Document downloaded from:

http://hdl.handle.net/10251/125102

This paper must be cited as:

Xu, S.; Chen, C.; Benítez López, J. (2018). Projections for generalized inverses. Linear and Multilinear Algebra. 66(8):1593-1605. https://doi.org/10.1080/03081087.2017.1364339

The final publication is available at http://doi.org/10.1080/03081087.2017.1364339

Copyright Taylor & Francis

Additional Information

Projections for generalized inverses

Sanzhang Xu and Jianlong Chen^{*}

School of Mathematics, Southeast University, Nanjing 210096, China

Julio Benítez[†]

Universitat Politècnica de València, Instituto de Matemática Multidisciplinar, Valencia, 46022, Spain

Abstract: Let R be a unital ring with involution. In Section 2, for given two core invertible elements $a, b \in R$, we investigate mainly the absorption law for the core inverse in virtue of the equality of the projections aa^{\oplus} and bb^{\oplus} . In Section 3, we study several relations concerning the projections a'a and bb', where $a' \in a\{1, 2, 4\}$ and $b' \in b\{1, 2, 3\}$. Some well-known results are extended to the *-reducing ring case. As an application, EP elements in a *-reducing ring are considered.

Key words: Projection, absorption law, core inverse, Moore-Penrose inverse. **AMS subject classifications:** 15A09, 16W10, 16U60.

1 Introduction

Throughout this paper, R will denote a unital ring with involution, i.e., a ring with unity 1, and a mapping $a \mapsto a^*$ satisfying $(a^*)^* = a$, $(ab)^* = b^*a^*$ and $(a+b)^* = a^* + b^*$, for all $a, b \in R$. Let $a, x \in R$. If

(1)
$$axa = a$$
, (2) $xax = x$, (3) $(ax)^* = ax$, (4) $(xa)^* = xa$, (1.1)

then x is called a *Moore-Penrose inverse* of a. If such an element x exists, then it is unique and denoted by a^{\dagger} . The set of all Moore-Penrose invertible elements will be denoted by R^{\dagger} . Let $I \subset \{1, 2, 3, 4\}$. An element $b \in R$ is called an I inverse of $a \in R$ if equalities $i \in I$ of (1.1) hold. The set of all I inverses of a will be denoted by a^{I} , the element a is I invertible when $a^{I} \neq \emptyset$ and the set of all I invertible elements will be denoted by R^{I} . Let $a \in R$. It can be easily proved that the set of elements $x \in R$ such that

$$axa = a$$
, $xax = x$ and $ax = xa$

is empty or a singleton. If this set is a singleton, its unique element is called the group inverse of a and denoted by $a^{\#}$. The set of all group invertible elements will be denoted by $R^{\#}$. The subset of R of all invertible elements will be denoted by R^{-1} . We will also use the following notations: $aR = \{ax : x \in R\}, Ra = \{xa : x \in R\}, ^{\circ}a = \{x \in R : xa = 0\}$ and $a^{\circ} = \{x \in R : ax = 0\}$.

^{*}E-mail: xusanzhang5222@126.com. Corresponding author, E-mail: jlchen@seu.edu.cn

[†]E-mail: jbenitez@mat.upv.es

The notion of the core inverse for a complex matrix was introduced by Baksalary and Trenkler [1]. In [12], Rakić et al. generalized the core inverse of a complex matrix to the case of an element in R. More precisely, let $a, x \in R$, if

$$axa = a, \quad xR = aR \quad \text{and} \quad Rx = Ra^*,$$
 (1.2)

then x is called a *core inverse* of a. If such an element x exists, then it is unique and denoted by a^{\oplus} . The set of all core invertible elements in R will be denoted by R^{\oplus} . Also, in [12] the authors defined a related inner inverse in a ring with an involution. If $a \in R$, then $x \in R$ is called a *dual core inverse* of a if

$$axa = a$$
, $xR = a^*R$ and $Rx = Ra$.

If such an element x exists, then it is unique and denoted by a_{\oplus} . The set of all dual core invertible elements in R will be denoted by R_{\oplus} . It is evident that $a \in R^{\oplus}$ if and only if $a^* \in R_{\oplus}$, and in this case, one has $(a^{\oplus})^* = (a^*)_{\oplus}$. More characterizations of elements to be core invertible by equations can be found in [12, 15].

An element $a \in R$ is said to be an EP element if $a \in R^{\dagger} \cap R^{\#}$ and $a^{\dagger} = a^{\#}$ [2, 5]. The set of all EP elements will be denoted by R^{EP} . An element $p \in R$ is said to be a *projection* if $p^2 = p = p^*$. We will use the notation [a, b] = ab - ba.

In [7, Proposition 6], for two complex matrices A and B, Hartwig and Spindelböck explored equivalent conditions such that $A^{\dagger}A = BB^{\dagger}$. In [11, Theorem 2.3], for $a, b \in R^{\dagger}$, Patrício and Mendes investigated necessary and sufficient conditions such that $aa^{\dagger} = bb^{\dagger}$. If we take $c = b^{\dagger}$ in $aa^{\dagger} = bb^{\dagger}$, then by $(b^{\dagger})^{\dagger} = b$, we have $aa^{\dagger} = c^{\dagger}c$, and therefore, this form is the same as $A^{\dagger}A = BB^{\dagger}$. In [7, 11], authors investigated the equality $aa^{\dagger} = bb^{\dagger}$ under the hypothesis $a, b \in R^{\dagger}$. Motivated by [7, 11], in Section 2, we discuss when the projections aa^{\oplus} and bb^{\oplus} are equal, which is under the hypothesis $a, b \in R^{\oplus}$. We will extend [7, Proposition 6] of complex matrices to the case of *-reducing rings in Section 3. In Theorem 3.6, when $a^{(1,2,4)} \in a^{\{1,2,4\}}$ and $b^{(1,2,3)} \in b^{\{1,2,3\}}$, we give some relationships between the projections $a^{(1,2,4)}a$ and $bb^{(1,2,3)}$. Theorem 3.6 will be useful in the sequel. In Theorem 3.9, we can see that the proof becomes simple with the aid of Theorem 3.6. Note that Theorem 3.9 is a generalization of known equivalent conditions for an EP element in a *-reducing ring.

2 Core invertibility: the case $aa^{\oplus} = bb^{\oplus}$

Before we investigate necessary and sufficient conditions such that two core invertible elements satisfy $aa^{\oplus} = bb^{\oplus}$, some auxiliary work should be done.

