ-
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cooperation between AS and PTMs have been recently reported as a way to pro-

vide genomes with signalling plasticity [393]. Indeed, certain MAP4 phospho-

rylation sites have already been identified as critical for tubulin polymerization

activity [? ]. Hence, our DFI analysis captured the complex pattern of feature

inclusion triggered by post-transcriptional regulation in Map4 gene, and more

importantly, allow us to hypothesize about their functional impact on essential

properties such as binding and signalling in our system of study,

The effect that AS has on the alteration of binding properties have been

largely reported [94][59]. DFI within annotated binding categories (UniprotKB

Binding category and Pfam domains) revealed the Ankyrin repeat superfamily,

involved in protein-protein interactions, enriched in DFI features with respect to

the other binding motif categories (CL0465, 23%, FET p-value = 0.02). Ac-

tually, Ankyrin regulation has been previously described for the Ank2 gene,

whose binding affinity to spectrin and tubulin is altered by differential inclu-

sion of an ankyrin repeat [72]. In addition to protein binding effects, numer-

ous genes were detected as differentially regulating the inclusion zinc-finger

domains (e.g. Zfp148, Mbnl2, Zfp961), RNA-recognition motifs (e.g. Rbm39,

Rbm7, Scml4) and small-ligand binding motifs (e.g. H2afy, Gdi1, Nnt, Pycrl,

Pcyox1). Among them, Nfx1, Mbd1 and H2afy have been previously associ-

ated with post-transcriptional regulation of their binding properties, leading to

altered transcriptional activity [163], recruitment to CpGs [157] and interaction

with NAD+-derived small molecules [232], respectively.

Together with the alteration of binding motifs, the change in the intracellu-

lar localisation of proteins is the most well-known and studied aspect of post-

transcriptional regulation. It involves changes between cytosol and nucleus

through the alternation of nuclear localization signals (NLS), the movement from

plasma to membrane by the alternative use of transmembrane regions, or even

directs proteins across the ER membrane to enter in the secretory pathways by

the inclusion of N-terminal signals, among others. Our DFI results showed 74

genes with differential NLS usage, 30 genes altering their transmembrane re-

gions and 19 genes differentially including the secretory-targeting signal. Thus,
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post-transcriptional regulation promotes the differential inclusion of features as-

sociated with intracellular protein localisation for 108 out of 278 DCU genes de-

tected in the previous section, what represents almost 40% of them. Therefore,

DFI revealed an spread potential impact of AS/APA regulation between NPCs

and OPCs on subcellular re-localization. The functional analysis of genes with

regulation of NLSs highlighted transcriptional regulation (Top2a, Sall1, Kat5,

Ctnnd1, Ncapg, Scmh1, etc.), RNA-binding (Mbnl2, Wdhd1, Mbnl1, Glod4, Srek1,

Rbm39, etc.), kinase activity (Adk, Clk4, Clk1, Trpm7, Mapk7, Scyl1, etc.) and

cell differentiation (Rufy3, Sall1, Ezh1, etc) as the functional categories (GO

terms) with the highest number of NLS regulated genes.

Partial protein translocation to nucleus by exon inclusion or longer N-terminal

that code an NLS has recently been reported in some of them such as Mbln1,

Mbnl2 [] or Adk [? ][168]. Two so far non-reported cases discovered in our analy-

sis are the kinases Clk1 and Clk4. In both cases, splicing results in the inclusion

of an exon that promotes the use of downstream start codon affecting the in-

clusion of a NLS in the resulting protein. In both kinases, the NLS-excluding

forms increase their relative abundance in OPCs, likely causing the transloca-

tion of the kinase activity to the cytoplasm. CLK1 and CLK4 belong to a family

of dual specificity proteins which, in the nucleus, phosphorylate serine/arginine-

rich proteins that regulate alternative splicing programs [223]. Moreover, CLK1

auto-regulates the splicing of its own pre-mRNA according to its kinase activity,

generating the increased expression of an inactive splicing variant that truncates

its kinase domain and regulates its activity [89]. From our results, we speculate

that, splicing regulation in CLK1 and CLK4 between NPCs and OPCs could,

additionally, impact their activity by promoting the expression of kinase isoforms

that cannot translocate to nucleus or even acquire alternative functions in the

cytoplasm in OPCs, where the NLS is predominantely excluded.

A similar NLS motif inclusion pattern was found for Ctnnd1. Ctnnd1 codes

for the p120 protein, a member of the Wnt-Β-catenin signalling pathway, that is

a key component in neural differentiation [92][219]. In our data, PacBio detected

4 isoforms variants formed by the combination of 2 alternative splicing events,
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one imprinting an NLS through the exclusion of exon 10 (5.23.A). p120 NLS-

containing isoforms were strongly underrepresented in NPCs, while their relative

expression levels significantly increase in OPCs, where they become the major

isoforms (5.23.B-C). According to the NLS inclusion-pattern data, high cytoplas-

mic retention of p120 is expected in NPCs, while relatively higher nuclear levels

should be found in OPCs. Western blot analysis of nuclear and cytoplasmic frac-

tions in NPCs and OPCs verified this differential localisation pattern leading to

the enrichment of the cytoplasmatic Ctnnd1 form in NPCs (5.23.D) and confirms

the functional readout identified by our DFI analysis for the Ctnnd1 gene.

The co-regulation of functional elements is another intriguing question about

transcriptome complexity and function. CoDFS identified pairs of deferentially

included features that are actually known to cooperate to generate specific func-

tional readouts such as the NLS and phosphoserine events (FDR = 3e-35):

post-translational masking of NLS provides a regulatory mechanism to prevent

nuclear import [213] [137] [384] [222] [257] [40]). This pair includes 32 genes (10

% of DFI-associated genes) enriched in mRNA processing (FDR p = 4.97e-05)

and suggests complementary PTM masking and differential splicing regulation

of NLSs. Regulation by phosphorylation-dependent activation of the NLS, likely

as a mechanism for rapid control of protein localization in cells and a more stable

regulation by co-skipping of the NLS signal and their regulatory phosphoserine

sites. As example, the histone acetyltransferase Kat5, which is known to shut-

tle between the nucleus and the cytoplasm by AS events [270], up-regulates

the relative abundance of the short isoforms excluding the NLS and the phos-

phorilation site in OPCs. Understand if PTM and AS regulatory mechanisms

of subcellular localization could complementary regulate Kat acetyltransferanse

activity or allow complementary functions in cytoplast is key in our system under

study because of the tighly regulated histone acetylase activity during oligoden-

drocyte lineage progression (ref,ref).
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Figure 5.23: Experimentally validated functional impact of Ctnnd1. A. The pair-wise
combination of two splicing events generates four alternative coding sequences involving
the disruption of an IDR and an NLS. B. Although Ctnnd1 is detected as a DIU with high
levels of transcript usage change (47%) and major isoform switching, its differences in
gene expression were not significant. C. DFI analysis detected significant inclusion of a
NLS in OPCs. D. Western blot analysis of nuclear and cytoplasmic fractions showed the
enrichment of the cytoplasmatic form of CTNND1 in NPCs.



5.4 Results 177

5.4.4 Impact of APA events in UTR modulation and containing fea-
tures

We applied our DPA analysis to study the differential usage of alterantive polyA

sites between NPCs and OPCs (polyA distance threshold 75 nt, isoform pro-

portion filtering 0.1, FDR = 0.05). Differential polyadenlyation was detected for

16% of genes expressing alternative polyA sites (128 genes out of 780, FDR <

0.05, Figure 5.24.A). Among them, Lamp2 displays the highest level of ∆DPAU

between conditions (DPA FDR = 9.34e-11; ∆DPAU=38.6). Mediating lysosomal

degradation of proteins in response to various stresses, Lamp2 undergoes a

polyA site switching favoring the use of the distal polyA site in OPCs and pro-

moting a 3’ UTR shortening (Figure 5.24.B), in agreement with previous studies

reporting the APA regulation of Lamp2 [68].

Although there was no general pattern of predominant distal usage in any cell

type (Figure 5.24.A), the UTR lengthening/shortening analysis of all the genes

expressing varying UTRs (100 bp cutoff) revealed an overall longer median 3’

UTR length in OPCs (Figure 5.24.C, WRT test: p = 2.26e-5) in contrast to 5’

UTRs, where there was not found any significant UTR regulation pattern.

This 3’-UTR lengthening pattern correlates with the higher proportion of miRNA

and RBP binding sites which were detected in DFI analysis as OPC gains (Fig-

ure 5.21.C). In total, 123 genes underwent 3’-UTR regulation impacting miRNA

binding sites between cell types. Ranking of miRNAs showed that members

of the miRNA200 family such as miR-141-3p and miR-200a-3p were the most
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Table 5.1: Top miRNAs with binding sites over-represented in regulated UTRs between
NPC and OPC cell types.
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Figure 5.24: Differential polyadenylation (DPA) between NPCs and OPCs. A.
Heatmap displays DPAU levels associated to DPA significant genes (FDR < 0.05) for
each studied cell type. B. Gene model visualization for Lamp2 gene, which is subjected
to APA modulation between NSC and OPC stages. Red isoforms indicate predicted NMD
targeting. C. Boxplots showing the distribution of the weighted 3 and 5’ UTR lengths in
neural types.

over-represented in differential isoform targeting (Table 5.1). Moreover, in cor-

relation with FD results (Section 5.4.1), miR-590 binding sites were the most

frequently regulated between OPCs and NPCs. Surprisingly, in both cases, a

high number of targets were related to endocytosis and neural-specific morpho-

logical structures such as the somatodendritic compartment, including Gmp6b,

Rufy3, Lamp2, Dync1li2, Pcdh2, and Vamp4. For example, 3’ UTR regulation

in Rufy3, involved in neural polarity, promotes the inclusion of the mir590-50

miRNA binding site and is coupled with the deletion of the C-terminal protein

region (Figure 5.25.A), responsible of its interaction with RAB5A (GTPases Rab

controlling intracellular membrane trafficking [141]) and co-localisation in large

vesicle structures [381]. This coupled effect indicates a coordinated and in-

terdependent regulation of isoform-specific miRNA targeting and protein func-

tionality. After filtering out miRNAs by expression (miRNA microarray on NPC

and OLG samples), the mir-384-5p, mir-3473b and mir-24-2-5p appeared over-

represented in binding sites differentially included between cell types (Table 5.1).

Mir-3473b, recently associated to neuroinammation [357] targets specific iso-
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forms of enzymatic genes such as Ube2l3 (Figure 5.25.B) or Eif4a2.
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Figure 5.25: Impact of differential polyadenylation (DPA) in the inclusion of regula-
tory elements at UTR regions between NPCs and OPCs. A-C Gene models for Rufy3,
Ube2l3 and Tdrd3 genes together with functional annotation of alternative UTR regions
and the inclusion profile of features across cell types. D. Protein diversity expressed by
Tdrd3, highlighting the impact of DPA on PTM sites and a region of interaction with the
exon junction complex (EJC).
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Other elements as AU-rich elements (ARE), well-known to influence target

transcript fate [49], were detected with different inclusion rates among transcript

variants in 11 genes, including the Tdrd3 (Figure 5.25.C) which mediates tran-

scriptional activation in nucleus and formation of stress granules and regulation

of mRNA translation in the cytoplasm [124]. The use of a CR-APA promotes the

inclusion of an AU-rich element along differentiation which is coupled to the lost

of two elements associated to the coding part of the protein: a phosphotyrosine

site and a region potential to mediate interaction with the exon-junction complex

(EJC, Figure 5.25.C-D). This isoform-specific EJC-binding motifs (EBMs) allow

the recruitment of proteins with post-transcriptional functions to mRNAs via the

EJC [162]. All together indicates that the dual role of Tdrd3 as disassembler of

mRNA stress granules and regulator of translation in cytoplasm and trasnscrip-

tional activator in nucleus is triggered by APA regulation, which leads to regu-

latory (ARE gain) and functional (EJC motif loss) isoform specificity. Similarly,

Eif4a2, target of AUF1 (RNA-binding protein mediating the ARE-dependent sta-

bilization process [395]), showed an DPA pattern that leads to the exclusion of

an AU-rich element together with the inclusion of an ubiquitination site (K382) at

the CDS in OPCs. Previous analysis reported the association of a single residue

(K226) of Eif4a2 with its recruitment to stress granules when re-programming of

the translation machinery is needed [156]. It would be interesting to under-

stand if K382 might have a similar role in the recruitment of Eif4a2 to specific

organelles. Thereby, our results suggest the modulation of mRNA stress gran-

ules metabolism between NPCs and OPCs by differential polyadenylation and

indicate the isoform-specific ARE-mediated destabilization of Tdrd3 and Eif4a2

in function of the isoform functional role.
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5.5 Discussion

Despite many computational methods have been developed to elucidate the dy-

namics of isoform regulation, the genome-wide study of the potential functional

impact triggered by post-transcriptional mechanims is not a strightforward task

because of the lack of tools and methods integrating contextual isoform data and

isoform-resolved functional annotation. Here we presented the first compren-

hensive computational framework to investigate the effect of differential isoform

usage in functional properties which is implemented in an interactive and dy-

namic tool combining statistical and graphical tools: tappAS (http://tappAS.org).

One fundamental question about isoform function is how post-transcriptional

regulation imprints functional complexity to transcriptomes. tappAS implements

the FD analysis which systematically evaluates the genome-wide level of struc-

tural (i.e. UTR length) and functional (i.e. phosphorylation sites) diversity across

isoforms for the wide range of functional annotation categories. Applied to the

comparison of murine neural cell types, we found that more than 70% of multi-

isoform genes generate alternative CDSs, in contrast to the reduced variability

at UTR length and polyadenylation sites (45%). Besides, functional features

varying across isoforms were detected for almost 90% of the genes expressing

multiple isoforms. Specifically, at transcript level, GU-rich elements and mir590-

3p binding sites were over-represented in regulated features in 3’ UTR motif

and miRNA categories, respectively, illustrating already reported cases as the

functional lost of a mir590-3p binding sites in the Znf123 transcription factor.

At protein level, IDRs and PTMs were detected as the most varying features,

in agreement with previous studies reporting their enrichment in alternatively-

spliced regions [280][393]. Moreover, IDRs were highly associated to linear mo-

tifs and PTMs, suggesting overlapping and joint pre-processing. Positional vs.

quantitative FD analysis showed zinc fingers and KRAB box domains as usually

completely contained in AS exons. In contrast, kinase and RNA binding domains

stood out at the positional FD analysis, indicating their frequent partial disrup-

tion. In summary, our results illustrate the power of the tappAS FD analysis to

explore the isoform functional diversity present in a mammalian transcriptome.
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When transcript expression is provided, tappAS assesses transcriptome reg-

ulation, including gene, transcript and CDS differential expression, differential

isoform usage involving regulation of the coding sequence and/or the untrans-

lated region or isoform switching events. Their flexible combination allows to

configure specific questions on transcriptome dynamics and its associated func-

tional enrichment, when combined with functional information. In our murine

system, we found 378 genes with isoform usage regulation, half of them without

involving gene expression regulation and only a low fraction of them resulting in

switches of the major expressed isoform between NPCs and OPCs. Compared

to DE genes, we found DIU genes over-represented in processes involved in 3’-

end mRNA processing, RNA binding and mRNA splicing as well as targets sites

for RNA binding proteins at the enrichment of positional motifs, indicating that

the post-transcriptional machinery accomplishes a high degree of self-regulation

between neural cell types. Moreover, 75% of DIU genes involve the regulation

of the CDS, which, interestingly, are over-represented in neural cellular compo-

nents. Therefore, combining tappAS differential, filtering and enrichment anal-

ysis functions in our neural system, we were able to describe a scenario of

post-transcriptional regulation fundamentally decoupled from the regulation of

gene expression that mainly impacts the RNA metabolism machinery itself but

remarkably, also involves the regulation of genes located in neural-specific struc-

tures when the changes affect the coding sequence of the gene.

