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Abstract

Orbit transfer amounts to around 70% of all the propellant consumption in a
satellite’s mission lifetime. With the quantity of launches that are taking place
nowadays, and those expected for the future, optimisation in this aspect has
become a priority.

This project develops a transfer orbit optimiser that can offer quick and
accurate results to help in the choice of the mission transfer orbit. Only from
the keplerian elements of the initial and final orbits, it performs a multiobjective
optimisation, and returns the optimal region relating propellant and time of
flight.

Once this relation is plotted, the optimal point that best suits our mission
priorities is chosen. The optimiser will return all the necessary data to perform
the transfer, together with a representative plot of the orbit itself.

In order to build the optimiser, the relative two-body model and impul-
sive manoeuvres are assumed, although up to four impulses may be performed.
Moreover, Lambert’s problem is used to model the transfer, so that the opti-
misation dimensions can be reduced to the maximum extent, thus reducing the
computational cost.

Regarding the optimisation algorithm used, gradient-based (SQP) and global
search methods (Genetic Algorithm) are compared using a simple Hohmann
transfer problem. Finally, the genetic algorithm is chosen and a brief discussion
on its most relevant characteristics takes place.

Keywords: orbit transfer, multiobjective optimisation, ∆v, time of flight,
impulsive manoeuvres, Lambert’s problem, genetic algorithm, orbit plotting.
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Resumen

Las transferencias orbitales suponen alrededor de un 70% de todo el com-
bustible presente en la vida útil de un satélite. Con la cantidad de lanzamientos
que están teniendo lugar recientemente, y los que se esperan en los próximos
años, la optimización en este ámbito se ha convertido en una prioridad.

Este proyecto desarrolla un optimizador de transferencias orbitales que ofrece
resultados rápidos y precisos para ayudar en la elección de la órbita de trans-
ferencia necesaria para llevar a cabo la misión. Únicamente con los elementos
orbitales keplerianos de la órbita inicial y final, el programa realiza un op-
timización multi-objetivo y devuelve una representación de la región óptima,
relacionando el combustible total y el tiempo de vuelo.

A través del gráfico de la región óptima, se escoge el punto óptimo que mejor
se ajusta a las prioridades de nuestra misión. El programa devuelve entonces
todos los datos necesarios para llevar a cabo la transferencia, incluyendo una
representación gráfica de la órbita.

Para construir el optimizador, se asume la validez del modelo relativo de dos
cuerpos y trayectorias impulsivas, aunque se podŕıan realizar hasta cuatro im-
pulsos. Además, para la modelización de la transferencia se emplea el problema
de Lambert, reduciendo aśı las dimensiones del problema de optimización y el
tiempo de cálculo.

Por último, en, al algoritmo de optimización, se estudian métodos basados
en gradientes (SQP) y métodos de búsqueda global (Algoritmo Genético), y se
comparan empleando una transferencia de Hohmann. Finalmente, se escoge el
algoritmo genético y se discute brevemente la elección de sus caracteŕısticas más
relevantes.

Palabras clave: transferencia orbital, optimización multi-objetivo, tiempo
de vuelo, ∆v, maniobras impulsivas, problema de Lambert, algoritmo genético,
representación de órbitas.
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Resum

Les transferències orbitals suposen al voltant d’un 70% de tot el combustible
present en la vida útil d’un satèl·lit. Amb la quantitat de llançaments que estan
tenint lloc recentment, i tots els que s’esperen en els pròxims anys, l’optimització
en aquest àmbit s’ha convertit en una prioritat.

Aquest projecte desenvolupa un optimitzador de transferències orbitals que
oferix resultats ràpids i precisos per a ajudar en l’elecció de l’òrbita de trans-
ferència necessària per dur a terme la missió. Únicament amb els elements
orbitals keplerians de l’òrbita inicial i final, el programa realitza una optim-
ització multi-objectiu i torna una representació de la regió òptima, relacionant
el combustible total i el temps de vol.

A través del gràfic de la regió òptima, es tria el punt òptim que millor
s’adapta a les prioritats de la nostra missió. El programa torna totes les dades
necessàries per a dur a terme la transferència, incloent una representació gràfica
de l’òrbita.

Per a construir l’optimitzador, s’assumix la validesa del model relatiu de
dos cossos i trajectòries impulsives, tot i que es considera que fins a quatre
impulsos podrien ser realitzats. A més a més, el problema de Lambert s’utlitza
per model·lar la transferència, amb el que s’aconseguix reduir les dimension del
problema d’optimització, y es redüıx el tems de càlcul.

Respecte del algoritme d’optimització, s’estudien mètodes basats en gradi-
ents (SQP) i mètodes de busca global (Algoritme Genètic), i es comparen em-
prant una transferència de Hohmann. Finalment, s’escollix l’algoritme genètic
i es discutix breument l’elecció de les seues caracteŕıstiques més rellevants.

Paraules clau: transferència orbital, optimització multi-objectiu, temps
de vol, ∆v, maniobres impulsives, problema de Lambert, algoritme genètic,
representació d’òrbites.
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José Tatay Sangüesa
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1 Introduction

1.1 Motivation

Space exploration is becoming one of the fastest developing research areas in
recent times. It seems inevitable for humans to end up establishing colonies in
the Moon, Mars or other celestial bodies. However, the cost of sending a rocket
with meaningful payload into interplanetary flight projects involves spending
millions of euros, so the margin of error is certainly slim.

Nevertheless, the colonisation of other planets or moons is not the only pos-
sibility that space offers. In fact, the most common space missions are designed
to improve the quality of life of the Earth population. Artificial satellites are
launched every month with communications, remote sensing or navigation pur-
poses, among others. The advances in reusable launch vehicles (Space X, Blue
Origin) have made considerably cheap to send satellites into orbit. Plus, with
the development of CubeSats, owning an orbiting satellite has become available
to a greater public, including small companies, universities or even high schools.

Launch vehicles are responsible for lifting the satellites outside from the
Earth’s atmosphere and carrying them to orbit. However, they are able to
take the spacecraft to the desired region in space with a restricted accuracy.
Plus, it is common that in one vehicle several satellites are launched, each with
different orbital requirements. Hence, after the separation of the spacecraft from
the launch vehicle there are some operations that the satellite must be able to
perform in order to accomplish its mission. These operations can be described
as follows:

1. Orbit transfer: Modifying the spacecraft’s initial orbit to achieve the
desired orbit. Usually, to improve the accuracy reached by the launch
vehicle or to rendezvous with another body.

2. Orbit maintenance: Compensate the orbit perturbations to keep the
spacecraft in the desired mission orbit.

3. Attitude control: Orient the spacecraft so that it can correctly perform
its mission. Actually, this operation is performed with additional actuators
and does not usually require propellant.

4. De-orbiting: Orbital manoeuvres performed at the spacecraft’s end of
life to leave the orbit or destroy the satellite.

According to the literature [1], orbit transfer is the operation that consumes
more propellant, reaching up to 70% of the total ∆v needed to perform the
mission, as seen in Table 1.