Proposition 2.1. Let $a, b \in R$. We have:

- (1) If $a, b \in \mathbb{R}^{\{1,3\}}$, then the following statements are equivalent:
- (i) aR = bR;
- (ii) $aa^{(1,3)} = bb^{(1,3)}$ for all $a^{(1,3)} \in a\{1,3\}$ and $b^{(1,3)} \in b\{1,3\}$;
- (iii) $aa^{(1,3)} = bb^{(1,3)}$ for some $a^{(1,3)} \in a\{1,3\}$ and $b^{(1,3)} \in b\{1,3\}$.

- (2) If $a, b \in R^{\{1,4\}}$, then the following statements are equivalent:
- (i) Ra = Rb;
- (ii) $a^{(1,4)}a = b^{(1,4)}b$ for all $a^{(1,4)} \in a\{1,4\}$ and $b^{(1,4)} \in b\{1,4\}$:
- (iii) $a^{(1,4)}a = b^{(1,4)}b$ for some $a^{(1,4)} \in a\{1,4\}$ and $b^{(1,4)} \in b\{1,4\}$.

Proof. Let us prove (1). (i) \Rightarrow (ii). Suppose aR = bR, then a = bx and b = ay for some $x, y \in R$. Thus

$$a = bx = bb^{(1,3)}bx = bb^{(1,3)}a; (2.1)$$

$$b = ay = aa^{(1,3)}ay = aa^{(1,3)}b.$$
(2.2)

Then we have

$$bb^{(1,3)} \stackrel{(2,2)}{=} aa^{(1,3)}bb^{(1,3)} = (aa^{(1,3)}bb^{(1,3)})^* = bb^{(1,3)}aa^{(1,3)};$$
(2.3)

$$aa^{(1,3)} \stackrel{(2,1)}{=} bb^{(1,3)}aa^{(1,3)}.$$
(2.4)

A combination of (2.3) and (2.4) implies $aa^{(1,3)} = bb^{(1,3)}$.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). Suppose exists $a^{(1,3)} \in a\{1,3\}$ and $b^{(1,3)} \in b\{1,3\}$ such that $aa^{(1,3)} = bb^{(1,3)}$. Then we have $a = aa^{(1,3)}a = bb^{(1,3)}a$ and $b = bb^{(1,3)}b = aa^{(1,3)}b$, thus aR = bR. \square

The proof of (2) is similar to the proof of (1).

In [12, Theorem 2.14], Rakić et al. proved that an element $a \in R^{\oplus}$ satisfies

$$aa^{\oplus}a = a, \qquad a^{\oplus}aa^{\oplus} = a^{\oplus}, \qquad (aa^{\oplus})^* = aa^{\oplus}, \qquad a(a^{\oplus})^2 = a^{\oplus}, \qquad a^{\oplus}a^2 = a.$$
 (2.5)

Also, in [12, Theorem 2.15], they proved that an element $a \in R_{\oplus}$ satisfies

$$aa_{\oplus}a = a, \qquad a_{\oplus}aa_{\oplus} = a_{\oplus}, \qquad (a_{\oplus}a)^* = a^{\oplus}a, \qquad (a^{\oplus})^2a = a_{\oplus}, \qquad a^2a_{\oplus} = a.$$

Thus a core invertible element is $\{1, 2, 3\}$ -invertible and a dual core invertible element is $\{1, 2, 4\}$ -invertible.

Two proofs of the next corollary can be found in [3, Proposition 1, Chapter 1] and in [12, Lemma 2.10]. We present another proof based on Proposition 2.1.

Corollary 2.2. Let $p, q \in R$ be two projections. Then pR = qR if and only if p = q.

Proof. Since $p, q \in R$ are projections, then $p^2 = p = p^{\dagger}$ and $q^2 = q = q^{\dagger}$. By Proposition 2.1, pR = qR implies $pp^{\dagger} = qq^{\dagger}$, that is p = q. The converse is clear.

In [11, Theorem 2.3], for $a, b \in \mathbb{R}^{\dagger}$, the authors investigated equivalent conditions such that $aa^{\dagger} = bb^{\dagger}$. It is evident that the equality $xx^{\dagger}R = xR$ holds when $x \in R^{\dagger}$, thus the first item of next Corollary 2.3 follows from this observation and previous Corollary 2.2. The second item of next Corollary 2.3 follows from $x^*R = x^{\dagger}xR$, $(Rx)^* = x^*R$, and previous Corollary 2.2. If $x \in R^{\#} \cap R^{\dagger} = R^{\oplus} \cap R_{\oplus}$, by [12, Theorems 2.11 and 2.12] it follows that $xx^{\dagger} = xx^{\oplus}$ and $x^{\dagger}x = x_{\oplus}x$. The proof of next Corollary 2.3 only uses Proposition 2.1. Also, it is noteworthy that the characterization of $aa^{\oplus} = bb^{\oplus}$ $(a_{\oplus}a = b_{\oplus}b)$ is generalized because only $a, b \in R^{\oplus}$ $(a, b \in R_{\oplus}, \text{resp.})$ is used.

Corollary 2.3. Let $a, b \in R$. Then we have:

- (1) If $a, b \in R^{\dagger}$, then aR = bR is equivalent to $aa^{\dagger} = bb^{\dagger}$;
- (2) If $a, b \in R^{\dagger}$, then Ra = Rb is equivalent to $a^{\dagger}a = b^{\dagger}b$;
- (3) If $a, b \in R^{\oplus}$, then aR = bR is equivalent to $aa^{\oplus} = bb^{\oplus}$;
- (4) If $a, b \in R_{\oplus}$, then Ra = Rb is equivalent to $a_{\oplus}a = b_{\oplus}b$.

For an idempotent p in a ring R, every $a \in R$ can be written as

$$a = pap + pa(1-p) + (1-p)ap + (1-p)a(1-p)$$
(2.6)

or in matrix form

$$\left[\begin{array}{cc} pap & pa(1-p)\\ (1-p)ap & (1-p)a(1-p) \end{array}\right].$$

The decomposition (2.6) is known as the *Pierce decomposition*. Notice that if the idempotent p is a projection, then the above matrix representation preserves the involution.