To link functional diversity with isoform usage dynamics tappAS includes the

differential feature inclusion (DFI) analysis that profiles the dynamic change in

the feature content of full-length isoforms. Additionally, alternative polyadenila-

tion and UTR shortening/lengthening analysis were coupled to study the impact

of isoform regulation on UTR modulation, key for transcript fate regulation. More-

over, joint visualization of expression levels and isoform-resolved functional and

structural elements allows the easy mapping of functional differences at tran-

script models. Applied to our pair-wise neural system in mouse, differentially

included features were detected for nearly 80% of the detected DIU genes, in-

dicating that our analysis framework captured regulation of functional proper-
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ties for most of the post-transcriptionally regulated genes. Moreover, they were

found highly distributed across the considered databases, demonstrating that

isoform regulation consequences are diverse. An example is Map4, whose iso-

forms, generated by complex combinations of alternative events, are regulated

to impact several functional elements such as NLSs, PTMs and IDRs, poten-

tially regulating protein localisation, adding signalling plasticity and modulating

protein interactions, respectively. Among all the considered annotation cate-

gories, uORFs, RBP binding sites, regions of compositional bias and IDRs were

found significantly impacted by post-transcriptional regulation. Moreover, the in-

clusion of elements at 3’-UTR regions were significantly favored in OPCs, what

correlates with the significant 3’ UTR lengthening pattern detected in OPCs.

MiRNA analysis revealed binding sites for the miRNA 200 family (miR-141-3p

and miR-200a-3p) as frequently impacted by UTR regulation and inspection of

genes undergoing differential inclusion of AU-rich elements revealed two genes,

Tdrd3 and Eif4a2, that are potential to trigger isoform-specific roles in stress

granules coupled to isoform-specific ARE-mediated destabilization.

Regarding protein features, ankyring repeat domains, small-ligand binding

sites, zinc-finger motifs and RNA-recognition motifs were frequently regulated

between NPCs and OPCs, some of them previously validated. Moreover DFI

analysis detected a high proportion of genes (40%) that dynamically modu-

late the inclusion of features associated with the intracellular protein localiza-

tion (signal peptides, transmembrane regions or NLSs) between our neural cell

types. NLSs were differentially included in 74 genes, comprising already re-

ported genes such as the Mbnl1 and Mbnl2 RBPs and the Adk kinase. Among

the set of not reported genes with detected potential impact on nuclear localiza-

tion, we experimentally validated that the post-transcriptional regulation of the

Ctnnd1 gene, a member of the Β-catenin signaling pathway involved in the dif-

ferentiation of NPCs into OPCs, leads to its accumulation in cytoplasm in the

differentiated stage. Moreover, the complementary coFDS analysis, which ex-

plores sets of functional motifs that are processed together, revealed the asso-

ciation between the inclusion of phosphoserines and NLSs signals, suggesting
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a double layer of NLS regulation comprising the post-translational masking of

NLSs as a mechanism for rapid control of protein localization and a more stable

regulation by co-skipping of the NLS signal and their regulatory phosphoserine

sites in our system. Thus, use of tappAS to the analysis of two neural cell types

in mouse demonstrated its ability to recapitulate a great deal of the existing

knowledge on isoform function and yet reveal new functional insights.

Thanks to the flexible combination of statistical tests, enrichment methods,

filtering and visualization options, tappAS brings the analysis of of isoform func-

tion to the reach of experimentalists with little computational skills. Formulate

varied functional hypothesis about the role of isoform regulation in a given sys-

tem of study as analysing if differential splicing across conditions is impacting

specific functional elements such as post-translational modifications or nuclear

localization signals, or coming up with genes regulating UTR regions and con-

tained motifs are questions that can now be easily answered. We anticipate

that tappAS will enable the broad-scientific community to lead advances in the

understanding of the functional relevance of the alternative processing of tran-

scripts.
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6.1 Introduction

During mammalian spinal cord development, motor neurons (MNs) and oligo-

dendrocyte precursos cells (OPCs) are generated in a highly specific manner,

both spatially and temporally, from a common pool of neural progenitor cells in-

cluded in the so-called pMN domain. While MN are responsible for transmitting

signals from the spinal cord to muscles and enable muscle contraction, OLGs

are glial cells that produce and maintain the myelin sheath that surrounds axons

of the central nervous system (CNS), thus forming an electrical insulator that

allows rapid signal transmission.

Most research in this area has focused on understanding cell fate decisions

during differentiation of MNs and OPCs. Precise modulation of proneuronal and

proglial factors [308] [74][161][394], reversible post-translational regulation [188]

or differential signaling between neural cells [111][45][243] have been revealed

behind the dramatic morphological and functional changes that dictate cell fate

specialization. However, the post-transcriptional landscape underlying fate de-

termination of NPCs into different neural subtypes as well as the functional ef-

fects of cell-type specific AS and APA events remains poorly understood.

AS is already recognised as an particularly widespread regulatory mecha-

nism in the nervous system (CNS) [265] and involved at every step of neural

development, including neuronal migration or establishment of synapses [231]

[392] [56]. Genome-wide technologies have revealed the specificity of splic-

ing patterns across neural cell types, brain regions, and developmental stages

[362][391][374][345][155] as well as the dynamic and precisely regulation of

splicing programs relying on the proper expression and function of splicing reg-

ulators [362][388][149][266]. Moreover, APA programs has been shown to be

temporally coordinated in an AS-independent manner during neurogenesis and

brain development [129][281][7][103]. Dysregulation of splicing regulators or

defects in cis-acting splicing elements have been linked to several brain disor-

ders and neurodegerative diseases such as amyotrophic lateral sclerosis (ALS),

schizophrenia and autism [75] [345] [265] [149]. However, our understanding

of how splicing switches and APA control the functional redout responsible for
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NPCs specification into glial and neuronal subtypes during spinal cord devel-

opment remains limited. Deep understanding on the genome-wide impact of

neural-type specific isoform regulation on protein function, mRNA stability, sub-

cellular localization or gene expression regulation via NMD is essential to re-

solve the functional specificities of alternative lineages as well as decoding the

potential basis of several splicing-based neurodegenerative diseases impacting

specific neural subtypes.

Thus, in this chapter, we studied the temporal functional impact of differential

AS and APA regulation on the cell fate determination of NPCs into MN and

OPCs at the genome-wide level. To do this we applied the new paradigm for the

functional analysis of differential isoform usage defined in this thesis. Making

use of long-read transcriptome sequencing for the definition of transcriptome

complexity and functional profiling methods operating at isoform-resolution, we

captured the isoform diversity landscape of neural tissues, characterized the

potential functional impact of several neural-specific AS and APA events, profiled

the dynamic gain and lost of functional features across neural cell types during

fate determination.
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6.2 Methods

6.2.1 Experimental design

Our experimental design included multiple samples from differentiation systems

designed to derive glial and neuronal cells. Neural differentiation experiments

were conducted in collaboration with the Neural Regeneration Laboratory at the

Prı́ncipe Felipe Centro de Investigación. NPCs were isolated from spinal cords

collected from neonatal mice (4 days old) and cultured in suspension for seven

days to produce neurospheres. These neurospheres were then put into OPC or

MN differentiation conditions for 35 days, as previously described by Moreno et

al. [216], using the same NPC pool for both differentiation processes. To account

for biological variability, the process was repeated in duplicate. To profile the

dynamics of AS and APA regulation, four differentiation stages from each NPC

differentiation experimental condition were harvested for total RNA extraction at

0, 9, 28, and 35 days for OPCs and 0, 9, 15, and 35 days for MNs.

6.2.2 RNA-seq by single molecule and short-read sequencing

The total RNA was extracted from samples of NPCs and cells derived from them

and was retro-transcribed using the Clontech SMARTerTM cDNA synthesis kit.

The samples were randomised in four different batches to account for tech-

nical biases during data analysis. Full-length cDNA samples from each time

point and lineage (two biological replicates each) were split to prepare Illumina

and PacBio sequencing libraries. The PacBio Iso-Seq libraries were sequenced

on the PacBio RS II platform using P6-C4 chemistry. To avoid loading bias,

which favours the sequencing of shorter transcripts, a BluePippin device was

first used to perform multiple size-fractionation (1-2 kb, 2-3 kb, 3-5 kb and 5-10

kb). A total of 135 SMRT cells (a median of 9 SMRT cells per sample) were

sequenced following the Iso-Seq PacBio sequencing protocol, providing a total

of 10 M of PacBio reads, one of the highest PacBio sequencing depths gener-

ated to date. We also conducted 2x75 paired-end Illumina sequencing using the

Nextseq platform, which yielding around 50 M of paired-end reads per sample.
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Both sequencing approaches were carried out at the Interdisciplinary Center for

Biotechnology Research at the University of Florida.

6.2.3 De novo discovery of neural isoforms by Iso-Seq and tran-
scriptome curation

PacBio Iso-Seq data were processed using the command-line version of the

PacBio Iso-SeqTM analysis software (version 3.0). This software version was

implemented to allow users to work with data from the Sequel instrument, which

provides raw sequences in bam format. Therefore, prior to analysing our PacBio

RS II data, we converted reads from bax.h5 to bam format. CCSs were gener-

ated by setting a minimum number of 1 passes, a minimum predicted accuracy

of 0.8 and a minimum signal-to-noise ratio (SNR) cutoff of 2, yielding a repre-

sentative consensus sequence ZMWs in which the SMRT adapters were de-

tected. FL CCS classification was ran with default parameters. Both steps were

independently performed for each single SMRT cell. Transcripts were then iden-

tified using ToFU2 v3.8 inside Iso-Seq Analysis Pipeline. Because of the large

amount of data generated (around 10M of PacBio reads), isoform discovery

was accomplished by dividing data into five partitions. The ToFU2 pipeline was

then independently run for each partition using default parameters (excepting

partial hits removal option specified during preCluster step) and taking advan-

tage of extensive parallel computing. We skipped the polishing step from ToFU2

pipeline because the sequencing depth from FL reads was sufficient to generate

high quality sequences. Next, GMAP [370] with sense force option was ran to

align sequences to the mouse reference genome (mm10 version). Redundant

ICE isoforms were collapsed using two different tools: TAMA [178] and PacBio’s

Cupcake method (https://github.com/Magdoll/cDNA_Cupcake).

The SQANTI [313] software developed in this thesis was applied to charac-

terise transcriptomes defined by long-read sequencing (Chapter 3). Sqanti QC

was run to inspect isoform, providing the junction coverage estimations com-

puted by the STAR aligner (using the parameters specified in Chapter 3) and

RefSeq (version 78) genome annotation as input. The filter funtion of SQANTI

https://github.com/Magdoll/cDNA_Cupcake
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was subsequently applied to remove potential artefactual isoforms, thus defin-

ing a curated transcriptome which from hereon in we refer to as NEURALtc. We

set a probability of 65% of adenines at the genomic 3’ end on order to flag iso-

forms as intra-priming and set a probability higher than 0.75 for Random Forest

to classify positive isoforms.

Finally, we analyzed the contribution of the AS, APA and ATI mechanisms

to transcriptome complexity by comparing splice-junction patters across gene

isoforms to define the number of unique splicing patterns per gene. The number

of APA and ATI variants per gene was then calculated by separate comparison

of genomic TTS and TSS coordinates across isoforms derived from the same

gene, respectively. A window of 100 bp was established as the threshold for

definition of independent TSS or TTS sites.

6.2.4 Isoform quantification and normalisation

The expression quantification of Iso-Seq isoforms for each condition using Illu-

mina short-reads and RSEM software in accordance with ENCODE-recommended

guidelines [188]. Prior to statistical analysis, we assessed the effect of sequenc-

ing biases on expression quantification so that we could choose the most appro-

priate normalisation procedure. Based on our exploratory analysis results, we

selected TMM normalization method [276]. The NOISeq R package [312] was

used for sequencing-depth and TMM normalization. Finally, we also interrogated

the data for batch effects and were unable to find any technical confounders in-

fluencing the expression estimations.

6.2.5 Principal component analysis for lineage characterisation

To analyse distance and relatedness between differentiation stages and cell

types, we performed a principal component analysis (PCA) on gene-expression

logarithmic levels and mean centered expression values. The loadings of spe-

cific MN and OPC biomarkers were examined for their contribution to the defini-

tion of principal components.
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6.2.6 Relevance of novel isoforms in defining cell identity

To understand the relevance of novel variants discovered by PacBio sequenc-

ing in our neural system, we performed a comparative study between the set of

novel and known isoforms based on their contribution to total gene expression.

We classified the isoforms as ’principal’ (PI) or ’minor’ (MI). PIs were catalogued

as those with the highest relative proportion in at least one experimental con-

dition. The remaining isoforms were labelled as minor. Only genes expressing

both novel and known variants were considered in order to make groups com-

parable.

We also carried out PCA on the mean-centered logarithmic expression es-

timations of novel isoforms to analyse the ability of novel calls to define cell

identity and maturation timing in multiple differentiation systems. SQANTI cate-

gorization was used to classify the transcripts into novel and known using Ref-

Seq (version 78) as the reference gene annotation. Alternatively, CDS novelty-

characterisation data was retrieved from IsoAnnot output (Section 4) and Ref-

Seq78, UniProt Trembl and Uniprot Swissprot as reference protein sources.

In addition, the replicability of novel isoforms was characterised by measur-

ing how many of them were detected by Iso-Seq sequencing in two biological

replicates. We catalogued isoforms as being found in replicates if the isoform

was fully-sequenced in two biological replicates of one studied condition. We

used the number of full-length Iso-Seq reads classified by ToFU2 as belonging

to the given isoform.

Splicing events in Iso-Seq isoforms were characterised using the Suppa tool

with default parametes [3]. Functional enrichment of novel isoforms was per-

formed using GOseq [382], defining the group of genes expressing novel iso-

forms as the test set and the total set of genes defining our NEURALtc as the

background. Finally, the functional network of enriched processes was obtained

from tappAS.
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6.2.7 Transcriptional and post-transcriptional dynamics in neural
differentiation systems

Gene expression and isoform usage dynamics was profiled and statistically in-

terrogated for changes over the course of time in both glial and neural differenti-

ation systems by using tappAS (Chapter 5), running independently time-course

analysis for each cell type. The binomial distribution of the data and 3 and 2

regression polynome degrees for DGE and DIU analyses, respectively, were set

as the parameters for fitting the model. Degree 2 for DIU was chosen to avoid

the loss of statistical power when modeling genes that express several isoforms

caused by the increase of explanatory variables. An FDR of 0.05 was set as

threshold to call differential genes. DCU and DIU were run after applying filtering

steps to discard isoforms with a relative gene expression lower than 0.1. Major

isoform switches at different differentiation stages were computed by comparing

the predominant gene-isoform at each point in relation to the most-expressed

isoform in NPCs. In the case of DGE, developmentally regulated genes were

grouped by hierarchical clustering using correlation as a measure of distance,

and computing the median expression profile to represent the expression be-

haviour of genes belonging to each defined cluster. The functional relevance of

each layer of gene expression regulation was interrogated by using the multidi-

mensional gene-set analysis implemented in mdgsa package [215], conducting

the analysis individually for each cell type differentiation system and using rank-

ing statistics derived from both DIU and DE statistical analysis. We selected GO

terms with a FDR less than 0.1 at any of the layers of gene-expression regula-

tion and summarized them using the REVIGO tool [309] for further visualization

in Cytoscape [295]. The contribution of each transcriptional layer to modulate a

given function was visualized by computing their relative significance in logarith-

mic p-values.

