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Abstract

In recent years, the growing need for computing capacity has become a challenge that has

led the industry to look for alternative architectures to conventional out-of-order superscalar

processors, with the goal of enabling an increase of computing power while achieving higher

energy e�ciency.

GPU architectures, which just a decade ago were applied to accelerate computer graphics

exclusively, have been one of the most employed alternatives for several years to reach the

mentioned goal. A particular characteristic of GPUs is their high main memory bandwidth,

which allows executing a large number of threads in a very e�cient way. This feature, as

well as their high computational power regarding �oating-point operations, have caused the

emergence of the GPGPU computing paradigm, where GPU architectures perform general

purpose computations. The aforementioned characteristics make GPU devices very appropriate

for the execution of massively parallel applications that have been traditionally executed in

conventional high-performance processors.

The work performed in this thesis aims to help improve the performance of GPUs in the

execution of GPGPU applications. To this end, as a �rst step, a characterization study is

carried out. In this study, the most important features of GPGPU applications, with respect

to the memory hierarchy and its impact on performance, are identi�ed. For this purpose, a

detailed cycle-accurate simulator is used to model the architecture of a recent GPU. The study

reveals that it is necessary to model with more detail some critical components of the GPU

memory hierarchy in order to obtain accurate results. In addition, it shows that the achieved

bene�ts can vary up to a factor of 3× depending on how these critical components are modeled.
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Due to this reason, as a second step before realizing a novel proposal, the work in this thesis

focuses on determining which components of the GPU memory hierarchy must be modeled with

more detail to increase the accuracy of simulator results and improving the existing simulator

models of these components. Moreover, a validation study is performed comparing the results

obtained with the improved GPU models against those from a real commercial GPU. The

implemented simulator improvements reduce the deviation of the results obtained with the

simulator from results obtained with the real GPU by about 96%.

Finally, once simulation accuracy is increased, this thesis proposes a novel approach, called

FRC (Fetch and Replacement Cache), which highly improves the GPU computational power

by enhancing main memory-level parallelism. The proposal increases the number of parallel

accesses to main memory by accelerating the management of fetch and replacement actions

corresponding to those cache accesses that miss in the cache. The FRC approach is based on a

small auxiliary cache structure that e�ciently unclogs the memory subsystem, enhancing the

GPU performance up to 118% on average compared to the studied baseline. In addition, the

FRC approach reduces the energy consumption of the memory hierarchy by a 57%.
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Resumen

En los últimos años, la creciente necesidad de la capacidad de cómputo ha supuesto un reto que

ha llevado a la industria a buscar arquitecturas alternativas a los procesadores superescalares

con ejecución fuera de orden convencionales, con el objetivo de incrementar la potencia de

cómputo con una mayor e�ciencia energética.

Las GPU, que hasta hace apenas una década se dedicaban exclusivamente a la aceleración de

los grá�cos en los computadores, han sido una de las arquitecturas alternativas más utilizadas

durante varios años para alcanzar el mencionado objetivo. Una de las características partic-

ulares de las GPU es su gran ancho de banda para acceder a memoria principal, lo que les

permite ejecutar un gran número de hilos de forma muy e�ciente. Esta característica, así como

su elevada potencia computacional ejecutando operaciones de coma �otante, ha originado la

aparición del paradigma de computación denominado GPGPU computing, paradigma en el que

las GPU realizan cómputo de propósito general. Las citadas características convierten a las

GPU en dispositivos especialmente apropiados para la ejecución de aplicaciones masivamente

paralelas que tradicionalmente se habían ejecutado en procesadores convencionales de altas

prestaciones.

El trabajo desarrollado en esta tesis persigue ayudar a mejorar las prestaciones de las GPU en

la ejecución de aplicaciones GPGPU. Con este �n, como primer paso, se realiza un estudio de

caracterización donde se identi�can las características más importantes de estas aplicaciones

desde el punto de vista de la jerarquía de memoria y su impacto en las prestaciones. Para

ello, se utiliza un simulador detallado ciclo a ciclo donde se modela la arquitectura de una

GPU reciente. El estudio revela que es necesario modelar de forma más detallada algunos

componentes críticos de la jerarquía de memoria de las GPU para obtener resultados precisos.
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Los resultados obtenidos muestran que las prestaciones alcanzadas pueden variar hasta en un

factor de 3× dependiendo de cómo se modelen estos componentes críticos.

Por este motivo, como segundo paso antes de elaborar la propuesta de mejora, el trabajo se

centra en determinar qué componentes de la jerarquía de memoria de la GPU necesitan mode-

larse con mayor detalle para mejorar la precisión de los resultados del simulador, y en mejorar

los modelos existentes de estos componentes. Además, se realiza un estudio de validación que

compara los resultados obtenidos con los modelos mejorados contra los de una GPU comercial

real. Las mejoras implementadas reducen la desviación de los resultados del simulador sobre

los resultados reales alrededor de un 96%.

Finalmente, una vez mejorada la precisión del simulador, en esta tesis se presenta una prop-

uesta innovadora, denominada FRC (siglas en inglés de Fetch and Replacement Cache), que

mejora en gran medida la potencia computacional de la GPU, gracias a que aumenta el par-

alelismo en el acceso a memoria principal. La propuesta incrementa el número de accesos en

paralelo a memoria principal mediante la aceleración de la gestión de las acciones de búsqueda

y reemplazo relacionadas con los accesos que fallan en la cache. La propuesta FRC se basa en

una pequeña estructura cache auxiliar que descongestiona el subsistema de memoria e�ciente-

mente, aumentando las prestaciones de la GPU hasta un 118% de media respecto al sistema

base. Además, también reduce en 57% el consumo energético de la jerarquía de memoria.
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Resum

En els últims anys, la creixent necessitat de capacitat de còmput ha suposat un repte que ha

portat a la indústria a buscar arquitectures alternatives als processadors superescalars amb

execució fora d'ordre convencionals, amb l'objectiu d'incrementar la potència de còmput alhora

que s'aconsegueix una major e�ciència energètica.

Les arquitectures GPU, les quals �ns fa només una dècada es dedicaven exclusivament a

l'acceleració dels grà�cs en els computadors, han sigut una de les alternatives més utilitzades

durant alguns anys per a aconseguir l'esmentat objectiu. Una de les característiques particulars

de les GPU és el seu elevat ample de banda per a accedir a memòria principal, la qual cosa

permet executar un gran nombre de �ls de forma molt e�cient. Aquesta característica, així

com la seua elevada potència computacional executant operacions de coma �otant, ha originat

l'aparició del paradigma de computació anomenat GPGPU computing, paradigma on les GPU

realitzen còmput de propòsit general. Les citades característiques converteixen a les GPU en

dispositius especialment apropiats per a l'execució d'aplicacions massivament paral·leles que

tradicionalment s'havien executat en processadors convencionals d'altes prestacions.

El treball desenvolupat en aquesta tesi persegueix ajudar a millorar les prestacions de les GPU

en l'execució de les aplicacions GPGPU. A aquest efecte, com a primer pas, es realitza un estudi

de caracterització on s'identi�quen les característiques més importants d'aquestes aplicacions

des del punt de vista de la jerarquia de memòria i el seu impacte en les prestacions. Per a

això s'utilitza un simulador detallat cicle a cicle on es modela l'arquitectura d'una GPU recent.

L'estudi revela que és necessari modelar de forma més detallada alguns components crítics de

la jerarquia de memòria de les GPU per a obtindre resultats precisos. Els resultats obtinguts
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mostren que les prestacions aconseguides poden variar �ns i tot en un factor de 3× depenent

de com es modelen aquests components crítics.

Per aquest motiu, com a segon pas abans d'elaborar la proposta de millora, el treball se centra

en determinar quins components de la jerarquia de memòria de la GPU necessiten modelar-se

amb major detall per a millorar la precisió dels resultats del simulador i en millorar els models

existents d'aquests components. A més, es realitza un estudi de validació que compara els

resultats obtinguts amb els models millorats contra els d'una GPU comercial real. Les millores

implementades redueixen la desviació dels resultats del simulador sobre els resultats reals al

voltant d'un 96%.

Finalment, una vegada millorada la precisió del simulador, en aquesta tesi es presenta una

proposta innovadora, denominada FRC (sigles en anglés de Fetch and Replacement Cache),

que millora en gran manera la potència computacional de la GPU, gràcies a que augmenta

el paral·lelisme en l'accés a memòria principal. La proposta incrementa el nombre d'accessos

en paral·lel a memòria principal mitjançant l'acceleració de la gestió de les accions de recerca

i reemplaçament relacionades amb els accessos que fallen en la cache. La proposta FRC es

basa en una xicoteta estructura cache auxiliar que descongestiona el subsistema de memòria

e�cientment, augmentant les prestacions de la GPU �ns a un 118% de mitjana respecte al

sistema base. A més, també redueix, al voltant d'un 57%, el consum energètic de la jerarquia

de memòria.
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Chapter 1

Introduction

This chapter introduces both basic and fundamental concepts to help understand this disser-

tation and presents the motivation for the work developed in this thesis.

1.1 Motivation

In the last decade, GPU (Graphics Processing Unit) architectures have acquired a great rel-

evance in both high-performance computing and heterogeneous computing. The main reason

of this increasing relevance is that GPUs are much more energy e�cient than CPUs [27, 29],

since they provide a much higher thread-level parallelism and a better performance to power

ratio. As a consequence, many of the most powerful and energy-e�cient supercomputers in the

world, ranked in both Top500 and Green500 lists [71], rely on GPUs.

The huge computational power that GPUs can provide mainly comes from their ultra-parallel

architecture. They are composed of around one hundred of Single Instruction Multiple Data

(SIMD) units that work in parallel, while a single SIMD unit can execute the same instruction

for tens of di�erent threads in the same clock cycle. This architecture allows GPU applications

to be characterized by their massive parallelism, and they are composed of thousands of logical

threads.

However, to feed all the SIMD units with enough data, memory accesses need to be handled

in a fast manner; otherwise these units would su�er starvation, preventing the GPU from
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Chapter 1. Introduction

achieving its peak performance. This means that the memory hierarchy plays a key role in

GPU performance and it must be designed to provide much higher bandwidth than conventional

multi-core CPU memory subsystems. Based on these requirements, the memory hierarchy of a

GPU is not designed to reduce the latency of individual accesses but to support a huge number

of concurrent accesses. In this way, the high thread-level parallelism allows to hide the major

part of the main memory latency.

GPUs were originally built in the 70s as specialized hardware to accelerate graphic processing.

The �rst designs could not be programmed and their functionality was implemented directly in

the hardware. With the evolution of GPU designs this constraint was removed and, in the 2000s,

the �rst cards with programmable shaders were presented, that is, small programs that run for

every pixel that is rendered on the screen. Not much later, manufacturers introduced support

that enabled the use of these programmable GPUs not only for graphics but for accelerating the

processing of matrices or vectors, giving birth to the General Purpose computing on Graphics

Processing Units (GPGPU) programming paradigm.

Nowadays, GPGPU is a major computing paradigm, whose requirements drive the development

of current and future GPU devices. Nevertheless, programming high-performance GPGPU

applications widely di�ers from programming CPU applications because the application work

must be distributed among the highest possible number of threads. Unfortunately, the high

level of parallelism increases programming complexity and requires from e�cient architectures

to support it. To deal with this fact, and to help programmers to accelerate the development of

fast GPGPU applications, the industry is both facilitating GPU programmability and raising

the computational power of GPU devices by adapting di�erent architectural mechanisms, like

cache memories or prefetchers, which have worked successfully in CPUs. Even including these

system components, GPU memory subsystems present serious performance bottlenecks caused

by the huge level of parallelism. To palliate this problem, as GPU architectures evolve they

include larger on-chip memory subsystems that allow improving the Memory-Level Parallelism

(MLP) and so the system performance. For instance, Nvidia has systematically enlarged the

Last-Level Cache (LLC) size in 2MB on consecutive recent architectures (e.g., LLC sizes of

Maxwell [53], Pascal [54], and Volta [55] GPUs are 2MB, 4MB, and 6MB, respectively).

The importance of facilitating the programmability of GPUs and increasing their memory

subsystem performance is currently driving the research on the memory hierarchy of GPUs.

In order to design and evaluate new memory subsystem approaches for GPUs, researchers

often use complex simulation environments because they are more a�ordable and easier to

2



1.2 Background

implement than real hardware. In addition, this software allows researchers to focus only on

those components having a signi�cant impact on the system performance, while paying less

or no attention to the implementation details of other, less signi�cant, components. However,

the continuous evolution of real GPU architectures makes simulators to quickly loose accuracy

and becoming less representative with respect to the real hardware of last GPU generations.

Therefore, simulation software needs to be revised and updated from time to time to ensure

that the simulation results remain valid. In particular, the modeling of components of new

architectures critical for performance needs to be accurately covered.

This thesis pursues to improve the GPU performance by acting on the GPU memory hierarchy.

To this end, several steps have been carried out progressively. First, characterization study has

been performed to provide a sound understanding on the main memory subsystem bottlenecks

that impact on the performance of GPU applications. The main aim of this characterization

study is to help improving the memory subsystem of modern GPUs. This study reveals identi-

�es some critical memory subsystem components that need to be accurately modeled in recent

simulators in order to provide solid and representative proposals. These components have been

modeled in a state-of-the-art simulator and its validated by comparing them with those of a

recent commercial GPU. This validation is required because, to the best of our knowledge,

there is not any o�cial published information about the GPU memory subsystem from major

GPU manufacturers, such as AMD or Nvidia, that deals with GPU memory hierarchy microar-

chitectural details (e.g. miss management). Finally, a new approach that e�ciently improves

the performance of the GPU memory subsystem, and thus the overall GPU throughput, has

been proposed. The proposal improves the management of the LLC cache misses, increasing

both the MLP and the hit ratio. Moreover, it scales well both in terms of performance and

energy consumption with larger GPUs. Note that although this thesis is focused on memory

hierarchies from AMD GPUs, some of its contents are also useful for GPU caches and coherence

protocols based on academic proposals like NMOESI.

1.2 Background

This section provides some background on the GPGPU programming model, the GPU archi-

tecture and memory subsystem, and the simulation framework used in this thesis.

3



Chapter 1. Introduction

Figure 1.1: OpenCL platform and execution models.

1.2.1 OpenCL GPGPU programming model

There are two main GPGPU programming platforms and models, CUDA [52] from Nvidia and

OpenCL [36] from the Khronos group. While CUDA is only supported by GPUs designed by

Nvidia, OpenCL is, de facto, an industry standard programming model [66] and it is supported

on devices from di�erent brands such as Intel, AMD, ARM, or even Nvidia itself.

OpenCL de�nes a platform model, which is an abstraction of a real system where kernels

are executed. The model comprises a hierarchy of Compute Devices (CDs), Compute Units

(CUs), and Processing Elements (PEs), which refer to the GPU devices in the system, multi-

core units inside GPU devices, and cores that execute scalar operations, respectively. The

platform model maps the execution model, where the executing threads are also organized in

a hierarchical manner. Each individual thread, which is executed in a single PE, is de�ned

as a work-item. Work-items are grouped in work-groups, which are mapped to CUs. Finally,

a kernel executing in a GPU is composed of several work-groups. Figure 1.1 depicts a block

diagram of both models and how they map each other.

1.2.2 Graphics Core Next microarchitecture

The experimental work developed on this dissertation has considered several GPU architectures

from AMD: Southern Islands [68], Arctic-Islands [6, 5], and the most recent Vega [9, 7]. These

GPU architectures implement di�erent versions of the same Graphics Core Next (GCN) CU

microarchitecture, introduced in 2012 by AMD. The microarchitecture has evolved in the last

few years across these versions; for instance, the working frequency has steadily increased from

1GHz in Southern Islands up to 1.5GHz in Vega, but the basic GCN design have remained

almost stable.
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Figure 1.2: Graphics Core Next compute unit.

Figure 1.2 presents a block diagram of the GCN CU microarchitecture. A GCN CU consists of

four 16-lane SIMD units; thus, it is capable of executing 64 work-items at the same time. In

addition, a GCN CU includes several load/store units and a scalar unit to process scalar data.

Each kernel work-group is assigned to a speci�c SIMD unit, where it is executed. To be

executed, the work-group is divided in 64-thread bundles, named wavefronts, consisting of 64

work-items. In turn, these wavefronts are subdivided in 4 sets composed of 16 work-items (also

known as subwavefronts).

The instructions from the 64 work-items of a wavefront are executed in a lockstep manner.

To do that, the SIMD unit executes sequentially the same instruction for the corresponding 4

subwavefronts. Therefore, the instruction (i.e. the entire wavefront) takes 4 cycles (i.e. one

cycle per subwavefront) to execute.

To increase resource utilization and improve throughput, the GPU scheduler ensures that each

SIMD unit is assigned tens of wavefronts, during most of the execution time of a kernel. SIMD

units switch among wavefronts in a �ne-grained multithreading manner, which helps hide the

memory latencies.

1.2.3 Memory subsystem

Memory reference instructions are also executed following the SIMD paradigm; that is, a wave-

front can generate up to 64 memory requests per memory reference. To reduce the overall

amount of cache accesses, those requests addressing the same 64-byte cache block are coalesced

into a single cache access, which is issued to the memory subsystem.
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Figure 1.3: Memory hierarchy.

As in a conventional processor, the memory subsystem is organized hierarchically (see Figure

1.3). Those requests that miss the L1 cache are forwarded through an all-to-all crossbar switch

to a multi-banked L2 cache, which acts as the LLC. Cache block addresses are interleaved

among among L2 banks at a granularity of 256 bytes.

In the Southern Islands and Arctic Islands architectures, each bank is connected to a dual-

channel memory controller that manages the corresponding o�-chip GDDR5 main memory,

while in the Vega architecture, the GDDR5 main memory modules are replaced with two

stacks of the second version of the High Bandwidth Memory (HBM2) [31]. HBM2 is a a high-

performance RAM interface for 3D-stacked DRAM from Samsung, AMD, and Hynix. This

standard allows stacking up to 8 DRAM dies, each one with its own independent memory

channel. In other words, each L2 bank in Vega architecture is directly connected to a single

memory channel. This design reduces the number of channel con�icts and increases the memory

bandwidth utilization.

1.2.4 Critical memory subsystem components

As mentioned above, in this thesis we identi�ed critical memory subsystem components that

have a signi�cant impact on the system performance and whose accuracy is not properly mod-

eled in state-of-the-art simulators. This section brie�y discusses these components as back-

ground to help understanding the contribution.
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Vector memory instruction bu�er

The GCN microarchitecture implements the Vector Memory-instruction Bu�er (VMB) in the

CU. This bu�er keeps track of the memory instructions issued to the cache until all their

associated memory operations �nish. Using the VMB and other structures, GPU architectures

implement mechanisms that group memory requests of the same type (load or store) targeting

the same cache line in a single memory access, so reducing the e�ective number of memory

accesses. This way greatly reduces the pressure on the memory hierarchy.

Memory request coalescing and merging mechanisms

Two main approaches, namely coalescing and merging, can be found in modern GPUs to reduce

the number of memory accesses. The coalescing approach combines all the requests of the same

instruction targeting the same cache block into a single cache access in the CU just before issuing

the instruction to the memory subsystem. For instance, the AMD Evergreen [2, 49] implements

coalescing of both load and store instructions.

In contrast, the merging approach is implemented in the memory subsystem, decoupled from

the CU. Merging is more �exible since it can applied to multiple memory requests regardless

of whether they have been generated by the same memory instruction or not. Nevertheless, its

use must be restricted to deal with memory coherence and memory consistency issues.

MSHR �le

GPUs generate a huge quantity of memory accesses, but only a limited number of pending

cache requests can be supported simultaneously. For this purpose, current non-blocking caches

implement Miss Status Holding Registers (MSHR) �les. Upon a cache miss, the MSHR �le is

looked up to check if the target block is already being fetched. On such a case, the missing

memory access is queued into the MSHR entry associated to the target block.

A single MSHR entry is in charge of tracking all the memory accesses associated to a given cache

block (i.e., all the requests whose target address falls within the same block). Therefore, the

maximum number of outstanding memory accesses is limited to the number of MSHR entries.

Consequently, if all MSHR entries are busy and the missing cache block is not being fetched,

the memory access is stalled until an MSHR entry is released.
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GPU cache coherence protocols

Cache coherence protocols were originally designed to support data coherence among caches in

CPU multiprocessors. These protocols tolerate a moderate tra�c of coherence requests, how-

ever, they are rather complex and would strangle the performance if they were directly applied

to GPUs, mainly due to GPUs are designed to support a massive amount of memory requests

generated by typical GPU applications. In short, neither GPUs nor heterogeneous CPU-GPU

systems work properly with typical CPU protocols. To deal with this fact, alternative protocols

have been devised both by the academia and the industry.

NMOESI coherence protocol. To support GPU cache coherence, Multi2Sim implements

NMOESI, that extends the well-known MOESI protocol [67] implemented in a wide range of

CPU multicores. NMOESI extends this protocol to support memory coherence in both CPU

and GPU applications, and it is especially suited for heterogeneous CPU-GPU systems with a

cache hierarchy shared among CUs and CPU cores. Under MOESI, a given cache block can be

in one of �ve main states (M, O, E, S and I). NMOESI extends this protocol by adding a new

non-coherent state (N) to be used in GPUs. This state avoids that non-coherent write requests,

which are common in GPU applications, generate coherence tra�c.

SI protocol. The protocol deployed in the Southern Islands (SI) GPU family, hereafter SI

protocol, supports a relaxed memory consistency model based on Release Consistency [26].

This consistency model allows the compiler to specify when data modi�cations performed by a

given CU must be visible to other CUs, which enables the implementation of simpler coherence

protocols. To support the consistency model, the opcode of a SI memory instruction includes

2 bits called GLC (Global Coherent) and SLC (System Level Coherent), which indicate the

coherency scope.

Memory controller

As conventional DDR SDRAM memories, Graphics DDR (GDDR) memory contain multiple

independent DRAM banks. A bank is implemented as a matrix of DRAM cells. When a bank

is accessed, the entire row also referred to as memory page, is accessed. The accessed memory

page is stored in the DRAM sense ampli�ers associated to the bank, also referred to as row

bu�er.

8



1.2 Background

The memory controller uses three commands that are issued sequentially to a bank in order to

access the target data [38]. First, the precharge command writes back the row content to the

bank, and then precharges the row bitlines for accessing the target row. Second, the activate

command reads the target row and stores its information into the row bu�er. Finally, the

read/write command reads or write the requested data in the row bu�er. After issuing the last

command, the memory controller can either keep the accessed memory page in the row bu�er

(open page policy) or close the row bu�er by issuing a precharge command (closed page policy).

Depending on the implemented page policy, the latency of the next access varies. For example,

with an open page policy, if the requested block is already present in the row bu�er (i.e., a row

bu�er hit), only a read/write command needs to be issued by the memory controller, thus the

latency can be signi�cantly reduced. However, a row bu�er miss would require to serialize the

issuing of the three mentioned commands, roughly trebling the latency of a row bu�er hit.

O�-chip GDDR memory

The memory bus is used to read from or write to the memory device. In conventional DDR

memories, the memory bus 64-bit width, while in GDDR memories this width is typically 32

bits. Since the typical cache block size is 64 bytes, transferring a cache block through the data

bus doubles the number of transfers over DDR memories.

An option to reduce the total transfer time would be the use of a wider memory bus. Since

GDDR devices are standardized to a 32-bit bus, working with a wider memory bus would

require multiple memory devices to operate in lockstep. For example, the Intel i875P memory

controller connects through a 128-bit memory data bus to matching pairs of 64-bit wide DIMMs

(Dual In-Line Memory Modules). This paired DIMM con�guration is often referred to as dual

channel con�guration [30].

1.2.5 GPU simulators

In comparison with CPU research simulators, the number of available GPU simulators is much

lower. Moreover, existing GPU simulators are relatively recent and still maturing. The main

causes of this situation are the lack of documentation provided by GPU manufacturers and the

fast evolution of GPU architectures, which complicates the development of GPU simulators,

since it requires stable and well-known architecture models.
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Nevertheless, due to the growing use of GPUs, some GPU simulation frameworks have become

recently available. Among them, it is worth mentioning GPGPU-Sim [23, 11] and Barra [22].