Lemma 2.4. Let $a, p, q \in R$. Then the following are equivalent:

- (1) $a \in R^{\oplus}$;
- (2) [9, Theorem 3.5] there exists a projection p such that pa = 0 and $a + p \in \mathbb{R}^{-1}$;
- (3) [14, Theorem 3.3] there exists a projection q such that qa = 0 and $a(1-q) + q \in \mathbb{R}^{-1}$.

Under these equivalence, one has that these projections p and q are unique and $p = q = 1 - aa^{\oplus}$.

We give a sketch of the proof of this lemma for the sake of completeness.

If $a \in R^{\oplus}$, define the projection $p = 1 - aa^{\oplus}$. From (2.5), it is evident that pa = 0, and thus, the Pierce decomposition of a with respect to p is

$$a = \begin{bmatrix} 0 & 0\\ ap & a(1-p) \end{bmatrix},$$
(2.7)

hence

$$a+p = \begin{bmatrix} p & 0\\ ap & a(1-p) \end{bmatrix} \quad \text{and} \quad a(1-p)+p = \begin{bmatrix} p & 0\\ 0 & a(1-p) \end{bmatrix}. \quad (2.8)$$

Observe that $a^{\oplus} \in aa^{\oplus}Raa^{\oplus} = (1-p)R(1-p)$ and $a(1-p)a^{\oplus} = 1-p = a^{\oplus}a(1-p)$. Hence a^{\oplus} is the inverse of a(1-p) in the ring (1-p)R(1-p), and thus, by (2.8), a+p and a(1-p)+p are invertible in R because p is a unit in the ring pRp.

If exists a projection p such that pa = 0, then the Pierce decomposition of a, a + p, and a(1-p) + p with respect to p are written in (2.7) and (2.8). Since p is a unit in the ring pRp, the above decompositions prove that $a + p \in R^{-1} \Leftrightarrow a(1-p) + p \in R^{-1} \Leftrightarrow$ $a(1-p) \in [(1-p)R(1-p)]^{-1}$. Now, it is not difficult to prove that if $a + p \in R^{-1}$ or $a(1-p) + p \in \mathbb{R}^{-1}$, then a is core invertible and the inverse of a(1-p) in $(1-p)\mathbb{R}(1-p)$ is the core inverse of a.

Assume that p_1 and p_2 are two projections such that $p_i a = 0$ and $a + p_i \in \mathbb{R}^{-1}$ for i = 1, 2. By the proof of the previous paragraph, the inverse of $a(1-p_i)$ in $(1-p_i)R(1-p_i)$ is a^{\oplus} for i = 1, 2. Therefore, $(1-p_i)a^{\oplus} = a^{\oplus}$ and $a(1-p_i)a^{\oplus} = 1-p_i$ for i = 1, 2. It is deduced that $aa^{\oplus} = 1-p_i$ for i = 1, 2.

From the sketch of the proof of Lemma 2.4, if $a \in R^{\oplus}$, then the matrix representations of a, a + p, and a(1-p) + p with respect to $p = 1 - aa^{\oplus}$ are written in (2.7) and (2.8).

Lemma 2.5. [6, Lemma 2] Let R be any unitary ring and $e^2 = e \in R$. Then exe + 1 - e is invertible in R if and only if exe is invertible in eRe with unit e, for all $x \in R$. If $(exe)^{-e}$ denotes the inverse of exe in eRe, then we have

$$(exe)^{-e} = e(exe + 1 - e)^{-1}e$$

and

$$(exe + 1 - e)^{-1} = (exe)^{-e} + 1 - e$$

Observe that if we represent the element exe + 1 - e of the above lemma respect the idempotent e, we have $exe + 1 - e = \begin{bmatrix} exe & 0 \\ 0 & 1 - e \end{bmatrix}$, which makes this lemma clear. Recall that the unity of the corner ring (1 - e)R(1 - e) is 1 - e.

The absorption law in a ring R means that for two invertible elements $a, b \in R$, we have $a^{-1}(a+b)b^{-1} = a^{-1} + b^{-1}$. In [8], Jin and Benítez investigated the absorption law for the core inverse.

Lemma 2.6. [8, Theorem 3.5] Let $a, b \in R^{\oplus}$. Then the following are equivalent:

- (1) $a^{\oplus}(a+b)b^{\oplus} = a^{\oplus} + b^{\oplus};$
- (2) aR = bR;
- (3) $^{\circ}a = ^{\circ}b.$

In the following theorem, we will give more necessary and sufficient conditions such that the absorption law for the core inverse is valid. Let $a^{\pi} = 1 - aa^{\oplus}$.

Theorem 2.7. Let $a, b \in R^{\oplus}$. Then the following are equivalent:

(1)
$$aa^{\oplus} = bb^{\oplus};$$

(2) $a^{\pi} = b^{\pi};$
(3) $a^{\oplus}(a+b)b^{\oplus} = a^{\oplus} + b^{\oplus};$
(4) $a^{\pi}b = 0$ and $a^{\pi} + b \in R^{-1};$
(5) $a^{\pi}b = 0$ and $a^{\pi} + b(1 - a^{\pi}) \in R^{-1};$

(6) $a^{\pi}b = 0$ and $b(1 - a^{\pi})$ is invertible in $(1 - a^{\pi})R(1 - a^{\pi})$.

In this case, the expression of the subset of elements b such that $a^{\pi} = b^{\pi}$ is

$$\{b \in R : a^{\pi} = b^{\pi}\} = \{z + t : z \in (1 - a^{\pi})Ra^{\pi}, t \in [(1 - a^{\pi})R(1 - a^{\pi})]^{-1}\}.$$

Moreover, the relationship of $a^{\pi} + b$ and $a^{\pi} + b(1 - a^{\pi})$ is

$$(a^{\pi} + b)^{-1} = (b^2 + a^{\pi})^{-1}[a^{\pi} + b(1 - a^{\pi})].$$

Proof. $(1) \Leftrightarrow (2)$ is trivial.

(1) \Leftrightarrow (3) follows from Corollary 2.3 and Lemma 2.6.

 $(1) \Rightarrow (4)$. Suppose $aa^{\oplus} = bb^{\oplus}$, or equivalently $a^{\pi} = b^{\pi}$ since (1) and (2) are equivalent. Taking into account the equality given in (2), we have $a^{\pi}b = (1 - aa^{\oplus})b = (1 - bb^{\oplus})b = 0$. Since

$$(a^{\pi} + b)(b^{\oplus} + 1 - b^{\oplus}b) = (1 - aa^{\oplus} + b)(b^{\oplus} + 1 - b^{\oplus}b) = (1 - bb^{\oplus} + b)(b^{\oplus} + 1 - b^{\oplus}b) = 1$$

and

$$(b^{\oplus} + 1 - b^{\oplus}b)(a^{\pi} + b) = (b^{\oplus} + 1 - b^{\oplus}b)(1 - bb^{\oplus} + b) = 1,$$

we have that $a^{\pi} + b$ is invertible.

