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Abstract

Given an endomorphism A over a finite dimensional vector space hav-
ing Jordan-Chevalley decomposition, the lattices of invariant and hyper-
invariant subspaces of A can be obtained from the nilpotent part of this
decomposition. We extend this result for lattices of characteristic sub-
spaces. We also obtain a generalization of Shoda’s Theorem about the
characterization of the existence of characteristic non hyperinvariant sub-
spaces.
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1 Introduction

The lattice of characteristic subspaces of an endomorphism over a finite di-
mensional space has been studied in [1, 2, 7, 8], where structural properties of
the lattice have been given when the minimal polynomial of the endomorphism
splits over the underlying field F. It was proved in ([1]) that only if F = GF (2),
the lattices of characteristic and hyperinvariant subspaces may not coincide.
When the minimal polynomial of the endomorphism does not split over F, the
lattice of characteristic subspaces has not been described. The aim of this paper
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is to analyze this case when the minimal polynomial of the endomorphism is
separable.

The results are based on the Jordan-Chevalley decomposition of an endomor-
phism which exists if the minimal polynomial of the endomorphism is separable
(see [5, 9]). In particular, on perfect fields every irreducible polynomial is sepa-
rable, therefore the Jordan-Chevalley decomposition holds.

The paper is organized as follows: in Section 2 we introduce some definitions
and previous results. We present some lemmas showing that the study the
lattices of the invariant and hyperinvariant subspaces of an endomorphism can
be reduced to the case of an endomorphism where the minimal polynomial is a
power of an irreducible polynomial p.

In Section 3, out of the Jordan-Chevalley decomposition of an endomorphism
into its commuting semisimple and nilpotent parts, we reduce the problem to
the study of the lattice of characteristic subspaces of the associated nilpotent
part. Finally, we conclude that characteristic non hyperinvariant subspaces
can only appear when the irreducible factor of the minimal polynomial is of
degree 1, in other words, if p splits over F. This result extends Shoda’s theorem
(Theorema 2.9) for the separable case.

2 Preliminaries

We introduce some definitions and previous results which will be used through-
out the paper.

Let F be a field. Let V be an n-dimensional vector space over F and f :
V → V an endomorphism. We denote by A ∈Mn(F) its associated matrix with
respect to given basis and by mA the minimal polynomial of A. In what follows
we will identify f with A. The degree of a polynomial p is written as deg(p),
and | · | is the “cardinality of”.

The lattice of the vector subspaces of V will be denoted by  LF(V ) .
A subspace Y ⊆ V is invariant with respect to A if AY ⊆ Y . We denote by

InvF(A) the lattice of invariant subspaces.
The centralizer of A over F is the algebra ZF(A) = {B ∈ Mn(F) : AB =

BA}. If we only take those endomorphisms B that are automorphisms we write
Z∗
F(A) = {B ∈Mn(F) : AB = BA, det(B) 6= 0}.

A subspace Y ⊆ V is called hyperinvariant with respect to A if BY ⊆ Y for
all matrices B ∈ ZF(A). We denote by HinvF(A) the lattice of hyperinvariant
subspaces.

An invariant subspace Y ⊆ V with respect to A is called characteristic if
BY ⊆ Y for all matrices B ∈ Z∗

F(A) and AY ⊆ Y . We denote by ChinvF(A)
the lattice of characteristic subspaces.

Obviously,
HinvF(A) ⊆ ChinvF(A) ⊆ InvF(A).
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The lattices of invariant and hyperinvariant subspaces allow the following
decompositions.

Proposition 2.1. [3] Let A and B be endomorphisms on finite dimensional
vector spaces V and W respectively, over a field F. The following properties are
equivalent:

1. The minimum polynomials of A and B are relatively prime.

2. InvF(A⊕B) = InvF(A)⊕ InvF(B).

Proposition 2.2. [4] Let A and B be endomorphisms on finite dimensional
vector spaces V and W respectively, over a field F. The following properties are
equivalent:

1. The minimum polynomials of A and B are relatively prime.

2. HinvF(A⊕B) = HinvF(A)⊕HinvF(B).

As a consequence, if mA = pk1
1 · · · pkr

r is the prime decomposition of mA for
a given A ∈Mn(F), taking into account the primary decomposition

V = V1 ⊕ · · · ⊕ Vr, Vi = ker(pi(A)ki), i = 1, . . . , r,

and Ai = A|Vi, i = 1, . . . r, the next result is satisfied (see [3, 4]).

