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Abstract 

The use of periodic structures in acoustic applications has interested the scientific 

community in the last two decades. Although in-depth research has been thoroughly 

performed, many issues have still not been solved. The computational analysis of sonic 

structures using realistic 3D models still poses significant problems, and most of the 

published results correspond to 2D problems. Indeed, analysing 3D problems of such 

structures using conventional methods demands large computational resources, which 

may be prohibitive. The present paper proposes a new approach for such 3D problems 

making use of a highly efficient Method of Fundamental Solutions (MFS) approach to 

deal with sonic crystals made of 3D scatterers, which are infinitely repeated with constant 

spacing along one direction. The proposed method makes use of a special form of the 

acoustic fundamental solutions which can be highly efficient in such analysis, while 

allowing just the cell that is repeated to be effectively modelled. Verification of the model 

is provided by first comparing its results with those from an ACA-MFS model, and then 

with those resulting from a FDTD algorithm. A parametric study is here presented, with 

results revealing the true 3D character of the computed responses, and evidencing the 

formation of acoustic band-gaps at specific frequency bands associated with the Bragg 

effect. 

Keywords:  3D, MFS, sonic crystal, infinite periodic structure 



2 
 

 

1 Introduction 

Acoustic metamaterials and sonic crystals have been a major research topic of the 

scientific community dealing with acoustics in the last years, mostly since the publication 

of the pioneering work of Martínez-Sala et al. [1]. Indeed, in that work, the analysis of an 

artistic sculpture made from a spatially periodic arrangement of cylindrical steel tubes 

revealed the capacity of such arrangements to filter sound energy at specific frequency 

bands, forming the so-called acoustic band-gaps. Many other studies then followed, and 

engineering applications of such concept soon started to be analysed including their use 

as noise protection devices, such as noise barriers. The works of Sánchez-Pérez et al. [2], 

Umnova et al. [3] or Martínez-Sala et al. [4] indeed presented some of the works dedicated 

to such application of sonic crystals, demonstrating their potential in sound attenuation. 

Later, Castiñeira-Ibáñez et al. [5] presented a study on the manufacturing and 

characterization of a sonic crystal barrier using a fractal arrangement, showing the good 

behaviour and feasibility of such solutions. 

A challenge of the analysis of sonic crystals is related to their correct and accurate 

modelling using numerical techniques. Even in the 1990’s some proposals started to 

emerge, including the early works by Kafesaki and Economou [6] in which the Multiple 

Scattering Theory (MST) is applied to the analysis of a periodic array of elastic spheres 

embedded in a fluid medium. Plane-wave expansion methods and wavelet-based methods 

have also been tried in the works of Cao et al. [7] and Yan and Wang [8] for the analysis 

of sonic crystals. More general numerical methods such as the Finite Difference Time 

Domain (FDTD) Method [9] or the Boundary Element Method (BEM) [10] were also 

applied to compute the band structure of different sonic crystal configurations. Koussa et 

al. [11] also used the BEM to study the effect of complementing a traditional noise barrier 
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with a sonic crystal. Perhaps one of the most promising developments using the BEM 

was presented by Karimi et al. [12], implementing what the authors called a Periodic 

BEM to analyse large arrays of periodically distributed acoustic scatterers. The Finite 

Element Method (FEM) has also been used, for example, in the definition of an 

engineering approach for sonic crystal barrier design, using overlapping two-dimensional 

FEM models [13]; however, the correct incorporation of the 3D character of the generated 

wavefields in 3D sonic crystals is still not completely demonstrated for this approach. 

The more recently developed meshless methods have already been applied in the context 

of sonic crystals, although available literature is more limited. Two such examples are the 

works of Zheng et al. [14,15], in which methods based on Radial Basis Functions (RBF) 

were applied for the analysis of the band structure of in-plane and anti-plane elastic waves 

in 2D sonic crystals, and of Yan et al. [16], who also used RBF-based techniques to 

compute the band structure in sonic crystals.  

One particular meshless method that has been significantly developed for acoustic 

analysis is the so-called Method of Fundamental Solutions (MFS) [17,18]. The concept 

of the MFS is quite simple, taking into consideration that the acoustic wavefield in the 

presence of scatterers can be reproduced by means of the superposition of the effects of 

multiple sources, each with an a-priori unknown amplitude. However, the method 

revealed high potential for acoustic applications, showing good convergence properties 

and high accuracy even when compared with more conventional methods [19]. 