 $(4) \Rightarrow (2)$ (or $(6) \Rightarrow (2)$). It is easy to check that a^{π} is a projection. By Lemma 2.4, we have $a^{\pi} = 1 - bb^{\oplus} = b^{\pi}$.

 $(1) \Rightarrow (5)$. Suppose $aa^{\oplus} = bb^{\oplus}$. Then

$$a^{\pi}b = (1 - aa^{\oplus})b = (1 - bb^{\oplus})b = 0;$$
$$[a^{\pi} + b(1 - a^{\pi})](b^{\oplus} + 1 - bb^{\oplus}) = (1 - bb^{\oplus} + b^{2}b^{\oplus})(b^{\oplus} + 1 - bb^{\oplus}) = 1;$$
$$(b^{\oplus} + 1 - bb^{\oplus})[a^{\pi} + b(1 - a^{\pi})] = (b^{\oplus} + 1 - bb^{\oplus})(1 - bb^{\oplus} + b^{2}b^{\oplus}) = 1.$$

Thus $a^{\pi} + b(1 - a^{\pi})$ is invertible.

(5) \Leftrightarrow (6) By $a^{\pi}b = 0$, we have $a^{\pi} + b(1 - a^{\pi}) = a^{\pi} + (1 - a^{\pi})b(1 - a^{\pi})$. Thus by Lemma 2.5, we get the equivalence between (5) and (6).

Now, we will find the general expression of the elements $b \in R^{\oplus}$ such that $aa^{\oplus} = bb^{\oplus}$. We use the matrix representations of a^{π} and b with respect to the projection a^{π} . Then $a^{\pi} = \begin{bmatrix} a^{\pi} & 0 \\ 0 & 0 \end{bmatrix}$. Let

$$b = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$$

satisfy $aa^{\oplus} = bb^{\oplus}$ (and therefore, also (2), (3) and (4) hold). Then $a^{\pi}b = 0$ gives

$$0 = a^{\pi}b = \begin{bmatrix} a^{\pi} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x & y\\ z & t \end{bmatrix} \quad \Rightarrow \quad x = y = 0.$$

Thus

$$a^{\pi} + b = \begin{bmatrix} a^{\pi} & 0\\ z & t \end{bmatrix} \quad \Rightarrow \quad t \in [(1 - a^{\pi})R(1 - a^{\pi})]^{-1},$$

because a^{π} , the (1,1) entry of the last representation, is a unit in the corner ring $a^{\pi}Ra^{\pi}$. Also, it is simple to see that

$$c = \begin{bmatrix} 0 & 0 \\ z & t \end{bmatrix}, \ t \in [(1 - a^{\pi})R(1 - a^{\pi})]^{-1} \quad \Rightarrow \quad a^{\pi}c = 0 \text{ and } a^{\pi} + c \in R^{-1}.$$

Hence we have proved the characterisation of the elements b such that $a^{\pi} = b^{\pi}$ stated in the theorem.

Last, we give the relationship of $a^{\pi} + b$ and $a^{\pi} + b(1 - a^{\pi})$. Since $a^{\pi} = b^{\pi}$, we have $a^{\pi} + b = b^{\pi} + b$ and $a^{\pi} + b(1 - a^{\pi}) = b^{\pi} + b(1 - b^{\pi})$. Thus

$$[a^{\pi} + b(1 - a^{\pi})](a^{\pi} + b) = [b^{\pi} + b(1 - b^{\pi})](b^{\pi} + b) = b^{2} + b^{\pi} = b^{2} + a^{\pi},$$

which is invertible because $a^{\pi} + b$ and $a^{\pi} + b(1 - a^{\pi})$ are both invertible. Thus

$$(a^{\pi} + b)^{-1} = (b^2 + a^{\pi})^{-1}[a^{\pi} + b(1 - a^{\pi})].$$

Observe that the condition (1) of Theorem 2.7 is symmetric in a and in b. Hence we can get duplicate results.

Theorem 2.8. Let $a, b \in R^{\oplus}$. Then the following are equivalent:

- (1) $aa^{\oplus} = bb^{\oplus};$
- (2) $b^{\pi} = a^{\pi}b^{\pi}$ and $b^{\pi} + 1 a^{\pi}$ is left invertible;
- (3) $1 a^{\pi} = (1 a^{\pi})(1 b^{\pi})$ and $b^{\pi} + 1 a^{\pi}$ is left invertible;
- (4) $[a^{\pi}, b^{\pi}] = 0, b^{\pi} + 1 a^{\pi}$ is right invertible and $a^{\pi} + 1 b^{\pi}$ is left invertible;
- (5) $a^{\pi}b^{\pi}$ is Hermitian, $b^{\pi} + 1 a^{\pi}$ is right invertible and $a^{\pi} + 1 b^{\pi}$ is left invertible.

Proof. The implications $(1) \Rightarrow (2)$ and $(1) \Rightarrow (4)$ are trivial.

(2) \Rightarrow (1). Suppose that $b^{\pi} = a^{\pi}b^{\pi}$ and $u = b^{\pi} + 1 - a^{\pi}$ is left invertible. Then we have

$$ru = 1$$
 for some $r \in R$. (2.9)

Since a^{π} and b^{π} are Hermitian, then $a^{\pi}b^{\pi} = b^{\pi}$ implies $b^{\pi}a^{\pi} = b^{\pi}$. Thus

$$u(1 - a^{\pi}) = (b^{\pi} + 1 - a^{\pi})(1 - a^{\pi}) = b^{\pi}(1 - a^{\pi}) + (1 - a^{\pi})^2 = 1 - a^{\pi}$$
(2.10)

$$u(1-b^{\pi}) = (b^{\pi}+1-a^{\pi})(1-b^{\pi}) = b^{\pi}(1-b^{\pi}) + (1-a^{\pi})(1-b^{\pi}) = 1-a^{\pi}.$$
 (2.11)

By equations (2.9), (2.10) and (2.11), we have

$$1 - a^{\pi} = ru(1 - a^{\pi}) = r(1 - a^{\pi}) = ru(1 - b^{\pi}) = 1 - b^{\pi}.$$

That is $aa^{\oplus} = bb^{\oplus}$.