Because two differentiation systems were considered in this study, next we

detected genes whose behaviour was different between MN and OPC develop-

ment. We interrogated cell-type specific gene regulation by comparing cell types
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at the three different experimental maturation stages. Lineage-specific transcrip-

tionally and post-transcriptionally regulated genes were detected using DIU and

DGE pariwise analysis. Stage-specific differential genes were called at a FDR

threshold of 0.05. Similarly, multidimensional analysis was run for each stage

of differentiation in single time-course analyses to capture the functional rele-

vance of each regulatory mechanism at each developmental stage. GO terms

with bi-dimensional enrichment patterns significantly displaced towards post-

transcriptional regulation in at least one differentiation stage were defined as

functions predominantly regulated by post-transcriptional mechanisms (genes

classified into one of these mdgsa groups: block displaced toward quadrant 4

without interaction (q4f), block displaced toward quadrant 4 with interaction (q4i)

and block shifted to positive X values (xh)). These set of GO terms were sum-

marized and further visualized by using REVIGO and Cytoscape tools.

6.2.8 Isoform functional diversity in neural differentiation systems

To unravel the extent to which post-transcriptional mechanisms generate func-

tional complexity in neural systems by altering the functional load of gene prod-

ucts, we functionally characterised our NEURALtc transcriptome using the IsoAn-

not pipeline implemented in Chapter 4. The coding regions for defined iso-

forms were predicted using the GeneMarkS-T tool [30], implemented in SQANTI

(Chapter 3). To complementary the RBP binding site annotation provided by

IsoAnnot, we incorporated Mbnl1-2 CLIP data from brain samples published by

Wang et al. 2012 [349]. We subsequently analysed the FD using the quanti-

tative varying mode for non-coding and signal-peptide categories and the posi-

tional varying mode for the other feature categories annotated at coding level.

Regarding structural characterisation, 3’ and 5’-UTR variability was assessed

by length comparison (using 100 bp as the cutoff) while APA and CDS diversity

were positionally evaluated.



6.2 Methods 195

6.2.9 Differential feature inclusion between glial and neuronal dif-
ferentiation

DFI analysis was used to obtain the set of functional and regulatory features

differentially included by post-transcriptional regulation between the OPC and

MN differentiation systems. Isoforms belonging to the ISM category as well as

non-coding variants (representing the 3.6% and 4.8% of the NEURALtc tran-

scriptome, respectively) were discarded before the DFI analysis. Moreover, we

imposed a minimum isoform relative-expression filtering cutoff of 0.2, thus test-

ing features if relative expression of both feature-included and feature-exclusive

variants reached 0.2 of the total expression of the gene in at least one condi-

tion. We chose the ’feature disruption’ DFI analysis mode to discriminate the

varying features, which analyses both partially disrupted or completely excluded

features (More details in Section 5.2.4.1). The identification of features with

differential inclusion dynamics between cell subtypes across development was

performed by using pairwise comparisons at each stage of differentiation. For

each stage, a feature was considered differentially regulated between cell types

if it two criteria were met: |FDR < 0.05| and ∆FI 0.2. We also defined the

cell-type in which the complete inclusion of the feature was promoted and char-

acterised major variant switches. Relative over-representation of DFI features

in specific annotation categories was statistically evaluated at the element and

gene level using FETs, allowing categories to be ranked by their DFI enrichment

levels.

6.2.10 Differential polyadenylation in differentiating glial and neu-
ronal cells

Alternative usage of polyA sites in MN and OLG differentation systems was

computed using the DPA method described in Chapter 5. An adjusted p-value

threshold of 0.05 and ∆DPAU >= 0.2 were set as paramaters required to call

DPA genes. We performed hierarchical clustering of DPA genes on DPAU lev-

els using same parameters described in 6.2.7. 3’ and 5’-UTR lengthening was

computed as detailed in Chapter 5. PCA analysis on mean-centered 3’ UTR

lengths was performed in order to explore how far UTR lengthening can define
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cell maturation and identity. Gene loading values at PC differentiating lineages

were used to select genes for further 3’ UTR lengthening analysis.
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6.3 Results

6.3.1 Widespread novel post-transcriptional diversity in neural sys-
tems captured by long-read sequencing

135 PacBio SMRT cells belonging to 15 samples from our multiple time-course

experiment were sequenced by PacBio RS-II, yielding a total of 10M reads, 56%

of them catalogued as FL. As shown in Figure 6.1, the proportion of FLs per

SMRT cell strongly correlated with the fractionation size range and decreased

as the molecules become longer. ICE clustering defined 896,972 consensus

sequences (IdentityMean = 0.952; Coverage = 0.971) which yielded around

140,000 unique isoforms after running TAMA and Cupcake redundancy collaps-

ing with comparable parameters (0.95 identity and 5,000 bp threshold at the 5’

end). A high proportion of isoforms containing NC SJs, which were strongly

associated with retrotranscription and sequencing artefacts, were seen both in

TAMA and Cupcake QC-derived transcriptomes (Figure 6.1.B). Moreover, both

transcriptomes only presented 25% of known isoforms (FSM and ISM, Figure

6.1.C). Following PacBio Iso-seq guidelines, we took advantage of FL isoform

coverage information stored by the Cupcake tool and applied a 3 FL-reads filter,

which dramatically increased the number of known isoforms (70% vs. 25%, Fig-

ure 6.1.C) and the proportion of isoforms without NC SJs (97% vs 70%, Prop

Test p.value=0, Figure 6.1.B). Thus, given the comparable performance of TAMA

and Cupcake methods, and the additional FL information provided by Cupcake,

we defined our isoform set using Cupcake collapsing with a minimum FL cover-

age of 3, yielding a total of 45,688 non-redundant PacBio-defined isoforms.

Full-lengthness analysis by SQANTI revealed a bimodal distribution of PacBio-

defined TTSs, which were clearly distributed between overlapping reference

TTSs or fell more than 200 bp apart and which could represent novel polyA

sites (Figure 6.2). Conversely, we found a more spread distribution for TSS

completeness with a relevant proportion of isoforms falling short and long from

the annotated end by 40 to 100 nt (Figure 6.2), a similar pattern to those found in

previously analysed PacBio datasets (Chapter 3), which correlates with reduced

5’ end completeness control during RNA retrotranscription.
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Cupcake Cupcake-3FL

TAMA
Cupcake
Cupcake-3FL

Collapsing method

A B

C

SQANTI isoform classification

Figure 6.1: Neural transcriptome definition by Iso-Seq sequencing. A. Percentage
of FL sequences as a function of the molecule size-fraction. B. Percentage of isoforms
containing non-canonical splice junctions (NCJ) for each collapsing strategy applied. C.
Isoform distribution into SQANTI categories for each collapsing method.

Furthermore, focusing on the three most populated SQANTI isoform cate-

gories, QC revealed the accumulation of low quality attributes in NNC, as ex-

pected (Figure 6.2.B). Subsequent SQANTI filtering analysis highlighted bite

and the SJ coverage attributes as the most relevant variables for ML classifica-

tion of artefactual isoforms (Figure 6.3.A). Of note, the FL coverage variable be-

came less important than in our previous PacBio-defined transcriptomes (Chap-

ter 3), likely because its capacity to discriminate artefacts is reduced when all

the isoforms have a minimum coverage of 3 FLs. A total number of 12,902 iso-
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forms were discarded (28% of the total), reducing the presence of poor-quality

characteristics in the resulting curated transcriptome, which contained 32,787

isoforms (Figure 6.3.B), 80% of them already found in references (FSMs and

ISMs) (Figure 6.3.C).

Figure 6.1 revealed that, long molecules are less likely to be fully sequenced.

Length comparison between isoforms sequenced by PacBio (32,331 transcripts)

and detected by quantification of the RefSeq transcriptome (24,538 transcripts)

showed that the transcripts exceeding 6,000 bp were under-represented in the

PacBio set. This suggests that an important proportion of long transcripts may

be missing in our PacBio-defined transcriptome. To recover long transcripts

hidden by PacBio from reference annotations without introducting isoforms mis-

takenly quantified, we evaluated transcript reliability based on the support level

of the isoform containing SJs.

Figure 6.4.B shows that RefSeq-specific transcript recovery was maximal

(11,220 transcripts) when we decreased short-read support levels to 0 (mean-
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Figure 6.2: Quality control of our NEURALtc transcriptome by SQANTI A. Isoform
full-lengthness results provided by SQANTI. Figure modified from QC SQANTI report.
Negative values indicate there were insufficient nucleotides to reach the reference tran-
script end (the sequenced TSS is located downstream of the annotated one or the se-
quenced TTS is located upstream of the annotated one). B. SQANTI evaluation of quality
attributes across the three most populated isoform categories.
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Figure 6.3: Control of false-positive isoforms in our neural transcriptome by the
SQANTI filter. A. Ranking of the variables used by SQANTI according to their relative
importance for the ML classifier. B. Evaluation of quality attributes by SQANTI in the NNC
category before and after applying the SQANTI filter. C. Isoform distribution into SQANTI
categories before and after the use of the SQANTI filter.

ing that at least one junction along the transcript had 0 support). To avoid the

introduction of this low-expressed or mistakenly detected RefSeq isoforms, the

minimum number of short-reads was set to 5 across all the junctions in each

isoform, and at least 3 samples had to meet this requirement for the RefSeq

isoform to be rescued. Thus, 1,773 transcripts enriched in long transcripts (Fig-

ure 6.4.A) and showing SJ coverage and sample-support levels like the isoforms

exclusively captured by PacBio were finally added to our long-read defined tran-

scriptome (6.4.C-D).

Hence, our curated NEURALtc comprises on 34,304 isoforms with a per-

centage of novelty near 20% and 12,563 genes, 99% of them already anno-
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tated in reference databases. Regarding isoform complexity, 64% of neural

genes expressed alternative variants (Figure 6.5), revealing the high level of

transcriptome complexity captured by deep PacBio sequencing. The most com-

mon mechanism generating this isoform variability was AS which affected the

49% of total genes, 40% of them expressing more than two splicing variants. In

contrast, the ATI site mechanism affected the lowest proportion of genes (24%)
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Figure 6.4: Rescue of long isoforms from reference transcriptomes. A. Transcript
length distribution and SJ Venn diagram for the Iso-Seq transcriptome, RefSeq detected
isoforms, and the set of rescued transcripts. B. Distribution of the number of isoforms
recovered from RefSeq as a function of the SJ support level and the number of sam-
ples meeting SJ-support requirements. C. Distribution of the samples with SJ-support
across the Iso-Seq and the RefSeq SJ subsets. D. Distribution of reads supporting SJs
across Iso-Seq and RefSeq splice-junction subsets. Definitions are as follows, SJ: splice-
junction, PacBio-RefSeq SJ: set of SJs detected in both long-read sequencing and Ref-
Seq quantification. RefSeq SJ: set of SJ detected only by RefSeq quantification. PacBio
SJ: set of splice junctions only detected by long-read sequencing. RefSeq Recovered:
set of RefSeq SJs contained in rescued transcripts (rescue thresholds were: coverage of
5 short-reads across all isoform junctions in at least 3 different samples).
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and alternative sites per gene (only 1% of ATI genes use more than two alter-

native sites). Finally, APA was a very common mechanism (40% of genes had

APA sites) but very few expressed more than two polyA sites (15%), suggesting

dual polyA site use is the norm in neural system APA regulation (Figure 6.5).
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Figure 6.5: Overall distribution of the number of alternative isoforms defined per gene
in our neural transcriptome and the level of transcriptome complexity generated by the
different mechanisms of transcript processing. AS: alternative splicing. APA: alternative
polyadenylation. ATI: alternative transcription initiation.

6.3.2 System characterisation defines oligodendrocyte and motor
neuron progenitors as the most mature differentiation stages

Quantififacion of each sample involved in our neural time-course design (Fig-

ure 6.6.A) and subsequent PCA showed that PC1, the component accumulating

the highest proportion of variability (40 %), was associated with cell maturation

levels, while PC2, which explained 26% of variance, discriminated neural iden-

tity (Figure 6.6.B). Surprisingly, while MN differentiation pattern suggests that

differentiation into the mature state is gradual, NPCs differentiated into OLG ap-

peared to undergo an earlier switching which imprinted the OLG fate in transcrip-

tome characteristics. PCA analysis for OLG samples alone clearly separated

early from late states although highlight the similarity between the last two OLG

differentiation time points. For example, Pdgfra, a cell surface tyrosine kinase

receptor gene [364][17][185], as well as other reported OPC markers such as
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Cspg4 [256][185] or Cd9 [315][120] were continuously upregulated throughout

differentiation, indicating that OLG differentiation gradually progresses (Figure

6.7.A). However, no expression was found for pre-myelinating and mature OLG

markers, indicating that our OLG differentiation protocol produced OPCs.
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Figure 6.6: Lineage characterization. A. Scheme of our multiple time-course experi-
mental design. Neural precursor cells (NPCs) were put, in parallel, into oligodendrocyte
and motor neuron differentiation conditions. B. Principal Component Analysis (PCA) for
the NEURALtc expression levels. C. PCA considering only conditions from the oligoden-
drocyte differentiation time-course series.

In agreement with previously published data [363][34], [73], our data showed

that our differentiation of NPCs into MNs activates expression of homeodomain

(HD) genes including Pax6 (Figure 6.7.B). HD proteins are key factors in the

repression of MN inhibitors as well as in the activation of Olig2 gene expres-

sion. In accordance with the Sox21 upregulation we observed in our system, in
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the presence of retinoic acid (RA) but in the absence of Notch signalling, Olig2-

expressing cells express Sox21 to exit the cell cycle and differentiate into MNs

[34] (Figure 6.7.B). Moreover, in agreement with the Olig2 expression pattern

we saw in our system, further MN differentiation is associated with the down-

regulation of this gene (Figure 6.7.B). The expression of MN progenitor markers

precedes the induction of terminal MN markers such as Lim3, Hb9, and Isl1 [73],

which were absent in our system, therefore indicating that MN progenitors were

the most mature point of our differentiation system.
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Figure 6.7: Gene expression profiles for OLG (A) and MN (B) differentiation markers.

6.3.3 Novel isoforms are not prevalent but define cell-lineage and
differentiation dynamics

The transcriptome generated by PacBio Iso-seq sequencing contained around

20% novel isoforms with about 54% of these coding for novel protein isoforms.

Full-length Iso-Seq read-coverage across biological replicates revealed that known

isoforms are more frequently captured by PacBio in biological replicates than

novel isoforms (68% vs 90% of isoforms detected in both replicates for novel and

known isoforms, respectively, prop test p = 1.35e-210, Figure 6.8.A). In agree-
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ment, the distribution of novel isoforms was biased towards lower usage levels

when compared to already-annotated isoforms, considering both transcript and

protein gene products (WRS, p = 0 for both CDS and transcript-level compar-

isons).