As it can be seen, the minimisation of orbit transfer propellant requirements
would have very positive consequences in satellite deployment mission. The sav-
ings in propellant could mean either lower mass that needs to be transported
into space and thus, lower cost; or it could be used for orbit maintenance pur-
poses, increasing the satellite’s lifetime. Nonetheless, it is important to consider
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Table 1: Propellant Consumption % of a Geostationary Satellite

Operation Propellant Consumption (%)
Orbit Transfer 70.0

Orbit Maintenance 29.6
De-orbiting 0.4

other variables besides the propellant used, for instance, the Time Of Flight
(TOF) taken to complete the transfer.

Classical orbit transfers are only able to provide optimal results at very
specific conditions, whereas in the vast majority of the cases there exists no
classical optimal orbit transfer strategy. Although at some cases superposition
of classical orbit transfers could be used, this does not guarantee the optimal
result. Hence, the aim of this project is to develop and implement a program
able to provide optimal solutions, in terms of propellant and time of flight, for
any orbit transfer in the near-Earth region.

1.2 Scope and Project Outline

This project describes the implementation and functioning of an orbit trans-
fer optimiser. The program provides an accurate, reliable and intuitive way to
obtain the optimal ∆v vs. time of flight distribution plot so that the user can
decide the compromise that is willing to accept for the mission. It has been
prepared to consider up to four-impulse transfers, as it is believed that this is
the maximum number of impulses needed for a 3D optimal transfer [2, 3, 4].
Moreover, the algorithm is able to handle constraints and it will ensure that
no orbit will place the spacecraft closer to 200km from the Earth’s surface, to
avoid collision danger. Finally, the calculations have been made under the re-
strictive assumptions of: an isolated two-body system with perfect centrobaric
bodies, the Newtonian gravity model, and impulsive manoeuvres. All of this
simplifications and some other will be commented in further sections.

Regarding the project outline, the following sections can be encountered:

• Theoretical background of the orbital motion model and the optimisation
algorithms used, including multiobjective optimisation.

• Explanation of the methodology used and the problem setting.

• Comparison of different optimisation algorithms by applying them to prob-
lems with known solutions.

• Program presentation with a real transfer example. Results discussion.

• Budgeting on the project total cost.

• Project conclusions including comparison with other orbit optimisers and
future work discussion.
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2 Theoretical Model

2.1 Orbital Mechanics

Satellites and spacecrafts move in orbits through space. In this section, some
basic concepts on orbital motion will be introduced, including the solution for
the restricted two-body problem. We will start from the general orbital motion
formula development and particularise it to our problem.

Once the general motion of a spacecraft is known, the parameters that de-
scribe the orbit’s shape and size will be discussed, as they will used to represent
the spacecraft’s trajectory in space, together with its current position and ve-
locity.

2.1.1 Orbital Motion

In order to develop the orbital motion formulas, first we need to define the
coordinate system. The Earth Centred Inertial (ECI) reference frame will be
employed. This system uses the Earth’s centre as the origin of coordinates,
and the Equator to determine the fundamental plane. Moreover, the principal
direction is chosen to coincide with the vernal equinox, which is obtained by
drawing a line between the Earth and the Sun in the first day of spring [5].
Figure 1 shows the reference system used, which is also known as geocentric-
equatorial coordinate frame.

Figure 1: ECI Reference Frame [6]

Furthermore, the simplifying assumptions need to be stated. It is important
to note that these assumptions allow us to solve the problem in a simpler man-
ner, but also restrict the reliability of our solutions to the extent that they can
be applied. The main assumptions are enumerated below.

3



1. The ECI reference frame is sufficiently inertial. Thus, Newton’s laws apply.

2. The spacecraft’s mass is negligible compared to the Earth’s, ms � mEarth.

3. Earth is perfectly spherical and with uniform density, so we can consider
it a centrobaric body, i.e., a point mass. Hence, the Newtonian gravity
model applies, which is represented by Equation 1.

FG = −Gm1m2

r3
r (1)

4. Manoeuvres will be considered impulsive, hence no thrust force will be
applied.

5. The spacecraft is located high enough above the Earth’s atmosphere that
the drag force can be neglected, FD ≈ 0.

6. Other forces such as those due to solar radiation or electromagnetic fields
are negligible. Therefore, the only acting force is gravity FG.

7. The spacecraft’s mass ms is constant, so ∆ms = 0.

Applying all of these assumptions to Newton’s Second Law we obtain the re-
stricted n-body equation of motion, represented in Equation 2. As it can be
seen, this is a differential equation, which needs to be solved to obtain the
spacecraft’s trajectory.

mir̈i = −G
n∑
j=1
j 6=i

mimj

r3
ij

rij (2)

Analysing this equation, it can be seen that we require a total of 6n integrals
of the motion to completely solve the n-body problem. This results from the
number of equations present: n bodies × 3 dimensions × 2 nd order eq. = 6n.
If it is further assumed that the spacecraft is moving very close to Earth, the
gravitational influences of other bodies may be neglected, leaving the number of
necessary constants to 12. Unfortunately, since Euler’s time (1707-1783) only
ten integrals of the motion are known, which come from the conservation of
linear momentum (6), angular momentum (3), and total energy (1) [7]. This
means that the restricted two-body problem is not solvable in this form, as two
additional constants would be needed. In order to solve this problem we need
to rewrite Equation 2 to express the relative motion of the two bodies involved,
represented by vector r and its derivatives. The new Equation 3 is now solvable,
although its solution is not trivial.

r̈ + µ
r

r3
= 0 (3)

where µ = G(m1 +m2).
The solution of Equation 3 requires the Kepler laws together with some

calculus and geometry notions and can be found in several references [8, 9, 10,
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11]. Its solution can be found in Equation 4 and expresses a relation for the
magnitude of the position vector.

r =
k1

1 + k2 cos θ∗
(4)

where θ∗ is the polar angle from the orbits periapsis to the spacecraft’s location.
k1 and k2 are constants that depend on the orbit’s shape and size, which are
characterised by the orbital elements. Actually, k1 = p and k2 = e.

Equation 4 is known as the conic equation because its solutions represent one
of the conic sections (depending on the constants). The conic sections are the
circle, the ellipse, the parabola and the hyperbola and arise from the different
planes that can intersect a cone, as seen in Figure 2.

Figure 2: Conic Sections [12]

2.1.2 Orbital Elements

There exist different sets of elements that can be used to describe a space-
craft’s motion in space. For instance, a spacecraft’s orbit and position could be
completely defined with ECI position and velocity vector components (rx, ry, rz, vx,
vy, vz) or the perifocal frame (orbit frame) components (rp, rq, rw, vp, vq, vw).
Although these systems are simple to work with calculations (during orbit trans-
fers and manoeuvres), as well as for representation purposes, they do not provide
much physical sense regarding the orbit characteristics.

