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1 Introduction 

DNA nanotechnology is a promising field in which DNA strands are employed with the 

aim of manipulating the temporal and spatial distribution of matter within a system, giving 

rise both to self-assembled nanometer-scale structures and autonomous reconfigurable 

devices. The main interest of the self-assembled structures is their stability at the 

equilibrium state (structural DNA nanotechnology). On the other hand, the main interest 

of the autonomous reconfigurable devices  relies not on the equilibrium states but on the 

non-equilibrium states that allow the device to switch from one equilibrium state to 

another (dynamic DNA nanotechnology), while employing non-covalent interactions 

(Zhang & Seelig, 2011).  

These dynamic DNA nanotechnology-based devices employ DNA hybridization, strand 

displacement and dissociation in order to switch between said equilibrium states (Zhang 

& Winfree, 2009) and their usage as nanoscale devices with the aim of controlling 

biological circuits in vivo, building nanoscale chemical circuits or analyzing biological 

samples is rising (Seelig et al., 2006) due to the wide characterization of their Watson-

Crick hybridization thermodynamics of base pairs and the predictability of single stranded 

DNA and double stranded DNA secondary structures, allowing thus a rational design of 

structures and interactions based on the primary nucleic acid sequence (Zhang et al., 

2007; Zhang & Seelig, 2011; Zhang & Winfree, 2009). Furthermore, the elaboration of 

these DNA devices is getting more feasible due to the exponential reduction of 

oligonucleotide synthesis and purification costs.  

At the present time, DNA-based synthetic molecular circuits do not approach the 

complexity and reliability of modern electronics (Seelig et al., 2006). However, they 

present a promising alternative as control devices in biological systems as they function 

both in vitro and in vivo, store signal information in molecule concentrations and 

conformations, and their complexity ranges from low component systems, where signal 

is produced only in the presence of the appropriate input, up to complex systems that 

include various logic gates that evaluate the presence of various possible inputs that 

trigger a wide combination of outputs, opening the door towards biological computing.  

The most important reaction that allows the dynamic behavior that permits these circuits’ 

performance is known as strand displacement, which is the process of hybridization of 

two strands with partial or total complementarity while displacing pre-hybridized strands, 

which can act as triggers for further strand displacement reactions (Zhang & Seelig, 

2011). 

This process usually initiates at short single stranded domains where interacting strands 

have total complementarity, known as toeholds, and progresses until reaching total 

strand hybridization. Therefore, it is a reaction that does not require enzymes as it 

exclusively depends on the biophysics of DNA and whose kinetics can be controlled by 

varying the sequence and length of toeholds (Zhang & Winfree, 2009; Zhang & Seelig, 

2011; Srinivas et al., 2013). An illustrated example is provided in Figure 1. 
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Figure 1: Strand displacement reaction example. Modified from Zhang & Seelig (2011) 

The driving forces of strand displacement reactions are the enthalpy gain by forming 

base pairs and the entropy gain by releasing pre-hybridized strands, meaning that the 

reaction is stable, up to a certain degree, to environmental changes such as salt 

concentration and temperature, which typically modify DNA hybridization strength 

(Zhang et al., 2007; Zhang & Seelig, 2011). 

Both driving forces are dependent on the presence of input, as it is the one strand that 

allows the formation of new base pairing and the liberation of pre-hybridized strands. 

Therefore, the reaction is limited by the amount of input present initially and when 

reaching equilibrium (which typically means the consumption of all the input as this 

provides a more stable thermodynamic state of the system), the reactions cease, and 

the circuit stops working. 

However, if the application requires it, the input species may be replenished by 

mechanisms such as transcription, which unlike strand displacement reactions, consume 

a standardized energy source (ATP) with the disadvantage of needing the corresponding 

enzyme for this task (Zhang & Seelig, 2011). 

Thanks to the strand displacement mechanism and its characteristics, DNA-based 

synthetic molecular circuits can be employed as systems of signaling cascades where a 

low concentration, and initially undetectable, input signal (usually a single DNA or RNA 

strand) may be amplified to, for example, a measurable fluorescence signal. 

A particularly interesting application of these circuits is the early detection of biomarkers 

for early diagnosis like cancers and many neurodegenerative diseases, such as 

Alzheimer’s, as there are serum miRNA biomarkers available, shown in Table 1: 

Table 1: miRNA biomarkers for cancers and neurodegenerative diseases (Kumar et al., 2013; Qiu et al., 

2015; and Wittman et al., 2010) 

Disease Potential serum miRNA biomarkers 

Colorectal cancer miR-17-3p; miR-92; miR-29a; miR-92a 

Diffuse large B-cell lymphoma (DLBCL) miR-21; miR-155; miR-210 

Lung cancer miR-25; miR-223; miR-17-3p; miR-21 

Breast Cancer miR-155; miR-195 

Prostate Cancer miR-16; miR-34b; miR-92a; miR-92b 

Amyotrophic Lateral Sclerosis (ALS) miR-206; miR-155 

Huntington’s Disease miR-9; miR-22; miR-128 HTT; miR-132 

Parkinson’s Disease miR-133b; miR-107; miR-34; miR-205 

Alzheimer’s Disease hsa-let-7d-5p; hsa-let-7g-5p 
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These types of diseases are in the top 10 death causes in western countries (Heron, 

2018; Soriano et al., 2018) and are often diagnosed much too late due to the late 

appearance of the symptoms, which in certain neurodegenerative diseases take up to 

20 years to appear (Kumar et al., 2013). Furthermore, the complexity of these diseases 

lowers the success rates of the available treatments as the response can greatly vary 

between individuals. Figure 2 illustrates how neurodegenerative diseases and cancers 

dominated the causes of death in Spain in 2016. 

 

Figure 2: Main causes of death in Spain 2016. Modified from Soriano et al. (2018) 

This fact creates a need for a personalized treatment, which in turn requires a precise 

diagnostic of the disease sub-category. Modern effective diagnostic strategies rely on 

the use of biomarkers such as proteins or on gene expression profiling by means of 

microarray technology. Nevertheless, these approaches are invasive and laborious as 

they require a tissue biopsy for their analysis while lacking the precision needed for a 

personalized treatment. It is through the disadvantages of those biomarkers that miRNAs 

are gaining popularity as a novel source of circulating biomarkers for diagnostics.  

miRNAs are single stranded, non-coding regulatory RNA molecules of around 22 

nucleotides in length. Their biogenesis in animals begins at the transcription of miRNA 

genes in the form of long primary miRNA (pri-miRNA) which are processed by the 

Microprocesor complex (consisting of RNase III Drosha and the double stranded RNA 

binding domain DGCR8) into pre-miRNA, which are short oligonucleotides of 70 

nucleotides in length. Next, the pre-miRNAs are exported into the cytoplasm by means 

of exportin-5 (EXP-5) where they are further processed by RNase III Dicer into mature 
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miRNA (Catalanotto et al., 2016; Wahid et al,. 2010). miRNA biogenesis in animals is 

illustrated in Figure 3: 

 

Figure 3: Steps of miRNA biogenesis in animals. Modified from Wahid et al. (2010) 

miRNAs can be expressed either ubiquitously or in a tissue/cell specific manner while 

also displaying various expression patterns along tissues/cells which can also vary with 

time (Pockar et al., 2019). They act as gene expression modifiers at post-transcriptional 

level either by binding to the 3’ UTRs of the mRNA they target (Kumar et al., 2013; Wahid 

et al,. 2010; Wang et al., 2012) or by recruiting mRNA silencing complexes such as the 

RISC complex (Catalanotto et al., 2016; Wittmann & Jäck, 2010). Around 4% of genes 

present in the human genome encode miRNAs, and a single miRNA can be involved in 

the regulation of up to 200 mRNAs (Kumar et al., 2013). 

This fact is due to the stability of miRNA in biological fluids, either caused by RNA binding 

proteins (such as NPM1, HDL or Argonaute2), transporter microparticles or exosomes 

(small membraned vesicles) (Wittmann & Jäck, 2010), which allows them to be exported 

out of the cell and affect mRNA expression of distant cells. miRNAs play a regulatory 

role in many biological processes being therefore highly conserved during evolution, 

although it is believed that mechanisms through which they function are different (Pockar 

el al., 2019). Furthermore, neurodegenerative diseases and cancers have an altered 

miRNA profile when comparing with adjacent healthy tissue. All these characteristics 

plus the simplicity of extracting a blood sample from a patient, make miRNA a very 

attractive source of biomarkers to consider for early diagnostics. 

With the rising of the usage of miRNA as biomarkers, several tools and technologies are 

advancing towards a more precise quantification of miRNA. Traditional laboratory 

methods are qPCR, microarray technology and NGS. These technologies require as a 

first step an amplification of the miRNA by means of RT-PCR into cDNA. 

In qPCR technology, the sample undergoes a consecutive amplification while 

measurements in real time are taken by means of fluorescent probes. The main 

disadvantage of this technique is that the short length of miRNAs conditions the primer 
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design, which must not form primer dimers. In addition, they must ensure a low detection 

threshold (Balcells et al., 2011; Chen et al., 2005; Redshaw et al., 2013). 

Microarray technology depends on a hybridization reaction of the sample with DNA 

probes anchored to a solid surface. The main disadvantages are involved with the need 

of specialized equipment, the different probes available, the lack of hybridization 

procedure standardizing and the challenge of data normalization due to the weak 

expression levels and low concentration of miRNA (Draghici et al., 2006; Wang & Xi, 

2013; Wu et al., 2013). 

NGS technology for miRNA quantification consists in sequencing the miRNA found on a 

sample. It is becoming the preferred method as costs are being greatly reduced. 

Nevertheless, there are great disadvantages, which involve the NGS data analysis and 

its lack of standardization (Chatterjee et al., 2015; Li et al., 2015). 

The technologies aforementioned are difficult to implement in the clinic, at home or in 

underdeveloped countries, as they require specialized apparatus and staff, which 

hinders the quick obtention of results. The need of a more simplistic and quick manner 

of detecting miRNA and amplifying the signal without a prior polymerase mediated 

amplification led to the exploration of a non-enzymatic miRNA detection based on strand 

displacement synthetic DNA circuits. 

However, these circuits present major issues when tested in vitro as hybridization may 

not be perfectly specific and undesired hybridizations may happen. In addition, 

oligonucleotide synthesis errors, such as deletions, deaminations or depurinations 

strongly affect the performance as the circuit strongly depends on its components’ base 

sequence (Zhang et al., 2007; Zhang & Seelig, 2011). 

Another disadvantage is that the sequence of a circuit’s components is strongly 

dependent on the sequence provided by the input(s), meaning that certain circuits may 

underperform or “leak” signal by spontaneous fluctuations caused by the low robusticity 

of their base sequence (Seelig et al., 2006; Song et al., 2018; Wang et al., 2018). 

All these issues plus the importance of an appropriate sequence design forces a strong 

in silico approach of every system design prior to any in vitro testing. There is a need of 

an automated sequence design algorithm based on in silico simulations of the proposed 

system to ease future fine tuning based on experimental measures. 

1.1 Python as a Bioinformatics tool 

For the resolution of the aforementioned biological problem, the present work employs 

the Python programming language. Python has several characteristics that makes it 

more suitable as a programming language in bioinformatics than other languages like 

JAVA or C. First, its comfortable readability (allowing a better understanding of the code 

and improvement by scientific peers); second, it is open source (which makes it available 

to any user); third, it is cross platform (allowing Python programs to run in any kind of 

machine as long as they have the Python interpreter) and fourth, it has a growing 

scientific community (Bassi, 2010; Ekmekci et al., 2016), which creates modules and 

libraries, such as BioPython or SciPy, with the purpose of being employed in 

bioinformatics and many other fields. 

However, since Python is an interpreted programming language, it has the drawback of 

having a lower performance than compiled languages (such as C), which translates into 

longer execution time for the same results. Nevertheless, for small programs in modern 
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machines this difference is not really significant as Python may take up around 10 

seconds to finish while C only takes up 1 (Bassi, 2010). If the code development time is 

taken into account, Python results to be much faster due to the simplicity in code 

development. 

2 Objective 

To generate an algorithm that automatically designs a DNA circuit for miRNA detection 

based on a sequence input while avoiding signal leak and being overall robust. 

3 Materials and Methods 

3.1 Computational Resources 

3.1.1 Hardware 

For the elaboration of the algorithm, the following platforms were employed: 

A) Computer with Ubuntu 16.04.6 LTS Operative System with 23Gb RAM and 

Intel® Xeon® E5504 processor. 

B) Laptop with Windows 10 Operative System with 8Gb RAM and Intel® Core™ 

i5 7200U processor.  

3.1.2 Software 

The Python version employed in this work was 3.5.2 (PYTHON SOFTWARE 

FOUNDATION, 2019) altogether with the following libraries: 

- The Python Standard Library (PYTHON SOFTWARE FOUNDATION, 2019), 

where the following modules were used: sys, subprocess, random, datetime, 

time and math. 

- ViennaRNA 2.4.10 Python3 Library (Lorenz et al., 2011). 

- Potly Python Open Source Graphing Library (PLOTLY, 2019). 

- SciPy Fundamental Library for Scientific Computing (SCIPY, 2019). 

Additional software employed in this work includes NUPACK 3.2.2 (Dirks & Pierce, 2003; 

Dirks & Pierce, 2004; Dirks et al., 2007) with a code wrapper for its implementation in 

Python courtesy of Salis et al. (2009). 

3.2 Simple Circuit Components 

The initial state of the system consists in an equilibrium in which the complexes sensor-

transducer and clamp-T7p are stable. The addition of miRNA to the system causes a 

disruption of these complexes by means of strand displacement reactions that occur due 

to the lower minimum free energy (MFE) of the possible complexes to be formed in the 

presence of the input, forming thus different complexes until reaching a new equilibrium 

state. The output strand, T7p, will then act as a primer sequence for a DNA template 

which will be transcribed with the objective of carrying out a signal amplification. 
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Figure 4: Simple miRNA detection circuit components and interactions 

3.3 Simple Circuit Initial Sequence Design 

The initial sequences for the components of the circuit originate from a “master 

sequence,” which is in turn formed by the joining of the target miRNA sequence and the 

T7 Phage Promoter sequence (T7p). Sensor and clamp sequences originate as the 

reverse complementary sequences of sections from the “master sequence”, while 

transducer is merely a section of the master sequence. An example is shown below: 

Table 2: Circuit components initial sequence generation example 

Master:      TGGAGTGTGACAATGGTGTTTGGCGCTAATACGACTCACTATAGG 

miRNA (5’-3’):  TGGAGTGTGACAATGGTGTTTG 

sensor (3’-5’):  ACCTCACACTGTTACCACAAACCGC 

transducer (5’-3’):  GTGACAATGGTGTTTGGCGCTAATACGACTCACTATAGG 

clamp (3’-5’):        ACAAACCGCGATTATGCTGAGTGATATCC 

T7p (5’-3’):         GCGCTAATACGACTCACTATAGG 

 

Note that the nucleotides highlighted in yellow are the ones that will serve as toeholds 

for strand displacement reaction initiation. The first toehold (marked at sensor) will 

promote miRNA adhesion and displacement of transducer. The second toehold (marked 

at clamp) will promote transducer adhesion (only if this strand is completely free, as the 

complementary sequence of the toehold is hidden when transducer is part of the complex 

sensor-transducer) and T7p displacement. The code needed in order to perform this task 

is shown in Box 1: 

#Define reverse complementary generator   

def revcomp(seq):   

    seq = seq.upper(   

    ).replace('A','t'   

    ).replace('T','a'   

    ).replace('G','c'   

    ).replace('C','g'   

This box continues on the next page 
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    )[::-1].upper()   

    return seq   

   

#Define primary sequences generator   

def genseq(miRNA, prom):   

    n = len(miRNA)   

    rootseq = (miRNA.upper()   

        + prom)   

    sensor = revcomp(rootseq[:n + 3])   

    transducer = rootseq[6:]   

    clamp = revcomp(rootseq[n - 6:])   

    return (sensor,   

        transducer,   

        clamp)   

Box 1: Python functions for initial sequence generation 

3.4 Mathematical Approach and Objective Function 

The circuit itself is evaluated in its equilibrium state and depending on the presence of 

input (miRNA) or not. Thus, the equilibrium states for an ideal working circuit are 

illustrated in Figure 5. 