GPGPU-Sim is currently one of the most referenced GPU simulators and models a GPU mi-

croarchitecture that resembles the Nvidia GeForce 8x, 9x, and Fermi series. However, due to its

dependence on Nvidia drivers, which only support OpenCL 1.1, GPGPU-Sim does not provide

support for the execution of GPGPU benchmark suites like those provided by AMD [3] with

modern OpenCL code. On the other hand, Barra is a parallel GPU simulator that implements

both a CUDA driver emulator and an Nvidia Tesla GPU simulator. Unfortunately, Barra does

not model the GPU microarchitecture, thus it cannot be used for the purposes of this thesis,

which requires the evaluation of possible enhancements in the memory subsystem.

In this thesis, the Multi2Sim [73, 72] simulation framework has been selected as the main

experimental platform. Multi2Sim is an accurate cycle-by-cycle execution-driven simulator

for CPU-GPU heterogeneous computing. Release and development versions of Multi2Sim are

available. It provides a fully con�gurable memory subsystem with several cache levels and

interconnection network. Multi2Sim implements several GPU architectures from both AMD

(e.g., Evergreen and Southern Islands) and Nvidia (e.g., Fermi) as well as CPU architectures

like x86, MIPS-32 and ARM. The Multi2Sim developer team is currently modeling the HSA

heterogeneous architecture [1], where CPU and GPU share the same memory subsystem. Fi-

nally, Multi2Sim includes its own implementation of OpenCL and CUDA libraries. In this way,

it can provide dynamic information about CPU-GPU interaction by instrumenting OpenCL

and CUDA calls.

1.3 Thesis Objectives

The general objective of this dissertation is improving current GPU memory subsystems in

order to increase the overall system performance when executing GPGPU applications.

For this purpose, we need �rst to characterize the behavior and demands of GPGPU appli-

cations from the memory hierarchy point of view, as well as the impact of this hierarchy on

performance. This study will provide insights on the main performance bottlenecks on the

memory hierarchy. Based on this study new approaches will be devised to remove or mitigate

the identi�ed bottlenecks. After that, we need to implement the devised approaches in a state

of the art simulator modeling recent GPU architectures. To this end, we need to update existing

simulators to accurately modeling the GPU memory subsystem of current GPU architectures.
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In short, this thesis pursues as a key objective the design of an e�cient memory hierarchy man-

agement approach to boost the performance of GPGPU applications, which needs from the

previous achievement of two sub-objectives: i) a detailed characterization study relating the

impact of the memory hierarchy on the performance, ii) extending state-of-the-art simulators

to accurately modeling current GPUs.

1.4 Contributions

This thesis makes three main contributions, each one addressing a speci�c sub-objective, dis-

cussed below:

• A characterization is performed in order to better understand the behaviour of GPGPU

applications. The study modi�es the underlying coherence protocols and the size of the

MSHR �le, which directly a�ects the available Memory Level Parallelism (MLP).

• The accuracy of a state-of-the-art GPU simulator is improved and validated by modeling

several critical memory subsystem components and extending the models of existing ones.

The results have been validated against those obtained with a real commercial GPU.

• A new proposal that improves the performance of GPU memory subsystems is presented.

The proposed approach raises the GPU computational power by unclogging the LLC miss

management and improving the hit ratio. It can scale to the largest GPUs from AMD

while reducing the energy consumption of the memory hierarchy.

1.5 Outline

Following the UPV rules, this thesis has been written as a compendium of articles. Therefore,

the rest of this thesis is organized as follows:

Chapters 2 to 6 present the scienti�c publications derived from the work performed in this

thesis. They have been adapted to the required formatting style.

In Chapter 7, a general discussion of the results of the main contributions of this thesis is given.

Finally, in Chapter 8, some conclusions and ideas for future work are presented.
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Chapter 2. Impact of Memory-Level Parallelism on the Performance of GPU Coherence Protocols

2.1 Abstract

Graphics Processing Units (GPUs) are being implemented in heterogeneous CPU/GPU sys-

tems due their high e�ciency when executing massively parallel applications. New challenges

appear to deal with heterogenous coherence in these systems due to the huge amount (hundreds

or thousands) of on-going memory requests of GPUs, which is limited by the Miss Status Hold-

ing Register (MSHR) �le size associated to the L1 cache. This paper analyzes how the number

of MSHRs i) a�ects to typical memory performance metrics and ii) impacts on the system

performance under two recent GPU coherence protocols, called NMOESI and SI (Southern

Islands), which introduce distinct coherence tra�c. We �nd two key �ndings that can help

improve the performance of coherence protocols. First, there is a strong correlation between

system performance and memory subsystem latency regardless of the used protocol. Second,

system performance varies with the number of supported cache misses; however, counterintu-

itively, supporting more cache misses does not always bring enhanced performance but it can

turn into performance drops.

2.2 Introduction

Nowadays, heterogeneous CPU/GPU processors are being introduced in the market. These

systems combine CPU with GPU computing capabilities [21]. The CPU is used to accelerate

the execution of the sequential part of the applications, while the GPU allow the execution of

a massive number of threads in parallel.

This paper studies the impact on performance of the supported MLP (Memory level paralelism)

by GPU considering both GPU and CPU coherence protocols. For this purpose, we �rst char-

acterize the behavior of GPGPU (General Purpose GPU) applications increasing the supported

MLP up to 256 memory requests. This study is done in two state-of-the-art GPU coherence

protocols: NMOESI from the academia and Southern Islands (SI) from AMD.

Two important �ndings are presented that can help improve existing GPU protocol designs.

First, unlike CPU memory systems, we �nd that a higher number of MSHRs can rise cache and

memory contention, which can turn into performance drops in some applications. Consequently,

in this paper we claim that GPU systems must support a con�gurable MSHR �le size for

better performance. Second, huge memory latencies (by 2K processor cycles) cannot be hidden

even by the massive thread parallelism of current GPUs. Thus, latency values higher than
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Figure 2.1: Southern Islands memory hierarchy.

this threshold present an inverse correlation with performance. Finally, we also show that

speci�c GPU protocols are required since both NMOESI and SI protocols provide performance

improvements up to 4× over MOESI.

2.3 GPU Architecture

Southern Islands family [8] was the �rst GPU implementing the AMD's Graphics Core Next

(GCN) architecture [68]. Its memory subsystem consists of 3 memory levels as depicted in

Figure 2.1: �rst-level caches, second-level caches, and main memory. All these levels work with

a 64-byte block size. The �rst level cache is composed of data caches (read-write), instruction

caches (read-only), and constant caches (read-only). L1-instruction and L1-data caches are

private to each Compute Unit (CU), while each constant cache is shared by a group of 4

CUs. L2 is composed of a single cache partitioned into modules, each of them connected to

a di�erent dual-channel main memory controller. L1 caches and L2 modules are connected

through a crossbar. Finally, depending on the speci�c card model, main memory is divided

into 4, 8, or 12 GDDR5 memory modules.

2.4 Axes of Characterization

This section summarizes the main features of the memory protocols studied in this paper

and describes the MSHR �le. Both elements of the system are used in the next section to

characterize the memory behavior of GPU kernels, since as experimental results will show, the

overall system performance strongly depends on them.
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(a) SI

(b) NMOESI

Figure 2.2: Speedup of SI and NMOESI with respect to MOESI varying the MSHR �le size.

A. Coherence protocols

MOESI: Currently, MOESI is the protocol commonly implemented to guarantee cache coher-

ence in conventional CPU processors. Under this protocol, a given cache block can be in one

of �ve di�erent states (M,O,E,S and I).

NMOESI: This protocol is an extension of MOESI proposed by Multi2Sim team to improve

the performance of MOESI in GPU memory systems. A new state N is added to save unnec-

essary coherence tra�c caused by non-coherent blocks. When a GPU write access is issued,

the requested block is brought to L1 and its state is set to N without invalidating other copies

of the block. Thus, multiple non-coherent copies of the same block are allowed in di�erent L1

caches. Then, when a block in state N is replaced, �the part of the block that has been locally

modi�ed� is updated in L2, which properly combines the modi�cations of individual CUs.

SI: This protocol refers to our implementation of the coherence protocol deployed in the South-

ern Islands GPUs family, which has been implemented based on the o�cial SI instruction set

architecture [8].

B. Miss status holding registers
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Miss Status Holding Registers (MSHRs) are used in non-blocking caches to handle multiple

memory accesses at the same time. Each MSHR records all in�ight accesses to a speci�c block.

Therefore, the maximum number of in�ight requests is limited by the number of available

MSHRs. In this work we vary the MSHR �le size of L1 caches to control the available number

of blocks being fetched (i.e. MLP) [15].

2.5 Experimental Evaluation

Experimental results have been obtained with the Multi2Sim simulation tool[72]. Multi2Sim is a

detailed simulator for heterogeneous CPU/GPU systems. It provides cycle-accurate simulation

of the processor pipeline and memory subsystem. Multi2Sim supports the MOESI (baseline

in our experiments) and NMOESI protocols, and we extended it to support the SI protocol

implemented in recent GPUs. The experiments have been carried out with the OpenCL SDK

2.5 benchmarks [3].

The GPU con�guration is shown in Table 2.1, which represents the AMD HD 7770 GPU.

A. Performance of SI and NMOESI with respect to MOESI

This section studies the e�ect of limiting the MLP on the system performance under the SI

and NMOESI protocols. For this experiment, we increase the L1 MSHR �le size from 32 to

64 and up to 256 entries. Figure 2.2 presents the speedup of the studied benchmarks for each

protocol and MSHR con�guration with respect to MOESI with 256 MSHRs. As observed,

both NMOESI and SI obtain signi�cant performance enhancements in 6 of 10 benchmarks. In

general, compared to MOESI, both NMOESI and SI achieve better performance.

The MSHR �le size does not equally a�ect to NMOESI and SI protocols; but depending on

the protocol and the application, a high number of MSHRs (e.g. MatrixTranspose with SI) or

a low number achieves the best performance. In general, SI (see Figure 2.2a) achieves higher

performance bene�ts as the number of MSHR entries increases. That is, this protocol should

be deployed with a high number of MSHRs. In contrast, Figure 2.2b shows that the optimal

MSHR �le size for NMOESI varies with the application. NMOESI, however, achieves in general

its poorest performance with a 256 MSHR �le size, and improves as the number of supported

misses is constrained. To remark that when the number of MSHRs is signi�cantly reduced,

NMOESI's performance can be also a�ected due to the constrained MLP (e.g., DwtHaar1D). In
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Table 2.1: GCN con�guration and memory subsystem.

GCN & Memory subsystem con�guration

Compute Units 10

Work-groups per CU 10

Wavefronts per wrok-group 4

Work-items per wavefront 64

SIMD units per CU 4

All caches LRU, 64B-lines, 2 ports

L1 caches 16KB, 4 ways, 1 cicle

L1 texture cache 1 cache per CU

L2 caches
2 modules, 128KB per module,

16 ways, 10 cycles

Main memory
2 channels per L2 module,

100 cycles

contrast, SI shows a scalable behavior, improving its performance as the number of MSHRs is

increased.

Overall, NMOESI o�ers the best performance for standard MSHR �le sizes (e.g., 16 entries) in

half of the studied applications. However, in some applications like BlackScholes, this protocol

presents worse performance than SI regardless of the MSHR �le size.

B. Benchmark characterization

The supported MLP a�ects in a di�erent way the applications performance depending on the

deployed protocol. In this section, we analyze the execution time of the studied benchmarks

and classify them into four categories. As example, Figure 2.3 presents the execution time for

a benchmark in each category. Next, we present these categories.

SI always better: This category includes those benchmarks where SI achieves better perfor-

mance than NMOESI regardless of the MSHR �le size. This is the case of BlackScholes (see

Figure 2.3a).

Similar behavior: This category includes those benchmarks where both protocols present

similar performance when varying the MSHR �le size. Figure 2.3b shows Reduction as exam-

ple.

SI better for large MSHR �le sizes: In some benchmarks, both protocols present similar

performance for a small number of MSHRs, but di�erences appear as the MSHR �le size in-
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(a) Blackscholes (b) Reduction (c) Mers. Twister (d) Matrix T.

Figure 2.3: Execution time of NMOESI and SI for each benchmark category.

(a) Blackscholes (b) Reduction (c) Mers.Twister (d) Matrix T.

Figure 2.4: Memory latency of NMOESI and SI for each benchmark category.

creases (see Figure 2.3c).

NMOESI better for small MSHR �le sizes: This caterogy includes benchmarks,like

MatrixTranspose (see Figure 2.3d), where NMOESI with small number of MSHRs achieves

better performance, but when the number of MSHRs is increased the SI protocol becomes the

best protocol.

To provide a sound understanding of the relationship between execution time and MLP we an-

alyzed multiple memory related metrics such as hit ratio, Misses Per Kilo Instructions (MPKI),

and memory access latency. We found that memory latency is the metric that better explains

changes in performance due to the low temporal locality and high parallelism of some bench-

marks.

Regarding memory latency, remark that GPU memory instructions a�ect a whole vector of

data items, thus potentially generating multiple memory accesses. In addition, current GPU

architectures execute instructions belonging to the same wavefront in order. In other words, a

GPU must wait for all the accesses generated by a given GPU memory instruction to complete

before issuing subsequent instructions. Taken into account this behavior, the latency presented
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(a) Memory latency

(b) Speedup

Figure 2.5: SI performance varying the MSHR �le size over 16 MSHRs.

by a given memory instruction has been quanti�ed as the maximum latency among all its

generated memory accesses; i.e. the maximum latency per vector instruction. We feel that

these values accurately re�ect what happens in this scenario so we used them to focus the

analysis.

Figure 2.4 presents, for the applications representing the four categories, the average of this

maximum latency per vector instruction for the NMOESI and SI protocols varying the MSHR

�le size. Compared to the previous execution time plots, it can be observed that a signi�cant

latency reduction does not necessarily reduce the execution time. This is due to the latency-

hiding capabilities of GPUs, which come from the fact that application's work-groups are

executed following a time-multiplexing manner. In short, in order to latency savings a�ect

the performance, the original memory latency must be higher than a given threshold. For

instance, in Reduction (Figure 2.4b) a 256-MSHR �le reduces latency more than half over 16

MSHRs in both protocols but the execution time is barely a�ected. Moreover, SI allows by 40%

more latency savings than MOESI and, again, this latency improvement does not signi�cantly

reduce the execution time. A similar e�ect can be observed in BlackScholes (Figure 2.4a). In

contrast, latency plots of MersenneTwister (Figure 2.4c) and MatrixTranspose (Figure 2.4d)

show a similar shape as their corresponding plot in Figure 2.3.
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(a) Memory latency

(b) Speedup

Figure 2.6: NMOESI performance varying the MSHR �le size over 16 MSHRs.

In summary, we can conclude that the average maximum latency per GPU memory instruction

is a good indicator of the expected performance behavior in these applications. The main cause

is that their memory latencies are, in general, much higher (by 8 thousand cycles) and cannot

be hidden by the GPU microarchitecture.

C. Analyzing the relationship between memory latency and performance in SI and NMOESI

Figures 2.5 and 2.6 present the memory latency (upper plots) and performance (lower plots)

under the SI and NMOESI protocols, respectively, varying the MSHR �le size. In all the plots

it has been used the same protocol with a 16-entry MSHR as baseline. This way allows study

how performance is a�ected by memory latency.

It can be appreciated a high correlation between memory latency variations and performance

in both protocols. This correlation is much stronger for high memory latencies (by above

1000 cycles). For instance, BinomialOption performance does not vary when changing the

protocol. This is because all the studied con�gurations successfully hide the memory latency,

which is very low. This is also the case of EigenValue, which presents a very low latency

in both NMOESI and SI, thanks to its high L1 hit ratio (by 99%). On the other hand, the

performance of Matrixtranspose, MersenneTwister, and RecursiveGaussian clearly depends
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on the huge memory latencies. In SI, these latencies decrease with the number of MSHRs,

which turn into performance improvements. However, the results for the same applications

with NMOESI present a noticeable latency increase as the MSHR �le size grows, being 16 or

32 MSHRs �depending on the application�, the best con�gurations for this protocol.

In summary, NMOESI works in general better in con�gurations with few MSHRs, whereas SI

improves its performance with large MSHR �les (e.g. 256 entries). On the other hand, SI

allows obtaining better memory latencies due to its lack of coherence messages, which enables

fast invalidations of blocks.

2.6 Related Work

This section relates important work focusing on caches and protocols for GPUs. Regarding

caches, an interesting study analyzing the bene�ts of cache memories versus scratchpad memo-

ries is presented in [33]. This study concludes that some applications improve their performance

with cache memories, while the performance may signi�cantly drop in others applications. One

possible solution would be to design adaptive memory structures that behave di�erently de-

pending on the workload characteristics. Regarding coherence protocols, it is known that they

should deal with the massively parallel computing capabilities of GPUs. Protocols were orig-

inally designed for typical processors having a relatively few number of cache misses at any

point in time. Therefore, when they work on GPUs with thousands of requests in �ight, they

are easily saturated, with the consequent performance loss. In [58], it is presented a coherence

protocol that avoids that a massive number of memory accesses saturate the protocol direc-

tory. In [65], authors propose a directoryless protocol, which is one of the major performance

bottlenecks. The order in which the large amount of memory transactions are processed in

the GPU also can signi�cantly a�ect the performance. In [32], a technique to reorder memory

accesses is presented. In [48], reordering requests is also investigated, but focusing on L2 and

main memory.
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2.7 Conclusions

This paper has shown that coherence protocols especially designed for GPU memory subsystems

can accelerate up to 4 times the performance of some applications compared to conventional

coherence protocols. Nevertheless, unlike CPU memory subsystems, allowing a higher level

of memory level parallelism (i.e. increasing the MSHR �le size) can reduce the system per-

formance. This behavior is due to the memory protocol induced contention and can widely

vary with the application. In addition, this paper demostrates that: i) the potential negative

e�ect of the protocol on performance can be detected by measuring the maximum latency per

vector instruction, and ii) the best MSHR �le size depends on the running GPU kernel and the

underlying memory protocol.
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Chapter 3. Accurately Modeling the GPU Memory Subsystem

3.1 Abstract

Nowadays, research on GPU processor architecture is extraordinarily active since these archi-

tectures o�er much more performance per watt than CPU architectures. This is the main

reason why massive deployment of GPU multiprocessors is considered one of the most feasible

solutions to attain exascale computing capabilities. In this context, ongoing GPU architecture

research is required to improve GPU programmability as well as to integrate CPU and GPU

cores in the same die.

One of the most important research topics in current GPUs, is the GPU memory hierarchy,

since its design goals are very di�erent from those of conventional CPU memory hierarchies. To

explore novel designs to better support General Purpose computing in GPUs (GPGPU comput-

ing) as well as to improve the performance of GPU and CPU/GPU systems, researchers often

require advanced microarchitectural simulators with detailed models of the memory subsystem.

Nevertheless, due to fast speed at which current GPU architectures evolve, simulation accuracy

of existing state-of-the-art simulators su�ers. This paper focuses on accurately modeling the

GPU memory subsystem. We identi�ed three main aspects that should be modeled with

more accuracy: i) miss status holding registers, ii) coalescing vector memory requests, and iii)

non-blocking GPU stores. In this sense, we extend the Multi2Sim heterogeneous CPU/GPU

processor simulator to model these aspects with enough accuracy. Experimental results show

that if these aspects are not considered in the simulation framework, performance deviations

can rise in some applications up to 70%, 75%, and 60%, respectively.

3.2 Introduction

In the recent years there have been an steady increase in the use of GPUs (Graphics Processing

Units) for general purpose computing. The main cause is due to General Purpose computing in

GPUs or simply GPGPU computing is much more energy-e�cient than conventional comput-

ing. That is, for the same energy budget, it can provide higher computational power, especially

in the execution of massively parallel workloads. Because of this fact, most supercomputers in

the top 10 of the top 500 list [71] implement GPUs. For instance, the Titan supercomputer,

ranged in second place of the top 500 list in november 2014, was built with Nvidia K20x devices;

and the top one, Titanhe-2 was deployed with the Intel Xeon Phi, which incorporates a large

graphic unit that occupies a signi�cant part of its layout. However, GPU programmability is
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still harder than that of conventional computing. To deal with this fact, computer architects

are trying to adapt di�erent techniques (e.g. caches and prefetching) that have successfully

worked on CPUs to ease programmability and also increase their computational power.

The huge computational power of GPUs comes from implementing hundreds of processing

elements that work in parallel. To keep busy all these processing elements with data, memory

accesses must be properly handled. This means that the memory hierarchy must provide much

more bandwidth than the memory hierarchy of conventional CPU multicores. On the other

hand, GPU applications are characterized by their massive parallelism applications (they are

usually composed of thousands of logical threads). Based on this fact, the memory hierarchy

in the GPU is not designed to reduce latencies as in the CPU but to tolerate a high number of

concurrent accesses. This way allows to hide most of the main memory latencies.

The importance of easing the progammability of GPUs for GPGPU computing, as well as the

integration in the same chip of CPU and GPU cores (i.e., heterogeneous multicores), which

present very di�erent memory hierarchy designs, is driving GPU memory hierarchy research

at this moment. To explore and evaluate new proposals and enhancements on the memory

subsystem, researchers use complex and detailed simulation frameworks. These software pack-

ages are abstractions of the real hardware and model its functionality, concentrating on those

hardware components that have a signi�cant impact on the system performance.

However, due to the fast speed at which current systems evolve, as well as their high complexity,

simulation accuracy is not always as good as it should. For this purpose, and in order to get

representative results, simulators should be continuously updated to re�ect the behavior of

the real hardware and capture its impact on performance. On the other hand, research on

heterogeneous multicores requires from powerful simulation environments that usually model a

generic system that often miss signi�cant speci�c details of GPU architectures.

This paper focuses on enhancing the model of the GPU memory subsystem in the Multi2Sim

simulation framework, which is widely used across the scienti�c community and the academia.

Multi2Sim simulates the newest AMD GPU architectures in detail and allows users to con�gure

internal architectural parameters, the characteristics of the modules of the cache hierarchy, as

well as the interconnection network. Unfortunately, some parts of the memory subsystem that,

as experimental results will show, have a high impact on GPU performance are not accurately

modeled, leading sometimes to important performance deviations.

27



Chapter 3. Accurately Modeling the GPU Memory Subsystem

In particular, this paper enhances the Multi2Sim accuracy by modeling three key aspects of

current GPU memory subsystems: i) the Miss Status Holding Register (MSHR) �le, ii) a co-

alescing unit at the processor pipeline of the memory requests generated by vector memory

instructions, and iii) non-blocking GPU store instructions. The �rst mechanism allows esti-

mating the e�ect of the MSHR �le on performance. The second Multi2Sim extension coalesces

the memory requests issued by the same vector memory instruction at the processor pipeline

level, which provides a more realistic model of the memory access patterns a�ecting the memory

subsystem. Finally, the third enhancement avoids the GPU processor pipeline to be blocked

when a vector store instruction is located at the head of the vector memory bu�er.

Experimental results show that: i) modeling the MSHR �le can reduce the performance up

to 3 times with respect to assuming an unbounded MSHR �le; ii) coalescing at the processor

pipeline can speedup the execution time higher than 30% in some applications; iii) non-blocking

stores improve the performance across all the studied benchmarks and up to 60% in some

cases. In summary, not modeling these realistic hardware mechanisms can result in important

performance deviations.

The remainder of this work is organized as follows. Section 3.3 presents a relevant subset

of current GPU simulators. Section 3.4 describes the Southern Islands architecture and its

programming model. In Section 3.5, the proposed Multi2Sim extensions are described in detail.

Section 3.6 presents the experimental results. Finally, in Section 3.7 some concluding remarks

are drawn.

3.3 Related Work

GPU research simulators are relatively young and still maturating. In fact, the number of

available GPU simulation frameworks is nowadays much lower than that of CPU simulators.