However, there exists another set of orbital elements, called Keplerian, clas-
sical or conventional elements that can be used to describe a spacecraft’s orbit in
space, and the location of the spacecraft inside this orbit. Five of the six orbital
elements are constant and describe the orbit shape and size, whereas the sixth
parameter establishes the position of the spacecraft. The Keplerian element set
that will be used in this project is {a, e, i,Ω, ω, θ∗}. A short description of each
of the elements can be found in Table 2. Figure 3 shows the orbital elements
inside an orbit.

There are other important concepts that need to be discussed regarding the
orbital elements. Firstly, the line of nodes is the intersection of the orbit plane
with the fundamental plane. In addition, there are other parameters that can
be obtained from combinations of the previous parameters and facilitate the
calculations or have physical meaning. They are collected in Table 3.
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Table 2: Keplerian Orbital Elements

Keplerian Elements Symbol Definition

Semi-major axis a
Describes the orbit’s size as it rep-
resents half the length of the conic.

Eccentricity e
Describes the shape of the orbit, and
the kind of conic that is being rep-
resented.

Inclination i
Represents the angle between the
equatorial and the orbital planes.

RAAN Ω
Represents the angle from the vernal
equinox (ECI X-axis) to the ascend-
ing node.

Argument of Perigee ω

Represents the angle from the as-
cending node to the orbit’s clos-
est point to Earth (perigee), always
measured in the direction of space-
craft’s motion.

True Anomaly θ∗

Angle that indicates the position of
the spacecraft in the orbit measured
from the perigee and in the direction
of motion.

Figure 3: Orbital Elements [13]
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Table 3: Other Orbital Elements

Orbital El-
ements

Symbol Description Formula

Semi-latus
Rectum

p
Distance from the Earth
to the spacecraft when
θ∗ = 90o.

p = a(1− e2)

Energy ε

Total energy of the orbit,
calculated as kinetic plus
potential. As we saw, it is
conserved so it is constant
at every point.

ε = −µ
2a

Specific
Angular
Momentum

h

Modulus of the cross prod-
uct between the position
and velocity vectors. It is
constant through the or-
bit.

h =
√
µp

Period P Time that a spacecraft
takes to travel a full orbit.

P = 2π
√

a3

µ

Radius of the
Perigee

rp
Distance to the orbit’s
closest point to Earth.

rp = a(1− e)

Radius of the
Apogee

ra
Distance to the orbit’s fur-
thest point to Earth.

ra = a(1 + e)

Velocity v
Spacecraft velocity modu-
lus.

v =
√
µ( 2

r −
1
a )

Flight Path
Angle

γ

Angle between the veloc-
ity vector and the tangent
line to the orbit in the
spacecraft’s current posi-
tion.

γ = arccos h
rv

It is simple to express the position and velocity vectors in the perifocal frame
by using the relations shown in Equation 5. Thus, it is important to know how to
change from perifocal (pqw) to ECI (xyz) reference system and viceversa. The
most common way is by using the following 3-1-3 rotation matrix represented
in Equation 6.

rpqw =

r cos θ∗

r sin θ∗

0

 vpqw =


−
√

µ
p sin θ∗√

µ
p (e+ cos θ∗)

0

 (5)

rxyz = R(Ω, i, ω) ∗ rpqw → R =

cΩcω − sΩcisω −cΩsω − sΩcicω sΩsi
sΩcω + cΩcisω −sΩsω + cΩcicω −cΩsi

sisω sicω ci


(6)
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2.1.3 Orbital Manoeuvres

In this section, the manoeuvring problem will be addressed. In general, there
are two principal orbital manoeuvres models according to the thrusting type:
continuous and impulsive thrusting. Continuous thrusting is a more accurate
model, but it also adds complexity to the calculations as the variation of the
spacecraft’s position during the transfer is also considered. On the other hand,
impulsive transfers assume that the manoeuvre duration is zero. Hence, the
problem becomes much more simple, the position of the spacecraft is kept con-
stant and its velocity varies, changing the orbit characteristics, as represented
by Equation 7.

r(t+0 ) = r(t−0 ), v(t+0 ) = v(t−0 ) + ∆v (7)

It is interesting to notice that in order to perform an orbit transfer between two
orbits that do not intersect, a minimum of two impulses will be required, one to
manoeuvre from the initial to the transfer orbit and the second one, to adapt
to the final orbit once the desired position is reached.

Moreover, the initial and final orbits are expressed in Keplerian orbital el-
ements but the manoeuvre is normally expressed in the ECI reference frame.
Hence it is important to know how to convert from ECI to Keplerian using the
formulas described in the previous section. The exact procedure can be found
in the literature [14].

2.1.4 Orbit Transfer Optimisation

The orbit transfer optimisation problem can be stated as the determination
of the trajectory of a spacecraft that satisfies an initial and final conditions while
minimising some quantities [15]. The most relevant quantities when analysing
transfer orbits are the required propellant (represented by the total ∆v in im-
pulsive manoeuvres) and the TOF.

The orbit transfer optimisation problem does not have general analytic so-
lutions. In fact, there only exist optimal known solutions for very specific cases,
whereas for the rest, optimisation algorithms need to be employed. One of the
most common cases with known optimal solutions is the case with two co-planar
circular orbits. The Hohmann transfer is the most efficient solution (in terms of
∆v) in case the radius ratio between both orbits (r2/r1) is less than 11.94 [8]. It
consists of an elliptical orbit tangent to both circular orbits at its apses (perigee
and apogee), as illustrated by Figure 4. The total impulse velocity requirement
can be obtained by using Equation 8, while the total time of flight calculation
is shown in Equation 9 [11].

∆vT =

√
µ

r1

(√
1

r2/r1
−

√
2

(r2/r1)[1 + (r2/r1)]
+

√
2(r2/r1)

1 + (r2/r1)
− 1

)
(8)

TOF =
Pt
2

= π

√
a3
t

µ
= π

√
(r1 + r2)3

8µ
(9)
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Figure 4: Hohmann Transfer Orbit [16]

However, if the ratio between the orbits radius is greater than 11.94, the bi-
elliptical transfer becomes more propellant-efficient than the Hohmann transfer
[17], especially when plane changes are required. This transfer orbit requires
three tangential impulses. The first burn boosts the spacecraft into an elliptical
orbit at a distance r away from the body. Generally, the further the spacecraft
travels, the lower the total propellant. The second impulse, performed at apogee,
sends the spacecraft into a second ellipse, with perigee at a distance r2. The final
impulse injects the spacecraft into the desired orbit. This is shown in Figure 5.