 

Figure 5: Ideal equilibrium states for circuit components 

A Good way to evaluate the capability of the system to shift between both equilibriums 

by means of the addition of the target miRNA is to calculate the probabilities of the 

formation of the complexes found in the ideal case equilibrium in which the miRNA is 

present, against the complexes formed in absence of the miRNA. This calculus is done 

by means of a ratio between the Boltzmann function of the complex of interest and the 

Boltzmann functions of all other possible complexes involving each of the strands 

participating in the complex of interest. In addition, this ratio can be simplified as most 

possible complexes aren’t spontaneous and thus, their Boltzmann values are negligible. 

For miRNA-sensor and transducer-clamp complexes, the probabilities of complex 

formation are the following: 

𝑃1 =
𝑒−𝛽Δ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟

𝑒−𝛽Δ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒−𝛽Δ𝐺𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟
         Eq. (1) 

𝑃2 =
𝑒−𝛽Δ𝐺𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟−𝑐𝑙𝑎𝑚𝑝

𝑒−𝛽Δ𝐺𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟−𝑐𝑙𝑎𝑚𝑝 + 𝑒−𝛽Δ𝐺𝑐𝑙𝑎𝑚𝑝−𝑇7𝑝
              Eq. (2) 

Where: 

𝛽: the inverse of the product between temperature (K) and Boltzmann constant 

(kB) ≈ 1,69  
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Δ𝐺𝑖−𝑗: MFE value of complex i-j. 

An increment in the probabilities is to be achieved by means of increasing the MFE of 

the complexes present after the addition of input miRNA. To avoid an increment due to 

the reduction of the MFE of the complexes present prior to the addition of input miRNA, 

a set of “artificial probabilities” are calculated, which are based on a simulated MFE that 

acts as a minimum requirement, forcing therefore the complex MFE to be close to the 

simulated value. In the case that the Boltzmann function value of the complex was higher 

than the simulated one, the probability would be equal to 1: 

𝑃3 = 𝑚𝑖𝑛 (
𝑒−𝛽Δ𝐺𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟

𝑒−𝛽𝐿1Δ𝐺𝑏𝑝
, 1)          Eq. (3) 

𝑃4 = 𝑚𝑖𝑛 (
𝑒−𝛽Δ𝐺𝑐𝑙𝑎𝑚𝑝−𝑇7𝑝

𝑒−𝛽𝐿2ΔGbp
, 1)          Eq. (4) 

Where: 

Δ𝐺𝑏𝑝: the average MFE of each base pair in a structure ≈ -1,25 

𝐿1: length of the maximum possible interaction zone in sensor-transducer. 

𝐿2: length of the maximum possible interaction zone in clamp-T7p (equivalent to 

the length of T7p). 

Additionally, to avoid spontaneous transducer-clamp complex formation (the main 

source of signal leakage in this construction) promoted by the liberation of the toehold 

binding site hidden in the sensor-transducer complex structure, the dot and bracket 

structure of the sensor-transducer complex is evaluated. The number of unpaired 

nucleotides of a total of 6 in the toehold zone of transducer are counted: 

𝑇(𝑠𝑡𝑟𝑢𝑐𝑡(𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟)) =∑". "

𝑖=6

         Eq. (5) 

Where:  

  “.” : represents the unpaired nucleotides in dot and bracket structure. 

The Objective Function to optimize employs all 5 terms and is defined as: 

𝐹𝑠𝑐𝑜𝑟𝑒 = 𝑃1𝑃2𝑃3𝑃4 (
6 − 𝑇

𝑇
)          Eq. (6) 

The implementation of the Objective Function in code is shown in Box 2: 

#Vienna parameters:   

    #Mathews parameterfile   

RNA.read_parameter_file(   

    '~/ViennaRNA/misc/dna_mathews2004.par')  #Substitute '~' by your directory  

    #No dangles   

RNA.cvar.dangles = 0   

    #No coversion from DNA into RNA   

RNA.cvar.nc_fact = 1   

   

#Global variables employed throughout the code   

#Define circuit sequence names   

guide = ['miRNA','sensor','transducer','clamp','T7p']   

This box continues on the next page 
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#Boltzmann function parameters   

BETA = 1/0.593   

Num_e = 2.7182818284590452353   

DGbp = -1.25 

   

#Define Boltzmann function   

def bolfunc(seq1, seq2, seq_DG):  #seq_DG is a dictionary containing the MFEs 

    Pairkey = (seq1   

        + '_'   

        + seq2)   

   

    Numerator = Num_e**(-BETA*seq_DG[Pairkey])   

    Denominator = Numerator   

   

    if seq1 == guide[0]:  

        SecondKey = 'sensor_transducer'   

        Denominator += Num_e**(-BETA*seq_DG[SecondKey])   

   

    if seq1 == 'transducer':   

        SecondKey = 'clamp_T7p'   

        Denominator += Num_e**(-BETA*seq_DG[SecondKey])   

   

    func = Numerator/Denominator   

    return func   

   

#Define function for probability calculation for secondary pairments   

def probfunc(seq1, seq2, seq_DG, seqs): #seqs contains the sequences 

    Pairkey = (seq1   

        + '_'   

        + seq2)   

    Numerator = Num_e**(-BETA*seq_DG[Pairkey])   

   

    if seq1 == 'sensor':   

        L = 19   

        Denominator = Num_e**(-BETA*L*DGbp)   

   

    if seq1 == 'clamp':   

        L = len(seqs[guide[4]])   

        Denominator = Num_e**(-BETA*L*DGbp)   

   

    func = Numerator/Denominator   

   

    if func > 1:   

        func = 1   

   

    return func   

   

#Define toehold score   

def toeholdscore(name, seq_ss):  #seq_ss contains the complex’ structures 

    DIST = (len(seqs_preit['transducer'])   

        - len(seqs_preit['T7p']))   

    struct = seq_ss[name].split('&')[1][(DIST-6):DIST]   

   

    j = 0   

   

This box continues on the next page 
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    for symbol in struct:   

        if symbol == '.':   

            j += 1   

    return j   

   

#Define Packing and Scoring function   

def scorefunc(seqs):   

    seq_DG = {}  #Dictionary where the MFEs will be stored 

    seq_ss = {}  #Dictionary where the structures will be stored 

    i = -1   

   

    for seq1 in guide[: -1]:   

        i += 1   

        seq2 = guide[i + 1]   

        name = (seq1   

            + '_'   

            + seq2)   

#cofold is a ViennaRNA package function that calculates   

#the complex' MFE and structure   

        (ss, mfe) = (RNA.cofold(seqs[seq1]   

            + '&'   

            + seqs[seq2])   

   

        seq_DG[name] = mfe   

        seq_ss[name] = (ss[:len(seqs[seq1])]   

            + '&'   

            + ss[(len(seqs[seq1])):-1])   

   

    P1 = bolfunc(guide[0], 'sensor', seq_DG)   

    P2 = bolfunc('transducer', 'clamp', seq_DG)   

    P3 = probfunc('sensor', 'transducer', seq_DG, seqs)   

    P4 = probfunc('clamp', 'T7p', seq_DG, seqs)   

    T = toeholdscore('sensor_transducer', seq_ss)   

   

    score = P1*P2*P3*P4*(6-T)/6  #The Objective Function 

    dats = [P1,P2,P3,P4,T,score]   

    return dats  

Box 2: Python functions for Score Function calculus 

The optimization consists in the calculation of the Objective Function (Eq. (6)) prior to 

any mutation and after a random base substitution mutation on a random component of 

the circuit (different from the miRNA and T7p). If the mutation favors the Objective 

Function, the mutation is kept, while if it doesn’t, the mutation is rejected. The code 

implementation is the following: 

#Define nucleotides   

NUCS = ['A','T','G','C'] 

#Define mutation function   

def mutf(seqs):   

    seqs_aftermutation = {}   

   

    #Creates a new dictionary with sequences   

    for element in seqs:   

        seqs_aftermutation[element] = seqs[element]   

   

This box continues on the next page 
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    #Chooses a random base from a random sequence   

    target_name = random.sample(guide[1:4], 1)[0]   

    target_seq = list(seqs[target_name])   

    position = random.randint(0, (len(target_seq) - 1))   

    base = random.sample(NUCS, 1)[0]   

   

    while base == target_seq[position]:   

        base = random.sample(NUCS, 1)[0]   

   

    #Writes the mutated sequence   

    target_seq[position] = base   

    target_seq = ''.join(target_seq)   

    seqs_aftermutation[target_name] = target_seq   

   

    return seqs_aftermutation   

   

def main():   

    global k, timesuffix, seqs_preit, seqs_posit   

    global Score_preit, Score_posit, Dats_preit, Dats_posit   

   

    #Moment in time:   

    timesuffix = '_'.join(   

        str(datetime.datetime.now()   

        ).split())   

   

    (seqs_preit['sensor'],   

        seqs_preit['transducer'],   

        seqs_preit['clamp'],   

        seqs_preit['fuel']) = genseq(seqs_preit[GUIDE[0]], seqs_preit['T7p'])   

   

    Dats_preit = scorefunc(seqs_preit)   

    Score_preit = Dats_preit[-1]   

   

#100000 cycles of mutations and selection following the global score   

    k = 0   

    for n in range(int(1e5)):   

        k += 1   

        seqs_posit = mutf(seqs_preit)   

        Dats_posit = scorefunc(seqs_posit)   

        Score_posit = Dats_posit[-1]   

           

        if Score_posit >= Score_preit:   

            Dats_preit = Dats_posit   

            Score_preit = Score_posit   

            seqs_preit = seqs_posit   

           

    OUTFILE = open(('Output_'   

        + guide[0]   

        + timesuffix   

        + '.txt'),   

        'w')   

    OUTFILE.write('This is the output of your job done on '   

        + timesuffix   

        + '\n')   

       

This box continues on the next page 
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    for el in guide:   

        OUTFILE.write('>'   

            + el   

            + '\n'   

            + seqs_preit[el]   

            + '\n')   

    OUTFILE.write('\nP1 = '+ str(Dats_preit[0]) + '\n')   

    OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')   

    OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')   

    OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')   

    OUTFILE.write('Toehold = ' + str(Dats_preit[4]) + '\n')   

    OUTFILE.write('Score = ' + str(Score_preit) + '\n')   

    OUTFILE.close()   

       

    return None  

Box 3: Python functions for sequence mutation and score selection 

3.5 Metropolis Algorithm implementation 

The risk of rejecting all mutations that do not favor the Objective Function is that a 

possible absolute maximum value could be missed due to a valley of unfavorable values 

that may be surrounding this maximum in the space of probabilities. To allow a “local 

scanning” in the space of probabilities, this algorithm is executed whenever a mutation 

is rejected. 

To do so, a “Metropolis factor” is calculated the following way: 

𝑀 = 𝑒−𝛽𝑀
0 𝛿𝑡(𝐹𝑆𝑐𝑜𝑟𝑒−𝐹𝑆𝑐𝑜𝑟𝑒

∗ )         Eq. (7) 

Where: 

𝛽𝑀
0 : initial factor that defines a probability of 0.01 of accepting an unfavorable mutation 

≈ 1100 

𝛿 : a factor representing a decrease of the probability of accepting an unfavorable 

mutation = 1.00007 

t: iteration number 

FScore: Objective function value prior to iteration 

F*
Score: Objective function value after iteration 

 

Next, the Metropolis factor (Eq. (7)) is compared against a random generated number 

ranging from 0 to 1. If the Metropolis factor is higher than this value, the unfavorable 

mutation is accepted. If not, it is rejected. 

The idea is that the more detrimental the mutation is, the lower the Metropolis factor (Eq. 

(7)), and therefore the probability of it being below the random generated number is 

higher. 

The metropolis algorithm is implemented in the main code as a function, which is 

executed under an else statement just after the if Score_posit >= Score_preit 

statement shown in Box 3. 
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The Metropolis function is illustrated in Box 4: 

#Metropolis parameters   

Bm0 = 1100   

D = 1.00007  #delta 

   

def Metropolis():   

    global Dats_preit, Score_preit, seqs_preit   

    Bmk = Bm0*(D**k)   

    M = NUM_e**(   

        - Bmk*(   

            Score_preit   

            - Score_posit))   

   

    if random.random() < M:   

        Dats_preit = Dats_posit   

        Score_preit = Score_posit   

        seqs_preit = seqs_posit   

    return None  

Box 4: Python Metropolis function 

3.6 Simple Circuit Kinetic Model Design 

The system to be modeled can be easily described with the following reactions: 

{   𝑚 +  𝑠: 𝑡 
𝑘𝑠
→𝑚: 𝑠 + 𝑡     

   𝑡 +  𝑐𝑙: 𝑇𝑆 
𝑘𝐸
→ 𝑡: 𝑐𝑙 + 𝑇𝑆

         Eq. (8) 

Where: 

m : free miRNA concentration (μM) 

s:t : sensor-transducer complex concentration (μM) 

ks : transducer liberation kinetic constant (μM s-1) 

m:s : miRNA-sensor complex concentration (μM) 

t : free transducer concentration (μM) 

cl:TS : clamp-T7p complex concentration (μM) 

kE : T7p liberation kinetic constant (μM s-1) 

t:cl : transducer-clamp complex concentration (μM) 

TS : free T7p concentration (μM) 

 

The kinetic constants of the reactions illustrated in Eq. (8) are unknown as the main 

method of determining strand displacement reaction kinetic constants is by means of 

experimental measures. Nevertheless, Zhang & Winfree (2009), in an attempt to model 

the kinetic constants of these reactions, presented a simple flowchart which by taking 

into account toehold length (n) and reaction mechanism (toehold mediated strand 

displacement or toehold exchange) indicates an approximation of the kinetic constants 

for each individual reaction. For both reactions presented previously, the mechanism 

considered is toehold mediated strand displacement (having a value of m = 0 regarding 
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Zhang & Winfree’s flowchart) and both toeholds employed have a length of 6 nucleotides 

(n = 6) (Table 2). This data concludes that the values of 𝑘𝑠 and 𝑘𝐸 is 0.5 μ𝑀−1𝑠−1. 

As this system consists in two reactions, where the second one is limited by the species 

produced on the first one, in order to describe the rate of T7p liberation, the rate of 

transducer liberation has to be taken into account as well. For that purpose, the following 

differential equations were inferred from the reactions: 

{
   
𝑑𝑡

𝑑𝜏
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡   

   
𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

         Eq. (9) 

 

Where: 

𝑑𝑡

𝑑τ
 : rate of transducer liberation (μM s-1) 

𝑑𝑇𝑆

𝑑𝜏
 : rate of T7p liberation (μM s-1) 

τ : time (s) 

 

Furthermore, a mass balance of species has to be taken into account: 

{

   𝑚𝑇𝑜𝑡𝑎𝑙 = 𝑚 +𝑚: 𝑠    
   𝑡𝑇𝑜𝑡𝑎𝑙 = 𝑡 + 𝑠: 𝑡        
   𝑇𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑐𝑙: 𝑇𝑆 + 𝑇𝑆

         Eq. (10) 

Where: 

iTotal : the total amount of species “i”, either free or not (μM) 

 

The inclusion of Eq. (10) into Eq. (9) yields: 

{
   
𝑑𝑡

𝑑τ
= 𝑘𝑠 · (𝑚𝑇𝑜𝑡𝑎𝑙 −𝑚: 𝑠) · (𝑡𝑇𝑜𝑡𝑎𝑙 − 𝑡)

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · (𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆)                 

         Eq. (11) 

In addition, the next considerations can be done: as species m:s and species t are 

generated in the same reaction, at the same rate and amount, they can be considered 

equal; prior to further tweaking, this first model will consider that all total amounts of 

species are equal (which means that there is the same concentration of each circuit 

component and miRNA, being this value 1 μM). This yields the following expression: 

{

𝑑𝑡

𝑑τ
= 𝑘𝑠 · (𝑐 − 𝑡)

2      

  
𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · 𝑡 · (𝑐 − 𝑇𝑆)

         Eq. (12) 

Where: 

c : the total concentration of each species (1 μM) 
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At this point, Eq. (12) can easily undergo analytical integration: 

∫
𝑑𝑡

(𝑐 − 𝑡)2

𝑡(𝜏)

0

= ∫ 𝑘𝑠𝑑𝜏
𝜏

0

; 

𝑡 =
𝑘𝑠 · 𝑐

2 · τ

1 + 𝑘𝑠 · 𝑐 · τ
         Eq. (13) 

Going back to Eq. (11), the value for t can be substituted, yielding: 

𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · (

𝑘𝑠 · 𝑐
2 · 𝜏

1 + 𝑘𝑠 · 𝑐 · 𝜏
) · (𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆)         Eq. (14) 

Eq. (14) can be subjected to analytical integration: 

∫
𝑑𝑇𝑆

(𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆)

𝑇𝑆(𝜏)

0

= 𝑘𝐸∫ (
𝑘𝑠 · 𝑐

2 · 𝜏

1 + 𝑘𝑠 · 𝑐 · 𝜏
) 𝑑𝜏

𝜏

0

; 

𝑇𝑆 = 𝑐 · (1 −
(1 + 𝑘𝑠 · 𝑐 · τ)

𝑘𝐸/𝑘𝑠

𝑒𝑘𝐸·𝑐·τ
)          Eq. (15) 

Taking into account that in this particular case 𝑘𝑠 = 𝑘𝐸, Eq. (15) can be further simplified: 

𝑇𝑆 = 𝑐 · (1 −
1 + 𝑘𝑠 · 𝑐 · τ

𝑒𝑘𝐸·𝑐·τ
)          Eq. (16) 

It is important to note that Eq. (16) overestimates the catalytic capacity of the circuit as 

it assumes ideal conditions, kinetic constants and concentrations.  