However, categorisation of isoforms into principal and minor gene isoforms

revealed that, even though novel isoforms were over-represented among minor

isoforms (prop test, p < 2.2 1016, 6.8.B), a third of them were catalogued as

PIs. Taken together, the frequently lower expression levels of novel isoforms but

the significant proportion of them catalogued as the major isoform in one spe-

cific condition indicate the potential stage or cell specific role of novel isoforms

in our neural system. Indeed, PCA showed that novel isoforms can separate

samples according to their developmental stage and cell type (Figure 6.8.C-D).

The loading distribution for PC1 and PC2 verified the high number of isoforms

contributing to the definition of PCs. Similar results were obtained for PCA of

novel protein isoforms rather than novel transcript isoforms.

To understand the biological role of these novel calls, we analysed the cellu-

lar processes they are involved in and found functional enrichment of genes

containing novel isoforms in metabolic processes, mitochondria membranes,

regulation of neurogenesis and oligodendroglial lineage regulation and mRNA

processing and splicing (FET, p < 0.001, Figure 6.8. E). Moreover, 18% of

total novel isoforms were annotated as undergoing degradation by the NMD

surveillance mechanism (representing 75% of the total NMD isoforms, 1313

NMD-predicted isoforms) making novel isoforms highly enriched in NMD tar-

geting (FET p = 3.87e-254). Functional enrichment revealed that the splicing

machinery itself, serine-arginine (SR) splicing factors or RBPs were the most

over-represented in NMD targets.

Finally, structural characterisation of alternatively-spliced isoforms revealed

that, they are evenly distributed across splice junction types: alternative 3’ splice

site [A3] = 1,358; alternative 5’ splice site [A5] = 1,193; alternative first exon [AF]

= 1,449; intron retention [IR] = 1,733; exon skipping [ES] = 1,971. However,

80% of all IR events were contained in novel isoforms (Figure 6.8. D) and 65%
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of predicted novel NMD targets contained IR events (FET p = 0), indicating that

mRNA degradation by NMD usually results from the introduction of premature

termination codons via IR events, both of them highly enriched in the novel iso-

forms detected by PacBio sequencing,.

6.3.4 Membrane trafficking among the strongest processes specif-
ically regulated by alternative isoform usage in neural deter-
mination

Differential gene-expression analysis revealed the presence of an extensive

transcriptional regulatory program which affects 25% of genes in MN differenti-

ation and 33% in OLG differentiation (Figure 6.9.A-B). Expression-profile clus-

tering for DE genes highlighted the transcriptional activation of two gene sets

in both differentiation courses (red and yellow clusters, Figure 6.9.A-B). This

activation was particularly strong in OLG differentiation, where the median ex-

pression profile for the most populated cluster 3 reached the highest expression

levels at stage 2. Functional analysis of these set of activated genes in OLGs

revealed a high metabolic activity (metabolism FDR=6.76e-14) essential to pre-

pare cells for synthesizing, sorting and trafficking high amounts of myelin sheath

proteins (myelin sheath FDR = 8.18e-03, integral components of membrane

FDR = 2.66e-08). This translates into high mitochondrial respiration (mitochon-

drion FDR = 4.36e-08; mitochondrial inner membrane FDR = 2.83e-06; respira-

tory chain FDR = 1.40e-03, oxidation-reduction process FDR = 1.35e-03), endo-

plasmic reticulum (ER) activity (ER membrane FDR = 3.16e-02), and membrane

trafficking (extracellular exosome FDR = 1.993139e-18, transport vesicle mem-

brane FDR = 4.86e-02 and trans-Golgi network FDR = 2.52e-02). Moreover,

gene expression in OLGs seems to flatten out during the last stage of differenti-

ation (Figure 6.9.B), in accordance with our previous exploratory results.

Analysis of post-transcriptional regulation indicated that around 14% of genes

expressing multiple transcripts show DIU in both differentiation systems, (Figure

6.9.C-D). Interestingly, more that half of them also regulate their CDS usage

(56% and 52% for MN and OLG differentiation, respectively), which highlights
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Figure 6.9: Transcriptional dynamics in the glial and neuronal differentiation sys-
tems. A-B. Differentially expressed genes during MN and OLG differentiation, clustered,
respectively, into groups based on their temporal patterns of expression. Expression pro-
files are summarised by the median. C-D. Differential isoform usage during MN and OLG
differentiation, respectively, computed at the transcript and coding level, and the num-
ber of genes undergoing major isoform switches during differentiation stages relative to
NPCs. D-E. Venn diagram showing the overlap between differentially expressed genes
expressing multiple isoforms and genes with differential isoform usage.

the relevance of post-transcriptional mechanisms in regulating the protein con-

tent of our neural system. Furthermore, one third of DIU genes also underwent a
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switch, with respect to NPC, of their predominant isoform (27% and 35% for MN

and OLG differentiation, respectively, Figure 6.9 C-D), with most of present at

the earliest differentiation stage (54% and 66% for MN and OLG differentiation,

respectively).

Comparison of genes regulated by the two transcriptional programs revealed

that around 65% of genes with DIU were not transcriptionally modulated (Figure

6.9.E-F), which indicates that the activity of these two gene-expression regu-

latory programs could be considered as independent. MN development (see

methods section 6.2.7) identified functions including protein transport, protein

binding, RNA processing and components of the endosomal system as being

generally more associated to post-transcriptional regulation (Figure 6.10.A). For

example, components from the endosome compartment, essential for the spa-

tial trafficking of extracellular cues across complex dendritic and extensive axons

and the recycling of synaptic vesicles [67] [285] [379], showed a set of regu-

lated genes whose is displaced towards DIU regulation (Figure 6.10.A). Similar

functions with over-represented isoform usage regulation were also found dur-

ing OLG development (Figure 6.10.B) together with additional ones, such as the

regulation of mitochondrial dynamics (Figure 6.10.B) which suggests that mech-

anisms such as AS and APA might be essential for the bioenergetic adaptation

of OLGs to their extremely high metabolic rates.

To elucidate the transcriptional program and associated functional changes

dictating the fate determination of NPCs into glial cells and neurons, we com-

pared them across the three maturation stages considered. In total, 1,122

genes were detected as undergoing DIU and 6,952 as DE, with a progressive

cell-type specialisation reaching 10% of genes with DIU and 35% with DE at

the most maturated cell time point (Figure 6.11.A-B). Surprisingly, unlike DGE,

post-transcriptional switches were temporary, with almost 80% of them associ-

ated with a specific differentiation stage (80% vs. 44% stage-regulated genes,

Figure 6.11.C-D), suggesting that isoform regulation is highly dynamic.

The functional analysis of genes regulated by both mechanisms revealed

four main functional blocks displaced toward post-transcriptional regulation. The
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first one is membrane trafficking and includes endosome components such as

the SNARE complex and associated proteins, which play a critical role in vesi-

cle docking and coupled exo- and endocytosis [267][352], master regulators of

the direction and specificity of endosomal trafficking such as GTPases [193]

and protein ubiquitination, which provides sorting signals for plasma membrane

internalisation [254]. These results suggest that vesicle exocytosis and endo-

cytosis are tightly regulated between neural cells types by differential isoform
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usage to provide trafficking specialisation to neuronal lineages.

Moreover, genes involved in protein transport and components localised at

the synapse were also strongly regulated by DIU at differentiation stages 2 and

3 (Figure 6.12.A-B-C). An example is Cadm1, a synaptic cell adhesion molecule

involved in synapse assembly and axon growth , or Dtnb, a poorly-characterised

membrane protein component of the dystrophin-associated complex, whose dis-

ruption has been associated with various forms of muscular dystrophy (Fig-

ure 6.12.B-C). In both cases, several isoforms combining alternative ES events

were defined by long-read sequencing with an isoform expression redistribution

higher than 40% between cell types (Figure 6.12.D-E) but without altering over-

all gene expression levels. Thus, cell-type specific transcript variants appeared



212
6. FUNCTIONAL CONSEQUENCES OF DIFFERENTIAL ISOFORM USAGE IN NEURAL

FATE DETERMINATION

Ache

Cadm1

Cryab

Dtnb
Gria3

P2rx4
Samd4

0

20

40

60

−4 −2 0 2
log2(FC)

Tr
an

sc
rip

t U
sa

ge
 C

ha
ng

e

DIU
FALSE
TRUE

det
a
a
a

down
no
up

Stage differentiation 2

Ache
Cadm1

Dennd1a

Dlg4

Dtnb

Phactr1

Tmem108

0

20

40

60

−4 −2 0 2
log2(FC)

Tr
an

sc
rip

t U
sa

ge
 C

ha
ng

e

DIU
FALSE
TRUE

det
a
a
a

down
no
up

Stage differentiation 3 MN OLG

NPCMOT1MOT2MOT3NPCOLD1OLD2OLD3
0

500

1000

1500

2000

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.13064.1
PB.13064.13
PB.13064.2
PB.13064.3
PB.13064.4
PB.13064.5
PB.13064.7
PB.13064.8
PB.13064.9

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

A Membrane Trafficking

Transcription

RNA processing

Relative log(P)
Stage 1
Stage 2
Stage 3

Signalling

B C

MN OLG

NPCMOT1MOT2MOT3NPCOLD1OLD2OLD3
0

500

1000

1500

2000

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.13064.1
PB.13064.13
PB.13064.2
PB.13064.3
PB.13064.4
PB.13064.5
PB.13064.7
PB.13064.8
PB.13064.9

MN OLG

NPCMOT1MOT2MOT3 NPCOLD1OLD2OLD3
0

200

400

600

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.2587.1
PB.2587.3
PB.2587.4
PB.2587.5
PB.2587.6
PB.2587.7

MN OLG

NPCMOT1MOT2MOT3NPCOLD1OLD2OLD3
0

500

1000

1500

2000

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.13064.1
PB.13064.13
PB.13064.2
PB.13064.3
PB.13064.4
PB.13064.5
PB.13064.7
PB.13064.8
PB.13064.9

MN OLG

NPCMOT1MOT2MOT3 NPCOLD1OLD2OLD3
0

200

400

600

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.2587.1
PB.2587.3
PB.2587.4
PB.2587.5
PB.2587.6
PB.2587.7

MN OLG

NPCMOT1MOT2MOT3NPCOLD1OLD2OLD3
0

500

1000

1500

2000

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.13064.1
PB.13064.13
PB.13064.2
PB.13064.3
PB.13064.4
PB.13064.5
PB.13064.7
PB.13064.8
PB.13064.9

MN OLG

NPCMOT1MOT2MOT3 NPCOLD1OLD2OLD3
0

200

400

600

N
or

m
al

ize
d 

Ex
pr

es
si

on

Transcript
PB.2587.1
PB.2587.3
PB.2587.4
PB.2587.5
PB.2587.6
PB.2587.7

0     1     2     3 0     1     2    3 
Stage Stage Stage Stage

0     1     2     3 0     1     2     3 

D E
Cadm1 Dtnb

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

palmitoyltransferase activity
microtubule nucleation

Ran GTPase binding

thiol-dependent ubiquitinyl 
hydrolase activity 

ubiquitin protein ligase 
binding 

regulation of vesicle fusion

SNAP receptor activity

ER to Golgi transport vesicle 
membrane 

metal ion binding

cerebral cortex neuron 
differentiation 

kinase activity

regulation of RNA splicing

mRNA processing

alternative mRNA splicing, 
via spliceosome 

protein kinase activity RNA splicing

mRNA binding

protein transport

protein serine/threonine 
kinase activity 

mRNA splice site selection
late endosome membrane

syntaxin binding

Rab GTPase binding

endosome

synapse

zinc ion binding

transcription, 
DNA-templated 

intracellular protein 
transport 

SNARE complex

protein ubiquitination

protein deubiquitination

protein palmitoylation

protein autoubiquitination

mitochondrial transport

SNARE binding

protein K48-linked 
ubiquitination 

ubiquitin conjugating 
enzyme activity 

DNA binding

PML body
nuclear speck

RNA binding

ubiquitin-protein 
transferase activity 

ubiquitin protein ligase 
activity 

chromatin binding

regulation of transcription, 
DNA-templated 

-  Synapse genes-  Synapse genes

Figure 6.12: Functions significantly over-represented in DIU vs DGE. A. Network of
GO terms significantly over-represented in DIU vs DGE. Nodes are represented by pie
charts using the logarithmic p-value for DIU enrichment across developmental stages.
Node size represents the number of total DIU genes detected with a FDR<0.05. B-C.
Proportion of expression redistributed across isoforms (Usage Change) in function of the
logarithmic gene expression fold-changes for genes annotated with synapse category at
stage 2 and 3. Big triangles represent genes detected as DIU while green and red points
represent DE genes. D-E. Transcript level expression dynamics for two synaptic genes,
Cadm1 and Dtnb.
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such as PB.2587.6 for Dtnb, which is only expressed in the late stages of MN

differentiation (Figure 6.12.E). In fact, at stage 3, 56% of synapse-associated

regulated genes expressed cell-type specific major isoforms.

Apart from protein trafficking and RNA metabolism, DNA binding and tran-

scription processes, there was also significant post-transcriptional regulation of

cell signalling at the latest stage, including a total of 65 proteins with kinase ac-

tivity, some of them strongly associated with brain development such as Pak3

(which plays roles in dendrite spine morphogenesis and synapse formation and

plasticity) and Pak1 (found at synapses and involved in vesicle transport and

endocytosis). This indicates again potential regulation of signalling affecting en-

dosomal and lysosomal membrane trafficking, likely because they require the

coordination of multiple signalling events to control cargo sorting and process-

ing, and endosome maturation.
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6.3.5 Functional impact of differential isoform usage on neural fate
determination

Structural diversity characterization of our NEURALtc transcriptome revealed

that the contribution of UTR and CDS variability to transcriptome complexity was

similar (Figure 6.13). Moreover, 66% and 58% of genes with CDS variants also

underwent 5’ or 3’-UTR length modulation, respectively, indicating the existence

of a high level of co-regulation between coding and non-coding regions (co-

regulation CDS-3’UTR p = 9.10e-222, CDS-5’UTR p = 0).
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Figure 6.13: Functional diversity in our NEURALtc transcriptome at the structural, cod-
ing, and non-coding levels for genes expressing multiple isoforms. Bars are coloured
based on the method used to assess isoform diversity.

In terms of features load, 5’ UTR elements such as uORFs and 5’-UTR motifs

showed the highest variability rates (Figure 6.13). Further analysis of this uORF

diversity revealed that 60% of genes with varying uORFs underwent ATI site us-

age, and 40% underwent AS which affected the definition of the 5’ UTR. Even

though categories associated with coding features are usually affected less than

non-coding ones (Figure 6.13), more than 60% of genes expressing alternative

isoforms had at least one coding-feature variation. This rate increases up to
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95% when only considering genes expressing alternative predicted CDSs, re-

vealing that the coding diversity in our neural transcriptome generally alters fea-

ture content. Among them, IDR elements were the most frequently impacted by

post-transcriptional processes (54%, figure 6.13), while domains were disrupted

in the highest number of genes (2,902 genes, Figure 6.13).

