

Grado en Biotecnología

Automated sequence design of nucleic acid

hybridization reactions for microRNA detection

Biotechnology Bachelor’s Thesis

(Trabajo de Fin de Grado en Biotecnología)

Academical year 2018 – 2019

STUDENT: Lucas Goiriz Beltrán

TUTOR: Prof. Javier Forment Millet (UPV)

SUPERVISOR: Dr. Guillermo Rodrigo Tárrega (CSIC)

Valencia, July 2019

Unversitat Politècnica de València ETSIAMN

Title: Automated sequence design of nucleic acid hybridization reactions for microRNA

detection

Abstract (English):

microRNA (miRNA) can be found in a variety of biological samples and then they

represent important molecular markers for early diagnostic strategies. This work (TFG)

explores a novel approach based on nested non-enzymatic and enzymatic biochemical

processes in vitro. In particular, an automated sequence design algorithm of nucleic acid

hybridization reactions for microRNA detection is developed.

Abstract (Spanish):

Los microRNAs (miRNAs) pueden ser hallados en una gran variedad de muestras

biológicas y suponen una fuente importante de marcadores moleculares para

estrategias de diagnóstico tempranas. En este trabajo (TFG), se explora un abordaje

novedoso basado en procesos bioquímicos anidados enzimáticos y no enzimáticos in

vitro. Particularmente, se desarrolla un algoritmo de diseño de secuencias automatizado

para reacciones de hibridación de ácidos nucleicos para la detección de microRNA.

Key words (English): microRNA, nucleic acid circuit, algorithm, sequence design,

Python.

Key words (Spanish): microRNA, circuito de ácidos nucleicos, algoritmo, diseño de

secuencia, Python.

TFG Author: Student: Lucas Goiriz Beltrán.

Location and Date: Valencia, July 2019.

Academic Tutor: Prof. Javier Forment Millet (UPV).

Supervisor: Dr. Guillermo Rodrigo Tárrega (CSIC).

Aknowledgements

I would like to thank firstly Javier Forment for his implication in my passion

towards bioinformatics and programming. The dedication during his lessons

inspired to keep learning programming languages and being open minded

towards new ideas and programming approaches.

Second, I would like to thank Guillermo Rodrigo for accepting me into his team

although I was just an undergraduate who couldn’t possibly be of much help.

However, I felt welcome from the first moment and, although struggling

sometimes, I tried my best to not to disappoint him. In addition, it is thanks to

Guillermo that I discovered the world of systems biology, the complex world

behind scientific publications and the life as a researcher. Guillermo is a role

model I will always be looking up to.

Third, I would like to thank to my lab mates, especially Roser, who was always

ready to help my in whatever issue I encountered and offered me a piece of

chocolate whenever she saw me tired or uninspired. I would feel truly blessed if

I am offered the opportunity to come back to this team, as it felt like a tiny family.

Fourth, I would like to thank my friend/”disciple”/roommate Enrique, who had to

deal with my frustration whenever the algorithm didn’t behave as expected. It was

always of great help having a pair of eyes on the screen pointing out possible

sources of errors while debugging.

Last, but not least, I would like to thank my friends for these amazing 4 years at

the University. Especially Ramón and Arcadio, who were with me in the good and

the bad moments: during the long study evenings and the long weekend nights.

Please, never change.

Index

1. Introduction………………………………………………….…… 1

1.1. Python as Bioinformatics tool.……..………………………..….. 5

2. Objective…………………………………………………….…… 6

3. Materials and methods……………………………………….… 6

3.1. Computational resources……………………………………………... 6

3.1.1. Software……………………………………………………...….… 6

3.1.2. Hardware…………………………………………………………... 6

3.2. Simple Circuit Components…………………………………………....6

3.3. Simple Circuit Initial Sequence Design ……………………………... 7

3.4. Mathematical Approach and Objective Function …………………... 8

3.5. Metropolis Algorithm Implementation …………...…………………... 13

3.6. Simple Circuit Kinetic Model Design ………………………………....14

3.7. Signal Amplification Circuit Components……………………………. 16

3.8. Signal Amplification Circuit Initial Sequence Design……………….. 17

3.9. Adaptation of the Objective Function………………………………... 18

3.10. Signal Amplification Circuit Kinetic Model Design………………... 20

3.11. Leakage Prevention Strategy….…….……………………………... 22

4. Results and Discussion……………………………………….... 24

4.1. Score Function Convergence……………………………………….... 24

4.2. Metropolis Effect on Score……………....……………………………. 26

4.3. Algorithm Results Simulation…………………………………………. 27

4.4. Kinetic Model Results………………………………………..………... 29

4.4.1. Simple Circuit Kinetic Model………………………...…………... 29

4.4.2. Signal Amplification Circuit Kinetic Model……………………... 29

4.4.3. Fuel Concentration Effect on Kinetic Model………………….... 30

4.4.4. Concentration of Input miRNA Effect on Reaction Time……... 32

4.5. Shadow Circuit Result Simulation………………………………..…... 34

5. Conclusions……………………………………….…………….. 35

6. Bibliography………………………………………………….….. 36

7. Annex..…………………………………………….……………... 39

Index of Figures

Figure 1: Strand displacement reaction example ... 2

Figure 2: Main causes of death in Spain 2016 .. 3

Figure 3: Steps of miRNA biogenesis in animals ... 4

Figure 4: Simple miRNA detection circuit components and interactions 7

Figure 5: Ideal equilibrium states for circuit components .. 8

Figure 6: Signal amplification circuit components and interactions 17

Figure 7: Leaked signal silencing by shadow circuit .. 22

Figure 8: Score convergence during algorithm run .. 25

Figure 9: Score convergence during the first 500 iterations ... 25

Figure 10: Metropolis beta effect on Score convergence .. 26

Figure 11: Equilibrium states simulation comparison of a good scoring circuit 28

Figure 12: Equilibrium states simulation comparison of a bad scoring circuit 28

Figure 13: Comparison between T7p analytical and numerical integration 29

Figure 14: Kinetic model for all species participating in the circuit 30

Figure 15: T7p concentration evolution at 1 μM input miRNA under the effect of

different fuel concentrations .. 30

Figure 16: T7p concentration evolution at 1 pM input miRNA under the effect of

different fuel concentrations .. 31

Figure 17: T7p concentration evolution at 1 pM miRNA under fuel concentrations

ranging from 0 to 1 μM... 31

Figure 18: T7p concentration evolution under the effect of different input miRNA

concentrations ... 32

Figure 19: Relation between the log base 10 of miRNA concentration and log 10

reaction time until 0.95 μM T7p is liberated ... 33

Figure 20: Relation between miRNA concentration order of magnitude (in μM) and

reaction time until 0.95 μM T7p is liberated ... 34

Figure 21: Species present at the "Without leak" equilibrium ... 35

Figure 22: Species present at the "Maximum leak" equilibrium 35

Index of Tables

Table 1: miRNA biomarkers for cancers and neurodegenerative diseases. 2

Table 2: Circuit components initial sequence generation example 7

Table 3: Signal amplification circuit components initial sequence generation example 17

Table 4: Shadow circuit sequence design example ... 23

Index of Boxes

Box 1: Python functions for initial sequence generation .. 8

Box 2: Python functions for Score Function calculus ... 11

Box 3: Python functions for sequence mutation and score selection 13

Box 4: Python Metropolis function ... 14

Box 5: Python functions for signal amplification circuit initial sequence generation 18

Box 6: Modified Python functions for Score Function calculus ... 19

Box 7: Modified Python mutation function .. 20

Box 8: Python functions for shadow circuit sequence design ... 24

1

1 Introduction

DNA nanotechnology is a promising field in which DNA strands are employed with the

aim of manipulating the temporal and spatial distribution of matter within a system, giving

rise both to self-assembled nanometer-scale structures and autonomous reconfigurable

devices. The main interest of the self-assembled structures is their stability at the

equilibrium state (structural DNA nanotechnology). On the other hand, the main interest

of the autonomous reconfigurable devices relies not on the equilibrium states but on the

non-equilibrium states that allow the device to switch from one equilibrium state to

another (dynamic DNA nanotechnology), while employing non-covalent interactions

(Zhang & Seelig, 2011).

These dynamic DNA nanotechnology-based devices employ DNA hybridization, strand

displacement and dissociation in order to switch between said equilibrium states (Zhang

& Winfree, 2009) and their usage as nanoscale devices with the aim of controlling

biological circuits in vivo, building nanoscale chemical circuits or analyzing biological

samples is rising (Seelig et al., 2006) due to the wide characterization of their Watson-

Crick hybridization thermodynamics of base pairs and the predictability of single stranded

DNA and double stranded DNA secondary structures, allowing thus a rational design of

structures and interactions based on the primary nucleic acid sequence (Zhang et al.,

2007; Zhang & Seelig, 2011; Zhang & Winfree, 2009). Furthermore, the elaboration of

these DNA devices is getting more feasible due to the exponential reduction of

oligonucleotide synthesis and purification costs.

At the present time, DNA-based synthetic molecular circuits do not approach the

complexity and reliability of modern electronics (Seelig et al., 2006). However, they

present a promising alternative as control devices in biological systems as they function

both in vitro and in vivo, store signal information in molecule concentrations and

conformations, and their complexity ranges from low component systems, where signal

is produced only in the presence of the appropriate input, up to complex systems that

include various logic gates that evaluate the presence of various possible inputs that

trigger a wide combination of outputs, opening the door towards biological computing.

The most important reaction that allows the dynamic behavior that permits these circuits’

performance is known as strand displacement, which is the process of hybridization of

two strands with partial or total complementarity while displacing pre-hybridized strands,

which can act as triggers for further strand displacement reactions (Zhang & Seelig,

2011).

This process usually initiates at short single stranded domains where interacting strands

have total complementarity, known as toeholds, and progresses until reaching total

strand hybridization. Therefore, it is a reaction that does not require enzymes as it

exclusively depends on the biophysics of DNA and whose kinetics can be controlled by

varying the sequence and length of toeholds (Zhang & Winfree, 2009; Zhang & Seelig,

2011; Srinivas et al., 2013). An illustrated example is provided in Figure 1.

2

Figure 1: Strand displacement reaction example. Modified from Zhang & Seelig (2011)

The driving forces of strand displacement reactions are the enthalpy gain by forming

base pairs and the entropy gain by releasing pre-hybridized strands, meaning that the

reaction is stable, up to a certain degree, to environmental changes such as salt

concentration and temperature, which typically modify DNA hybridization strength

(Zhang et al., 2007; Zhang & Seelig, 2011).

Both driving forces are dependent on the presence of input, as it is the one strand that

allows the formation of new base pairing and the liberation of pre-hybridized strands.

Therefore, the reaction is limited by the amount of input present initially and when

reaching equilibrium (which typically means the consumption of all the input as this

provides a more stable thermodynamic state of the system), the reactions cease, and

the circuit stops working.

However, if the application requires it, the input species may be replenished by

mechanisms such as transcription, which unlike strand displacement reactions, consume

a standardized energy source (ATP) with the disadvantage of needing the corresponding

enzyme for this task (Zhang & Seelig, 2011).

Thanks to the strand displacement mechanism and its characteristics, DNA-based

synthetic molecular circuits can be employed as systems of signaling cascades where a

low concentration, and initially undetectable, input signal (usually a single DNA or RNA

strand) may be amplified to, for example, a measurable fluorescence signal.

A particularly interesting application of these circuits is the early detection of biomarkers

for early diagnosis like cancers and many neurodegenerative diseases, such as

Alzheimer’s, as there are serum miRNA biomarkers available, shown in Table 1:

Table 1: miRNA biomarkers for cancers and neurodegenerative diseases (Kumar et al., 2013; Qiu et al.,

2015; and Wittman et al., 2010)

Disease Potential serum miRNA biomarkers

Colorectal cancer miR-17-3p; miR-92; miR-29a; miR-92a

Diffuse large B-cell lymphoma (DLBCL) miR-21; miR-155; miR-210

Lung cancer miR-25; miR-223; miR-17-3p; miR-21

Breast Cancer miR-155; miR-195

Prostate Cancer miR-16; miR-34b; miR-92a; miR-92b

Amyotrophic Lateral Sclerosis (ALS) miR-206; miR-155

Huntington’s Disease miR-9; miR-22; miR-128 HTT; miR-132

Parkinson’s Disease miR-133b; miR-107; miR-34; miR-205

Alzheimer’s Disease hsa-let-7d-5p; hsa-let-7g-5p

3

These types of diseases are in the top 10 death causes in western countries (Heron,

2018; Soriano et al., 2018) and are often diagnosed much too late due to the late

appearance of the symptoms, which in certain neurodegenerative diseases take up to

20 years to appear (Kumar et al., 2013). Furthermore, the complexity of these diseases

lowers the success rates of the available treatments as the response can greatly vary

between individuals. Figure 2 illustrates how neurodegenerative diseases and cancers

dominated the causes of death in Spain in 2016.

Figure 2: Main causes of death in Spain 2016. Modified from Soriano et al. (2018)

This fact creates a need for a personalized treatment, which in turn requires a precise

diagnostic of the disease sub-category. Modern effective diagnostic strategies rely on

the use of biomarkers such as proteins or on gene expression profiling by means of

microarray technology. Nevertheless, these approaches are invasive and laborious as

they require a tissue biopsy for their analysis while lacking the precision needed for a

personalized treatment. It is through the disadvantages of those biomarkers that miRNAs

are gaining popularity as a novel source of circulating biomarkers for diagnostics.

miRNAs are single stranded, non-coding regulatory RNA molecules of around 22

nucleotides in length. Their biogenesis in animals begins at the transcription of miRNA

genes in the form of long primary miRNA (pri-miRNA) which are processed by the

Microprocesor complex (consisting of RNase III Drosha and the double stranded RNA

binding domain DGCR8) into pre-miRNA, which are short oligonucleotides of 70

nucleotides in length. Next, the pre-miRNAs are exported into the cytoplasm by means

of exportin-5 (EXP-5) where they are further processed by RNase III Dicer into mature

4

miRNA (Catalanotto et al., 2016; Wahid et al,. 2010). miRNA biogenesis in animals is

illustrated in Figure 3:

Figure 3: Steps of miRNA biogenesis in animals. Modified from Wahid et al. (2010)

miRNAs can be expressed either ubiquitously or in a tissue/cell specific manner while

also displaying various expression patterns along tissues/cells which can also vary with

time (Pockar et al., 2019). They act as gene expression modifiers at post-transcriptional

level either by binding to the 3’ UTRs of the mRNA they target (Kumar et al., 2013; Wahid

et al,. 2010; Wang et al., 2012) or by recruiting mRNA silencing complexes such as the

RISC complex (Catalanotto et al., 2016; Wittmann & Jäck, 2010). Around 4% of genes

present in the human genome encode miRNAs, and a single miRNA can be involved in

the regulation of up to 200 mRNAs (Kumar et al., 2013).

This fact is due to the stability of miRNA in biological fluids, either caused by RNA binding

proteins (such as NPM1, HDL or Argonaute2), transporter microparticles or exosomes

(small membraned vesicles) (Wittmann & Jäck, 2010), which allows them to be exported

out of the cell and affect mRNA expression of distant cells. miRNAs play a regulatory

role in many biological processes being therefore highly conserved during evolution,

although it is believed that mechanisms through which they function are different (Pockar

el al., 2019). Furthermore, neurodegenerative diseases and cancers have an altered

miRNA profile when comparing with adjacent healthy tissue. All these characteristics

plus the simplicity of extracting a blood sample from a patient, make miRNA a very

attractive source of biomarkers to consider for early diagnostics.

With the rising of the usage of miRNA as biomarkers, several tools and technologies are

advancing towards a more precise quantification of miRNA. Traditional laboratory

methods are qPCR, microarray technology and NGS. These technologies require as a

first step an amplification of the miRNA by means of RT-PCR into cDNA.

In qPCR technology, the sample undergoes a consecutive amplification while

measurements in real time are taken by means of fluorescent probes. The main

disadvantage of this technique is that the short length of miRNAs conditions the primer

5

design, which must not form primer dimers. In addition, they must ensure a low detection

threshold (Balcells et al., 2011; Chen et al., 2005; Redshaw et al., 2013).

Microarray technology depends on a hybridization reaction of the sample with DNA

probes anchored to a solid surface. The main disadvantages are involved with the need

of specialized equipment, the different probes available, the lack of hybridization

procedure standardizing and the challenge of data normalization due to the weak

expression levels and low concentration of miRNA (Draghici et al., 2006; Wang & Xi,

2013; Wu et al., 2013).

NGS technology for miRNA quantification consists in sequencing the miRNA found on a

sample. It is becoming the preferred method as costs are being greatly reduced.

Nevertheless, there are great disadvantages, which involve the NGS data analysis and

its lack of standardization (Chatterjee et al., 2015; Li et al., 2015).

The technologies aforementioned are difficult to implement in the clinic, at home or in

underdeveloped countries, as they require specialized apparatus and staff, which

hinders the quick obtention of results. The need of a more simplistic and quick manner

of detecting miRNA and amplifying the signal without a prior polymerase mediated

amplification led to the exploration of a non-enzymatic miRNA detection based on strand

displacement synthetic DNA circuits.