The main reasons of this lack of tools is the few information given by GPU manufacturers as well

as the fact that the architecture of modern GPUs has been and is quickly evolving, hampering

the design of GPU simulators which require an established and well-known architecture model.

In spite of this fact, due to the growing use of GPUs, some GPU simulation frameworks have

become recently available. Below, we describe a representative set of them.

GPGPU-Sim [23, 11] is currently one of the most referenced GPU simulators. It is a detailed

cycle by cycle simulator that supports CUDA version 3.1. It models a GPU microarchitec-

ture similar as the Nvidia GeForce 8x, 9x, and Fermi series. GPGPU-Sim also simulates the
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interconnection network between SIMT cores and memory modules. Recently, the Gem5 [12]

discrete event driven computer system simulator platform was combined with GPGPU-Sim

to implement a full heterogenous system simulator. Moreover, GPGPU-Sim version 3.2.0 and

later integrate GPUWattch [39] as well, an energy model based upon McPAT [42]. However,

due to its dependence on Nvidia drivers, which only support OpenCL 1.1, GPGPU-Sim is not

appropriate to evaluate GPGPU benchmark suites like that provided by AMD [3] with modern

OpenCL code.

Barra [22] is a parallel GPU functional simulator. It is based in the UNISIM framework [10]

and implements both a CUDA driver emulator and a Nvidia Tesla GPU simulator. In this

way, Barra can execute directly unmodi�ed CUDA programs and generate statistics at the

instruction level. However, presents two main shortcomings. It only supports CUDA 2.2 while

nowadays Nvidia has already launched CUDA 7. In addition, Barra does not simulate the GPU

microarchitecture, thus it does not provide support to evaluate possible enhancements in the

memory subsystem.

Multi2Sim [73, 72] is an accurate cycle by cycle execution driven simulation framework for CPU-

GPU heterogeneous computing. Release and development versions of multi2sim are available.

It provides a fully con�gurable memory subsystem with several cache levels and interconnec-

tion network. Multi2Sim implements several GPU architectures from both AMD (Evergreen,

Southern Islands) and Nvidia (Fermi) as well as CPU architectures like x86, MIPS-32 and

ARM. The Multi2Sim developer team is currently modeling the HSA heterogeneous architec-

ture [1], where CPU and GPU share the same memory subsystem. Finally, Multi2Sim includes

its own implementation of OpenCL and CUDA libraries. In this way, it can provide dynamic

information about CPU-GPU interaction by instrumenting OpenCL and CUDA calls.

In summary, we chose Multi2Sim since it i) simulates a full system cycle by cycle, ii) implements

the recent AMD GPU core architectures called GCN [68], iii) includes its own OpenCL and

CUDA libraries, and iv) support for HSA architecture is being developed.

3.4 Southern Islands GPU Architecture and Programming

Model

This section describes the architecture and programming model of a recent GPU to illustrate

how GPUs work. For this purpose, we selected the Southern Islands GPU from AMD, presented
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Figure 3.1: OpenCL relation between platform and execution models

Figure 3.2: Graphics Core Next microarchitecture. Source: Hiroshige Goto (PC Watch)

in 2012, and modeled by Multi2Sim. This GPU is internally implemented with distinct cores

that share the memory subsystem. The architecture of the cores and the memory subsystem are

described below. In addition, the OpenCL framework, which is used to program the Southern

Islands GPU, is also introduced.

3.4.1 OpenCL Framework

There are two main frameworks for GPGPU programming: CUDA from Nvidia and OpenCL

from the Khronos group. While CUDA only is supported by GPUs manufactured by Nvidia,

there are OpenCL implementations that work on devices from di�erent brands such as Intel,

AMD, ARM, or even Nvidia.

The platform model de�nes the concepts of Compute Device, Compute Unit (CU), and Pro-

cessing Element (PE) to refer to whole GPU chip, an individual GPU core, and the computing

node within the core where the thread is allocated to, respectively, as illustrated in Figure 3.1.

The OpenCL execution model de�nes several levels of thread organizations. An individual

thread is de�ned as aWork-Item, which are clustered inWork-Groups. A given GPU application

(also known as a Kernel) is composed of several work-groups. Figure 3.1 depicts the relationship

between the platform and execution models.
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3.4.2 Graphics Core Next Microarchitecture

A Southern Islands GPU can include up to 32 CUs implementing the AMD's Graphics Core

Next (GCN) microarchitecture. A GCN compute unit is capable of executing 64 work-items

in parallel. Together, these 64 work-items are named a wavefront and execute instructions in

lockstep. Thus, at a given point in time, the 64 work-items composing a wavefront are executing

the same instruction on multiple data (SIMD).

The SIMD hardware in a CU is divided in 4 16-lane vector ALUs (see Figure 3.2). Each vector

ALU is in charge of executing 16 work-items or a subwavefront. In addition, a GCN compute

unit also includes a scalar unit and several load/store units.

3.4.3 Memory Subsystem

In Southern Islands GPUs, the 64 memory requests generated by a vector load instruction are

coalesced before accessing the memory subsystem. The coalescing mechanism combines in the

same memory access those load requests that reference the same cache line. In this way, the

number of potential memory accesses is highly reduced. Regarding store instructions, they

are not coalesced in the same way that load instructions, but merged once they arrive to the

memory queues accessing the di�erent memory and cache modules. Remark that the above

management distinction between load and store instructions is speci�c to the Southern Islands

architecture. Other GPU architectures (e.g., AMD's Evergreen family [49]) do not present this

management.

Once the memory requests have been coalesced, they are issued to a 16KB L1 data cache (see

Figure 3.2), which represents the �rst level of the memory hierarchy. Only those accesses that

miss in the L1 cache access the multi-banked L2 cache through an all-to-all crossbar switch. In

addition, the CU has a 64KB Local Data Share (LDS) memory.

L2 banks are address interleaved and connected to main memory modules with private (one per

L2 bank) 64-bit wide dual channel memory controllers. Southern Islands GPUs may include

up to 6 of these memory controllers. Thus, up to 12 DRAM modules can be installed in the

system.
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3.5 Proposed Multi2Sim GPU Extensions

Multi2Sim GPU memory subsystem model shares the same source code as its CPU counterpart.

This way, which eases the modeling of heterogeneous CPU-GPU processors and allows a more

generic implementation, is one of the main reasons due to some particular aspects of GPUs are

not modeled with enough detail or in a more accurate way (e.g., coalescing vector load requests

in the CU pipelines versus merging them in the memory queues). As we show in Section 3.6,

these variations incur signi�cant (positive or negative) impact on performance.

In order to improve the accuracy of the Multi2Sim GPU model, we have implemented three

main extensions, detailed below: i) Miss Status Holding Registers (MSHR) �le, ii) coalescing

vector memory requests, and iii) non-blocking GPU store instructions.

3.5.1 MSHR File Modeling

GPUs generate a huge quantity of memory accesses, but only a limited number of pending

cache requests are allowed at a given point in time. For this purpose, current non-blocking

caches implement MSHR �les. Upon a cache miss, the MSHR �le is looked up to check if the

target block is already being fetched. On such a case, the missing memory access is queued

into the MSHR entry associated to the target block.

Note that a given MSHR entry is in charge of tracking all the memory accesses to a given

cache block (i.e., all the requests whose data address falls within the block). Therefore, the

maximum number of outstanding memory accesses is limited by the number of MSHR entries.

Consequently, if all MSHR entries are busy and the missing cache block is not being fetched,

the memory access is stalled until a MSHR entry is released.

Multi2Sim MSHR Model

In Multi2Sim, two main parts can be distinguished in a CPU or a GPU model, the processor

pipeline and the memory subsystem. The processor pipeline models the hardware more closely

related to the processor pipe stages excluding �rst-level caches. First-level caches are modeled

in the memory subsystem, which considers all the parts of the cache hierarchy and the main

memory. In this context, a memory access enters into the memory subsystem as soon as it is

issued by the pipeline logic to access the �rst level of the memory hierarchy.
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Multi2Sim only models the MSHR �le in the CPU pipeline but no MSHR �le is modeled for

the GPU pipeline. Moreover, the model only considers �rst-level cache misses. Thus, in a

Multi2Sim GPU model, the number of outstanding cache blocks handled by any L2 cache

is virtually unbounded. As Section 3.6 will show, this implementation provides important

performance deviations.

Modeled MSHR Extension

We propose to decouple the MSHR from the pipeline model, and to associate a MSHR �le to

each cache structure in the memory subsystem. This implementation provides a more accurate

simulation in both CPU and GPU architectures, since they share the same source code for

modeling the memory subsystem. Our implementation allows the MSHR �les of distinct cache

structures to present a di�erent number of entries, closely mimicking the real implementation

of commercial machines.

Our implementation works as follows. When a cache access misses in a given L1 cache, the

associated MSHR �le is accessed. If the comparison matches, the access is queued in the

corresponding MSHR entry. If the comparison fails, a free MSHR entry is allocated. Then, the

block is looked up in the corresponding L2 cache. If the L2 copy of the requested block is being

involved in other operations (e.g., it is being replaced), then a nack signal is returned to the L1

cache, which will retry the operation later. When this situation occurs, to make an e�cient use

of the MSHR �le, the associated MSHR entry is released and the associated queued accesses

are moved to a special retry queue. When �nally the missing block is transferred to the L1

cache, its associated MSHR entry is released and the memory accesses queued to that entry

are satis�ed, letting the processor pipeline follow with its normal operation. On a L2 cache

miss, the described mechanism is applied recursively to a lower level of the memory hierarchy

(e.g. L3 or main memory). Finally, if there are not any free MSHR entry available when it is

required, the access waits for a free entry in the MSHR waiting queue, from where they are

accessed in FIFO order as soon as an MSHR �le entry is freed.
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3.5.2 Coalescing Vector Memory Requests

Grouping threads in wavefronts helps improve the memory system performance. For example,

in the GCN microarchitecture, one of the main factors limiting the amount of in-�ight accesses is

the size of the vector memory instruction bu�er (VMB) within the vector memory unit (VMU)

in the CU since each instruction stored in this bu�er can generate up to 64 memory requests. A

given instruction is stored in the VMB until all its associated memory requests �nish. Assuming

a 32-entry VMB (a default value used in our experiments in absence of publicly free available

information from AMD), there can be up to 2048 (32×64) memory requests in �ight at a given

point in time. Note that this is the number of memory requests that can be issued by only 1

CU. This situation clearly makes the memory subsystem to become an important performance

bottleneck.

To alleviate this situation, GPU architects group memory requests of the same type (load or

store) to the same cache line into a single memory access, so reducing the e�ective number of

memory accesses. This way reduces the pressure on the memory hierarchy.

Coalescing and Merging Approaches

Two main approaches, or a combination of them, are being followed in current GPU designs

to reduce the number of memory accesses: coalescing and merging. The coalescing approach

implements a coalesce logic that combines multiple requests belonging to the same vector

memory instruction into a single cache access. This logic acts in the VMU just before the

access is issued to the memory subsystem, thus it is synchronized with the instruction issue

stage.

In contrast, the merging approach is implemented within the memory subsystem, decoupled

from the VMU; in loads and store queues. Unlike the previous approach, memory requests from

the same vector instruction may arrive at the memory subsystem at di�erent points in time.

For example, in the GCN microarchitecture each subwavefront issues the memory accesses from

the same vector memory instruction in a di�erent clock cycle. Thus, distinct cache accesses

can potentially rise from requests from the same instruction, even if �nally those cache accesses

target the same cache line.
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Di�erent commercial GPUs implement one of both approaches or a speci�c combination. AMD

Evergreen [2][49] support coalescing for both loads and stores. In contrast, in the Southern

Islands architecture, load requests are coalesced while store requests are merged.

Multi2Sim Coalescing Model

Multi2Sim implements a generic merging model to access the L1 caches that is applied both

in GPU and CPU architectures. This model can merge multiple memory accesses regardless

of their amount and if they are produced by the same or di�erent vector memory instructions,

although some restrictions are applied to attend memory coherence and consistency issues.

However, coalescing is not implemented in Multi2Sim even for the GPU architectures, which

highly bene�t from this approach. As shown in Section 3.6, the Multi2Sim model is incomplete

since coalescing instead of merging can sometimes lead to signi�cant performance di�erences.

Modeled Coalescing Extension

We have extended Multi2Sim with a �exible coalescing and merging implementation that allows

any approach or combination to be accurately simulated. In addition to the merging capabilities

of the original implementation, the proposed extension can coalesce memory requests from the

same instruction in a single memory access to be issued later to the memory subsystem.

3.5.3 Non-Blocking Stores

As explained above, a given vector memory instruction is stored in the VMB until its associ-

ated memory accesses are �nished. In addition, due to in-order design of CU pipelines vector

memory instructions release their VMB entry in program order. Nevertheless, commercial im-

plementations can optimize this behavior by allowing store instructions to release its entry as

soon as their memory accesses have been issued provided that the previous stores in program

order have already issued their memory accesses. This optimization can be performed in GPUs

due to the relaxed consistency model supported by OpenCL.

35



Chapter 3. Accurately Modeling the GPU Memory Subsystem

Minimum constraints to support OpenCL memory consistency

This section summarizes the OpenCL relaxed consistency model to analyze the restrictions

that it may impose to real hardware. Note that to the best of our knowledge, there is not

published information about any commercial implementation explaining how it supports the

OpenCL consistency model.

OpenCL's relaxed consistency is organized hierarchically for a work-item, several work-items

of the same work-group, and between work-groups as follows [24]:

1. Within a work-item (i.e. thread) two reads and writes to the same address are not re-

ordered by the hardware.

2. For di�erent work-items belonging to the same work-group, memory consistency is only

guaranteed by barrier operations.

3. Consistency is not guaranteed between di�erent work-groups.

To guarantee the �rst condition, there is no need to force that stores to the same address

complete execution in order but that they issue in order to the memory subsystem. The reason

is that the cache controller handles memory requests to the same address in arrival order. This

means that a write can be issued as soon as it is ready and that all the previous memory

instructions to the same address have already been issued.

Regarding the second and the third conditions, there are no guarantees of store ordering between

barrier operations of di�erent work-items, regardless they are in the same or di�erent work-

group. Thus, stores from di�erent work-groups executing concurrently in the same CU do not

need to follow a particular store ordering.

Multi2Sim Blocking Store Implementation

Multi2Sim, in its original implementation, does not allow a store to leave the VMB until all

its associated write operations are �nished. As explained above, this behavior, which may

be necessary to support a more strict consistency model (like those supported in commercial

CPUs) is unnecesarily restrictive for a GPU implementation and, as shown in Section 3.6 can

yield to a signi�cant performance impact.
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Modeled Non-Blocking Stores Extension

The proposed extension is based on observations of the analysis discussed above. The extension

speeds up the execution by early releasing of VMB entries of stores. More precisely, store

instructions release their entry as soon as they are issued to the memory system. Nevertheless,

we ensure that stores pertaining to the same work-item are not reordered.

3.6 Experimental Results

This section evaluates the proposed extensions and analyzes their impact on system perfor-

mance. For comparison purposes, experiments have been carried out with the Multi2Sim

simulation framework version 4.2 with and without considering the proposed extensions.

To obtain the results, we modeled the recent Southern Island architecture GPU architecture.

Table 3.1 summarizes the main machine parameters.

The OpenCL SDK 2.5 benchmarks adapted for Multi2Sim [3] has been used in the evaluation

study. These benchmarks are a subset of those that AMD includes in the APP-SDK (Appli-

cation Parallel Programming - Software Development Kit). Each benchmark is composed of

a x86 host program, which is compiled with Multi2Sim OpenCL library, and a pre-compiled

version of the respective OpenCL Device Kernel. Three versions are available: x86, Evergreen

and Southern Islands.

Performance are evaluated and compared in terms of Operations Per Cycle (OPC). This metric

accounts the number of scalar operations performed by each GPU instruction during the exe-

cution of the workload. For instance, if 1 vector instruction accounts for 64 individual scalar

operations, this metric accounts for 64 instead of 1. Notice that OPC is equivalent to the IPC

metric used when evaluating CPU performance. Thus an X% improvement on the OPC speeds

up the GPU execution in the same factor.
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GPU AMD HD 7770

GCN Con�guration

Compute Units 10

Work-groups per CU 10

Wavefronts per Work-group 4

Work-items per Wavefront 64

LDS Unit 64 KB, 1 cycle, 32 ports

SIMD Unit 4 per CU, 16 lines, 4 cycles per instruction

Scalar Unit 1 per CU, 1 cycle per instruction

Vector Memory Unit 1 per CU, VMB of 32 entries

Cache Hierarchy

All Caches LRU, 64B line, 2 ports, directory latency 1 cycles

L1 Scalar Cache 3 caches (shared by 4, 3, and 3 CUs)

16KB, 4 way, 1 cycle

L1 Texture Cache 1 per CU

1 per CU, 16KB, 4 way, 1 cycles

L2 Cache 2 modules

each module is 128KB, 16 way, 10 cycles

Main Memory 2 channels per L2 module, 100 cycles

Table 3.1: Cache-hierarchy and GPU con�guration

3.6.1 MSHR size variation

This section highlights the impact of the size of the MSHR �le on performance. Experiments

were launched varying the number of MSHR entries (4, 8, and 16), and compared to the baseline

machine where no MSHR �le is modeled. Notice that non-modeling the MSHR means that

a virtually unbounded number of outstanding cache misses is supported. We did not found

public information about the size of MSHR �le implemented in commercial GPUs, thus for

evaluation purposes we used the values obtained in [51]. In this work authors calculate using

micro-benchmarking that each CU has a 6-entry MSHR �le, similar to the MSHR �le size of

the CPU processors like the Pentium 4, which implements 8 entries in its L1 data cache [13].

Figure 3.3 and Figure 3.4 depict the performance in terms of OPC for those benchmarks pre-

senting low OPC (>= 200) and high OPC (< 200), respectively. As observed, the MSHR size

has a high in�uence on the performance of most benchmarks regardless the OPC, although the
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impact (in percentage) is stronger in low OPC applications than in high OPC applications.

While in high OPC benchmarks the highest di�erence is BlackS (by 20%), in low OPC bench-

marks non limiting the number of outstanding misses (NO-MSHR) can rise the performance

more than 3× in some cases .

The rationale behind these results is that a high OPC means that the machine is able to extract

a high operation level parallelism in the SIMD units, and that the memory subsystem is not

a major performance bottleneck. Therefore, limiting the amount of outstanding misses to a

relatively low number (e.g. 16 or 8) slightly impacts on the performance, even dropping this

number to 4 has a scarce impact on most of the high OPC benchmarks. Analogously, a low

OPC means that the machine is not able to extract a good operation level parallelism. Thus,

it is likely that the memory subsystem is bottlenecking the performance. Consequently, if the

number of supported outstanding misses is reduced, the performance can dramatically su�er.
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Figure 3.7: Impact of NBS on VMB blocked time
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Figure 3.8: Impact of NBS on OPC

3.6.2 Coalescing Vector Memory Requests

This section presents the impact of the modeled coalesce extension on performance. We refer

to the modeled GPU pipeline coalescing model as vector instruction level approach and to the

Multi2Sim coalescing model (i.e., merging) as access level approach. This section compares

both approaches.

Figure 3.5 and Figure 3.6 show the relative number of coalesced cache accesses and the relative

OPC, respectively, of the vector instruction level approach over the access level approach. It

can be observed that the number of cache accesses is quite similar in 9 out of 12 benchmarks;

however, important di�erences appear between both approaches in some benchmarks that rise

up to about 15% in Gaussian and 75% in MatrixT. Moreover, these values turn into important

di�erences in performance (OPC), which grow by 3.4× and 1.6×, respectively. This happens

because vector instruction level approach is less restrictive with store requests than the access

level approach.

3.6.3 Non-Blocking Stores

Figure 3.7 shows the percentage of time the VMB is blocked in the baseline con�guration (NBS

disabled) and when applying the NBS mechanism. As observed, the VMB is blocked for longer

if NBS is enabled in most of the applications. At a �rst glance, this could seem counterintuitive

since NBS allows stores to release VMB entries earlier. However, early releasing VMB entries

might unblock those work-groups waiting to the store at the VMB head to �nish, allowing them

to i) resume issuing memory instructions or ii) terminate the work-group execution so a new
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work-group can start to issue new memory instructions. On both cases, the VMB would block

soon again due to new memory instructions entering the VMB.

Figure 3.8 shows the achieved OPC for the compared machines. It can be appreciated that

enabling NBS improves performance across all the studied applications. In some of them like

Mersenne, OPC grows around 10% and in DCT performance grows up to 60%. The reason is

due to the NBS mechanism improves signi�cantly the MLP in these applications.

3.7 Conclusions

This work has presented three extensions for the Multi2Sim heterogeneous CPU/GPU simula-

tor. These extensions improve the accuracy of the model of the GPU memory hierarchy, which

currently is a very active research �eld in GPU design.

The �rst extension models cache miss status holding registers, which are more critical to GPU

performance than to CPU due to the high memory level parallelism required by the former. The

second extension models more accurately the GPU memory access coalesces, which in current

GPU hardware is often performed at the pipeline instead of the memory subsystem. Finally,

the third extension increases GPU write throughput by avoiding GPU store instructions to clog

the pipeline while waiting the completion of pending memory accesses.

Experimental results show that: i) modeling the MSHR �le can reduce the performance up

to 3 times with respect to assuming an unbounded MSHR �le; ii) coalescing at the processor

pipeline can speedup the execution time higher than 30% in some applications; iii) non-blocking

stores improve the performance across all the studied benchmarks and up to 60% in some

cases. In summary, not modeling these realistic hardware mechanisms can result in important

performance deviations.
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4.1 Abstract

Research on GPU architecture is becoming pervasive in both the academia and the industry

because these architectures o�er much more performance per watt than typical CPU architec-

tures. This is the main reason why massive deployment of GPU multiprocessors is considered

one of the most feasible solutions to attain exascale computing capabilities.

The memory hierarchy of the GPU is a critical research topic, since its design goals widely

di�er from those of conventional CPU memory hierarchies. Researchers typically use detailed

microarchitectural simulators to explore novel designs to better support GPGPU computing

as well as to improve the performance of GPU and CPU-GPU systems. In this context, the

memory hierarchy is a critical and continuously evolving subsystem.

Unfortunately, the fast evolution of current memory subsystems deteriorates the accuracy of

existing state-of-the-art simulators. This paper focuses on accurately modeling the entire (both

on-chip and o�-chip) GPU memory subsystem. For this purpose, we identify four main memory

related components that impact on the overall performance accuracy. Three of them belong

to the on-chip memory hierarchy: i) memory request coalescing mechanisms, ii) miss status

holding registers, and iii) cache coherence protocol; while the fourth component refers to the

memory controller and GDDR memory working activity.

To evaluate and quantify our claims, we accurately modeled the aforementioned memory com-

ponents in an extended version of the state-of-the-art Multi2Sim heterogeneous CPU-GPU

processor simulator. Experimental results show important deviations, which can vary the �nal

system performance provided by the simulation framework up to a factor of three. The pro-

posed GPU model has been compared and validated against the original framework and the

results from a real AMD Southern-Islands 7870HD GPU.

4.2 Introduction

In the recent years there has been an steady increase in the use of GPUs (Graphics Processing

Units) for general purpose computing. The main reason is that general purpose computing

in GPUs or simply GPGPU computing is much more energy-e�cient [29] than conventional

computing. In other words, for a given power budget, GPGPUs provide higher performance

than their CPUs counterparts, especially when running massively parallel workloads. Because
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of this fact, most of the top 10 supercomputers in the top 500 list [71] rely on GPUs. For

instance, the Titan supercomputer, ranged in second place of the list in November 2014, was

built with Nvidia K20x devices. However, GPU programmability [28] is still harder than that

of conventional computing. To deal with this shortcoming, computer architects are trying to

adapt di�erent components and mechanisms (e.g. caches and prefetching) that have successfully

worked on CPUs to ease programmability.