Figure 5: Bi-elliptic Transfer Orbit [18]

However, this decrease in total ∆v entails an increase in the total TOF too,
so a compromise must been achieved and decide if it is wise to trade the savings
obtained for the time lost. In the limit, when r →∞, the transfer becomes bi-
parabolic and the propellant waste is minimum, although time would be infinity.
In the planar case, bi-parabolic transfer can offer improvements of around 10%
so they are not often used, although they are interesting in plane changes [19].
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2.2 Optimisation Algorithms

In general, non-linear optimisation algorithms can be divided into two groups:
Calculus-based and Global/Non-smooth methods. The first group is formed by
fast and accurate algorithms and are suitable when the objective function is con-
tinuous, not several local minimums exist and the function gradient is either an-
alytically given or numerically computed (smooth function). These algorithms
can perform successfully even if a poor initial guess is provided. On the other
hand, global search optimisation algorithms do not need any additional infor-
mation about the objective function, hence, they are called zero-order methods.
However, they are usually slower and less reliable than gradient-based meth-
ods and are only recommended if the objective function is strictly non-smooth.
Another disadvantage is that the problem constraints need to be incorporated
through pseudo-objective functions with penalties.

For this project, both gradient and non-gradient based algorithms have been
selected. A Sequential Quadratic Programming method will represent the for-
mer group whereas a Genetic Algorithm will represent the latter.

2.2.1 Sequential Quadratic Programming

The Sequential Quadratic Programming (SQP) method was chosen because
it is “arguably, one of the best algorithms for constrained, non-linear optimisa-
tion” [20]. This is because, contrary to other direct methods, it solves for the
search direction from a sub-problem with quadratic objective and linear con-
straints. In general, it makes the problem well posed and easy to solve, if the
function is sufficiently smooth.

In addition, the SQP algorithm is available in MATLAB’s optimisation tool-
box inside the function fmincon.

2.2.2 Genetic Algorithm

The Genetic Algorithm (GA) is a global search method based on the bio-
logical evolutionary laws. Technically it is not a calculus-based “optimiser” but
rather a probabilistic-based “searcher” that looks for the best variable combina-
tion. It is a computational model of evolution that mimics natural selection and
reproduction, forcing the “fittest” to survive and reproduce, generating better
individuals each generation.

The globally optimal solutions are always searched within a predefined search
space. This space is obtained by discretising the continuous variables into a
population of points according to a number of bits. Therefore it will depend on
the variable limits but also on the resolution that we want our solution to have.

After the solution space is defined, variables are coded using binary strings.
The string of n bits representing a variable is called a gene, the concatenation
of all the variable genes forms a chromosome, and the addition of all the genes
corresponds to an individual. Genetic algorithms use a population of individuals
that changes for each generation, evolving to become fitter and more optimal.
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The initial population is usually randomly generated and can consist of as
many individuals as desired. Increasing the number of individuals will help im-
prove the method results, but will also increase the computational cost. As a
compromise, four times the total number of bits is recommended by some au-
thors [21]. Regarding the stopping criteria, several approaches exist. Although
a maximum number of generations is always enforced as a safety measure, the
user may choose to stop the process when the best solution has not changed for
several iterations, or when the chromosome are nearly homogeneous, meaning
that the population is already concentrated in a small portion of the solution
space. In this case, the last approach has been chosen, as recommended in the
literature [22], which will be represented by means of the Bit String Affinity
(BSA) value.

After the main concepts of the method and the stopping criteria have been
defined, we need to comment on how each generation evolves from the previous
one. In order to do so, three operations must take place: selection, crossover
and mutation.

Selection: This operator basically represents Darwin’s law of “survival of
the fittest”. The individuals of the population are paired between them and a
tournament selection is performed [23]. Better (lower objective function result)
individuals survive to be parents for next generation. On the other hand, the
worse individuals are discarded and lost. Some other possible selection criteria
include ranking or roulette wheel.

Crossover: Also called “breeding” or “mating” operator, it represents the
reproduction function, where two parents will produce two children, so that
the total population number remains constant. In this project the uniform
crossover will be employed, although other versions exist such as the single-
point crossover. According to this form of mating, each bit is chosen from either
one of the parents with equal probability. In addition, the second children will
receive the bit from the parent that was not chosen at first. Table 4 exemplifies
the previous idea.

Table 4: Uniform Crossover Example

Parents Children
10101010 10101110
00101111 00101011

Mutation: Finally, this operator corresponds to the mutating possibilities
of the individuals during the crossover. It operates at the bit level, with a
very low probability (usually between 0.002 and 0.1) [24] a bit that should be
a 0 will become a 1, and viceversa. Mutation arises from the need to search
in the neighbourhood of the current point while maintaining diversity in the
population.

After these three operators have been applied to the population, a new
generation of individuals is created and the process is repeated until any of the
stopping criteria is met.
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2.3 Multiobjective Optimisation

Multiobjective optimisation is a branch inside the optimisation discipline
that addresses problems which require simultaneous optimisation of multiple
objectives [25]. These objectives can be coupled or competing. The solutions
can either be dominated, if a design solution is optimal for every objective
function, or, usually, the solution is not a single variable combination but a set
of designs. In this case a Pareto-optimal solution [26] would be obtained in
which no improvement in one objective can be made without degrading at least
another objective. The portion of space represented by all non-dominated design
points in the solution is called Pareto frontier, and it illustrates the available
trade-offs between objectives. Figure 6 shows the Pareto frontier (blue) in a
f1 − f2 plot.

Figure 6: Pareto Frontier Example and Optimal Region Detail

Several approaches exist to address multiobjective problems. From simpler
methods that convert them into single-objective problems, such as the Weighted
Sum Approach, to more complex ideas as the ε-constraint, the min-max, or the
goal attainment approaches.

In this project, the ε-constraint approach will be used, which comes Game
Theory and is also called ”gaming” approach. It basically consists of treating
multiple objectives through inequality constraints. In this sense, we need to
identify a primary objective and place limits (εi) on the remaining objectives,
ensuring that the constraints are satisfied. By changing the objective limits, the
Pareto frontier can be built.
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3 Methodology

3.1 Optimal Orbit Transfer Problem

The optimal orbit transfer problem can be stated as follows. Given an ini-
tial orbit described by the Keplerian elements a0, e0, i0,Ω0, ω0 and a final orbit
described by af , ef , if ,Ωf , ωf , find the region of the optimal solutions that min-
imise total ∆v and time of flight. Moreover, the minimum distance to the
Earth’s surface at any time must be greater than 200km to ensure the mission
safety. Moreover, as we are using the ε-constraint approach, ∆v will be treated
as the main objective, whereas time of flight will be the constrained one.

However, there exist multiple ways to define the variables that our objective
function will modify to find the optimal transfer. This project tries to reduce
the dimension of the optimisation problem by reducing the number of variables
needed, which would improve considerably the algorithm convergence time, re-
ducing the computational cost. In order to do so, the transfer problem will
be solved using Lambert arcs [8, 27]. This approach allows to find a transfer
arc with the initial and final coordinate points and the time of flight along the
transfer arc by solving an iterative method. Although a iterative method that
solved the Lambert problem had been programmed, a faster, more reliable one
was found in the literature [28] so it was decided to use the more advance ver-
sion. One of the best advantages of using the Lambert arcs approach, is that
it is guaranteed that the spacecraft will leave from and arrive to the desired
orbits, thus eliminating the error possibility.