Proposition 2.3. Let A ∈Mn(F) and mA = pk1
1 · · · pkr

r with p1, . . . , pr distinct
irreducible polynomials. Then,

1. InvF(A) = InvF(A1)⊕ · · · ⊕ InvF(Ar).

2. HinvF(A) = HinvF(A1)⊕ · · · ⊕HinvF(Ar).

If p(x) ∈ F[x] is an irreducible polynomial and α /∈ F is a root of p(x), we
denote by F(α) the minimal extension of F containing α. The next result can
be found in [3]. Although a proof of the following property 4 was included in
[3], we give here a simple proof of the whole lemma.

Lemma 2.4. [3] Let A ∈Mn(F). Assume that mA = p0+p1x+. . .+psx
s ∈ F[x]

is irreducible, and that α is a root of p such that α /∈ F. Let K = {a0In + a1A+
. . .+as−1A

s−1 |ai ∈ F} be the algebra of polynomials of degree at most s. Then,

1. K is a field isomorphic to F(α).

2. V is a K−vector space.

3. A is K−linear.

4. InvF(A) =  LK(V ).

3



Proof. 1. The following application

Γ : K −→ F(α),

with Γ(a0In + a1A . . . + as−1A
s−1) = a0 + a1α + . . . + as−1α

s−1 is an
isomorphism.

2. For all λ = a0In + a1A+ . . .+ as−1A
s−1 ∈ K, it is satisfied that

λv = (a0In + a1A+ . . .+ as−1A
s−1)v ∈ V, ∀v ∈ V.

3. For all λ ∈ K, Aλv = λAv.

4. The following equivalences hold,

W ∈ InvF(A)⇔ AW ⊆W ⇔ λW ⊆W, ∀λ ∈ K⇔W ∈  LK(V ).

Notice that properties 1− 4 of this lemma are trivially true if s = 1.

A polynomial is called p-primary if it is of the form pr for some irreducible
polynomial p and a positive integer r. A polynomial p(x) over a field F is called
separable if its roots are distinct in an algebraic closure of F.

A linear operator S on a finite-dimensional vector space is semisimple if
every S-invariant subspace has a complementary S-invariant subspace. A linear
operator N on a finite-dimensional vector space is nilpotent if Nk = 0 for some
positive integer k.

The next lemma contains the Jordan-Chevalley decomposition of a matrix,
which plays a key role in this work. The result can be found in [9].

Lemma 2.5. (Jordan-Chevalley decomposition) Let A ∈ Mn(F) be a matrix
with mA = pr, where p is irreducible and separable. Then, there is a unique
decomposition

A = S +N,

where S is semisimple, N is nilpotent and SN = NS. Moreover, S and N are
polynomials in A.

Remark 2.6. [3]
If A has Jordan-Chevalley decomposition then there exist a transformation

into a rational canonical form such that A is similar to

diag(C1, C2, . . . , Cm),

with

Ci =


C 0 . . . 0 0
Is C . . . 0 0
...

...
. . .

...
...

0 0 . . . C 0
0 0 . . . Is C

 ∈Mni
(F), i = 1, 2, . . . ,m,
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where C is the companion matrix of p, and n1 ≥ n2 ≥ · · · ≥ nm > 0, n1 + . . .+
nm = n, n1 = sr (where s = deg(p)), then

S = diag(S1, S2, . . . , Sm), N = diag(N1, N2, . . . , Nm),

where

Si =


C 0 . . . 0 0
0 C . . . 0 0
...

...
. . .

...
...

0 0 . . . C 0
0 0 . . . 0 C

 , Ni =


0 0 . . . 0 0
Is 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . Is 0

 .

Taking advantage of the Jordan-Chevalley decomposition it can be proved
that the lattices of the invariant and hyperinvariant subspaces of A over F can
be obtained as lattices of the corresponding subspaces of a nilpotent matrix
over a different field K (see [3] and [4], respectively). The results are included
in the next theorem. Although proofs are sketched in [3, 4], we provided them
in detail.

Theorem 2.7. Let A ∈ Mn(F). Assume that mA is p−primary (mA = pr)
with p separable and deg(p) = s. Let A = S + N be the Jordan-Chevalley
decomposition of A. Let K = {a0In + a1S + . . .+ as−1S

s−1 |ai ∈ F}. Then,

1. InvF(A) = InvK(A) = InvK(N).

2. HinvF(A) = HinvK(A) = HinvK(N).

Proof. 1. W ∈ InvF(A)⇔W ∈ InvK(A) (becauseA is K− linear). Moreover,
since S ∈ K

InvK(A) = InvK(A− S) = InvK(N).