The GPU architecture has been traditionally optimized to run graphic applications workloads,

composed of thousands of logical threads, and that exhibit a massive parallelism. For this pur-

pose, the GPU cores present a high computational power which come from including hundreds

of processing elements, all of them working together. In order to feed such a high number

of computational elements, the GPU core must be coupled with an e�cient memory subsys-

tem. Due to this reason, GPU memory subsystems are designed to tolerate a high number of

concurrent accesses.

The importance of easing the programmability of GPUs for GPGPU computing as well as

the irruption in the market of heterogeneous computing processors [14] that combine CPUs

and GPUs on the same die, open a new design space for memory hierarchy designs, which is

a hot topic in computer architecture research. To implement and evaluate their approaches,

academic and industry researchers need from complex and detailed simulation frameworks.

These software packages are abstractions that model the functionality of real hardware and focus

on those hardware components that have a signi�cant impact on the �nal system performance.

However, because of the fast speed at which current systems evolve, state-of-the-art simulators

often miss modeling important components and, consequently, simulation results are not as

accurate as they should.

This paper focuses on the memory subsystem, both on-chip and o�-chip, of contemporary

GPUs. We �nd that four main important components, which present a signi�cant contribution

to the system performance, are not precisely modeled in state-of-the-art GPU simulators with

respect to a real device. In particular, three of them correspond to the on-chip memory hier-

archy: i) memory request coalescing mechanisms, ii) miss status holding registers, and iii) the

cache coherence protocol; while the fourth component refers to the memory controller and the

o�-chip GDDR memory.

To quantify the impact on performance of these components, we enhance the modeling of the

GPU memory subsystem in a state-of-the-art GPU simulator, we quantify the impact of each

component on the system performance, and we validate all the components working together
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by comparing the results of the proposal to the execution time on a AMD Southern-Islands

7870HD GPU. For this purpose, we used the Multi2Sim simulation framework [72], widely used

in both the academia and the industry. Experimental results show that each of the studied

components, if not accurately modeled, can result in important (e.g. in a factor of 2× or 3×)

performance deviations in the simulated results.

The remainder of this work is organized as follows. Section 4.3 presents a relevant subset

of current GPU simulators. Section 4.4 describes the Southern Islands architecture and its

programming model. In Section 4.5, the proposed Multi2Sim extensions are described in detail.

Section 4.6 presents the experimental results. Section 4.7 provides the accuracy improvements

achieved by the proposed extensions. Finally, in Section 4.8 some concluding remarks are

drawn.

4.3 Related Work

GPU research simulators are relatively young and still maturating. In fact, the number of

available GPU simulation frameworks is nowadays much lower than that of CPU simulators.

The main reasons of this lack of tools is that GPU manufacturers provide little information

about the architecture of their processors as well as the fact that the architecture of modern

GPUs has been and is quickly evolving, hampering the development of detailed architectural

simulators which require an established and well-known model. In spite of this fact, due to

the growing use of GPUs, some GPU simulation frameworks have become recently available.

Below, we describe a representative set of them.

GPGPU-Sim [23, 11] is currently one of the most referenced GPU simulators. It is a detailed

cycle by cycle simulator that supports CUDA version 3.1. It models a GPU microarchitec-

ture similar to the Nvidia GeForce 8x, 9x, and Fermi series. GPGPU-Sim also simulates the

interconnection network between GPU cores and memory modules.

Recently, the Gem5 [12] computer system simulator platform was combined with GPGPU-Sim

to model a heterogenous CPU-GPU system. Moreover, GPGPU-Sim version 3.2.0 integrates

GPUWattch [39], an energy model based on McPAT [42]; a power, area, and timing modeling

framework. However, due to its dependence on Nvidia drivers, which only support OpenCL

1.1, GPGPU-Sim does not provide support for the execution of GPGPU benchmark suites like

that provided by AMD [3] with modern OpenCL code.

46



4.4 Southern Islands GPU Programming Model and Architecture

Barra [22] is a parallel GPU functional simulator. It is based in the UNISIM framework [10]

and it implements both a CUDA driver emulator and an Nvidia Tesla GPU simulator. In this

way, Barra can execute directly unmodi�ed CUDA programs and generate statistics at the

instruction level. The major shortcoming of this simulator is that it does not model the GPU

microarchitecture, thus it cannot be used to evaluate possible enhancements in the memory

subsystem. In addition, this framework only supports a rather old CUDA version 2.2.

Multi2Sim [73, 72] is an accurate cycle by cycle execution driven simulation framework for CPU-

GPU heterogeneous computing. Release and development versions of Multi2Sim are available.

It provides a fully con�gurable memory subsystem with several cache levels and interconnec-

tion networks. Multi2Sim implements several GPU architectures from both AMD (Evergreen,

Southern Islands) and Nvidia (Fermi) as well as CPU architectures like x86, MIPS-32 and

ARM. The Multi2Sim developer team is currently modeling the HSA heterogeneous architec-

ture [1], where both CPU and GPU share the same memory subsystem. Finally, Multi2Sim

includes its own implementation of OpenCL and CUDA libraries. In this way, it can provide

dynamic information about CPU-GPU interaction by instrumenting OpenCL and CUDA calls.

In summary, we chose Multi2Sim because i) it simulates a heterogeneous CPU-GPU cycle

by cycle, ii) it implements the recent AMD GPU core architectures called GCN [68], iii) it

includes its own OpenCL and CUDA libraries, and iv) support for the HSA architecture is

being developed.

4.4 Southern Islands GPU Programming Model and

Architecture

This section provides some background on how contemporary GPUs work. To this end, we

focus on the state-of-the-art Southern Islands GPU from AMD introduced in 2012 which, to

the best of our knowledge, is the most recent GPU architecture implemented on a detailed

simulator framework. To understand this system, two main axis must be considered: i) its

programming model, and ii) its architecture, which consists of multiple cores sharing the same

memory hierarchy. Below, both axis are discussed.
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Figure 4.1: OpenCL mapping between execution and platform models.

4.4.1 The OpenCL Programming Model

Two main programming frameworks, CUDA [52] from Nvidia and OpenCL [36] from the

Khronos group, are currently being used for developing programs targeting GPGPUs and other

kinds of computing devices. OpenCL is, �de facto�, an industry standard programming model

[66]. There are OpenCL implementations that work on devices from di�erent brands such as

Intel, AMD, ARM, or even Nvidia, while CUDA is only supported in GPUs manufactured by

Nvidia.

The OpenCL speci�cation [35] de�nes a platform model and an execution model. The platform

model is an abstraction of the real machine in which the program will be executed. This model

considers one or more compute devices (e.g. one GPU) consisting of several compute units (CU),

each one composed of multiple processing elements (PE). On the other hand, the execution

model maps the GPU application to the platform model. For this purpose, the execution

model de�nes a hierarchy in which threads are grouped in sets of increasing granularity. An

individual thread is called a work-item, and they are arranged into work-groups limited to 256

work-items. Typically, a GPU program, referred to as a kernel, is composed of thousands of

work-groups. Figure 4.1 depicts a block diagram of both models and their mapping.

4.4.2 Graphics Core Next Microarchitecture

The Southern Islands GPU can include up to 32 CUs implementing the AMD's Graphics

Core Next (GCN) microarchitecture as depicted in Figure 4.2. Each CU consists of 4 single-

instruction multiple-data (SIMD) 16-lane vector ALUs. Thus, considering the 4 SIMD ALUs,

the GCN compute unit is capable of executing 64 work-items at the same time.
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Figure 4.2: GCN compute unit.

Figure 4.3: Southern Islands memory hierarchy.

In the GCN microarchitecture, a work-group that is mapped to a CU is assigned to a given

SIMD ALU. To execute in this ALU, the workgroup is divided in wavefronts consisting of 64

work-items. In turn, these wavefronts are subdivided in 4 sets composed of 16 work-items (also

known as subwavefronts). These subwavefronts are executed sequentially in the SIMD unit.

4.4.3 Memory Subsystem

In Southern Islands GPUs, a load instruction in a wavefront can generate up to 64 memory

requests. All the requests generated by a given instruction that access the same cache block are

coalesced into a single memory access at the CU before being issued to the memory subsystem.

In this way, the number of memory accesses is highly reduced.

The memory subsystem, as in a conventional processor, is organized in a hierarchical way.

After the issue stage of the memory instruction the associated memory accesses reach the

16KB L1 data cache (see Figure 4.3), which represents the �rst level of the hierarchy. Those

load accesses that miss in the L1 cache, access the multi-banked L2 cache through an all-to-all

crossbar switch. Each L2 bank is connected to two memory controllers that govern the o�-
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System Component Multi2Sim Model Restriction Proposed Extension

Miss Status Holding Registers Only in L1 caches of CPU cores
Supported in any cache level and

for both CPU and GPU cores

Memory Controller and GDDR
Only supports address interleaving Complete memory controller

among memory modules and GDDR model

Memory Request Coalesing Only merge support
Support for any merging

and coalescing combination

Cache Coherence Protocol Only NMOESI NMOESI and SI

Table 4.1: Summary of the proposed Multi2Sim extensions.

chip GDDR memory. To avoid channel con�icts and provide more bandwidth, L2 banks at

interleaved at the granularity of 256 bytes (8-bit addresses).

Finally, in addition to the memory hierarchy discussed above, each CU includes a 64KB Local

Data Share (LDS) memory that it is explicitly managed by the application.

4.5 Modeled Memory Subsystem Components

The Multi2Sim simulator was originally developed for CPU research, and then extended to

support GPUs. This simulator models the GCN architecture discussed above in detail, however,

it lacks the modeling of the Southern Islands memory subsystem, which as shown in this work

can hugely impact on performance.

Multi2Sim GPU memory subsystem shares the same source code as its CPU counterpart.

This way, which eases the modeling of heterogeneous CPU-GPU processors and allows a more

generic implementation, is probably the main reason why some aspects of the memory hierarchy

targeted to GPUs are not accurately modeled.

In order to improve the accuracy of the Multi2Sim GPU model, we have implemented four main

extensions to the memory subsystem: i) Miss Status Holding Registers (MSHR) �le, ii) memory

controller and o�-chip GDDR memory, iii) memory request coalescing mechanisms, and iv) a

realistic GPU cache coherence protocol. Table 4.1 summarizes the proposed extensions that

overcome the restrictions imposed by the current Multi2Sim implementation. Note that all the

modi�cations are orthogonal to the GPU core architecture.
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As we show in Section 4.6, the lack of modeling of any of these components incurs on a signi�cant

(positive or negative) deviation on the obtained performance. Below, we present and discuss

each of the modeled and evaluated components.

4.5.1 MSHR File

GPUs generate a huge quantity of memory accesses, but only a limited number of pending

cache requests can be supported simultaneously. For this purpose, current non-blocking caches

implement MSHR �les. Upon a cache miss, the MSHR �le is looked up to check if the target

block is already being fetched. On such a case, the missing memory access is queued into the

MSHR entry associated to the target block.

A single MSHR entry is in charge of tracking all the memory accesses associated to a given

cache block (i.e., all the requests whose data address falls within the same block). Therefore,

the maximum number of outstanding memory accesses is limited to the number of MSHR

entries. Consequently, if all MSHR entries are busy and the missing cache block is not being

fetched, the memory access is stalled until an MSHR entry is released.

Multi2Sim MSHR Model. Multi2Sim only models the MSHR �les associated to �rst-level

caches of the CPU cores. However, they are not modeled in the GPU cores. Consequently, in

the Multi2Sim GPU model, the number of outstanding misses handled by any cache is virtually

unbounded, which is impractical in real devices. This implementation can present important

performance deviations, since the GPU throughput highly depends on cache resources such as

MSHRs [32].

Some recent works [15] consider the impact of modeling the MSHR �le at the L1 caches.

However, to the best of our knowledge, there is no any existing proposal modeling the MSHR

associated to the L2 cache which, as experimental results will show, can introduce signi�cant

deviations in the execution time.

Modeled MSHR Extension. In this work we claim that, in order to obtain accurate results,

an MSHR �le must be associated to each cache structure in the memory subsystem. Our

implementation allows the MSHR �les of distinct cache structures to present a di�erent number

of entries, closely mimicking the hardware implementation of commercial machines.
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Our implementation works as follows. When a cache access misses in the L1 cache, the associ-

ated MSHR �le is searched. If there is a hit in any MSHR entry, the access is queued in the

corresponding MSHR entry. Otherwise, a free MSHR entry (if any) is allocated. After that, the

request proceeds by searching the block in the L2 cache. On an L2 cache miss, the described

MSHR mechanism is similarly applied and the missing block is requested to the main memory.

Finally, when the block is transferred to the caches (L1 and L2), the associated MSHR entry

in each cache is released and the memory requests waiting for the block are noti�ed that the

data block has been fetched.

In case there is not any free L1 MSHR entry available, the access waits for a free entry in the

MSHR waiting queue, from where they are accessed in FIFO order as soon as an L1 MSHR �le

entry is freed. The L2 MSHR �le is handled di�erently to prevent deadlocks; if a request asks

for an L2 MSHR entry and no entry is available, a NACK signal is returned to L1, and the

operation is retried later. For this purpose, we implement an especial retry queue.

4.5.2 Memory Controller and O�-chip GDDR Memory

As conventional DDR SDRAM memories, Graphics DDR (GDDR) memory contain multiple

independent DRAM banks. A bank is implemented as a matrix of DRAM cells. When a bank

is accessed the whole row, also known as memory page, is accessed. The accessed memory page

is stored in the DRAM sense ampli�ers associated to the bank, also referred to as row bu�er.

The memory controller uses three commands that are issued sequentially to a bank in order to

access the target data [38]. First, the precharge command writes the contents actually stored in

the row bu�er to the bank and precharge the row bitlines for accessing the target row. Second,

the activate command accesses the row that contains the requested data and stores it into

the row bu�er. Finally, the read/write command reads or write the requested data in the row

bu�er. After issuing the last command, the memory controller can either keep the accessed

memory page in the row bu�er (open page policy) or close the row bu�er by issuing a precharge

command (closed page policy). Depending on the implemented page policy, the latency of the

next access varies. For example, with an open page policy, if the requested block is already

present in the row bu�er (i.e., a row bu�er hit), only a read/write command needs to be issued

by the memory controller, thus the latency can be signi�cantly reduced. However, a row bu�er

miss would require to serialize the issuing of the three mentioned commands, roughly trebling

the latency of a row bu�er hit.
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In a bank access, the memory data bus is used to read from or write to the memory device. In

conventional DDR memories the memory bus width is 64 bits, while in GDDR memories this

width is typically 32 bits. Since the typical cache block size is 64 bytes, transferring a cache

block through the data bus takes several bus clock cycles. To reduce this transfer time, it is

possible to increase the width of the memory bus. Since GDDR devices are standardized to a

32-bit bus to work with wider data buses multiple devices are required to operate in lockstep.

For example, the Intel i875P memory controller connects through a 128-bit memory data bus

to matching pairs of 64-bit wide DIMMs (Dual In-Line Memory Modules). This paired DIMM

con�guration is often referred to as dual channel con�guration [30].

Multi2Sim Memory Model. Modern GPU systems integrate multiple memory controllers.

To increase memory parallelism as well as e�ective memory bandwidth, block addresses are

interleaved among the deployed memory controllers. Multi2Sim supports the modeling of this

con�guration since it allows main memory to be organized as an array of interleaved memory

modules. However, it does not model other important aspects a�ecting memory latency and

bandwidth such as banks and channels; thus bank contention and channel contention are not

considered. In addition it does not support neither open nor closed page policies.

Integration of Multi2Sim and DRAMSim2. To provide a more realistic simulation of the

memory controller and o�-chip memory, and to check the impact of such an implementation on

the obtained performance, we have combined Multi2Sim with the DRAMSim2 simulator [61].

DRAMSim2 is a recent cycle accurate memory system simulator that models DDR memory

systems (memory devices, memory controllers, and memory buses) and supports con�gurations

with multiple controllers and channels as well as typical memory controller policies. Moreover,

DRAMSim2 provides accurate performance results that have been validated against real mem-

ory systems.

4.5.3 Memory Request Coalescing Mechanisms

Each memory instruction in the GCN architecture, as well as in most modern GPUs, is able

to work with up to 64 data items thus it can generate up to 64 memory requests. Taking

into account that hundred of memory instructions can be in �ight on the entire GPU, we can

observe that such a high number of memory requests would bottleneck the memory subsystem.
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To deal with this shortcoming, current GPUs implement di�erent schemes that reduce the

number of e�ective cache accesses. Additional queues and memory instruction structures are

required with this aim. The GCN microarchitecture implements the vector memory instruction

bu�er (VMB) in the CU. This bu�er keeps track of the memory instructions issued to the

cache until all their associated memory requests �nish. For experimental purposes (in absence

of publicly available information) we assume each core has a 32-entry VMB. That is, there can

be up to 2048 (32×64) memory requests in �ight per CU at a given point in time.

Using the VMB and other structures, as described below, GPU architectures implement mech-

anisms that group memory requests of the same type (load or store) targeting the same cache

line in a single memory access, so reducing the e�ective number of memory accesses. This way

greatly reduces the pressure on the memory hierarchy.

Coalescing and Merging. Two main approaches, namely coalescing and merging, can be

found in modern GPUs to reduce the number of memory accesses. The coalescing approach

combines all the requests of the same instruction into a single cache access in the VMU just

before issuing the instruction to the memory subsystem. For instance, the AMD Evergreen [2,

49] implements coalescing of loads and stores.

In contrast, the merging approach is implemented in the memory subsystem, decoupled from

the VMU. The key di�erence is that due to GCN microarchitecture constraints, requests from

the same memory instruction reach the cache at four di�erent points of time. More precisely,

a memory instruction is executed in four phases (or subwavefronts) since a vector operator

implements 16 lanes and the wavefront works with 64 data items. Thus a single memory

instruction can potentially generate up to four accesses to the cache, even if all of them target

the same cache line. A variant of this approach is implemented in Multi2Sim as described

below..

Multi2Sim Merging Model. Multi2Sim models a common generic merging mechanism

that applies in the L1 cache of its CPU and GPU implementations. This model can merge

multiple memory requests regardless of whether they have been generated by the same memory

instruction or not. In addition, some restrictions are applied to deal with memory coherence

and memory consistency issues.

Coalescing is not implemented in Multi2Sim, however, for the GPU architectures. As shown in

Section 4.6, performing coalescing instead of merging, can lead to signi�cant deviations in the

�nal results.
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Modeled Coalescing & Merging Extension. We have implemented a �exible coalescing

& merging approach that allows to evaluate each approach either separately or in a combined

way.

4.5.4 GPU Cache Coherence Protocol

Cache coherence protocols were originally designed to support data coherence among caches

in CPU multiprocessors. These protocols tolerate a moderate tra�c of coherence requests,

however, they are rather complex and would strangle the performance if they were directly

applied to GPUs, mainly due to GPUs must be designed to support a massive amount of

memory requests generated by typical GPU applications. In short, neither GPUs nor hetero-

geneous CPU-GPU systems work properly with typical CPU protocols. To deal with this fact,

alternative protocols have been devised both by the academia and the industry.

NMOESI Coherence Protocol. To support GPU cache coherence, Multi2Sim implements

NMOESI, that extends the well-known MOESI protocol [67] implemented in a wide range of

CPU multicores. NMOESI extends this protocol to support memory coherence in both CPU

and GPU applications, and it is especially suited for heterogeneous CPU-GPU systems with a

cache hierarchy shared among CUs and CPU cores.

Under MOESI, a given cache block can be in one of �ve main states (M,O,E,S and I). NMOESI

extends this protocol by adding a new non-coherent state (N) to be used in GPUs. This state

avoids non-coherent write requests, which are common in GPU applications, generate coherence

tra�c. When a cache write request is issued, the requested block is brought to the L1 cache

and its state is set to N, however, unlike typical write-invalidate protocols, no copy of the block

is invalidated in the other L1 caches. In other words, this protocol allows non-coherent copies

of a block to co-exist in multiple L1 caches. In case a block in state N is replaced in a L1 cache,

only the data items of the block that have been locally modi�ed are updated in the L2.

SI Protocol Extension. We have modeled the protocol deployed in the Southern Islands

(SI) GPU family, hereafter SI protocol, which supports a relaxed memory consistency model

based on Release Consistency [26]. This consistency model allows the compiler to specify when

data modi�cations performed by a given CU must be visible to other CUs, which enables the

implementation of simpler coherence protocols. To support the consistency model, the opcode
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of a SI memory instruction includes 2 bits called GLC (Global Coherent) and SLC (System

Level Coherent), which indicate the coherency scope.

When the SLC bit is enabled in a given instruction, the memory requests that this instruction

generates bypass the caches and directly access to main memory. On the other hand, the GLC

bit behavior depends on the memory instruction type (load or store). If the GLC bit of a load

instruction is set, the L1 cache is bypassed and the blocks are searched in the L2 cache. In

contrast, store instructions write their data in the L1 cache regardless of the GLC bit. After the

write, if the GLC bit is set, the a�ected lines are evicted and written back to L2 considering

a dirty byte mask that speci�es which bytes in the line have been modi�ed [68]. A similar

behavior is followed when a block is partially written regardless of the GLC bit. Note that

evictions do not add latency to the o�ending write since they are not on the critical path.

However, they increase the L1 cache miss ratio and thus the L2 cache contention, which can

a�ect the performance of subsequent memory accesses.

All writes performed to L1 also modify the L2 copy of the block (i.e., L1 follows a write-through

policy). In this way, the same block can be modi�ed in L2 at the same time by several CUs,

provided that each of them write to di�erent bytes of the block. In contrast, the L2 cache

follows a write-back policy; that is, the main memory is updated when a modi�ed block is

replaced from the L2 cache.

We �nd no information in the checked AMD documentation [4, 68, 8] about if the commercial

device forces the inclusion principle among the L2 and the L1 caches, so we modeled the L2

cache as a non-inclusive cache because it generates less tra�c in the memory subsystem than

an inclusive cache.

4.6 Experimental Results

This section analyzes the impact of the discussed memory components on the system perfor-

mance. For this purpose, we extended the Multi2Sim simulation framework version 4.2 by

modeling (i) the discussed Southern Islands memory architecture, and (ii) the four components

to be studied on this architecture. Experiments were launched with and without considering

these extensions. Note that Multi2Sim is an application-only simulator that only considers the

execution of the studied benchmark or user-level application, removing OS and device drivers

from the software stack. An important feature of application-only simulators is that they pro-
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GCN Con�guration

Frequency 1GHz

Compute Units 10

Work-groups per CU 10

Wavefronts per Work-group 4

Work-items per Wavefront 64

LDS Unit 64 KB, 1 cycle, 32 ports

SIMD Unit 4 per CU, 16 lines, 4 cycles per instruction

Scalar Unit 1 per CU, 1 cycle per instruction

Vector Memory Unit 1 per CU, 32-entry VMB

Memory Hierarchy

All Caches LRU, 64B line, 2 ports, directory latency 1 cycles

L1 Scalar Cache 3 caches (shared by 4, 3, and 3 CUs)

16KB, 4 way, 1 cycle

L1 Texture Cache 1 per CU

1 per CU, 16KB, 4 way, 1 cycles

L2 Cache 2 modules

each module is 128KB, 16 way, 10 cycles

Main Memory 2 memory controllers per L2 module, 90 cycles

DRAMSIM CL=18, AL=17, BL=16, tRAS=42 ,tRCD=18,

con�guration timings tRRD=9, tRC=60, tRP=18, tCCD=3, tRTP=3,

in cycles (tCK=0.667) tWTR=8, tWR=4, tRTRS=1, tRFC=278,

tFAW=35, tCKE=6, tXP=7, tCMD=1

Table 4.2: Cache-hierarchy and GPU con�guration.

duce deterministic results, thus the results presented in this work do not include con�dence

intervals.

Table 4.2 summarizes the main machine parameters. The OpenCL SDK 2.5 benchmarks

adapted for Multi2Sim [3] has been used in the evaluation study. These benchmarks are a

subset of the APP-SDK (Application Parallel Programming - Software Development Kit) by

AMD. Each benchmark is composed of a x86 host program, which is compiled with Multi2Sim

OpenCL library, and a pre-compiled version of the respective OpenCL Device Kernel. Three

versions are available: x86, Evergreen and Southern Islands.