In addition, the problem needs to be accommodated to solve the transfer
applying two, three or four impulses. No more impulses are considered as it
is thought that four is the maximum number of impulses needed for optimal
trajectories [2, 3, 4]. In the two-impulse case, we do not need any more variables,
as there will only be one transfer arc between the two orbits. Nevertheless,
we can reduce the number of variables as the initial and final coordinates are
restricted: they must belong to the initial and final orbits, respectively. Hence,
the problem was set in terms of the true anomalies (θ∗0 and θ∗f ) reducing the
problem in 4 dimensions.

Regarding the multi-impulse transfer problem, some additional variables are
needed to determine where the new impulses will be performed. As we want to
continue with the Lambert problem approach to avoid the error constraints, and
in this case, the intermediate impulse locations are not restricted, we need four
more variables for each new impulse: three that define the impulse location and
one for the transfer time to the next impulse point. Hence, for the multi-impulse
problem the impulse locations and the transfer time between them are defined as
variables and the function computes and builds Lambert arcs to connect them.
A more detailed diagram can be seen in Figure 7.
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Figure 7: Objective Function Diagram

3.2 Optimisation Algorithms Settings

In this section, we will comment the particularities of each of the optimisation
methods. Having two very different kinds of algorithms (a calculus-based and
a global search type) means that each method requires the information to be
treated in some specific way. Some of the aspects that will be discussed are the
choice of initial solutions, the variable limits, how the algorithms handle the
constraints, or the solution accuracy and resolution.

3.2.1 SQP Method

As it has been commented in previous sections, the SQP algorithm is a
very fast gradient-based method. However, given the nature of the objective
function, with nested orbital functions, it is impossible to obtain an analytic
expression for the gradient. Hence, the algorithm will use numerical gradients.
Moreover, some tolerances and stop-criteria have been specified, concretely a
step tolerance of 10−2 and a maximum number of function evaluations of 300,
as a safety measure.

With respect to the input variables, although the SQP algorithm allows
the variables to remain unbounded (by setting the lower and upper limits to
−∞ and∞ respectively) we opted for limiting the values as much as possible to
facilitate convergence. Therefore, the true anomaly values are bounded between
0o and 360o, the time of flight variables must be positive and are limited by the
ε-constraint approach, so the limit changes in successive evaluations. Lastly, the
impulse location coordinates remain unbounded. All of these bounds are also
useful to determine the initial solution. In case the optimal transfer is known
(Hohmann case) a close initial solution can be easily provided. Nevertheless,
this is hardly the case, so generally several random initial solutions within the
variable bounds are provided. Several initial solutions are given to ensure that
the algorithm is not stuck on a local minimum. Another possibility is the
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combination of both optimisation algorithms: using genetic algorithm to obtain
a good initial guess for the SQP method. This concept will be further exploited
in following sections.

On the other hand, output variables (∆v and TOF) have an accuracy equal
to the inputted tolerance (10−2). Although this tolerance might appear to be
low for an optimisation algorithm, there is no practical meaning in increasing
it, as the simplifications made surely would affect the solution accuracy to a
greater extent. Plus, an error of 10−2 km or seconds in orbital mechanics is
acceptable.

Finally, MATLAB’s fmincon function is able to work with no-linear equality
and inequality constraints but needs to read them from a separate function
to the objective function. With this additional function, the program ensures
that the mission never gets closer than 200km to Earth’s surface (inequality)
and checks that the initial and final points correspond to the desired orbits
(equality).

3.2.2 Genetic Algorithm

The genetic algorithm is not a calculus-based method but a searcher: it
tries different variable combinations until the stopping criterion decides that
the optimum has been found. This stopping criteria, as commented before, is
the BSA which compares the individual’s chromosomes and stops the search
when they are considerably similar (over 90%).

There are two main disadvantages to this method. First the solution space
must be bounded and its accuracy comes determined by the number of bits
allocated to each variable. In this sense, increasing the solution space or the
number of bits will increase the algorithm accuracy but will also increase the
computational cost. As the variables are coded in binary, the resolution of
variable xi can be obtained using the formula expressed in Equation 10.

Ri =
xUi − xLi
2bi − 1

(10)

where xUi = Upper bound
xLi = Lower bound
bi = Number of bits

Table 5 shows the limits, number of bits, and resolution of each of the variable
types: true anomalies, time of flight, and impulse coordinates.

Table 5: Genetic Algorithm Variable Accuracy

Variable Resolution Bounds Bits1

True Anomaly 0.7045o 0o ≤ θ∗ ≤ 360o 9
Time of Flight 1min 0h ≤ TOF ≤ ε-constraint h 10

Impulse Location 100km −r ≤ x, y, z ≤ r 14

1For a time limit of 15h. It will depend on the ε-constraint value.

15



The r bound distance for the impulse location variables depends on the TOF
ε-constraint limit. In order to minimise the solution space limitation, an upper-
bound distance is estimated. To do so, we considered the furthest the spacecraft
can go to ensure it travels back the same distance in the limited time of flight
would be if it travelled an orbit whose period was the time of flight. Hence the
distance away from the Earth would be equal to twice the semi-major axis of
such orbit (considering it to be very eccentric). A 10% extra was added to avoid
being too restrictive. Equation 11 shows the actual expression derivation.

TOFmax = ε = P = 2π

√
a3

µ
→ r = 2(1 + 10%)a = 2.2(4π2ε2µ)1/3 (11)

Following the literature recommendations [21], the population size is four
times the total number of bits, whereas the mutation probability is obtained
from Equation 12. The initial population is obtained randomly.

Pm =
Nbits + 1

2 ∗ Popsize ∗Nbits
=
Nbits + 1

8N2
bits

(12)

Another great disadvantage of the genetic algorithm and, in general, all the
global search methods, is that they cannot handle constraints. Therefore, a
penalty needs to be added to the objective function. If any of the constraints is
broken, a quantity proportional to the constraint violation is added to the ∆v
result, artificially worsening the result and forcing the algorithm to search for
other solutions. However, we must ensure that the penalty is of the same order as
the objective function result, in order to guarantee a meaningful contribution
that will make the algorithm change the search direction. Hence, there are
some steps that were followed to achieve it. First, as shown in Equation 13, all
constraints are normalised to the unit. To obtain the same order as the objective
function, we use the dlog10e properties, where d.e represent the ceil operator,
that give the number of non-decimal figures of a given number. Equation 14
shows how to compute the factor that needs to be multiplied to the normalised
constraint to achieve our purpose. Plus, the objective function has an absolute
value operator and the constraint will only activate the penalty function when
violated (positive). Therefore, the log domain will not present any trouble.

gi(x) ≤ ci → Gi =
gi(x)

ci
− 1 ≤ 0 (13)

Penaltyi = 10dlog10 |f |e+1 ∗Gi (14)

Finally, due to the random nature of this method, it is good practice to run
the algorithm multiple times to increase the possibilities that the optimal point
has been found. In this project, 25 consecutive runs of the genetic algorithm will
be performed. Although this will increase the computation time, it is necessary
to properly discuss the validity of the results obtained.
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3.3 Optimisation Algorithms Comparison

In order to compare the behaviour of both optimisation algorithms, they will
be presented the same problem, one whose solution can be analytically obtained.
This way it will be possible to compare the accuracy of the algorithms’ results,
as well as the computational cost of each of them.