However, these circuits present major issues when tested in vitro as hybridization may

not be perfectly specific and undesired hybridizations may happen. In addition,

oligonucleotide synthesis errors, such as deletions, deaminations or depurinations

strongly affect the performance as the circuit strongly depends on its components’ base

sequence (Zhang et al., 2007; Zhang & Seelig, 2011).

Another disadvantage is that the sequence of a circuit’s components is strongly

dependent on the sequence provided by the input(s), meaning that certain circuits may

underperform or “leak” signal by spontaneous fluctuations caused by the low robusticity

of their base sequence (Seelig et al., 2006; Song et al., 2018; Wang et al., 2018).

All these issues plus the importance of an appropriate sequence design forces a strong

in silico approach of every system design prior to any in vitro testing. There is a need of

an automated sequence design algorithm based on in silico simulations of the proposed

system to ease future fine tuning based on experimental measures.

1.1 Python as a Bioinformatics tool

For the resolution of the aforementioned biological problem, the present work employs

the Python programming language. Python has several characteristics that makes it

more suitable as a programming language in bioinformatics than other languages like

JAVA or C. First, its comfortable readability (allowing a better understanding of the code

and improvement by scientific peers); second, it is open source (which makes it available

to any user); third, it is cross platform (allowing Python programs to run in any kind of

machine as long as they have the Python interpreter) and fourth, it has a growing

scientific community (Bassi, 2010; Ekmekci et al., 2016), which creates modules and

libraries, such as BioPython or SciPy, with the purpose of being employed in

bioinformatics and many other fields.

However, since Python is an interpreted programming language, it has the drawback of

having a lower performance than compiled languages (such as C), which translates into

longer execution time for the same results. Nevertheless, for small programs in modern

6

machines this difference is not really significant as Python may take up around 10

seconds to finish while C only takes up 1 (Bassi, 2010). If the code development time is

taken into account, Python results to be much faster due to the simplicity in code

development.

2 Objective

To generate an algorithm that automatically designs a DNA circuit for miRNA detection

based on a sequence input while avoiding signal leak and being overall robust.

3 Materials and Methods

3.1 Computational Resources

3.1.1 Hardware

For the elaboration of the algorithm, the following platforms were employed:

A) Computer with Ubuntu 16.04.6 LTS Operative System with 23Gb RAM and

Intel® Xeon® E5504 processor.

B) Laptop with Windows 10 Operative System with 8Gb RAM and Intel® Core™

i5 7200U processor.

3.1.2 Software

The Python version employed in this work was 3.5.2 (PYTHON SOFTWARE

FOUNDATION, 2019) altogether with the following libraries:

- The Python Standard Library (PYTHON SOFTWARE FOUNDATION, 2019),

where the following modules were used: sys, subprocess, random, datetime,

time and math.

- ViennaRNA 2.4.10 Python3 Library (Lorenz et al., 2011).

- Potly Python Open Source Graphing Library (PLOTLY, 2019).

- SciPy Fundamental Library for Scientific Computing (SCIPY, 2019).

Additional software employed in this work includes NUPACK 3.2.2 (Dirks & Pierce, 2003;

Dirks & Pierce, 2004; Dirks et al., 2007) with a code wrapper for its implementation in

Python courtesy of Salis et al. (2009).

3.2 Simple Circuit Components

The initial state of the system consists in an equilibrium in which the complexes sensor-

transducer and clamp-T7p are stable. The addition of miRNA to the system causes a

disruption of these complexes by means of strand displacement reactions that occur due

to the lower minimum free energy (MFE) of the possible complexes to be formed in the

presence of the input, forming thus different complexes until reaching a new equilibrium

state. The output strand, T7p, will then act as a primer sequence for a DNA template

which will be transcribed with the objective of carrying out a signal amplification.

7

Figure 4: Simple miRNA detection circuit components and interactions

3.3 Simple Circuit Initial Sequence Design

The initial sequences for the components of the circuit originate from a “master

sequence,” which is in turn formed by the joining of the target miRNA sequence and the

T7 Phage Promoter sequence (T7p). Sensor and clamp sequences originate as the

reverse complementary sequences of sections from the “master sequence”, while

transducer is merely a section of the master sequence. An example is shown below:

Table 2: Circuit components initial sequence generation example

Master: TGGAGTGTGACAATGGTGTTTGGCGCTAATACGACTCACTATAGG

miRNA (5’-3’): TGGAGTGTGACAATGGTGTTTG

sensor (3’-5’): ACCTCACACTGTTACCACAAACCGC

transducer (5’-3’): GTGACAATGGTGTTTGGCGCTAATACGACTCACTATAGG

clamp (3’-5’): ACAAACCGCGATTATGCTGAGTGATATCC

T7p (5’-3’): GCGCTAATACGACTCACTATAGG

Note that the nucleotides highlighted in yellow are the ones that will serve as toeholds

for strand displacement reaction initiation. The first toehold (marked at sensor) will

promote miRNA adhesion and displacement of transducer. The second toehold (marked

at clamp) will promote transducer adhesion (only if this strand is completely free, as the

complementary sequence of the toehold is hidden when transducer is part of the complex

sensor-transducer) and T7p displacement. The code needed in order to perform this task

is shown in Box 1:

#Define reverse complementary generator

def revcomp(seq):

 seq = seq.upper(

).replace('A','t'

).replace('T','a'

).replace('G','c'

).replace('C','g'

This box continues on the next page

8

)[::-1].upper()

 return seq

#Define primary sequences generator

def genseq(miRNA, prom):

 n = len(miRNA)

 rootseq = (miRNA.upper()

 + prom)

 sensor = revcomp(rootseq[:n + 3])

 transducer = rootseq[6:]

 clamp = revcomp(rootseq[n - 6:])

 return (sensor,

 transducer,

 clamp)

Box 1: Python functions for initial sequence generation

3.4 Mathematical Approach and Objective Function

The circuit itself is evaluated in its equilibrium state and depending on the presence of

input (miRNA) or not. Thus, the equilibrium states for an ideal working circuit are

illustrated in Figure 5.

Figure 5: Ideal equilibrium states for circuit components

A Good way to evaluate the capability of the system to shift between both equilibriums

by means of the addition of the target miRNA is to calculate the probabilities of the

formation of the complexes found in the ideal case equilibrium in which the miRNA is

present, against the complexes formed in absence of the miRNA. This calculus is done

by means of a ratio between the Boltzmann function of the complex of interest and the

Boltzmann functions of all other possible complexes involving each of the strands

participating in the complex of interest. In addition, this ratio can be simplified as most

possible complexes aren’t spontaneous and thus, their Boltzmann values are negligible.

For miRNA-sensor and transducer-clamp complexes, the probabilities of complex

formation are the following:

𝑃1 =
𝑒−𝛽Δ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟

𝑒−𝛽Δ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒−𝛽Δ𝐺𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟
 Eq. (1)

𝑃2 =
𝑒−𝛽Δ𝐺𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟−𝑐𝑙𝑎𝑚𝑝

𝑒−𝛽Δ𝐺𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟−𝑐𝑙𝑎𝑚𝑝 + 𝑒−𝛽Δ𝐺𝑐𝑙𝑎𝑚𝑝−𝑇7𝑝
 Eq. (2)

Where:

𝛽: the inverse of the product between temperature (K) and Boltzmann constant

(kB) ≈ 1,69

9

Δ𝐺𝑖−𝑗: MFE value of complex i-j.

An increment in the probabilities is to be achieved by means of increasing the MFE of

the complexes present after the addition of input miRNA. To avoid an increment due to

the reduction of the MFE of the complexes present prior to the addition of input miRNA,

a set of “artificial probabilities” are calculated, which are based on a simulated MFE that

acts as a minimum requirement, forcing therefore the complex MFE to be close to the

simulated value. In the case that the Boltzmann function value of the complex was higher

than the simulated one, the probability would be equal to 1:

𝑃3 = 𝑚𝑖𝑛 (
𝑒−𝛽Δ𝐺𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟

𝑒−𝛽𝐿1Δ𝐺𝑏𝑝
, 1) Eq. (3)

𝑃4 = 𝑚𝑖𝑛 (
𝑒−𝛽Δ𝐺𝑐𝑙𝑎𝑚𝑝−𝑇7𝑝

𝑒−𝛽𝐿2ΔGbp
, 1) Eq. (4)

Where:

Δ𝐺𝑏𝑝: the average MFE of each base pair in a structure ≈ -1,25

𝐿1: length of the maximum possible interaction zone in sensor-transducer.

𝐿2: length of the maximum possible interaction zone in clamp-T7p (equivalent to

the length of T7p).

Additionally, to avoid spontaneous transducer-clamp complex formation (the main

source of signal leakage in this construction) promoted by the liberation of the toehold

binding site hidden in the sensor-transducer complex structure, the dot and bracket

structure of the sensor-transducer complex is evaluated. The number of unpaired

nucleotides of a total of 6 in the toehold zone of transducer are counted:

𝑇(𝑠𝑡𝑟𝑢𝑐𝑡(𝑠𝑒𝑛𝑠𝑜𝑟−𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟)) =∑". "

𝑖=6

 Eq. (5)

Where:

 “.” : represents the unpaired nucleotides in dot and bracket structure.

The Objective Function to optimize employs all 5 terms and is defined as:

𝐹𝑠𝑐𝑜𝑟𝑒 = 𝑃1𝑃2𝑃3𝑃4 (
6 − 𝑇

𝑇
) Eq. (6)

The implementation of the Objective Function in code is shown in Box 2:

#Vienna parameters:

 #Mathews parameterfile

RNA.read_parameter_file(

 '~/ViennaRNA/misc/dna_mathews2004.par') #Substitute '~' by your directory

 #No dangles

RNA.cvar.dangles = 0

 #No coversion from DNA into RNA

RNA.cvar.nc_fact = 1

#Global variables employed throughout the code

#Define circuit sequence names

guide = ['miRNA','sensor','transducer','clamp','T7p']

This box continues on the next page

10

#Boltzmann function parameters

BETA = 1/0.593

Num_e = 2.7182818284590452353

DGbp = -1.25

#Define Boltzmann function

def bolfunc(seq1, seq2, seq_DG): #seq_DG is a dictionary containing the MFEs

 Pairkey = (seq1

 + '_'

 + seq2)

 Numerator = Num_e**(-BETA*seq_DG[Pairkey])

 Denominator = Numerator

 if seq1 == guide[0]:

 SecondKey = 'sensor_transducer'

 Denominator += Num_e**(-BETA*seq_DG[SecondKey])

 if seq1 == 'transducer':

 SecondKey = 'clamp_T7p'

 Denominator += Num_e**(-BETA*seq_DG[SecondKey])

 func = Numerator/Denominator

 return func

#Define function for probability calculation for secondary pairments

def probfunc(seq1, seq2, seq_DG, seqs): #seqs contains the sequences

 Pairkey = (seq1

 + '_'

 + seq2)

 Numerator = Num_e**(-BETA*seq_DG[Pairkey])

 if seq1 == 'sensor':

 L = 19

 Denominator = Num_e**(-BETA*L*DGbp)

 if seq1 == 'clamp':

 L = len(seqs[guide[4]])

 Denominator = Num_e**(-BETA*L*DGbp)

 func = Numerator/Denominator

 if func > 1:

 func = 1

 return func

#Define toehold score

def toeholdscore(name, seq_ss): #seq_ss contains the complex’ structures

 DIST = (len(seqs_preit['transducer'])

 - len(seqs_preit['T7p']))

 struct = seq_ss[name].split('&')[1][(DIST-6):DIST]

 j = 0

This box continues on the next page

11

 for symbol in struct:

 if symbol == '.':

 j += 1

 return j

#Define Packing and Scoring function

def scorefunc(seqs):

 seq_DG = {} #Dictionary where the MFEs will be stored

 seq_ss = {} #Dictionary where the structures will be stored

 i = -1

 for seq1 in guide[: -1]:

 i += 1

 seq2 = guide[i + 1]

 name = (seq1

 + '_'

 + seq2)

#cofold is a ViennaRNA package function that calculates

#the complex' MFE and structure

 (ss, mfe) = (RNA.cofold(seqs[seq1]

 + '&'

 + seqs[seq2])

 seq_DG[name] = mfe

 seq_ss[name] = (ss[:len(seqs[seq1])]

 + '&'

 + ss[(len(seqs[seq1])):-1])

 P1 = bolfunc(guide[0], 'sensor', seq_DG)

 P2 = bolfunc('transducer', 'clamp', seq_DG)

 P3 = probfunc('sensor', 'transducer', seq_DG, seqs)

 P4 = probfunc('clamp', 'T7p', seq_DG, seqs)

 T = toeholdscore('sensor_transducer', seq_ss)

 score = P1*P2*P3*P4*(6-T)/6 #The Objective Function

 dats = [P1,P2,P3,P4,T,score]

 return dats

Box 2: Python functions for Score Function calculus

The optimization consists in the calculation of the Objective Function (Eq. (6)) prior to

any mutation and after a random base substitution mutation on a random component of

the circuit (different from the miRNA and T7p). If the mutation favors the Objective

Function, the mutation is kept, while if it doesn’t, the mutation is rejected. The code

implementation is the following:

#Define nucleotides

NUCS = ['A','T','G','C']

#Define mutation function

def mutf(seqs):

 seqs_aftermutation = {}

 #Creates a new dictionary with sequences

 for element in seqs:

 seqs_aftermutation[element] = seqs[element]

This box continues on the next page

12

 #Chooses a random base from a random sequence

 target_name = random.sample(guide[1:4], 1)[0]

 target_seq = list(seqs[target_name])

 position = random.randint(0, (len(target_seq) - 1))

 base = random.sample(NUCS, 1)[0]

 while base == target_seq[position]:

 base = random.sample(NUCS, 1)[0]

 #Writes the mutated sequence

 target_seq[position] = base

 target_seq = ''.join(target_seq)

 seqs_aftermutation[target_name] = target_seq

 return seqs_aftermutation

def main():

 global k, timesuffix, seqs_preit, seqs_posit

 global Score_preit, Score_posit, Dats_preit, Dats_posit

 #Moment in time:

 timesuffix = '_'.join(

 str(datetime.datetime.now()

).split())

 (seqs_preit['sensor'],

 seqs_preit['transducer'],

 seqs_preit['clamp'],

 seqs_preit['fuel']) = genseq(seqs_preit[GUIDE[0]], seqs_preit['T7p'])

 Dats_preit = scorefunc(seqs_preit)

 Score_preit = Dats_preit[-1]

#100000 cycles of mutations and selection following the global score

 k = 0

 for n in range(int(1e5)):

 k += 1

 seqs_posit = mutf(seqs_preit)

 Dats_posit = scorefunc(seqs_posit)

 Score_posit = Dats_posit[-1]

 if Score_posit >= Score_preit:

 Dats_preit = Dats_posit

 Score_preit = Score_posit

 seqs_preit = seqs_posit

 OUTFILE = open(('Output_'

 + guide[0]

 + timesuffix

 + '.txt'),

 'w')

 OUTFILE.write('This is the output of your job done on '

 + timesuffix

 + '\n')

This box continues on the next page

13

 for el in guide:

 OUTFILE.write('>'

 + el

 + '\n'

 + seqs_preit[el]

 + '\n')

 OUTFILE.write('\nP1 = '+ str(Dats_preit[0]) + '\n')

 OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')

 OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')

 OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')

 OUTFILE.write('Toehold = ' + str(Dats_preit[4]) + '\n')

 OUTFILE.write('Score = ' + str(Score_preit) + '\n')

 OUTFILE.close()

 return None

Box 3: Python functions for sequence mutation and score selection

3.5 Metropolis Algorithm implementation

The risk of rejecting all mutations that do not favor the Objective Function is that a

possible absolute maximum value could be missed due to a valley of unfavorable values

that may be surrounding this maximum in the space of probabilities. To allow a “local

scanning” in the space of probabilities, this algorithm is executed whenever a mutation

is rejected.

To do so, a “Metropolis factor” is calculated the following way:

𝑀 = 𝑒−𝛽𝑀
0 𝛿𝑡(𝐹𝑆𝑐𝑜𝑟𝑒−𝐹𝑆𝑐𝑜𝑟𝑒

∗) Eq. (7)

Where:

𝛽𝑀
0 : initial factor that defines a probability of 0.01 of accepting an unfavorable mutation

≈ 1100

𝛿 : a factor representing a decrease of the probability of accepting an unfavorable

mutation = 1.00007

t: iteration number

FScore: Objective function value prior to iteration

F*
Score: Objective function value after iteration

Next, the Metropolis factor (Eq. (7)) is compared against a random generated number

ranging from 0 to 1. If the Metropolis factor is higher than this value, the unfavorable

mutation is accepted. If not, it is rejected.

The idea is that the more detrimental the mutation is, the lower the Metropolis factor (Eq.

(7)), and therefore the probability of it being below the random generated number is

higher.

The metropolis algorithm is implemented in the main code as a function, which is

executed under an else statement just after the if Score_posit >= Score_preit

statement shown in Box 3.