In addition, it should be noted again that for the sake of simplicity, the kinetic model 

assumed that all species (including the input miRNA) are at the same concentration, 

which is the ideal situation. But as this case is very rare, since miRNA concentrations in 

biological samples are very small, a redesign of the circuit is necessary to ensure 

amplification of a signal originating from a tiny amount of input, which in turn adds 

complexity to its corresponding kinetic model. 

3.7 Signal Amplification Circuit Components 

Similar to the simple circuit in Figure 4, the initial state consists in an equilibrium in which 

a single stranded molecule named fuel co-exists along the stable and pre-formed 

complexes sensor-transducer and clamp-T7p. 

The addition of miRNA triggers the circuit in exactly the same manner as the simple 

circuit (Figure 4), but with the exception that fuel will displace miRNA from the miRNA-

sensor complexes, forming fuel-sensor complexes. 

The purpose of this additional reaction is to liberate miRNA that might further react with 

sensor-transducer complexes, generating therefore a cyclic signal amplification, as 

illustrated in Figure 6. 
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Figure 6: Signal amplification circuit components and interactions 

3.8 Signal Amplification Circuit Initial Sequence Design 

The approach is inherited from the simple circuit design, but with a particularity: the 

master sequence includes now a spacer of 5 nucleotides between the joining point of 

the target miRNA sequence and T7p. The majority of the components become elongated 

due to these 5 additional nucleotides, except clamp, whose elongation is avoided on 

purpose to avoid its toehold elongation. 

These 5 additional nucleotides will be part of the toehold that will promote fuel-sensor 

formation and miRNA displacement and are randomly generated each time the algorithm 

is executed. An example is shown below: 

Table 3: Signal amplification circuit components initial sequence generation example 

Master:  TGGAGTGTGACAATGGTGTTTGNNNNNGCGCTAATACGACTCACTATAGG 

miRNA (5’-3’): TGGAGTGTGACAATGGTGTTTG 

sensor (3’-5’): ACCTCACACTGTTACCACAAACNNNNNCGC 

transducer (5’-3’):     GTGACAATGGTGTTTGNNNNNGCGCTAATACGACTCACTATAGG 

clamp (3’-5’):             CNNNNNCGCGATTATGCTGAGTGATATCC 

T7p (5’-3’):              GCGCTAATACGACTCACTATAGG 

fuel (5’–3’):           GTGACAATGGTGTTTGNNNNNGCG 

 

The implementation in code is shown in Box 5: 

#Random sequence builder   

def randseq(length):   

    out = ''   

    for n in range(length):   

        out += random.sample(NUCS, 1)[0]   

    return out   

   

#Define circuit core sequences generator   

def genseq(miRNA, prom):   

    n = len(miRNA)   

    rootseq = (miRNA.upper()   

        + randseq(5)   

        + prom)   

    sensor = revcomp(   

        rootseq[: n+8])   

    transducer = rootseq[6:]   

This box continues on the next page 
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    clamp = revcomp(   

        rootseq[n - 1 :])   

    fuel = rootseq[6: n + 8]   

    return (sensor,   

        transducer,   

        clamp,   

        fuel) 

Box 5: Python functions for signal amplification circuit initial sequence generation 

3.9 Adaptation of the Objective Function 

The addition of a new species, and therefore a new reaction, to the simple circuit (Figure 

4) forces a modification of the objective function (Eq. (6)) employed for the circuit’s 

scoring. It is necessary the addition of a term that takes into consideration the probability 

of fuel-sensor complex formation. There is, however, a risk in favoring the formation of 

fuel-sensor complex as it may cause an erroneous behavior of the circuit since fuel may 

act as input, which is undesired. Nevertheless, this event doesn’t have the tendency to 

occur as, although fuel-sensor may have a lower MFE than sensor-transducer, the 

complex sensor-transducer is pre-formed and lacks the toehold that initiates the 

formation of fuel-sensor (which was taken into account during the sequence design). 

Therefore, fuel will only interact with miRNA-sensor complex and form sensor-transducer 

because it has the toehold that allows its interaction with miRNA-sensor and the complex 

fuel-sensor has a lower MFE than miRNA-sensor, causing this reaction to occur 

spontaneously. 

In a similar fashion as presented for the other components of the circuit, the probability 

of fuel-sensor complex formation is the following: 

𝑃5 =
𝑒−βΔ𝐺𝑓𝑢𝑒𝑙−𝑠𝑒𝑛𝑠𝑜𝑟

𝑒−βΔ𝐺𝑓𝑢𝑒𝑙−𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒−βΔ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟
         Eq. (17) 

 

The modified Objective Function that considers the Eq. (17) is illustrated in Eq. (18): 

𝐹𝑠𝑐𝑜𝑟𝑒 = 𝑃1𝑃2𝑃3𝑃4𝑃5 (
6 − 𝑇

𝑇
)          Eq. (18) 

Eq. 18 will be employed during the optimization, just as previously mentioned in the 

simple circuit. The corresponding code is a simple tweak from the code presented in Box 

6, as it can be seen below: 

#Define circuit sequence names   

GUIDE = ['miRNA', 'sensor', 'transducer', 'clamp', 'T7p', 'fuel']   

#Define Boltzmann function   

def bolfunc(seq1, seq2, seq_DG):   

    Pairkey = (seq1   

        + '_'   

        + seq2)   

   

    Numerator = NUM_e**(- BETA*seq_DG[Pairkey])   

    Denominator = Numerator   

   

    if seq1 == GUIDE[0]:   

        SecondKey = 'sensor_transducer'   

This box continues on the next page 
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    elif seq1 == 'transducer':   

        SecondKey = 'clamp_T7p'   

   

    elif seq1 == 'fuel':   

        SecondKey = GUIDE[0] + '_sensor'   

   

    Denominator += NUM_e**(- BETA*seq_DG[SecondKey])   

    func = Numerator/Denominator   

   

    return func   

   

#Define Packing and Scoring function.   

def scorefunc(seqs):   

    seq_DG = {}   

    seq_ss = {}   

    i = -1   

    #Saves in a dictionary the MFE and structure of circuit pairs   

    for seq1 in GUIDE[:-2]:   

        i += 1   

        seq2 = GUIDE[i + 1]   

        name = (seq1   

            + '_'   

            + seq2)   

        (ss, mfe) = RNA.cofold(   

            (seqs[seq1]   

            + '&'   

            + seqs[seq2]))   

        seq_DG[name] = mfe   

        seq_ss[name] = (ss[: len(seqs[seq1])]   

            + '&'   

            + ss[(len(seqs[seq1])) :-1])   

   

    (ss, mfe) = RNA.cofold(   

        (seqs['fuel']   

        + '&'   

        + seqs['sensor']))   

    seq_DG['fuel_sensor'] = mfe   

    seq_ss['fuel_sensor'] = (ss[: len(seqs['fuel'])]   

        + '&'   

        + ss[(len(seqs['fuel'])) :-1])   

    #Calculates pair probabilities and Score   

   

    P1 = bolfunc(GUIDE[0], 'sensor', seq_DG)  

    P2 = bolfunc('transducer', 'clamp', seq_DG)   

    P3 = probfunc('sensor', 'transducer', seq_DG, seqs)   

    P4 = probfunc('clamp', 'T7p', seq_DG, seqs)   

    P5 = bolfunc('fuel', 'sensor', seq_DG) 

    T = toeholdscore('sensor_transducer', seq_ss)  

 

    score = P1*P2*P3*P4*P5*(6-T)/6   

    dats = [P1,P2,P3,P4,P5,T,score] 

    return dats 

Box 6: Modified Python functions for Score Function calculus 
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The addition of a new species that can be subjected to mutation forces a modification in 

the mutation function code presented in Box 7: 

#Define mutation function   

def mutf(seqs):   

    seqs_aftermutation = {}   

   

    #Creates a new dictionary with sequences   

    for element in seqs:   

        seqs_aftermutation[element] = seqs[element]   

   

    #Creates a new guidelist excluding miRNA and T7p   

    mutlist = GUIDE[1:-2] + [GUIDE[-1]]   

   

    #Chooses a random base from a random sequence from ensemble   

    target_name = random.sample(mutlist, 1)[0]   

    target_seq = list(seqs[target_name])   

    position = random.randint(0, (len(target_seq) - 1))   

    base = random.sample(NUCS, 1)[0]   

   

    while base == target_seq[position]:   

        base = random.sample(NUCS, 1)[0]   

   

    #Writes the mutated sequence   

    target_seq[position] = base   

    target_seq = ''.join(target_seq)   

    seqs_aftermutation[target_name] = target_seq   

   

    return seqs_aftermutation   

Box 7: Modified Python mutation function 

3.10 Signal Amplification Circuit Kinetic Model Design 

In this case, the system to be modeled has a higher complexity as it takes into account 

an additional reaction. Furthermore, approximations regarding total concentrations of the 

components cannot be performed as this circuit’s purpose is to amplify a very low miRNA 

input signal, thus it is interesting to elaborate a model that works with varying total miRNA 

concentrations: 

{ 

𝑚 +  𝑠: 𝑡 
𝑘𝑠
→𝑚: 𝑠 + 𝑡      

 𝑡 +  𝑐𝑙: 𝑇𝑆 
𝑘𝐸
→ 𝑡: 𝑐𝑙 + 𝑇𝑆

 𝑓 +  𝑚: 𝑠 
𝑘𝐹
→ 𝑓: 𝑠 + 𝑚     

         Eq. (19) 

Where: 

f : free fuel concentration (μM) 

f:s : fuel-sensor complex concentration (μM) 

kF : miRNA liberation kinetic constant (μM s-1) 

 

The kinetic constants of the reactions inherited from the simple model remain the same 

as estimated previously by means of the flowchart provided by Zhang & Winfree (2009). 

To estimate the value of 𝑘𝐹, the same approach was employed. In this case, the toehold 
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length is of 8 nucleotides (n = 8) (Table 3) while the mechanism remains the same (m = 

0), yielding a value of approximately  3 μ𝑀−1𝑠−1. In order to describe the evolution of all 

the system’s components with time, the following expressions were inferred: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑑𝑚

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡 + 𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑠: 𝑡

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡                          

𝑑𝑡

𝑑τ
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡 − 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆   

  
𝑑𝑚: 𝑠

𝑑τ
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡 − 𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑐𝑙: 𝑇𝑆

𝑑τ
= −𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆                 

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆                         

𝑑𝑡: 𝑐𝑙

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑓

𝑑τ
= −𝑘𝐹 · 𝑓 · 𝑚: 𝑠 

𝑑𝑓

𝑑τ
= 𝑘𝐹 · 𝑓 · 𝑚: 𝑠     

                         

         Eq. (20) 

For a better understanding of the model, Eq. 20 can be simplified, yielding: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑑𝑚

𝑑τ
=
𝑑𝑠: 𝑡

𝑑τ
− 
𝑑𝑓

𝑑τ
                               

𝑑𝑠: 𝑡

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡                          

𝑑𝑡

𝑑τ
= −(

𝑑𝑠: 𝑡

𝑑τ
+
𝑑𝑇𝑆

𝑑τ
)                      

  
𝑑𝑚: 𝑠

𝑑τ
= −

𝑑𝑚

𝑑τ
                                      

𝑑𝑐𝑙: 𝑇𝑆

𝑑τ
= −

𝑑𝑇𝑆

𝑑τ
                                   

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆                         

𝑑𝑡: 𝑐𝑙

𝑑τ
=
𝑑𝑇𝑆

𝑑τ
                

𝑑𝑓

𝑑τ
= −𝑘𝐹 · 𝑓 · 𝑚: 𝑠 

𝑑𝑓: 𝑠

𝑑τ
= − 

𝑑𝑓

𝑑τ
              

                         

         Eq. (21) 

In order to ease the modelling procedure, the previous system of differential equations 

was integrated numerically by means of the tool “odeint” provided by SciPy python library 

(SCIPY, 2019). In addition, parameters such as miRNA and fuel total concentration were 

modified with the aim of characterizing the system’s behavior and finding the most 

suitable fuel concentration for the circuit to operate efficiently, plus discovering the 

miRNA concentration threshold for which the circuit would act as a viable alternative for 

miRNA detection. 
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3.11 Leakage Prevention Strategy 

As mentioned previously in this work, one of the main disadvantages of synthetic DNA 

circuits is a spontaneous activation of the circuit in absence of input signal. This 

phenomenon is known as leakage and it is caused by spontaneous fluctuations in 

hybridization between strands due to temperature. Recently, two strategies that attempt 

to cope with signal leak have become popular among synthetic biologists. The first 

strategy, proposed by Wang et al. (2018) is to incorporate in the circuit’s design a series 

of components that, similarly to the strategies employed in electrical engineering, act as 

redundant blocks which in order to leak signal require a sequence of energetically 

unfavorable events to happen, thus reducing leak occurrence. The second strategy, 

proposed by Song et al. (2018), consists in the elaboration of a parallel circuit, with similar 

characteristics as the main circuit, that works “in the shadow” of the main circuit, which 

would leak signal at a similar rate than the main circuit. Both leaks are sequestered by 

an AND gate, therefore the presence of signal in the absence of the shadow circuit’s leak 

won’t get silenced. Although the shadow circuit’s leak would be constantly causing signal 

loss (at a rate proportional to the shadow circuit’s leak), signal produced by presence of 

input should occur at such a higher rate that the effect of the shadow circuit would be 

negligible. 

The latter strategy is considered most suitable for its application on this work’s circuit, as 

it does not require a complete re-design of the circuit’s components (Figure 6). It was 

considered that the main source of signal leak in the circuit was a spontaneous 

dissociation of sensor-transducer, generating a free transducer that would displace T7p 

from clamp-T7p complex, generating signal. An example of a proposed leaked signal 

silencing is showed below: 

 

Figure 7: Leaked signal silencing by shadow circuit 

As seen in Figure 7, the shadow circuit would consist on species S2, T2, AND & 

AND_clamp. The initial sequence design for the shadow circuit depends on the 

sequence of the transducer, as it is essential for the design of AND & AND_clamp 

species. S2 and T2 sequences are obtained from the sequences employed by Song et 

al. (2018) in their own work and adapted for each circuit as complexes S2-T2 and sensor-

transducer should leak signal in a similar manner. 

To accomplish that purpose, it is quite a good approximation to assume that their MFEs 

should be equal (if not, similar) as signal leak depends on spontaneous strand 

dissociation due to energy fluxes, which may cause the strands to overcome the energy 

barrier that impedes them to break the complex. 

Therefore, S2 and T2 are subjected to a round of guided evolution prior to the shadow 

circuit’s sequence design in which their MFE is compared with the corresponding sensor-

transducer MFE. If said MFE is lower than the corresponding sensor-transducer MFE, a 

mutation substituting a random C-G (or G-C) pair for a A-T (or T-A) pair is performed in 
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the S2-T2 interaction site, which reduces the complex’ MFE. If the MFE would be lower, 

the contrary action is performed. 

This simple approach is effective as the complex’ MFE is solely dependent on salt 

concentration in the media and base composition. In the case where sensor-transducer 

complex’ MFE was lower than -31kcal/mol, the S2-T2 binding sites would be enlarged 

systematically (adding bases in a random manner), to enlarge the number of base pairs 

that contribute towards the complex’ MFE. Once S2-T2 and sensor-transducer MFEs are 

equal, it is safe to proceed towards the circuit’s sequence generation. 