(2) \Leftrightarrow (3). Since $(1-a^{\pi})(1-b^{\pi}) = 1-a^{\pi}-b^{\pi}+a^{\pi}b^{\pi}$, then it is obvious that $a^{\pi}b^{\pi} = b^{\pi}$ if and only if $(1-a^{\pi})(1-b^{\pi}) = 1-a^{\pi}$.

(4) \Leftrightarrow (5). If $[a^{\pi}, b^{\pi}] = 0$, then $(a^{\pi}b^{\pi})^* = (b^{\pi}a^{\pi})^* = a^{\pi}b^{\pi}$ and reciprocally.

(4) \Rightarrow (1). Assume $[a^{\pi}, b^{\pi}] = 0$ and $u = b^{\pi} + 1 - a^{\pi}$ is right invertible and $v = a^{\pi} + 1 - b^{\pi}$ is left invertible. We have

$$us = 1 \text{ and } tv = 1 \quad \text{for some } s, t \in R.$$
 (2.12)

From $a^{\pi}b^{\pi} = b^{\pi}a^{\pi}$, we get

$$(1-b^{\pi})u = (1-b^{\pi})(b^{\pi}+1-a^{\pi}) = (1-b^{\pi})b^{\pi} + (1-b^{\pi})(1-a^{\pi}) = (1-b^{\pi})(1-a^{\pi}).$$
(2.13)

As a^{π} and b^{π} commute, so does $1 - a^{\pi}$ and $1 - b^{\pi}$. Thus from (2.13) we get

$$(1 - b^{\pi})(1 - a^{\pi})u = (1 - b^{\pi})(1 - a^{\pi}).$$
(2.14)

From equations (2.12), (2.13) and (2.14), we have

$$1 - b^{\pi} = (1 - b^{\pi})us = (1 - b^{\pi})(1 - a^{\pi})s = (1 - b^{\pi})(1 - a^{\pi})us = (1 - b^{\pi})(1 - a^{\pi}).$$
 (2.15)

Similarly,

$$v(1-a^{\pi}) = (a^{\pi}+1-b^{\pi})(1-a^{\pi}) = a^{\pi}(1-a^{\pi}) + (1-b^{\pi})(1-a^{\pi}) = (1-b^{\pi})(1-a^{\pi}), \quad (2.16)$$

and

$$v(1-b^{\pi})(1-a^{\pi}) = (1-b^{\pi})(1-a^{\pi}).$$
(2.17)

From equations (2.12), (2.16) and (2.17), we have

$$1 - a^{\pi} = t(1 - b^{\pi})(1 - a^{\pi}) = (1 - b^{\pi})(1 - a^{\pi}).$$
(2.18)

By (2.15) and (2.18), we have $aa^{\oplus} = bb^{\oplus}$.

Let $a \in R^{\oplus}$. If $aa^* + 1 - aa^{\oplus} \in R^{-1}$, then $a = (aa^* + 1 - aa^{\oplus})^{-1}aa^*a \in Raa^*a$, which implies that a is Moore-Penrose invertible in view of [16, Theorem 2.16]. Therefore, if $a \notin R^{\dagger}$, then $aa^* + 1 - aa^{\oplus}$ is not invertible.

Lemma 2.9. Let $a \in R^{\oplus}$. If $aa^{\pi}a^* = 0$, then $aa^* + a^{\pi} \in R^{-1}$.

Proof. We use the matrix representation of a with respect to the projection a^{π} .

$$a = \begin{bmatrix} 0 & 0 \\ aa^{\pi} & a(1-a^{\pi}) \end{bmatrix}, \ a^{\pi} = \begin{bmatrix} a^{\pi} & 0 \\ 0 & 0 \end{bmatrix}, \ a^{*} = \begin{bmatrix} 0 & a^{\pi}a^{*} \\ 0 & (1-a^{\pi})a^{*} \end{bmatrix}, \ aa^{*} = \begin{bmatrix} 0 & 0 \\ 0 & aa^{*} \end{bmatrix}.$$

It is easy to check that $a(1-a^{\pi})$ is invertible in $(1-a^{\pi})R(1-a^{\pi})$ with the inverse a^{\oplus} and

$$aa^{\pi}a^{*} = 0 \Leftrightarrow a(1-a^{\pi})a^{*} = aa^{*} \Leftrightarrow a(1-a^{\pi})(1-a^{\pi})a^{*} = aa^{*} \Leftrightarrow a(1-a^{\pi})(a(1-a^{\pi}))^{*} = aa^{*}.$$

Thus aa^* is invertible in $(1 - a^{\pi})R(1 - a^{\pi})$ because aa^* is the product of two invertible elements in $(1 - a^{\pi})R(1 - a^{\pi})$. Since aa^* is invertible in $(1 - a^{\pi})R(1 - a^{\pi})$ if and only if $aa^* + a^{\pi} \in R^{-1}$, we finish the proof.

Let $a \in R^{\oplus}$. If $aa^{\pi} = 0$, then $a = a^2 a^{\oplus}$, and therefore, $a^{\oplus}a = a^{\oplus}(a^2a^{\oplus}) = (a^{\oplus}a^2)a^{\oplus} = aa^{\oplus}$, thus a is Moore-Penrose invertible, $a^{\dagger} = a^{\oplus}$, and a is EP by [12, Theorem 3.1]. Reciprocally, it is evident that if a is EP, then $a^{\oplus} = a^{\dagger}$ and $aa^{\oplus} = a^{\oplus}a$, which implies $aa^{\pi} = 0$. Notice that the condition $aa^{\pi}a^* = 0$ is weaker than $aa^{\pi} = 0$. But, it is strictly weaker, as the following example shows.