It was decided to start with a simple Hohmann transfer between two concen-
tric co-planar circular orbits. This was done because the Hohmann solution is
one of the most characteristic results in orbital transfers and it is easy to obtain
the analytic solution. Table 6 shows the initial and final orbit parameters.

Table 6: Hohmann Transfer Problem Data

Initial Orbit Final Orbit
Parameter Value Parameter Value

a0 15000 km af 35000 km
e0 0 ef 0
i0 0o if 0o

Ω0 0o Ωf 0o

ω0 0o ωf 0o

The transfer orbit parameters can be easily obtained and are shown in Table
7 [8, 9]. Figure 8 shows the actual transfer. The total ∆v and time of flight can
be obtained from Equations 8 and 9 respectively.

Table 7: Hohmann Orbit Transfer Solution

Parameter Value
at 25000 km
et 0.4
it 0o

Ωt 0o

ωt 0o

θ∗tf − θ∗t0 180o

∆v 1.7051 km/s
TOF 5.4637 h

As this problem is symmetric, there is a degree of freedom regarding the
initial and final true anomalies. Hohmann transfer only requires that the differ-
ence between both angles equals 180o, but does not determine the initial and
final values precisely. Hence, to reduce the problem’s dimension, the initial true
anomaly θ∗0 has been fixed to 0o.

The transfer orbital parameters obtained with each algorithm will be com-
pared to the solution quantities above in order to assess the quality of the results.
Moreover, other aspects will be studied, such as the computational time.
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Figure 8: Hohmann Transfer Plot

3.3.1 Results

The results obtained by both algorithms can be seen on Table 8. It can
be seen that the genetic algorithm offers very precise results whereas the SQP
method presents some errors in the orbital parameters that lead to larger, un-
acceptable errors in the objective values results. In fact, the results obtained by
the SQP method are even worse than expected, as not only does it worsen the
GA solution, but also is completely unable to find a solution close to the opti-
mal point. Given a random initial input, errors of the order of 463% and -75%
were obtained. On the contrary, the GA precision could be further improved by
increasing the number of bits that define each variable.

Table 8: Hohmann Orbit Transfer Results

SQP Method2 Genetic Algorithm
Value Error(%) Value Error(%)

at 25007 km 0.028% 25000.083 km 0.0003%
et 0.4011 0.275% 0.4000024 0.0006%

it, Ωt, ωt 0o 0% 0o 0%
θ∗tf − θ∗t0 170.692o 5.17% 179.6477o 0.196%

∆v 1.8223 km/s 6.871% 1.7052 km/s 0.006%
TOF 5.1834 h 5.13% 5.4477 h 0.293%
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Several possibilities were checked to improve the SQP algorithm behaviour,
including step and optimality tolerances, unconstrained optimisation, maximum
function evaluations, initial guess, and even changing the gradient-based algo-
rithm used. However the results were always very poor, confirming that the
objective function is not suitable for a gradient-based method, as several au-
thors had already pointed out [15, 29, 30]. Figure 9 shows a visual plot of
the objective function solution distribution. As it can be seen, the local mini-
mums and discontinuities are common making it impossible for gradient-based
methods to reach a solution.
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Figure 9: Objective Function Plot

After the results obtained in this section, it was decided that the only method
that would be used to develop our orbital optimiser would be the genetic al-
gorithm. Besides having no other alternative, as gradient-based methods have
been proven useless against this kind of functions, GA has shown very good
results, with errors below 1% in every case, providing feasible solutions, and be-
ing able to perform the calculations in less than one minute (average computing
time 54 seconds).

2Case where initial solution is given from Genetic Algorithm output.
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Given the need to compare transfer orbits with different number of im-
pulses, three optimising functions were developed: two-impulse, three-impulse,
and four-impulse optimiser. Table 9 shows the characteristics of each function.

Table 9: Optimising Function Characteristics

Optimiser Dimension Bits∗ Iterations
Two-Impulse 3 28 25

Three-Impulse 7 80 15
Four-Impulse 11 132 5
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4 Results

Although we have seen that some orbit transfers have analytically optimal
solutions, the majority of space missions require specific orbits to develop its
purposes. The optimal transfers required to reach the mission orbit cannot
generally be analytically obtained. This project, given the assumptions in which
it is based, will focus on Earth related missions, whose aim is generally Earth
observation, meteorological, scientific or for navigation and telecommunication
purposes. The most common Earth related orbits in which satellites operate
are Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth
Orbit (GEO), and the Molniya orbit. These four orbits are represented in Figure
10.

Figure 10: Earth Related Orbits Plot

In this project, a transfer from a Molniya to a GEO orbit will be optimised to
show the capabilities of the optimiser program. These orbits have been chosen
for several reasons: first, they are in different planes which will show the 3D
capabilities of the algorithm, which is able to solve considerably more difficult
transfers than a co-planar Hohmann; plus, being three-dimensional, allows for
a more visual representation of the results. Finally, it is an orbit transfer with
possible applications in satellite missions, as the Molniya and GEO orbits are
generally used for communication purposes. The orbital parameters that define
each of the orbits are shown in Table 10.
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Table 10: Initial and Final Orbit Parameters

Initial Orbit (Molniya) Final Orbit (GEO)
Parameter Value Parameter Value

a0 26600 km af 42164 km
e0 0.74 ef 0
i0 63.4o if 0o

Ω0 0o Ωf 0o

ω0 280o ωf 0o

One of the most important aspects of space missions is reliability, which can
be defined as the quality of performing well. A mission will be more reliable the
less complex it results, hence it can be more interesting to choose a two-impulse
transfer solution with a slightly higher ∆v consumption, than a four-impulse
one. Therefore, our solution will visually differentiate between the number of
impulses required.

Having said this, the main contribution of this optimiser is its multiobjective
optimisation capabilities. This construction allows the space mission designer to
have a quick, visual representation of the optimal region. Thus, the compromise
between TOF and ∆v can be easily chosen. This is why the main result from
this optimiser can be considered to be the Pareto frontier showing the optimal
region.

Once the Pareto frontier is shown, a point in the optimal region should be
chosen, which is done by indicating the time of flight for the mission and the
number of impulses desired. Then, the program will provide all the necessary
data for the transfer completion. This information includes ∆v vector compo-
nents, impulse location coordinates and/or θ∗, and the transfer orbit simulation
plot, together with its keplerian orbital elements.

In order to find the Pareto frontier plot, the TOF ε-constraint limits need
to be discussed. To obtain a reference value from where to choose the limits,
a TOF-unconstrained optimisation run was performed. This was achieved by
establishing a very large TOF-limit so the overall minimum ∆v corresponding
time of flight for the two-impulse case was computed.