Similar as performed for the main circuit, the generation AND & AND_clamp species is 

done by means of a master sequence, which in turn is elaborated through the 

concatenation of the last 20 nucleotides of T2 sequence and the first 19 nucleotides of 

the transducer sequence. An example of sequence design is shown in Table 4: 

Master:                 CATCTCAAACACTCTATTCAGTGACAATGGTGTTTGGCG 
Transducer(5’-3’):                          GTGACAATGGTGTTTGGCGCTAAT… 
AND(3'-5'):             GTAGAGTTTGTGAGATAAGTCACTGTTACCACAAACCGC 
AND_clamp(5’-3’):              AACACTCTATTCAGTGACAATGGTGT 
T2(5’-3’): CACTCATCCTTTACATCTCAAACACTCTATTCA 

Table 4: Shadow circuit sequence design example 

The sequence design is implemented in code as shown in Box 8: 

#Define shadow circuit constant components   

shdw = {'S2': 'TGAGATGTAAAGGATGAGTGAGATG',   

    'T2': 'CACTCATCCTTTACATCTCAAACACTCTATTCA'}   

   

#Define shadow circuit generation function   

def shadowcirc(transducer):   

    outdict = {}   

   

    for el in shdw:   

        outdict[el] = shdw[el]   

   

    MFE = RNA.cofold(   

        seqs_preit['sensor']   

        + '&'   

        + seqs_preit['transducer'])[1]   

   

    mfe = RNA.cofold(   

        outdict['S2']   

        + '&'   

        + outdict['T2'])[1]   

   

    b_area = outdict['S2'][:-5]   

   

    if MFE < -31:   

        times = int((MFE + 31)/3) + 4   

   

        for n in range(times):   

            b_area += random.sample(NUCS, 1)[0]   

   

    while abs(MFE - mfe) > 0:   

   

        target_index = random.randint(0, (len(b_area) - 1))   

This box continues on the next page 
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        b_area = list(b_area)   

        base = random.sample(NUCS, 1)[0]   

   

        while base == b_area[target_index]:   

            base = random.sample(NUCS, 1)[0]   

   

        b_area[target_index] = base   

        b_area = ''.join(b_area)   

   

        outdict['S2'] = (b_area   

            + outdict['S2'][-5:])   

   

        outdict['T2'] = (revcomp(b_area)   

            + outdict['S2'][-13:])   

   

        mfe = RNA.cofold(   

            outdict['S2']   

            + '&'   

            + outdict['T2'])[1]   

   

        for el in NUCS:   

            if (4*el) in b_area:   

                mfe = 1e3   

   

    master = (outdict['T2'][-20:]   

        + transducer[:19])   

   

    AND_clamp = master[7:-6]   

    AND = revcomp(master)   

   

    outdict['AND_clamp'] = AND_clamp   

    outdict['AND'] = AND   

   

    keyss = []   

    for el in outdict.keys():   

        keyss += [el]   

    keyss.sort()   

   

    return outdict, keyss   

Box 8: Python functions for shadow circuit sequence design 

4 Results and Discussion 

4.1 Score Function convergence 

As mentioned in Materials and methods, the mutations and selection to which the circuit 

is subjected have the objective of maximizing the Score by, in turn, maximizing each of 

the terms that compose the Score. The term 𝑃4, however, does never reach a value 

close to 1, mainly because of 2 reasons: the complementarity between clamp and T7p 

is at its maximum from the beginning, thus every mutation that would affect clamp is from 

the beginning detrimental and the main function of the term 𝑃4 in the Score Function is 

to avoid the algorithm from increasing the 𝑃2 term by lowering the Boltzmann function of 

clamp-T7p, which increases the Score Function. Although the term 𝑃3 behaves in a 

similar manner as the term 𝑃4 (as it has a similar function), it reaches a maximum value 
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of 1 because the Boltzmann function for sensor-transducer is easily higher than the 

artificial Boltzmann function which it compares to, allowing in this case the occurrence of 

mutations in sensor and transducer as long as their complex’ Boltzmann function 

overcomes the artificial threshold. 

In order to obtain a Score from which the quality of the circuit can be interpreted, and 

considering that in every experimental run of the algorithm the value of 𝑃4 does not 

change from iteration 0 to iteration 100000, a standardized score can be calculated by 

dividing the value of the score by the value of 𝑃4 and multiplying by 100. Note that this 

standardized score is not employed during the selection step as it does not conserve the 

contribution of 𝑃4 towards the score. 

To observe how the score value approaches a maximum with the given Metropolis 

parameter 𝛽𝑀
0 ≈ 1100 during the runtime of the algorithm, Figure 8 was elaborated using 

the standardized score. 

 

Figure 8: Score convergence during algorithm run 

As seen above, the algorithm fluctuates until reaching a maximum value approaching 

100, being that value in this case 98.8364. To observe in detail how the score progresses, 

a zoom in is made, resulting in Figure 9: 

 

Figure 9: Score convergence during the first 500 iterations 
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The initial score is 3.2060, which increases steeply during the first iterations due to single 

mutations. This is feasible as there are base pairs that have a higher impact on the MFE 

of complexes as they may heavily affect the structure through forces of repulsion or 

attraction. Additionally, it can be observed that from time to time, the score gets reduced, 

which is result of accepting an unfavorable mutation due to the Metropolis function. 

Nevertheless, several iterations later, a single mutation achieves to increase the score, 

fact that could have not happened without the previous unfavorable mutation. Therefore, 

it is safe to say that the randomicity provided by the Metropolis function during early 

iterations indeed enables the Score to explore a wider space of probabilities, avoiding 

getting stuck at local maximums, while restricting at higher iterations the loss of the 

maximum encountered. 

4.2 Metropolis effect on Score 

Although there is evidence that the Metropolis function and its proposed parameters 

contribute in the randomization of the selection without being detrimental, it is not directly 

known how the modification of its parameters would affect the algorithm. 

The effect of 𝛿 (Eq. (7)) is straightforward to foresee, as it represents a reduction in the 

probability of accepting a detrimental mutation. If this term would be equal to 1, the 

Metropolis Function would act as a constant threshold, therefore the probability of 

accepting a detrimental mutation would be only determined by the random number 

generation and the value of 𝛽𝑀
0 . If the term would be lower than 1, it would increase the 

probability of accepting a detrimental mutation, causing the Score not to converge 

towards a maximum. If the term would be much higher than 1, randomicity would not be 

evenly distributed along the iteration numbers, meaning that there would only be 

randomicity during the first 5 iterations while being absent during the remaining 9995 

iterations (for example). As the effect of 𝛿 is so sensitive to small changes, it is better not 

to rely on it to control the effect of the Metropolis function. 

On the other hand, the effect of 𝛽𝑀
0  (Eq. (7)) is less clear. It defines the initial probability 

of accepting a detrimental mutation, which is reduced with each iteration by means of 

the 𝛿 constant. However, it is unknown how the algorithm behaves under different values 

of  𝛽𝑀
0 . With the purpose of analyzing this effect, the Score convergence was studied in 

a similar manner as done previously in this work, but with different values for 𝛽𝑀
0  while 

maintaining constant the input miRNA, which is the same as the one employed in the 

sequence design step (Table 2 & Table 3). The resulting figure is shown below: 

 

Figure 10: Metropolis beta effect on Score convergence 
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It can be observed that the 𝛽𝑀
0  values below the proposed constant 𝛽𝑀

0  = 1100 have the 

general effect of avoiding Score convergence towards a value approaching 100 but 

sinking the score towards 0. There is, however, the exception of 𝛽𝑀
0 = 220 and 𝛽𝑀

0 = 660, 

as these two 𝛽𝑀
0  values allowed the Score to converge close to 100. The reason behind 

these behaviors is that a lower 𝛽𝑀
0  value increases the probability of accepting a 

detrimental mutation, which may allow that various detrimental mutations in a row 

accumulate, sinking the score significantly. In addition, because of the Metropolis 

function getting more and more stringent as iterations increase, the algorithm will not be 

able to recover from this low score, therefore getting stuck at a minimum, which is usually 

0. The excellent performance of 𝛽𝑀
0 = 220 and 𝛽𝑀

0 = 660 can be explained by means of 

two phenomena: a good initial Score and single mutations whose effect on the complex’ 

MFE is vastly favorable. The initial Score of the circuit depends exclusively on the circuit 

sequence design step, in which there are 5 nucleotides that are generated randomly 

each time the algorithm is executed (Table 3), so by having a better initial Score, the 

stability of the complexes is higher, which means that they may suffer a couple 

detrimental mutations in a row without dramatically sinking the score. On the other hand, 

the effect of single mutations with great effect on MFE depends exclusively on luck, as 

mutations are completely random, and chances are higher that mutations are detrimental 

rather than favorable, that is why there is a need for a 𝛽𝑀
0  that limits the amount of 

detrimental mutations accepted by the algorithm. 

On the other hand, 𝛽𝑀
0  values above the proposed constant 𝛽𝑀

0  = 1100 have the effect 

of trapping the algorithm on local maximums if the right mutations do not occur, as there 

is a reduced randomicity, which means a reduced ability to explore the space of 

probabilities. This effect can be clearly observed with 𝛽𝑀
0  values 1320, 1540, 1980 and 

2200, whose final scores are stuck at 92.62, 79.39, 79.40 and 76.14 respectively. This 

effect is not observed with 𝛽𝑀
0  = 1760, which has a final score of 99.88. This exception 

is probably due to encountering the appropriate mutations that directly sent the score 

towards the maximum, an event which has very low probabilities to occur if the “local 

scanning” of the space of probabilities is reduced with such value of 𝛽𝑀
0 . What was 

expected from 𝛽𝑀
0  = 1760 is to get stuck at a similar score than 𝛽𝑀

0  = 1320 and 𝛽𝑀
0  = 

1540. 

It is very important to remark that the exceptions encountered during this analysis are 

not exclusive to their associated 𝛽𝑀
0  values, which means that in a repetition of the 

experiment, there might be other values 𝛽𝑀
0  which suffer these exceptions as the 

explanations provided can be applied to every 𝛽𝑀
0  value. Nevertheless, the general 

behaviors observed advocate for 𝛽𝑀
0  = 1100 as a value that balances randomicity and 

robusticity in the Metropolis function and allows a good performance of the algorithm, 

although it could be possible to “fine tune” this value for an increased performance or 

even to reduce the number of iterations needed for an acceptable result. Another 

possible modification could be adjusting the 𝛽𝑀
0  value depending on the initial score of 

the circuit, prior entering the evolution phase.  

4.3 Algorithm Results Simulation 

The quality of the generated circuit is assessed by the algorithm by means of the Score. 

However, the degree of reliability of said Score is unknown as it only considers the 

probability of complex formation by the species conforming the circuit and the absence 

of an unwanted free toehold. To check that the circuit the algorithm yields is functional, 

a simulation of the equilibrium states with and without input miRNA was performed 
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through the NUPACK 3.2.2 (Dirks & Pierce, 2003; Dirks & Pierce, 2004; Dirks et al., 

2007) suite. The initial concentrations considered for all species was 1 µM. Furthermore, 

the resulting concentrations in both equilibria were standardized dividing them by 1 µM 

and multiplying by 100, obtaining this way a percentage of species present in the 

equilibrium. Species present in a proportion lower than 0.1% were considered absent. 

Two circuits were passed through the simulation: the first was produced through mutation 

plus selection, yielding a score of 97.55, while the second was produced by random 

mutations without selection by defining 𝛽𝑀
0  =  0, having a score of 2.97·10-14. The results 

are shown in Figures 11 & 12. 

 

Figure 11: Equilibrium states simulation comparison of a good scoring circuit 

 

Figure 12: Equilibrium states simulation comparison of a bad scoring circuit 

As seen in Figure 11, the equilibriums states of the good-scoring circuit are very similar 

to the ideal equilibrium states shown in Figure 5. In both equilibriums, there is a small 

amount of noise, when considering T7p in the equilibrium in absence of input miRNA 

and the complex clamp-T7p in the equilibrium where input miRNA is present. The first 

one represents background noise while the second represents signal that is not liberated.  
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Oppositely, in Figure 12, both equilibriums are displayed simultaneously to highlight that, 

first, there are none of the complexes intended to exist, and second, that there are no 

differences between states (except the absence of input miRNA). At this point it is safe 

to conclude that the Score given by the algorithm is truly related to the quality of the 

circuit generated. 

4.4 Kinetic Model Results 

4.4.1 Simple Circuit Kinetic Model 

Eq. (16) analytically assesses the rate at which T7p is liberated in presence of 1 μM input 

miRNA and serves as the maximum theoretical rate at which T7p is liberated, since 

having an amount of 1 μM input miRNA means having all species of the circuit at the 

same concentration, favoring collisions between them that start the reaction cascade. 

Nevertheless, to check that the analytical integration has been performed correctly, the 

rate at which T7p is liberated have been simultaneously estimated through numerical 

integration (taking 1 μM as initial concentration value for all initial components of the 

circuit) of the system shown in Eq. (9), as seen in Figure 13. 

 

Figure 13: Comparison between T7p analytical and numerical integration 

The integration seems accurate as the average error on the values is 1.14·10-10 M, which 

is equivalent to 1.14·10-4 μM. This difference is probably due to the method employed in 

the numerical integration and Python’s memory capacity to keep track of decimal 

numbers. It can be concluded that the circuit can reach a maximum signal emission 

(maximum T7p liberation) at around 15 seconds since input miRNA addition. 

4.4.2 Signal Amplification Circuit Kinetic Model 

The addition of fuel modifies the model as it interacts with species miRNA-sensor, which 

has a great effect on all other components of the circuit. A numerical integration of Eq. 

(21) with initial values 1 μM for all initial components of the circuit yielded the model 

shown in Figure 14. 
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Figure 14: Kinetic model for all species participating in the circuit 

The addition of fuel to the circuits slows down the reactions from around 15 seconds to 

around 100. The cause may be the interference of fuel as the reaction in which fuel 

displaces miRNA from the miRNA-sensor complex liberates miRNA at much higher rate 

than miRNA binds to sensor, slowing down the overall circuit. Although the effect of fuel 

is intended to accelerate the liberation of T7p rather than slowing it down, in the tested 

conditions (1 μM of input miRNA), it may not be convenient to add this species. 

Nevertheless, fuel may have a positive effect when signal amplification is actually 

needed, such as when input miRNA concentrations are very low. In addition, the effects 

of fuel initial concentration variation are unknown. 

4.4.3 Fuel Concentration Effect on Kinetic Model 

With the aim of discerning the effect on fuel concentration variation, different fuel 

concentrations were employed while keeping constant all the other components 

concentrations (including miRNA). The result is illustrated in Figure 15: 

 

Figure 15: T7p concentration evolution at 1 μM input miRNA under the effect of different fuel concentrations 

Fuel concentrations ranging from 1·10-4 μM to 1 μM yield a similar behavior on T7p 

production. This effect is due to the limiting reagent miRNA-sensor complex in the 
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reaction in which fuel displaces miRNA from said complex. However, when reducing fuel 

concentration below 1 μM, a drop in the rate of T7p production can be observed. 

Nevertheless, the effects observed are not dramatic since the miRNA concentration in 

this experiment was of 1 μM. To observe a more drastic change, miRNA concentration 

should be reduced. Figure 16 below employs a miRNA concentration of 1 pM: 

 

Figure 16: T7p concentration evolution at 1 pM input miRNA under the effect of different fuel concentrations 

Note that due to the slowness of the reaction, the time axis ranges up to 10 million 

seconds, which is around 3 months and 26 days. Figure 16 allows a better visualization 

of the effect of fuel concentration in T7p liberation. There is a sharp drop of reaction 

speed between fuel at 1 μM and fuel at 0.1 μM and it seems to indicate that the fuel 

concentration, when miRNA concentration is very low, marks the horizontal asymptote 

the function is approaching to. To prove this property, the procedure is repeated but with 

fuel concentrations ranging from 1 μM to 0.1 μM, as seen in Figure 17: 

 

Figure 17: T7p concentration evolution at 1 pM miRNA under fuel concentrations ranging from 0 to 1 μM 

In Figure 17, when miRNA concentration is low, fuel concentration determines the 

maximum amount of T7p that the circuit can liberate, as fuel displaces miRNA from 

miRNA-sensor complex, it allows to reuse this miRNA as fresh input. This cycle is 

interrupted when all fuel is consumed. It is safe to conclude that the ideal amount of fuel 
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concentration in the circuit is 1 μM as it allows, although after a long time, the liberation 

of all the T7p in the circuit when triggered by low concentrations of miRNA. If more fuel 

was added, no significant improvement can be observed, while if adding less, the circuit 

underperforms. 