The application of the MFS in the field of sonic crystal analysis is due to Martins et al. 

[20], who proposed its use to evaluate the insertion loss provided by a periodic 2D 

structure made of rigid scatterers. In that work, the authors addressed the application of 

the MFS for modelling traffic noise attenuation in a 2D approach, demonstrating that 

significant computational advantages are obtained when comparing to BEM and FEM 
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approaches. Later, the work by Santos et al. [21] extended the formulation to allow 

considering elastic shell scatterers. However, in both works, the classic formulation of 

the MFS was used, involving the complete formation of the system matrix and thus 

exhibiting some limitations regarding the maximum problem size that could be addressed. 

Indeed, it should be noted that the mathematical structure of the MFS leads, in these cases, 

to the generation of a very large matrix, which is fully populated and demands significant 

memory requirements. In an attempt to define a more powerful strategy to allow 

structures with a large number of scatterers (and nodes) to be analyzed, Godinho et al. 

[22] proposed a 2.5D MFS formulation together with the Adaptive-Cross-Approximation 

(ACA) technique. In [23], Godinho et al. proposed a new periodic MFS formulation, also 

using the ACA, to address the case of large periodic finite arrays of scatterers in 3D. The 

method was found to be very efficient and to allow modelling very large structures while 

allowing large savings of computational resources. 

An important limitation of the above mentioned approaches using the BEM or the MFS 

is that they pose difficulties when a very large structure, which approaches the behaviour 

of a sonic crystal of infinite extent, needs to be modelled. Although this can be done using 

a FEM or FD approach, using periodic boundary conditions, standard BEM and MFS 

formulations cannot deal with such configurations directly. The present paper proposes a 

new approach for such 3D problems making use of a highly efficient MFS 

implementation to deal with sonic crystals made of 3D scatterers, which are infinitely 

repeated with constant spacing along one direction. For that purpose, a special form of 

the acoustic fundamental solution for acoustic problems is proposed, which can be highly 

efficient in such analysis. Indeed, by using such periodic fundamental solution only a very 

small portion of the structure needs to be modelled, corresponding to the unitary cell that 

is infinitely repeated along one direction. Using such strategy, very large computational 
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savings can be obtained, and a very competitive engineering model is defined, surpassing, 

for example, the limitations of using two overlapping 2D models of [13], or the need to 

discretize the whole structure and calculate a very large matrix of [23]. 

In the remaining part of this paper, first, the mathematical formulation of the 3D MFS is 

presented, together with the standard fundamental solutions for infinite and semi-infinite 

acoustic media. Then, the proposed periodic fundamental solutions are presented, and a 

study and discussion on their convergence properties is provided. Verification of the 

model is then performed by first comparing its results with those from the ACA-PMFS 

model of [23], in terms of acoustic pressure results, and then with those resulting from a 

completely independent 3D FDTD algorithm, in terms of insertion loss results. A 

parametric study is finally presented, with a set of results that reveal the true 3D character 

of the computed responses and evidence the formation of acoustic band-gaps at specific 

frequency bands associated with the Bragg effect. 

2 Method of Fundamental Solutions for 3D acoustic problems 

The propagation of sound within a three-dimensional space can be mathematically given 

in the frequency domain by the Helmholtz partial differential equation, 

2 2

1

( ) ( ) ( , )
NS

f
k k

k

p k p Q 


   x x x x , (1) 

where 
2 2 2

2

2 2 2x y z

  
   

  
; p is the acoustic pressure; k c ; 2  f ; f is the 

frequency; c  is the sound propagation velocity within the acoustic medium; NS is the 

number of sources in the domain; kQ  is the magnitude of the existing sources f
kx  located 

at ( , , )f f f
k k kx y z ; x  is a field point located at ( , , )x y z ; and ( , )f

k x x  is the Dirac delta 

generalized function. 



6 
 

The boundary conditions for the problem (for x  in the boundary) are given by: 

i
( ) ( )  ( )         in  interfaces 

n
n n

p
v v S


 


x x x  (2a) 

( ) ( ) ( )           in  interfaces n Zp Z v Sx x x  (2b) 

where  ( )nv x  is the normal particle velocity and ( )Z x is the surface impedance of a 

possible absorbing material, which are assumed to be known quantities. Equation (2a) 

stands for Neumann condition and equation (2b) stands for Robin or impedance boundary 

condition. 