14

The Metropolis function is illustrated in Box 4:

#Metropolis parameters

Bm0 = 1100

D = 1.00007 #delta

def Metropolis():

 global Dats_preit, Score_preit, seqs_preit

 Bmk = Bm0*(D**k)

 M = NUM_e**(

 - Bmk*(

 Score_preit

 - Score_posit))

 if random.random() < M:

 Dats_preit = Dats_posit

 Score_preit = Score_posit

 seqs_preit = seqs_posit

 return None

Box 4: Python Metropolis function

3.6 Simple Circuit Kinetic Model Design

The system to be modeled can be easily described with the following reactions:

{ 𝑚 + 𝑠: 𝑡
𝑘𝑠
→𝑚: 𝑠 + 𝑡

 𝑡 + 𝑐𝑙: 𝑇𝑆
𝑘𝐸
→ 𝑡: 𝑐𝑙 + 𝑇𝑆

 Eq. (8)

Where:

m : free miRNA concentration (μM)

s:t : sensor-transducer complex concentration (μM)

ks : transducer liberation kinetic constant (μM s-1)

m:s : miRNA-sensor complex concentration (μM)

t : free transducer concentration (μM)

cl:TS : clamp-T7p complex concentration (μM)

kE : T7p liberation kinetic constant (μM s-1)

t:cl : transducer-clamp complex concentration (μM)

TS : free T7p concentration (μM)

The kinetic constants of the reactions illustrated in Eq. (8) are unknown as the main

method of determining strand displacement reaction kinetic constants is by means of

experimental measures. Nevertheless, Zhang & Winfree (2009), in an attempt to model

the kinetic constants of these reactions, presented a simple flowchart which by taking

into account toehold length (n) and reaction mechanism (toehold mediated strand

displacement or toehold exchange) indicates an approximation of the kinetic constants

for each individual reaction. For both reactions presented previously, the mechanism

considered is toehold mediated strand displacement (having a value of m = 0 regarding

15

Zhang & Winfree’s flowchart) and both toeholds employed have a length of 6 nucleotides

(n = 6) (Table 2). This data concludes that the values of 𝑘𝑠 and 𝑘𝐸 is 0.5 μ𝑀−1𝑠−1.

As this system consists in two reactions, where the second one is limited by the species

produced on the first one, in order to describe the rate of T7p liberation, the rate of

transducer liberation has to be taken into account as well. For that purpose, the following

differential equations were inferred from the reactions:

{

𝑑𝑡

𝑑𝜏
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡

𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

 Eq. (9)

Where:

𝑑𝑡

𝑑τ
 : rate of transducer liberation (μM s-1)

𝑑𝑇𝑆

𝑑𝜏
 : rate of T7p liberation (μM s-1)

τ : time (s)

Furthermore, a mass balance of species has to be taken into account:

{

 𝑚𝑇𝑜𝑡𝑎𝑙 = 𝑚 +𝑚: 𝑠
 𝑡𝑇𝑜𝑡𝑎𝑙 = 𝑡 + 𝑠: 𝑡
 𝑇𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑐𝑙: 𝑇𝑆 + 𝑇𝑆

 Eq. (10)

Where:

iTotal : the total amount of species “i”, either free or not (μM)

The inclusion of Eq. (10) into Eq. (9) yields:

{

𝑑𝑡

𝑑τ
= 𝑘𝑠 · (𝑚𝑇𝑜𝑡𝑎𝑙 −𝑚: 𝑠) · (𝑡𝑇𝑜𝑡𝑎𝑙 − 𝑡)

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · (𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆)

 Eq. (11)

In addition, the next considerations can be done: as species m:s and species t are

generated in the same reaction, at the same rate and amount, they can be considered

equal; prior to further tweaking, this first model will consider that all total amounts of

species are equal (which means that there is the same concentration of each circuit

component and miRNA, being this value 1 μM). This yields the following expression:

{

𝑑𝑡

𝑑τ
= 𝑘𝑠 · (𝑐 − 𝑡)

2

𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · 𝑡 · (𝑐 − 𝑇𝑆)

 Eq. (12)

Where:

c : the total concentration of each species (1 μM)

16

At this point, Eq. (12) can easily undergo analytical integration:

∫
𝑑𝑡

(𝑐 − 𝑡)2

𝑡(𝜏)

0

= ∫ 𝑘𝑠𝑑𝜏
𝜏

0

;

𝑡 =
𝑘𝑠 · 𝑐

2 · τ

1 + 𝑘𝑠 · 𝑐 · τ
 Eq. (13)

Going back to Eq. (11), the value for t can be substituted, yielding:

𝑑𝑇𝑆

𝑑𝜏
= 𝑘𝐸 · (

𝑘𝑠 · 𝑐
2 · 𝜏

1 + 𝑘𝑠 · 𝑐 · 𝜏
) · (𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆) Eq. (14)

Eq. (14) can be subjected to analytical integration:

∫
𝑑𝑇𝑆

(𝑇𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑆)

𝑇𝑆(𝜏)

0

= 𝑘𝐸∫ (
𝑘𝑠 · 𝑐

2 · 𝜏

1 + 𝑘𝑠 · 𝑐 · 𝜏
) 𝑑𝜏

𝜏

0

;

𝑇𝑆 = 𝑐 · (1 −
(1 + 𝑘𝑠 · 𝑐 · τ)

𝑘𝐸/𝑘𝑠

𝑒𝑘𝐸·𝑐·τ
) Eq. (15)

Taking into account that in this particular case 𝑘𝑠 = 𝑘𝐸, Eq. (15) can be further simplified:

𝑇𝑆 = 𝑐 · (1 −
1 + 𝑘𝑠 · 𝑐 · τ

𝑒𝑘𝐸·𝑐·τ
) Eq. (16)

It is important to note that Eq. (16) overestimates the catalytic capacity of the circuit as

it assumes ideal conditions, kinetic constants and concentrations.

In addition, it should be noted again that for the sake of simplicity, the kinetic model

assumed that all species (including the input miRNA) are at the same concentration,

which is the ideal situation. But as this case is very rare, since miRNA concentrations in

biological samples are very small, a redesign of the circuit is necessary to ensure

amplification of a signal originating from a tiny amount of input, which in turn adds

complexity to its corresponding kinetic model.

3.7 Signal Amplification Circuit Components

Similar to the simple circuit in Figure 4, the initial state consists in an equilibrium in which

a single stranded molecule named fuel co-exists along the stable and pre-formed

complexes sensor-transducer and clamp-T7p.

The addition of miRNA triggers the circuit in exactly the same manner as the simple

circuit (Figure 4), but with the exception that fuel will displace miRNA from the miRNA-

sensor complexes, forming fuel-sensor complexes.

The purpose of this additional reaction is to liberate miRNA that might further react with

sensor-transducer complexes, generating therefore a cyclic signal amplification, as

illustrated in Figure 6.

17

Figure 6: Signal amplification circuit components and interactions

3.8 Signal Amplification Circuit Initial Sequence Design

The approach is inherited from the simple circuit design, but with a particularity: the

master sequence includes now a spacer of 5 nucleotides between the joining point of

the target miRNA sequence and T7p. The majority of the components become elongated

due to these 5 additional nucleotides, except clamp, whose elongation is avoided on

purpose to avoid its toehold elongation.

These 5 additional nucleotides will be part of the toehold that will promote fuel-sensor

formation and miRNA displacement and are randomly generated each time the algorithm

is executed. An example is shown below:

Table 3: Signal amplification circuit components initial sequence generation example

Master: TGGAGTGTGACAATGGTGTTTGNNNNNGCGCTAATACGACTCACTATAGG

miRNA (5’-3’): TGGAGTGTGACAATGGTGTTTG

sensor (3’-5’): ACCTCACACTGTTACCACAAACNNNNNCGC

transducer (5’-3’): GTGACAATGGTGTTTGNNNNNGCGCTAATACGACTCACTATAGG

clamp (3’-5’): CNNNNNCGCGATTATGCTGAGTGATATCC

T7p (5’-3’): GCGCTAATACGACTCACTATAGG

fuel (5’–3’): GTGACAATGGTGTTTGNNNNNGCG

The implementation in code is shown in Box 5:

#Random sequence builder

def randseq(length):

 out = ''

 for n in range(length):

 out += random.sample(NUCS, 1)[0]

 return out

#Define circuit core sequences generator

def genseq(miRNA, prom):

 n = len(miRNA)

 rootseq = (miRNA.upper()

 + randseq(5)

 + prom)

 sensor = revcomp(

 rootseq[: n+8])

 transducer = rootseq[6:]

This box continues on the next page

18

 clamp = revcomp(

 rootseq[n - 1 :])

 fuel = rootseq[6: n + 8]

 return (sensor,

 transducer,

 clamp,

 fuel)

Box 5: Python functions for signal amplification circuit initial sequence generation

3.9 Adaptation of the Objective Function

The addition of a new species, and therefore a new reaction, to the simple circuit (Figure

4) forces a modification of the objective function (Eq. (6)) employed for the circuit’s

scoring. It is necessary the addition of a term that takes into consideration the probability

of fuel-sensor complex formation. There is, however, a risk in favoring the formation of

fuel-sensor complex as it may cause an erroneous behavior of the circuit since fuel may

act as input, which is undesired. Nevertheless, this event doesn’t have the tendency to

occur as, although fuel-sensor may have a lower MFE than sensor-transducer, the

complex sensor-transducer is pre-formed and lacks the toehold that initiates the

formation of fuel-sensor (which was taken into account during the sequence design).

Therefore, fuel will only interact with miRNA-sensor complex and form sensor-transducer

because it has the toehold that allows its interaction with miRNA-sensor and the complex

fuel-sensor has a lower MFE than miRNA-sensor, causing this reaction to occur

spontaneously.

In a similar fashion as presented for the other components of the circuit, the probability

of fuel-sensor complex formation is the following:

𝑃5 =
𝑒−βΔ𝐺𝑓𝑢𝑒𝑙−𝑠𝑒𝑛𝑠𝑜𝑟

𝑒−βΔ𝐺𝑓𝑢𝑒𝑙−𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒−βΔ𝐺𝑚𝑖𝑅𝑁𝐴−𝑠𝑒𝑛𝑠𝑜𝑟
 Eq. (17)

The modified Objective Function that considers the Eq. (17) is illustrated in Eq. (18):

𝐹𝑠𝑐𝑜𝑟𝑒 = 𝑃1𝑃2𝑃3𝑃4𝑃5 (
6 − 𝑇

𝑇
) Eq. (18)

Eq. 18 will be employed during the optimization, just as previously mentioned in the

simple circuit. The corresponding code is a simple tweak from the code presented in Box

6, as it can be seen below:

#Define circuit sequence names

GUIDE = ['miRNA', 'sensor', 'transducer', 'clamp', 'T7p', 'fuel']

#Define Boltzmann function

def bolfunc(seq1, seq2, seq_DG):

 Pairkey = (seq1

 + '_'

 + seq2)

 Numerator = NUM_e**(- BETA*seq_DG[Pairkey])

 Denominator = Numerator

 if seq1 == GUIDE[0]:

 SecondKey = 'sensor_transducer'

This box continues on the next page

19

 elif seq1 == 'transducer':

 SecondKey = 'clamp_T7p'

 elif seq1 == 'fuel':

 SecondKey = GUIDE[0] + '_sensor'

 Denominator += NUM_e**(- BETA*seq_DG[SecondKey])

 func = Numerator/Denominator

 return func

#Define Packing and Scoring function.

def scorefunc(seqs):

 seq_DG = {}

 seq_ss = {}

 i = -1

 #Saves in a dictionary the MFE and structure of circuit pairs

 for seq1 in GUIDE[:-2]:

 i += 1

 seq2 = GUIDE[i + 1]

 name = (seq1

 + '_'

 + seq2)

 (ss, mfe) = RNA.cofold(

 (seqs[seq1]

 + '&'

 + seqs[seq2]))

 seq_DG[name] = mfe

 seq_ss[name] = (ss[: len(seqs[seq1])]

 + '&'

 + ss[(len(seqs[seq1])) :-1])

 (ss, mfe) = RNA.cofold(

 (seqs['fuel']

 + '&'

 + seqs['sensor']))

 seq_DG['fuel_sensor'] = mfe

 seq_ss['fuel_sensor'] = (ss[: len(seqs['fuel'])]

 + '&'

 + ss[(len(seqs['fuel'])) :-1])

 #Calculates pair probabilities and Score

 P1 = bolfunc(GUIDE[0], 'sensor', seq_DG)

 P2 = bolfunc('transducer', 'clamp', seq_DG)

 P3 = probfunc('sensor', 'transducer', seq_DG, seqs)

 P4 = probfunc('clamp', 'T7p', seq_DG, seqs)

 P5 = bolfunc('fuel', 'sensor', seq_DG)

 T = toeholdscore('sensor_transducer', seq_ss)

 score = P1*P2*P3*P4*P5*(6-T)/6

 dats = [P1,P2,P3,P4,P5,T,score]

 return dats

Box 6: Modified Python functions for Score Function calculus

20

The addition of a new species that can be subjected to mutation forces a modification in

the mutation function code presented in Box 7:

#Define mutation function

def mutf(seqs):

 seqs_aftermutation = {}

 #Creates a new dictionary with sequences

 for element in seqs:

 seqs_aftermutation[element] = seqs[element]

 #Creates a new guidelist excluding miRNA and T7p

 mutlist = GUIDE[1:-2] + [GUIDE[-1]]

 #Chooses a random base from a random sequence from ensemble

 target_name = random.sample(mutlist, 1)[0]

 target_seq = list(seqs[target_name])

 position = random.randint(0, (len(target_seq) - 1))

 base = random.sample(NUCS, 1)[0]

 while base == target_seq[position]:

 base = random.sample(NUCS, 1)[0]

 #Writes the mutated sequence

 target_seq[position] = base

 target_seq = ''.join(target_seq)

 seqs_aftermutation[target_name] = target_seq

 return seqs_aftermutation

Box 7: Modified Python mutation function

3.10 Signal Amplification Circuit Kinetic Model Design

In this case, the system to be modeled has a higher complexity as it takes into account

an additional reaction. Furthermore, approximations regarding total concentrations of the

components cannot be performed as this circuit’s purpose is to amplify a very low miRNA

input signal, thus it is interesting to elaborate a model that works with varying total miRNA

concentrations:

{

𝑚 + 𝑠: 𝑡
𝑘𝑠
→𝑚: 𝑠 + 𝑡

 𝑡 + 𝑐𝑙: 𝑇𝑆
𝑘𝐸
→ 𝑡: 𝑐𝑙 + 𝑇𝑆

 𝑓 + 𝑚: 𝑠
𝑘𝐹
→ 𝑓: 𝑠 + 𝑚

 Eq. (19)

Where:

f : free fuel concentration (μM)

f:s : fuel-sensor complex concentration (μM)

kF : miRNA liberation kinetic constant (μM s-1)

The kinetic constants of the reactions inherited from the simple model remain the same

as estimated previously by means of the flowchart provided by Zhang & Winfree (2009).

To estimate the value of 𝑘𝐹, the same approach was employed. In this case, the toehold

21

length is of 8 nucleotides (n = 8) (Table 3) while the mechanism remains the same (m =

0), yielding a value of approximately 3 μ𝑀−1𝑠−1. In order to describe the evolution of all

the system’s components with time, the following expressions were inferred:

{

𝑑𝑚

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡 + 𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑠: 𝑡

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡

𝑑𝑡

𝑑τ
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡 − 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑚: 𝑠

𝑑τ
= 𝑘𝑠 · 𝑚 · 𝑠: 𝑡 − 𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑐𝑙: 𝑇𝑆

𝑑τ
= −𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑡: 𝑐𝑙

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑓

𝑑τ
= −𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑓

𝑑τ
= 𝑘𝐹 · 𝑓 · 𝑚: 𝑠

 Eq. (20)

For a better understanding of the model, Eq. 20 can be simplified, yielding:

{

𝑑𝑚

𝑑τ
=
𝑑𝑠: 𝑡

𝑑τ
−
𝑑𝑓

𝑑τ

𝑑𝑠: 𝑡

𝑑τ
= −𝑘𝑠 · 𝑚 · 𝑠: 𝑡

𝑑𝑡

𝑑τ
= −(

𝑑𝑠: 𝑡

𝑑τ
+
𝑑𝑇𝑆

𝑑τ
)

𝑑𝑚: 𝑠

𝑑τ
= −

𝑑𝑚

𝑑τ

𝑑𝑐𝑙: 𝑇𝑆

𝑑τ
= −

𝑑𝑇𝑆

𝑑τ

𝑑𝑇𝑆

𝑑τ
= 𝑘𝐸 · 𝑡 · 𝑐𝑙: 𝑇𝑆

𝑑𝑡: 𝑐𝑙

𝑑τ
=
𝑑𝑇𝑆

𝑑τ

𝑑𝑓

𝑑τ
= −𝑘𝐹 · 𝑓 · 𝑚: 𝑠

𝑑𝑓: 𝑠

𝑑τ
= −

𝑑𝑓

𝑑τ

 Eq. (21)

In order to ease the modelling procedure, the previous system of differential equations

was integrated numerically by means of the tool “odeint” provided by SciPy python library

(SCIPY, 2019). In addition, parameters such as miRNA and fuel total concentration were

modified with the aim of characterizing the system’s behavior and finding the most

suitable fuel concentration for the circuit to operate efficiently, plus discovering the

miRNA concentration threshold for which the circuit would act as a viable alternative for

miRNA detection.