4.4.4 Concentration of Input miRNA Effect on Reaction Time 

In Figures 16 & 17 there were hints that lowering miRNA concentration caused reaction 

time to increase, as it takes more time for a small amount of miRNA to encounter and 

react with sensor-transducer complex. Up until now in this work, for the sake of simplicity 

most of the time it was considered that the input miRNA concentration was 1 μM, the 

same as the other circuit components. The T7p liberation rate with different miRNA 

concentrations was computed in order to observe the effect on reaction time: 

 

Figure 18: T7p concentration evolution under the effect of different input miRNA concentrations 

As expected, Figure 18 shows that an increase in 1 order of magnitude (10 μM) of the 

standard input miRNA concentration barely has any effect on T7p liberation. This effect 

can be explained through the reaction in which miRNA displaces transducer from sensor-

transducer complex, as with excess miRNA but a fixed amount of sensor-transducer, this 

species turn into the limiting reagent that will govern the remaining reactions taking place 

in the circuit. However, when reducing 1 order of magnitude instead (0.1 μM), the circuit’s 

performance suffers a sharp drop, which reduces the rate of transducer displacement 

from complex sensor-transducer by miRNA which, again, will govern the remaining 

reactions of the circuit. This effect becomes more notable when reducing another order 

of magnitude (0.01 μM). If reducing input miRNA concentration even further, in an 

interval of 100 seconds there will be barely any T7p liberated, thus needing more reaction 

time to be able to detect any signal at all. 

To discover the relationship that rules miRNA concentration and reaction time, the time 

until T7p reached a concentration of 0.95 μM was recorded for different values of miRNA 

concentration (in μM). The base 10 logarithms of both data pairs were plotted, and a 

linear regression was performed. Results are shown in Figure 19. 
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Figure 19: Relation between the log base 10 of miRNA concentration and log 10 reaction time until 0.95 μM 
T7p is liberated 

As seen in Figure 19 above, the relationship between base 10 logarithm of reaction time 

and the base 10 logarithm of miRNA concentration is almost linear, yielding an R2 value 

of 0.979. In order to visualize better how this relationship really is, Eq. (22), given by the 

linear regression, is solved for reaction time: 

𝑙𝑜𝑔10(𝜏) = −0.83 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] + 1.38;          Eq. (22) 

𝜏 = 10𝑙𝑜𝑔10([𝑚𝑖𝑅𝑁𝐴]
−0.83) · 101.38; 

τ = 23.99 · [𝑚𝑖𝑅𝑁𝐴]−0.83         Eq. (23) 

To predict the increase in reaction time due to a decrease of the order of magnitude of 

miRNA concentration, Eq. (23) is modified into: 

τ = 23.99 · 10−0.83𝑥         Eq. (24) 

Where: 

x: the order of magnitude of miRNA concentration. 

 

Plotting this function yields Figure 20. 
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Figure 20:  Relation between miRNA concentration order of magnitude (in μM) and reaction time until 0.95 
μM T7p is liberated 

As seen above, the reaction time increases dramatically with the decrease of miRNA 

concentration. In addition, Eq. (22) can establish an approximated detection threshold of 

the circuit by establishing a maximum reaction time. This maximum is set to 1 week 

(6.048·105 s) as current miRNA detection systems do not take longer periods of time to 

give a valid result. 

𝑙𝑜𝑔10(𝜏) = −0.83 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] + 1.38;          Eq. (22) 

1.38 − 𝑙𝑜𝑔10(𝜏)

0.83
= 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] ; 

1.38 − 𝑙𝑜𝑔10(6.048 · 10
5)

0.83
= 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] = −5.30 

The threshold is around 10-5 μM, which is equivalent to 10 pM. Concentrations below this 

value will have a reaction time that is much too large for this system to be compelling as 

a quick miRNA detection system. 

4.5 Shadow Circuit Result Simulation 

In order to analyze the performance of the Shadow Circuit in signal leak silencing, two 

equilibria are simulated by means of the NUPACK 3.2.2 suite. The first equilibrium, that 

represents a state in which the sensor-transducer complex has no signal leak is 

supposed to have in its equilibrium state the following species: sensor-transducer, S2-

TS, AND-AND_clamp. The second equilibrium, that represents a state in which there is 

maximum leak (in this case due to the low concentration of sensor and S2 which yields 

high concentrations of free transducer and T2) is supposed to have the following species 

in its equilibrium: transducer-AND-T2, AND_clamp. The corresponding simulation results 

are shown in Figures 21 & 22. 
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Figure 21: Species present at the "Without leak" equilibrium 

  

Figure 22: Species present at the "Maximum leak" equilibrium 

Figure 21 almost shows the ideal species expected to be in the equilibrium where no 

leak occurs while Figure 22 shows a predominance of species that are only supposed 

to be at the equilibrium without leak (note that due to the low concentration of sensor and 

S2, instead of observing species sensor-transducer and S2-T2, free transducer and T2 

are observed instead). However, there is a 30% abundance of the complex 

transducer_AND_T2, indicating that the shadow circuit does kidnap transducer in 

presence of free T2, assuming that both should come from a leakage with similar kinetics. 

Nevertheless, the low amount of species transducer_AND_T2 in the equilibrium may 

indicate that further work should be done in order to optimize the spontaneity of complex 

formation by means of guided evolution. 

5 Conclusions 

In the wake of the different results obtained in this work regarding score convergence, 

randomicity, kinetics and outputs, it is safe to conclude the algorithm is a functional tool 

that generates viable circuits which could perform in an adequate manner when the input 

miRNA concentration is higher than 10pM. 
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The in silico design of strand displacement DNA circuits for miRNA detection opens the 

expectations of a mass production of kits for miRNA detection which may be employed 

as routine tests in clinic, in underdeveloped countries or even at home, which along with 

the new discovery of miRNA biomarkers for cancers and neurodegenerative diseases 

may suppose a turning point in modern diagnostics for these diseases. 

However, there are still several limitations to be considered regarding the algorithm 

developed in this work: the algorithm has a strong dependence of randomicity (at the 

Metropolis function and the initial sequence generation) which may cause the score to 

be initially low and to accumulate detrimental mutations that cause the score to not to 

converge. This means that a single miRNA may cause the algorithm to produce many 

different good and bad results; output analysis have been performed by the Nupack suite, 

which is only a simulation tool meaning that experimental testing for the generated 

circuits may be necessary to improve the algorithm. Another issue related with Nupack 

is that this tool considers all species to be individual strands when performing the 

analysis while in reality, most species are pre-hybridized as initial complexes, thus 

circuits that may not show good results on the Nupack simulation tool could still work 

properly in reality; the kinetic model is based on theoretical approaches and should be 

fine-tuned by means of experimental measures. 
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7 Annex I: Python code of the developed algorithm. Note that 

“'/home/lugoibel/ViennaRNA/interfaces/Python3'” and 

“'/home/lugoibel/nupack3.2.2/python'” are the absolute paths of the ViennaRNA python 

library and the Nupack wrapper (Salis et al., 2009) (Annex II) employed in this work. 

import sys   

import subprocess   

import random   

import datetime   

import time   

sys.path.append('/home/lugoibel/ViennaRNA/interfaces/Python3')   

sys.path.append('/home/lugoibel/nupack3.2.2/python')   

import RNA   

from NuPACK import NuPACK   

import plotly.plotly as py   

import plotly.offline as offline   

import plotly.graph_objs as go   

   

#########################################   

#                                       #   

#       DEFINITION OF PARAMETERS        #   

#                                       #   

#########################################   

   

#Start time   

start_time = time.time()   

#Vienna parameters:   

    #Mathews parameterfile   

RNA.read_parameter_file(   

    '/home/lugoibel/ViennaRNA/misc/dna_mathews2004.par')   

    #No dangles   

RNA.cvar.dangles = 0   

    #No coversion from DNA into RNA   

RNA.cvar.nc_fact = 1   

#Define nucleotides   

NUCS = ['A','T','G','C']   

#Define circuit sequence names   

GUIDE = [   

    'miRNA',   

    'sensor',   

    'transducer',   

    'clamp',   

    'T7p',   

    'fuel']   

#Boltzmann function parameters   

BETA = 1/0.593   

NUM_e = 2.7182818284590452353   

DGbp = -1.25   

#Metropolis parameters   

Bm0 = 1100        #con 1e3  no converge   

D = 1.00007   

#Define shadow circuit constant components   

shdw = {'S2': 'TGAGATGTAAAGGATGAGTGAGATG',   

    'T2': 'CACTCATCCTTTACATCTCAAACACTCTATTCA'}   

   

Annex I: Python code of the developed algorithm (continues on the next page) 
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#########################################   

#                                       #   

#       DEFINITION OF FUNCTIONS         #   

#                                       #   

#########################################   

   

#Define command line input system   

def cmdinput():   

    global USERINPUT   

    global GUIDE   

    looping = True   

    while looping:   

        if 'U' in USERINPUT:   

            USERINPUT = USERINPUT.replace(   

                'U','T')   

        UNIQ = set(USERINPUT)   

        #Checks if input is a sequence of adequate length   

        if (UNIQ.issubset(NUCS) and   

                len(USERINPUT) >= 20):   

            seqs_preit[GUIDE[0]] = USERINPUT[:25]   

            looping = False   

        #Checks if input is meant to be a test   

        elif USERINPUT == 'TEST':   

            GUIDE = ['Rodrigo_miRNA'] + GUIDE[1:]   

            seqs_preit['Rodrigo_miRNA'] = 'TGGAGTGTGACAATGGTGTTTG'   

            looping = False   

        #Exit system   

        elif USERINPUT == 'EXIT':   

            exit()   

        #Retry input if previous statements are false   

        else:   

            USERINPUT = input(   

                'Enter a VALID input: '   

                ).upper()   

    return None   

   

#Define fasta file input system. Saves data in a dictionary as   

#key = header and value = sequence, only if the sequence is   

#adequate   

def fileinput():   

    dict = {}   

   

    for line in open(USERINPUT):   

        line = line.strip('\n')   

   

        if line[0] == '>':   

            key = line[1:].split()[0]   

            value = ''   

   

        else:   

            value += line   

   

        if (set(value).issubset(NUCS) and   

                len(value) >= 20):   

            dict[key] = value[:25]   

Annex I: Python code of the developed algorithm (continues on the next page) 
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    return dict   

   

#Define reverse complementary generator   

def revcomp(seq):   

    seq = seq.upper(   

        ).replace('A','t'   

        ).replace('T','a'   

        ).replace('G','c'   

        ).replace('C','g'   

        )[::-1].upper()   

    return seq   

   

#Random sequence builder   

def randseq(length):   

    out = ''   

    for n in range(length):   

        out += random.sample(NUCS, 1)[0]   

    return out   

   

#Define circuit core sequences generator   

def genseq(miRNA, prom):   

    n = len(miRNA)   

    rootseq = (miRNA.upper()   

        + randseq(5)#'TATTC'   

        + prom)   

    sensor = revcomp(   

        rootseq[: n+8])   

    transducer = rootseq[6:]   

    clamp = revcomp(   

        rootseq[n - 1 :])   

    fuel = rootseq[6: n + 8]   

    return (sensor,   

        transducer,   

        clamp,   

        fuel)   

   

#Define Boltzmann function   

def bolfunc(seq1, seq2, seq_DG):   

    Pairkey = (seq1   

        + '_'   

        + seq2)   

   

    Numerator = NUM_e**(- BETA*seq_DG[Pairkey])   

    Denominator = Numerator   

   

    if seq1 == GUIDE[0]:   

        SecondKey = 'sensor_transducer'   

   

    elif seq1 == 'transducer':   

        SecondKey = 'clamp_T7p'   

   

    elif seq1 == 'fuel':   

        SecondKey = GUIDE[0] + '_sensor'   

   

    Denominator += NUM_e**(- BETA*seq_DG[SecondKey])   

Annex I: Python code of the developed algorithm (continues on the next page) 



42 
 

    func = Numerator/Denominator   

   

    return func   

   

#Define function for probability calculation employed in   

#secondary pairments   

def probfunc(seq1, seq2, seq_DG, seqs):   

    Pairkey = (seq1   

        + '_'   

        + seq2)   

    Numerator = NUM_e**(- BETA*seq_DG[Pairkey])   

   

    if seq1 == 'sensor':   

        L = 19   

   

    if seq1 == 'clamp':   

        L = len(seqs[GUIDE[4]])   

    Denominator = NUM_e**(- BETA*L*DGbp)   

    func = Numerator/Denominator   

   

    if func > 1:   

        func = 1   

    return func   

   

#Define toehold score function   

def toeholdscore(name, seq_ss):   

    DIST = (len(seqs_preit['transducer'])   

        - len(seqs_preit['T7p'])   

        + 3)   

    struct = seq_ss[name].split(   

        '&'   

        )[1][(DIST-6):DIST]   

    j = 0   

   

    for symbol in struct:   

        if symbol == '.':   

            j += 1   

    return j   

   

#Define Packing and Scoring function.   

def scorefunc(seqs):   

    seq_DG = {}   

    seq_ss = {}   

    i = -1   

    #Saves in a dictionary the MFE and structure of circuit pairs   

    for seq1 in GUIDE[:-2]:   

        i += 1   

        seq2 = GUIDE[i + 1]   

        name = (seq1   

            + '_'   

            + seq2)   

        (ss, mfe) = RNA.cofold(   

            (seqs[seq1]   

            + '&'   

            + seqs[seq2]))   

Annex I: Python code of the developed algorithm (continues on the next page) 
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        seq_DG[name] = mfe   

        seq_ss[name] = (ss[: len(seqs[seq1])]   

            + '&'   

            + ss[(len(seqs[seq1])) :-1])   

   

    (ss, mfe) = RNA.cofold(   

        (seqs['fuel']   

        + '&'   

        + seqs['sensor']))   

    seq_DG['fuel_sensor'] = mfe   

    seq_ss['fuel_sensor'] = (ss[: len(seqs['fuel'])]   

        + '&'   

        + ss[(len(seqs['fuel'])) :-1])   

    #Caulculates pair probabilities and Score   

   

    P1 = bolfunc(   

        GUIDE[0],   

        'sensor',   

        seq_DG)   

    P2 = bolfunc(   

        'transducer',   

        'clamp',   

        seq_DG)   

    P3 = probfunc(   

        'sensor',   

        'transducer',   

        seq_DG,   

        seqs)   

    P4 = probfunc(   

        'clamp',   

        'T7p',   

        seq_DG,   

        seqs)   

    P5 = bolfunc(   

        'fuel',   

        'sensor',   

        seq_DG)   

    T = toeholdscore('sensor_transducer', seq_ss)   

   

    score = P1*P2*P3*P4*P5*(6-T)/6   

    dats = [P1,P2,P3,P4,P5,T,score]   

    return dats   

   

#Define mutation function   

def mutf(seqs):   

    seqs_aftermutation = {}   

   

    #Creates a new dictionary with sequences   

    for element in seqs:   

        seqs_aftermutation[element] = seqs[element]   

   

    #Creates a new guidelist excluding miRNA and T7p   

    mutlist = GUIDE[1:-2] + [GUIDE[-1]]   

   

    #Chooses a random base from a random sequence from ensemble   

Annex I: Python code of the developed algorithm (continues on the next page) 
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    target_name = random.sample(mutlist, 1)[0]   

    target_seq = list(seqs[target_name])   

    position = random.randint(0, (len(target_seq) - 1))   

    base = random.sample(NUCS, 1)[0]   

   

    while base == target_seq[position]:   

        base = random.sample(NUCS, 1)[0]   

   

    #Writes the mutated sequence   

    target_seq[position] = base   

    target_seq = ''.join(target_seq)   

    seqs_aftermutation[target_name] = target_seq   

   

    return seqs_aftermutation   

   

#Define a function that interprets NuPACK output files   

def eqcon(dict, guide):   

    outlist = []   

    outdict = {}   

   

    for el in dict['complexes_concentrations']:   

        stand = round((float(el[-1])/1e-8), 2)   

   

        if stand < 0.1:   

            continue   

   

        cmplx = list(map(int, el[0:-2]))   

   

        name = []   

        i = -1   

        for n in cmplx:   

            i += 1   

   

            if n:   

                name += n*[guide[i]]   

   

        name = '_'.join(name)   

   

        outlist += [name]   

        outdict[name] = [el[-1], stand]   

    return outlist, outdict   

   