Example 2.10. Let *R* be the ring of 2×2 matrices whose entries are in \mathbb{Z}_4 . In *R* we take the matrix transposition as the involution. Consider $a = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$. By checking the (1.1) and (1.2), it is simple to prove

$$a^{\dagger} = \left[\begin{array}{cc} 1 & 0 \\ 2 & 0 \end{array}
ight], \qquad a^{\oplus} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}
ight].$$

Now, it is simple to compute

$$aa^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad a^{\dagger}a = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix},$$

which, by the definition of EP element, shows that a is not EP. In addition,

$$a^{\pi} = 1 - aa^{\textcircled{\oplus}} = \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}, \qquad aa^{\pi}a^* = \begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 2 & 0 \end{bmatrix} = 0$$

But if the ring R is *-reducing, then $aa^{\pi}a^* = 0$ implies that $aa^{\pi} = 0$ (recall that a ring R is *-reducing if $x^*x = 0$ implies x = 0 for any $x \in R$). In fact: $0 = aa^{\pi}a^* = aa^{\pi}(aa^{\pi})^*$ implies $aa^{\pi} = 0$. Of course, the ring considered in the above example is not reducing: it is enough to take $x = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ to see that $xx^* = 0$ and $x \neq 0$.

Theorem 2.11. Let $a, b \in R^{\oplus}$ with $aa^{\pi}a^* = 0$. Then $aa^{\oplus} = bb^{\oplus}$ if and only if $b^{\pi} = a^{\pi}b^{\pi}$ and $u = aa^* + b^{\pi}$ is invertible.

Proof. We will prove the necessity and the sufficiency simultaneously. Since $aa^{\pi}a^* = 0$, by Lemma 2.9, we have that $aa^* + a^{\pi}$ is invertible. Notice that $aa^{\oplus} = bb^{\oplus}$, i.e., $a^{\pi} = b^{\pi}$, implies $a^{\pi}b^{\pi} = b^{\pi}$. Furthermore, we can use $a^{\pi}b^{\pi} = b^{\pi}$ to prove both the necessity and the sufficiency. Taking involution in $a^{\pi}b^{\pi} = b^{\pi}$ we get $b^{\pi}a^{\pi} = b^{\pi}$. Observe that

$$(b^{\pi} + 1 - a^{\pi})(aa^* + a^{\pi}) = b^{\pi}aa^* + b^{\pi}a^{\pi} + (1 - a^{\pi})aa^* + (1 - a^{\pi})a^{\pi}$$
$$= b^{\pi}aa^{\textcircled{B}}aa^* + b^{\pi} + aa^*$$
$$= b^{\pi}(1 - a^{\pi})aa^* + b^{\pi} + aa^*$$
$$= b^{\pi} + aa^*.$$

And, therefore, $b^{\pi} + 1 - a^{\pi} = (b^{\pi} + aa^*)(aa^* + a^{\pi})^{-1}$. Now, by Theorem 2.8 and using that a Hermitian element is left invertible if and only if such element is invertible, we have:

$$aa^{\oplus} = bb^{\oplus} \iff b^{\pi} = a^{\pi}b^{\pi} \text{ and } b^{\pi} + 1 - a^{\pi} \in R^{-1} \iff b^{\pi} = a^{\pi}b^{\pi} \text{ and } b^{\pi} + aa^* \in R^{-1}$$

The proof is finished.

3 Projections $a^{(1,2,4)}a$ and $bb^{(1,2,3)}$

In this section, we will investigate projections $a^{(1,2,4)}a$ and $bb^{(1,2,3)}$. If we replace $a^{(1,2,4)}$ and $b^{(1,2,3)}$ by a^{\dagger} and b^{\dagger} , respectively, then we can get some special corollaries, which will be useful when we discuss the projection equation $a^{\dagger}a = bb^{\dagger}$.

Lemma 3.1. Let $a \in R$. Then we have the following results:

- (1) If $a \in R^{\{1,2,3\}}$ and $a^{(1,2,3)} \in a\{1,2,3\}$, then $a^{(1,2,3)}b = a^{(1,2,3)}c$ if and only if $a^*b = a^*c$ for all $b, c \in R$;
- (2) If $a \in R^{\{1,2,4\}}$ and $a^{(1,2,4)} \in a\{1,2,4\}$, then $ba^{(1,2,4)} = ca^{(1,2,4)}$ if and only if $ba^* = ca^*$ for all $b, c \in R$.

Proof. Since the proof of (2) is similar to the proof of (1), we only prove (1). Since $a \in \mathbb{R}^{\{1,2,3\}}$, then

$$a^{(1,2,3)}b = a^{(1,2,3)}aa^{(1,2,3)}b = a^{(1,2,3)}(a^{(1,2,3)})^*a^*b = a^{(1,2,3)}(a^{(1,2,3)})^*a^*c = a^{(1,2,3)}c;$$

$$a^*b = (aa^{(1,2,3)}a)^*b = a^*aa^{(1,2,3)}b = a^*aa^{(1,2,3)}c = a^*c.$$

Proposition 3.2. Let $a \in R^{\{1,2,4\}}$, $b \in R^{\{1,2,3\}}$ and $a^{(1,2,4)} \in a\{1,2,4\}$, $b^{(1,2,3)} \in b\{1,2,3\}$. Then $abb^{(1,2,3)}a^{(1,2,4)}ab = ab$ if and only if $b^{(1,2,3)}a^{(1,2,4)}abb^{(1,2,3)}a^{(1,2,4)} = b^{(1,2,3)}a^{(1,2,4)}$.

Proof. By Lemma 3.1, we have

$$abb^{(1,2,3)}a^{(1,2,4)}ab = ab \Leftrightarrow b^*(a^{(1,2,4)}a)^*(bb^{(1,2,3)})^*a^* = b^*a^*$$
$$\Leftrightarrow b^*a^{(1,2,4)}abb^{(1,2,3)}a^* = b^*a^*$$
$$\Leftrightarrow b^{(1,2,3)}a^{(1,2,4)}abb^{(1,2,3)}a^{(1,2,4)} = b^{(1,2,3)}a^{(1,2,4)}.$$

Corollary 3.3. Let $a, b \in R^{\dagger}$. Then $abb^{\dagger}a^{\dagger}ab = ab$ if and only if $b^{\dagger}a^{\dagger}abb^{\dagger}a^{\dagger} = b^{\dagger}a^{\dagger}$.

Lemma 3.4. Let R be a *-reducing ring with $p^* = p = p^2 \in R$ and $q^* = q = q^2 \in R$. Then the following are equivalent:

- (1) $(pq)^2 = pq;$
- (2) $(qp)^2 = qp;$
- (3) pq = qp.