Considering that a source point is placed within this propagation domain, at 0x 0 0 0( , , )x y z

, it is possible to establish the fundamental solution for the incident sound pressure at a 

point x , which can be written as 

-i
2 2 2

0 0 0 0

e
( , ) , with  ( ) ( ) ( )

4

kr

G r x x y y z z
r

      x x . (3) 

 

In the context of noise barrier analysis, it is usually necessary to consider the effect of the 

ground plane, which generates an additional reflection that interferes with the expected 

acoustic results. The presence of a perfectly reflecting plane surface, simulating a rigid 

ground, can be taken into account by using the well-known image-source method. In this 

technique, the effect of a source point in the presence of a given plane surface can be 

simulated by considering an additional virtual source, positioned in a symmetrical 

position with respect to the reflecting plane. Thus, if such plane is defined by 0z  , the 

corresponding Green’s function can be written as 

1-i-i
2 2 2

0 1 0 0 0

1

e e
( , ) , with ( ) ( ) ( )

4 4

krkr

hG r x x y y z z
r r 

       x x
. 

(4) 

The Method of Fundamental Solutions is here used to compute the frequency domain 

response in a three dimensional halfspace surrounding a set of acoustic scatterers. This  
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solution is computed as a linear combination of fundamental solutions for a set of NVS 

virtual sources, with amplitude lA  (with 1,..., )l NVS . These sources are placed outside 

the domain of interest (inside the scatterers), to avoid singularities. Thus, the pressure 

field around the scattering objects can be computed as: 

 
1

( ) , ( ),
NVS

v
l h l inc

l

p A G P


 x x x x  (5) 

where the coefficients lA  are unknown amplitudes which are computed by imposing the 

appropriate boundary conditions at a set of NCP points (collocation points) placed along 

the surfaces S S S    and  ,v
h lG x x  is the fundamental solution at point x  for a 

virtual source placed at v
lx . ( )incP x  represents a generic incident wavefield, generated by 

any source within the acoustic domain. In the MFS model here developed, the Green’s 

function presented in Equation (4) is used. In this work, an equal number of collocation 

points and virtual sources is assumed, which allows obtaining a NVS NVS  system. This 

system is built by prescribing at each collocation point mx , placed in the boundaries of 

the scatterers, the conditions defined in equations (2). By applying this procedure one 

obtains: 

 
1

, ( )
,

vNVS
h l m inc m

l
l

G P
A

n n

 
 

 


x x x
 (6) 

 
1

1

, ( )

i ( ) ( , ) ( )
A .

NVS
v

l h l m inc m
l

vNVS
m h l m inc m

l
l

AG P

Z G P

n n





 

  
  

  





x x x

x x x x  

(7) 

 
Equation (6) is applied for the case of rigid surfaces, while equation (7) is employed if it 

is required to assign absorption to the surfaces of the model. For both cases, a resulting 
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NVS NVS  system is obtained, which after being solved makes it possible to obtain the 

acoustic pressure at any point of the domain by applying equation (5). 

 

3 Method of Fundamental Solutions for an infinite periodic system 

In the context of the present paper, the interest is focused in the analysis of the scattering 

by infinite sets of objects, placed above a horizontal plane, and arranged periodically 

along one direction (see Figure 1). For that scenario, using the fundamental solution 

described in equation (4) leads to the requirement of modelling each of the scatterers 

using the MFS, distributing collocation points and virtual sources associated to each 

scatterer. To accurately simulate an infinite array, it would become necessary to consider 

a large number of scatterers, in order to avoid diffraction effects that should not occur for 

an infinite array.  

 

Figure 1 – Schematic representation of a regular array of scatterers, periodically spaced along 

one direction and illuminated by a line source. 

 

The simplest form to analyse this problem is to bear in mind that, for a problem with a 

periodic array of scatterers and a periodic source (as for example the line source illustrated 

in Figure 1) aligned with the axis of periodicity, the acoustic field must also exhibit 

periodicity. If a periodicity a is assumed, this means that  
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( ) ( )n ap p x x , with ( , , )x y zx  and ( , , )n a x y n a z   x  (8) 

 

It can also be stated that, in the context of a purely periodic system, the position of each 

virtual source l inside scatterer i (with i being an integer ranging from   to  ), can be 

written as 

 

, ( , , )v v v v
l i l l lx y i a z  x  (9) 

 

Given this previous assumptions, if a set of NVSi virtual sources and collocation points 

is used for each scatterer i, and the amplitudes of each virtual source located at ,
v
l ix , are 

given by ,l iA , then 

, , 1 ,0 ,1 ,l l l l l lA A A A A A          . (10) 