#Define test-tube prediction of final equilibriums by means of NuPACK   

def test_tube(seqs, guide):   

    print('Calculating test-tube NuPACK simulation')   

    seq_list = []   

    concent = [1e-6, 1e-6]   

   

    if 'fuel' not in guide:   

        concent += [1e-6, 1e-6]   

   

    for el in guide:   

        seq_list += [seqs[el]]   

   

    eq_1 = NuPACK(   

Annex I: Python code of the developed algorithm (continues on the next page) 
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        Sequence_List=seq_list,   

        material='dna')   

    eq_2 = NuPACK(   

        Sequence_List=seq_list,   

        material='dna')   

   

    eq_1.complexes(   

        dangles='none',   

        MaxStrands=2,   

        quiet=True)   

    eq_2.complexes(   

        dangles='none',   

        MaxStrands=2,   

        quiet=True)   

   

    eq_1.concentrations(   

        concentrations=[1e-6] + concent,   

        quiet=True)   

    eq_2.concentrations(   

        concentrations=[1e-9] + concent,   

        quiet=True)   

   

    (eq_1order, eq_1) = eqcon(eq_1, guide)   

    (eq_2order, eq_2) = eqcon(eq_2, guide)   

    EQUILIBRIUMGUIDES = [eq_1order, eq_2order]   

    return EQUILIBRIUMGUIDES, eq_1, eq_2   

   

#Define bar-chart plot function for NuPACK test-tube prediction   

def eqsbarplot(guides, dict1, dict2):   

    global timessufix   

    dat1 = []   

    dat2 = []   

   

    for list in guides:   

        for el in list:   

   

            if guides[0] == list:   

                dat1 += [dict1[el][-1]]   

   

            else:   

                dat2 += [dict2[el][-1]]   

   

    trace1 = go.Bar(   

        x=guides[0],   

        y=dat1,   

        name='With input')   

    trace2 = go.Bar(   

        x=guides[1],   

        y=dat2,   

        name='Without input')   

   

    data = [trace1, trace2]   

    layout = go.Layout(   

        barmode='group',   

        title='Equilibrium concentrations for species',   

Annex I: Python code of the developed algorithm (continues on the next page) 
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        yaxis=dict(title='% abundance'))   

    fig = go.Figure(   

        data=data,   

        layout=layout)   

    filename = ('Equilibrium_study_'   

        + timesuffix   

        + '.html')   

    offline.plot(   

        fig,   

        filename=filename,   

        auto_open=False)   

   

    return None   

   

#Define metropolis function to induce random sampling   

def Metropolis():   

    global Dats_preit, Score_preit, seqs_preit   

    Bmk = Bm0*(D**k)   

    M = NUM_e**(   

        - Bmk*(   

            Score_preit   

            - Score_posit))   

   

    if random.random() < M:   

#       print('\nMetropolis MUTATED\n')   

        Dats_preit = Dats_posit   

        Score_preit = Score_posit   

        seqs_preit = seqs_posit   

    return None   

   

#Define percentage progress percentage function   

def progress():   

    global perc_0   

    perc_1 = (k/100000)*100   

   

    if int(perc_1/5) > int(perc_0/5):   

        perc_0 = perc_1   

        print(   

            'Status: '   

            + str(int(perc_0))   

            + '% completed')   

    return None   

   

#Define shadow circuit generation function   

def shadowcirc(transducer):   

    outdict = {}   

   

    for el in shdw:   

        outdict[el] = shdw[el]   

   

    MFE = RNA.cofold(   

        seqs_preit['sensor']   

        + '&'   

        + seqs_preit['transducer'])[1]   

   

Annex I: Python code of the developed algorithm (continues on the next page) 
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    mfe = RNA.cofold(   

        outdict['S2']   

        + '&'   

        + outdict['T2'])[1]   

   

    b_area = outdict['S2'][:-5]   

   

    if MFE < -31:   

        times = int((MFE + 31)/3) + 4   

   

        for n in range(times):   

            b_area += random.sample(NUCS, 1)[0]   

    i = 0   

    while abs(MFE - mfe) > 0:   

   

        i += 1   

        target_index = random.randint(0, (len(b_area) - 1))   

   

        b_area = list(b_area)   

        base = random.sample(NUCS, 1)[0]   

   

        while base == b_area[target_index]:   

            base = random.sample(NUCS, 1)[0]   

   

        b_area[target_index] = base   

        b_area = ''.join(b_area)   

   

        outdict['S2'] = (b_area   

            + outdict['S2'][-5:])   

   

        outdict['T2'] = (revcomp(b_area)   

            + outdict['S2'][-13:])   

   

        mfe = RNA.cofold(   

            outdict['S2']   

            + '&'   

            + outdict['T2'])[1]   

   

        if i == 1000:   

            break   

   

        for el in NUCS:   

            if (4*el) in b_area:   

                mfe = 1e3   

   

    master = (outdict['T2'][-20:]   

        + transducer[:19])   

   

    AND_clamp = master[7:-6]   

    AND = revcomp(master)   

   

    outdict['AND_clamp'] = AND_clamp   

    outdict['AND'] = AND   

   

    keyss = []   
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    for el in outdict.keys():   

        keyss += [el]   

    keyss.sort()   

   

    return outdict, keyss   

   

#MAIN   

def main():   

    global k, timesuffix, perc_0, seqs_preit, seqs_posit   

    global Score_preit, Score_posit, Dats_preit, Dats_posit   

   

    #Moment in time:   

    timesuffix = '_'.join(   

        str(datetime.datetime.now()   

        ).split())   

   

    (seqs_preit['sensor'],   

    seqs_preit['transducer'],   

    seqs_preit['clamp'],   

    seqs_preit['fuel']) = genseq(seqs_preit[GUIDE[0]], seqs_preit['T7p'])   

   

    Dats_preit = scorefunc(seqs_preit)   

    Score_preit = Dats_preit[-1]   

   

    (equilibriumguide,   

    eq_1,   

    eq_2) = test_tube(seqs_preit, GUIDE[:-1])   

   

    fuelguide = GUIDE[:2] + [GUIDE[-1]]   

    fuelguide = fuelguide[::-1]   

   

    (equilibriumguide_fuel,   

    w_fuel,   

    wo_fuel) = test_tube(seqs_preit, fuelguide)   

   

    OUTFILE = open(   

        'Output_'   

        + GUIDE[0]   

        + '_'   

        + timesuffix   

        + '.txt',   

        'w')   

    OUTFILE.write('This is the output of your job done on '   

        + timesuffix   

        + '\n')   

   

    for el in GUIDE:   

        OUTFILE.write('>'   

            + el   

            + '\n'   

            + seqs_preit[el]   

            + '\n')   

   

    OUTFILE.write('\nP1 = ' + str(Dats_preit[0]) + '\n')   

    OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')   
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    OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')   

    OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')   

    OUTFILE.write('P5 = ' + str(Dats_preit[4]) + '\n')   

    OUTFILE.write('Toehold = ' + str(Dats_preit[5]) + '\n')   

    OUTFILE.write('Score = ' + str(Score_preit) + '\n')   

    OUTFILE.write('Standarized score = '   

        + str(Score_preit*100/Dats_preit[3])   

        + '\n')   

   

   

    OUTFILE.write('\n------WITH INPUT------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide[0]:   

        OUTFILE.write(el   

            + '\t'   

            + eq_1[el][0]   

            + '\t'   

            + str(eq_1[el][1])   

            + '\n')   

   

    OUTFILE.write('\n------WITHOUT INPUT------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide[1]:   

        OUTFILE.write(el   

            + '\t'   

            + eq_2[el][0]   

            + '\t'   

            + str(eq_2[el][1])   

            + '\n')   

   

    OUTFILE.write('\nFuel transduction assessment\n')   

    OUTFILE.write('\n------WITH FUEL------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide_fuel[0]:   

        OUTFILE.write(el   

            + '\t'   

            + w_fuel[el][0]   

            + '\t'   

            + str(w_fuel[el][1])   

            + '\n')   

   

    OUTFILE.write('\n------WITHOUT FUEL------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   
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    for el in equilibriumguide_fuel[1]:   

        OUTFILE.write(el   

            + '\t'   

            + wo_fuel[el][0]   

            + '\t'   

            + str(wo_fuel[el][1])   

            + '\n')   

    OUTFILE.write('\n')   

   

    #1e5 cycles of mutations and selection following the global score   

   

    k = 0   

    perc_0 = 0   

   

    for n in range(int(1e5)):   

        k += 1   

        seqs_posit = mutf(seqs_preit)   

        Dats_posit = scorefunc(seqs_posit)   

        Score_posit = Dats_posit[-1]   

   

        if Score_posit >= Score_preit:   

            Dats_preit = Dats_posit   

            Score_preit = Score_posit   

            seqs_preit = seqs_posit   

   

        else:   

            Metropolis()   

   

        progress()   

   

    (equilibriumguide,   

    eq_1,   

    eq_2) = test_tube(seqs_preit, GUIDE[:-1])   

    eqsbarplot(equilibriumguide,   

        eq_1,   

        eq_2)   

   

    (equilibriumguide_fuel,   

    w_fuel,   

    wo_fuel) = test_tube(seqs_preit, fuelguide)   

    #OUTFILE = open('Output_'+GUIDE[0]+timesuffix+'.txt', 'w')   

    #OUTFILE.write('This is the output of your job done on '+timesuffix+'\n')   

   

    for el in GUIDE:   

        OUTFILE.write('>'   

            + el   

            + '\n'   

            + seqs_preit[el]   

            + '\n')   

   

    OUTFILE.write('\nP1 = ' + str(Dats_preit[0]) + '\n')   

    OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')   

    OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')   

    OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')   

    OUTFILE.write('P5 = ' + str(Dats_preit[4]) + '\n')   
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    OUTFILE.write('Toehold = ' + str(Dats_preit[5]) + '\n')   

    OUTFILE.write('Score = ' + str(Score_preit) + '\n')   

    OUTFILE.write('Standarized score = '   

        + str(Score_preit*100/Dats_preit[3])   

        + '\n')   

   

    OUTFILE.write('\n------WITH INPUT------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide[0]:   

        OUTFILE.write(el   

            + '\t'   

            + eq_1[el][0]   

            + '\t'   

            + str(eq_1[el][1])   

            + '\n')   

   

    OUTFILE.write('\n------WITHOUT INPUT------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide[1]:   

        OUTFILE.write(el   

            + '\t'   

            + eq_2[el][0]   

            + '\t'   

            + str(eq_2[el][1])   

            + '\n')   

   

    OUTFILE.write('\nFuel transduction assessment\n')   

    OUTFILE.write('\n------WITH FUEL------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide_fuel[0]:   

        OUTFILE.write(el   

            + '\t'   

            + w_fuel[el][0]   

            + '\t'   

            + str(w_fuel[el][1])   

            + '\n')   

   

    OUTFILE.write('\n------WITHOUT FUEL------')   

    OUTFILE.write('\nComplexes')   

    OUTFILE.write('\tConcentration (M)')   

    OUTFILE.write('\tStandarized (%)\n')   

   

    for el in equilibriumguide_fuel[1]:   

        OUTFILE.write(el   

            + '\t'   

            + wo_fuel[el][0]   
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            + '\t'   

            + str(wo_fuel[el][1])   

            + '\n')   

   

   

    (shadow, shadowguide) = shadowcirc(   

        seqs_preit['transducer'])   

   

    OUTFILE.write('\nProposed shadow cancellation circuit\n')   

    for el in shadowguide:   

        OUTFILE.write('>'   

            + el   

            + '\n'   

            + shadow[el]   

            +'\n')   

   

seqs_preit = {}   

   

#T7p sequence   

seqs_preit['T7p'] = 'GCGCTAATACGACTCACTATAGG'   

   

#Define initial input   

try:   

    USERINPUT = sys.argv[1]   

except:   

    USERINPUT = input(   

        'Enter your input: '   

        ).upper()   

   

#Checks if input is a raw sequence or a fasta file   

if USERINPUT.lower().split('.')[-1] == 'fasta':   

    insequences = fileinput()   

   

    for el in insequences:   

        GUIDE[0] = el   

        seqs_preit[el] = insequences[el]   

        main()   

   

        for name in GUIDE[1:-1]:   

            del seqs_preit[name]   

else:   

    cmdinput()   

    main()   

   

#NuPACK files cleanup   

#subprocess.call(   

#    'rm -r /home/lugoibel/nupack3.2.2/python/tmp*',   

#    shell=True)   

   

elapsed_time = str(   

    (time.time() - start_time)/60)   

   

print('Job finished on '   

    + str(datetime.datetime.now()).split('.')[0]   

    + '. Elapsed time was: '   
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    + elapsed_time[:-13]   

    + ' minutes.') 

 

Annex II: Code of the Nupack wrapper employed in this work, courtesy of Salis et 

al. (2009). Note that some modifications to the original wrapper have been performed 

with the aim of a proper performance along with the algorithm. 

#Python wrapper for NUPACK 2.0 by Dirks, Bois, Schaeffer, Winfree, and Pierce (S
IAM Review)   
   
#This file is part of the Ribosome Binding Site Calculator.   
   
#The Ribosome Binding Site Calculator is free software: you can redistribute it 
and/or modify   
#it under the terms of the GNU General Public License as published by   
#the Free Software Foundation, either version 3 of the License, or   
#(at your option) any later version.   
   
#The Ribosome Binding Site Calculator is distributed in the hope that it will be
 useful,   
#but WITHOUT ANY WARRANTY; without even the implied warranty of   
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the   
#GNU General Public License for more details.   
   
#You should have received a copy of the GNU General Public License   
#along with Ribosome Binding Site Calculator.  If not, see <http://www.gnu.org/l
icenses/>.   
   
#This Python wrapper is written by Howard Salis. Copyright 2008-
2009 is owned by the University of California Regents. All rights reserved. :)   
#Use at your own risk.   
   
import os.path   
import os, subprocess, time, random, string   
   
tempdir = "/tmp" + "".join([random.choice(string.digits) for x in range(6)])   
   
current_dir = os.path.dirname(os.path.realpath(__file__)) + tempdir   
if not os.path.exists(current_dir): os.mkdir(current_dir)   
   
nupackbin_dir = "/home/lugoibel/nupack3.2.2/bin/"   
   
debug = 0   
   
#Class that encapsulates all of the functions from NuPACK 2.0   
   
   
class NuPACK(dict):   
    debug_mode = 0   
    RT = 0.61597  # Gas constant times 310 Kelvin (in units of kcal/mol).   
   
    def __init__(self, Sequence_List, material):   
   
        self.ran = 0   
   
        import re   
        import string   
   
        exp = re.compile('[ATGCU?&]', re.IGNORECASE)   
   
        for seq in Sequence_List:   
            if exp.match(seq)  == None:   
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                error_string = "Invalid letters found in inputted sequences." \ 
  
                               " Only ATGCU allowed. \n Sequence is \"" + \   
                               str(seq) + "\"."   
                raise ValueError(error_string)   
   
        if not material == 'rna' and not material == 'dna' \   
                and not material == "rna1999":   
            raise ValueError("The energy model must be specified as "   
                             "either ""dna"", ""rna"", or ""rna1999"" .")   
   
        self["sequences"] = Sequence_List   
        self["material"] = material   
   
        random.seed(time.time())   
        long_id = "".join([random.choice(string.ascii_lowercase + string.digits)
 for x in range(10)])   
        self.prefix = current_dir + "/nu_temp_" + long_id   
   
    def complexes(self, MaxStrands, Temp=37.0, ordered="", pairs="", mfe="",   
                  degenerate="", dangles="some", timeonly="", quiet="",   
                  AdditionalComplexes=[]):   
        """A wrapper for the complexes command, which calculates the  
        equilibrium probability of the formation of a multi-strand RNA or DNA  
        complex with a user-defined maximum number of strands.  
        Additional complexes may also be included by the user."""   
   
        if Temp <= 0: raise ValueError("The specified temperature must be "   
                                       "greater than zero.")   
        if int(MaxStrands) <= 0:   
            raise ValueError("The maximum number of strands must be greater"   
                             " than zero.")   
   