From the 110,262 isoform-specific functional features, DFI analysis indicated

that 4,821 features (5%) in 558 genes have significant differential inclusion lev-

els in the neural subtypes in at least one developmental stage. The number of

differentially included features increased through the maturation process (Fig-

ure 6.14.A), and a high proportion of them were stage-specific (Figure 6.14.B)

which, in agreement with previous DIU results, suggests that post-transcriptional

regulation is precisely timed during fate determination. Moreover, IDRs and

uORFs were systematically enriched among DFIs during all differentiation stages

(Figure 6.14.C). However, other feature categories appeared unevenly impacted

through development (Figure 6.14.C). At the earliest stage, PTM site regulation

between neural cell subtypes was enriched among DFI (PTM stage 1, FET FDR

= 2.03e3; 6.14.C), while differential inclusion of miRNA binding sites and 3’-

UTR motifs was over-represented at stage 2 (miRNA binding sites stage 2, FDR

= 2.10e39). Finally, RBP binding site regulation increased as the differentia-

tion progresses, and peaks at the final stage of differentiation (Figure 6.14.C).

When gene-feature redundancy was removed, leaving only one feature-type per

gene, the stage-specific relative over-representation results were similar to the

ones found at the feature level (Figure 6.14.D) except for the RBP binding site

category, where its lower enrichment levels at gene level are likely due to the

accumulation of multiple binding sites in individual genes (similar to the pattern

described in Chapter 5).

Impact on functional protein loading

In our detailed analysis, first we focused on feature types annotated at the cod-

ing level (Figure 6.15.A). As previously shown, IDRs were significantly over-

represented in differential inclusion in all the developmental stages with a total
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Figure 6.14: Differential feature inclusion between the motor neuron and oligo-
dendrocyte differentiation. A. Number of total features differentially included in each
developmental stage. B. Venn Diagram of features regulated in each developmental
stage. C. Proportion of total features annotated in each category (black line) relative to
the proportion of differentially included features, calculated independently for each con-
sidered stage. Statistical analysis of the relative over-representation of DFI features in
specific categories relative to the transcriptome distribution was performed using Fisher
exact tests with Benjamini-Hochberg multiple-testing correction. D. Feature distribution
after removing multiple-feature redundancy from the same category in each gene.
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of 172 affected genes (representing around 20% of the total DIU genes, Fig-

ure 6.15.A). IDRs were found enriched in protein binding genes with 37% of

the genes associated with protein binding properties (FET p = 1.73e-5, FDR =

0.04). Interestingly, the proportion of them undergoing a major inclusion switch

between neural cell sub-types increased during differentiation, reaching 62% of

total events at the last differentiation stage (Figure 6.15.B). This indicates that

IDRs with potential protein binding activity are not only subjected to subtly in-

clusion modulations between cell types but are predominantly cell-type specific,

mainly at late differentiation stages.
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Figure 6.15: Genes with differential inclusion of functional features. A. Distribution
of DFI features across protein-feature categories. Bars colours are based on the cell type
in which the inclusion of the feature is favored. B. Distribution of differentially included
IDRs as a function of their inclusion switching between cell types. C. Distribution of
differentially included transmembrane regions as a function of their inclusion switching
between cell types. Bars colours are based on the condition in which the inclusion of the
transmembrane region is favored.

In addition to protein-binding functions, cell junction (FET p = 3.2e-5, FDR

= 0.03) and actin cytoskeleton (FET p = 8.3e-5, FDR = 0.04) were significantly
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enriched in this set of cell-type specific IDRs. These included presynaptic mem-

brane and postsynaptic regulatory machinery components including Dennd1a

and Gphn, respectively; adherens junction components such as Plejga7, and

actin-associated proteins such as Synopo2 and Phactr1. Remarkably, a high

proportion of these genes are members of the kinase and phosphatase protein

families such as Tjp2, Phactr1, Gphn, Dlg4, Wkn4, or Pip5k1c.

For example, Pip5k1c, which encodes a kinase participating in cell adhesion,

migration and is concentrated at synases in neural tissues [361], was found con-

taining an IDR with a differential inclusion pattern between our neural subtypes

(Figure 6.16.A) which results from the regulation of an splicing event modify-

ing the C-terminal region of the coded protein (Figure 6.16.C-D). IDR-containing

isoforms were progressively included at late MN differentiation stages in contrast

with OLG differentiation, in which splicing variants encoding the disrupted IDP

clearly predominate (Figure 6.16.B). We also identified the co-inclusion in the

IDR of a region that interacts with the Tln2 protein (Region636-661; FDR=4.01e-

06), an important component of focal adhesion plaques [259] [106] that is also

present at synapses and has been reported to concentrate the long isoform of

PIP5k1c in focal adhesion contacts [77]. Thus, inclusion of this binding site in

the IDR governs Pip5k1c expression in MNP and might encourage its recruit-

ment to focal adhesion plaques and synaptic sites to control plasma-membrane

pool of phosphoinositides, which are essential for correct synaptic vesicle endo-

cytosis and exocytosis [236][360]. Moreover, several phosphorilation sites were

also differentially excluded between cell types, most of them already involved

in modulating PIP5K1c activity [183] [77]. Thus, our analysis suggests that dif-

ferential regulation of PIP5K1c isoforms in neural cell types impacts PIP5K1c

spatial specificity and activity at synapses, specific of MNs, by altering the avail-

ability of functional elements such as IDRs and PTMs without involving changes

in absolute gene-expresion levels (DGE stage 3 FDR = 0.27).

Notably, IDR enrichment analysis across the different layers of functional an-

notation also showed their over-representation in genes with domains of the PH

superfamily (CL0266, FDR=0.01, p-value=3.20e-05), present in a wide range of
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cytoskeleton-associated proteins and involved in intracellular signalling. Exam-

ples are Kif1b, involved in mitochondria transport, synaptic vesicle and myelin

transport and Mapk8ip1, a scaffold protein mediating signalling and transcrip-
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Figure 6.16: Functional impact of isoform regulation in Pip5k1c. A. Inclusion pro-
file for the regulated intrinsically disordered region (IDR) in Pip5k1c across oligodendro-
cyte (OLG) and motor neuron (MN) differentiation. B. Cell-type expression profile of the
feature-variant associated to the intact and the disrupted IDR. As Pip5k1c expresses two
isoforms, the expression of these feature-variants correlates with the expression of in-
dividual isoforms. C. Pip5k1c predicted-proteins visualized by TappAS. The C-terminal
variability provokes the disruption of the IDR together with the skipping of several post-
translational modification sites and deletion of a Tln2 binding-motif. D. The disruption
of the protein sequence and disruption of funcional features in Pip5k1c is caused by an
exon-skipping event. Transcript isoforms are also annotated with several functional and
regulatory elements within the 3’-UTR region.
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tional regulation and also involved in vesicle-mediated transport. Mapk8ip1 iso-

forms including the N-terminal IDR dramaticatically accumulate in motor neuron

differentiation. In neurons, MAPK8IP1 is known to tightly coordinate motor activ-

ity to ensure the fidelity of retrograde autophagosome transport in axons [107],

what suggests that the inclusion of IDRs in motor-neurons is providing cell-type

specific cargo properties to regulated the specific function of Mapk8ip1 in neu-

rons.

In contrast to IDRs, Pfam domains were under-represented in differential in-

clusion through all the differentiation stages. They were regulated in a vast num-

ber of genes with significantly more domains becoming distupted or lost in OPC

differentiation (Figure 6.15.A, binomial test stage 3 p.value = 1.9e-3). Functional

analysis highlighted kinase, ATPase functions, ligand binding motifs and sig-

nalling pathways as being enriched in genes in which domains were differentially

included at expressed isoforms regulated between cell subtypes. Further func-

tional characterisation of these differential features revealed the Pfam kinase

superfamily as the most frequently impacted PFAM clan by post-transcriptional

regulation (Figure 6.17.A). Among these are Clk4 and Clk1, dual-specificity pro-

tein kinases that were also detected in the previous chapter as accumulating

isoforms that loss the two N-terminal NLSs and disrupt a kinase domain through

OPC development (Chapter 3). In this more complex differentiation system, Clk4

expressed 17 alternative isoforms (Figure 6.17.F), 7 of them are PacBio-defined

novel variants, each with a different combination of exon skypping events that

gave rise to 6 different CDSs which mainly differ at their N-terminal regions (Fig-

ure 6.17.E). The inclusion pattern of the kinase domain across cell types show

the significant enrichment of isoforms containing the intact domain in OLG dif-

ferentiation (Figure 6.17.B), a similar pattern to those found for other kinases

such as Dclk1 and Clk1 (Figure 6.17.C-D). Moreover, the differential isoform us-

age of Clk4 between neural subtypes also involves the specific introduction of a

NLS during OLG differentiation (Figure 6.17.G). Thus, our results indicate that,

during cell fate determination, cell-type specific isoform regulation impacts the

activity and nuclear targeting of several kinases, likely as a mechanism to ac-
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quire selective functions in nucleus and cytoplasm, as previously seen for other

enzymes [303] [88].
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Figure 6.17: Cell type specific inclusion of PFAM domains. A. Distribution of the
number of genes regulating the inclusion of PFAM domains between cell types. PFAM
family clans are used to collapse domains with related functional role. B-D. Three kinase
proteins with domain-inclusion patters favored throughout oligodendrocyte differentiation.
E. Clk4 post-transcriptional regulation alters the N-terminal protein region proteins, pro-
voking the disruption of the kinase domain and the skipping of a NLS, two IDRs and
some PTMs. F. Expression patterns for the 17 PacBio-defined Clk4 isoforms in both
differentiation systems. G. Inclusion pattern for the NLS annotated at position 108.



222
6. FUNCTIONAL CONSEQUENCES OF DIFFERENTIAL ISOFORM USAGE IN NEURAL

FATE DETERMINATION

The transmembrane region (TM) feature-category had the highest bias to-

wards inclusion in a specific cell type (Binomial test, FDR = 1.18e-07), and

these were clearly disrupted or lost during OLG differentiation (Figure 6.15.A).

This pattern became more accentuated in the last differentiation stage, where

almost 100% of the TM switches were preferentially included in MNPs (Figure

6.15.C). Interestingly, we found 2 essential genes in the negative regulation of

mitochondrial fusion, Oma1 [5] and Mul1 [249]. Both of them underwent a simi-

lar pattern of favored transmembrane skipping in OLG differentiation compared

to MN development (Figure 6.18). Mitochondrial morphology results from a bal-

ance between two processes: fusion and fission. According to cell-context cir-

cumstances, the equilibrium between these process may alter which leans the

balance towards one of these two processes. Fusion events are controlled by

three main proteins: mitofusins 1 and 2 (Mfn1/Mfn2) and Opa1, mediators of

the mitochondrial outer and inner membranes fusion, respectively (Figure 6.18).

Mul1 and Oma1 are two majors regulators of mitofusins and Opa1, respectively,

suggesting a potential modulation of mitochondrial dynamics during neural fate

determination by post-transcriptional regulation of TM regions (Figure 6.18).

Specifically, the metalloprotease OMA1 controls mitochondrial morphology

by proteolytic processing of the dynamin-like GTPase OPA1 protein, localised

in the mitochondrial inner membrane [5]. The balance of OPA1 long and short

forms governs the delicate balance between fusion and fission (Figure 6.19.B).

While OMA1 activation provokes the accumulation of soluble OPA1 forms [15]

(Figure 6.19.B), blocking fusion and facilitating mitochondrial fission [302] (Fig-

ure 6.19.A), OMA1-deficient cells shift towards fusion, likely because of the de-

creased proportion of S-OPA1 isoforms [264] (Figure 6.19.A). Our analysis re-

vealed the accumulation of Oma1 splicing isoforms skipping the transmmebrane

region in OPC differentiation compared to the favored transmembrane inclusion

observed in MNPs (Figure 6.19.B). This suggests that OMA1 transmembrane

anchorage is impaired, likely resulting in OMA1-dependant OPA1 cleavage defi-

ciency. Consequently, the regulation of a transmembrane region by AS in OMA1

might result in a shift in the balance towards fusion during OPC differentiation
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Figure 6.18: Differential inclusion of transmembrane regions in Mul1 and Oma1, the
main regulators of mitochondrial fusion proteins. Mul1 regulates mitofusins, which medi-
ate mitochondrial outer membrane fusion in mammals. Oma1, part of the mitochondrial
quality control system, is located in the inner membrane and mediates OPA1 cleavage,
resulting in mitochondrial inner-membrane fusion.

compared to MN because of the altered proteolytic processing of OPA1. (Figure

6.19.C). Thereby, our functional-impact analysis of DIU across neural cell types

suggests a cell-type specific response to energy demands triggered by the dif-

ferential inclusion of transmembrane regions in key regulators of mitochondrial

dynamics such as OMA1 and MUL1.

Impact on UTR length and composition

In the non-coding region, we identified 2,607 features that were differentially

included in alternative UTR regions between glial and neuronal subtypes, in a

total of 387 genes, with the features most impacted by UTR regulation (in terms

of number of genes) being miRNA binding sites and uORFs (Figure 6.20.A).

Interestingly, there seemed to be a systematic trend towards 3’-UTR feature

gain at stage 2 of MN differentiation (binomial test, miRNA binding sites FDR =
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Figure 6.19: Functional effect of alternative splicing in the metalloendopeptidase
OMA1. A. Four different transcript isoforms, involving AS events and polyadenylation
sites, were defined by PacBio sequencing and predicted to code for two alternative CDSs
which differed in the inclusion of a transmembrane region. DFI analysis revealed that the
most common AS in MN differentiation was the loss of the TM region, likely hindering
its transmembrane anchorage as well as OPA1 cleavage-activity. B. The balance of long
and short forms of OPA1 dictates the balance between mitochondrial fusion and fission.
OMA1 activation enhances the presence of the OPA1 short form, negatively regulating
mitochondrial fusion. C. The differential accumulation of OMA1 splicing isoforms which
lack the transmembrane region between differentiation systems suggests that there is
cell-type specific regulation of mitochondrial dynamics, promoting fission activity in OPCs
in which the TM-included OMA1 variant accumulates.

1.57e-35, 3’ UTR motifs FDR = 1.34e-12, 3’ UTR RBP binding FDR = 4.4e-02).

To elucidate if the increase in elements at 3’ UTR was associated with 3’-

UTR lengthening, we ran our lengthening analysis. PCA of the 3’-UTR weighted

mean-lengths showed that PC1 explained 28% of the data variance and clearly

discriminated MN from OLG lineages (Figure 6.20.B). We defined the set of

genes most relevant to the definition of PC1 by selecting genes with PC1 load-

ings higher to 3.5 (threshold defined based on loadings distribution), revealing

a median pattern of gradual 3’-UTR lengthening for MN differentiation but pro-

nounced shortening in the early stages followed by lengthening at the last stage
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in OLG differentiation (Figure 6.20.C). Thus, the highest 3’-UTR length differ-

ence between cell types corresponded to stage 2, in which the 3’-UTRs are

preferentially longer for MN differentiating cells, whichs agrees with the signifi-

cant detected gain of 3’ UTR features.

We also applied DPA analysis to investigate the genome-wide landscape of

APA across OPC and MNP differentiation, and identified 135 genes with signifi-

cant DPA between cell subtypes. Clustering analysis for DPAU profiles in signif-

icant DPA genes defined four main regulatory patterns (Figure 6.20.D), with two

of them characterising genes with increased DPAU in MNs (clusters 1 and 2),

and the other two showing favored proximal polyA usage in MNs (clusters 3 and

4). However, the cluster that aggregated the highest number of genes showed

a distal polyA usage profile that agrees with the previously-identified primary 3’-

UTR lengthening pattern (Figure 6.20.D), and consequently, associates 3’-UTR

lengthening with increased DPAU.