22

3.11 Leakage Prevention Strategy

As mentioned previously in this work, one of the main disadvantages of synthetic DNA

circuits is a spontaneous activation of the circuit in absence of input signal. This

phenomenon is known as leakage and it is caused by spontaneous fluctuations in

hybridization between strands due to temperature. Recently, two strategies that attempt

to cope with signal leak have become popular among synthetic biologists. The first

strategy, proposed by Wang et al. (2018) is to incorporate in the circuit’s design a series

of components that, similarly to the strategies employed in electrical engineering, act as

redundant blocks which in order to leak signal require a sequence of energetically

unfavorable events to happen, thus reducing leak occurrence. The second strategy,

proposed by Song et al. (2018), consists in the elaboration of a parallel circuit, with similar

characteristics as the main circuit, that works “in the shadow” of the main circuit, which

would leak signal at a similar rate than the main circuit. Both leaks are sequestered by

an AND gate, therefore the presence of signal in the absence of the shadow circuit’s leak

won’t get silenced. Although the shadow circuit’s leak would be constantly causing signal

loss (at a rate proportional to the shadow circuit’s leak), signal produced by presence of

input should occur at such a higher rate that the effect of the shadow circuit would be

negligible.

The latter strategy is considered most suitable for its application on this work’s circuit, as

it does not require a complete re-design of the circuit’s components (Figure 6). It was

considered that the main source of signal leak in the circuit was a spontaneous

dissociation of sensor-transducer, generating a free transducer that would displace T7p

from clamp-T7p complex, generating signal. An example of a proposed leaked signal

silencing is showed below:

Figure 7: Leaked signal silencing by shadow circuit

As seen in Figure 7, the shadow circuit would consist on species S2, T2, AND &

AND_clamp. The initial sequence design for the shadow circuit depends on the

sequence of the transducer, as it is essential for the design of AND & AND_clamp

species. S2 and T2 sequences are obtained from the sequences employed by Song et

al. (2018) in their own work and adapted for each circuit as complexes S2-T2 and sensor-

transducer should leak signal in a similar manner.

To accomplish that purpose, it is quite a good approximation to assume that their MFEs

should be equal (if not, similar) as signal leak depends on spontaneous strand

dissociation due to energy fluxes, which may cause the strands to overcome the energy

barrier that impedes them to break the complex.

Therefore, S2 and T2 are subjected to a round of guided evolution prior to the shadow

circuit’s sequence design in which their MFE is compared with the corresponding sensor-

transducer MFE. If said MFE is lower than the corresponding sensor-transducer MFE, a

mutation substituting a random C-G (or G-C) pair for a A-T (or T-A) pair is performed in

23

the S2-T2 interaction site, which reduces the complex’ MFE. If the MFE would be lower,

the contrary action is performed.

This simple approach is effective as the complex’ MFE is solely dependent on salt

concentration in the media and base composition. In the case where sensor-transducer

complex’ MFE was lower than -31kcal/mol, the S2-T2 binding sites would be enlarged

systematically (adding bases in a random manner), to enlarge the number of base pairs

that contribute towards the complex’ MFE. Once S2-T2 and sensor-transducer MFEs are

equal, it is safe to proceed towards the circuit’s sequence generation.

Similar as performed for the main circuit, the generation AND & AND_clamp species is

done by means of a master sequence, which in turn is elaborated through the

concatenation of the last 20 nucleotides of T2 sequence and the first 19 nucleotides of

the transducer sequence. An example of sequence design is shown in Table 4:

Master: CATCTCAAACACTCTATTCAGTGACAATGGTGTTTGGCG
Transducer(5’-3’): GTGACAATGGTGTTTGGCGCTAAT…
AND(3'-5'): GTAGAGTTTGTGAGATAAGTCACTGTTACCACAAACCGC
AND_clamp(5’-3’): AACACTCTATTCAGTGACAATGGTGT
T2(5’-3’): CACTCATCCTTTACATCTCAAACACTCTATTCA

Table 4: Shadow circuit sequence design example

The sequence design is implemented in code as shown in Box 8:

#Define shadow circuit constant components

shdw = {'S2': 'TGAGATGTAAAGGATGAGTGAGATG',

 'T2': 'CACTCATCCTTTACATCTCAAACACTCTATTCA'}

#Define shadow circuit generation function

def shadowcirc(transducer):

 outdict = {}

 for el in shdw:

 outdict[el] = shdw[el]

 MFE = RNA.cofold(

 seqs_preit['sensor']

 + '&'

 + seqs_preit['transducer'])[1]

 mfe = RNA.cofold(

 outdict['S2']

 + '&'

 + outdict['T2'])[1]

 b_area = outdict['S2'][:-5]

 if MFE < -31:

 times = int((MFE + 31)/3) + 4

 for n in range(times):

 b_area += random.sample(NUCS, 1)[0]

 while abs(MFE - mfe) > 0:

 target_index = random.randint(0, (len(b_area) - 1))

This box continues on the next page

24

 b_area = list(b_area)

 base = random.sample(NUCS, 1)[0]

 while base == b_area[target_index]:

 base = random.sample(NUCS, 1)[0]

 b_area[target_index] = base

 b_area = ''.join(b_area)

 outdict['S2'] = (b_area

 + outdict['S2'][-5:])

 outdict['T2'] = (revcomp(b_area)

 + outdict['S2'][-13:])

 mfe = RNA.cofold(

 outdict['S2']

 + '&'

 + outdict['T2'])[1]

 for el in NUCS:

 if (4*el) in b_area:

 mfe = 1e3

 master = (outdict['T2'][-20:]

 + transducer[:19])

 AND_clamp = master[7:-6]

 AND = revcomp(master)

 outdict['AND_clamp'] = AND_clamp

 outdict['AND'] = AND

 keyss = []

 for el in outdict.keys():

 keyss += [el]

 keyss.sort()

 return outdict, keyss

Box 8: Python functions for shadow circuit sequence design

4 Results and Discussion

4.1 Score Function convergence

As mentioned in Materials and methods, the mutations and selection to which the circuit

is subjected have the objective of maximizing the Score by, in turn, maximizing each of

the terms that compose the Score. The term 𝑃4, however, does never reach a value

close to 1, mainly because of 2 reasons: the complementarity between clamp and T7p

is at its maximum from the beginning, thus every mutation that would affect clamp is from

the beginning detrimental and the main function of the term 𝑃4 in the Score Function is

to avoid the algorithm from increasing the 𝑃2 term by lowering the Boltzmann function of

clamp-T7p, which increases the Score Function. Although the term 𝑃3 behaves in a

similar manner as the term 𝑃4 (as it has a similar function), it reaches a maximum value

25

of 1 because the Boltzmann function for sensor-transducer is easily higher than the

artificial Boltzmann function which it compares to, allowing in this case the occurrence of

mutations in sensor and transducer as long as their complex’ Boltzmann function

overcomes the artificial threshold.

In order to obtain a Score from which the quality of the circuit can be interpreted, and

considering that in every experimental run of the algorithm the value of 𝑃4 does not

change from iteration 0 to iteration 100000, a standardized score can be calculated by

dividing the value of the score by the value of 𝑃4 and multiplying by 100. Note that this

standardized score is not employed during the selection step as it does not conserve the

contribution of 𝑃4 towards the score.

To observe how the score value approaches a maximum with the given Metropolis

parameter 𝛽𝑀
0 ≈ 1100 during the runtime of the algorithm, Figure 8 was elaborated using

the standardized score.

Figure 8: Score convergence during algorithm run

As seen above, the algorithm fluctuates until reaching a maximum value approaching

100, being that value in this case 98.8364. To observe in detail how the score progresses,

a zoom in is made, resulting in Figure 9:

Figure 9: Score convergence during the first 500 iterations

26

The initial score is 3.2060, which increases steeply during the first iterations due to single

mutations. This is feasible as there are base pairs that have a higher impact on the MFE

of complexes as they may heavily affect the structure through forces of repulsion or

attraction. Additionally, it can be observed that from time to time, the score gets reduced,

which is result of accepting an unfavorable mutation due to the Metropolis function.

Nevertheless, several iterations later, a single mutation achieves to increase the score,

fact that could have not happened without the previous unfavorable mutation. Therefore,

it is safe to say that the randomicity provided by the Metropolis function during early

iterations indeed enables the Score to explore a wider space of probabilities, avoiding

getting stuck at local maximums, while restricting at higher iterations the loss of the

maximum encountered.

4.2 Metropolis effect on Score

Although there is evidence that the Metropolis function and its proposed parameters

contribute in the randomization of the selection without being detrimental, it is not directly

known how the modification of its parameters would affect the algorithm.

The effect of 𝛿 (Eq. (7)) is straightforward to foresee, as it represents a reduction in the

probability of accepting a detrimental mutation. If this term would be equal to 1, the

Metropolis Function would act as a constant threshold, therefore the probability of

accepting a detrimental mutation would be only determined by the random number

generation and the value of 𝛽𝑀
0 . If the term would be lower than 1, it would increase the

probability of accepting a detrimental mutation, causing the Score not to converge

towards a maximum. If the term would be much higher than 1, randomicity would not be

evenly distributed along the iteration numbers, meaning that there would only be

randomicity during the first 5 iterations while being absent during the remaining 9995

iterations (for example). As the effect of 𝛿 is so sensitive to small changes, it is better not

to rely on it to control the effect of the Metropolis function.

On the other hand, the effect of 𝛽𝑀
0 (Eq. (7)) is less clear. It defines the initial probability

of accepting a detrimental mutation, which is reduced with each iteration by means of

the 𝛿 constant. However, it is unknown how the algorithm behaves under different values

of 𝛽𝑀
0 . With the purpose of analyzing this effect, the Score convergence was studied in

a similar manner as done previously in this work, but with different values for 𝛽𝑀
0 while

maintaining constant the input miRNA, which is the same as the one employed in the

sequence design step (Table 2 & Table 3). The resulting figure is shown below:

Figure 10: Metropolis beta effect on Score convergence

27

It can be observed that the 𝛽𝑀
0 values below the proposed constant 𝛽𝑀

0 = 1100 have the

general effect of avoiding Score convergence towards a value approaching 100 but

sinking the score towards 0. There is, however, the exception of 𝛽𝑀
0 = 220 and 𝛽𝑀

0 = 660,

as these two 𝛽𝑀
0 values allowed the Score to converge close to 100. The reason behind

these behaviors is that a lower 𝛽𝑀
0 value increases the probability of accepting a

detrimental mutation, which may allow that various detrimental mutations in a row

accumulate, sinking the score significantly. In addition, because of the Metropolis

function getting more and more stringent as iterations increase, the algorithm will not be

able to recover from this low score, therefore getting stuck at a minimum, which is usually

0. The excellent performance of 𝛽𝑀
0 = 220 and 𝛽𝑀

0 = 660 can be explained by means of

two phenomena: a good initial Score and single mutations whose effect on the complex’

MFE is vastly favorable. The initial Score of the circuit depends exclusively on the circuit

sequence design step, in which there are 5 nucleotides that are generated randomly

each time the algorithm is executed (Table 3), so by having a better initial Score, the

stability of the complexes is higher, which means that they may suffer a couple

detrimental mutations in a row without dramatically sinking the score. On the other hand,

the effect of single mutations with great effect on MFE depends exclusively on luck, as

mutations are completely random, and chances are higher that mutations are detrimental

rather than favorable, that is why there is a need for a 𝛽𝑀
0 that limits the amount of

detrimental mutations accepted by the algorithm.

On the other hand, 𝛽𝑀
0 values above the proposed constant 𝛽𝑀

0 = 1100 have the effect

of trapping the algorithm on local maximums if the right mutations do not occur, as there

is a reduced randomicity, which means a reduced ability to explore the space of

probabilities. This effect can be clearly observed with 𝛽𝑀
0 values 1320, 1540, 1980 and

2200, whose final scores are stuck at 92.62, 79.39, 79.40 and 76.14 respectively. This

effect is not observed with 𝛽𝑀
0 = 1760, which has a final score of 99.88. This exception

is probably due to encountering the appropriate mutations that directly sent the score

towards the maximum, an event which has very low probabilities to occur if the “local

scanning” of the space of probabilities is reduced with such value of 𝛽𝑀
0 . What was

expected from 𝛽𝑀
0 = 1760 is to get stuck at a similar score than 𝛽𝑀

0 = 1320 and 𝛽𝑀
0 =

1540.

It is very important to remark that the exceptions encountered during this analysis are

not exclusive to their associated 𝛽𝑀
0 values, which means that in a repetition of the

experiment, there might be other values 𝛽𝑀
0 which suffer these exceptions as the

explanations provided can be applied to every 𝛽𝑀
0 value. Nevertheless, the general

behaviors observed advocate for 𝛽𝑀
0 = 1100 as a value that balances randomicity and

robusticity in the Metropolis function and allows a good performance of the algorithm,

although it could be possible to “fine tune” this value for an increased performance or

even to reduce the number of iterations needed for an acceptable result. Another

possible modification could be adjusting the 𝛽𝑀
0 value depending on the initial score of

the circuit, prior entering the evolution phase.

4.3 Algorithm Results Simulation

The quality of the generated circuit is assessed by the algorithm by means of the Score.

However, the degree of reliability of said Score is unknown as it only considers the

probability of complex formation by the species conforming the circuit and the absence

of an unwanted free toehold. To check that the circuit the algorithm yields is functional,

a simulation of the equilibrium states with and without input miRNA was performed

28

through the NUPACK 3.2.2 (Dirks & Pierce, 2003; Dirks & Pierce, 2004; Dirks et al.,

2007) suite. The initial concentrations considered for all species was 1 µM. Furthermore,

the resulting concentrations in both equilibria were standardized dividing them by 1 µM

and multiplying by 100, obtaining this way a percentage of species present in the

equilibrium. Species present in a proportion lower than 0.1% were considered absent.

Two circuits were passed through the simulation: the first was produced through mutation

plus selection, yielding a score of 97.55, while the second was produced by random

mutations without selection by defining 𝛽𝑀
0 = 0, having a score of 2.97·10-14. The results

are shown in Figures 11 & 12.

Figure 11: Equilibrium states simulation comparison of a good scoring circuit

Figure 12: Equilibrium states simulation comparison of a bad scoring circuit

As seen in Figure 11, the equilibriums states of the good-scoring circuit are very similar

to the ideal equilibrium states shown in Figure 5. In both equilibriums, there is a small

amount of noise, when considering T7p in the equilibrium in absence of input miRNA

and the complex clamp-T7p in the equilibrium where input miRNA is present. The first

one represents background noise while the second represents signal that is not liberated.

29

Oppositely, in Figure 12, both equilibriums are displayed simultaneously to highlight that,

first, there are none of the complexes intended to exist, and second, that there are no

differences between states (except the absence of input miRNA). At this point it is safe

to conclude that the Score given by the algorithm is truly related to the quality of the

circuit generated.

4.4 Kinetic Model Results

4.4.1 Simple Circuit Kinetic Model

Eq. (16) analytically assesses the rate at which T7p is liberated in presence of 1 μM input

miRNA and serves as the maximum theoretical rate at which T7p is liberated, since

having an amount of 1 μM input miRNA means having all species of the circuit at the

same concentration, favoring collisions between them that start the reaction cascade.

Nevertheless, to check that the analytical integration has been performed correctly, the

rate at which T7p is liberated have been simultaneously estimated through numerical

integration (taking 1 μM as initial concentration value for all initial components of the

circuit) of the system shown in Eq. (9), as seen in Figure 13.

Figure 13: Comparison between T7p analytical and numerical integration

The integration seems accurate as the average error on the values is 1.14·10-10 M, which

is equivalent to 1.14·10-4 μM. This difference is probably due to the method employed in

the numerical integration and Python’s memory capacity to keep track of decimal

numbers. It can be concluded that the circuit can reach a maximum signal emission

(maximum T7p liberation) at around 15 seconds since input miRNA addition.

4.4.2 Signal Amplification Circuit Kinetic Model

The addition of fuel modifies the model as it interacts with species miRNA-sensor, which

has a great effect on all other components of the circuit. A numerical integration of Eq.

(21) with initial values 1 μM for all initial components of the circuit yielded the model

shown in Figure 14.

30

Figure 14: Kinetic model for all species participating in the circuit

The addition of fuel to the circuits slows down the reactions from around 15 seconds to

around 100. The cause may be the interference of fuel as the reaction in which fuel

displaces miRNA from the miRNA-sensor complex liberates miRNA at much higher rate

than miRNA binds to sensor, slowing down the overall circuit. Although the effect of fuel

is intended to accelerate the liberation of T7p rather than slowing it down, in the tested

conditions (1 μM of input miRNA), it may not be convenient to add this species.

Nevertheless, fuel may have a positive effect when signal amplification is actually

needed, such as when input miRNA concentrations are very low. In addition, the effects

of fuel initial concentration variation are unknown.

4.4.3 Fuel Concentration Effect on Kinetic Model

With the aim of discerning the effect on fuel concentration variation, different fuel

concentrations were employed while keeping constant all the other components

concentrations (including miRNA). The result is illustrated in Figure 15:

Figure 15: T7p concentration evolution at 1 μM input miRNA under the effect of different fuel concentrations

Fuel concentrations ranging from 1·10-4 μM to 1 μM yield a similar behavior on T7p

production. This effect is due to the limiting reagent miRNA-sensor complex in the

31

reaction in which fuel displaces miRNA from said complex. However, when reducing fuel

concentration below 1 μM, a drop in the rate of T7p production can be observed.