        #Write input files   
        self._write_input_complexes(MaxStrands, AdditionalComplexes)   
   
        #Set arguments   
        material = self["material"]   
        if ordered: ordered = " -ordered "   
        if pairs: pairs = " -pairs "   
        if mfe: mfe = " -mfe "   
        if degenerate: degenerate = " -degenerate "   
        if timeonly: timeonly = " -timeonly "   
        if quiet: quiet = " -quiet "   
        dangles = "-dangles " + dangles + " "   
   
   
        #Call NuPACK C programs   
        cmd = nupackbin_dir + "complexes"   
        args = " -T " + str(Temp) + " -material " + material + " " + ordered \   
               + pairs + mfe + degenerate + dangles + timeonly + \   
               quiet + " "   
   
        file = self.prefix   
        #file = file[-2:]   
        #file = str(file[0]) + "/" + str(file[1])   
        output = subprocess.call(cmd + args + file, shell=True)   
   
        self._read_output_ocx()   
        if mfe:   
            self._read_output_ocx_mfe()   
            self._cleanup("ocx-mfe")   
        #self._cleanup("ocx")   
        #self._cleanup("ocx-key")   
   
        self._cleanup("in")   
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        #print "Complex energies and secondary structures calculated."   
        self.ran = 1   
        self["program"] = "complexes"   
   
    def concentrations(self, concentrations="", quiet="", sort="",   
                       cutoffvalue=0.001):   
        if quiet:   
            quiet = " -quiet"   
        if sort != "":   
            sort = " -sort " + str(sort)   
        cutoffvalue = " -cutoffvalue" + str(cutoffvalue) + " "   
   
        self._write_input_concentrations(concentrations)   
   
        cmd = nupackbin_dir + "concentrations"   
        args = quiet + sort + cutoffvalue   
        output = subprocess.call(cmd + args + self.prefix, shell=True)   
   
        self._read_output_con()   
        self._cleanup("ocx")   
        self._cleanup("ocx-key")   
        self._cleanup("eq")   
        self._cleanup("con")   
   
    def prob(self, multi="-multi "):   
        self.mfe([1, 2])   
        self._write_input_prob()   
   
        cmd =nupackbin_dir + "prob "   
        args = multi + "-material " + self["material"] + " "   
        result = subprocess.run(cmd + args + self.prefix, shell=True,   
                                stdout=subprocess.PIPE)   
        inf = str(result.stdout)   
        inf = inf.split("\\n")   
        prob = float(inf[-2])   
        return prob   
   
   
    def mfe(self, strands, Temp=37.0, multi=" -multi", pseudo="",   
            degenerate="", dangles="some"):   
   
        self["mfe_composition"] = strands   
   
        if Temp <= 0:   
            raise ValueError("The specified temperature must be "   
                             "greater than zero.")   
   
        if multi == 1 and pseudo == 1:   
            raise ValueError("The pseudoknot algorithm does not work with "   
                             "the -multi option.")   
   
        #Write input files   
        self._write_input_mfe(strands)   
   
        #Set arguments   
        material = self["material"]   
        if multi == "":   
            multi = ""   
        if pseudo:   
            pseudo = " -pseudo"   
        if degenerate: degenerate = " -degenerate "   
        dangles = " -dangles " + dangles + " "   
   
        #Call NuPACK C programs   
        cmd = nupackbin_dir + "mfe"   
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        args = " -T " + str(Temp) + multi + pseudo + " -material " + \   
               material + degenerate + dangles + " "   
        output = subprocess.call(cmd + args + self.prefix, shell=True)   
   
        self._read_output_mfe()   
        self._cleanup("mfe")   
        self._cleanup("in")   
        self["program"] = "mfe"   
   
    def subopt(self, strands, energy_gap, Temp=37.0, multi=" -multi",   
               pseudo="", degenerate="", dangles="some"):   
   
        self["subopt_composition"] = strands   
   
        if Temp <= 0: raise ValueError("The specified temperature "   
                                       "must be greater than zero.")   
   
        if multi == 1 and pseudo == 1:   
            raise ValueError("The pseudoknot algorithm does not work "   
                             "with the -multi option.")   
   
        #Write input files   
        self._write_input_subopt(strands, energy_gap)   
   
        #Set arguments   
        material = self["material"]   
        if multi == "": multi = ""   
        if pseudo: pseudo = " -pseudo"   
        if degenerate: degenerate = " -degenerate "   
        dangles = " -dangles " + dangles + " "   
   
        #Call NuPACK C programs   
        cmd = nupackbin_dir + "subopt"   
        args = " -T " + str(Temp) + multi + pseudo + " -material " +\   
               material + degenerate + dangles + " "   
        output = subprocess.call(cmd + args + self.prefix, shell=True)   
   
        self._read_output_subopt()   
        self._cleanup("subopt")   
        self._cleanup("in")   
        self["program"] = "subopt"   
   
        #print "Minimum free energy and suboptimal secondary structures have bee
n calculated."   
   
    def energy(self, strands, base_pairing_x, base_pairing_y, Temp=37.0,   
               multi=" -multi", pseudo="", degenerate="", dangles="some"):   
   
        self["energy_composition"] = strands   
   
        if Temp <= 0:raise ValueError("The specified temperature must be"   
                                      " greater than zero.")   
   
        if multi == 1 and pseudo == 1:   
            raise ValueError("The pseudoknot algorithm does not work "   
                             "with the -multi option.")   
   
        #Write input files   
        self._write_input_energy(strands, base_pairing_x, base_pairing_y)   
   
        #Set arguments   
        material = self["material"]   
        if multi == "": multi = ""   
        if pseudo: pseudo = " -pseudo"   
        if degenerate: degenerate = " -degenerate "   
        dangles = " -dangles " + dangles + " "   
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        #Call NuPACK C programs   
        cmd = nupackbin_dir + "energy"  # Imprime el resultado por pantalla.   
        args = " -T " + str(Temp) + multi + pseudo + " -material " + \   
               material + degenerate + dangles + " "   
   
        output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix   
                                 + ".en", shell=True, stdout=True)   
   
        file = open(str(self.prefix) + ".en")   
        lectura = file.readlines()   
        for line in lectura:   
            line = line.strip("\n")   
            if line[0] != "%":   
                energy = float(line)   
        file.close()   
   
        self["energy_energy"] = []   
        self["program"] = "energy"   
        self["energy_energy"].append(energy)   
        self["energy_basepairing_x"] = [base_pairing_x]   
        self["energy_basepairing_y"] = [base_pairing_y]   
        self._cleanup("in")   
        self._cleanup("en")   
   
        return energy   
   
    def pfunc(self, strands, Temp=37.0, multi=" -multi", pseudo="",   
              degenerate="", dangles="some"):   
   
        self["pfunc_composition"] = strands   
   
        if Temp <= 0: raise ValueError("The specified temperature must be "   
                                       "greater than zero.")   
   
        if multi == 1 and pseudo == 1:   
            raise ValueError("The pseudoknot algorithm does not work "   
                             "with the -multi option.")   
   
        #Write input files   
        #Input for pfunc is the same as mfe   
        self._write_input_mfe(strands)   
   
        #Set arguments   
        material = self["material"]   
        if multi == "": multi = ""   
        if pseudo: pseudo = " -pseudo"   
        if degenerate: degenerate = " -degenerate "   
        dangles = " -dangles " + dangles + " "   
   
        #Call NuPACK C programs   
        cmd = nupackbin_dir + "pfunc"   
        args = " -T " + str(Temp) + multi + pseudo + " -material " + \   
               material + degenerate + dangles + " "   
   
        output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix + 
  
                                 ".func", shell=True, stdout=True)   
   
        file = open(str(self.prefix) + ".func")   
        lectura = file.readlines()   
        inf = []   
        for line in lectura:   
            line = line.strip("\n")   
            if line[0] != "%" and line[0] != "Attempting":   
                inf.append(float(line))   
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        file.close()   
   
        energy = inf[0]   
        partition_function = float(inf[1])   
   
        self["program"] = "pfunc"   
        self["pfunc_energy"] = energy   
        self["pfunc_partition_function"] = partition_function   
        self._cleanup("in")   
        self._cleanup("func")   
   
        return partition_function   
   
    def count(self, strands, Temp=37.0, multi=" -multi", pseudo="",   
              degenerate="", dangles="some"):   
   
        self["count_composition"] = strands   
   
        if multi == 1 and pseudo == 1:   
            raise ValueError("The pseudoknot algorithm does not work "   
                             "with the -multi option.")   
   
        #Write input files   
        #Input for count is the same as mfe   
        self._write_input_mfe(strands)   
   
        #Set arguments   
        material = self["material"]   
        if multi == "": multi = ""   
        if pseudo: pseudo = " -pseudo"   
        if degenerate: degenerate = " -degenerate "   
        dangles = " -dangles " + dangles + " "   
   
        #Call NuPACK C programs   
        cmd = nupackbin_dir + "count"   
        args = " -T " + str(Temp) + multi + pseudo + " -material " + \   
               material + degenerate + dangles + " "   
   
        output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix + 
  
                                 ".count", shell=True)   
   
        file = open(str(self.prefix) + ".count")   
        lecture = file.readlines()   
        for line in lecture:   
            line = line.strip("\n")   
            if line[0] != "%" and line[0] != "Attempting":   
                number = float(line)   
   
   
        self["program"] = "count"   
        self["count_number"] = number   
        self._cleanup("in")   
        self._cleanup("count")   
   
        return number   
   
    def _write_input_prob(self):   
        self._write_input_mfe([1, 2])   
        handle = open(self.prefix + ".in", "a")   
        handle.write(str(self["structure"]))   
        handle.close()   
   
    def _write_input_concentrations(self, concentrations):   
   
        handle = open(self.prefix + ".con", "w")   
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        number = len(self["sequences"])   
        if concentrations == "":   
            conc = "1e-6"   
            handle.write((str(conc) + "\n") * number)   
        else:   
            for i in range(number):   
                handle.write(str(concentrations[i]) + "\n")   
        handle.close()   
   
    def _write_input_energy(self, strands, base_pairing_x, base_pairing_y):   
        """Creates the input file for energy NUPACK functions  
        strands is a list containing the number of each strand in the complex  
        (assumes -multi flag is used) base_pairing_x and base_pairing_y is a  
        list of base pairings of the strands s.t. #x < #y are base paired. """   
   
        NumStrands = len(self["sequences"])   
        input_str = str(NumStrands) + "\n"   
        for seq in self["sequences"]:   
            input_str = input_str + seq + "\n"   
   
        NumEachStrands = ""   
        for num in strands:   
            NumEachStrands = NumEachStrands + str(num) + " "   
   
        input_str = input_str + NumEachStrands + "\n"   
        for pos in range(len(base_pairing_x)):   
            input_str = input_str + str(base_pairing_x[pos]) + "\t" + \   
                        str(base_pairing_y[pos]) + "\n"   
   
        handle = open(self.prefix + ".in", "w")   
        handle.writelines(input_str)   
        handle.close()   
   
    def _write_input_subopt(self, strands, energy_gap):   
        """Creates the input file for mfe and subopt NUPACK functions  
        strands is a list containing the number of each strand in the complex  
        (assumes -multi flag is used). """   
   
        NumStrands = len(self["sequences"])   
        input_str = str(NumStrands) + "\n"   
        for seq in self["sequences"]:   
            input_str = input_str + seq + "\n"   
   
        NumEachStrands = ""   
        for num in strands:   
            NumEachStrands = NumEachStrands + str(num) + " "   
   
        input_str = input_str + NumEachStrands + "\n"   
        input_str = input_str + str(energy_gap) + "\n"   
   
        handle = open(self.prefix + ".in", "w")   
        handle.writelines(input_str)   
        handle.close()   
   
    def _write_input_mfe(self, strands):   
        """ Creates the input file for mfe and subopt NUPACK functions  
        strands is a list containing the number of each strand in the complex  
        (assumes -multi flag is used). """   
   
        NumStrands = len(self["sequences"])   
        input_str = str(NumStrands) + "\n"   
        for seq in self["sequences"]:   
            input_str = input_str + seq + "\n"   
   
        NumEachStrands = ""   
        for num in strands:   
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            NumEachStrands = NumEachStrands + str(num) + " "   
   
        input_str = input_str + NumEachStrands + "\n"   
   
        handle = open(self.prefix + ".in", "w")   
        handle.writelines(input_str)   
        handle.close()   
   
    def _write_input_complexes(self, MaxStrands, AdditionalComplexes=[]):   
   
        #First, create the input string for file.in to send into NUPACK   
        NumStrands = len(self["sequences"])   
        input_str = str(NumStrands) + "\n"   
        for seq in self["sequences"]:   
            input_str = input_str + seq + "\n"   
        input_str = input_str + str(MaxStrands) + "\n"   
   
        handle = open(self.prefix + ".in", "w")   
        handle.writelines(input_str)   
        handle.close()   
   
        if len(AdditionalComplexes) > 0:   
            # The user may also specify additional complexes composed of more   
            # than MaxStrands strands. Create the input string detailing this.   
            counter=0   
            counts = [[]]   
            added = []   
            for (complexes, i) in zip(AdditionalComplexes,   
                                     range(len(AdditionalComplexes))):   
   
                if len(complexes) <= MaxStrands: #Remove complexes if they have 
less than MaxStrands strands.   
                    AdditionalComplexes.pop(i)   
                else:   
                    counts.append([])   
                    added.append(0)   
                    for j in range(NumStrands): #Count the number of each unique
 strand in each complex and save it to counts   
                        counts[counter].append(complexes.count(j+1))   
                    counter += 1   
   
            list_str = ""   
            for i in range(len(counts)-1):   
                if added[i] == 0:   
                    list_str = list_str + "C " + " ".join([str(count) for count 
in counts[i]]) + "\n"   
                    list_str = list_str + " ".join([str(strand) for strand in Ad
ditionalComplexes[i]]) + "\n"   
                    added[i] = 1   
                    for j in range(i+1, len(counts)-1):   
                        if counts[i] == counts[j] and added[j] == 0:   
                            list_str = list_str + " ".join([str(strand) for stra
nd in AdditionalComplexes[j]]) + "\n"   
                            added[j] = 1   
   
            handle = open(self.prefix + ".list", "w")   
            handle.writelines(list_str)   
            handle.close()   
   
    def _read_output_cx(self):   
        #Read the prefix.cx output text file generated by NuPACK and write its d
ata to instanced attributes   
        #Output: energies of unordered complexes in key "unordered_energies"   
        #Output: strand composition of unordered complexes in key "unordered_com
plexes"   
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        handle = open(self.prefix+".cx", "rU")   
   
        line = handle.readline()   
   
        #Read some useful data from the comments of the text file   
        while line[0] == "%":   
   
            words=line.split()   
   
            if len(words) > 7 and words[1] == "Number" and words[2] == "of" \   
                    and words[3] == "complexes" and words[4] == "from" \   
                    and words[5] == "enumeration:":   
                self["numcomplexes"] = int(words[6])   
   
            elif len(words) > 8 and words[1] == "Total" \   
                    and words[2] == "number" and words[3] == "of" \   
                    and words[4] =="permutations" and words[5] == "to" \   
                    and words[6] == "calculate:":   
                self["num_permutations"] = int(words[7])   
   
            line = handle.readline()   
   
        self["unordered_energies"] = []   
        self["unordered_complexes"] = []   
        self["unordered_composition"] = []   
   
        while line:   
            words = line.split()   
   
            if not words[0] == "%":   
   
                complex = words[0]   
                strand_compos = [int(f) for f in words[1:len(words)-1]]   
                energy = float(words[len(words)-1])   
   
                self["unordered_complexes"].append(complex)   
                self["unordered_energies"].append(energy)   
                self["unordered_composition"].append(strand_compos)   
   
            line = handle.readline()   
        handle.close()   
   
    def _read_output_ocx(self):   
   
    #Read the prefix.ocx output text file generated by NuPACK and write its data
 to instanced attributes   
    #Output: energies of ordered complexes in key "ordered_energies"   
    #Output: number of permutations and strand composition of ordered complexes 
in key "ordered_complexes"   
   
        handle = open(self.prefix+".ocx", "rU")   
   
        line = handle.readline()   
   