 

So, the pressure field at any point x  of the propagation domain may also be written as 

(designating by ( )per
incP x  the incident field coming directly from a possible source, which 

must also have the same periodicity with that of the system): 

 ,
1

( ) , ( )
NVSi

v per
l h l i inc

l i

p A G P


 

 
  

 
 x x x x . (11) 

Observing equation (11), it can be inferred that the analysis of an infinite periodic 

structure, with periodicity a along the direction y can be performed using the MFS by 

considering an adapted fundamental solution, obtained by also considering the 

fundamental solution to have the same periodicity as the physical system. Thus, a possible 

fundamental solution for this case can be written as 

   , ,, ,v v
h per l h l i

i

G G




 x x x x  with , ( , , )v v v v
l i l l lx y i a z  x  (12) 

Although this simple equation can indeed be used as the basis of a periodic MFS 

formulation, it should be noted that the involved summation can pose convergence 
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problems, and require a very large number of terms to converge, thus leading to very long 

computational times. However, at this point it should be noted that equation (12) just 

represents an infinite summation of periodically placed sources along one direction. It is 

important to recall that a 3D acoustic source (equation 3) can, following a spatial Fourier 

transformation, be represented as a summation of 2D sources with varying axial 

wavenumbers (as described in detail in Tadeu and Godinho [24] or in Godinho et al. [25]), 

such that 

0

-i
i ( )(2)

0 0

e i
( , ) H ( ' ')e d

4 8
y

kr
k y y

yG k r k
r 


 



   x x ,  (13) 

where 
2

2 2 2
0 0' (with imag( ') 0), and ' ( ) ( )yk k k r x x z z

c

 
       

 
. Discretizing 

this integral in regular intervals of ydk , one obtains the acoustic field in the form of an 

infinite summation as 

0i ( )(2)
0 0

i
( , ) H ( ' ')e

8
ydk n y y

y
n

G k r dk



    



  x x .  (14) 

The introduction of such a discretization is, following the same references [24, 25], 

equivalent to considering a set of point sources equally spaced of L along the axis of 

periodicity, such that 
2

ydk
L


 . So, if L=a, it can be stated that 

 0
2

i ( )
(2)
0 ,

i 2
H ( ' ')e ,

8

n y y
vL
l i

n i

k r G
L

 



     

 

    x x .  (15) 

Following these considerations, and now assuming that an additional image source is 

considered to simulate a horizontal plane, the periodic fundamental solution for a 

halfspace can be written as 
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      0
2

i ( )
(2) (2)

, , 0 0

i
, , H ( ' ') H ( ' '') e

4

n y y
v v a

h per l h l i
i n

G G k r k r
a

      

 

 
    

 
 x x x x   (16) 

where 2 2
0 0'' ( ) ( )r x x z z    . This summation is known to have good convergence 

properties [24,25] and can be a more efficient alternative to equation (12). 

 

To test the convergence of both presented alternatives (equations 12 and 16), a compact 

convergence study is next presented. For that purpose, let us consider a halfspace domain 

in which a point load is located, at  0 0.0;  0.0;  0.5x , and that the response is to be 

computed at a receiver point located at  0.1;  0.25;  0.5x ; a periodicity of 0.5m is 

considered and a sound propagation velocity of 343 m/s is assumed. Figure 2 depicts the 

convergence of equations (12) and (16) when the harmonic source oscillates with a 

frequency of 500 Hz. In the presented plots, it can be seen that the computations 

performed with equation (12) (Figure 2a1) converge slowly to the solution, oscillating 

around the correct value as more terms (sources) are added to the summation. Indeed, 

observing this plot and also that of Figure 2b1, which depicts the convergence in terms 

of relative error as a function of the number of terms, it can be seen that even for 1000 

terms a relative error of 10-4 has not yet been reached. By contrast, observing the plots of 

Figures 2a2 and 2b2, it can immediately be realized that, with just 5 terms, this level has 

already been reached, revealing a much faster convergence and thus an increased 

computational efficiency. In Figure 3 similar results are plotted for a frequency of 

2000 Hz, and for that case the difference between the convergence of the two solutions is 

even more evident. However, it should be stressed that both approaches are converging 

to the same solution, as can be seen in Figures 2a and 3a. To complement this analysis, 