Nevertheless, the effects observed are not dramatic since the miRNA concentration in

this experiment was of 1 μM. To observe a more drastic change, miRNA concentration

should be reduced. Figure 16 below employs a miRNA concentration of 1 pM:

Figure 16: T7p concentration evolution at 1 pM input miRNA under the effect of different fuel concentrations

Note that due to the slowness of the reaction, the time axis ranges up to 10 million

seconds, which is around 3 months and 26 days. Figure 16 allows a better visualization

of the effect of fuel concentration in T7p liberation. There is a sharp drop of reaction

speed between fuel at 1 μM and fuel at 0.1 μM and it seems to indicate that the fuel

concentration, when miRNA concentration is very low, marks the horizontal asymptote

the function is approaching to. To prove this property, the procedure is repeated but with

fuel concentrations ranging from 1 μM to 0.1 μM, as seen in Figure 17:

Figure 17: T7p concentration evolution at 1 pM miRNA under fuel concentrations ranging from 0 to 1 μM

In Figure 17, when miRNA concentration is low, fuel concentration determines the

maximum amount of T7p that the circuit can liberate, as fuel displaces miRNA from

miRNA-sensor complex, it allows to reuse this miRNA as fresh input. This cycle is

interrupted when all fuel is consumed. It is safe to conclude that the ideal amount of fuel

32

concentration in the circuit is 1 μM as it allows, although after a long time, the liberation

of all the T7p in the circuit when triggered by low concentrations of miRNA. If more fuel

was added, no significant improvement can be observed, while if adding less, the circuit

underperforms.

4.4.4 Concentration of Input miRNA Effect on Reaction Time

In Figures 16 & 17 there were hints that lowering miRNA concentration caused reaction

time to increase, as it takes more time for a small amount of miRNA to encounter and

react with sensor-transducer complex. Up until now in this work, for the sake of simplicity

most of the time it was considered that the input miRNA concentration was 1 μM, the

same as the other circuit components. The T7p liberation rate with different miRNA

concentrations was computed in order to observe the effect on reaction time:

Figure 18: T7p concentration evolution under the effect of different input miRNA concentrations

As expected, Figure 18 shows that an increase in 1 order of magnitude (10 μM) of the

standard input miRNA concentration barely has any effect on T7p liberation. This effect

can be explained through the reaction in which miRNA displaces transducer from sensor-

transducer complex, as with excess miRNA but a fixed amount of sensor-transducer, this

species turn into the limiting reagent that will govern the remaining reactions taking place

in the circuit. However, when reducing 1 order of magnitude instead (0.1 μM), the circuit’s

performance suffers a sharp drop, which reduces the rate of transducer displacement

from complex sensor-transducer by miRNA which, again, will govern the remaining

reactions of the circuit. This effect becomes more notable when reducing another order

of magnitude (0.01 μM). If reducing input miRNA concentration even further, in an

interval of 100 seconds there will be barely any T7p liberated, thus needing more reaction

time to be able to detect any signal at all.

To discover the relationship that rules miRNA concentration and reaction time, the time

until T7p reached a concentration of 0.95 μM was recorded for different values of miRNA

concentration (in μM). The base 10 logarithms of both data pairs were plotted, and a

linear regression was performed. Results are shown in Figure 19.

33

Figure 19: Relation between the log base 10 of miRNA concentration and log 10 reaction time until 0.95 μM
T7p is liberated

As seen in Figure 19 above, the relationship between base 10 logarithm of reaction time

and the base 10 logarithm of miRNA concentration is almost linear, yielding an R2 value

of 0.979. In order to visualize better how this relationship really is, Eq. (22), given by the

linear regression, is solved for reaction time:

𝑙𝑜𝑔10(𝜏) = −0.83 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] + 1.38; Eq. (22)

𝜏 = 10𝑙𝑜𝑔10([𝑚𝑖𝑅𝑁𝐴]
−0.83) · 101.38;

τ = 23.99 · [𝑚𝑖𝑅𝑁𝐴]−0.83 Eq. (23)

To predict the increase in reaction time due to a decrease of the order of magnitude of

miRNA concentration, Eq. (23) is modified into:

τ = 23.99 · 10−0.83𝑥 Eq. (24)

Where:

x: the order of magnitude of miRNA concentration.

Plotting this function yields Figure 20.

34

Figure 20: Relation between miRNA concentration order of magnitude (in μM) and reaction time until 0.95
μM T7p is liberated

As seen above, the reaction time increases dramatically with the decrease of miRNA

concentration. In addition, Eq. (22) can establish an approximated detection threshold of

the circuit by establishing a maximum reaction time. This maximum is set to 1 week

(6.048·105 s) as current miRNA detection systems do not take longer periods of time to

give a valid result.

𝑙𝑜𝑔10(𝜏) = −0.83 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] + 1.38; Eq. (22)

1.38 − 𝑙𝑜𝑔10(𝜏)

0.83
= 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] ;

1.38 − 𝑙𝑜𝑔10(6.048 · 10
5)

0.83
= 𝑙𝑜𝑔10[𝑚𝑖𝑅𝑁𝐴] = −5.30

The threshold is around 10-5 μM, which is equivalent to 10 pM. Concentrations below this

value will have a reaction time that is much too large for this system to be compelling as

a quick miRNA detection system.

4.5 Shadow Circuit Result Simulation

In order to analyze the performance of the Shadow Circuit in signal leak silencing, two

equilibria are simulated by means of the NUPACK 3.2.2 suite. The first equilibrium, that

represents a state in which the sensor-transducer complex has no signal leak is

supposed to have in its equilibrium state the following species: sensor-transducer, S2-

TS, AND-AND_clamp. The second equilibrium, that represents a state in which there is

maximum leak (in this case due to the low concentration of sensor and S2 which yields

high concentrations of free transducer and T2) is supposed to have the following species

in its equilibrium: transducer-AND-T2, AND_clamp. The corresponding simulation results

are shown in Figures 21 & 22.

35

Figure 21: Species present at the "Without leak" equilibrium

Figure 22: Species present at the "Maximum leak" equilibrium

Figure 21 almost shows the ideal species expected to be in the equilibrium where no

leak occurs while Figure 22 shows a predominance of species that are only supposed

to be at the equilibrium without leak (note that due to the low concentration of sensor and

S2, instead of observing species sensor-transducer and S2-T2, free transducer and T2

are observed instead). However, there is a 30% abundance of the complex

transducer_AND_T2, indicating that the shadow circuit does kidnap transducer in

presence of free T2, assuming that both should come from a leakage with similar kinetics.

Nevertheless, the low amount of species transducer_AND_T2 in the equilibrium may

indicate that further work should be done in order to optimize the spontaneity of complex

formation by means of guided evolution.

5 Conclusions

In the wake of the different results obtained in this work regarding score convergence,

randomicity, kinetics and outputs, it is safe to conclude the algorithm is a functional tool

that generates viable circuits which could perform in an adequate manner when the input

miRNA concentration is higher than 10pM.

36

The in silico design of strand displacement DNA circuits for miRNA detection opens the

expectations of a mass production of kits for miRNA detection which may be employed

as routine tests in clinic, in underdeveloped countries or even at home, which along with

the new discovery of miRNA biomarkers for cancers and neurodegenerative diseases

may suppose a turning point in modern diagnostics for these diseases.

However, there are still several limitations to be considered regarding the algorithm

developed in this work: the algorithm has a strong dependence of randomicity (at the

Metropolis function and the initial sequence generation) which may cause the score to

be initially low and to accumulate detrimental mutations that cause the score to not to

converge. This means that a single miRNA may cause the algorithm to produce many

different good and bad results; output analysis have been performed by the Nupack suite,

which is only a simulation tool meaning that experimental testing for the generated

circuits may be necessary to improve the algorithm. Another issue related with Nupack

is that this tool considers all species to be individual strands when performing the

analysis while in reality, most species are pre-hybridized as initial complexes, thus

circuits that may not show good results on the Nupack simulation tool could still work

properly in reality; the kinetic model is based on theoretical approaches and should be

fine-tuned by means of experimental measures.

6 Bibliography

Balcells, I., Cirera, S. & Busk, P.K. (2011). Specific and sensitive quantitative RT-PCR

of miRNAs with DNA primers. BMC Biotechnol, 11: 70.

Bassi, S. (2010). Python for bioinformatics. Boca Raton, FL: CRC Press.

Catalanotto, C., Cogoni, C., & Zardo, G. (2016). MicroRNA in Control of Gene
Expression: An Overview of Nuclear Functions. International Journal Of Molecular
Sciences, 17(10): 1712.

Chatterjee, A., Leichter, A., Fan, V., Tsai, P., Purcell, R., Sullivan, M., & Eccles, M. (2015).

A cross comparison of technologies for the detection of microRNAs in clinical FFPE

samples of hepatoblastoma patients. Scientific Reports, 5: 10438.

Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M.,

Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., Guegler, K. J.

(2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,

33(20): e179.

Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007).
Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev, 49:65-88.

Dirks, R. M. & Pierce, N. A. (2004). An algorithm for computing nucleic acid base-pairing
probabilities including pseudoknots. J Comput Chem, 25:1295-1304.

Dirks, R. M. & Pierce, N. A. (2003). A partition function algorithm for nucleic acid
secondary structure including pseudoknots. J Comput Chem, 24:1664-1677.

Draghici, S., Khatri, P., Eklund, A., & Szallasi, Z. (2006). Reliability and reproducibility

issues in DNA microarray measurements. Trends Genetics, 22(2): 101–9.

http://www.nupack.org/home/epubs.siam.org/doi/abs/10.1137/060651100
http://www.nupack.org/home/onlinelibrary.wiley.com/doi/10.1002/jcc.10296/abstract
http://www.nupack.org/home/onlinelibrary.wiley.com/doi/10.1002/jcc.20057/abstract

37

Ekmekci, B., McAnany, C., & Mura, C. (2016). An Introduction to Programming for

Bioscientists: A Python-Based Primer. PLOS Computational Biology, 12(6), e1004867

Heron, M.P. (2018) Deaths: Leading Causes for 2016. National Vital Statistics Reports;
Centers for Disease Control and Prevention: Atlanta, GA, USA; 67

Kumar, P., Dezso, Z., MacKenzie, C., Oestreicher, J., Agoulnik, S., Byrne, M., Bernier,
F., Yanagimachi, M., Aoshima, K. & Oda, Y. (2013). Circulating miRNA Biomarkers for
Alzheimer's Disease. PLoS ONE, 8(7): e69807.

Li, J., Batcha, A., Gaining, B., & Mansmann, U. (2015). An NGS workflow blueprint for

DNA sequencing data and its application in individualized molecular oncology. Cancer

Informatics, 14(Suppl 5): 87–107.

Lorenz, R., Bernhart, S., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P., &

Hofacker, I. (2011). ViennaRNA Package 2.0. Algorithms For Molecular Biology, 6(1):

26.

Moody, L., He, H., Pan, Y., & Chen, H. (2017). Methods and novel technology for

microRNA quantification in colorectal cancer screening. Clinical Epigenetics, 9(1): 119.

PLOTLY. Viewed on May 1st, 2019. Available at: https://plot.ly

Pockar, S., Globocnik Petrovic, M., Peterlin, B., & Vidovic Valentincic, N. (2019). MiRNA

as biomarker for uveitis - A systematic review of the literature. Gene, 696, 162-175.

PYTHON SOFTWARE FOUNDATION. Viewed on May 1st, 2019. Available at:

https://www.python.org/

Qiu, L., Tan, E., & Zeng, L. (2015). microRNAs and Neurodegenerative

Diseases. Advances In Experimental Medicine And Biology, 85-105.

Redshaw, N., Wilkes, T., Whale, A., Cowen, S., Huggett, J., & Foy, C. (2013). A

comparison of miRNA isolation and RT-qPCR technologies and their effects on

quantification accuracy and repeatability. BioTechniques, 54(3): 155–64.

Salis, H., Mirsky, E., & Voigt, C. (2009). Automated design of synthetic ribosome binding

sites to control protein expression. Nature Biotechnology, 27(10), 946-950.

SCIPY. Viewed on June 3rd, 2019. Available at: https://www.scipy.org/

Seelig, G., Soloveichik, D., Zhang, D., & Winfree, E. (2006). Enzyme-Free Nucleic Acid

Logic Circuits. Science, 314(5805), 1585-1588.

Song, T., Gopalkrishnan, N., Eshra, A., Garg, S., Mokhtar, R., & Bui, H. et al. (2018).

Improving the Performance of DNA Strand Displacement Circuits by Shadow

Cancellation. ACS Nano, 12(11), 11689-11697.

Soriano, J., Rojas-Rueda, D., Alonso, J., Antó, J., Cardona, P., Fernández, E., Garcia-

Basteiro, A., Benavides, F., Glenn, S., Krish, V., Lazarus, J., Martínez-Raga, J., Masana,

M., Nieuwenhuijsen, M., Ortiz, A., Sánchez-Niño, M., Serrano-Blanco, A., Tortajada-

Girbés, M., Tyrovolas, S., Haro, J., Naghavi, M. & Murray, C. (2018). The burden of

disease in Spain: Results from the Global Burden of Disease 2016. Medicina Clínica

(English Edition), 151(5): 171-190.

https://plot.ly/
https://www.python.org/
https://www.scipy.org/

38

Srinivas, N., Ouldridge, T., Šulc, P., Schaeffer, J., Yurke, B., & Louis, A. et al. (2013). On

the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids

Research, 41(22), 10641-10658.

Wahid, F., Shehzad, A., Khan, T., & Kim, Y. (2010). MicroRNAs: Synthesis, mechanism,

function, and recent clinical trials. Biochimica Et Biophysica Acta (BBA) - Molecular Cell

Research, 1803(11), 1231-1243.

Wang, B., Thachuk, C., Ellington, A., Winfree, E., & Soloveichik, D. (2018). Effective

design principles for leakless strand displacement systems. Proceedings Of The

National Academy Of Sciences, 115(52), e12182-e12191.

Wang, B., & Xi, Y. (2013). Challenges for microRNA microarray data analysis.

Microarrays (Basel), 2(2): 34–50.

Wang, K., Yuan, Y., Cho, J., McClarty, S., Baxter, D., & Galas, D. (2012). Comparing the

MicroRNA Spectrum between Serum and Plasma. Plos ONE, 7(7): e41561.

Wittmann, J. & Jäck, H. (2010). Serum microRNAs as powerful cancer

biomarkers. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1806(2): 200-

207.

Wu, D., Hu, Y., Tong, S., Williams, B., Smyth, G., & Gantier, M. (2013). The use of

miRNA microarrays for the analysis of cancer samples with global miRNA decrease.

RNA, 19(7): 876–88.

Zhang, D., Turberfield, A., Yurke, B., & Winfree, E. (2007). Engineering Entropy-Driven

Reactions and Networks Catalyzed by DNA. Science, 318(5853), 1121-1125.

Zhang, D., & Seelig, G. (2011). Dynamic DNA nanotechnology using strand-

displacement reactions. Nature Chemistry, 3(2), 103-113.

Zhang, D., & Winfree, E. (2009). Control of DNA Strand Displacement Kinetics Using

Toehold Exchange. Journal Of The American Chemical Society, 131(47), 17303-17314.