We further investigated the identity of features that were differentially in-

cluded in 3’-UTRs (Figure 6.21.A). Interestingly, 3 of the 5 most differentially

included miRNAs have been previously associated to neurite outgrowth [218],

some of them in enhancement roles (mir-298) and others preventing neurite

growth (mir466 and mir27). Among mir-466d-5p targets, we found a variety of

proteins with established roles in neurite development such as Ncam1, Gabbr1

or Fbox31 and mitochondrial activity such as Mtch2, a novel regulator of mito-

chondrial metabolism, whose deletion has been shown to increase mitochon-

drial volume in axons and dendrites [284](Figure 6.21.C). Moreover, 81% of

mir-466d-5p binding sites are preferentially included in MNs (Figure 6.21.A),

suggesting cell-type specific gain of mir-466d-5p binding sites to precisely and

autonomously regulate mRNA isoforms involved in neurite growth during motor-

neuron developement.

There was a similar cell-type inclusion preference for mir-874-3p, a poorly-

characterised miRNA with a high proportion of targets associated with extracel-

lular exosomes, including Prkcz, Phb, Smim1 and Cyfip2 (Figure 6.21.C), the



226
6. FUNCTIONAL CONSEQUENCES OF DIFFERENTIAL ISOFORM USAGE IN NEURAL

FATE DETERMINATION

miRNA	BINDING					
3'	UTRmotif							
3'	UTR	RBP	BINDING	
uORF														
5'	UTR	RBP	BINDING	
5'	UTRmotif						

2-3-1-4

Stage 1 Stage 2 Stage 3

0 50 10
0 0 50 10
0 0 50 10
0

uORF

5' UTR motif

5' UTR RBP binding

miRNA binding

3' UTR motif

3' UTR RBP binding

# Genes with DI feature

fav
MN
OLG

0.4

0.5

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

700

800

900

0 1 2 3
Stage

W
ei

gt
he

d 
3'

U
TR

 le
ng

th

group
MN
OLG

0.4

0.5

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

0.4

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.5

0.6

0.7

0 1 2 3
Stage

D
PA
U

0.6

0.7

0.8

0 1 2 3
Stage

D
PA
U

−0.3

0.0

0.3

−0.3 0.0 0.3
PC1: 28% expl.var.

PC
2:

 1
8%

 e
xp

l.v
ar

.

Condition
NPC
OLG1
OLG2
OLG3
MN1
MN2
MN3

PCA on 3' UTR  weigthed mean lengths B C

A

D

Favored	
CondiBon	

Cluster : 55 genes Cluster 2: 26 genes 

Cluster 3: 24 genes 
Cluster 4: 29 genes 

Stage 1 Stage 2 Stage 3

0 10 20 30 40 0 30 60 90 12
0 0 50 10
0

3UTRmotif

5UTRmotif

miRNA

RNA_Binding_Protein

uORF

# Genes with DI feature

fav
MN
OLG

700

800

900

0 1 2 3
Stage

W
ei

gt
he

d 
3'

U
TR

 le
ng

th

group
MN
OLG

700

800

900

0 1 2 3
Stage

W
ei

gt
he

d 
3'

U
TR

 le
ng

th

group
MN
OLG

700

800

900

0 1 2 3
Stage

W
ei

gt
he

d 
3'

U
TR

 le
ng

th

group
MN
OLG

700

800

900

0 1 2 3
Stage

W
ei

gt
he

d 
3'

U
TR

 le
ng

th

group
MN
OLG

Figure 6.20: Regulation and functional impact of untranslated region (UTR) length-
ening or shortening between OPC and MNP differentiation. A. Number of genes with
gain or loss of elements between cell types across the different developmental stages
and for the different UTR categories. B. PCA on the 3’ UTR weighted mean lengths. C. 3’
UTR lengthening median profile for the set of genes most contributing to PCA1 definition,
the component discriminating OPCs and MNPs. D. Hierarchical clustering on distal polyA
site usage levels for genes significantly detected as differentially polyadenylated.
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last one found in nucleus and synaptosomes and highly associated to the gener-

ation of correct dendritic complexity when located at synapses [244]. Moreover,

the long Cyfip2 3’-UTR also include a huge number of binding sites for Mbnl1-2

(Figure 6.21.D). As MBNL1 binding at 3’ UTRs is known to promote localization

to membrane compartments [349], we speculate that mir-874-3p could specif-

ically control the stabilization of Cyfip2 mRNAs targeted to synaptic terminals

without affecting Cyfip2 mRNAs targeted to nucleus, thereby suggesting a cell-

type specific spatial, functional and stability regulation of Cyfip2 mRNA isoforms

by differential polyAdenylation between OLD and MN differentiation. Moreover,

Mbnl binding sites were also found among the set of most regulated elements

(Figure 6.21.A). Besides, these set of genes with isoform-specific Mbnl1 tar-

geting were found enriched in post-synaptic density (FET p.value = 2.8e-4) and

significantly co-included with binding sites for CELF4 coDFI (p.value = 4.27e-16,

Figure 6.21.D), RBP already reported as associated to the regulation of synaptic

plasticity [346]. Among genes undergoing co-inclusion of Mbnl and Celf4 sites

we found genes already described in this chapter as regulating the disruption or

lost of functional elements between cell types such as Kif1b or Dclk1, correlating

differential functional loading with alternative PolyA site choice.

Functional impact of isoform usage regulation in biological pathways

Mapping of genes with context-specific DFI to pathways and networks provides

a comprenhensive way to interpret how functional isoform variability modulates

the cellular response generated by a set of highly interconnected and coordi-

nated genes under specific environmental or physiological stimuli.

KEGG [158] pathway enrichment analysis using as input the set of genes de-

tected with differentially included features between MNPs and OPCs revealed

the significant enrichment of the axon guidance pathway (FDR<0.01). Axon

guidance is accomplished by signals, called guidance cues, sensed by the growth

cones, that activate signalling molecules that eventually affect the cytoskeleton

and dictate the axon the direction to grow. Inward signals, combined transcrip-

tional and post-translational modifications of receptors and ligands, results in a
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Figure 6.21: Top ranking of differentially included features between neural sub-
types. A. Number of genes with gain or loss of 3’-UTR features between cell types
across the different developmental stages and for the 3’ UTR element categories with
the highest number of significant genes. B. Inclusion pattern for the miR-466-5p binding
site in Mtch2. C. miR-874-5p binding site inclusion pattern in both differentation systems
for Cyfip2. D. Functional annotation of Cyfip2 transcript isoforms, revealing two alterna-
tive polyA sites that promote the differential inclusion of several miRNA binding sites and
multiple MBNL binding sites.

set of complex and dynamic molecular cues that provide either repel or attract
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axons toward their synaptic targets (Figure 6.22).

As shown in Figure 6.22.A several ligand receptors such as Epha4, Lrrc4c

or Plxnb3, signalling proteins such as the tyrosin kinase Fyn or semaphorins

(Sema4d and Sema6d), actin binding proteins as Ablim2 or kinases as Prkcz

or Limk2 underwent the loss or disruption of functional features spread across

all the considered experimental and predicted annotation categories, both in the

coding and the UTR. For example, Limk2 was detected expressing a motor-

neuron specific isoform variant with an alternative transcription start site that

promotes the inclusion of a N-terminal protein-protein interaction LIM domain

during motor-neuron differentiation. Based on pathway information, this could

alter its phosphorylase activity over cofilin and potentially impacts cytoskele-

ton dynamics. In contrast, Pdk1, which triggers axon attraction, underwent an

APA event that promoted the over-representation of UTRs in OPCs containing

MBNL1 binding sites, miRNA binding sites and other 3’ UTR cis-elements such

as Pumilio binding elements.

Gene Lineage Specific Feature Inclusion Pattern

Ablim2
Glycosylation site;
PFAM domain for adherens-junction anchoring 

Epha4

Multiple miRNA binding sites; 
CELF4 and Mbnl binding sites at 3' UTR; 
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Figure 6.22: Enrichment of genes with DFI features on KEGG pathways. A. Axon
Guidance pathway. Genes subjected to regulation of functional features are repre-
sented with a orange circle. B. Table that shows the elements that are differentially
included/disrupted between both differentiation systems.
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6.4 Discussion

Neural progenitor cells divide to expand the progenitor population and then dif-

ferentiate into distinct types of neurons and glial cells. Even though several

transcriptional markers and factors have been revealed behind the functional

and morphological specification of neural progenitors, the influence of post-

transcriptional regulation in neural fate determination and, specially, its func-

tional impact are poorly understood. Deep PacBio sequencing of a neural time-

course differentiation system involving MNPs and OPCs generated from com-

mon spinal-cord NPCs revealed a transcriptome comprising 34,304 isoforms,

20% of them representing novel calls.

Even though novel isoforms were generally had a significant lower expres-

sion distribution than known isoforms, they were able to subtly described cell

lineage and differentiaton dynamics. Furthermore, a remarkable 30% of them

became the major expressed isoform in specific conditions, what highlighted the

stage/cell specific role of novel isoforms and the relevance of capturing these

calls to accurately describe transcriptome dynamics. In addition to metabolic

and neurogenesis processes, functional profiling showed up the over-representation

of novel isoforms in NMD targeting, revealing the strong under-representation of

NMD variants in current reference annotations. IR events, were also highly en-

riched in novel and NMD isoforms, indicating the functional role of IR events in

fine tunning gene expression during neural differentiation. In fact, this coupled

effect (IR and NMD) has been repeadly claimed as a major driver of several

differentiation systems including granulopoiesis [367], or hematopoyesis [114].

Moreover, NMD was found highly enriched in mRNA metabolism, RNA binding

and mainly in the SR family of splicing factors, in agreement with the high pro-

portion of SR genes that are known to be affected by alternative splicing couple

to NMD [227][181][180]. Thus, NMD was revealed as a potential regulator AS in

our neural differentiation system through the regulation of AS drivers.

The extensive program of AS in our neural differentiation was highlighted

by the high proportion of genes expressing multiple splicing variants (50 %)

with an average of 4 variants per gene. Similarly, 40% of expressed genes
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also underwent APA. However, the number of alternative polyA sites per gene

reduced to 2, in agreement with previous analysis [317], suggesting that APA, in

contrast to AS, generally acts like a binary on/off switch. Finally, the expression

of alternative TSSs was detected in almost 20% of genes. Taken together, 70%

of the genes detected in our neural differentiation system were found expressing

alternative variants that are potential to expand the functional and regulatory

transcriptome diversity.

Membrane trafficking is highly influenced by differential isoform usage
rather than by differential gene expression in neural fate determination.

Transcriptome dynamics profiling revealed that isoform usage regulation occurs

as frequently in glia as it does in neurons, and in half of cases, involves the

differential usage of alternative CDSs, likely conferring functional specifity to de-

velopmental states. Moreover, only around one third of these isoform regulated

genes underwent changes in the overall gene expression, what highlighted the

independent activity of these two gene-expression regulatory programs during

neural differentiation processes.

When we studied the transcriptional program regulating neural fate determi-

nation we found an extensive program of gene expression regulation but a highly

precise post-transcriptional program, where 80% of isoform switches were as-

sociated to specific developmental stages, what highlights the strong temporal

regulation to which isoforms are subjected, in agreement with recent studies

in neural cell types [362]. Interestingly, a high number of vesicular trafficking,

membrane dynamics and synaptic processes were significantly associated to

the regulation of specific protein isoforms rather than by global differences in the

levels of gene expression, and includes genes such as Osbpl9, Dtnb, Camd1,

Tmem87b, Vps39, Vps26a, all of them expressing MN specifc isoforms in the

last stage of differentiation or Exoc3 and Derl2, involving modulation of their

UTR regions. Moreover, we captured genes already reported to be influenced

by AS such as Stx16, involved in vesicle-mediated transport and axon regen-

eration and mis-spliced in autism spectrum disorder (ASD) patiens because of

RBFOX dysregulation [340] [28] or Klc1, involved in cargo biding and expressing
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isoforms controlling neurotransmission by specifically regulating the transport of

the GABA-B receptor towards dendrites [336][94]. In fact, membrane trafficking

has been already reported being developmentally and tissue specifically regu-

lated by alternative splicing [28][33] [79][117][133][149] and the Guidice group

has even experimentally studied the functional role of AS in trafficcking func-

tions in heart development and skeletal muscle by validating a bunch of genes

among we find some of our cell-type regulated genes such as Cltc, a major

component of the cytoplasmic face of intracellular organelles [117][118]. Thus,

our results indicate that alternative isoform usage also contributes to endoso-

mal and trafficking specification during neural fate determination. During neuron

development, an specialzed and sublty orchestrated membrane trafficking ma-

chinery is required for the expansión of the plasma membrane and the removal

and trafficking of materials and proteins to specific locations. From initial neurite

formation to synaptogenesis, vesicle trafficking plays an integral role in neural

morphological progession (cell shape and polarization) and function (exocytic fu-

sion of synaptic vesicles or endocytic recyplin of the synaptic machinery). More-

over, the carefully regulated sorting and trafficking of myelin proteins and lipids in

oligodendrocytes is key for polarity establishment and maintenance and involves

several endosomal compartment and vesicle transport pathways [20][202]. Its

physiological importance is highlighted by the number of neurological disorders

[110][271][341][353][365] and demyelinating diseases [202] associated with the

perturbation of membrane trafficking. Our results highlight post-transcriptional

regulation as the mayor contributor of the requiered specialization of membrane

trafficking pathways during neural fate determination.

Differential inclusion of TM regions contributes to the regulation of mito-
chondrial dynamics during neural fate determination

To understand how these isoform transitions alter gene function during neural

fate determination we studied their effect on the availability of regulatory fea-

tures within UTRs and the functional load of coded proteins and found a total of

4,821 functional features differentially included by alternative isoform process-

ing between both neural differentiation, 70% of them representing stage-specific
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gains and losses, what reveals cell-specific functional modulations highly tem-

porally.

Among the set of functional categories, uORFs, which are predominantly al-

tered by the use of alternative transcription start sites (60%), appeared as the

most significantly regulated elements between cell subtypes. Although our re-

sults agree with recent studies pointing out ATI as one of the principal drivers of

transcript isoform diversity [272], we decided to not characterise in further detail

these elements because of the limitation of PacBio sequencing to discriminate

5’ incomplete sequences and provide confident transcription start sites. Similar

to uORFs, IDRs are sytematically disrupted by alternative transcript preprocess-

ing through all the differentiation stages and affecting to the highest number of

genes among considered categories. Moreover, they were enriched in protein

binding functions, what correlates with the known role of IDRs on the rewiring of

protein interaction networks [37][94]. In addition to the potential spread impact

of transcript preprocesssing on protein-protein interactions, genes with regulted

IDRs were found also enriched in genes associated to the cell junction and the

cytoskeleton and remarkably involving several kinases and phosphatases as

Pip5k1, which undergoes the inclusion of an IDR during MNP differentiation that

is potentially encouraging its recruitment to focal adhesions to control the pool

of phosphoinosities implicated in correct synaptic vecicle endocytosis and exoc-

itosis [236][360].