Figure 4 presents the convergence curve for two additional domain points, for 2000 Hz, 

confirming the same fast convergence rate observed before.  
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a1) a2) 

b1) b2) 
Figure 2 – Convergence of the two periodic fundamental solutions for a frequency of 500 Hz. In a1 and 

a2 the calculated real and imaginary parts of the response are depicted, and in b1 and b2 the relative error 
is shown. a1 and b1 correspond to solutions computed using equation (12), and a2 and b2 to solutions 

computed with equation (16). 
 

a1) a2) 

b1) b2) 
Figure 3 – Convergence of the two periodic fundamental solutions for a frequency of 2000 Hz. In a1 and 
a2 the calculated real and imaginary parts of the response are depicted, and in b1 and b2 the relative error 
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is shown. a1 and b1 correspond to solutions computed using equation (12), and a2 and b2 to solutions 
computed with equation (16). 

 

a) b) 
Figure 4 – Convergence of the periodic fundamental solution of equation (16), for a frequency of 

2000 Hz, considering two different domain points: a)  0.1;  0.0;  0.1x ; b)  0.1;  0.0;  0.5x .  

 
Although very good convergence has been observed in all previous analysis, it is 

important to note that a particular case occurs when the source and the receiver points 

coincide in the x-z plane. For that case, equation (16) cannot be calculated, as the involved 

Hankel function tends to infinite. Although in the context of the proposed MFS 

application this issue can easily be avoided by always using slightly different x and z 

coordinates for the virtual sources and for the collocation points, it is important to assess 

the behaviour of the proposed fundamental solution in the vicinity of the source point. 

Figure 5 illustrates the corresponding responses for 2000 Hz, when the receiver points are 

 0.0;  0.01;  0.5001x  (Figures 5a1 and 5a2) and  0.0;  0.1;  0.5001x  (Figures 5b1 

and 5b2). For the illustrated case, the source and the receiver points are almost coincident 

in the x-z plane, with a distance between them of just 0.0001 m in that plane, and distances 

of 0.01 m and 0.1 m are considered along the y axis (axis of periodicity). The evolution 

of the real and imaginary parts of the response with increasing numbers of terms clearly 

reveals that the required number of terms is very high, and convergence is only attained 

when 5000 or more terms are considered. It should be noted that, for this case, due to the 

close proximity between source and receiver, the importance of evanescent waves (which 
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are the only ones to propagate when yk c ) is much higher, and so the number of 

terms necessary for convergence considerably increases. However, convergence can still 

be reached, although after a marked oscillatory behavior that occurs at the beginning of 

the process. These results indicate that the proposed fundamental solution of equation 

(16) can be used even for the case of the receiver being very close to the source, although 

longer convergence times are expected. 

 
 

 
a1 

 
b1 

 
a2 

 
b2 

Figure 5 – Convergence of the periodic fundamental solution of equation (16), for a frequency of 
2000 Hz, considering two domain points very close to the source in the x-z plane: a) 

 0.0;  0.01;  0.5001x ; b)  0.0;  0.1;  0.5001x .  

 

To have a better view of the number of terms required for convergence as a function of 

receiver position, Figure 6 depicts the required number of terms for each point over a x-
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z plane positioned at y=0.01m and y=0.1m, for a frequency of 2000 Hz. These two plots 

clearly corroborate the findings described before, and evidence the presence of a marked 

peak occurring when the source and receiver are very close to each other. In the most part 

of the domain, less than 10 terms are required, and even at intermediate regions no more 

than 30 terms are needed to attain convergence. Results computed for other frequencies 

(not shown) also evidence the same behaviour. 

 

  
a) b) 

Figure 6 – Number of terms required for convergence by equation (16), for a frequency of 2000 Hz, 
considering different points in the x-z plane: a) y=0.01m; b) y=0.1m. A relative error of 10-5 was 

considered for convergence. 
 