Performance has been quanti�ed in terms of Operations Per Cycle (OPC) for comparison pur-

poses. This metric accounts the number of scalar operations each GPU instruction performs,

averaged per cycle, during the workload execution. For instance, if 1 vector instruction ac-

counts for 64 individual scalar operations, this metric accounts for 64 instead of 1. Notice that
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Figure 4.4: Impact of L1 and L2 MSHR �le sizes on performance.

OPC is equivalent to the IPC metric used when evaluating CPU performance. Thus an X%

improvement in the OPC speeds up the GPU execution in the same factor.

Below the four aforementioned memory subsystem components are evaluated in isolation, that

is, each one without considering the e�ects of the remaining ones.

4.6.1 MSHR File

This section studies the impact of the MSHR �le size on the �nal performance. Experiments

were launched varying the size of both L1 and L2 MSHR �les. There is not public information

about the MSHRs size implemented in commercial GPUs, but recent studies [32][51] have

empirically determined that this size is as large as 32 or 64 entries in the L1 of some recent

GPUs. Many values have been explored but only a subset of them is presented for illustrative

purposes. Regarding the L1 cache, we plot the results for 16-, 32-, and 64-entry MSHR �les,

and for each of them six MSHR sizes (16, 32, 64, 96, 128, and 256 entries) are presented for the

L2 cache. This means that 18 di�erent MSHR con�gurations are studied. The performance

of each MSHR con�guration is compared to the baseline machine without MSHR �les. Notice

that not modeling any MSHR �le means that the system can support an unbounded number

of outstanding cache misses.

Figure 4.4 depicts the relative performance (i.e. OPC) of each MSHR con�guration with respect

to the baseline. As observed, the MSHR size has a high in�uence on the results of most of

58



4.6 Experimental Results

Figure 4.5: Impact of the number of memory controllers, physical channels, and page policy on performance.

the benchmarks. The largest performance variation is due to the L2 MSHR �le size. For

example, in most applications, the smallest tested L2 MSHR �le (16 entries) can reduce the

performance below 30% of the baseline performance. Notice that relative OPC is the inverse

of the relative execution time (speedup or slowdown). For instance, a relative OPC of 20%

over the baseline means that the execution time will take 5× longer than the baseline (e.g.,

MersenneTwister with a 16-entry L2 MSHR �le). As expected, increasing the L2 MSHR �le

size always increase the performance but the improvements are minor for sizes larger than 96

entries in most benchmarks.

The L1 MSHR �le size has a signi�cant impact on the OPC when using L2 �les larger than

64 entries in some benchmarks (FastWalsh, Floydwarshall, Reduction, and ScanLargeArrays).

Contrary to L2, increasing the number of L1 entries beyond a given value can negatively

impact the performance. This situation happens in DWT and FastWalsh. We have detected

that this behavior is caused by contention in the L2 coherence directory. When a memory

request cannot access the target block directory in the L2, the request is nacked and retried

later, so increasing its latency. A relatively large L1 MSHR �le size (e.g. 64 entries) causes a

huge amount of requests to contend for L2, increasing the latency beyond values that cannot

be hidden by the GPU massive parallelism. This also causes that, in some benchmarks (e.g.,

DWT), the performance when limiting the MSHR �le can be higher than that of the baseline.
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4.6.2 Memory Controller and O�-chip GDDR Memory

Implementation of current DRAM memory devices and memory controllers introduces a new

contention level which causes a high variability in both memory access latencies and e�ective

bandwidth. This means that the modeling of these components plays a key role in order to

obtain representative performance.

This section explores how these components a�ect the performance varying the number (1,

2 and 4) of memory controllers connected to each L2 and the number of physical channels

attached to each memory controller. Figure 4.5 plots the normalized performance over the

baseline which does not model any of them. Each con�guration is labeled as xMC-yPC, where

x is the number of memory controllers and y is the number of physical channels. When only a

single MC is available, it is shared by both L2 modules present in the system, while if there are

more than one MC, each L2 is connected to half of them. For instance, in the con�gurations

with 4 MCs, two of the MC are connected to the �rst L2 module and the remaining ones to

the other L2 module.

As observed, modeling the memory controllers and the GDDR devices hugely impacts on the

�nal performance. Only one of the applications (Simpleconvolution) is not signi�cantly af-

fected. Comparing the open page policy versus the closed page policy, it can be appreciated

that similarly as happens in CPU workloads [50], leaving the page open after a memory access

typically o�ers better performance, especially when the application exhibits good spatial local-

ity, which is the case of typical GPU applications. Regarding the number of memory controllers

and physical channels, the �gure shows that the performance of the 1MC-2PC con�guration

matches that of 2MC-1PC while the performance of 2MC-2PC equals that of 4MC-1PC. In

principle, increasing memory bandwidth by adding additional memory controllers instead of

physical channels provides more access �exibility because memory controllers are logically in-

dependent while physical channels connected to the same memory controller work in lockstep,

however, it involves more hardware complexity and does not translate to performance bene�ts

in GPU applications. Therefore, results demonstrate that this complexity is not needed when

dealing with GPU workloads.

In general, adding more memory controllers or physical channels increase the performance but

this increase is reduced as the memory bandwidth ceases to be a performance bottleneck. We

found that implementing four or more memory channels does not provide signi�cant perfor-

mance bene�ts for most applications.
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Figure 4.6: Percentage of combined memory requests by coalescing with respect to merging.

Figure 4.7: Speedup of coalescing with respect to merging.

4.6.3 Memory Request Coalescing Mechanisms

This section compares the impact of coalescing versus merging on the obtained performance.

Figure 4.6 and Figure 4.7 show the relative number of combined memory requests and the rel-

ative OPC, respectively, of the coalescing approach over merging. It can be observed that the

number of combined requests is quite similar in 9 out of 12 benchmarks; however, important

di�erences appear between both approaches in some benchmarks that rise up to about 15% in

RecursiveGaussian and 75% in MatrixTranspose. Moreover, these values turn into important

di�erences in performance (OPC), which grows by 3.4× and 1.6×, respectively. This happens

because the merging approach sometimes is not able to combine all the memory requests pro-

duced by a sequence of subwavefronts that target the same block. This often happens when

the memory requests from a subwavefront leave the cache write queue (i.e., access to the cache)

before subsequent memory requests enter the queue. This situation cannot occur if a coalesce

mechanism is used because the requests are combined before reaching the write queue.
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Figure 4.8: Impact of the coherence protocol: SI over NMOESI.

4.6.4 Cache Coherence Protocol

In Section 4.5.4 we discussed two coherence protocols applied to GPUs, NMOESI �with �ve

main states� from the academia that extends the well-known MOESI protocol and SI �with

only two main states�, which is much simpler and has been deployed in recent commercial

devices.

In this section we compare the performance of both protocols across the studied workloads.

Figure 4.8 shows the results. As observed, the SI protocol, in spite of its simplicity, improves the

performance over NMOESI by 50% in half of the applications; moreover, in two of them almost

doubles the performance of NMOESI. Nevertheless, NMOESI achieves signi�cant bene�ts in

two of the applications.

We looked into the rationale behind these results. We found two main critical aspects related

to the details of each protocol implementation that make di�cult to �nd a single cause that

explains the performance di�erences between both protocols.

The �rst aspect refers to the cache write miss policy. While the SI protocol implements a

no-write allocate L1 policy (i.e. the block is not fetched to the L1 cache on a write miss),

the Multi2Sim implementation of the NMOESI protocol follows a write allocate policy. Con-

sequently, the SI protocol incurs in a higher number of L1 misses, which does not necessarily

yield the system to performance losses since there is a tradeo� among cache space, data locality

(e.g. blocks fetched and not reused), and miss penalty.

The second signi�cant aspect is that the L2 cache directory works di�erently in both protocols.

In the NMOESI protocol, when a block is locally written for the �rst time or replaced in the

L1 cache, the L2 directory must be locked to update the coherence information (e.g. the sharer
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vector). In the SI protocol, this action is not required. Consequently, a cache write miss in the

SI protocol usually take less time than in the NMOESI protocol. Moreover, because of the SI

protocol does not have to update the directory, a cache write miss can take less time than a

write hit in the NMOESI protocol.

To sum up, the internal hardware structures work di�erently in both protocols which makes

misses and hits to take di�erent time depending on the underlying protocol.

4.7 Putting it All Together and Validation

Once the impact of each memory component on performance has been studied in isolation, this

section pursues a twofold objective: i) to analyze the combined e�ect when the components act

all together simultaneously, and ii) to check how the proposed mechanisms improve the error

deviation that the original simulation framework introduces with respect to real hardware. For

this purpose, the simulator con�guration �le was tuned to model the AMD Southern-Islands

7870HD GPU, which is the GPU that we have available. Then, the results of the all together

model were compared against both the original Multi2Sim simulator and the real AMD GPU.

Regarding the all together con�guration, we must select for each memory component the con-

�guration that best �ts the real hardware. In this regard, the all together system has been

con�gured as follows. Coalescing and SI protocol have been chosen instead of merging and

NMOESI since they mimic the real GPU hardware. The memory controller, based on o�cial

AMD information [4], has been con�gured to four double-channel memory controllers, one per

L2 cache. Finally, the MSHR �les for the L1 cache and for the L2 cache have been set to 32

and 96 entries, respectively, since they are realistic values as inferred in [32] and [51].

Notice that the results of the all together con�guration cannot be compared against those of

individual memory components, because the e�ects of the all together system do not match the

sum of the e�ects of the individual components. In fact, we realized that many times the e�ect

of a given component compensates that of another component (e.g. a positive e�ect versus a

negative one) or overlap among them. Therefore, the aforementioned objectives are realized

in the same experiment, which shows that our modeled all together machine behaves closer to

the results obtained in the real hardware than the results provided by the original simulation

framework.

63



Chapter 4. Accurately Modeling the On-chip and O�-chip GPU Memory Subsystem

Figure 4.9: Reduction of execution time deviation between original and alltogether Multi2Sim.

For validation purposes we proceeded as follows. We measured the execution time that each

benchmark lasts in the AMD Southern-Islands 7870HD GPU, in the original Multi2Sim sim-

ulation framework, and in our all together model. Then, we analyzed the deviation of the

execution time gathered in Multi2Sim from the measured in the real GPU. Finally, we quanti-

�ed how all together improves this deviation, bringing the simulated execution times closer to

the real hardware. Figure 4.9 shows the results (in percentage). As observed, with the excep-

tion of Reduction and SimpreConvolution, the all together model improves (i.e. reduces) the

Multi2Sim deviation in the range between 12% and 96%.

We analyzed the contribution of each component to the all together accuracy and found that

the SI protocol is the component that most contributes, on average, to the overall accuracy.

It shows the major contribution to the accuracy in most of the benchmarks with respect to

the original Multi2Sim simulation framework. Examples of benchmarks showing this behavior

are MersenneTwister and QuasiRandomSequence, where the contribution of this component

represents nearly the total amount of the accuracy achieved by the all together con�guration.

4.8 Conclusions

In this work we have shown that accurately modeling the memory subsystem in a current

state-of-the-art simulator should be done in order to obtain representative results.

We have identi�ed four main components of the on-chip and o�-chip memory hierarchy pre-

senting a signi�cant impact on the performance of current GPUs. The identi�ed components

are: i) the MSHR �le, ii) the memory controller and GDDR DRAM modules, iii) coalescing

mechanisms, and iv) the coherence protocol.
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To evaluate the impact of each of them we have extended the state-of-the-art Multi2Sim sim-

ulation framework. Below we draw the main conclusions for each studied component. First,

modeling the MSHR �le can introduce important performance drops over an unbounded MSHR

�le. For instance, a small �le can reduce the performance in a factor of 5×. Second, the number

of memory controllers and physical channels can reduce the performance over a �xed memory

latency; in addition, the results widely vary depending on the assumed memory controller. For

instance, modeling a single memory controller can strangle the performance. Third, coalesc-

ing can bring important performance di�erences over merging in some applications, since the

number of L1 accesses can widely vary. Fourth, we have compared two state-of-the-art GPU

protocols and we have found that the simple SI protocol, almost doubles the performance in

some applications over the much complex NMOESI protocol.

Finally, we have compared the accuracy of the proposed extensions and the original Multi2Sim

with respect to the AMD Southern-Islands 7870HD GPU. Experimental results show that our

implementation achieves a signi�cant accuracy enhancement over the original simulator.
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5.1 Abstract

In the last few years, GPGPU computing has become one of the most popular computing

paradigms in high-performance computers due to its excellent performance to power ratio.

The memory requirements of GPGPU applications widely di�er from the requirements of CPU

counterparts. The amount of memory accesses is several orders of magnitude higher in GPU

applications than in CPU applications, and they present disparate access patterns. Because of

this fact, large and highly associative Last-Level Caches (LLCs) bring much lower performance

gains in GPUs than in CPUs.

This paper presents a novel approach to manage LLC misses that e�ciently improves LLC hit

ratio, memory-level parallelism, and miss latencies in GPU systems. The proposed approach

leverages a small additional Fetch and Replacement Cache (FRC) that stores control and coher-

ence information of incoming blocks until they are fetched from main memory. Then, fetched

blocks are swapped with victim blocks to be replaced in the LLC. After that, the eviction of

victim blocks is performed from the FRC. This management approach improves performance

due to three main reasons: i) the lifetime of blocks being replaced is increased, ii) the main

memory path is unclogged on long bursts of LLC misses, and iii) the average L2 miss delaying

latency is reduced. Experimental results show that our proposal increases the performance

(OPC) over 25% in most of the studied applications, reaching improvements up to 150% in

some applications.

5.2 Introduction

In recent years, GPU (Graphics Processing Unit) architectures have acquired a great relevance

in the �eld of high-performance computing. The main reason has been that GPUs are able to

accelerate the execution of massively parallel applications, since they provide a much higher

level of parallelism than CPU architectures. In addition, GPUs are energetically more e�-

cient [29, 27] for a given performance, than its CPU counterparts. Because of these reasons,

many supercomputers in the top 500 list [71] rely on GPUs. For instance, the Piz Daint su-

percomputer, ranked in third place of the list in November 2017, was built with Nvidia Tesla

P100 GPU devices.

GPU architectures are optimized to run applications composed of thousands of logical threads.

In order to support the execution of such a high number of threads, the GPU core must be
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coupled with a memory subsystem able to support a high Memory-Level Parallelism (MLP).

GPU memory subsystems are therefore designed to sustain a high memory bandwidth. Because

of the poor data temporal locality of GPGPU applications or kernels, on a very long burst of

L2 accesses many requests can miss, which cause subsequent main memory accesses.

In this scenario, the memory subsystem of GPUs poorly performs. In this paper, we look into

the reasons explaining this behavior, and we �nd that one of the main sources of performance

losses of the memory subsystem is the management of L2 cache misses. We �nd that con-

ventional caches designed to address memory patterns of CPU applications do not properly

meet the requirements of GPGPU applications, but they seriously penalize their performance

since they can signi�cantly slow down the management of L2 cache requests on long bursts

of requests. The previous rationale means that improving the L2 cache management is a key

design concern that should be tackled to improve the system performance. This paper proposes

a novel L2 cache design aimed at boosting the memory level parallelism by adding a Fetch and

Replacement Cache (FRC) that provides additional cache lines that help unclog the memory

subsystem. The FRC approach uses these extra resources to prioritize the fetch of incoming L2

cache requests and to delay the eviction of the blocks to be replaced. The proposal has been

evaluated considering an AMD GPU based architecture, although the results would also apply

in almost all current GPU architectures as they implement a similar memory hierarchy.

The proposal has been modeled in the Multi2Sim simulation framework [72], a state-of-the-art

GPU simulator widely used in both the academia and the industry. Experimental results show

that FRC improves the Operations Per cycle (OPC) more than 25% in most applications by

drastically reducing the Misses Per Kilo-Operation (MPKO) and L2 miss latency.

The remainder of this work is organized as follows. Section 2 describes the architecture of

the AMD Southern Islands family of GPUs. Section 3 motivates this work by presenting the

problems that FRC tackles in current GPU memory subsystems. In Section 4, the proposed

approach is described in detail. Section 5 presents the experimental results. Section 6 sum-

marizes related studies about GPU memory subsystems. Finally, in Section 7 some concluding

remarks are drawn.
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Figure 5.1: Diagram of an AMD Southern Islands GPU.

5.3 Background

This section provides some background about the architecture of modern GPUs. Since this

paper focuses on the AMD Southern Islands [8] family of GPUs, AMD terminology is used

throughout this work.

Figure 6.1 depicts a block diagram of an AMD Southern Islands GPU. This GPU includes

up to 32 Compute Units (CUs), each one implementing the Graphics Core Next (GCN) [68]

microarchitecture. Internally, a GCN CU consists of 4 Single Instruction Multiple Data (SIMD)

arithmetic logic units.

GPU applications or kernels are composed of a massive number of threads or work-items. These

threads are organized in 64-thread bundles, named wavefronts, which are allocated to SIMD

units. During most of the execution time of a kernel, the GPU ensures that each SIMD unit

is assigned tens of wavefronts. In this way, SIMD units can switch among wavefronts in a

�ne-grain basis, which helps hide memory latencies.

A SIMD unit executes instructions from threads of a wavefront in a lockstep manner. That

is, at a given point of the execution time a SIMD unit is performing the same arithmetic

instruction in the 64 threads of the same wavefront. Memory reference instructions are also

executed following the SIMD paradigm; that is, a wavefront can generate up to 64 memory

requests at the same time. To reduce the overall amount of memory requests, those referencing

the same 64-byte cache block are coalesced into a single memory request, which is issued to the

memory subsystem.

As in a conventional processor, the memory subsystem is organized hierarchically. After being

coalesced, memory requests access the L1 data cache of the corresponding CU. Those requests

that miss the L1 cache are forwarded to a multi-banked L2 cache, acting as Last-Level Cache

(LLC). L2 banks contain interleaved block addresses at a granularity of 256 bytes, and each

bank is connected to a dual-channel memory controller that manages the corresponding o�-chip
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Figure 5.2: Sequence of events involved in three consecutive replacements targeting the same L2 cache line

for both the conventional and the proposed approaches.

GDDR5 main memory. This design reduces the number of channel con�icts and increases the

memory bandwidth utilization.

5.4 Motivation

The coalesce mechanism reduces the number of requests to the memory subsystem. However,

GPGPU applications generate enormous amounts of memory tra�c; for instance, a typical GPU

can issue thousands of memory requests in a given cycle. These amounts yield conventional

cache organizations to signi�cant performance losses. The main reason is that the massive

number of threads is executing in parallel causes sudden bursts of memory transactions, which

involve a high number of cache replacements. As a consequence, in a relatively short interval of

time, a given cache line can su�er a long number (e.g. in the order of tens) of consecutive block

replacements, each one involving di�erent actions such as coherence invalidations or accesses

to lower levels of the memory hierarchy. Since these actions are serialized at the cache line,

the management of cache replacements becomes a major performance bottleneck, which can

heavily reduce the MLP and the L2 hit ratio.
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To help understand the problem, Figure 6.2 depicts a time diagram with the events involved

in three consecutive replacements all targeting the same L2 victim line. The three requests

causing these replacements have been labeled as Req. B, C, and D, and have been generated

at cycles 0, 90, and 240, respectively, after the requests miss the L1 cache and are forwarded

to the L2 cache.

As can be seen in Figure 6.2a, which shows the behavior of a conventional replacement approach,

Req. B triggers the replacement of the currently stored block (block A). From this moment, the

victim line is in a transient state (represented by dashed lines), preventing other requests from

accessing the line. To manage the replacement, depending on the state of A, an invalidation to

the L1 cache and an L2 cache eviction must be performed. Once the victim line is freed, the

requested incoming block (B), must be fetched from main memory and allocated to this line.

While block B is being fetched, Req. C arrives to L2, which triggers another replacement in

the same victim line. However, because of the line is in a transient state, Req. C must be

enqueued. Thus, Req. C cannot be attended until cycle 210, delaying its completion until cycle

400. This serialization also a�ects Req. D at cycle 240.

Moreover, the hit ratio is also reduced, since i) the invalidation and eviction of the contents

of a victim line are performed before fetching the requested block and ii) the fetch operation

is the longest one involved in a replacement due to the high main memory latencies. As an

example, even if a complex protocol allows reading the contents of a cache line while it is in a

transient state, a load requesting block A would only hit between cycles 0 and 90, and would

miss afterwards.

Although theoretically possible, it is very rare that this situation occurs in a conventional CPU

processor since there is likely a non-transient line in the same cache set that can be selected

as a victim, which avoids the serialization of replacements. In contrast, in GPUs, it is often

the case that a burst of misses triggers replacements in all the lines of the same cache set.

Therefore, further misses targeting the same set cannot be served from memory, which impacts

on the exploited memory parallelism.

A naive solution to this problem is blindly increasing cache associativity so that a set has

more available lines. However, this approach incurs in high latencies and energy penalties since

associative tag lookups do not scale well with the number of ways. Moreover, although such

a solution may alleviate the problem, larger sets can also be blocked provided that bursts of

misses a�ecting the same cache set are large enough.
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5.5 FRC Approach

The proposed approach is aimed at increasing MLP and LLC hit ratio. With this aim, we

introduce a Fetch and Replacement Cache (FRC) to each L2 cache bank. The FRC provides

additional cache lines that allow i) start fetching from memory as soon as an L2 miss rises,

increasing MLP, and ii) performing invalidation and eviction actions after fetching the requested

block, which increases the lifetime of victim blocks and the overall hit ratio.

Figure 6.2b shows how the FRC can help improve the management of consecutive replacements

a�ecting the same line. By cycle 10, when Req. B misses in L2, instead of immediately

invalidating the victim line, a free FRC entry (FRC0) is allocated and used to fetch block B.

After this block is fetched, the contents of the victim line and FRC0 are swapped. Then, the

invalidation and eviction of block A are performed from FRC0, which becomes free when the

eviction is completed. In this way, fetch actions can be performed as long as there are free

FRC entries (e.g. the fetch of block C can start in parallel at cycle 90). To ensure that there

are free FRC entries, they are recycled. Thus, after block A has been replaced, FRC0 is freed,

which allows this entry to be used later by Req. D.

The swap operation guarantees that the victim line is never in a transient state (note that it

is not represented with dashed lines in Figure 6.2b), and that the invalidation and eviction of

its contents are performed after the requested block is fetched. Consequently, FRC supports

a higher cache level parallelism that allows responding to several requests at the same time.

Furthermore, compared to the conventional approach, the lifetime of the victim block becomes

longer when FRC is used.

Tags and control bits of blocks in transient state are stored in the FRC. Thus, to reduce

tag lookup overhead, FRC is organized as a conventional cache, although its geometry (i.e.

associativity and number of sets) can be di�erent from that of the L2 cache. L2 accesses must

search the requested block both in the target L2 bank and its associated FRC. A hit in the

L2 bank is performed as in the conventional approach, while a hit in FRC for a block being

fetched is enqueued until the fetch operation completes.

As shown in Figure 6.4, the FRC approach modi�es the classical miss management by adding

the events highlighted in gray color. On an L2 miss (both in the L2 bank and the FRC), and

if there are free entries in the FRC's set mapped to the missing block, the block is assigned

to a FRC 's entry and the access is immediately propagated to the lower memory hierarchy
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Figure 5.3: Block diagram with the steps followed on an L2 miss. Those steps introduced with the FRC are

highlighted in gray color.

level (early fetch). Once the fetch has been performed, the miss can be already served. In this

way, the victim block eviction is taken out of the critical path. To manage the eviction without

leaving L2 cache lines in a transient state, the data stored in the FRC's entry and the victim

line are swapped. Thereby, the eviction is done from the FRC's entry. Once the eviction has

�nished, the FRC's entry is set as free to handle subsequent L2 misses.

Finally, note that in case there is not any free entry in the FRC's set targeted by the missing

block, the proposed approach operates like the conventional approach. In addition, FRC does

not change the state of blocks stored in the cache, but only modi�es the resources they are

using. Thus, it does not a�ect the coherence protocol.