Proof. (1) \Rightarrow (3) We use the matrix representations of p and q with respect to the projection p. Then $p = \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix}$ and $q = \begin{bmatrix} q_1 & q_2 \\ q_2^* & q_3 \end{bmatrix}$ by $q^* = q$. Then $pq = \begin{bmatrix} q_1 & q_2 \\ 0 & 0 \end{bmatrix}$ and $qp = \begin{bmatrix} q_1 & 0 \\ q_2^* & 0 \end{bmatrix}$. Now $(pq)^2 = (pq)$ and $q^2 = q$ implies, respectively, $q_1^2 = q_1$ and $q_1^2 + q_2q_2^* = q_1$. Hence, we have $q_2q_2^* = 0$, which implies $q_2 = 0$ because R is a *-reducing ring. Thus $pq = \begin{bmatrix} q_1 & 0 \\ 0 & 0 \end{bmatrix}$ and $qp = \begin{bmatrix} q_1 & 0 \\ 0 & 0 \end{bmatrix}$ and $qp = \begin{bmatrix} q_1 & 0 \\ 0 & 0 \end{bmatrix}$. That is pq = qp.

 $(3) \Rightarrow (1)$ and $(3) \Rightarrow (2)$ are trivial. By the symmetry of p and q, we have $(2) \Rightarrow (3)$ with the help of $(1) \Rightarrow (3)$.

Example 3.5. In a general ring R, the implication of $(pq)^2 = pq \Rightarrow pq = qp$ may not hold, where $p^* = p = p^2 \in R$ and $q^* = q = q^2 \in R$. Let us consider the following counterexample. Let R be the ring of 2×2 matrices over \mathbb{Z}_4 with the conjugate transposition as involution. Considering the matrices $p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $q = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$, it is easy to check that $p^* = p = p^2$ and $q^* = q = q^2$ and $(pq)^2 = pq$, and yet $pq = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ and $qp = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$.

Theorem 3.6. Let R be a *-reducing ring. If $a \in R^{\{1,2,4\}}$, $b \in R^{\{1,2,3\}}$ and $a^{(1,2,4)} \in a\{1,2,4\}$, $b^{(1,2,3)} \in b\{1,2,3\}$. Then the following are equivalent:

- (1) $abb^{(1,2,3)}a^{(1,2,4)}ab = ab;$
- (2) $[a^{(1,2,4)}a, bb^{(1,2,3)}] = 0;$
- (3) $b^{(1,2,3)}a^{(1,2,4)}abb^{(1,2,3)}a^{(1,2,4)} = b^{(1,2,3)}a^{(1,2,4)}$.

Proof. (3) ⇒ (2). By Proposition 3.2, we have $abb^{(1,2,3)}a^{(1,2,4)}ab = ab$ if and only if $b^{(1,2,3)}a^{(1,2,4)}abb^{(1,2,3)}a^{(1,2,4)} = b^{(1,2,3)}a^{(1,2,4)}$. Define the projections $e = a^{(1,2,4)}a$ and $f = bb^{(1,2,3)}$. Multiplying by $a^{(1,2,4)}$ on the left side of $abb^{(1,2,3)}a^{(1,2,4)}ab = ab$ and multiplying by $b^{(1,2,3)}$ on the right side of $abb^{(1,2,3)}a^{(1,2,4)}ab = ab$, then we have $(ef)^2 = ef$, thus $[a^{(1,2,4)}a, bb^{(1,2,3)}] = 0$ by Lemma 3.4.

 $(2) \Rightarrow (1)$ is trivial. $(1) \Rightarrow (3)$. It is obvious by Proposition 3.2.

Corollary 3.7. [10, Theorem 2.1] Let R be a *-reducing ring with $a, b \in R^{\dagger}$. Then the following are equivalent:

- (1) $abb^{\dagger}a^{\dagger}ab = ab;$
- (2) $[a^{\dagger}a, bb^{\dagger}] = 0;$
- (3) $b^{\dagger}a^{\dagger}abb^{\dagger}a^{\dagger} = b^{\dagger}a^{\dagger}.$

Lemma 3.8. [13, Lemma 8] *Let* $a, b \in R$. *Then:*

- (1) $aR \subseteq bR$ implies $b \subseteq a$ and the converse is valid whenever b is regular;
- (2) $Ra \subseteq Rb$ implies $b^{\circ} \subseteq a^{\circ}$ and the converse is valid whenever b is regular.

Theorem 3.9. Let R be a *-reducing ring with $a, b \in R^{\dagger}$. Then the following are equivalent:

- (1) $a^{\dagger}a = bb^{\dagger};$
- (2) $[a^{\dagger}a, bb^{\dagger}] = 0$, $aR \subseteq abR$ and $Rb \subseteq Rab$;
- (3) $(ab)^{\dagger} = b^{\dagger}a^{\dagger}, aR \subseteq abR and Rb \subseteq Rab;$
- (4) $abb^{\dagger}a^{\dagger}ab = ab$, $aR \subseteq abR$ and $Rb \subseteq Rab$;
- (5) $b^{\dagger}a^{\dagger}abb^{\dagger}a^{\dagger} = b^{\dagger}a^{\dagger}$, $aR \subseteq abR$ and $Rb \subseteq Rab$;

- (6) $[a^{\dagger}a, bb^{\dagger}] = 0$, $^{\circ}(ab) \subseteq ^{\circ}a$ and $(ab)^{\circ} \subseteq b^{\circ};$
- (7) $(ab)^{\dagger} = b^{\dagger}a^{\dagger}, \ ^{\circ}(ab) \subseteq \ ^{\circ}a \ and \ (ab)^{\circ} \subseteq b^{\circ};$
- (8) $abb^{\dagger}a^{\dagger}ab = ab$, $^{\circ}(ab) \subseteq ^{\circ}a$ and $(ab)^{\circ} \subseteq b^{\circ}$;
- (9) $b^{\dagger}a^{\dagger}abb^{\dagger}a^{\dagger} = b^{\dagger}a^{\dagger}, \ ^{\circ}(ab) \subseteq {}^{\circ}a \ and \ (ab)^{\circ} \subseteq b^{\circ}.$

Proof. The equivalence between (2), (4) and (5) can be obtained by Corollary 3.3 and Corollary 3.7.

 $(1) \Rightarrow (2)$. Suppose $a^{\dagger}a = bb^{\dagger}$. Then

$$[a^{\dagger}a, bb^{\dagger}] = [a^{\dagger}a, a^{\dagger}a] = 0;$$

$$a = aa^{\dagger}a = abb^{\dagger};$$

$$b = bb^{\dagger}b = a^{\dagger}ab,$$

that is $[a^{\dagger}a, bb^{\dagger}] = 0$, $aR \subseteq abR$ and $Rb \subseteq Rab$.