 

4 Verification of the proposed algorithm 

In order to verify the proposed MFS model, its results must be compared with those 

provided by alternative numerical strategies. For that purpose, the model proposed by the 

authors in [23] is used as a reference, and a test scenario is defined to perform the required 

comparisons. In this scenario, the individual scatterer assumes the simple shape of a 

sphere (Figure 7a), with radius of 0.1 m, and it is disposed along the y axis with a 

periodicity of 0.3 m, over a rigid horizontal plane (halfspace). The scatterers are centred 

at x=0.6 m and z=0.6 m, and are illuminated by a line load positioned at x=1.2 m and 

z=0.3 m. The response is computed over a line of receivers positioned between x=-1.0 m 

and x=-6.0 m, at y=0.0 m and z=0.3 m, as depicted in Figure 7b. 
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To illustrate the global behaviour, an excitation frequency of 3000 Hz is chosen, and the 

results are calculated using the proposed model (which in fact simulates the infinite 

character of the periodic array) and the model of [23], with different numbers of 

scatterers. Sets of 17, 33, 41 and 81 scatterers are tested and the results presented in Figure 

8, in terms of absolute acoustic pressure. As can be seen in that figure, the results 

calculated with a reduced number of scatterers follow the response provided by the 

proposed model in a very rough manner, and the detail of the oscillatory character of the 

response is missed, particularly for receivers placed further away from the source. As the 

number of modelled scatterers is increased, the calculated response becomes 

progressively closer to that of the proposed model, and for the higher number of scatterers 

(81) the two responses finally become very close. However, even for that case, small 

differences can be identified, as depicted in Figure 8b.  

  

a) 

  

b) 

Figure 7 – Schematic representation of the test problem: a) spherical scatterer with radius 0.1m, and 456 
collocation points; b) 2D view of the test scenario along the x-z plane for y=0. 
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Globally, the results presented here indicate that the proposed model is correctly 

predicting the acoustic pressure behind the periodic structure, and that the MFS model 

which only considers a finite number of scatterers progressively approaches that response 

as the number of scatterers increases. Moreover, it should be stated that a very significant 

CPU time difference between the two methods is registered in this calculation, with only 

a fraction of the time being required by the proposed model. Considering, for example, 

the case with 81 scatterers, the CPU time required by the model proposed here is about 

20% of the time required by the already efficient periodic ACA MFS model proposed in 

[23] for finite periodic structures. 
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b) 
Figure 8 – a) Comparison of the proposed model results with those computed using Ref. [23], for 

different numbers of scatterers; b) zoomed view of the comparison. 

 

5 Numerical experiments 

The model proposed and described in the previous sections has been used to perform a 

number of numerical simulations, in order to better understand the behaviour of sonic 

crystals, correctly incorporating their 3D character. For that purpose, a generic 

configuration has been defined, as schematically illustrated in Figure 9, considering a 

lattice constant a and assuming that the scatterers have a circular cross section of diameter 

D. The acoustic system is illuminated either by a plane wave, propagating from the left 

side of the structure. For the purpose of insertion loss (IL) calculations, a grid of 11 6 3   

receivers is used, as depicted in the figures.  
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c) 

Figure 9 – Side (a) and top (b) views of the sonic crystal used in the numerical applications. In (c) a 3D 
view of an example problem is shown, considering scatterers with a height of 2.0m, periodically repeated 

along the y direction. 
 

 

In a first set of results, let us analyse the insertion loss provided by a sonic crystal structure 

defined considering a height of 2.0 m and a lattice constant (periodicity) of 0.1715 m; this 

value is defined so that the theoretical band-gap, generated by the Bragg effect, occurs at 

f=343/2/a=1000 Hz. A plane wave is assumed to illuminate the system, and the insertion 

loss is calculated as the difference between the sound pressure levels (averaged at the 

receivers’ grid observed in Figure 9a) computed without and with the structure: 

[ ]without withIL L L dB    (17) 

 

For the purpose of IL calculations, the grid of receivers is positioned 0.5 m behind the 

scatterers (L=0.5 m in Figure 9a). 

Figure 10 illustrates the insertion loss curves calculated in 1/3 octave bands between 

100 Hz and 3150 Hz, considering 3 rows of scatterers and different radii for the scatterers. 

These radii are defined as being 50% (Figure 10a), 75% (Figure 10b) or 90% (Figure 10c) 

of the maximum possible radius in a square lattice (a/2). To allow a cross-verification 

y(
m

)
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with a completely independent method, in the same figure the IL curves calculated using 

a Finite-Difference-Time-Domain (FDTD) algorithm are also presented. Further details 

of the algorithm used can be found at [26]. In that calculation, a spatial step of 0.5 cm 

was used, equivalent to at least 12 points per wavelength, together with a staggered grid 

with about 14×106 points. Comparing the results calculated using both methods, it is clear 

that they both identify the same type of behaviour for the three cases, with IL peaks 

occurring at specific frequencies of 1000 Hz and 2500 Hz. The amplitudes of the IL 

predicted at these frequencies are very similar, and significant discrepancies are only 

visible for the larger sized scatterers (with a radius of 75% and 90% of the maximum) for 

which the proposed MFS predicts an IL around 1.5 dB higher than the FDTD method at 

the first IL peak. At lower frequencies, it is clear that the results are not perfectly 

coincident, and that visible divergences can be identified in particular for the larger 

scatterers (radius of 90% of the maximum). However, in general, it can be said that similar 

qualitative and quantitative predictions are made in terms of IL by these two methods. 