The unconstrained optimisation results gave 10.7h as the reference time of
flight. Hence, it was decided to analyse the following time of flight values to
obtain a representation of the Pareto frontier: 500h, 50h, 25h, 15h, 12h, 10h,
8h, 5h, 3h, 1h.
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4.1 Pareto Frontier

The Pareto frontier obtained for the orbit transfer from a Molniya to a GEO
orbit for different times of flight can be found in Figure 11. As it can be seen,
the different zones of the plot correspond to different number of impulses.

Figure 11: Pareto Frontier Results

It is interesting to see that there is a blank area between the two and three-
impulse optimal regions. This is because around this area a non-optimal region
appears: the two-impulse region would start increasing from the TOF = 10.7h
point and the three-impulse does not improve that ∆v value until close to the
TOF = 15h point. The four-impulse case did not produce any of the optimal
points. The numerical results obtained can be found on Table 11. It can be
seen, for the TOF = 12h value, that the optimiser has chosen approximately
the same solution than for the TOF = 10.7h case.

Table 11: Pareto Frontier Results

TOFlimit (h) ∆v (km/s) TOF (h) Impulses

500 3.2769 496.1 3
50 3.4601 50.0 3
25 3.7707 25.0 3
15 4.1121 15.0 3
12 4.1375 10.7 2
10 4.1420 10.0 2
8 4.2255 8.0 2
5 4.7249 5.0 2
3 5.9451 3.0 2
1 13.9200 1.0 2
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4.2 Transfer Orbits

After analysing the Pareto frontier plot, we need to do the mission design
engineer job and choose the transfer orbit that best adapts to our conditions.
It could be seen on Figure 11 that the TOF = 500h, represented by the dotted
line, did not produce a meaningful improvement in the propellant consumption.
Hence, we have chosen three different solutions to contemplate different cases
regarding the mission priorities.

4.2.1 Time Of Flight = 10h

According to our engineering judgment, this option represents the best com-
promise between propellant and TOF. It requires a total ∆v of 4.14 km/s, which
is a high value due to the plane change requirements. It is also performed using
only two impulses, which increases the mission reliability. The transfer data
needed is shown in Tables 12 and 13. A plot of the transfer orbit can be seen
on Figure 12.

Figure 12: TOF = 10h Orbit Plot
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Table 12: TOF = 10h Transfer Orbit Data

Impulse Location Impulse Coordinates TOF
1 (o) 2 (o) 1 (km/s) 2 (km/s) 1 (h)

164.1 173.3
-0.8857 -1.4199

10.00.3094 -1.7637
0.0191 2.2664

Table 13: TOF = 10h Transfer Orbit Parameters

Parameter Value

at 36304.0 km
et 0.4520
it 62.95o

Ωt -6.693o

ωt 314.16o

θ∗d 133.0o

θ∗a 225.8o

4.2.2 Time Of Flight = 50h

This case represents a situation in which time of flight is not relevant for
the mission, but as much propellant as possible needs to be saved. It is also
used to represent how a three-impulse orbit would look like if that output was
chosen. It is interesting to see in Figure 13 how the transfer arc separates from
Earth and performs the manoeuvre near the periapsis, where the velocities are
smaller. Therefore, the ∆v values are also reduced, as seen in Table 15. The
transfer arc keplerian elements can be seen in Table 14.

Table 14: TOF = 50h Transfer Orbit Parameters

Transfer Arc 1 Transfer Arc 2
Parameter Value Parameter Value

at1 66075.9 km at2 75555.9 km
et1 0.6900 et2 0.4420
it1 61.16o it2 2.36o

Ωt1 -8.975o Ωt2 -27.476o

ωt1 -14.14o ωt2 -1.49o

θ∗at1 90.5o θ∗at2 200.4o

θ∗dt1 195.1o θ∗dt2 1.49o
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Table 15: TOF = 50h Transfer Orbit Data

Impulse Location Impulse Coordinates (km/s) TOF (h)
1 (o) 2 (km) 3 (o) 1 2 3 1 2

152.2
-102618

332.5
-1.1764 -0.3633 -0.3095

28.5 21.515433 0.7686 -0.9088 -0.5313
-1389.7 0.4533 0.9299 -0.1523

Figure 13: TOF = 50h Orbit Plot

4.2.3 Time Of Flight = 1h

Finally, this situation represents the complete opposite case, in which pro-
pellant is not an issue and we need to reach the desired orbit as fast as possible.
The ∆v values increase considerably as seen in Table 16 and it is interesting to
see in Table 17 that the transfer orbit would be hyperbolic, although this is not
easily seen in Figure 14.

Table 16: TOF = 1h Transfer Orbit Data

Impulse Location Impulse Coordinates TOF
1 (o) 2 (o) 1 (km/s) 2 (km/s) 1 (h)

219.1 174.0
-6.7707 4.8682

1.00.7052 -1.8840
-1.0882 4.7032
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Table 17: TOF = 1h Transfer Orbit Parameters

Parameter Value

at -12647.3 km
et 3.135
it 70.03o

Ωt -5.99o

ωt 121.73o

θ∗d 19.75o

θ∗a 58.27o

Figure 14: TOF = 1h Orbit Plot
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5 Budget & Project Specification

5.1 Budget

This section comprises the estimated economic cost of the presented project.
The budget includes optimiser programming, report writing and presentation
building. Moreover, the computer equipment and program licenses cost have
been added. Table 18 summarises the project overall cost.

Table 18: Project Budget

Hours Hour cost (e/h) Total Cost (e)
First-Year Engineer 225 25 5625
Laptop Computer 225 2 450

Matlab License 150 0.5 75
Latex License 50 0.5 25

Microsoft Powerpoint 25 0.5 12.5
Project Printing 25

TOTAL 6187.5
TOTAL + TAX 7486.88

The project total cost, including a 21% tax, amounts to:

# Seven thousand, four hundred and eighty-six euros with
eighty-eight cents #
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5.2 Project Specifications

In the aim of maximising worker productivity while minimising the risks for
its health, the conditions in which the work is performed must be taken into
account.

In this project, most of the work was performed using a computer. In order
to respect the minimum safety and health provisions regarding work with this
equipment the engineer must ensure:

• To maintain a proper body posture and work in a comfortable and er-
gonomic chair, to prevent from future muscular injuries.

• To work in a properly lit position reducing the damage and fatigue that
the screen causes in the worker’s vision.

• The connections to the electric grid must have the necessary security mea-
sures to avoid accidents that could damage computer equipment or cause
injury to the worker.

• To control the workload, regulating in this way the hours dedicated and
the amount of breaks in the workday.

Apart from these measures, the project engineer is able to work from any
place desired, including, but not limited to, offices, libraries, or its own house.
This place should allow the engineer to develop the highest amount of concen-
tration and limit the distractions.

Regarding the technical aspects of the project, the hardware and software
elements used for its development are presented.