39

7 Annex I: Python code of the developed algorithm. Note that

“'/home/lugoibel/ViennaRNA/interfaces/Python3'” and

“'/home/lugoibel/nupack3.2.2/python'” are the absolute paths of the ViennaRNA python

library and the Nupack wrapper (Salis et al., 2009) (Annex II) employed in this work.

import sys

import subprocess

import random

import datetime

import time

sys.path.append('/home/lugoibel/ViennaRNA/interfaces/Python3')

sys.path.append('/home/lugoibel/nupack3.2.2/python')

import RNA

from NuPACK import NuPACK

import plotly.plotly as py

import plotly.offline as offline

import plotly.graph_objs as go

DEFINITION OF PARAMETERS #

#Start time

start_time = time.time()

#Vienna parameters:

 #Mathews parameterfile

RNA.read_parameter_file(

 '/home/lugoibel/ViennaRNA/misc/dna_mathews2004.par')

 #No dangles

RNA.cvar.dangles = 0

 #No coversion from DNA into RNA

RNA.cvar.nc_fact = 1

#Define nucleotides

NUCS = ['A','T','G','C']

#Define circuit sequence names

GUIDE = [

 'miRNA',

 'sensor',

 'transducer',

 'clamp',

 'T7p',

 'fuel']

#Boltzmann function parameters

BETA = 1/0.593

NUM_e = 2.7182818284590452353

DGbp = -1.25

#Metropolis parameters

Bm0 = 1100 #con 1e3 no converge

D = 1.00007

#Define shadow circuit constant components

shdw = {'S2': 'TGAGATGTAAAGGATGAGTGAGATG',

 'T2': 'CACTCATCCTTTACATCTCAAACACTCTATTCA'}

Annex I: Python code of the developed algorithm (continues on the next page)

40

DEFINITION OF FUNCTIONS #

#Define command line input system

def cmdinput():

 global USERINPUT

 global GUIDE

 looping = True

 while looping:

 if 'U' in USERINPUT:

 USERINPUT = USERINPUT.replace(

 'U','T')

 UNIQ = set(USERINPUT)

 #Checks if input is a sequence of adequate length

 if (UNIQ.issubset(NUCS) and

 len(USERINPUT) >= 20):

 seqs_preit[GUIDE[0]] = USERINPUT[:25]

 looping = False

 #Checks if input is meant to be a test

 elif USERINPUT == 'TEST':

 GUIDE = ['Rodrigo_miRNA'] + GUIDE[1:]

 seqs_preit['Rodrigo_miRNA'] = 'TGGAGTGTGACAATGGTGTTTG'

 looping = False

 #Exit system

 elif USERINPUT == 'EXIT':

 exit()

 #Retry input if previous statements are false

 else:

 USERINPUT = input(

 'Enter a VALID input: '

).upper()

 return None

#Define fasta file input system. Saves data in a dictionary as

#key = header and value = sequence, only if the sequence is

#adequate

def fileinput():

 dict = {}

 for line in open(USERINPUT):

 line = line.strip('\n')

 if line[0] == '>':

 key = line[1:].split()[0]

 value = ''

 else:

 value += line

 if (set(value).issubset(NUCS) and

 len(value) >= 20):

 dict[key] = value[:25]

Annex I: Python code of the developed algorithm (continues on the next page)

41

 return dict

#Define reverse complementary generator

def revcomp(seq):

 seq = seq.upper(

).replace('A','t'

).replace('T','a'

).replace('G','c'

).replace('C','g'

)[::-1].upper()

 return seq

#Random sequence builder

def randseq(length):

 out = ''

 for n in range(length):

 out += random.sample(NUCS, 1)[0]

 return out

#Define circuit core sequences generator

def genseq(miRNA, prom):

 n = len(miRNA)

 rootseq = (miRNA.upper()

 + randseq(5)#'TATTC'

 + prom)

 sensor = revcomp(

 rootseq[: n+8])

 transducer = rootseq[6:]

 clamp = revcomp(

 rootseq[n - 1 :])

 fuel = rootseq[6: n + 8]

 return (sensor,

 transducer,

 clamp,

 fuel)

#Define Boltzmann function

def bolfunc(seq1, seq2, seq_DG):

 Pairkey = (seq1

 + '_'

 + seq2)

 Numerator = NUM_e**(- BETA*seq_DG[Pairkey])

 Denominator = Numerator

 if seq1 == GUIDE[0]:

 SecondKey = 'sensor_transducer'

 elif seq1 == 'transducer':

 SecondKey = 'clamp_T7p'

 elif seq1 == 'fuel':

 SecondKey = GUIDE[0] + '_sensor'

 Denominator += NUM_e**(- BETA*seq_DG[SecondKey])

Annex I: Python code of the developed algorithm (continues on the next page)

42

 func = Numerator/Denominator

 return func

#Define function for probability calculation employed in

#secondary pairments

def probfunc(seq1, seq2, seq_DG, seqs):

 Pairkey = (seq1

 + '_'

 + seq2)

 Numerator = NUM_e**(- BETA*seq_DG[Pairkey])

 if seq1 == 'sensor':

 L = 19

 if seq1 == 'clamp':

 L = len(seqs[GUIDE[4]])

 Denominator = NUM_e**(- BETA*L*DGbp)

 func = Numerator/Denominator

 if func > 1:

 func = 1

 return func

#Define toehold score function

def toeholdscore(name, seq_ss):

 DIST = (len(seqs_preit['transducer'])

 - len(seqs_preit['T7p'])

 + 3)

 struct = seq_ss[name].split(

 '&'

)[1][(DIST-6):DIST]

 j = 0

 for symbol in struct:

 if symbol == '.':

 j += 1

 return j

#Define Packing and Scoring function.

def scorefunc(seqs):

 seq_DG = {}

 seq_ss = {}

 i = -1

 #Saves in a dictionary the MFE and structure of circuit pairs

 for seq1 in GUIDE[:-2]:

 i += 1

 seq2 = GUIDE[i + 1]

 name = (seq1

 + '_'

 + seq2)

 (ss, mfe) = RNA.cofold(

 (seqs[seq1]

 + '&'

 + seqs[seq2]))

Annex I: Python code of the developed algorithm (continues on the next page)

43

 seq_DG[name] = mfe

 seq_ss[name] = (ss[: len(seqs[seq1])]

 + '&'

 + ss[(len(seqs[seq1])) :-1])

 (ss, mfe) = RNA.cofold(

 (seqs['fuel']

 + '&'

 + seqs['sensor']))

 seq_DG['fuel_sensor'] = mfe

 seq_ss['fuel_sensor'] = (ss[: len(seqs['fuel'])]

 + '&'

 + ss[(len(seqs['fuel'])) :-1])

 #Caulculates pair probabilities and Score

 P1 = bolfunc(

 GUIDE[0],

 'sensor',

 seq_DG)

 P2 = bolfunc(

 'transducer',

 'clamp',

 seq_DG)

 P3 = probfunc(

 'sensor',

 'transducer',

 seq_DG,

 seqs)

 P4 = probfunc(

 'clamp',

 'T7p',

 seq_DG,

 seqs)

 P5 = bolfunc(

 'fuel',

 'sensor',

 seq_DG)

 T = toeholdscore('sensor_transducer', seq_ss)

 score = P1*P2*P3*P4*P5*(6-T)/6

 dats = [P1,P2,P3,P4,P5,T,score]

 return dats

#Define mutation function

def mutf(seqs):

 seqs_aftermutation = {}

 #Creates a new dictionary with sequences

 for element in seqs:

 seqs_aftermutation[element] = seqs[element]

 #Creates a new guidelist excluding miRNA and T7p

 mutlist = GUIDE[1:-2] + [GUIDE[-1]]

 #Chooses a random base from a random sequence from ensemble

Annex I: Python code of the developed algorithm (continues on the next page)

44

 target_name = random.sample(mutlist, 1)[0]

 target_seq = list(seqs[target_name])

 position = random.randint(0, (len(target_seq) - 1))

 base = random.sample(NUCS, 1)[0]

 while base == target_seq[position]:

 base = random.sample(NUCS, 1)[0]

 #Writes the mutated sequence

 target_seq[position] = base

 target_seq = ''.join(target_seq)

 seqs_aftermutation[target_name] = target_seq

 return seqs_aftermutation

#Define a function that interprets NuPACK output files

def eqcon(dict, guide):

 outlist = []

 outdict = {}

 for el in dict['complexes_concentrations']:

 stand = round((float(el[-1])/1e-8), 2)

 if stand < 0.1:

 continue

 cmplx = list(map(int, el[0:-2]))

 name = []

 i = -1

 for n in cmplx:

 i += 1

 if n:

 name += n*[guide[i]]

 name = '_'.join(name)

 outlist += [name]

 outdict[name] = [el[-1], stand]

 return outlist, outdict

#Define test-tube prediction of final equilibriums by means of NuPACK

def test_tube(seqs, guide):

 print('Calculating test-tube NuPACK simulation')

 seq_list = []

 concent = [1e-6, 1e-6]

 if 'fuel' not in guide:

 concent += [1e-6, 1e-6]

 for el in guide:

 seq_list += [seqs[el]]

 eq_1 = NuPACK(

Annex I: Python code of the developed algorithm (continues on the next page)

45

 Sequence_List=seq_list,

 material='dna')

 eq_2 = NuPACK(

 Sequence_List=seq_list,

 material='dna')

 eq_1.complexes(

 dangles='none',

 MaxStrands=2,

 quiet=True)

 eq_2.complexes(

 dangles='none',

 MaxStrands=2,

 quiet=True)

 eq_1.concentrations(

 concentrations=[1e-6] + concent,

 quiet=True)

 eq_2.concentrations(

 concentrations=[1e-9] + concent,

 quiet=True)

 (eq_1order, eq_1) = eqcon(eq_1, guide)

 (eq_2order, eq_2) = eqcon(eq_2, guide)

 EQUILIBRIUMGUIDES = [eq_1order, eq_2order]

 return EQUILIBRIUMGUIDES, eq_1, eq_2

#Define bar-chart plot function for NuPACK test-tube prediction

def eqsbarplot(guides, dict1, dict2):

 global timessufix

 dat1 = []

 dat2 = []

 for list in guides:

 for el in list:

 if guides[0] == list:

 dat1 += [dict1[el][-1]]

 else:

 dat2 += [dict2[el][-1]]

 trace1 = go.Bar(

 x=guides[0],

 y=dat1,

 name='With input')

 trace2 = go.Bar(

 x=guides[1],

 y=dat2,

 name='Without input')

 data = [trace1, trace2]

 layout = go.Layout(

 barmode='group',

 title='Equilibrium concentrations for species',

Annex I: Python code of the developed algorithm (continues on the next page)

46

 yaxis=dict(title='% abundance'))

 fig = go.Figure(

 data=data,

 layout=layout)

 filename = ('Equilibrium_study_'

 + timesuffix

 + '.html')

 offline.plot(

 fig,

 filename=filename,

 auto_open=False)

 return None

#Define metropolis function to induce random sampling

def Metropolis():

 global Dats_preit, Score_preit, seqs_preit

 Bmk = Bm0*(D**k)

 M = NUM_e**(

 - Bmk*(

 Score_preit

 - Score_posit))

 if random.random() < M:

print('\nMetropolis MUTATED\n')

 Dats_preit = Dats_posit

 Score_preit = Score_posit

 seqs_preit = seqs_posit

 return None

#Define percentage progress percentage function

def progress():

 global perc_0

 perc_1 = (k/100000)*100

 if int(perc_1/5) > int(perc_0/5):

 perc_0 = perc_1

 print(

 'Status: '

 + str(int(perc_0))

 + '% completed')

 return None

#Define shadow circuit generation function

def shadowcirc(transducer):

 outdict = {}

 for el in shdw:

 outdict[el] = shdw[el]

 MFE = RNA.cofold(

 seqs_preit['sensor']

 + '&'

 + seqs_preit['transducer'])[1]

Annex I: Python code of the developed algorithm (continues on the next page)

47

 mfe = RNA.cofold(

 outdict['S2']

 + '&'

 + outdict['T2'])[1]

 b_area = outdict['S2'][:-5]

 if MFE < -31:

 times = int((MFE + 31)/3) + 4

 for n in range(times):

 b_area += random.sample(NUCS, 1)[0]

 i = 0

 while abs(MFE - mfe) > 0:

 i += 1

 target_index = random.randint(0, (len(b_area) - 1))

 b_area = list(b_area)

 base = random.sample(NUCS, 1)[0]

 while base == b_area[target_index]:

 base = random.sample(NUCS, 1)[0]

 b_area[target_index] = base

 b_area = ''.join(b_area)

 outdict['S2'] = (b_area

 + outdict['S2'][-5:])

 outdict['T2'] = (revcomp(b_area)

 + outdict['S2'][-13:])

 mfe = RNA.cofold(

 outdict['S2']

 + '&'

 + outdict['T2'])[1]

 if i == 1000:

 break

 for el in NUCS:

 if (4*el) in b_area:

 mfe = 1e3

 master = (outdict['T2'][-20:]

 + transducer[:19])

 AND_clamp = master[7:-6]

 AND = revcomp(master)

 outdict['AND_clamp'] = AND_clamp

 outdict['AND'] = AND

 keyss = []

Annex I: Python code of the developed algorithm (continues on the next page)

48

 for el in outdict.keys():

 keyss += [el]

 keyss.sort()

 return outdict, keyss

#MAIN

def main():

 global k, timesuffix, perc_0, seqs_preit, seqs_posit

 global Score_preit, Score_posit, Dats_preit, Dats_posit

 #Moment in time:

 timesuffix = '_'.join(

 str(datetime.datetime.now()

).split())

 (seqs_preit['sensor'],

 seqs_preit['transducer'],

 seqs_preit['clamp'],

 seqs_preit['fuel']) = genseq(seqs_preit[GUIDE[0]], seqs_preit['T7p'])

 Dats_preit = scorefunc(seqs_preit)

 Score_preit = Dats_preit[-1]

 (equilibriumguide,

 eq_1,

 eq_2) = test_tube(seqs_preit, GUIDE[:-1])

 fuelguide = GUIDE[:2] + [GUIDE[-1]]

 fuelguide = fuelguide[::-1]

 (equilibriumguide_fuel,

 w_fuel,

 wo_fuel) = test_tube(seqs_preit, fuelguide)

 OUTFILE = open(

 'Output_'

 + GUIDE[0]

 + '_'

 + timesuffix

 + '.txt',

 'w')

 OUTFILE.write('This is the output of your job done on '

 + timesuffix

 + '\n')

 for el in GUIDE:

 OUTFILE.write('>'

 + el

 + '\n'

 + seqs_preit[el]

 + '\n')

 OUTFILE.write('\nP1 = ' + str(Dats_preit[0]) + '\n')

 OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')

Annex I: Python code of the developed algorithm (continues on the next page)

49

 OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')

 OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')

 OUTFILE.write('P5 = ' + str(Dats_preit[4]) + '\n')

 OUTFILE.write('Toehold = ' + str(Dats_preit[5]) + '\n')

 OUTFILE.write('Score = ' + str(Score_preit) + '\n')

 OUTFILE.write('Standarized score = '

 + str(Score_preit*100/Dats_preit[3])

 + '\n')

 OUTFILE.write('\n------WITH INPUT------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide[0]:

 OUTFILE.write(el

 + '\t'

 + eq_1[el][0]

 + '\t'

 + str(eq_1[el][1])

 + '\n')

 OUTFILE.write('\n------WITHOUT INPUT------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide[1]:

 OUTFILE.write(el

 + '\t'

 + eq_2[el][0]

 + '\t'

 + str(eq_2[el][1])

 + '\n')

 OUTFILE.write('\nFuel transduction assessment\n')

 OUTFILE.write('\n------WITH FUEL------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide_fuel[0]:

 OUTFILE.write(el

 + '\t'

 + w_fuel[el][0]

 + '\t'

 + str(w_fuel[el][1])

 + '\n')

 OUTFILE.write('\n------WITHOUT FUEL------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

Annex I: Python code of the developed algorithm (continues on the next page)

50

 for el in equilibriumguide_fuel[1]:

 OUTFILE.write(el

 + '\t'

 + wo_fuel[el][0]

 + '\t'

 + str(wo_fuel[el][1])

 + '\n')

 OUTFILE.write('\n')

 #1e5 cycles of mutations and selection following the global score

 k = 0

 perc_0 = 0

 for n in range(int(1e5)):

 k += 1

 seqs_posit = mutf(seqs_preit)

 Dats_posit = scorefunc(seqs_posit)

 Score_posit = Dats_posit[-1]

 if Score_posit >= Score_preit:

 Dats_preit = Dats_posit

 Score_preit = Score_posit

 seqs_preit = seqs_posit

 else:

 Metropolis()

 progress()

 (equilibriumguide,

 eq_1,

 eq_2) = test_tube(seqs_preit, GUIDE[:-1])

 eqsbarplot(equilibriumguide,

 eq_1,

 eq_2)

 (equilibriumguide_fuel,

 w_fuel,

 wo_fuel) = test_tube(seqs_preit, fuelguide)

 #OUTFILE = open('Output_'+GUIDE[0]+timesuffix+'.txt', 'w')

 #OUTFILE.write('This is the output of your job done on '+timesuffix+'\n')

 for el in GUIDE:

 OUTFILE.write('>'

 + el

 + '\n'

 + seqs_preit[el]

 + '\n')

 OUTFILE.write('\nP1 = ' + str(Dats_preit[0]) + '\n')

 OUTFILE.write('P2 = ' + str(Dats_preit[1]) + '\n')

 OUTFILE.write('P3 = ' + str(Dats_preit[2]) + '\n')

 OUTFILE.write('P4 = ' + str(Dats_preit[3]) + '\n')

 OUTFILE.write('P5 = ' + str(Dats_preit[4]) + '\n')

Annex I: Python code of the developed algorithm (continues on the next page)

51

 OUTFILE.write('Toehold = ' + str(Dats_preit[5]) + '\n')

 OUTFILE.write('Score = ' + str(Score_preit) + '\n')

 OUTFILE.write('Standarized score = '

 + str(Score_preit*100/Dats_preit[3])

 + '\n')

 OUTFILE.write('\n------WITH INPUT------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide[0]:

 OUTFILE.write(el

 + '\t'

 + eq_1[el][0]

 + '\t'

 + str(eq_1[el][1])

 + '\n')

 OUTFILE.write('\n------WITHOUT INPUT------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide[1]:

 OUTFILE.write(el

 + '\t'

 + eq_2[el][0]

 + '\t'

 + str(eq_2[el][1])

 + '\n')

 OUTFILE.write('\nFuel transduction assessment\n')

 OUTFILE.write('\n------WITH FUEL------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide_fuel[0]:

 OUTFILE.write(el

 + '\t'

 + w_fuel[el][0]

 + '\t'

 + str(w_fuel[el][1])

 + '\n')

 OUTFILE.write('\n------WITHOUT FUEL------')

 OUTFILE.write('\nComplexes')

 OUTFILE.write('\tConcentration (M)')

 OUTFILE.write('\tStandarized (%)\n')

 for el in equilibriumguide_fuel[1]:

 OUTFILE.write(el

 + '\t'

 + wo_fuel[el][0]

Annex I: Python code of the developed algorithm (continues on the next page)

52

 + '\t'

 + str(wo_fuel[el][1])

 + '\n')

 (shadow, shadowguide) = shadowcirc(

 seqs_preit['transducer'])

 OUTFILE.write('\nProposed shadow cancellation circuit\n')

 for el in shadowguide:

 OUTFILE.write('>'

 + el

 + '\n'

 + shadow[el]

 +'\n')

seqs_preit = {}

#T7p sequence

seqs_preit['T7p'] = 'GCGCTAATACGACTCACTATAGG'

#Define initial input

try:

 USERINPUT = sys.argv[1]

except:

 USERINPUT = input(

 'Enter your input: '

).upper()

#Checks if input is a raw sequence or a fasta file

if USERINPUT.lower().split('.')[-1] == 'fasta':

 insequences = fileinput()

 for el in insequences:

 GUIDE[0] = el

 seqs_preit[el] = insequences[el]

 main()

 for name in GUIDE[1:-1]:

 del seqs_preit[name]

else:

 cmdinput()

 main()

#NuPACK files cleanup

#subprocess.call(

'rm -r /home/lugoibel/nupack3.2.2/python/tmp*',

shell=True)

elapsed_time = str(

 (time.time() - start_time)/60)

print('Job finished on '

 + str(datetime.datetime.now()).split('.')[0]

 + '. Elapsed time was: '

Annex I: Python code of the developed algorithm (continues on the next page)

53

 + elapsed_time[:-13]

 + ' minutes.')