2. Notice that
ZK(A) = ZF(A) ∩ ZF(S) = ZF(A),

and
ZK(A) = ZK(A− S) = ZK(N).

Therefore

HinvF(A) = HinvK(A) = HinvK(A− S) = HinvK(N).

Next example illustrates the above lemma for the field of real numbers.

Example 2.8. Let F = R, V = R4 and

A =


0 1 0 0
−1 0 0 0
1 0 0 1
0 1 −1 0

 .
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The minimal polynomial of A is mA = (x2 + 1)2. The Jordan-Chevalley decom-
position of A is given by

S =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , N =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

and K = {a0I4 + a1S, ai ∈ R}. Notice that the Jordan chains of N are

e1 → e3 → 0,

e2 → e4 → 0.

Then,

InvR(A) = InvK(N) = {0, 〈e3, e4〉, V } .

The lattice of hyperinvariant subspaces is

HinvR(A) = HinvK(N) = {0, 〈e3, e4〉, V }.

Concerning to characteristic subspaces, Shoda’s theorem characterizes the
existence of characteristic non hyperinvariant subspaces.

Theorem 2.9. [10] Let V be a finite-dimensional vector space over the field
F = GF (2) and let f : V → V be a nilpotent linear operator. The following
statements are equivalent:

1. There exists a characteristic subspace of V which is not hyperinvariant.

2. For some numbers r and s with s > r + 1 the Jordan form of f contains
exactly one Jordan block of size s and exactly one block of size r.

Astuti-Wimmer proved ([1]) that characteristic non hyperinvariant subspaces
can only exist on the field GF (2).

Theorem 2.10. [1] Let V be a finite dimensional vector space over a field F
and let f : V → V be a linear operator. Assume that the minimal polynomial of
f splits over F. If |F| > 2, then ChinvF(f) = HinvF(f).

3 Reduction to the nilpotent case for character-
istic subspaces

In this section we focus on the study of the lattice of characteristic subspaces
of an endomorphism over a field when the irreducible factors of the minimal
polynomial are separable.

First of all we see that the general case can be reduced to the especific case of
endomorphisms having minimal polynomials with an unique irreducible factor,
as in the lattices of invariant of hyperinvariant subspaces.
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Lemma 3.1. Let A and B be endomorphisms on finite dimensional vector
spaces V and W respectively, over a field F. The following properties are equiv-
alent:

1. The minimum polynomials of A and B are relatively prime.

2. ChinvF(A⊕B) = ChinvF(A)⊕ ChinvF(B).

Proof. First assume that (1) is true. It is evident that Chinv(A⊕B) ⊆ Chinv(A)⊕
Chinv(B) holds even for an arbitrary polynomials.

As it is stated in [11], Z(A⊕B) = Z(A)⊕Z(B), therefore every commuting

automorphism of A⊕B is of the form X =

(
X1 0
0 X2

)
with X1 ∈ Z∗(A) and

X2 ∈ Z∗(B).
Taking W = W1 ⊕W2 ∈ Chinv(A)⊕ Chinv(B), clearly W ∈ Chinv(A⊕B)

follows.

Assume now that (2) is true.
As Chinv(A ⊕ B) = Chinv(A) ⊕ Chinv(B), it is satisfied that V ⊕ 0 ∈

Chinv(A ⊕ B). Notice that if X is a matrix such that XA = BX, then(
I 0
X I

)
∈ Z∗(A ⊕ B). Therefore, V ⊕ 0 must be invariant for this matrix

and this implies X = 0.
If gcd(mA,mB) = q, deg(q) > 0, then mA = qf and mB = qh for some

polynomials f, h, and w.l.o.g. we can suppose gcd(q, f) = 1. With respect to an

appropriate basis, we can write A =

(
Cq 0
0 F

)
and B =

(
Cq H
0 G

)
where

Cq is the companion matrix of q and for some matrices F,H and G.

Let U ∈ Z∗(Cq), then X =

(
U 0
0 0

)
6= 0 satisfies XA = BX, which is

clearly a contradiction.

Corollary 3.2. Let A ∈Mn(F) and mA = pk1
1 . . . pkr

r with pi distinct irreducible
polynomials. Then,

Chinv(A) = Chinv(A1)⊕ · · · ⊕ Chinv(Ar), (1)

where Ai ∈ Mni
(F) is the restriction of A ∈ Mn(F) to Vi = ker((pi(A))ki),

i = 1, 2, . . . , r, (V = V1 ⊕ · · · ⊕ Vr).