From a physical point of view, a first band-gap emerges around 1000 Hz for all 

configurations, with considerable IL being registered, occurring at the frequency 

theoretically estimated considering the Bragg effect. As larger scatterers are considered, 

the insertion loss tends to increase, and particularly for a radius of 90% of the maximum 

this band-gap becomes broader, covering a wider frequency range. A second band-gap 

also occurs at higher frequencies, which however seems to be somewhat dependent on 

the diameter of the scatterers. 
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a)

b) 

c) 

Figure 10 – Insertion loss in 1/3 octave bands computed with FDTD and MFS for sonic crystals 2m high 
and 3 rows, considering different radii for the scatterers. These radii are defined as a percentage of the 
maximum allowed radius for the defined square lattice (with a value of 0.08575 m, half of the lattice 

parameter): a) 50%; b) 75%; c) 90%. 

 

Figure 11 illustrates the insertion loss curves calculated considering 2, 3 or 4 rows of 

scatterers. The presented results clearly reveal that below 600 Hz the insertion loss is 
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essentially negligible, and the structure provides almost no protection to the receivers 

positioned behind it. As before, a first band-gap is visible for all cases at 1000 Hz, 

matching the theoretically estimation for the Bragg effect and reaching almost 15 dB for 

the structure with 4 rows. In this plot, it is clear that as more rows are considered, higher 

IL values are reached. In all curves, a second band-gap is also clearly visible, occurring 

at the same frequency (of around 2500 Hz) for the three cases.  

 

Figure 11 – Insertion loss in 1/3 octave bands computed for sonic crystals 2m high, and with 2, 3 and 4 
rows of scatterers. 

 

To better understand the sound pressure level (SPL) distribution that occurs in the 

different zones of the IL curve, Figure 12 exhibits SPL maps calculated for frequencies 

of 500 Hz, 1000 Hz, 1600 Hz and 2500 Hz, considering 3 rows of scatterers. Observing 

the presented plots, it is clear that the effect of the barrier is almost null for 500 Hz and 

1600 Hz, and the energy passes through the obstacle with very little attenuation. By 

contrast, in the band-gap frequencies of 1000 Hz and 2500 Hz, a shadow zone is clearly 

visible at receivers behind the sonic crystal, and particularly at lower heights. It should 

be noted that, for receivers placed further away from the ground, the sound energy is not 

influenced by the barrier, and just passes above it; at lower heights, the energy reaching 

the receivers is a combination of two different paths: one corresponding to the energy 
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passing through the barrier, and the other to the energy diffracted by the top of the 

scatterers. Observing the results for 1000 Hz, the effect of the interaction with the ground 

is also noticeable, with the energy being reflected at that rigid surface back to the 

propagation medium. Another interesting feature is that the attenuation effect occurring 

behind the sonic crystal seems to be extended to quite large distances from the structure, 

and is still very noticeable 4 m behind it. This feature is particularly evident in Figure 

12d, for the higher frequency, for which the barrier protection seems to occur almost for 

the full grid behind the barrier and at heights lower than 2 m. That behavior seems to 

indicate a weaker diffraction effect than that seen on conventional (wall-type) barriers. 

a) b)

c) d) 

Figure 12 – SPL maps for sonic crystals 2m high, with 3 rows of scatterers, for a x-z plane located at 
y=a/2 and for: a) 500 Hz; b) 1000 Hz; c) 1600 Hz; d) 2500 Hz. 

 

 

Indeed, one point to be addressed in this study is related to the importance of considering 

the 3D effect of the sonic crystal. In most of the published studies, a 2D approach is used, 
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as for instance in [20], which is equivalent to consider that the scatterers are of infinite 

extent; it is thus important to better understand the influence of the height of the scatterers 

in the insertion loss of the system. For that purpose, three different scatterer heights are 

considered, namely 2m, 3m and 4m. In addition, the model presented in [20] is used to 

compute a purely 2D response, to be used as a reference. One should note that, by 

comparing these 2D results with the pure 3D results of the present paper, it becomes 

possible to assess the importance of the diffraction effect occurring at the top of the sonic 

crystal, a subject that has not been addressed yet in a systematic manner in the published 

literature, to the authors’ best knowledge. Figure 13a presents the insertion loss curves 

calculated for the 4 cases now mentioned, in periodic configurations with 3 rows. 