Annex II: Code of the Nupack wrapper employed in this work, courtesy of Salis et

al. (2009). Note that some modifications to the original wrapper have been performed

with the aim of a proper performance along with the algorithm.

#Python wrapper for NUPACK 2.0 by Dirks, Bois, Schaeffer, Winfree, and Pierce (S
IAM Review)

#This file is part of the Ribosome Binding Site Calculator.

#The Ribosome Binding Site Calculator is free software: you can redistribute it
and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.

#The Ribosome Binding Site Calculator is distributed in the hope that it will be
 useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.

#You should have received a copy of the GNU General Public License
#along with Ribosome Binding Site Calculator. If not, see <http://www.gnu.org/l
icenses/>.

#This Python wrapper is written by Howard Salis. Copyright 2008-
2009 is owned by the University of California Regents. All rights reserved. :)
#Use at your own risk.

import os.path
import os, subprocess, time, random, string

tempdir = "/tmp" + "".join([random.choice(string.digits) for x in range(6)])

current_dir = os.path.dirname(os.path.realpath(__file__)) + tempdir
if not os.path.exists(current_dir): os.mkdir(current_dir)

nupackbin_dir = "/home/lugoibel/nupack3.2.2/bin/"

debug = 0

#Class that encapsulates all of the functions from NuPACK 2.0

class NuPACK(dict):
 debug_mode = 0
 RT = 0.61597 # Gas constant times 310 Kelvin (in units of kcal/mol).

 def __init__(self, Sequence_List, material):

 self.ran = 0

 import re
 import string

 exp = re.compile('[ATGCU?&]', re.IGNORECASE)

 for seq in Sequence_List:
 if exp.match(seq) == None:

Annex I: Python code of the developed algorithm

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

54

 error_string = "Invalid letters found in inputted sequences." \

 " Only ATGCU allowed. \n Sequence is \"" + \
 str(seq) + "\"."
 raise ValueError(error_string)

 if not material == 'rna' and not material == 'dna' \
 and not material == "rna1999":
 raise ValueError("The energy model must be specified as "
 "either ""dna"", ""rna"", or ""rna1999"" .")

 self["sequences"] = Sequence_List
 self["material"] = material

 random.seed(time.time())
 long_id = "".join([random.choice(string.ascii_lowercase + string.digits)
 for x in range(10)])
 self.prefix = current_dir + "/nu_temp_" + long_id

 def complexes(self, MaxStrands, Temp=37.0, ordered="", pairs="", mfe="",
 degenerate="", dangles="some", timeonly="", quiet="",
 AdditionalComplexes=[]):
 """A wrapper for the complexes command, which calculates the
 equilibrium probability of the formation of a multi-strand RNA or DNA
 complex with a user-defined maximum number of strands.
 Additional complexes may also be included by the user."""

 if Temp <= 0: raise ValueError("The specified temperature must be "
 "greater than zero.")
 if int(MaxStrands) <= 0:
 raise ValueError("The maximum number of strands must be greater"
 " than zero.")

 #Write input files
 self._write_input_complexes(MaxStrands, AdditionalComplexes)

 #Set arguments
 material = self["material"]
 if ordered: ordered = " -ordered "
 if pairs: pairs = " -pairs "
 if mfe: mfe = " -mfe "
 if degenerate: degenerate = " -degenerate "
 if timeonly: timeonly = " -timeonly "
 if quiet: quiet = " -quiet "
 dangles = "-dangles " + dangles + " "

 #Call NuPACK C programs
 cmd = nupackbin_dir + "complexes"
 args = " -T " + str(Temp) + " -material " + material + " " + ordered \
 + pairs + mfe + degenerate + dangles + timeonly + \
 quiet + " "

 file = self.prefix
 #file = file[-2:]
 #file = str(file[0]) + "/" + str(file[1])
 output = subprocess.call(cmd + args + file, shell=True)

 self._read_output_ocx()
 if mfe:
 self._read_output_ocx_mfe()
 self._cleanup("ocx-mfe")
 #self._cleanup("ocx")
 #self._cleanup("ocx-key")

 self._cleanup("in")

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

55

 #print "Complex energies and secondary structures calculated."
 self.ran = 1
 self["program"] = "complexes"

 def concentrations(self, concentrations="", quiet="", sort="",
 cutoffvalue=0.001):
 if quiet:
 quiet = " -quiet"
 if sort != "":
 sort = " -sort " + str(sort)
 cutoffvalue = " -cutoffvalue" + str(cutoffvalue) + " "

 self._write_input_concentrations(concentrations)

 cmd = nupackbin_dir + "concentrations"
 args = quiet + sort + cutoffvalue
 output = subprocess.call(cmd + args + self.prefix, shell=True)

 self._read_output_con()
 self._cleanup("ocx")
 self._cleanup("ocx-key")
 self._cleanup("eq")
 self._cleanup("con")

 def prob(self, multi="-multi "):
 self.mfe([1, 2])
 self._write_input_prob()

 cmd =nupackbin_dir + "prob "
 args = multi + "-material " + self["material"] + " "
 result = subprocess.run(cmd + args + self.prefix, shell=True,
 stdout=subprocess.PIPE)
 inf = str(result.stdout)
 inf = inf.split("\\n")
 prob = float(inf[-2])
 return prob

 def mfe(self, strands, Temp=37.0, multi=" -multi", pseudo="",
 degenerate="", dangles="some"):

 self["mfe_composition"] = strands

 if Temp <= 0:
 raise ValueError("The specified temperature must be "
 "greater than zero.")

 if multi == 1 and pseudo == 1:
 raise ValueError("The pseudoknot algorithm does not work with "
 "the -multi option.")

 #Write input files
 self._write_input_mfe(strands)

 #Set arguments
 material = self["material"]
 if multi == "":
 multi = ""
 if pseudo:
 pseudo = " -pseudo"
 if degenerate: degenerate = " -degenerate "
 dangles = " -dangles " + dangles + " "

 #Call NuPACK C programs
 cmd = nupackbin_dir + "mfe"

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

56

 args = " -T " + str(Temp) + multi + pseudo + " -material " + \
 material + degenerate + dangles + " "
 output = subprocess.call(cmd + args + self.prefix, shell=True)

 self._read_output_mfe()
 self._cleanup("mfe")
 self._cleanup("in")
 self["program"] = "mfe"

 def subopt(self, strands, energy_gap, Temp=37.0, multi=" -multi",
 pseudo="", degenerate="", dangles="some"):

 self["subopt_composition"] = strands

 if Temp <= 0: raise ValueError("The specified temperature "
 "must be greater than zero.")

 if multi == 1 and pseudo == 1:
 raise ValueError("The pseudoknot algorithm does not work "
 "with the -multi option.")

 #Write input files
 self._write_input_subopt(strands, energy_gap)

 #Set arguments
 material = self["material"]
 if multi == "": multi = ""
 if pseudo: pseudo = " -pseudo"
 if degenerate: degenerate = " -degenerate "
 dangles = " -dangles " + dangles + " "

 #Call NuPACK C programs
 cmd = nupackbin_dir + "subopt"
 args = " -T " + str(Temp) + multi + pseudo + " -material " +\
 material + degenerate + dangles + " "
 output = subprocess.call(cmd + args + self.prefix, shell=True)

 self._read_output_subopt()
 self._cleanup("subopt")
 self._cleanup("in")
 self["program"] = "subopt"

 #print "Minimum free energy and suboptimal secondary structures have bee
n calculated."

 def energy(self, strands, base_pairing_x, base_pairing_y, Temp=37.0,
 multi=" -multi", pseudo="", degenerate="", dangles="some"):

 self["energy_composition"] = strands

 if Temp <= 0:raise ValueError("The specified temperature must be"
 " greater than zero.")

 if multi == 1 and pseudo == 1:
 raise ValueError("The pseudoknot algorithm does not work "
 "with the -multi option.")

 #Write input files
 self._write_input_energy(strands, base_pairing_x, base_pairing_y)

 #Set arguments
 material = self["material"]
 if multi == "": multi = ""
 if pseudo: pseudo = " -pseudo"
 if degenerate: degenerate = " -degenerate "
 dangles = " -dangles " + dangles + " "

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

57

 #Call NuPACK C programs
 cmd = nupackbin_dir + "energy" # Imprime el resultado por pantalla.
 args = " -T " + str(Temp) + multi + pseudo + " -material " + \
 material + degenerate + dangles + " "

 output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix
 + ".en", shell=True, stdout=True)

 file = open(str(self.prefix) + ".en")
 lectura = file.readlines()
 for line in lectura:
 line = line.strip("\n")
 if line[0] != "%":
 energy = float(line)
 file.close()

 self["energy_energy"] = []
 self["program"] = "energy"
 self["energy_energy"].append(energy)
 self["energy_basepairing_x"] = [base_pairing_x]
 self["energy_basepairing_y"] = [base_pairing_y]
 self._cleanup("in")
 self._cleanup("en")

 return energy

 def pfunc(self, strands, Temp=37.0, multi=" -multi", pseudo="",
 degenerate="", dangles="some"):

 self["pfunc_composition"] = strands

 if Temp <= 0: raise ValueError("The specified temperature must be "
 "greater than zero.")

 if multi == 1 and pseudo == 1:
 raise ValueError("The pseudoknot algorithm does not work "
 "with the -multi option.")

 #Write input files
 #Input for pfunc is the same as mfe
 self._write_input_mfe(strands)

 #Set arguments
 material = self["material"]
 if multi == "": multi = ""
 if pseudo: pseudo = " -pseudo"
 if degenerate: degenerate = " -degenerate "
 dangles = " -dangles " + dangles + " "

 #Call NuPACK C programs
 cmd = nupackbin_dir + "pfunc"
 args = " -T " + str(Temp) + multi + pseudo + " -material " + \
 material + degenerate + dangles + " "

 output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix +

 ".func", shell=True, stdout=True)

 file = open(str(self.prefix) + ".func")
 lectura = file.readlines()
 inf = []
 for line in lectura:
 line = line.strip("\n")
 if line[0] != "%" and line[0] != "Attempting":
 inf.append(float(line))

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

58

 file.close()

 energy = inf[0]
 partition_function = float(inf[1])

 self["program"] = "pfunc"
 self["pfunc_energy"] = energy
 self["pfunc_partition_function"] = partition_function
 self._cleanup("in")
 self._cleanup("func")

 return partition_function

 def count(self, strands, Temp=37.0, multi=" -multi", pseudo="",
 degenerate="", dangles="some"):

 self["count_composition"] = strands

 if multi == 1 and pseudo == 1:
 raise ValueError("The pseudoknot algorithm does not work "
 "with the -multi option.")

 #Write input files
 #Input for count is the same as mfe
 self._write_input_mfe(strands)

 #Set arguments
 material = self["material"]
 if multi == "": multi = ""
 if pseudo: pseudo = " -pseudo"
 if degenerate: degenerate = " -degenerate "
 dangles = " -dangles " + dangles + " "

 #Call NuPACK C programs
 cmd = nupackbin_dir + "count"
 args = " -T " + str(Temp) + multi + pseudo + " -material " + \
 material + degenerate + dangles + " "

 output = subprocess.call(cmd + args + self.prefix + ">" + self.prefix +

 ".count", shell=True)

 file = open(str(self.prefix) + ".count")
 lecture = file.readlines()
 for line in lecture:
 line = line.strip("\n")
 if line[0] != "%" and line[0] != "Attempting":
 number = float(line)

 self["program"] = "count"
 self["count_number"] = number
 self._cleanup("in")
 self._cleanup("count")

 return number

 def _write_input_prob(self):
 self._write_input_mfe([1, 2])
 handle = open(self.prefix + ".in", "a")
 handle.write(str(self["structure"]))
 handle.close()

 def _write_input_concentrations(self, concentrations):

 handle = open(self.prefix + ".con", "w")

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

59

 number = len(self["sequences"])
 if concentrations == "":
 conc = "1e-6"
 handle.write((str(conc) + "\n") * number)
 else:
 for i in range(number):
 handle.write(str(concentrations[i]) + "\n")
 handle.close()

 def _write_input_energy(self, strands, base_pairing_x, base_pairing_y):
 """Creates the input file for energy NUPACK functions
 strands is a list containing the number of each strand in the complex
 (assumes -multi flag is used) base_pairing_x and base_pairing_y is a
 list of base pairings of the strands s.t. #x < #y are base paired. """

 NumStrands = len(self["sequences"])
 input_str = str(NumStrands) + "\n"
 for seq in self["sequences"]:
 input_str = input_str + seq + "\n"

 NumEachStrands = ""
 for num in strands:
 NumEachStrands = NumEachStrands + str(num) + " "

 input_str = input_str + NumEachStrands + "\n"
 for pos in range(len(base_pairing_x)):
 input_str = input_str + str(base_pairing_x[pos]) + "\t" + \
 str(base_pairing_y[pos]) + "\n"

 handle = open(self.prefix + ".in", "w")
 handle.writelines(input_str)
 handle.close()

 def _write_input_subopt(self, strands, energy_gap):
 """Creates the input file for mfe and subopt NUPACK functions
 strands is a list containing the number of each strand in the complex
 (assumes -multi flag is used). """

 NumStrands = len(self["sequences"])
 input_str = str(NumStrands) + "\n"
 for seq in self["sequences"]:
 input_str = input_str + seq + "\n"

 NumEachStrands = ""
 for num in strands:
 NumEachStrands = NumEachStrands + str(num) + " "

 input_str = input_str + NumEachStrands + "\n"
 input_str = input_str + str(energy_gap) + "\n"

 handle = open(self.prefix + ".in", "w")
 handle.writelines(input_str)
 handle.close()

 def _write_input_mfe(self, strands):
 """ Creates the input file for mfe and subopt NUPACK functions
 strands is a list containing the number of each strand in the complex
 (assumes -multi flag is used). """

 NumStrands = len(self["sequences"])
 input_str = str(NumStrands) + "\n"
 for seq in self["sequences"]:
 input_str = input_str + seq + "\n"

 NumEachStrands = ""
 for num in strands:

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

60

 NumEachStrands = NumEachStrands + str(num) + " "

 input_str = input_str + NumEachStrands + "\n"

 handle = open(self.prefix + ".in", "w")
 handle.writelines(input_str)
 handle.close()

 def _write_input_complexes(self, MaxStrands, AdditionalComplexes=[]):

 #First, create the input string for file.in to send into NUPACK
 NumStrands = len(self["sequences"])
 input_str = str(NumStrands) + "\n"
 for seq in self["sequences"]:
 input_str = input_str + seq + "\n"
 input_str = input_str + str(MaxStrands) + "\n"

 handle = open(self.prefix + ".in", "w")
 handle.writelines(input_str)
 handle.close()

 if len(AdditionalComplexes) > 0:
 # The user may also specify additional complexes composed of more
 # than MaxStrands strands. Create the input string detailing this.
 counter=0
 counts = [[]]
 added = []
 for (complexes, i) in zip(AdditionalComplexes,
 range(len(AdditionalComplexes))):

 if len(complexes) <= MaxStrands: #Remove complexes if they have
less than MaxStrands strands.
 AdditionalComplexes.pop(i)
 else:
 counts.append([])
 added.append(0)
 for j in range(NumStrands): #Count the number of each unique
 strand in each complex and save it to counts
 counts[counter].append(complexes.count(j+1))
 counter += 1

 list_str = ""
 for i in range(len(counts)-1):
 if added[i] == 0:
 list_str = list_str + "C " + " ".join([str(count) for count
in counts[i]]) + "\n"
 list_str = list_str + " ".join([str(strand) for strand in Ad
ditionalComplexes[i]]) + "\n"
 added[i] = 1
 for j in range(i+1, len(counts)-1):
 if counts[i] == counts[j] and added[j] == 0:
 list_str = list_str + " ".join([str(strand) for stra
nd in AdditionalComplexes[j]]) + "\n"
 added[j] = 1

 handle = open(self.prefix + ".list", "w")
 handle.writelines(list_str)
 handle.close()

 def _read_output_cx(self):
 #Read the prefix.cx output text file generated by NuPACK and write its d
ata to instanced attributes
 #Output: energies of unordered complexes in key "unordered_energies"
 #Output: strand composition of unordered complexes in key "unordered_com
plexes"