 $(2) \Rightarrow (3)$. By Corollary 3.7, we have $[a^{\dagger}a, bb^{\dagger}] = 0 \Leftrightarrow abb^{\dagger}a^{\dagger}ab = ab$ and $b^{\dagger}a^{\dagger}abb^{\dagger}a^{\dagger} = b^{\dagger}a^{\dagger}$. Since $aR \subseteq abR$ and $Rb \subseteq Rab$, then

a = abx for some $x \in R$; (3.1)

$$b = yab$$
 for some $y \in R$. (3.2)

Thus by equations (3.1) and (3.2), we have

$$a = abb^{\dagger}a^{\dagger}abx = abb^{\dagger}a^{\dagger}a = aa^{\dagger}abb^{\dagger} = abb^{\dagger};$$
(3.3)

$$b = yabb^{\dagger}a^{\dagger}ab = bb^{\dagger}a^{\dagger}ab = a^{\dagger}ab.$$
(3.4)

The equations (3.3) and (3.4) give that

 $abb^{\dagger}a^{\dagger} = aa^{\dagger}$ is Hermitian; $b^{\dagger}a^{\dagger}ab = b^{\dagger}b$ is Hermitian.

(3) \Rightarrow (1). Suppose $(ab)^{\dagger} = b^{\dagger}a^{\dagger}$, $aR \subseteq abR$, and $Rb \subset Rab$. There exist $x, y \in R$ such that a = abx and b = yab. Now, $abb^{\dagger}a^{\dagger}a = abb^{\dagger}a^{\dagger}abx = ab(ab)^{\dagger}abx = abx = a$, and similarly, $bb^{\dagger}a^{\dagger}ab = yab(ab)^{\dagger}ab = yab = b$. Thus

$$bb^{\dagger}R = bb^{\dagger}a^{\dagger}aR$$
 and $a^{\dagger}aR = a^{\dagger}abb^{\dagger}R.$ (3.5)

The condition $(ab)^{\dagger} = b^{\dagger}a^{\dagger}$ gives $(a^{\dagger}abb^{\dagger})^2 = a^{\dagger}abb^{\dagger}$. By Lemma 3.4 we get $a^{\dagger}abb^{\dagger} = bb^{\dagger}a^{\dagger}a$. Therefore we have $a^{\dagger}a = bb^{\dagger}$ by equation (3.5) and Corollary 2.2.

(2) \Leftrightarrow (6). It is easy to see that by Lemma 3.8. The proofs of (3) \Leftrightarrow (7), (4) \Leftrightarrow (8) and (5) \Leftrightarrow (9) are similar to the proof of (2) \Leftrightarrow (6).

The element $a \in R^{\dagger}$ is said to be *bi-EP* when $[a^{\dagger}a, aa^{\dagger}] = 0$. Let *a* be an element of an associative ring *R* with 1. In [4, Proposition 8.22], we have *a* has a group inverse if and only if $a^2x = a$ and $ya^2 = a$ both have solutions. Thus, taking a = b in Theorem 3.9, we get the following corollary.

Corollary 3.10. Let R be a *-reducing ring with $a \in R^{\dagger}$. Then the following are equivalent:

- (1) $a \in R^{\text{EP}};$
- (2) $a \in R^{\#}$ and a is bi-EP;
- (3) $a \in R^{\#}$ and $(a^{\dagger})^2 = (a^2)^{\dagger}$;
- (4) $a \in R^{\#}$ and $(a^{\dagger})^2 \in a^2\{1\};$
- (5) $a \in R^{\#}$ and $a^2 \in (a^{\dagger})^2 \{1\}$.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Foundation of China (No. 11371089). The first author is grateful to China Scholarship Council for giving him a scholarship for his further study in Universitat Politècnica de València, Spain.

We are very grateful to the referees for their carefully reading of the preliminary version of the manuscript.

References

- Baksalary OM, Trenkler G. Core inverse of matrices. Linear Multilinear Algebra. 2010; 58(6):681-697.
- [2] Benítez J. Moore-Penrose inverses and commuting elements of C*-algebras. J. Math. Anal. Appl. 2008;345(2):766-770.
- [3] Berberian SK. Baer *-rings. Springer-Verlag; 1972.
- [4] Bhaskara Rao KPS. The Theory of Generalized Inverses Over Commutative Rings. Taylor and Francis; 2002.
- [5] Hartwig RE. Block generalized inverses. Arch. Retion. Mech. Anal. 1976;61(3):197-251.
- [6] Huylebrouck D, Puystjens R, Van Geel J. The Moore-Penrose inverse of a matrix over a semisimple Artinian ring. Linear and Multilinear Algebra. 1984;16(1-4):239-246.
- [7] Hartwig RE, Spindelböck K. Matrices for which A^* and A^{\dagger} commute. Linear Multilinear Algebra. 1983;14(3):241-256.
- [8] Jin HW, Benítez J. The absorption laws for the generalized inverses in rings. Electron. J. Linear Algebra. 2015;30:827-842.
- [9] Li TT, Chen JL. Characterizations of core and dual core inverse in rings with involution. Linear Multilinear Algebra. doi.org/10.1080/03081087.2017.1320963.
- [10] Mosić D, Djordjević DS. Reverse order law for the Moore-Penrose inverse in C^{*}algebras. Electron. J. Linear Algebra. 2011;22:92-111.

- [11] Patrício P, Mendes Araújo C. Moore-Penrose invertibility in involutory rings: the case $aa^{\dagger} = bb^{\dagger}$. Linear Multilinear Algebra. 2010;58(4):445-452.
- [12] Rakić DS, Dinčić N, Djordjević DS. Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 2014;463:115-133.
- [13] von Neumann J. On regular rings. Proc. Natl. Acad. Sci. U.S.A. 1936;22(12):707-713.
- [14] Xu SZ, Chen JL, Benítez J. EP elements in rings with involution. arXiv:1602. 08184[math.RA].
- [15] Xu SZ, Chen JL, Zhang XX, New characterizations for core and dual core inverses in rings with involution. Front. Math. China. 2017;12(1):231-246.
- [16] Zhu HH, Chen JL, Patrício P. Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra. 2016; 64 (3) 393-403.