In contast to IDRs and ORFs, other feature categories appeared controlled in

a time specific manner due to their enriched regulation in certain differentiation

stages: PTM sites were predominantly impacted at early differentiation while a

pattern of gain of 3’ UTR elements (3’ UTR motifs and miRNA binding sites) was

found during MNs differentiation, in correlation with the gradual 3’ UTR lengthen-

ing pattern found during MN differentiation and the pronounced shortening dur-

ing the first stages of OLG differentiation. Thus, our results verified the already

reported widespread elongation of 3’ UTRs in neurons [140][153][211][327] and

revealed a differential 3’UTR patterning in oligodendrocyte differentiation. More-

over, the role of this differential 3’ UTR pattern during neural fate determinantion
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was determined by the nature of the regulatory elements harboured in these

regulated UTRs. Among the most frequently regulated features, we interestely

found miRNAS associated to neurite outgrowth, including the mir-466d-5p for

which isoform-specific binding sites are gained during MN differentiation. Ad-

dditionally, binding sites for the mir-874-3p were significantly enriched in regu-

lated UTRs and essentially contained in genes associated with the extracelullar

exosome. Moreover, RBPs as MBNL, controlling mRNA localization to mem-

brane compartments [350], were found frequently targeting regulated UTRs in

synaptic genes. Taken all together our results suggest that the diversification of

UTRs during neural fate determination regulates the estability and localization

of isoforms that are required in neuronal specific compartments as dendrites or

synapses and this control is triggered by the favored inclusion of neural special-

ized cis-acting miRNAs and RBPs in MNs.

Our results also detected the differential inclusion of TM regions in Mul1

and Oma1, which could be potentially impacting their anchored to inner and

outer mitochondrial membranes, respectively. These not previously reported

post-trascriptional events might be then altering the post-translational proteoly-

sis and/or turnover of their targets, the Mitofusin 1 and 2 (Mfn1 and 2) and OPA1,

both of them GTPases coordinating mitochondrial fusion. In brain numerous cel-

lular functions including ATP production, Ca2+ buffering, neurotransmitter syn-

thesis and degradation, ROS production and sequestration, apoptosis and in-

termediate metabolism are spatially and temporally regulated by mitochondrial

localization [104][35][152][194][229][282][298][344] and mitochondrial bioener-

getics [282][78], all of which are strongly influenced by mitochondrial dynamics,

which entails mitochondrial fission, fusion and transport. Moreover, their physi-

ological relevance has been illustrated by the profound effect that perturbations

in mitochondrial dynamics have on neural system development and plasticity.

Moreover, numerous neurodegenerative disorders and demyelinating diseases

such as the Amyotrophic lateral sclerosis [301], the Huntington’s disease [138],

the Charcot-Marie–Tooth disease [210] or optic atrophy [383], have been asso-

ciated with mutations and dysregulation in fission and fusion enzymes, demon-
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strating that mitochondrial dynamics in both oligodendrocytes and neurons need

to be balanced between rates of fusion and fission to properly response to en-

vironmental stimuli and pathophysiologic signals. Apart of the known regulation

of mitochondrial dynamics accomplished through post-translational modification

of mitochondrial fission and fusion enzymes such as OPA1 and Miofusins, here

we highlight the potential impact of post-transcriptional regulation of TM regions

in fusion regulators for the adaptation of mitochondrial dynamics in neural fate

determination. Although we do not know the exact function of Oma1 and Mul1

isoforms, our analysis was able to capture the potential impact of their regula-

tion on gene properties, hypotheisis that the favored exclusion of TM regions

during oligodendrocyte differentialtion is altering their enzymatic activity by af-

fecting their membrane anchored and consequently contribute to the regulation

of their substrates and influence the fission/fussion balance in neural cells.

Interestingly, the contribution of post-transcriptional preprocessing to the bioen-

ergetic adaptation of cells during neural fate determination is reinforced by the

detection of several mitochondrial dynamics associated genes as Mff (mitochon-

drial fission factor), Mief1 (mitochondrial fission regulator) or Kif1b, expressing

neuron-specific isoforms largely reported as responsible of the movement of mi-

tochondria along the axon by modifying regions of cargo binding [65].

All together, our results suggest that post-transcriptional regulation, in ad-

dition to alter the post-transcriptional machinery itself, is mainly contributing to

modulate the differential spatial localization and movement of gene products

in neural cell subtypes and adapt mitochondrial dynamics to specific cellular

demands. More importantly, our isoform-resolved functional analysis charac-

terized the functional impact of multiple AS and APA events and profiled the

stage-specific pattern of regulation of certain functional features as PTMs and

UTR motifs between neural subtypes. Moreover, our study brought out ele-

ments such as miR-874-3p binding sites or TM regions as highly impacted by

post-transcriptional regulation and playing a potential relevant role in the neural

fate determination of NPCs. Thus, our functional isoform analysis framework

enables to address the analysis of differential isoform usage in multiple levels:
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the structural, by displaying AS and APA patterns, the functional, revealing the

processes predominately regulated by post-transcriptional mechanisms, and the

feature level, achieving a high degree of specificity by exploring the gain and loss

of functional elements, making posible to create mechanistic hypothesis about

how alternative splicing and alternative polyadenylation modulate the function of

gene products.
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In this thesis we developed a bioinformatics framework to study the potential

functional impact of isoform regulation at the genome-wide level and to under-

stand how context-specific alternative splicing and alternative polyadenylation

events contribute to phenotype specification by altering the functional and regu-

latory characteristics of expressed isoforms. This analysis framework is based

on the definition of full-length transcriptomes from single-molecule sequencing

technologies. The curation of these transcriptomes is essential at a time when

long-read sequencing is becoming more popular to define transcriptome com-

plexity. Therefore, we developed SQANTI, a tool which performs the quality

control of long-read data.

The second element to consider is the functional characterisation of iso-

forms. The functional impact of isoforms is only meaningful if we can capture

isoform-specific functional features. Thus, we designed IsoAnnot, which anno-

tates functional features at the RNA and protein levels. Its application to several

organisms has revealed the relevant variability existing between isoforms.

Finally, we developed the tappAS analysis platform, which, thanks to its flexi-

ble combination of expression analysis, feature-inclusion analysis, enrichment

methods and visualisation options, enables the formulation of a large range

of questions about the functional effect of post-transcriptional regulation. We

demonstrated the scope of these tools using a neural cell-fate determination

system as proof-of-concept.

We hope these tools are of use to the broad scientific community and will help

advance our understanding of the functional relevance of transcript alternative

processing.
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The conclusions of this thesis are summarised and organised below accord-

ing to the goals originally defined in 2:

1) Accurately define and quantify long-read defined transcriptomes.

• We developed SQANTI, an analysis tool to boost the quality control of long-

read based transcriptome studies by providing the methods to deliver fully

characterised and curated long-read transcriptomes.

• We applied our framework to multiple organisms (mouse, human or maize),

long-read sequencing platforms (PacBio and Nanopore) and transcriptome

reconstruction pipelines (TAPIS, IDP and Iso-Seq AnalysisTM) and illustrated

how SQANTI can effectively characterise and evaluate the composition and

peculiarities of each full-length transcriptome.

• Evaluation of a PacBio-defined murine neural transcriptome highlighted the

enrichment of low-quality SQANTI attributes in novel transcripts associated

with sequencing errors and RT-switching and intra-priming events originated

during the library preparation.

• Our machine-learning filtering strategy efficiently discriminated artefactual

transcripts from long-read transcriptomes and outperformed previous alter-

native approaches.

• We detected that non-annotated variability at 3’ transcript ends has a strong

negative impact in the accuracy of current isoform expression quantification

algorithms and this effect is alleviated when an expressed, full-length refer-

ence transcriptome is used.

• Long-read technologies tend to accumulate false novel calls if proper quality

standards are not established. However, if the quality control is adequate,

long-read technologies can effectively characterise transcriptome complexity

and accurately estimate isoform expression levels.
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2) Implement a pipeline for the extensive functional annotation of gene

products at the isoform-resolution.

• We designed the IsoAnnot pipeline, which dynamically constructs an isoform-

resolved database of functional and regulatory annotations from a set of input

sequences by integrating information disseminated across several databases

and prediction methods, thus facilitating the study of the functional diver-

gence of isoforms.

• We implemented a functional transfer module that populates query sequences

with experimental and manually-curated features stored in gene-centric pub-

lic databases and resolves annotations at the isoform-level.

• IsoAnnot was designed to be potentially applicable to any organism, indepen-

dently of its novelty rate, overcoming the limitations of current static databases

that do not support the annotation of novel isoforms or multiple organisms.

• Application of IsoAnnot to long-read defined and reference transcriptomes in

different organisms such as mouse, human, maize or fruit flies revealed that

the nature of the transcriptome influences feature coverage without introduc-

ing biases that could affect the reliability of results obtained while studying

the functional isoform variability.

3) Develop an analysis framework to address the functional impact of context-

specific isoform regulation.

• We developed the Functional Diversity analysis, which processes gene-models

and positional functional labels at isoform resolution to describe the level of

structural and functional diversity between isoforms at a genome-wide scale.

• For contextual modelling, we developed the Differential Feature Inclusion

analysis, which, provided transcript-level expression data, defines the set of

functional features that are included or excluded within transcripts because

of differential isoform usage. We also added complementary functionalities

such as the co-inclusion analysis to explore pairs of functional elements that

are processed together.
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• We developed the Differential Polyadenylation analysis to model the context-

specific polyA site regulation by leveraging the resolution of PacBio to identify

polyA site variability and the UTR lengthening analysis to study the impact of

post-transcriptional regulation on UTR length modulation.

• Our analyses were designed to tackle three different experimental designs

(pairwise, single-series time course and multiple-series time course) and to

comprehensively display results according to the selected design, thus pro-

viding a wide scope of application.

• This isoform-resolved functional analysis framework was implemented in a

highly interactive, graphical and user-friendly tool called tappAS.

4) Understand the functional consequences of isoform-usage regulation

on neural cell-fate determination.

• High-throughput Iso-Seq PacBio sequencing of differentiating murine neu-

ral cells revealed an extensive PTR program, in which 70% of the detected

genes express multiple transcript variants as a combination of multiple AS

variants, dual polyA site choice and, to a lesser extent, alternative transcrip-

tion start sites.

• Around 20% of Iso-Seq full-length isoforms were characterised as novel and

were enriched in IR and NMD targeting. Despite their reduced expression

levels, novel variants subtly defined differentiation timing, were able to dis-

criminated cell types and a significant proportion of them became the ma-

jor expressed variant under specific conditions, potentially indicating their

developmental-stage specific role.

• Isoform usage regulation is highly dynamic and occurs as frequently in OPC

differentiation as it does in MNP differentiation.

• Membrane trafficking is highly regulated by differential isoform usage rather

than by differential gene expression in OPC and MNP developmental sys-

tems, suggesting that the endosomal and trafficking specification during neu-

ral fate determination is strongly influenced by PTR mechanisms.
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• Isoform-resolved functional analysis across our differentiation system pro-

filed the pattern of gains and losses between cell types for multiple functional

features and characterised the potential functional impact of multiple AS and

APA events.

• IDRs were systematically enriched in feature-skipping events between differ-

entiation systems and enriched in protein-binding functions and cell junction

and cytoskeleton components, while the regulation of elements as PTM sites

and miRNA binding sites was clearly over-represented during specific devel-

opmental stages.

• MNPs included a higher number of regulatory elements at their expressed

3’ UTRs compared to OPCs during development, including miRNAS binding

sites associated with neurite outgrowth such as the mir-466d-5p. This pattern

correlates with the MNP-specific gradual lengthening of 3’ UTRs.

• The differential inclusion of TM regions in mitochondrial fusion regulators be-

tween neural subtypes indicated the potential influence of post-transcriptional

regulation on the modulation of GTPase activity and its contribution to the

adaptation of the fission/fussion balance to meet specific neural cell subtype

demands.
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SQANTI attributes at
transcript level
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Column Feature Name Description

1 isoform Unique ID conferred by Pacbio to ToFU transcripts
2 chrom Chromosome where the transcript aligns
3 strand Strand to which the transcript belongs
4 length Length of the transcript in nucleotides
5 exons Number of exons

6 structural_category Splice junction based classification of the transcript against a annotated 
reference transcriptome

7 associated_gene Gene to which the transcript maps

8 associated_transcript Transcript in the reference annotation which has the same splice pattern as the 
isoform. Only applicable to FSM, ISM and UTR3 Fragment transcripts.

9 ref_length Length of the associated reference transcript in nts. Only applicable to FSM, ISM 
and UTR3 Fragment transcripts.

10 ref_exons Number of exons of the associated reference transcript. Only applicable to FSM, 
ISM and UTR3 Fragment transcripts.

11 diff_to_TSS
Difference in nucleotides between the Transcription Start Site (TSS) of the 
associated reference transcript and the sequenced transcript. Only applicable to 
FSM, ISM and UTR3 Fragment transcripts.

12 diff_to_TTS
Difference in nucleotides between the Transcription Termination Site (TTS) of the 
associated reference transcript and the sequenced transcript. Only applicable to 
FSM, ISM and UTR3 Fragment transcripts.

13 subcategory Type of subevent associated with the transcript. Applicable for ISM and novel 
transcripts.

14 RTS_stage Detection of hallmarks of RT switching within at least one of the splice junctions 
of the sequenced transcript

15 all_canonical
Labelling of the type of splice junction in the transcript. If all the splice junctions 
of the transcript are canonical this field will be “canonical”. If there is at least 
one non canonical junction in the transcript will be labelled as non-canonical.

16 min_sample_cov

Lowest number of biological samples showing the presence of a splice junction 
within the transcript. Each time a splice junction within a transcript is covered 
by short reads of a different sample the value is augmented by 1. After mapping 
all available samples, the number of samples supporting each junction is 
computed and the minumun value of all transcript junctions is taken as 
min_sample_cov value

17 min_cov

Lowest number of short reads supporting the presence of a splice junction 
within the transcript. The number of short reads mapping to each splice junction 
are obtained for each available sample. After mapping all the available samples, 
the total number of short reads mapped per junction is computed and the 
lowest value is taken as minCov value

18 min_cov_pos
Position in nts relative to the TSS of the splice junction with the minCov value. If 
two splice junctions show the same minCov, the minCovPos selected is the one 
closest to the TSS.

19 sd_cov Standard Deviation of the splice junction short read coverage per transcript
20 FL Number of Full Length reads per transcript
21 n_indels Number of  indels in the ToFU transcript before genome-based correction

22 n_indels_junc Number of junctions with indels around the splice junction of the ToFU transcript 
before correction

23 bite The transcript has at least one junction labelled as bite
24 iso_exp Expression of the transcript in TPMs calculated by short reads 
25 gene_exp Sum of all isoExp values of transcripts belonging to the same gene.
26 ratio_exp Ratio between the isoExp and the geneExp

27 FSM_class

This feature classifies the transcript according to the expression of other 
isoforms in the gene to which the transcript belongs. Transcripts belonging to 
genes that only express one isoform are classified as A. Transcripts belonging to 
genes that express more than one isoform but none is a FSM are classified as B. 
Transcripts belonging to genes which express more than one isoform and other 
isoforms and at least one is a FSM are classified as C

28 coding Logical indicating if the transcript is predicted to have an ORF by GMST
29 ORF_length Length in aminoacids of the Open RF predicted by GMST
30 CDS_length Length in nts of the CDS predicted by GMST
31 CDS_start Position in nucleotides relative to the TSS of the start codon
32 CDS_end Position in nucleotides relative to the TSS of the stop codon

33 perc_A_downstream_TTS Percentage of adenines in a window of genomic DNA inmmediately downstream 
the TTS. The deffault parameter for window size is 20 nucleotides
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Appendix 2:
SQANTI attributes at splice
junction level
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Column Feature Name Description

1 isoform Unique ID conferred by Pacbio to ToFU transcripts.
2 chrom Chromosome where the transcript aligns
3 strand Strand to which the transcript belongs
4 junction_number Position order, starting from the 5' end, of the junction in the transcript 
5 genomic_start_coord Start coordinate position of the junction in the genome
6 genomic_end_coord End coordinate position of the junction in the genome
7 transcript_coord Coordinate of the junction inside the transcript

8 junction_category Type of junction. "Known" if both the acceptor and the donor sites are annotated 
in the provided reference annotation file and "Novel" otherwise.