Observing this figure, it is possible to see that the IL tends to increase progressively with 

the height of the sonic crystal, with differences of just 0.2 dB being registered between 

heights of 2m and 4m for the first band-gap frequency. When comparing to the reference 

result, it can be concluded that the 3D insertion loss also progressively approaches the 2D 

case, although it does not reach the same IL magnitude. Indeed, at 1000 Hz, a small 

difference of less than 1 dB is still registered between the case with taller scatterers and 

the 2D case; this difference rises to around 3 dB for the second band-gap, confirming that 

an overestimation of the insertion loss exists when 2D models are used, but also indicating 

that the diffraction effect is not as significant as in the case of classic noise barriers. It 

seems that, for the case of sonic crystals, the diffraction effect is not as pronounced as in 

a continuous wall; this was expected to occur since sonic crystals do not have a continuous 

and pronounced edge to produce such marked diffraction phenomenon. In Figure 13b an 

additional comparison is performed, now considering the hybrid model proposed in 

reference [13], for the case of scatterers 2.0m tall. That simplified approach just combines 

the IL provided by two 2D simulations, one considering the x-z plane, and another for the 
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x-y plane. For the tested case, a tendency for the simplified hybrid approach to 

overestimate the attenuation provided by the sonic crystal occurs throughout the whole 

spectrum, and it is particularly noticeable in the low frequency range and at the second 

band-gap. However, the position of the band-gaps is still correctly predicted by the 

simplified approach. In spite of this, it seems that the estimation obtained for this case is 

not as good as that computed using a pure 2D model, as seen in Figure 13a. 

a) 

b) 
Figure 13 – Insertion loss in 1/3 octave bands of sonic crystals with 3 rows and a radius of 50% of the 

maximum: a) comparison between scatterers 2m, 3m and 4m tall, and a 2D analysis; b) comparison with 
the hybrid model of [13] for the case of h=2m. 

 

To further analyze the diffraction effect occurring in the case of sonic crystals, different 

relative positions of the grid of receivers with respect to the barrier were evaluated, 

considering L=0.5 m, L=2.5 m, L=5.0 m and L=10.0 m (see Figure 9). One should note 
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that receivers placed further away from the barrier will typically be less protected from 

the incident wave field, and will receive a stronger contribution of diffracted energy by 

the top of the barrier. Therefore, observing Figure 14, where the IL curves for these four 

receiver positions are depicted, it becomes quite clear that the four curves are almost 

coincident up to the second band-gap, where some slight differences are registered. This 

coincidence further confirms that diffracted energy is not predominant in the case of sonic 

crystals, for which the dominant effect is the direct transmission of sound energy through 

the barrier itself. 

 

Figure 14 – Insertion loss in 1/3 octave bands computed for sonic crystals with scatterers 2m tall, for four 
different positions of the grid of receivers; 3 rows and a radius of 50% of the maximum value are 

considered. 

 

6 Final remarks 

In the present paper, the authors presented a new approach for the analysis of 3D acoustic 

problems with infinite periodicity along one direction, making use of the MFS. The 

proposed method has been developed in order to allow dealing with sonic crystals made 

of 3D scatterers, infinitely repeated with constant spacing along one direction, with 

efficiency. For that purpose, a specific periodic fundamental solution has been developed 

and studied, evidencing good convergence properties, and allowing problems with 3D 
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sonic crystals to be effectively handled using an elegant meshless method as the MFS. It 

should be pointed out that the proposed approach allows overcoming some significant 

drawbacks identified for the MFS, avoiding the full discretization of a large number of 

scatterers, thus reducing the problem size and computational costs. Comparison with a 

previously published model, also developed by the authors, indicates that this new model 

can accurately compute the response for infinite arrays with only a fraction of the 

computational cost. Parametric studies have been performed using the periodic MFS 

approach, and allowed reaching interesting conclusions. For example, it has been shown 

that the diffraction effect occurring at the top of the sonic crystal is not as evident as in 

the case of conventional (wall-type) noise barriers, and so the dominant phenomenon is 

the direct sound transmission of energy through the barrier with discrete periodic 

scatterers.  
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