Overall, as experimental results will show, FRC has three main impacts on performance: i) new

requests do not wait (or wait much less) for cache block's evictions, which reduces the memory

access latency, ii) the lifetime of an L2 block becomes longer, decreasing the number of misses,

and iii) a higher MLP is achieved, since FRC allows immediate access to lower memory levels

as long as there are free FRC entries.
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5.6 Experimental Evaluation

To evaluate the proposal, we have modeled the FRC approach with the Multi2Sim [72] sim-

ulation framework. We focus on the Southern Islands GPU architecture from AMD, which is

one of the most recent GPU architectures modeled on a detailed simulation framework. In

particular, we model the characteristics of an HD7770 GPU [68], including CUs, L1 and L2

caches, memory controllers, and GDDR5 memory [17]. The L2 cache consists of two 16-way

128KB banks, which is our baseline con�guration. In addition, to evaluate the impact on per-

formance of cache associativity and capacity, we evaluate two additional conventional L2 caches

consisting of two 32-way 256KB banks and two 32-way 512KB banks. Both con�gurations are

compared to the FRC one, which is composed of the baseline con�guration plus two additional

FRCs (1 per bank). We analyze the sensitivity our proposal to the number of FRC entries,

which ranges between 4 and 512. All the evaluated FRC con�gurations, except the smallest

one with 4 entries, are organized with 8-way sets.

Notice that the FRC approach represents a minor area increase over the baseline, since the

area occupied by an additional FRC is much smaller than doubling or quadrupling the cache

bank capacity, which would present roughly the same cost in area as adding 2048 and 6144

entries, respectively. Nevertheless, we conservatively assume that all the analyzed L2 cache

con�gurations have the same access time.

For evaluation purposes, a subset of the OpenCL SDK 2.5 benchmarks [3] has been used, cover-

ing all the possible performance behaviors from the entire benchmark suite. These benchmarks

are executed until completion.

5.6.1 Performance Analysis

System performance has been quanti�ed in terms of Operations Per Cycle (OPC), which is

analogous to its counterpart IPC used to evaluate CPU processors [17]. This metric accounts

for the number of single scalar operations each GPU instruction executes during the workload

execution. For instance, if a given vector instruction is internally executed as 64 individual

scalar operations, this metric accounts for 64 operations instead of only one instruction.

Figure 6.6 shows the OPC for the studied benchmarks. The red bar on the left side of each

plot represents the 2×128KB L2 baseline cache, and the two red bars on the right side repre-

sent the 2×256KB L2 cache and the 2×512KB L2 cache, respectively. The black bars show
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Figure 5.4: Operations Per Cycle (OPC) across the studied applications.

results of the FRC con�guration varying the number of entries per FRC ranging from 4 to 512,

labeled as +Ne, where N indicates the number of entries. The proposed approach achieves,

across most of the studied applications, OPC improvements higher than 25% compared to the

baseline, reaching improvements up to 150% in applications such as FastWalshTransform and

MersenneTwister. In general, it can be observed that almost all the applications achieve their

highest OPC with around 32 or 64 entries, which represents by 64× and 32× less area, re-

spectively, than doubling the cache bank size to 256KB. Moreover, in most applications, the

performance achieved by FRC is much higher than that obtained by blindly increasing the L2

cache capacity with a higher associativity degree.

Three main behaviors can be appreciated:

• Smooth OPC increase. The OPC of applications exhibiting this behavior, which is the

common one, increases in small steps with additional FRC entries until a given saturation

point. This is the case of benchmarks such as FastWalshTransform, MersenneTwister,

and DCT.

• Sharp OPC increase. Applications presenting this behavior show signi�cant performance

increase with just 4 FRC entries, but no remarkable OPC improvement is observed with

additional entries. This is the case of MatrixMultiplication.
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Figure 5.5: Misses Per Kilo-Operation (MPKO) in the L2 cache.

• Similar OPC. Applications in this category experience the same performance across all

the studied cache approaches. This is the case of BinomialOption and URNG, mainly due

to their low number of memory accesses as discussed below. Obviously, the OPC of this

type of applications is also not a�ected when enlarging the L2 cache size and associativity.

5.6.2 Analysis of Memory Subsystem Metrics

To provide insights into the OPC trend shown by the studied applications, we analyze the fol-

lowing metrics: number of misses measured in Misses Per Kilo-Operation (MPKO), percentage

of misses served by FRC additional entries, and the L2 miss latency penalty.

Misses Per Kilo-Operation.

We de�ne the metric MPKO for GPUs with analogous meaning to the MPKI (Misses Per Kilo-

Instruction), widely used when studying the cache hierarchy of the CPU counterparts. Figure

6.7 plots the results. It can be observed that the baseline con�guration shows high MPKO

values, which can be notably reduced by adding FRC entries. This fact con�rms the bene�ts

on performance brought by the FRC approach by keeping victim blocks in a non-transient state
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Figure 5.6: Average L2 miss delaying latency quanti�ed in processor cycles.

until fetch actions are completed. As a consequence, the hit ratio is improved compared to the

conventional approach.

Overall, a clear inverse correlation between OPC and MPKO can be appreciated. However,

in a few applications like DwtHaar1D and Reduction, a signi�cant MPKO reduction over the

baseline with a few FRC entries has a minimal e�ect on OPC. On the other hand, as observed,

BinomialOption and URNG present a near-zero MPKO, meaning that no OPC gains can be

achieved in these applications by acting on the L2 cache. However, there are applications like

BlackScholes, DCT, QuasiRandomSequence, and SobelFilter, with a relatively low MPKO

(below 1.5) in the baseline which improve their OPC with an FRC. In order to explain these

behaviors, the MLP and memory latency are analyzed below.

L2 Miss Latency.

L2 cache misses can be handled either by normal cache entries or by FRC entries. Misses

handled by FRC entries can be considered as fast L2 misses since, as explained in Section 6.5,

they are able to access to main memory with a minimum delay. In other words, the more misses

handled by FRC entries the better the performance. Figure 6.8 plots the results of the L2 miss

latency (excluding the actual main memory access time), quanti�ed in processor cycles.
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Figure 5.7: Percentage of L2 misses handled by FRC entries.

The use of FRC entries reduce the average L2 miss latency for almost all the applications. As

observed, with just 4 FRC entries, latency is largely reduced with respect to the 256KB and

512KB cache con�gurations. In fact, the largest FRC con�guration completely reduces the

L2 contention in most benchmarks. Nevertheless, it can be seen that just 4 FRC entries only

provide a slight latency improvement in some applications, thus large-sized FRCs are preferred.

However, DwtHaar1D and ScanLargeArrays su�er an increase in latency as the number of FRC

entries grows over around 8 entries. This is because the parallelism level is higher than the

baseline, which increases the memory contention. Notice that, in spite of this increase, the

higher MLP turns into OPC improvements.

Percentage of Misses Served by the FRC.

Since the service of misses is not stalled in case of consecutive replacements over the same

victim line, MLP is also improved. Figure 5.7 shows the percentage of misses served by the

FRC. As observed, FRC with only 64 entries handles by 75% of misses in most applications.

Moreover, this percentage signi�cantly rises, even to almost 100% in some benchmarks, for

con�gurations smaller than the +512e con�guration.

The applications Matrixtranspose and BinomialOption show an unexpected behavior as the

percentage of misses handled by FRC entries saturate in a relatively low number of entries,
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that is, this percentage does not increase even if more entries are added. In other words, the L2

cache misses are mostly handled by the cache itself instead of by FRC entries. This is due to two

di�erent reasons. First, the kernel of Matrixtranspose presents bursts of accesses targeting

the same FRC set. This behavior can be improved by increasing FRC associativity (8-way in

these experiments). Second, BinomialOption makes important use of the local memory of the

CU, which signi�cantly reduces the number of accesses to main memory.

5.7 Related Work

The GPU memory subsystem performance has been widely analyzed in recent years from di�er-

ent angles, including memory scheduling strategies [48, 32, 64], cache bypassing techniques [41,

44], and optimizing the memory subsystem design [40, 25, 47, 74, 63]. This section summarizes

prior work in this regard.

Elastic-Cache [40] supports �ne-grained L1 cache line management for those kernels with ir-

regular memory access patterns that do not e�ciently exploit cache space. Auxiliary tags for

�ne-grained cache line management are stored in unused shared memory space, which is not

fully occupied in many kernels.

Gebhart et al. [25] propose to dynamically adjust the storage partitioning among registers,

primary caches, and scratchpads depending on the kernel memory requirements, resulting in a

reduction of the on-chip access latencies.

IBOM [47] is an integrated architecture that leverages unused register �le entries with lightweight

ISA support to enlarge the L1 cache size. With enough cache capacity, a set balancing technique

exploits underutilized sets to improve cache usage.

Other works have proposed additional memory structures to improve GPU performance. Wang

et al. [74] incorporate a victim cache between L1 and L2 that presents the same capacity

and associativity as the L1 cache. Reused blocks are kept in the L1 cache by enabling swap

operations with the victim cache. Since a victim cache so large would impact on energy and

area, unused entries from the register �le and shared memory are proposed as an alternative to

holding data that otherwise would remain in the victim cache.

In [63], the authors propose to allocate TinyCaches between each lane in a CU and the L1

cache to �lter out memory requests to lower memory levels for energy saving purposes. By
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leveraging intrinsic characteristics of CUDA and OpenCL programming models, these caches

are kept non-coherent to avoid incurring additional overheads.

All the above works primarily focus on L1 caches. In contrast, our proposed FRC design targets

LLCs where all accesses from L1 are merged and contention greatly limits MLP. Furthermore,

the FRC approach can be easily implemented in di�erent memory subsystem architectures,

since it does not change the actions required to handle misses, but the locations where these

actions are performed (i.e. FRC entries).

5.8 Conclusions

This paper has presented a novel GPU cache subsystem design that leverages a small Fetch

and Replacement Cache (FRC) between the Last-Level Cache (LLC) and the main memory.

The design provides additional cache lines that allow prioritizing the fetch of incoming LLC

cache blocks over the replacement of victim blocks. The proposed design boosts the system

performance by increasing the Memory-Level Parallelism (MLP) and enlarging the lifetime of

the victimized blocks.

FRC attacks by design three main cache performance related events, which results in a much

better L2 cache management: i) it reduces the number of Misses Per Kilo-Operation (MPKO)

by keeping victim blocks in cache until fetch actions are completed, ii) it reduces the miss latency

by starting the fetch actions from main memory as soon as a miss rises, and iii) it increases the

MLP by unclogging new block requests whose victim line is already being replaced.

Experimental results have shown that, compared to a conventional LLC design, FRC increases

the Operations Per Cycle (OPC) over 25% in all the applications su�ering contention in main

memory.
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6.1 Abstract

To support the massive amount of memory accesses that GPGPU applications generate, GPU

memory hierarchies are becoming more and more complex, and the Last Level Cache (LLC)

size considerably increases each GPU generation. This paper shows that counter-intuitively,

enlarging the LLC brings marginal performance gains in most applications. In other words,

increasing the LLC size does not scale neither in performance nor energy consumption. We

examine how LLC misses are managed in typical GPUs, and we �nd that in most cases the

way LLC misses are managed are precisely the main performance limiter. This paper proposes

a novel approach that addresses this shortcoming by leveraging a tiny additional Fetch and

Replacement Cache-like structure (FRC) that stores control and coherence information of the

incoming blocks until they are fetched from main memory. Then, the fetched blocks are swapped

with the victim blocks (i.e., selected to be replaced) in the LLC, and the eviction of such victim

blocks is performed from the FRC. This approach improves performance due to three main

reasons: i) the lifetime of blocks being replaced is enlarged, ii) the main memory path is

unclogged on long bursts of LLC misses, and iii) the average LLC miss latency is reduced.

The proposal improves the LLC hit ratio, memory-level parallelism, and reduces the miss

latency compared to much larger conventional caches. Moreover, this is achieved with reduced

energy consumption and with much less area requirements. Experimental results show that the

proposed FRC cache scales in performance with the number of GPU compute units and the

LLC size, since, depending on the FRC size, performance improves ranging from 30% to 67%

for a modern baseline GPU card, and from 32% to 118% for a larger GPU. In addition, energy

consumption is reduced on average from 49% to 57% for the larger GPU. These bene�ts come

with a small area increase (by 7.3%) over the LLC baseline.

6.2 Introduction

Nowadays, GPU (Graphics Processing Unit) architectures have acquired a great relevance in

the high-performance computing �eld. One of the main reasons has been that GPUs are

energetically more e�cient [27, 29] when running massively parallel applications, since they

provide a much higher level of parallelism than their CPU counterparts with a much better

performance to power ratio. In fact, many of the current most powerful and energy-e�cient

supercomputers, ranked in both the Top500 and Green500 lists [71], rely on GPUs.
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Figure 6.1: Diagram of an AMD Polaris GPU.

GPU architectures are optimized to run applications composed of thousands of logical threads.

Given that these applications demand an ever-increasing amount of computational and memory

resources, successive GPU architectures include more multiprocessors (i.e., compute units) and

a larger on-chip memory subsystem. For instance, NVIDIA has continuously enlarged the

Last-Level Cache (LLC) size in 2MB on recent architectures (e.g., LLC sizes of Maxwell [53],

Pascal [54], and Volta [55] GPUs are 2MB, 4MB, and 6MB, respectively). Coupling GPUs

with larger memory subsystems enables a higher Memory-Level Parallelism (MLP). However,

because of the poor data temporal locality of GPU applications, upon a fast and relatively very

long burst of LLC (i.e., L2) accesses it is likely that a signi�cant number of accesses miss in the

cache, requiring access to the o�-chip memory, which can severely hurt the system performance.

A straightforward solution consists of drastically increasing the L2 cache size with the aim of

accommodating the entire working set of the application on chip. Unfortunately, enlarging the

L2 cache not only brings much lower performance gains in GPUs than in CPUs [20, 43], but

also translates into a high area overhead as well as a huge static energy consumption, which

aggravates as transistor size shrinks [34].

In this paper, we look into the reasons explaining the poor performance gains of GPU memory

subsystems, and we �nd that a key aspect is the way L2 cache misses are managed in typical

caches. In particular, a typical cache miss management gets clogged on fast, long bursts of cache

misses, which increases memory latencies and limits MLP. Moreover, the lifetime of memory

blocks is shortened, rising the amount of memory misses even for those applications with low

temporal locality and low cache hit ratio.

The previous rationale means that the L2 cache management is a key design concern that

should be tackled to improve the GPU performance. This paper proposes an energy-e�cient

L2 cache design aimed at boosting MLP by adding a tiny Fetch and Replacement Cache-like

structure (FRC) that provides additional reusable cache lines that help unclog the memory

subsystem. The proposed approach prioritizes the fetch of incoming L2 cache requests and

delays the eviction of the blocks, which helps alleviate memory latencies and improve the cache

hit ratio.
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The proposal has been modeled and evaluated in both AMD Polaris [5] and Vega [7] GPU

architectures, although the results would apply to most of the current GPU architectures pro-

vided that they implement a similar memory subsystem and organization. For instance, some

NVIDIA L2 caches use a replacement algorithm other than LRU and a 32B line size [45]. How-

ever, these characteristics are orthogonal to our proposal. In particular, experiments consider

two Polaris GPU cards, namely RX540 and RX570, with a di�erent number of compute units

and L2 cache sizes to show the scalability of FRC in terms of performance and energy, whereas a

Vega64 card is also studied to show how the proposed FRC approach behaves with an enhanced

memory subsystem using HBM technology and a higher clock frequency.

The proposal has been modeled using the state-of-the-art Multi2Sim [72] and CACTI [69]

simulation frameworks, which are a cycle-accurate GPU simulator and an analytical model for

both on-chip and o�-chip memories, respectively, both widely used in the academia and the

industry. Experimental results show that, compared to a conventional design, FRC improves

the average system performance (OPC) of the RX540 between 30% and 67% depending on

the FRC size, whereas these percentages rise up to 32% and 118%, respectively, for the larger

RX570 GPU. Moreover, in most applications, the performance achieved by adding a small

FRC is much higher than simply increasing the L2 cache capacity or associativity. In addition,

compared to the conventional approach, energy savings fall in between 49% and 57% for the

RX570 GPU. These bene�ts come with a small L2 cache area increase by 7.3% over the baseline.

Finally, in spite of an improved memory subsystem with the Vega64 GPU, the FRC approach

still boosts the average OPC from 16% to 54%.

This paper extends the work in [16] in four main ways: i) a hardware implementation for FRC is

presented, ii) FRC has been modeled and evaluated on the recent AMD Polaris and Vega GPU

architectures, iii) performance scalability has been studied by analyzing how FRC behaves with

an increasing number of compute units and L2 cache sizes, and iv) energy consumption and

area results are discussed.

The remainder of this work is organized as follows. Section 2 describes the architecture of

the AMD Polaris family of GPUs. Section 3 motivates this work. In Section 4, the proposed

approach is introduced. Section 5 presents the experimental results. Section 6 summarizes

related studies about GPU memory subsystems. Finally, Section 7 summarizes the paper.
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6.3 Background

This section provides some background of the architecture of modern GPUs. Since this paper

primarily uses the AMD Polaris family of GPUs as a driving example, the AMD terminology

is used throughout this work.

Figure 6.1 depicts a block diagram of an AMD Polaris GPU. This GPU includes up to 36

Compute Units (CUs), each one implementing the 4th version of the Graphics Core Next

(GCN) [68] microarchitecture. Internally, a GCN CU consists of 4 Single Instruction Multiple

Data (SIMD) arithmetic logic units.

GPU applications or kernels are composed of a massive number of threads or work-items. These

threads are organized in 64-thread bundles, named wavefronts, which are allocated to SIMD

units. During most of the execution time of a kernel, the GPU ensures that each SIMD unit

is assigned tens of wavefronts. In this way, SIMD units can switch among wavefronts in a

�ne-grain basis, which helps hide memory latencies.

A SIMD unit executes instructions from threads of a wavefront in a lockstep manner. That

is, at a given point of the execution time a SIMD unit is performing the same arithmetic

instruction in the 64 threads of the same wavefront. Memory reference instructions are also

executed following the SIMD paradigm; that is, a wavefront can generate up to 64 memory

requests at the same time. To reduce the overall amount of memory requests, those referencing

the same 64-byte cache block are coalesced into a single memory request, which is issued to the

memory subsystem.

As in a conventional processor, the memory subsystem is organized hierarchically. After being

coalesced, memory requests access the L1 data cache of the corresponding CU. Those requests

that miss the L1 cache are forwarded to a multi-banked L2 cache, acting as the LLC. L2 banks

contain interleaved block addresses at a granularity of 256 bytes, and each bank is connected

to a dual-channel memory controller (MC) that manages the corresponding o�-chip GDDR5

main memory. This design reduces the number of channel con�icts and increases the memory

bandwidth utilization.
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Figure 6.2: Sequence of events involved in three consecutive replacements targeting the same L2 cache line

for both the conventional and the proposed approaches.

6.4 Motivation

6.4.1 Conventional Cache Miss Management

The coalesce mechanism reduces the number of requests to the memory subsystem. However,

GPGPU applications generate enormous amounts of memory tra�c; for instance, a typical

GPU can issue thousands of memory requests in a given cycle. These amounts yield con-

ventional cache organizations to signi�cant performance losses. The main reason is that the

massive number of threads executing in parallel causes sudden bursts of memory accesses, which

involve a high number of cache replacements. As a consequence, in a relatively short interval

of time, a relatively high number of cache lines can su�er a long number (e.g., in the order of

tens) of consecutive block replacements, each one involving di�erent actions such as coherence

invalidations or accesses to lower levels of the memory hierarchy. Since these actions are serial-

ized at each cache line, the management of cache replacements becomes a major performance

bottleneck, which can heavily increase memory latencies and reduce the MLP and the L2 hit

ratio.
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To help understand the problem, Figure 6.2 plots a time diagram with the events involved in

three consecutive replacements, all of them targeting the same L2 line. The three requests

causing these replacements have been labeled as Req. B, C, and D, and have been generated

at cycles 0, 90, and 240, respectively, after the requests miss the L1 cache and are forwarded

to the L2 cache.

As can be seen in Figure 6.2a, which shows the behavior of a conventional replacement approach,

Req. B triggers the replacement of the currently stored block (block A). From this point forward,

the line storing the victim block is in a transient state (represented in dashed lines), preventing

other requests from accessing the line. To manage the replacement, depending on the state of

A, an invalidation to the L1 cache and an L2 cache eviction should be performed. Once the line

is released, the requested incoming block (B), must be fetched from main memory and written

in that line.

While block B is being fetched, Req. C arrives to L2, which triggers another replacement in

the same line. However, because the line is in a transient state, Req. C must be enqueued.

Thus, Req. C cannot be handled until cycle 210, delaying its completion until cycle 400. This

serialization also a�ects Req. D at cycle 240.

Delaying requests increases memory latencies and reduces MLP. Moreover, the hit ratio is also

reduced, since i) the invalidation and eviction of the victim block are performed before fetching

the requested block, and ii) the fetch operation is the longest one involved in a replacement due

to the high main memory latencies. As an example, even if a complex protocol allows reading

the contents of a cache line while it is in a transient state, a memory instruction accessing to

block A would only hit between cycles 0 and 90, and would miss afterward.

6.4.2 A Novel Cache Miss Management Approach

The proposed approach is aimed at improving MLP and LLC hit ratio while reducing miss

latencies. With these aims, we implement a Fetch and Replacement Cache (FRC) in each

L2 cache bank. The FRC provides additional cache lines that allow to i) start fetching from

memory as soon as an L2 miss is detected, which reduces the miss latency and increases the

MLP, and ii) delaying invalidation and eviction actions until the requested block is fetched,

which enlarges the lifetime of victim blocks and the overall hit ratio.

Figure 6.2b shows how the FRC can help improve the management of consecutive replacements

in the same line. By cycle 10, when Req. B misses in the L2 cache, instead of invalidating the

89



Chapter 6. E�cient Management of Cache Accesses to Boost GPGPU Memory Subsystem Performance

B
a
se FA

FA
+

V
C

FR
C

0

20

40

Color

0

500

1000

C
y
cl

e
s 

/ 
W

F

B
a
se FA

FA
+

V
C

FR
C

0

100

200

300

O
P
C

DCT

0

200

400

C
y
cl

e
s 

/ 
W

F

OPC Compute time Memory time

60

O
P
C

Figure 6.3: Operations Per Cycle (left Y-axis) and average execution cycles split in compute and memory

cycles (right Y-axis) for the studied approaches.

victim block (i.e., block A), a free FRC entry (FRC0) is allocated and used to fetch block B.

After this block is fetched, the contents of the line storing block A and FRC0 are swapped.

Then, the invalidation and eviction of block A are performed from FRC0, which is freed when

the eviction is completed. In this way, fetch actions can be immediately start as long as there

are free FRC entries (e.g., the fetch of block C can start in parallel at cycle 90). To ensure that

there are free FRC entries, they are recycled. Thus, once block A is replaced, FRC0 is freed,

which allows this entry to be used later by Req. D. Recycling entries allows FRC to be smaller

and thus more e�cient than conventional approaches regarding energy consumption and area

overhead.

The swap operation guarantees that the line storing the victim block is never in a transient

state (note the lack of dashed lines in the plot below the L2 line of Figure 6.2b), and that the

invalidation and eviction of the victim block are performed after the requested block is fetched.

Consequently, FRC supports a higher cache level parallelism that allows responding to several

requests at the same time. Furthermore, compared to the conventional approach, the lifetime

of the victim block is enlarged when FRC is used.

Overall, as experimental results will show, the FRC has three main positive impacts on perfor-

mance: i) reduces the memory access latency, ii) enlarges the lifetime of L2 cache blocks, and

iii) exploits a higher MLP.