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

61

 handle = open(self.prefix+".cx", "rU")

 line = handle.readline()

 #Read some useful data from the comments of the text file
 while line[0] == "%":

 words=line.split()

 if len(words) > 7 and words[1] == "Number" and words[2] == "of" \
 and words[3] == "complexes" and words[4] == "from" \
 and words[5] == "enumeration:":
 self["numcomplexes"] = int(words[6])

 elif len(words) > 8 and words[1] == "Total" \
 and words[2] == "number" and words[3] == "of" \
 and words[4] =="permutations" and words[5] == "to" \
 and words[6] == "calculate:":
 self["num_permutations"] = int(words[7])

 line = handle.readline()

 self["unordered_energies"] = []
 self["unordered_complexes"] = []
 self["unordered_composition"] = []

 while line:
 words = line.split()

 if not words[0] == "%":

 complex = words[0]
 strand_compos = [int(f) for f in words[1:len(words)-1]]
 energy = float(words[len(words)-1])

 self["unordered_complexes"].append(complex)
 self["unordered_energies"].append(energy)
 self["unordered_composition"].append(strand_compos)

 line = handle.readline()
 handle.close()

 def _read_output_ocx(self):

 #Read the prefix.ocx output text file generated by NuPACK and write its data
 to instanced attributes
 #Output: energies of ordered complexes in key "ordered_energies"
 #Output: number of permutations and strand composition of ordered complexes
in key "ordered_complexes"

 handle = open(self.prefix+".ocx", "rU")

 line = handle.readline()

 #Read some useful data from the comments of the text file
 while line[0] == "%":

 words = line.split()

 if len(words) > 7 and words[1] == "Number" and words[2] == "of" \
 and words[3] == "complexes" and words[4] == "from" \
 and words[5] == "enumeration:":
 self["numcomplexes"] = int(words[6])

 elif len(words) > 8 and words[1] == "Total" \
 and words[2] == "number" and words[3] == "of" \

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

62

 and words[4] =="permutations" and words[5] == "to" \
 and words[6] == "calculate:":
 self["num_permutations"] = int(words[7])

 line = handle.readline()

 self["ordered_complexes"] = []
 self["ordered_energies"] = []
 self["ordered_permutations"] = []
 self["ordered_composition"] = []

 while line:
 words = line.split()
 if not words[0] == "%":
 complex = words[0]
 permutations = words[1]
 strand_compos = [int(f) for f in words[2:len(words)-1]]
 energy = float(words[len(words)-1])

 self["ordered_complexes"].append(complex)
 self["ordered_permutations"].append(permutations)
 self["ordered_energies"].append(energy)
 self["ordered_composition"].append(strand_compos)

 line = handle.readline()
 handle.close()

 def _read_output_ocx_mfe(self):
 #Read the prefix.ocx output text file generated by NuPACK and write its data
 to instanced attributes
 #Output: energy of mfe of each complex in key "ordered_energy"

 #Make sure that the ocx file has already been read.
 if not (self.has_key("ordered_complexes")
 and self.has_key("ordered_permutations")
 and self.has_key("ordered_energies")
 and self.has_key("ordered_composition")):
 self._read_output_ocx(self.prefix)

 handle = open(self.prefix+".ocx-mfe", "rU")

 #Skip the comments of the text file.

 line = handle.readline()
 while line[0] == "%":
 line = handle.readline()

 self["ordered_basepairing_x"] = []
 self["ordered_basepairing_y"] = []
 self["ordered_energy"] = []
 self["ordered_totalnt"]=[]

 while line:
 words = line.split()

 if not line == "\n" and not words[0] == "%" and not words[0] == "":

 #Read the line containing the number of total nucleotides in the
 complex
 totalnt = words[0]

 self["ordered_totalnt"].append(totalnt)

 #Read the line containing the mfe

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

63

 words = handle.readline().split()
 mfe = float(words[0])

 self["ordered_energy"].append(mfe)

 #Skip the line containing the dot/parens description of the seco
ndary structure
 line = handle.readline()

 #Read in the lines containing the base pairing description of th
e secondary structure
 #Continue reading until a % comment
 bp_x = []
 bp_y = []

 line = handle.readline()
 words = line.split()
 while not line == "\n" and not words[0] == "%":
 bp_x.append(int(words[0]))
 bp_y.append(int(words[1]))
 words = handle.readline().split()

 self["ordered_basepairing_x"].append(bp_x)
 self["ordered_basepairing_y"].append(bp_y)

 line = handle.readline()
 handle.close()

 def _read_output_con(self):
 handle = open(self.prefix + ".eq", "rU")
 inf = []
 for line in handle.readlines():
 if line[0] != "%":
 line = line.strip("\n")
 line = line.split("\t")
 line = line[2:-1]
 inf.append(line)
 self["complexes_concentrations"] = inf
 handle.close()

 def _read_output_mfe(self):
 #Read the prefix.mfe output text file generated by NuPACK and write its data
 to instanced attributes
 #Output: total sequence length and minimum free energy
 #Output: list of base pairings describing the secondary structure

 handle = open(self.prefix + ".mfe", "rU")

 #Skip the comments of the text file
 file = handle.readlines()
 text = []
 for line in file:
 if line[0] != "%" and line[0] != "" and line[0] != "\n":
 line = line.strip("\n")
 text.append(line)

 handle.close()
 self["mfe_basepairing_x"] = []
 self["mfe_basepairing_y"] = []
 self["mfe_energy"] = float(text[1])
 self["totalnt"] = int(text[0])
 self["structure"] = text[2]

 bp_x = []

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

64

 bp_y = []

 for line in text[3:]:
 line = line.split("\t")
 bp_x.append(int(line[0]))
 bp_y.append(int(line[1]))

 self["mfe_basepairing_x"].append(bp_x)
 self["mfe_basepairing_y"].append(bp_y)

 def _read_output_subopt(self):
 #Read the prefix.subopt output text file generated by NuPACK and write its d
ata to instanced attributes
 #Output: total sequence length and minimum free energy
 #Output: list of base pairings describing the secondary structure

 handle = open(self.prefix+".subopt", "rU")

 #Skip the comments of the text file
 line = handle.readline()
 while line[0] == "%":
 line = handle.readline()

 self["subopt_basepairing_x"] = []
 self["subopt_basepairing_y"] = []
 self["subopt_energy"] = []
 self["totalnt"]=[]

 counter = 0

 while line:
 words = line.split()

 if not line == "\n" and not words[0] == "%" and not words[0] == "":

 #Read the line containing the number of total nucleotides in the
 complex
 totalnt = words[0]

 self["totalnt"].append(totalnt)
 counter += 1

 #Read the line containing the mfe
 words = handle.readline().split()
 mfe = float(words[0])

 self["subopt_energy"].append(mfe)

 #Skip the line containing the dot/parens description of the seco
ndary structure
 line = handle.readline()

 #Read in the lines containing the base pairing description of th
e secondary structure
 #Continue reading until a % comment
 bp_x = []
 bp_y = []

 line = handle.readline()
 words = line.split()
 while not line == "\n" and not words[0] == "%":
 bp_x.append(int(words[0]))
 bp_y.append(int(words[1]))
 words = handle.readline().split()

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

65

 self["subopt_basepairing_x"].append(bp_x)
 self["subopt_basepairing_y"].append(bp_y)

 line = handle.readline()
 handle.close()

 self["subopt_NumStructs"] = counter

 def _cleanup(self, suffix):

 if os.path.exists(self.prefix+"."+suffix):
 os.remove(self.prefix+"."+suffix)

 return

 def export_PDF(self, complex_ID, name="", filename="temp.pdf",
 program=None):
 """Uses Zuker's sir_graph_ng and ps2pdf.exe to convert a secondary
 structure described in .ct format to a PDF of the RNA."""

 if program is None:
 program = self["program"]

 inputfile = "temp.ct"
 self.Convert_to_ct(complex_ID, name, inputfile, program)

 cmd = "sir_graph_ng" #Assumes it's on the path
 args = "-p" #to PostScript file
 output = popen2.Popen3(cmd + " " + args + " " + inputfile, "r")
 output.wait()
 if debug == 1:
 print(output.fromchild.read())

 inputfile = inputfile[0:len(inputfile)-2] + "ps"

 cmd = "ps2pdf" #Assumes it's on the path
 output = popen2.Popen3(cmd + " " + inputfile, "r")
 output.wait()
 if debug == 1:
 print(output.fromchild.read())

 outputfile = inputfile[0:len(inputfile)-2] + "pdf"

 #Remove the temporary file "temp.ct" if it exists
 if os.path.exists("temp.ct"): os.remove("temp.ct")

 #Remove the temporary Postscript file if it exists
 if os.path.exists(inputfile): os.remove(inputfile)

 #Rename the output file to the desired filename.
 if os.path.exists(outputfile): os.rename(outputfile,filename)
 #Done!

 def Convert_to_ct(self, complex_ID, name, filename="temp.ct",
 program="ordered"):
 """Converts the secondary structure of a single complex into the
 .ct file format, which is used with sir_graph_ng (or other programs)
 to create an image of the secondary structure."""

 #hacksy way of reading from data produced by 'complex', by 'mfe', or by
'subopt'
 data_x = program + "_basepairing_x"
 data_y = program + "_basepairing_y"
 mfe_name = program + "_energy"

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

66

 composition_name = program + "_composition"

 #Format of .ct file

 #Header: <Total # nt> \t dG = <# mfe> kcal/mol \t <name of sequence>
 #The Rest:
 #<nt num> \t <bp letter> \t <3' neighbor> \t <5' neighbor> \t <# of bp'i
ng, 0 if none> \t ...
 #<strand-
specific nt num> \t <3' neighbor if connected by helix> \t <5' neighbor if conne
cted by helix>

 #Extract the data for the desired complex using complex_ID
 bp_x = self[data_x][complex_ID]
 bp_y = self[data_y][complex_ID]
 mfe = self[mfe_name][complex_ID]

 if program == "mfe" or program == "subopt" or program == "energy":
 composition = self[composition_name]
 elif program == "ordered" or program == "unordered":
 composition = self[composition_name][complex_ID]

 #Determine concatenated sequence of all strands, their beginnings, and e
nds
 allseq = ""
 strand_begins = []
 strand_ends = []

 #Seemingly, the format of the composition is different for the program c
omplex vs. mfe/subopt
 #for mfe/subopt, the composition is the list of strand ids
 #for complex, it is the number of each strand (in strand id order) in th
e complex
 #for mfe/subopt, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, and
1 strand of 3.
 #for complex, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, 2 stran
ds of 3, and 3 strands of 4'.
 #what a mess.

 if program == "mfe" or program == "subopt" or program == "energy":
 for strand_id in composition:
 strand_begins.append(len(allseq) + 1)
 allseq = allseq + self["sequences"][strand_id-1]
 strand_ends.append(len(allseq))

 else:
 for (num_strands, strand_id) in \
 zip(composition, range(len(composition))):
 for j in range(num_strands):
 strand_begins.append(len(allseq) + 1)
 allseq = allseq + self["sequences"][strand_id]
 strand_ends.append(len(allseq))

 seq_len = len(allseq)

 #print "Seq Len = ", seq_len, " Composition = ", composition
 #print "Sequence = ", allseq
 #print "Base pairing (x) = ", bp_x
 #print "Base pairing (y) = ", bp_y

 #Create the header
 header = str(seq_len) + "\t" + "dG = " + str(mfe) + " kcal/mol" \
 + "\t" + name + "\n"

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

67

 #Open the file
 handle = open(filename,"w")

 #Write the header
 handle.write(header)

 #Write a line for each nt in the secondary structure
 for i in range(1, seq_len+1):
 for (nt, pos) in zip(strand_begins, range(len(strand_begins))):
 if i >= nt:
 strand_id = pos

 #Determine 3' and 5' neighbor
 #If this is the beginning of a strand, then the 3' neighbor is 0
 #If this is the end of a strand, then the 5' neighbor is 0

 if i in strand_begins:
 nb_5p = 0
 else:
 nb_5p = i - 1

 if i in strand_ends:
 nb_3p = 0
 else:
 nb_3p = i + 1

 if i in bp_x or i in bp_y:
 if i in bp_x: nt_bp = bp_y[bp_x.index(i)]
 if i in bp_y: nt_bp = bp_x[bp_y.index(i)]
 else:
 nt_bp = 0

 #Determine strand-specific counter
 strand_counter = i - strand_begins[strand_id] + 1

 #Determine the 3' and 5' neighbor helical connectivity
 #If the ith nt is connected to its 3', 5' neighbor by a helix, then
include it
 #Otherwise, 0
 #Helix connectivity conditions:
 #The 5' or 3' neighbor is connected via a helix iff:
 #a) helix start: i not bp'd, i+1 bp'd, bp_id(i+1) - 1 is bp'd, bp_id
(i+1) + 1 is not bp'd
 #b) helix end: i not bp'd, i-1 bp'd, bp_id(i-
1) - 1 is not bp'd, bp_id(i-1) + 1 is bp'd
 #c) helix continued: i and bp_id(i)+1 is bp'd, 5' helix connection i
s bp_id(bp_id(i)+1)
 #d) helix continued: i and bp_id(i)-
1 is bp'd, 3' helix connection is bp_id(bp_id(i)-1)
 #Otherwise, zero.

 #Init
 hc_5p = 0
 hc_3p = 0

 if i in bp_x or i in bp_y: # Helix continued condition (c,d).
 if i in bp_x: bp_i = bp_y[bp_x.index(i)]
 if i in bp_y: bp_i = bp_x[bp_y.index(i)]

 if bp_i+1 in bp_x or bp_i+1 in bp_y: # Helix condition c.
 if bp_i+1 in bp_x: hc_3p = bp_y[bp_x.index(bp_i+1)]
 if bp_i+1 in bp_y: hc_3p = bp_x[bp_y.index(bp_i+1)]

 if bp_i-1 in bp_x or bp_i-1 in bp_y: # Helix condition d.
 if bp_i-1 in bp_x: hc_5p = bp_y[bp_x.index(bp_i-1)]

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

68

 if bp_i-1 in bp_y: hc_5p = bp_x[bp_y.index(bp_i-1)]

 else: #helix start or end (a,b)

 if i+1 in bp_x or i+1 in bp_y: # Start, condition a.
 if i+1 in bp_x: bp_3p = bp_y[bp_x.index(i+1)]
 if i+1 in bp_y: bp_3p = bp_x[bp_y.index(i+1)]

 if bp_3p + 1 not in bp_x and bp_3p + 1 not in bp_y:
 hc_3p = i + 1

 if i-1 in bp_x or i-1 in bp_y: #End, condition b
 if i-1 in bp_x: bp_5p = bp_y[bp_x.index(i-1)]

 if i-1 in bp_y: bp_5p = bp_x[bp_y.index(i-1)]

 if bp_5p - 1 not in bp_x and bp_5p - 1 not in bp_y:
 hc_5p = i - 1

 line = str(i) + "\t" + allseq[i-1] + "\t" + str(nb_5p) + "\t" + \
 str(nb_3p) + "\t" + str(nt_bp) + "\t" + str(strand_counter) \

 + "\t" + str(hc_5p) + "\t" + str(hc_3p) + "\n"

 handle.write(line)

 #Close the file. Done.
 handle.close()

if __name__ == "__main__":

 import re

 #sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA",
"acctcctta","ACGTTGGCCTTCC"]
 sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA"]

 #Complexes
 #Input: Max number of strands in a complex. Considers all possible combinati
ons of strands, up to max #.
 #'mfe': calculate mfe? 'ordered': consider ordered or unordered complexes?
 #Other options available (see function)

 AddComplexes = []
 test = NuPACK(sequences,"rna1999")
 test.complexes(3, mfe=1, ordered=1)

 print(test)

 strand_compositions = test["ordered_composition"]
 num_complexes = len(strand_compositions)
 num_strands = len(sequences)

 for counter in range(num_complexes):
 output = "Complex #" + str(counter+1) + " composition: ("
 for strand_id in strand_compositions[counter][0:num_strands-1]:
 output = output + str(strand_id) + ", "
 output += str(strand_compositions[counter][num_strands-1]) + ")"

 output = output + " dG (RT ln Q): " + \
 str(test["ordered_energy"][counter]) + " kcal/mol"
 output = output + " # Permutations: " + \
 str(test["ordered_permutations"][counter])

Annex II: Code of the Nupack wrapper (Salis et al., 2009) (continues on the next page)

69

 print(output)
 test.export_PDF(counter, name="Complex #" + str(counter+1),
 filename="Complex_" + str(counter) + ".pdf",
 program="ordered")

 #Mfe
 #Input: Number of each strand in complex.
 #Options include RNA/DNA model, temperature, dangles, etc. (See function).
 #Example: If there are 3 unique strands (1, 2, 3), then [1, 2, 3] is one of
each strand and [1, 1, 2, 2, 3, 3] is two of each strand.

 #test.mfe([1, 2], dangles = "all")
 #num_complexes = test["mfe_NumStructs"] #Number of degenerate complexes (sa
me energy)
 #dG_mfe = test["mfe_energy"]
 #print "There are ", num_complexes, " configuration(s) with a minimum free e
nergy of ", dG_mfe, " kcal/mol.

Annex II: Code of the Nupack wrapper (Salis et al., 2009)