        #Read some useful data from the comments of the text file   
        while line[0] == "%":   
   
            words = line.split()   
   
            if len(words) > 7 and words[1] == "Number" and words[2] == "of" \   
                    and words[3] == "complexes" and words[4] == "from" \   
                    and words[5] == "enumeration:":   
                self["numcomplexes"] = int(words[6])   
   
            elif len(words) > 8 and words[1] == "Total" \   
                    and words[2] == "number" and words[3] == "of" \   
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                    and words[4] =="permutations" and words[5] == "to" \   
                    and words[6] == "calculate:":   
                self["num_permutations"] = int(words[7])   
   
            line = handle.readline()   
   
        self["ordered_complexes"] = []   
        self["ordered_energies"] = []   
        self["ordered_permutations"] = []   
        self["ordered_composition"] = []   
   
        while line:   
            words = line.split()   
            if not words[0] == "%":   
                complex = words[0]   
                permutations = words[1]   
                strand_compos = [int(f) for f in words[2:len(words)-1]]   
                energy = float(words[len(words)-1])   
   
                self["ordered_complexes"].append(complex)   
                self["ordered_permutations"].append(permutations)   
                self["ordered_energies"].append(energy)   
                self["ordered_composition"].append(strand_compos)   
   
            line = handle.readline()   
        handle.close()   
   
    def _read_output_ocx_mfe(self):   
    #Read the prefix.ocx output text file generated by NuPACK and write its data
 to instanced attributes   
    #Output: energy of mfe of each complex in key "ordered_energy"   
   
   
        #Make sure that the ocx file has already been read.   
        if not (self.has_key("ordered_complexes")   
                and self.has_key("ordered_permutations")   
                and self.has_key("ordered_energies")   
                and self.has_key("ordered_composition")):   
            self._read_output_ocx(self.prefix)   
   
        handle = open(self.prefix+".ocx-mfe", "rU")   
   
        #Skip the comments of the text file.   
   
        line = handle.readline()   
        while line[0] == "%":   
            line = handle.readline()   
   
        self["ordered_basepairing_x"] = []   
        self["ordered_basepairing_y"] = []   
        self["ordered_energy"] = []   
        self["ordered_totalnt"]=[]   
   
        while line:   
            words = line.split()   
   
            if not line == "\n" and not words[0] == "%" and not words[0] == "": 
  
   
                #Read the line containing the number of total nucleotides in the
 complex   
                totalnt = words[0]   
   
                self["ordered_totalnt"].append(totalnt)   
   
                #Read the line containing the mfe   
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                words = handle.readline().split()   
                mfe = float(words[0])   
   
                self["ordered_energy"].append(mfe)   
   
                #Skip the line containing the dot/parens description of the seco
ndary structure   
                line = handle.readline()   
   
                #Read in the lines containing the base pairing description of th
e secondary structure   
                #Continue reading until a % comment   
                bp_x = []   
                bp_y = []   
   
                line = handle.readline()   
                words = line.split()   
                while not line == "\n" and not words[0] == "%":   
                    bp_x.append(int(words[0]))   
                    bp_y.append(int(words[1]))   
                    words = handle.readline().split()   
   
                self["ordered_basepairing_x"].append(bp_x)   
                self["ordered_basepairing_y"].append(bp_y)   
   
            line = handle.readline()   
        handle.close()   
   
    def _read_output_con(self):   
        handle = open(self.prefix + ".eq", "rU")   
        inf = []   
        for line in handle.readlines():   
            if line[0] != "%":   
                line = line.strip("\n")   
                line = line.split("\t")   
                line = line[2:-1]   
                inf.append(line)   
        self["complexes_concentrations"] = inf   
        handle.close()   
   
   
   
    def _read_output_mfe(self):   
    #Read the prefix.mfe output text file generated by NuPACK and write its data
 to instanced attributes   
    #Output: total sequence length and minimum free energy   
    #Output: list of base pairings describing the secondary structure   
   
        handle = open(self.prefix + ".mfe", "rU")   
   
        #Skip the comments of the text file   
        file = handle.readlines()   
        text = []   
        for line in file:   
            if line[0] != "%" and line[0] != "" and line[0] != "\n":   
                line = line.strip("\n")   
                text.append(line)   
   
        handle.close()   
        self["mfe_basepairing_x"] = []   
        self["mfe_basepairing_y"] = []   
        self["mfe_energy"] = float(text[1])   
        self["totalnt"] = int(text[0])   
        self["structure"] = text[2]   
   
        bp_x = []   
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        bp_y = []   
   
        for line in text[3:]:   
            line = line.split("\t")   
            bp_x.append(int(line[0]))   
            bp_y.append(int(line[1]))   
   
        self["mfe_basepairing_x"].append(bp_x)   
        self["mfe_basepairing_y"].append(bp_y)   
   
   
    def _read_output_subopt(self):   
    #Read the prefix.subopt output text file generated by NuPACK and write its d
ata to instanced attributes   
    #Output: total sequence length and minimum free energy   
    #Output: list of base pairings describing the secondary structure   
   
        handle = open(self.prefix+".subopt", "rU")   
   
        #Skip the comments of the text file   
        line = handle.readline()   
        while line[0] == "%":   
            line = handle.readline()   
   
        self["subopt_basepairing_x"] = []   
        self["subopt_basepairing_y"] = []   
        self["subopt_energy"] = []   
        self["totalnt"]=[]   
   
        counter = 0   
   
        while line:   
            words = line.split()   
   
            if not line == "\n" and not words[0] == "%" and not words[0] == "": 
  
   
                #Read the line containing the number of total nucleotides in the
 complex   
                totalnt = words[0]   
   
                self["totalnt"].append(totalnt)   
                counter += 1   
   
                #Read the line containing the mfe   
                words = handle.readline().split()   
                mfe = float(words[0])   
   
                self["subopt_energy"].append(mfe)   
   
                #Skip the line containing the dot/parens description of the seco
ndary structure   
                line = handle.readline()   
   
                #Read in the lines containing the base pairing description of th
e secondary structure   
                #Continue reading until a % comment   
                bp_x = []   
                bp_y = []   
   
                line = handle.readline()   
                words = line.split()   
                while not line == "\n" and not words[0] == "%":   
                    bp_x.append(int(words[0]))   
                    bp_y.append(int(words[1]))   
                    words = handle.readline().split()   
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                self["subopt_basepairing_x"].append(bp_x)   
                self["subopt_basepairing_y"].append(bp_y)   
   
            line = handle.readline()   
        handle.close()   
   
        self["subopt_NumStructs"] = counter   
   
    def _cleanup(self, suffix):   
   
        if os.path.exists(self.prefix+"."+suffix):   
            os.remove(self.prefix+"."+suffix)   
   
        return   
   
    def export_PDF(self, complex_ID, name="", filename="temp.pdf",   
                   program=None):   
        """Uses Zuker's sir_graph_ng and ps2pdf.exe to convert a secondary  
        structure described in .ct format to a PDF of the RNA."""   
   
        if program is None:   
            program = self["program"]   
   
        inputfile = "temp.ct"   
        self.Convert_to_ct(complex_ID, name, inputfile, program)   
   
   
        cmd = "sir_graph_ng" #Assumes it's on the path   
        args = "-p" #to PostScript file   
        output = popen2.Popen3(cmd + " " + args + " " + inputfile, "r")   
        output.wait()   
        if debug == 1:   
            print(output.fromchild.read())   
   
        inputfile = inputfile[0:len(inputfile)-2] + "ps"   
   
        cmd = "ps2pdf" #Assumes it's on the path   
        output = popen2.Popen3(cmd + " " + inputfile, "r")   
        output.wait()   
        if debug == 1:   
            print(output.fromchild.read())   
   
        outputfile = inputfile[0:len(inputfile)-2] + "pdf"   
   
        #Remove the temporary file "temp.ct" if it exists   
        if os.path.exists("temp.ct"): os.remove("temp.ct")   
   
        #Remove the temporary Postscript file if it exists   
        if os.path.exists(inputfile): os.remove(inputfile)   
   
        #Rename the output file to the desired filename.   
        if os.path.exists(outputfile): os.rename(outputfile,filename)   
        #Done!   
   
    def Convert_to_ct(self, complex_ID, name, filename="temp.ct",   
                      program="ordered"):   
        """Converts the secondary structure of a single complex into the  
        .ct file format, which is used with sir_graph_ng (or other programs)  
        to create an image of the secondary structure."""   
   
        #hacksy way of reading from data produced by 'complex', by 'mfe', or by 
'subopt'   
        data_x = program + "_basepairing_x"   
        data_y = program + "_basepairing_y"   
        mfe_name = program + "_energy"   
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        composition_name = program + "_composition"   
   
        #Format of .ct file   
   
        #Header: <Total # nt> \t dG = <# mfe> kcal/mol \t <name of sequence>   
        #The Rest:   
        #<nt num> \t <bp letter> \t <3' neighbor> \t <5' neighbor> \t <# of bp'i
ng, 0 if none> \t ...   
        #<strand-
specific nt num> \t <3' neighbor if connected by helix> \t <5' neighbor if conne
cted by helix>   
   
        #Extract the data for the desired complex using complex_ID   
        bp_x = self[data_x][complex_ID]   
        bp_y = self[data_y][complex_ID]   
        mfe = self[mfe_name][complex_ID]   
   
        if program == "mfe" or program == "subopt" or program == "energy":   
            composition = self[composition_name]   
        elif program == "ordered" or program == "unordered":   
            composition = self[composition_name][complex_ID]   
   
   
        #Determine concatenated sequence of all strands, their beginnings, and e
nds   
        allseq = ""   
        strand_begins = []   
        strand_ends = []   
   
        #Seemingly, the format of the composition is different for the program c
omplex vs. mfe/subopt   
        #for mfe/subopt, the composition is the list of strand ids   
        #for complex, it is the number of each strand (in strand id order) in th
e complex   
        #for mfe/subopt, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, and 
1 strand of 3.   
        #for complex, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, 2 stran
ds of 3, and 3 strands of 4'.   
        #what a mess.   
   
        if program == "mfe" or program == "subopt" or program == "energy":   
            for strand_id in composition:   
                strand_begins.append(len(allseq) + 1)   
                allseq = allseq + self["sequences"][strand_id-1]   
                strand_ends.append(len(allseq))   
   
        else:   
            for (num_strands, strand_id) in \   
                    zip(composition, range(len(composition))):   
                for j in range(num_strands):   
                    strand_begins.append(len(allseq) + 1)   
                    allseq = allseq + self["sequences"][strand_id]   
                    strand_ends.append(len(allseq))   
   
        seq_len = len(allseq)   
   
        #print "Seq Len = ", seq_len, "  Composition = ", composition   
        #print "Sequence = ", allseq   
        #print "Base pairing (x) = ", bp_x   
        #print "Base pairing (y) = ", bp_y   
   
   
        #Create the header   
        header = str(seq_len) + "\t" + "dG = " + str(mfe) + " kcal/mol" \   
                 + "\t" + name + "\n"   
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        #Open the file   
        handle = open(filename,"w")   
   
        #Write the header   
        handle.write(header)   
   
        #Write a line for each nt in the secondary structure   
        for i in range(1, seq_len+1):   
            for (nt, pos) in zip(strand_begins, range(len(strand_begins))):   
                if i >= nt:   
                    strand_id = pos   
   
   
            #Determine 3' and 5' neighbor   
            #If this is the beginning of a strand, then the 3' neighbor is 0   
            #If this is the end of a strand, then the 5' neighbor is 0   
   
            if i in strand_begins:   
                nb_5p = 0   
            else:   
                nb_5p = i - 1   
   
            if i in strand_ends:   
                nb_3p = 0   
            else:   
                nb_3p = i + 1   
   
            if i in bp_x or i in bp_y:   
                if i in bp_x: nt_bp = bp_y[bp_x.index(i)]   
                if i in bp_y: nt_bp = bp_x[bp_y.index(i)]   
            else:   
                nt_bp = 0   
   
            #Determine strand-specific counter   
            strand_counter = i - strand_begins[strand_id] + 1   
   
            #Determine the 3' and 5' neighbor helical connectivity   
            #If the ith nt is connected to its 3', 5' neighbor by a helix, then 
include it   
            #Otherwise, 0   
            #Helix connectivity conditions:   
            #The 5' or 3' neighbor is connected via a helix iff:   
            #a) helix start: i not bp'd, i+1 bp'd, bp_id(i+1) - 1 is bp'd, bp_id
(i+1) + 1 is not bp'd   
            #b) helix end: i not bp'd, i-1 bp'd, bp_id(i-
1) - 1 is not bp'd, bp_id(i-1) + 1 is bp'd   
            #c) helix continued: i and bp_id(i)+1 is bp'd, 5' helix connection i
s bp_id(bp_id(i)+1)   
            #d) helix continued: i and bp_id(i)-
1 is bp'd, 3' helix connection is bp_id(bp_id(i)-1)   
            #Otherwise, zero.   
   
            #Init   
            hc_5p = 0   
            hc_3p = 0   
   
            if i in bp_x or i in bp_y:  # Helix continued condition (c,d).   
                if i in bp_x: bp_i = bp_y[bp_x.index(i)]   
                if i in bp_y: bp_i = bp_x[bp_y.index(i)]   
   
                if bp_i+1 in bp_x or bp_i+1 in bp_y:  # Helix condition c.   
                    if bp_i+1 in bp_x: hc_3p = bp_y[bp_x.index(bp_i+1)]   
                    if bp_i+1 in bp_y: hc_3p = bp_x[bp_y.index(bp_i+1)]   
   
                if bp_i-1 in bp_x or bp_i-1 in bp_y:  # Helix condition d.   
                    if bp_i-1 in bp_x: hc_5p = bp_y[bp_x.index(bp_i-1)]   
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                    if bp_i-1 in bp_y: hc_5p = bp_x[bp_y.index(bp_i-1)]   
   
            else: #helix start or end (a,b)   
   
                if i+1 in bp_x or i+1 in bp_y:  # Start, condition a.   
                    if i+1 in bp_x: bp_3p = bp_y[bp_x.index(i+1)]   
                    if i+1 in bp_y: bp_3p = bp_x[bp_y.index(i+1)]   
   
                    if bp_3p + 1 not in bp_x and bp_3p + 1 not in bp_y:   
                        hc_3p = i + 1   
   
                if i-1 in bp_x or i-1 in bp_y: #End, condition b   
                    if i-1 in bp_x: bp_5p = bp_y[bp_x.index(i-1)]   
   
                    if i-1 in bp_y: bp_5p = bp_x[bp_y.index(i-1)]   
   
                    if bp_5p - 1 not in bp_x and bp_5p - 1 not in bp_y:   
                        hc_5p = i - 1   
   
   
            line = str(i) + "\t" + allseq[i-1] + "\t" + str(nb_5p) + "\t" + \   
                   str(nb_3p) + "\t" + str(nt_bp) + "\t" + str(strand_counter) \
   
                   + "\t" + str(hc_5p) + "\t" + str(hc_3p) + "\n"   
   
            handle.write(line)   
   
        #Close the file. Done.   
        handle.close()   
   
   
if __name__ == "__main__":   
   
    import re   
   
    #sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA",
"acctcctta","ACGTTGGCCTTCC"]   
    sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA"] 
  
   
    #Complexes   
    #Input: Max number of strands in a complex. Considers all possible combinati
ons of strands, up to max #.   
    #'mfe': calculate mfe? 'ordered': consider ordered or unordered complexes?   
    #Other options available (see function)   
   
    AddComplexes = []   
    test = NuPACK(sequences,"rna1999")   
    test.complexes(3, mfe=1, ordered=1)   
   
    print(test)   
   
    strand_compositions = test["ordered_composition"]   
    num_complexes = len(strand_compositions)   
    num_strands = len(sequences)   
   
    for counter in range(num_complexes):   
        output = "Complex #" + str(counter+1) + " composition: ("   
        for strand_id in strand_compositions[counter][0:num_strands-1]:   
            output = output + str(strand_id) + ", "   
        output += str(strand_compositions[counter][num_strands-1]) + ")"   
   
        output = output + "  dG (RT ln Q): " + \   
                 str(test["ordered_energy"][counter]) + " kcal/mol"   
        output = output + "  # Permutations: " + \   
                 str(test["ordered_permutations"][counter])   
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        print(output)   
        test.export_PDF(counter, name="Complex #" + str(counter+1),   
                        filename="Complex_" + str(counter) + ".pdf",   
                        program="ordered")   
   
    #Mfe   
    #Input: Number of each strand in complex.   
    #Options include RNA/DNA model, temperature, dangles, etc. (See function).   
    #Example: If there are 3 unique strands (1, 2, 3), then [1, 2, 3] is one of 
each strand and [1, 1, 2, 2, 3, 3] is two of each strand.   
   
    #test.mfe([1, 2], dangles = "all")   
    #num_complexes = test["mfe_NumStructs"]  #Number of degenerate complexes (sa
me energy)   
    #dG_mfe = test["mfe_energy"]   
    #print "There are ", num_complexes, " configuration(s) with a minimum free e
nergy of ", dG_mfe, " kcal/mol. 
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