6.4.3 Potential FRC Performance Bene�ts

This section explores the potential performance bene�ts of the FRC approach and where they

come from. To this end, the proposal is compared against two approaches, a fully-associative

(FA) L2 cache and an FA L2 cache working together with a victim cache (FA+VC). The FA
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scheme is sized with the same number of entries as our experimental baseline (see Section 6.6

for further experimental details) and it is used to check the bene�ts coming from reducing

the con�ict misses. Notice that FA imposes an upper-bound for performance with respect to

alternative set mapping strategies [51]. On the other hand, the FA+VC scheme is chosen to

compare the potential bene�ts of a victim cache compared to our approach. In order to explore

the potential performance, experiments assume that the additional structures (both VC and

FRC) have an unbounded number of entries.

Performance is evaluated for the RX540 GPU in terms of Operations Per Cycle (OPC) and

average number of execution cycles per wavefront in a kernel. The OPC is a performance metric

analogous to the IPC, which is used to evaluate conventional processors [17]. An operation

refers to the work performed by an individual thread when executing its corresponding part

of a SIMD instruction. For instance, in our experimental platform, a SIMD unit can execute

instructions from up to 64 threads, each one performing a scalar operation, which accounts for

64 operations. Regarding the execution cycles, they are split in two main categories referred

to as compute cycles and memory cycles. The former indicates the mean time a wavefront is

executing instructions and the latter the mean time a wavefront is blocked because it is waiting

for a memory access.

For illustrative purposes, a pair of benchmarks showing two common and representative be-

haviors are presented (see Section 6.6). Figure 6.3 shows the results. As observed, for DCT, the

FA cache improves performance (i.e., OPC in the left Y-axis) by 6% over the baseline thanks

to reducing the number of con�ict misses. On the other hand, no performance gains can be

observed in Color, where long bursts of cache accesses many times exceed the cache capacity,

and capacity misses dominate over con�ict misses. In this application, the OPC is improved by

137% over the baseline when adding the VC, which helps to reduce capacity misses; however,

the VC slightly helps in DCT since capacity misses are not as critical as in Color. The main

reason is that Color is a memory-intensive kernel, where memory cycles dominate over compute

cycles. On the contrary, in DCT, the compute cycles dominate the execution time, hence, little

can be done by enlarging the cache capacity with a VC.

To sum up, it can be concluded that to enlarge the L2 cache size and/or to increase its associa-

tivity either directly or indirectly (i.e., with an additional memory structure) can improve the

performance in some (especially memory-bounded) applications but it cannot in some others

(compute-bounded). However, looking at the FRC with the same number of entries as the

FA+VC approach but with a di�erent data management, the system performance is signi�-
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cantly boosted in both kernels (by 29% and 163% for DCT and Color, respectively). The main

reason is that the primary aim of FRC is not only to reduce the number of either con�ict or

capacity misses but to improve the MLP and to further reduce the memory access latency.

Notice too that, for the FRC, the average time a wavefront is blocked for memory is smaller

with respect to the other approaches so that, taking into account all the wavefronts of the

kernel together, it turns into signi�cant performance gains.

6.5 FRC Implementation

Figure 6.4 illustrates a block diagram with the steps involved on an L2 cache miss. The

highlighted steps in gray color correspond to the proposed FRC approach. Upon an L2 miss

(both in the L2 bank and the FRC), and if there are free entries in the target FRC set, the block

is assigned to an FRC entry and the access is forwarded to the lower memory hierarchy level.

This process is referred to as an early fetch. Once the early fetch is performed, the missing

data can be already delivered to the processor. In this way, the victim block eviction is taken

out of the critical path. To manage the eviction without leaving L2 cache lines in a transient

state, the data stored in the FRC entry and the line storing the victim block (victim line) are

swapped. Thereby, the eviction is handled from the FRC entry. Once the eviction �nishes, the
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FRC entry is freed and enabled to handle subsequent L2 misses. In case that there is no free

entry in the target FRC set, the FRC approach works like the conventional approach.

Figure 6.5 depicts a hardware block diagram of the FRC approach. The main focus of this

paper is not to deal with the optimal implementation but on providing some insights on the

design. A re�ned design for enhanced performance is beyond the scope of this paper. The

FRC is plotted within the gray box, and, similarly to the L2 cache, includes the FRC tag and

data arrays. For illustrative purposes, the valid bits are plotted in a di�erent box. The access

to the L2 tags and the FRC tags are performed sequentially and this is the way modeled in

the experimental results. In practice, however, these structures can be indexed with the target

block address in parallel or within the same cycle to avoid any latency penalty.

On an L2 cache access, the tags of the target set are looked up on a �rst stage. On an successful

tag comparison, the requested block is retrieved from the L2 data array on a second stage and

the FRC is not used. Otherwise, the FRC tags are looked up. On a miss in both the L2 and

FRC tag array, a free block entry in the target FRC set is sought. Depending on whether the

FRC set has a free entry or not, the fetched block from main memory is written into the FRC

or the L2, respectively. In the former case, once the fetch completes, the L2 victim block is

swapped with the FRC block. On the other hand, that is, on a hit in the FRC tag array, the

request is served by the L2 data array. In this case, the request waits until the swap operation

completes.

Finally, note that the FRC approach does not a�ect the state of the cache blocks, thus, it does

not a�ect the coherence protocol.
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Figure 6.6: Operations Per Cycle (OPC) of the RX540 across the studied applications.

6.6 Experimental Evaluation

The FRC approach has been modeled and evaluated with the Multi2Sim [72] simulation frame-

work. The simulation results include performance metrics and cache memory statistics required

to compute the overall energy consumption.

We focus on the AMD Polaris GPU architecture. The RX540 GPU [68] has been modeled,

including CUs, L1 and L2 caches, memory controllers, and GDDR5 memory modules [17]. The

RX540 consists of 8 CUs, each one implementing the 4th version of the GCN core. The L2 cache

is composed of two 32-way 256KB banks, which has been used as the baseline con�guration.

The FRC consists of the L2 conventional cache plus two additional FRCs (one per bank). We

analyze the performance sensitivity of our approach to the number of FRC entries, ranging from

4 (256B) to 512 (32KB) entries. All the evaluated con�gurations, except the smallest one, are

organized as 8-way set-associative caches1. As mentioned above, the FRC is compared to the

FA and FA+VC approaches. Experiments assume a fully-associative 32KB VC per bank, which

matches the tested maximum FRC size. In addition, two conventional L2 caches consisting of

two 32-way 512KB banks and two 32-way 1024KB banks are also evaluated. All the memory

structures implement 64B lines.

1Higher associativity has been explored for enhanced performance. However, the marginal performance gains do not

compensate the extra energy and area consumption. Therefore, all the presented results assume 8-way associativity.
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Figure 6.7: Misses Per Kilo-Operation (MPKO) in the L2 cache of the RX540.

To study the FRC performance scalability, we modeled the RX570 GPU with the same Polaris

architecture as the RX540 GPU, but including up to 32 CUs and 8 L2 cache banks.

CACTI [69] has been used to estimate timing, energy, and area of the proposal. We have

assumed a 32nm technology node and a 1.2GHz clock frequency. All the FRC caches are small

enough to �t their access time within 1 clock cycle, whereas a swap operation is estimated to

take 3 cycles to complete. Despite their fully-associative geometry, for comparison purposes, we

conservatively assume the access time of the VCs to be the same as the FRCs. Regarding the

L2 cache, it has been modeled with a 10-cycle access latency regardless of the cache geometry

and capacity. The reader is referred to Section 6.6.4 for further experimental details about

energy consumption.

Results have been obtained for 29 benchmarks from the OpenCL SDK [3], Rodinia [19], Pan-

notia [18], and PolyBench [57] benchmark suites. For illustrative purposes, a subset of 16

benchmarks are shown. All the benchmarks are run until completion.

6.6.1 System Performance Analysis

Figure 6.6 shows the OPC achieved by the RX540 GPU for the studied benchmarks. The red

bar on the left side of each plot represents the 2×256KB L2 baseline cache, and the four red

bars on the right side represent the 2×256KB FA L2 cache, the FA L2 cache with a 2×32KB

VC (FA+VC), the 2×512KB L2 cache, and the 2×1024KB L2 cache, respectively. The black
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bars show results of the proposal varying the number of entries per FRC from 4 to 512, labeled

as +Ne, where N indicates the number of entries.

The proposed approach achieves, across most of the studied applications (14 out of 16), OPC

improvements higher than 10% over the baseline, reaching improvements up to 200% in ap-

plications such as Kmeans and PRK. It can be observed that OPC improves, in general, as the

number of entries increases up to 64 or 128, where it saturates in most applications. In most of

the benchmarks, the proposal performs better than blindly increasing the L2 cache associativity

and capacity. Enlarging the cache capacity enhances the performance over a higher number of

ways in benchmarks like Color, PRK, and Reduction.

According to the FRC performance, three behaviors can be appreciated:

• Smooth OPC increase. The OPC of applications exhibiting this behavior, which is the

common case, gradually increases with additional FRC entries until a given saturation

point, which is achieved with a small FRC of 64 or 128 entries. Examples are DCT,

MatrixTranspose, and ScanLargeArrays.

• Sharp OPC increase. This behavior show a signi�cant performance increase with just 4

FRC entries, but no remarkable OPC improvement is observed with additional entries.

This is the case of Kmeans.

• Similar OPC. Applications in this category experience the same performance across all

the studied cache approaches. This is the case of 3MM and HotSpot, mainly due to their

relatively low number of memory accesses, as shown in Section 6.6.2. Of course, the OPC

of this type of applications is neither a�ected when either enlarging the cache associativity

or capacity.

Overall, FRC boosts the OPC between 30% (+4e) and 67% (+512e) on average compared to

the baseline. These values drop to 20% and 27% for the 512KB and 1024KB caches, respectively,

and they are less than 10% for the FA schemes.

96



6.6 Experimental Evaluation

0
25
50
75

La
te

nc
y

2DConv

0
10
20
30 3MM

0
50

100
150
200
250 BC

0
250
500
750 Color

0
10
20
30
40
50

La
te

nc
y

DCT

0
100
200
300
400 DwtHaar1D

0
5

10
15
20 HotSpot

0
250
500
750

1000 Kmeans

0
10
20
30
40

La
te

nc
y

MatrixTranspose

0
100
200
300 MersenneTwister

0
100
200
300
400 MIS

0
250
500
750

1000 PRK

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
600

1200
1800

La
te

nc
y

QuasiRandomSequence
25

6K
B

+4
e

+8
e

+1
6e

+3
2e

+6
4e

+1
28

e
+2

56
e

+5
12

e FA
FA

+V
C

51
2K

B
10

24
KB

0
150
300
450
600 Reduction

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
100
200
300 ScanLargeArrays

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
25
50
75 SobelFilter

L2_to_MM Eviction Invalidation

Figure 6.8: Average L2 miss latency (excluding main memory access time) in processor cycles for the RX540.

0
5

10
15
20

by
te

s p
er

 c
yc

le 2DCONV

0
1
2
3
4
5 3MM

0
10
20
30
40 bc

0
10
20
30 color

0
5

10
15
20

by
te

s p
er

 c
yc

le DCT

0
10
20
30 DwtHaar1D

0
1
2
3
4
5 hotspot

0
10
20
30 kmeans

0
2.5

5
7.5
10

by
te

s p
er

 c
yc

le MatrixTranspose

0
5

10
15 MersenneTwister

0
10
20
30
40 mis

0
10
20
30 prk

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
2.5

5
7.5
10

by
te

s p
er

 c
yc

le QuasiRandomSequence

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
10
20
30 Reduction

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
10
20
30 ScanLargeArrays

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB
0
5

10
15
20 SobelFilter

L2_to_MM MM_to_L2

Figure 6.9: Tra�c from the L2 to main memory and vice versa on the RX540.

6.6.2 Memory Subsystem Performance Analysis

To provide insights into the OPC trend shown by the RX540 GPU, this section evaluates the

memory hierarchy performance.
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Figure 6.10: Operations Per Cycle (OPC) of the RX570 across the studied applications.

Misses Per Kilo-Operation

Misses per Kilo-Operations (MPKO) can be de�ned with analogous meaning to the MPKI

(Misses Per Kilo-Instruction), widely used to study the cache hierarchy of the CPU coun-

terparts. Figure 6.7 depicts the results. By adding FRC entries, the MPKO is reduced on

average between 23% (+4e) and 31% (+512e) compared to the baseline approach. Moreover,

the MPKO can be completely or mostly eliminated in applications like Kmeans and PRK. Note

that in both benchmarks, FA+VC provides signi�cantly lower MPKO reductions than FRC.

This is because FRC does not only enlarge the lifetime of victim blocks (as a victim cache does)

but also because it keeps them in a non-transient state. As a consequence, the number of hits

improves over the conventional approaches.

Overall, an inverse correlation between OPC and MPKO can be appreciated. For kernels with

a near-zero MPKO, (e.g., below 1) one might expect that increasing the number of hits would

not improve the OPC. Examples are 3MM and HotSpot. However, there are applications with

an MPKO lower than 1 like DCT, QuasiRandomSequence, MersenneTwister, and SobelFilter,

which improve their OPC with FRC. In order to explain this behavior, memory latency and

bandwidth consumption are analyzed below.
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Figure 6.11: Misses Per Kilo-Operation (MPKO) in the L2 cache of the RX570.

Memory Latency and Bandwidth Consumption

L2 cache misses can be handled by either normal cache entries or FRC entries, however, FRC

handles misses faster than the L2 cache since, part of the main memory latency is hidden by

moving eviction and invalidation actions out of the critical path. In other words, the higher

the number of misses handled by FRC the better the performance.

Figure 6.8 plots the average L2 miss latency results (excluding the actual DRAM access

time without contention), quanti�ed in clock cycles. The miss latency is split in three main

components according to its causes (see Figure 6.2): invalidations, evictions, and fetches

(L2_to_MM). The former category is due to invalidating and writing back (if necessary) the

L1 copies of the blocks that are evicted from L2. The eviction category accounts for the la-

tency due to evicting L2 blocks and writing back their data to main memory. Finally, the fetch

latency refers to the time fetching target blocks but excluding the actual DRAM access time.

That is, its value is only a�ected by main memory contention.

The use of FRC entries reduces the average L2 miss latency in some applications. Especially,

the latency caused by evictions is removed in most applications with 512 FRC entries. The

�gure shows that the FRC approach also improves performance due to latency reduction.

In particular, BC, MersenneTwister, and QuasiRandomSequence, which do not bene�t from

MPKO improvement, present a signi�cant reduction in memory latencies ranging from 84%

to 93% over the baseline. In contrast, in some applications like 2DConv, DCT, DwtHaar1D,
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Figure 6.12: Average L2 miss latency (excluding main memory access time) in processor cycles for the RX570.

Reduction, or ScanLargeArrays the miss latency increases, in spite of removing the eviction

latency.

To provide insights on this increase, Figure 6.9 shows the tra�c in bytes per cycle from the L2

cache to main memory and vice versa. It can be seen that the tra�c rises in these applications

with the number of FRC entries. This is because adding more entries enables a higher MLP. In

turn, such an MLP increases memory contention and L2 to memory latency, but also improves

OPC since the memory latency growth can be partially hidden by the GPU massive parallelism,

while the higher MLP enhances the system throughput.

6.6.3 Impact on Performance of Increasing the Number of Compute Units

The previous sections have focused on the performance of the RX540 GPU consisting of 8 CUs

and 2 L2 cache banks. FRC, however, is expected to behave better compared to the other

approaches with additional computational power and memory subsystem capabilities, since a

higher L2 contention is expected. This section studies the FRC performance in the RX570

GPU, which implements 4× more compute units (32 CUs) and L2 cache banks (8 banks).

Figure 6.10 presents the OPC results. As expected, this GPU outperforms the smaller RX540

GPU. Results also show that, compared to the same baseline, OPC improvements of the pro-

posal are higher than those achieved by the RX540 GPU. In most benchmarks, OPC im-

provements range from 40% to 300%, whereas these percentages fall down to 10% and 200%,
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respectively, for the RX540 GPU. To sum up, these results point out that the FRC approach

performs even better with a larger L2 and potentially higher memory level parallelism.

Overall, FRC improves OPC between 32% (+4e) and 118% (+512e) on average with respect to

the baseline cache. These percentages are by 22% and 50% for the 512KB and 1024KB caches,

respectively. Note that all these con�gurations also improve the mean OPC achieved by RX540.

However, as the next section will show, such a performance boost comes at the cost of a greater

energy consumption and area overhead. For the FA schemes, the OPC improvement remains

below 10%. To �nd out the reason why the RX570 GPU gets a higher improvement than the

RX540, the MPKO and memory latencies for this GPU have been also studied. Figure 6.11

shows the MPKO results. Although the total cache capacity increases with the number of CUs,

the MPKO rises in a high number (11 out of 16) of kernels with respect to the RX540 GPU

because of the higher level of parallelism. Despite this fact, MPKO values of the FRC approach

are similar to those of the RX540 GPU, with average MPKO reductions from 20% (+4e) to

48% (+512e) over the baseline.

Memory latencies are reduced in the RX570 GPU, as shown in Figure 6.12, because the memory

tra�c is distributed among more memory controllers. As a consequence, this GPU brings

higher OPC improvements. Moreover, in the RX570, the FRC approach almost eliminates the

eviction related latency and, in general, it is able to drop latency close to zero across most of

the applications (remember that this latency does not include the main memory module access

time). Therefore, memory contention is not an issue in the RX570, which enables further

throughput improvements thanks to the MLP increase achieved by the proposal.

6.6.4 Energy Consumption

This section presents the methodology used to estimate both static and dynamic energy. Then,

energy results are discussed for the larger RX570 GPU. We restrict the study to such a GPU

because its size helps understand the impact of our proposal in high-performance computing.

Methodology

The three main FRC operations are accesses, fetches, and swaps. The FRC is accessed on every

L2 tag miss, which triggers an FRC tag look-up. Upon a hit, the requested block is read from

the L2 data array. A fetch operation causes a write operation of the fetched block from main

memory to either the FRC or the L2 cache, depending on whether the target FRC set has free
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Figure 6.13: Energy consumption of the RX570 including the L2 cache banks and the main memory.

entries to allocate the incoming block or not, respectively. Note that such a write operation

involves writing both the tag and data arrays. Finally, a swap operation is performed after an

FRC fetch, and involves four steps: i) reading the victim block from L2, ii) reading the fetched

block from the FRC, iii) writing the FRC block to L2, and iv) writing the L2 block to the FRC.

CACTI has been used to quantify the dynamic energy of each type of operation. Then, these

numbers are multiplied by the number of times that each operation occurs during the entire

kernel execution. Static energy overheads of L2 and FRC caches are quanti�ed considering the

execution time. Execution related events have been gathered from Multi2Sim simulations.

Results

Figure 6.13 plots the total energy consumption (in mJ) of the baseline, FRC, 2× sized, and

4× sized L2 caches. The L2 and FRC energy contributions are split into static and dynamic

energy. The FRC dynamic energy is in turn divided into access, fetch, and swap expenses. In

addition, the dynamic energy of a 2GB GDDR main memory (MM) module is also studied.

Compared to the energy consumption of the L2 and FRC caches, the consumption of the main

memory represents a signi�cant fraction of the overall consumption in most benchmarks and

cache con�gurations. By reducing the number of accesses to this device, the FRC approach

reduces such expenses over the conventional schemes. Some benchmarks showing this behavior

are Color, MersenneTwister, and Reduction. Moreover, this energy contribution is mostly

eliminated in Kmeans and PRK.
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Focusing exclusively on the L2 and FRC caches, the static expenses dominate over dynamic

expenses in most applications. This is mainly due to dynamic energy is consumed only upon

a cache access, whereas static energy is consumed along time regardless of the cache is being

accessed or not. In addition, the accesses to the tag and data arrays of both the L2 and FRC

caches are serialized, meaning that the data array is only accessed in case of tag hit, which

helps mitigate dynamic energy.

As expected, static energy increases with the L2 cache size. In comparison, the much smaller

and less associative FRCs present low static energy consumption. In fact, FRC con�gurations

present much lower static energy than the baseline in some applications like DwtHaar1D and

MatrixTranspose. This is because the FRC approach highly improves the system performance

in such kernels (see Section 6.6.3); thus, the number of execution cycles and static energy are

signi�cantly reduced over the baseline. In addition, FRC con�gurations with 256KB L2 caches

consume much less static energy per cycle than conventional schemes with 512KB and 1024KB

caches.

Compared to the baseline approach, those kernels with a heavy use of FRC entries like 2DCONV

and MersenneTwister increase the dynamic consumption with the number of FRC entries,

especially due to swaps, which translate to up to 4 di�erent cache operations as mentioned

above. Nevertheless, notice that, despite FRCs consuming more dynamic energy than the

baseline, the total consumption is very similar (e.g., 2DCONV) or even reduced in some kernels

(e.g., MersenneTwister) thanks to energy savings in both the dynamic main memory and static

L2 energy. Furthermore, the total energy of FRC caches does not surpass that of 512KB and

1024KB caches.

Overall, the FRC approach obtains energy savings from 49% (+4e) to 57% (+512e) on average

with respect to the baseline cache. Compared to the 512KB L2 cache, these percentages grow

up to 62% and 67%, respectively.

6.6.5 Area Estimation

This section analyzes the area requirements of the proposed FRC approach. The area numbers

include not only the tag and data arrays of the modeled caches, but also the cache controller

peripherals (e.g., comparators, decoders, multiplexers, and sense ampli�ers). Figure 6.14 shows

the area (in mm2) of the studied cache con�gurations. The presented numbers are for the
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Figure 6.14: Area (in mm2) of the cache con�gurations for the RX570 GPU.

0
200
400
600
800

OP
C

2DConv

0
150
300
450
600 3MM

0
100
200
300 BC

0
100
200
300 Color

0
500

1000
1500
2000

OP
C

DCT

0
250
500
750

1000 DwtHaar1D

0
1000
2000
3000
4000 HotSpot

0
250
500
750

1000 Kmeans

0
50

100
150

OP
C

MatrixTranspose

0
500

1000
1500 MersenneTwister

0
50

100
150
200 MIS

0
50

100
150 PRK

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
1000
2000
3000

OP
C

QuasiRandomSequence

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
500

1000
1500 Reduction

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
500

1000
1500 ScanLargeArrays

25
6K

B
+4

e
+8

e
+1

6e
+3

2e
+6

4e
+1

28
e

+2
56

e
+5

12
e FA

FA
+V

C
51

2K
B

10
24

KB

0
1000
2000
3000
4000 SobelFilter

Figure 6.15: Operations Per Cycle (OPC) of the Vega64 across the studied applications.

RX570 GPU and refer to the 8 L2 cache banks plus the coupled FRC caches with each bank

(if any).

The area overhead of the FRC schemes ranges from 1.6% (+4e) to 7.3% (+512e) compared to

the baseline L2 cache without FRC. Nevertheless, these overheads are largely reduced compared

to those of the much larger 512KB and 1024KB caches, whose cache capacities would translate

into 4096 and 8192 FRC entries, respectively, per bank. The area overheads of these caches are

up to 84.2% and 251.9%, respectively, over the baseline scheme.
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6.7 Related Work

6.6.6 Impact on Performance of Improved Memory Subsystem and Clock

Frequency

In the Vega architecture [7], the most recent GPU generation from AMD to date, the GDDR5

main memory modules from the Polaris architecture are replaced with HBM modules in the

GPU package. The HBM technology o�ers a higher memory bandwidth compared to GDDR5.

In addition, the recent trend in new GPU generations is not only to improve the memory

subsystem but also the GPU clock frequency.

This section evaluates the performance behavior of the FRC approach under a Vega64 GPU,

which consists of 64 CUs, 16 L2 cache banks, and a clock frequency of 1.5GHz. This study

not only evaluates scalability under additional computational power and memory subsystem

capabilities (see Section 6.6.3) but also an improved memory subsystem and a higher clock

frequency has been considered.

Figure 6.15 shows the OPC results for the Vega64 GPU. The Vega64 presents better OPC

values with respect to the RX540 and RX570 across all the studied benchmarks thanks to the

improved computational and memory capabilities and higher memory bandwidth. This fact

does not prevent the FRC from boosting the OPC over the baseline cache in most applications.