With respect to the hardware, an ASUS X555L laptop computer was used
with an Intel(R) CoreTM i7-5500U CPU (2.40GHz) processor, an 8GB RAM, a
NVidia GeForce 920M graphic card, and a 64-bit Windows 10 operating system.

As far as the software is concerned, the following programs were used:

• Matlab vR2018a. For algorithm programming, computational tasks
and orbits plotting.

• Overleaf v2019. For the project report writing and formatting.

• Microsoft Powerpoint v2016. For the project presentation building.
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6 Conclusions & Future Work

6.1 Literature Comparison

We would like to compare the capabilities and the results of our orbit op-
timiser with other previous projects. Since the derivation of the Hohmann
transfer in 1925 [31] and the prove of its optimality in 1963 [32] were developed,
significant contributions have been made in this area. These include gradient
derivation [33], analytical solutions [3], direct and indirect optimisation [34, 29,
30]. These were found to provide deficient solutions given the complexity and
nonlinearities present in the optimal orbit transfer problem [15]. There has also
been some work in evolutionary algorithms such as ours [35, 36, 37].

Regarding genetic algorithms, we have selected three relevant works that
can be compared with our proposed algorithm. Cacciatore & Toglia, (2008) [23]
studied minimum fuel impulsive orbit transfers with a constraint in time of flight.
They solve Lambert’s problem as well, so the problem setting is very similar.
Their main contribution includes the effects of genetic algorithm parameters
to the solution, such as the selection operator criterion. They show that the
tournament criterion outperforms every other configuration (for instance the
inverse roulette wheel) if we include the computational time in our criteria.
This backs up our configuration. Unfortunately, they do not offer any error
measure so that we can compare our results to theirs.

Zhang, et al (2015) [38], one of the most recent papers, developed a “Two-
impulse transfer between co-planar elliptic orbits” genetic algorithm optimiser.
Our algorithm however, despite being more general (three-dimensional and
multi-impulse) is able to obtain considerably lower errors with respect to the
optimal solution. While they reach the optimal point with a 1-1.5% relative
error in ∆v , our algorithm is able to do so with a 0.006% error in ∆v which is
far more desirable.

Moreover, Abdelkhalik (2005) [39] also employed a Lambert problem formu-
lation for his genetic algorithm optimiser and was able to find the Hohmann
transfer with a 0.045% ∆v and 1.515% TOF relative error, whereas we obtain
a 0.006% error for ∆v and 0.293% error for TOF.

Finally, Yilmaz (2012) [40] programmed a multi-impulse genetic algorithm
optimiser, although the optimisation problem was six-dimensional for the two-
impulse case, whereas our setting allows it to be reduced three dimensions,
improving computational cost and reducing complexity. The error obtained in
this case for the Hohmann ∆v total magnitude is around 0.1%.

Overall, it can be seen that the proposed algorithm has a better accuracy
than the previous methods. There exists other applications of genetic algorithms
in the optimal orbit transfer problem but they involve rendezvous, which are
not covered in this project. On the other hand, this project introduces multi-
objective optimisation techniques to take time of flight into account and build
a Pareto frontier.
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6.2 Conclusions

After comparing our optimiser capabilities and results with other projects we
will analyse the conclusions obtained. Not only is this optimiser more versatile
than most of the comparable ones, that either are very problem-specific, or
are limited to the co-planar or the two-impulse case; but also this program is
considerably more accurate. It has proven to be able to obtain the optimal result
with a relative error at least one order of magnitude lower than its competitors.

This precision is mainly due to a great resolution in the problem variables
and to a great choice in the genetic algorithm characteristics that determine
how the global search is performed. But also to the problem setting choice with
respect to the orbital mechanics involved.

Moreover, the computational cost of the algorithm is completely acceptable
for the purpose of this project: to obtain an optimal transfer that serves as
a reference for developing more complex models. This cost is, at maximum 5
minutes per time of flight value, and it can be reduced to under a minute in
the two-impulse case. This includes all the repetitive calculations needed to
ensure the genetic algorithm convergence. This fast behaviour can be obtained,
without a loss in the variables accuracies, thanks to a great understanding of
the orbital mechanics foundations and the Lambert’s problem, which allows
reducing the problems dimension.

Additionally, this project has been conducted in a very complete way. The
objectives were known from the beginning and we used our every bit of our
knowledge to ensure that the best possible answer was provided. The compari-
son between various optimisation algorithms is an example. Although the SQP
method was undeniably unfit for this application, it is a very powerful tool that
should always be taken into consideration when solving an optimisation prob-
lem. Genetic algorithm, on the other hand, has proven to be a very reliable
search method and an ideal one to use in this kind of problems.

Furthermore, this problem setting allow the program to always come up with
a solution, even if not the optimal one, it will be a close one. In this sense, with
sufficient variable resolution, we do not need to worry about our spacecraft not
reaching the desired orbit, which increases the reliability of the results obtained.

In addition, the multiobjective optimisation aspect of the project presents
an added advantage with respect to other projects as we believe that the Pareto
frontier obtained can be very helpful in the orbit mission design, as it visually
represents the compromises between the different options.

As far as the budget is concerned, we believe that we have been able to
reduce cost to the maximum, demanding a reasonable amount for the work
performed.

Overall, we consider this project to be completely successful in fulfilling every
single objective that was considered, overcoming the expectations in several
areas. However, there is always room for improvements, and in the following
section, we will discuss some possible extensions that could be done to further
develop this orbit optimiser.
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6.3 Future Work

In order to continue improving this optimiser, there are some aspects that
could be further analysed in future projects.

Firstly, to increase the functionality of the optimiser, the rendezvous prob-
lem should be studied and included inside the program possibilities. As it has
been shown, the program does a great work finding the optimal transfer path,
but if rendezvous is required, the synodic period between the orbits would cer-
tainly limit the time window to perform the manoeuvres, reducing the mission
reliability. Rendezvous can be very easily handled with Lambert’s problem, as
it is easy to find the relation between the final position vector and the time
of flight. This would relate two variables, reducing the optimisation problem
dimension and therefore, lowering the computational cost.

Together with rendezvous, interplanetary flight would be a thrilling improve-
ment to make. Besides changing the central body from Earth to the Sun (which
would be trivial) the program could be adapted to take into account possible fly-
bys where the spacecraft could use gravitational assists from other solar bodies.
However, this could conflict with our two-body assumption so another model
should be used, for instance, the patched conics approach.

Another interesting development of the project is to study the effects of
the different genetic algorithm parameters (e.g. number of bits, BSA limit,
maximum number of generations, population size, mutation probability, etc.)
in the algorithm convergence time and accuracy. This work has been performed
for the given problem but it would be interesting to study and document the
effects more in-depth.

Finally, a Graphic User Interface (GUI) could be developed to ease the data
input and the algorithm parameters change. It would also be more intuitive to
see the results and select the desired orbits characteristics, hence obtaining all
the necessary data impulse coordinates, intermediate TOFs, etc. to perform the
mission.
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