In the next lemma we see that the lattice of characteristic subspaces of A
can also be determined on a different field for a nilpotent matrix, using Jordan-
Chevalley decomposition.

Lemma 3.3. Let A ∈Mn(F). Assume that mA is p−primary (mA = pr) with p
separable and deg(p) = s. Let A = S+N be the Jordan-Chevalley decomposition
of A. Let K = {a0In + a1S + . . .+ as−1S

s−1 |ai ∈ F}. Then,

1. ChinvF(A) = ChinvK(A) = ChinvK(N).
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Proof. Similarly to the proof of Theorem 2.7,

Z∗
K(A) = Z∗

F(A) ∩ Z∗
F(S) = Z∗

F(A),

and
Z∗
K(A) = Z∗

K(A− S) = Z∗
K(N).

Therefore

ChinvF(A) = ChinvK(A) = ChinvK(A− S) = ChinvK(N).

Finally we obtain the conclusion that characteristic non hyperinvariant sub-
spaces can only exist over Jordan blocks.

Theorem 3.4. Let A be an endomorphism on a finite dimensional space V
over a field F. Assume that mA is p−primary (mA = pr) with p separable. If
ChinvF(A) \HinvF(A) 6= ∅, then deg(p) = 1 and F = GF (2).

Proof. Let us assume that ChinvF(A) \ HinvF(A) 6= ∅ and deg(p) > 1. As p
is separable, let A = N + S be the Jordan-Chevalley decomposition of A. By
Lemma 3.3 we know that ChinvF(A) = ChinvK(N) with K defined as in Lemma
3.3. By assumption deg(p) > 1, which implies that |K| > 2, and by [1, Theorem
3.4], ChinvK(N) = HinvK(N). Finally, by Theorem 2.7, HinvK(N) = HinvF(A).
Therefore, ChinvF(A) = HinvF(A), which is a contradiction.

We see that for the existence of characteristic non-hyperinvariant subspaces
it is necessary that deg(p) = 1 and F = GF (2). If we take into account the
Shoda condition, we obtain a necessary and sufficient condition.

Corollary 3.5. Let A be an endomorphism on a finite dimensional space V
over a field F. Assume that mA is p−primary (mA = pr) with p separable.
Then, the next two statement are equivalent:

1. ChinvF(A)\HinvF(A) 6= ∅.

2. F = GF (2), deg(p) = 1 and the Shoda condition is satisfied.

We show next how the lattice of characteristic subspaces can be obtained in
two examples. In the first one HinvF(A) = ChinvF(A), and in the second one
ChinvF(A) 6⊆ HinvF(A) for some matrices A.

Example 3.6. Let F = GF (2) and

A =



0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1


.
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The minimal polynomial of A is p-primary, mA = (x2 + x+ 1)3, p = x2 + x+ 1
separable, and the Jordan-Chevalley decomposition of A is

S =



0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1


, N =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Let K = {a0I8 + a1S, ai ∈ GF (2)}.

The Segre characteristic of N is (3, 3, 1, 1) with Jordan chains
e1 → e3 → e5 → 0
e2 → e4 → e6 → 0
e7 → 0
e8 → 0

The characteristic and hyperinvariant subspaces of N are (see [7]):

HinvK(N) = ChinvK(N) = {0, 〈e3, e5, e4, e6, e7, e8〉, 〈e3, e5, e4, e6〉, 〈e5, e6, e7, e8〉, 〈e5, e6〉, V } .

Example 3.7. Let F = GF (2) and

A =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1

 .

The minimal polynomial of A is mA = (x + 1)3, p = x + 1 trivially splits over
F and

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , N =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0


Observe that K = F = GF (2) as deg(p) = 1.

The Segre characteristic of N is (3, 1) with vector chains:
e1 → e2 → e3 → 0
e4 → 0

The hyperinvariant and characteristic non hyperinvariant subspaces, according
to [7], are:

HinvK(N) = {0, 〈e2, e3, e4〉, 〈e2, e3〉, 〈e3, e4〉, 〈e3〉, V } ,

ChinvK(N)\HinvK(N) = {e2 + e4 + 〈e3〉} .
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[10] K. Shoda. Über die characteristischen Untergruppen einer endlichen
Abelschen Gruppe. Math. Z. 31 (1930) 611–624.

[11] D. A. Suprunenko,R. I. Tyshkevich. Commutative Matrices. Academic Pa-
perbacks, 1968.

10