Although the average OPC improvements are not as high as those from the RX540 and RX570

GPUs, the FRC still boosts the OPC from 16% (+4e) to 54% (+512e) compared to the 256KB

L2 cache. In this study, the 4× sized cache also reaches an average OPC improvement of

54% over the baseline. However, such a performance would be achieved with a greater energy

consumption and area as discussed above.

6.7 Related Work

Prior work focusing on the GPU memory subsystem can be classi�ed into works aimed at

primarily improving either system performance or energy consumption, which are summarized

in this section.
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6.7.1 System Performance

The GPU memory subsystem performance has been widely analyzed in recent years from di�er-

ent perspectives including cache bypassing techniques [41, 44, 56], and optimization techniques

of the memory subsystem design [40, 25, 47, 74, 32]. This section summarizes prior work in

this regard.

Elastic-Cache [40] supports �ne-grained L1 cache line management for kernels with irregular

memory access patterns that do not e�ciently exploit cache space. Auxiliary tags for �ne-

grained cache line management are stored in unused shared memory space, which is not fully

occupied by many kernels. Gebhart et al. [25] propose to dynamically adjust the storage

partitioning among registers, primary caches, and scratchpads depending on the kernel memory

requirements, resulting in a reduction of the on-chip access latencies. IBOM [47] is an integrated

architecture that leverages unused register �le entries with lightweight ISA support to enlarge

the L1 cache size. With enough cache capacity, a set balancing technique exploits underutilized

sets to improve cache usage.

Other works have proposed additional memory structures to improve GPU performance. Taylor

and Chang [46] investigate the e�ectiveness of adding a victim bu�er to the L1 cache, and

show that victim bu�ers with a relatively low number of lines obtain the same performance as

doubling the L1 cache size. Wang et al. [74] incorporate a victim cache between L1 and L2 that

presents the same capacity and associativity as the L1 cache. Reused blocks are kept in the L1

cache by enabling swap operations with the victim cache. Since a victim cache so large would

impact on energy and area, unused entries from the register �le and shared memory are proposed

as an alternative to holding data that otherwise would remain in the victim cache. MRPB [32]

is a memory-request priorization bu�er that allows reordering and bypassing memory requests

before they access the L1 cache. After being captured by the MRPB bu�er, memory requests

are released into the cache in a cache-friendly order to reduce cache thrashing and stalls.

Other research work has focused on memory and wavefront scheduling strategies [48, 64, 60].
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6.7.2 Energy Consumption

Research addressing energy consumption in on-chip GPU caches has been done from di�erent

points of view including adaptive cache management techniques such as bypassing, thread

throttling, indexing schemes, �ne-grained fetching, and power-gating techniques [70, 20, 37,

59, 75], using alternative memory technologies to SRAM for on-chip storage [34, 62], and the

proposal of additional on-chip memory structures [63].

Tian et al. [70] prevent streaming one-time-use blocks into the L1 cache with a dynamic bypass

prediction technique. The proposed technique saves energy by avoiding useless cache insertions

and evictions. Chen et al. [20] propose to protect the memory hierarchy from contention

with a bypass policy based on reuse distance. Besides, this policy is combined with a thread

throttling technique that dynamically controls the active number of threads in order to mitigate

the contention and resource congestion. Reducing both the memory hierarchy contention and

congestion translates into energy savings with respect to a conventional approach. IACM [37]

is an integrated architecture combining Chen's bypassing and thread throttling techniques with

an L1 cache indexing scheme. IACM dynamically determines the cache indexing bits that can

mitigate cache thrashing and contention based on the runtime information of GPU kernels.

LAMAR [59] is a technique that facilitates a �ne-grained control of DRAM data fetches for

those blocks with low spatial and temporal locality, reducing the energy-hungry tra�c between

on- and o�-chip memory. This technique is combined with a bloom-�lter predictor to adjust the

fetching granularity at runtime. Wang et al. [75] mitigate the leakage energy consumption by

putting both L1 and L2 caches in a state-retentive sleep mode when there are no ready threads

to be scheduled and no memory requests, respectively. The e�ectiveness of the mechanism lies

in the fact that the power on/o� latencies are completely hidden.

Alternative high-density and low-leakage memory technologies have been used to implement

energy-e�cient GPU memory subsystems. Jing et al. [34] implement the GPU register �le,

shared memory, and L1 cache with eDRAM technology. The refresh penalty introduced by

eDRAM is mitigated with the proposal of refresh mechanisms assisted by the compiler. Sama-

vatian et al. [62] use STT-RAM technology to implement L2 caches. The main shortcomings

of STT-RAM are the high energy and latency of write operations, which are addressed by

reducing the data retention time thanks to the kernel data behavior.

Finally, additional memory structures have been also used for energy e�ciency. In [63], the

authors propose to allocate TinyCaches between each lane in a CU and the L1 cache to �lter
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out memory requests to lower memory levels and save on-chip energy. By leveraging intrin-

sic characteristics of GPU programming models, these caches are kept non-coherent to avoid

incurring additional overheads.

6.8 Conclusions

This paper has shown that the way Last-Level Cache (LLC) misses are handled in typical

GPUs acts as a major performance limiter. To deal with this shortcoming, this work has

presented a novel GPU cache subsystem design that leverages a tiny Fetch and Replacement

Cache-like structure (FRC) between the LLC and the main memory. The design provides

additional cache lines that allow prioritizing the fetch of incoming LLC cache blocks over the

replacement of victim blocks. The proposed design boosts the system performance by increasing

the MLP, improving the lifetime of the victimized blocks and removing eviction latencies from

the critical path. Moreover, the small size of the FRC provides additional bene�ts regarding

energy consumption and area compared to merely enlarging the LLC size.

The FRC attacks by design three main cache performance related issues, which results in a

much better LLC cache management: i) it reduces the number of MPKO by keeping victim

blocks in cache until fetch actions are completed, ii) it reduces the miss latency by starting the

fetch actions from main memory as soon as a cache miss rises, and iii) it increases the MLP by

unclogging new block requests whose target line is already being replaced.

Experimental results have shown that, compared to a conventional LLC design, the FRC in-

creases the average OPC by 67%. In addition, the proposal also presents a high scalability,

since it provides more performance bene�ts in a larger GPU, whose average OPC grows up to

118% over the baseline. Moreover, compared to a GPU using the recent HBM technology to

implement the main memory modules, FRC improves the average OPC up to 54% over the

conventional design. Such bene�ts come from a reduction of MPKO due to a higher availabil-

ity of the contents of victim blocks as well as a reduction of miss latencies due to removing

unnecessary serializations and eviction penalties from the critical path. We also found that in

some kernels, latency increases because of the higher MLP, which causes additional contention

accessing main memory. Nevertheless, this latency increase is not enough to constrain the

performance improvements given by the MLP growth.
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Results have also shown that the energy overhead of adding a small FRC with just tens of

entries is largely compensated by its e�ectiveness, reaching energy savings up to 57% compared

to the conventional design. These savings come with less than a 7.3% of LLC area increase.

Finally, evaluating the FRC approach considering also private L1 caches is planned as for future

work.
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Chapter 7

Results Discussion

This chapter summarizes the main results obtained during the work developed in this thesis.

Since this thesis has focused on three main axes: i) characterization of GPGPU applications

from the memory subsystem perspective, ii) GPU simulator framework improvements and val-

idation, iii) the LLC miss management approach proposed in this dissertation, the chapter has

been organized in three sections, each one aimed at discussing the main results of each axis.
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7.1 Characterization of GPGPU Applications

The �rst objective of this thesis was to perform a characterization study of GPGPU applications

from the memory subsystem perspective in order to �nd out possible sources of performance

losses and performance bottlenecks. As a preliminary step, and due to high amount of tra�c

that typical memory coherence protocols introduce in the cache hierarchy, a memory protocol

from a commercial GPU, namely SI (from the AMD Southern Islands GPU architecture), was

modeled and compared against a GPU protocol from the academia (NMOESI) and the well-

known MOESI protocol as baseline.

Once the SI protocol was modeled in Multi2Sim, the thesis work focused on characterizing the

impact of the memory hierarchy of the GPU on the performance of the studied applications.

The characterization study con�rmed that the number of in-�ight memory accesses in GPUs

are several orders of magnitude larger than in CPUs. Because of this fact, it is of paramount

importance that GPU memory protocols are capable of supporting a large amount of parallel

memory accesses. For this reason, it is necessary to minimize the overhead of the protocols in

the utilization of the interconnection network and also increase the parallelism of resources in

the memory hierarchy. On the other hand, the results obtained in the characterization study

allow us to draw three main concluding remarks that can be used to improve the management

of memory accesses in current GPUs. These conclusions are:

• In contrast to CPU memory systems, under the NMOESI protocol, implementing a very

high number of Miss Status Holding Registers (MSHR) in the cache can severely harm the

performance. The main reason is that supporting more in-�ight misses can result in an

increase of the congestion of the memory system, which can turn into performance losses.

• Very high latencies (e.g. over two thousands cycles) cannot be hidden by the massive

parallelism of current GPUs. In other words, there is a limit on the memory latency that,

if surpassed, can cause serious drops in the system performance. Therefore, the protocol

logic should prevent the latency from increasing above that limit.

• Speci�c coherence protocols are needed for GPUs, as also stated in other contemporary

works. Moreover, our results show that both the NMOESI protocol and the SI protocol

improve the system performance over the MOESI protocol by a factor of 4×.
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7.2 Simulator Framework Improvements and Validation

The results of the characterization study also showed that modeling in detail certain elements

and techniques of the memory hierarchy has a high impact on the results of the GPU simu-

lations. The study revealed that these components are not so critical for performance when

simulating CPUs; however, since the focus of this dissertation is on GPUs, a signi�cant ef-

fort was made in the implementation of a realistic model of the GPU memory hierarchy in

Multi2Sim. The improved code can be used both in GPU research as well as in research on

heterogeneous systems composed of CPUs and GPUs.

The components modeled in higher detail are the following:

• MSHR �le: the size of the MSHR �le (e.g. its number of registers) limits the memory

access parallelism in both CPUs and GPUs. However, it is on GPUs where this component

has a much stronger impact since GPUs perform much more memory accesses per unit of

time.

• Non-blocking writes: this technique prevents memory write instructions from blocking

the instruction queue of memory accesses while write operations execute. Thus, this

mechanism allows a higher memory access parallelism.

• Coalescing of memory accesses in the SIMD units: Multi2Sim coalesces memory requests

in the memory subsystem. Nevertheless, GPUs perform a coalesce operation in the SIMD

units before issuing the memory access in order to avoid congestion and unnecessary

memory accesses.

• Memory controller and main memory: Multi2Sim does not simulate in detail the behavior

of the memory controller and the GDDR memory banks. Instead, it adds a constant

delay to the main memory accesses. To increase the detail of the simulation of these

components, we incorporated the DRAMSim2 simulator in Multi2Sim.

• Coherence protocol: the coherence protocol used in GPUs from AMD (SI) is very di�er-

ent from the protocol originally implemented in Multi2Sim (NMOESI). Thus, we added

support in Multi2Sim for the former protocol.

In addition, a validation study in which the new extended simulation framework was validated

versus a commercial GPU (AMD Southern Islands 7870HD) was carried out. The validation
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study was conducted during the stay of the PhD student at the Northeastern University in

Boston, USA, in collaboration with the research group led by Professor David R. Kaeli, which

is in charge of the integration of GPU models in Multi2Sim.

The analysis of the experimental results revealed the following �ve main �ndings:

• Limiting the MSHR �le size introduces important performance drops with respect to

assuming an unbounded MSHR �le.

• Coalescing in the SIMD units can bring important performance di�erences in some appli-

cations, since the number of L1 accesses can widely vary.

• Non-blocking stores improve the performance across all the studied benchmarks. This

improvement is as much as 60% in some applications.

• The number of memory controllers and physical GDDR channels can reduce the perfor-

mance in contrast to assuming a �xed main memory latency. In addition, the results

widely vary depending on the memory controller con�guration.

• The performance achieved under the SI protocol almost doubles the performance obtained

with the NMOESI protocol in some applications.

The validation study showed that our simulator improvements signi�cantly increase the accu-

racy of the original simulator with respect to the real system. This fact proves the relevance

of accurately modeling realistically these hardware mechanisms because, otherwise, important

performance deviations would arise so losing representativeness.

7.3 Proposed LLC Miss Management Approach

Once the modeling and characterization of the system was carried out, a proposal was devised

to improve GPU performance. The proposed approach aims to improve the utilization (in terms

of higher parallelism) of the resources of the memory hierarchy.

In the numerous studies performed during the dissertation, it was found that one of the fac-

tors that serializes the memory access and limits the memory level parallelism is the number

of available directory entries. Typically, there is a directory entry for each cache line, so a

straightforward solution to support higher parallelism is to increase the cache size, especially
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the last level cache, whose size has increased from hundreds of kilobytes to several megabytes

in the last few years.

This increase, however, implies a signi�cant growth of the area and energy consumption in the

memory hierarchy of the GPU, which has a negative impact in the cost of the system that

includes the GPU, regardless of whether it is a high-performance system or a mobile device. To

deal with this drawback without reducing the parallelism of the hierarchy (or even improving

it in some cases), the Fetch and Replacement Cache (FRC) approach was proposed. This

approach is based on increasing the number of directory entries while keeping una�ected the

number of cache lines.

The extra directory entries manage incoming memory requests immediately without evicting

or locking the contents of any cache line. In this way, the FRC approach allows a given load

request to progress before evicting the corresponding victim block. Once the missing block is

fetched from memory and written into an FRC entry, the missing block and the victim block

are swapped. This approach makes the life cycle of the victim block longer. The eviction of

the victim block is �nally performed from the FRC entry, which is subsequently freed until it

receives the next access. Since the number of FRC entries is �xed and limited, in case all the

entries are occupied, the incoming accesses can be handled as the cache typically does, but in

this case without the advantages mentioned above.

Experimental results have shown that the FRC attacks three main issues related to cache

performance, which results in much better last level cache management:

• The number of Misses per Kilo-Operation (MKPO) is reduced by keeping the victim block

in the cache until the fetch of the missing block is completed.

• The miss latency is shortened by starting the fetch from main memory as soon as the

cache miss rises.

• The memory level parallelism is improved by unclogging new block requests whose target

line is already being replaced.

The proposed approach has been tested against the AMD GPU Southern Islands, Polaris and

Vega architectures. The results have shown that the proposal increases, on average, performance

by 67%. These bene�ts mainly come from a reduction of the MPKO due to a longer availability

of the contents of the victim blocks, as well as a reduction of the miss latencies, due to removing
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unnecessary serializations and eviction penalties from the critical path. Finally, compared to

a conventional design, the proposed FRC approach with an area increase smaller than 7.3%

achieves energy savings up to 57%.

Note that the FRC is orthogonal to other cache techniques, like victim caches and write bu�ers.

Victim caches could be used in conjunction with the FRC but, in general, they will not be

e�ective to handle the potential memory-level parallelism of GPU applications mainly because

of their small size. In other words, the miss management problems solved with the FRC proposal

cannot be addressed with a conventional victim cache. A much larger victim cache could help

but this naive solution does not scale and its implementation would su�er severe performance

degradation and power issues. With respect to write bu�ers, they can hide writeback latencies,

but the FRC provides additional bene�ts regarding hit ratio, fetch latencies, and memory-level

parallelism.
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Conclusions

The main results obtained during the development of this PhD thesis have been published

in several conferences and journals. This chapter summarizes the published works classifying

them in three main categories according to the axes discussed in the previous chapter. Below,

the conclusions and an enumeration of the scienti�c publications are given for each category.

Finally, the last section of this chapter presents our plans for future work.
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8.1 Characterization of GPGPU Applications

We characterized the behavior of the GPU applications according to the size of the Miss Status

Holding Register (MSHR) �le implemented in the L2 cache. We analyzed how the number

of MSHRs impacts on typical memory performance metrics and on the overall system perfor-

mance under two distinct GPU coherence protocols: NMOESI and SI (Southern Islands), which

introduce di�erent coherence tra�c patterns. The study provided two key �ndings that can

help improve the performance of GPU coherence protocols. First, there is a strong correlation

between system performance and memory subsystem latency regardless of the protocol. Sec-

ond, system performance varies with the number of supported cache misses (i.e. the supported

Memory Level Parallelism or MLP). However, counterintuitively, supporting more cache misses

does not always brings enhanced performance but it can turn into performance drops that vary

depending on the coherence protocol.

The main results of the work carried out regarding the characterization of GPGPU applications

gave rise to the following publications:

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Impact of Memory

Level Parallelism on the Performance of GPU Coherence Protocols. In Pro-

ceedings of the 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP), pages 305-308, Heraklion, Greece, 2016.

The content of this publication can be found in Chapter 2.

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Impacto del Par-

alelismo de Memoria en los Protocolos de Coherencia para GPUs. In Actas de

las XXVI Jornadas de Paralelismo (JP), pages 233-242, Córdoba, Spain, 2015.

8.2 Simulator Framework Improvements and Validation

The memory hierarchy of the GPU is a critical research topic, since its design goals widely

di�er from those of conventional CPU memory hierarchies. This work is focused on accurately

modeling the entire GPU memory subsystem. Researchers often require advanced microarchi-

tectural simulators with detailed models of the memory subsystem to explore novel designs to

better support GPGPU computing as well as to improve the performance of GPU and het-

erogeneous CPU-GPU systems. Nevertheless, due to the vertiginous trend at which current
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GPU architectures evolve, simulation accuracy of existing state-of-the-art simulators su�ers.

In our �rst published research work on this topic, we identi�ed three main architectural GPU

features that should be modeled with more detail to improve the simulator accuracy: i) L1

cache MSHRs, ii) coalescing vector memory requests, and iii) non-blocking store instructions.

Experimental results show that if the simulation framework does not implement these features,

performance deviations can rise in some applications up to 70%, 75%, and 60%, respectively.

In our second work on this topic, published in the FGCS journal, we extended our �rst study

and covered the modeling of both o�-chip and on-chip memory subsystem components. In

addition, we validated our models against a real commercial device, the AMD 7870HD GPU,

which is based on the AMD Southern Islands GPU architecture. Regarding the on-chip memory

hierarchy, we modeled and analyzed memory request coalescing mechanisms, cache coherence

protocols, as well as both L1 and L2 MSHRs. With respect to the o�-chip memory hierarchy, the

work focused on the memory controller and the GDDR memory, which were modeled with the

DRAMSim2 simulator. The experimental results showed that not modeling these components

causes important deviations, which can vary the results provided by the simulation framework

up to a factor of three.

The work regarding the simulator framework enhancements and validation gave out to the

following international publications:

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Accurately Modeling

the GPU Memory Subsystem. In Proceedins of the 13th International Conference

on High Performance Computing & Simulation (HPCS), pages 179-186. Amsterdam,

Netherlands, 2015.

This publication is presented in Chapter 3.

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Accurately Modeling

the On-chip and O�-chip GPUMemory Susbsystem. Future Generation Computer

Systems (FGCS), volume 82, pages 510-519, 2018.

The content of this publication can be found in Chapter 4.

In addition, other papers directly related to this topic have been published in the following

international summer school and domestic conference:

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Improving the Ac-

curacy of GPU Memory Subsystem Models. In Proceedings of the 12th Interna-
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tional Summer School on Advanced Computer Architecture and Compilation for High-

Performance and Embedded Systems (ACACES), pages 151-154, Fiuggi, Italy, 2016.

• Francisco Candel, Salvador Petit, Julio Sahuquillo, José Duato. Modelando de Forma

Precisa el Subsistema de Memoria de una GPU. In Actas de las XXVII Jornadas

de Paralelismo (JP), pages 481-488, Salamanca, Spain, 2016.

8.3 Proposed LLC Miss Management Approach

In this dissertation we have devised a novel approach that leverages a tiny additional Fetch and

Replacement Cache (FRC) to store control and coherence information of incoming cache blocks

until they are fetched from main memory. Our �rst study on this topic shows that the FRC

improves the system performance due to three main reasons: i) the lifetime of blocks being

replaced is increased, ii) the main memory path is unclogged on long bursts of LLC misses,

and iii) the average L2 miss latency is reduced. Experimental results show that our proposal

improves the system performance (i.e. OPC) over 25% in most of the studied applications,

reaching improvements up to 150% in some applications.

The �rst study was extended in �ve main ways: i) a more detailed hardware implementation

of the FRC was presented and discussed, ii) additional applications from benchmark suites like

Rodinia, Polibench, and Pannotia were also analyzed, iii) the newest AMD Arctic Islands (also

known as Polaris) and Vega GPU architectures were tested, iv) performance scalability was

explored by analyzing how the FRC proposal behaves with an increasing number of CUs and

L2 cache sizes, and v) energy and area consumption costs were estimated and included. The

extension shows that the proposed FRC cache scales in performance with the number of GPU

compute units and the LLC size. Depending on the FRC size, performance improvements range

from 30% to 67% for a modern baseline GPU card, and from 32% to 118% for a larger GPU.

In addition, energy consumption is reduced on average from 49% to 57% for the larger GPU.

These bene�ts come with a small area increase (by 7.3%) over the LLC baseline.

The main results of the work regarding our proposed LLC miss management approach gave

out to the following international publications:

• Francisco Candel, Salvador Petit, Alejandro Valero, Julio Sahuquillo. Improving GPU

Cache Hierarchy Performance with a Fetch and Replacement Cache. In Proceed-

ings of the 24th International European Conference on Parallel and Distributed Computing
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(Euro-Par), pages 235-248, Turin, Italy, 2018.

The contents of this publication are presented in Chapter 5.

• Francisco Candel, Salvador Petit, Alejandro Valero, Julio Sahuquillo. An Energy-

E�cient and Scalable Cache Approach to Boost GPGPU Throughput. IEEE

Transactions on Computers (TC), to appear in (DOI: 10.1109/TC.2019.2907591).

This publication can be found in Chapter 6.

In addition, other related paper has been published in the following domestic conference:

• Francisco Candel, David Baselga, Alejandro Valero, Salvador Petit, Julio Sahuquillo.

Mejora de las Prestaciones de las GPU con una Cache para Búsquedas y

Reemplazos. In Actas de las XXIX Jornadas de Paralelismo (JP), pages 161-169, Teruel,

Spain, 2018.

8.4 Other Indirectly Related Work

In addition to the publications mentioned above performed by the author of this dissertation,

both included in previous chapters as well as the directly related and published in domes-

tic conferences (not included), the PhD candidate has co-authored two international papers

dealing with transistor aging in the GPU register �le. Below the complete references of these

publications are presented:

• Francisco Candel, Alejandro Valero, Salvador Petit, Darío Suárez Gracia, Julio Sahuquillo.

Exploiting Data Compression to Mitigate Aging in GPU Register Files. Pro-

ceedings of the 29th International Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD 2017), Campinas, Brazil, October 17-20, 2017.

• Alejandro Valero, Francisco Candel, Darío Suárez Gracia, Salvador Petit, Julio Sahuquillo.

An Aging-Aware GPU Register File Design Based on Data Redundancy. IEEE

Transactions on Computers, Vol. 68, Issue 1, pp. 4-20, 2019.

121



Chapter 8. Conclusions

8.5 Future Work

As for future work, we plan to extend the FRC to the L1 data cache. Since the FRC approach

has demonstrated that it can increase e�ectively the memory parallelism of the L2 cache, it

also can potentially help improve the performance of the L1 cache too, allowing increasing the

parallelism of the memory subsystem even more.

Nevertheless, L1 improvements could not directly translate into an increase of the overall system

performance because the bene�ts of these improvements may be hidden by other components

of the memory subsystem, like the L2 cache. Moreover, there are important di�erences be-

tween both cache levels that should be considered. On the one hand, the L1 cache capacity is

much smaller than that of the L2 cache; thus, the size of the FRC should be proportionally

lowered. On the other hand, the tra�c patterns of the L1 cache accesses are di�erent from L2,

since L1 data caches are private for each CU. Therefore, the devised FRC organization and

miss management mechanism for L1 caches would probably di�er from those presented in this

dissertation.
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