9 start_site_category "Known" or "novel" according to reference annotated splice sites
10 end_site_category "Known" or "novel" according to reference annotated splice sites
11 diff_to_Ref_start_site Nearest annotated splice site in the genome
12 diff_to_Ref_end_site Nearest annotated splice site in the genome

13 bite_junction Applies only to novel splice junctions. If the novel intron partially overlaps 
annotated exons the bite value is TRUE, otherwise it is FALSE.

14 splice_site Splice site sequence

15 canonical
Indicates whether the junction is canonical or not. The set of splice sites that 
are considered by SQANTI as canonical are GTAG,GCAG,ATAC. Canonical 
junction sequences can be modified by --sites option.

16 RTS_junction Logical, indicating the detection of hallmarks of RT switching
17 indel_near_junc Logical, indicating the existence of indels around the junction
18 samples_with_cov Number of samples that support the splice junction
19 total_coverage Short-read coverage sum across input samples
20 coverage_per_sample Average short-read coverage across input sample
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[217] MOSCA, R., CÉOL, A. & ALOY, P. (2012). Interactome3D: adding structural details to protein networks.
Nature Methods, 10, 47. 128

[218] MOTTI, D., LERCH, J.K., DANZI, M.C., GANS, J.H., KUO, F., SLEPAK, T.I., BIXBY, J.L. & LEMMON, V.P.
(2017). Identification of miRNAs involved in DRG neurite outgrowth and their putative targets. 225

[219] MUNJI, R.N., CHOE, Y., LI, G., SIEGENTHALER, J.A. & PLEASURE, S.J. (2011). Wnt signaling regulates
neuronal differentiation of cortical intermediate progenitors. The Journal of neuroscience : the official journal
of the Society for Neuroscience, 31, 1676–1687. 174

[220] NAGALAKSHMI, U., WAERN, K. & SNYDER, M. (2010). RNA-Seq: A Method for Comprehensive Transcrip-
tome Analysis. Current Protocols in Molecular Biology , 89, 4.11.1–4.11.13. 7

[221] NAM, D.K., LEE, S., ZHOU, G., CAO, X., WANG, C., CLARK, T., CHEN, J., ROWLEY, J.D. & WANG, S.M.
(2002). Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming
during reverse transcription. Proceedings of the National Academy of Sciences of the United States of
America, 99, 6152–6156. 47

[222] NARDOZZI, J.D., LOTT, K. & CINGOLANI, G. (2010). Phosphorylation meets nuclear import: a review. Cell
communication and signaling : CCS, 8, 32. 175

[223] NAYLER, O., STAMM, S. & ULLRICH, A. (1997). Characterization and comparison of four serine- and
arginine-rich (SR) protein kinases. The Biochemical journal , 326 ( Pt 3, 693–700. 174

[224] NECCI, M., PIOVESAN, D., DOSZTANYI, Z. & TOSATTO, S.C.E. (2017). MobiDB-lite: fast and highly specific
consensus prediction of intrinsic disorder in proteins. Bioinformatics (Oxford, England), 33, 1402–1404. 105

[225] NGONDO, R.P. & CARBON, P. (2014). ZNF143 is regulated through alternative 3’UTR isoforms. Biochimie,
104, 137–146. 158

[226] NGUYEN BA, A.N., POGOUTSE, A., PROVART, N. & MOSES, A.M. (2009). NLStradamus: a simple Hidden
Markov Model for nuclear localization signal prediction. BMC bioinformatics, 10, 202. 106

[227] NI, J.Z., GRATE, L., DONOHUE, J.P., PRESTON, C., NOBIDA, N., O’BRIEN, G., SHIUE, L., CLARK, T.A.,
BLUME, J.E. & ARES, M.J. (2007). Ultraconserved elements are associated with homeostatic control of
splicing regulators by alternative splicing and nonsense-mediated decay. Genes & development , 21, 708–
718. 231

[228] NI, T., YANG, Y., HAFEZ, D., YANG, W., KIESEWETTER, K., WAKABAYASHI, Y., OHLER, U., PENG, W.
& ZHU, J. (2013). Distinct polyadenylation landscapes of diverse human tissues revealed by a modified
PA-seq strategy. BMC Genomics, 14, 615. 6

[229] NIESCIER, R.F., CHANG, K.T. & MIN, K.T. (2013). Miro, MCU, and calcium: bridging our understanding of
mitochondrial movement in axons. Frontiers in cellular neuroscience, 7, 148. 235

[230] NIU, L., HUANG, W., UMBACH, D.M. & LI, L. (2014). IUTA: a tool for effectively detecting differential isoform
usage from RNA-Seq data. BMC Genomics, 15, 862. 14



REFERENCES 267

[231] NORRIS, A.D. & CALARCO, J.A. (2012). Emerging Roles of Alternative Pre-mRNA Splicing Regulation in
Neuronal Development and Function. Frontiers in neuroscience, 6, 122. 187

[232] NOVIKOV, L., PARK, J.W., CHEN, H., KLERMAN, H., JALLOH, A.S. & GAMBLE, M.J. (2011). QKI-mediated
alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Molecular and
cellular biology , 31, 4244–4255. 172

[233] NUEDA, M.J., MARTORELL-MARUGAN, J., MARTI, C., TARAZONA, S. & CONESA, A. (2018). Identification
and visualization of differential isoform expression in RNA-seq time series. Bioinformatics (Oxford, England),
34, 524–526. 143

[234] OIKONOMOPOULOS, S., WANG, Y.C., DJAMBAZIAN, H., BADESCU, D. & RAGOUSSIS, J. (2016). Bench-
marking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA
populations. Scientific Reports, 6, 31602. 9, 35

[235] O’LEARY, N.A., WRIGHT, M.W., BRISTER, J.R., CIUFO, S., HADDAD, D., MCVEIGH, R., RAJPUT, B.,
ROBBERTSE, B., SMITH-WHITE, B., AKO-ADJEI, D., ASTASHYN, A., BADRETDIN, A., BAO, Y., BLINKOVA,
O., BROVER, V., CHETVERNIN, V., CHOI, J., COX, E., ERMOLAEVA, O., FARRELL, C.M., GOLDFARB, T.,
GUPTA, T., HAFT, D., HATCHER, E., HLAVINA, W., JOARDAR, V.S., KODALI, V.K., LI, W., MAGLOTT, D.,
MASTERSON, P., MCGARVEY, K.M., MURPHY, M.R., O’NEILL, K., PUJAR, S., RANGWALA, S.H., RAUSCH,
D., RIDDICK, L.D., SCHOCH, C., SHKEDA, A., STORZ, S.S., SUN, H., THIBAUD-NISSEN, F., TOLSTOY, I.,
TULLY, R.E., VATSAN, A.R., WALLIN, C., WEBB, D., WU, W., LANDRUM, M.J., KIMCHI, A., TATUSOVA, T.,
DICUCCIO, M., KITTS, P., MURPHY, T.D. & PRUITT, K.D. (2016). Reference sequence (RefSeq) database
at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic acids research, 44, D733–
45. 42

[236] OSBORNE, S.L., MEUNIER, F.A. & SCHIAVO, G. (2001). Phosphoinositides as Key Regulators of Synaptic
Function. Neuron, 32, 9–12. 218, 234

[237] PAN, Q., SHAI, O., LEE, L.J., FREY, B.J. & BLENCOWE, B.J. (2008). Deep surveying of alternative splicing
complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40, 1413. 3, 7

[238] PAN, Z., WANG, B., ZHANG, Y., WANG, Y., ULLAH, S., JIAN, R., LIU, Z. & XUE, Y. (2015). dbPSP:
a curated database for protein phosphorylation sites in prokaryotes. Database : the journal of biological
databases and curation, 2015, bav031. 108

[239] PANWAR, B., MENON, R., EKSI, R., LI, H.D., OMENN, G.S. & GUAN, Y. (2016). Genome-Wide Functional
Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning. Journal of Proteome
Research, 15, 1747–1753. 91

[240] PARADA, G.E., MUNITA, R., CERDA, C.A. & GYSLING, K. (2014). A comprehensive survey of non-canonical
splice sites in the human transcriptome. Nucleic acids research, 42, 10564–10578. 45

[241] PARASKEVOPOULOU, M.D., GEORGAKILAS, G., KOSTOULAS, N., VLACHOS, I.S., VERGOULIS, T., RECZKO,
M., FILIPPIDIS, C., DALAMAGAS, T. & HATZIGEORGIOU, A.G. (2013). DIANA-microT web server v5.0:
service integration into miRNA functional analysis workflows. Nucleic acids research, 41, W169–W173. 98

[242] PARK, E., PAN, Z., ZHANG, Z., LIN, L. & XING, Y. (2018). The Expanding Landscape of Alternative Splicing
Variation in Human Populations. American journal of human genetics, 102, 11–26. 3, 4, 5

[243] PARK, H.C. & APPEL, B. (2003). Delta-Notch signaling regulates oligodendrocyte specification. Develop-
ment , 130, 3747–3755. 187

[244] PATHANIA, M., DAVENPORT, E.C., MUIR, J., SHEEHAN, D.F., LOPEZ-DOMENECH, G. & KITTLER, J.T.
(2014). The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic
complexity and the stabilization of mature spines. Translational psychiatry , 4, e374. 227

[245] PATRO, R., MOUNT, S.M. & KINGSFORD, C. (2014). Sailfish enables alignment-free isoform quantification
from RNA-seq reads using lightweight algorithms. Nature Biotechnology , 32, 462. 14

[246] PATRO, R., DUGGAL, G., LOVE, M.I., IRIZARRY, R.A. & KINGSFORD, C. (2017). Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods, 14, 417. 14

[247] PAUWS, E., VAN KAMPEN, A.H., VAN DE GRAAF, S.A., DE VIJLDER, J.J. & RIS-STALPERS, C. (2001).
Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE
analysis. Nucleic acids research, 29, 1690–1694. 136

[248] PECCARELLI, M. & KEBAARA, B.W. (2014). Regulation of Natural mRNAs by the Nonsense-Mediated
mRNA Decay Pathway. Eukaryotic Cell , 13, 1126–1135. 19



268 REFERENCES

[249] PENG, J., REN, K.D., YANG, J. & LUO, X.J. (2016). Mitochondrial E3 ubiquitin ligase 1: A key enzyme in
regulation of mitochondrial dynamics and functions. Mitochondrion, 28, 49–53. 222

[250] PENTONY, M.M. & JONES, D.T. (2010). Modularity of intrinsic disorder in the human proteome. Proteins,
78, 212–221. 105

[251] PERCIFIELD, R., MURPHY, D. & STOILOV, P. (2014). Medium throughput analysis of alternative splicing by
fluorescently labeled RT-PCR. Methods in molecular biology (Clifton, N.J.), 1126, 299–313. 7

[252] PESOLE, G., LIUNI, S. & D’SOUZA, M. (2000). PatSearch: A pattern matcher software that finds functional
elements in nucleotide and protein sequences and assesses their statistical significance, vol. 16. 96, 102

[253] PETERSEN, T.N., BRUNAK, S., VON HEIJNE, G. & NIELSEN, H. (2011). SignalP 4.0: discriminating signal
peptides from transmembrane regions. 104

[254] PIPER, R.C., DIKIC, I. & LUKACS, G.L. (????). Ubiquitin-dependent sorting in endocytosis. Cold Spring
Harbor perspectives in biology , 6, a016808. 210

[255] PLEISS, J., WHITWORTH, G., BERGKESSEL, M. & GUTHRIE, C. (2007). Rapid, Transcript-Specific Changes
in Splicing in Response to Environmental Stress, vol. 27. 16

[256] POLITO, A. & REYNOLDS, R. (2005). NG2-expressing cells as oligodendrocyte progenitors in the normal
and demyelinated adult central nervous system. Journal of anatomy , 207, 707–716. 203

[257] POON, I.K.H. & JANS, D.A. (2005). Regulation of Nuclear Transport: Central Role in Development and
Transformation? Traffic, 6, 173–186. 175

[258] POTENZA, E., DOMENICO, T.D., WALSH, I. & TOSATTO, S.C.E. (2015). MobiDB 2.0: an improved database
of intrinsically disordered and mobile proteins. Nucleic Acids Research, 43, D315–D320. 105

[259] PRIDDLE, H., HEMMINGS, L., MONKLEY, S., WOODS, A., PATEL, B., SUTTON, D., DUNN, G.A., ZICHA, D.
& CRITCHLEY, D.R. (1998). Disruption of the talin gene compromises focal adhesion assembly in undiffer-
entiated but not differentiated embryonic stem cells. The Journal of cell biology , 142, 1121–1133. 218

[260] PROUDFOOT, N. & O’SULLIVAN, J. (2018). Polyadenylation: A tail of two complexes. Current Biology , 12,
R855–R857. 5, 102

[261] PUNTA, M., COGGILL, P.C., EBERHARDT, R.Y., MISTRY, J., TATE, J., BOURSNELL, C., PANG, N.,
FORSLUND, K., CERIC, G., CLEMENTS, J., HEGER, A., HOLM, L., SONNHAMMER, E.L.L., EDDY, S.R.,
BATEMAN, A. & FINN, R.D. (2012). The Pfam protein families database. Nucleic acids research, 40, D290–
301. 103

[262] PYL, P.T., ANDERS, S. & HUBER, W. (2014). HTSeq—a Python framework to work with high-throughput
sequencing data. Bioinformatics, 31, 166–169. 15

[263] QUEVILLON, E., SILVENTOINEN, V., PILLAI, S., HARTE, N., MULDER, N., APWEILER, R. & LOPEZ, R.
(2005). InterProScan: protein domains identifier. Nucleic acids research, 33, W116–20. 103

[264] QUIROS, P.M., RAMSAY, A.J., SALA, D., FERNANDEZ-VIZARRA, E., RODRIGUEZ, F., PEINADO, J.R.,
FERNANDEZ-GARCIA, M.S., VEGA, J.A., ENRIQUEZ, J.A., ZORZANO, A. & LOPEZ-OTIN, C. (2012). Loss
of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective
thermogenesis in mice. The EMBO journal , 31, 2117–2133. 222

[265] RAJ, B. & BLENCOWE, B.J. (2015). Alternative Splicing in the Mammalian Nervous System: Recent Insights
into Mechanisms and Functional Roles. Neuron, 87, 14–27. 131, 187

[266] RAJ, B., O’HANLON, D., VESSEY, J.P., PAN, Q., RAY, D., BUCKLEY, N.J., MILLER, F.D. & BLENCOWE,
B.J. (2011). Cross-regulation between an alternative splicing activator and a transcription repressor controls
neurogenesis. Molecular cell , 43, 843–850. 187

[267] RAMAKRISHNAN, N.A., DRESCHER, M.J. & DRESCHER, D.G. (2012). The SNARE complex in neuronal
and sensory cells. Molecular and cellular neurosciences, 50, 58–69. 210

[268] RAMASARMA, T., JOSHI, N.V., SEKAR, K., UTHAYAKUMAR, M. & SHERLIN, D. (2012). Transmembrane
Domains. 104
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