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Abstract: Finding a repeated zero for a nonlinear equation f (x) = 0, f : I ⊆ R→ R has always been of
much interest and attention due to its wide applications in many fields of science and engineering.
Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view
that very few optimal higher-order convergent methods exist for multiple roots, we present a
new family of optimal eighth-order convergent iterative methods for multiple roots with known
multiplicity involving a multivariate weight function. The numerical performance of the proposed
methods is analyzed extensively along with the basins of attractions. Real life models from life science,
engineering, and physics are considered for the sake of comparison. The numerical experiments and
dynamical analysis show that our proposed methods are efficient for determining multiple roots of
nonlinear equations.
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1. Introduction

It is well-known that Newton’s method converges linearly for non-simple roots of a nonlinear
equation. For obtaining multiple roots of a univariate nonlinear equation with a quadratic order of
convergence, Schröder [1] modified Newton’s method with prior knowledge of the multiplicity
m ≥ 1 of the root as follows:

xn+1 = xn −m
f (xn)

f ′(xn)
. (1)

Scheme (1) can determine the desired multiple root with quadratic convergence and is optimal in
the sense of Kung-Traub’s conjecture [2] that any multipoint method without memory can reach its
convergence order of at most 2p−1 for p functional evaluations.

In the last few decades, many researchers have worked to develop iterative methods for finding
multiple roots with greater efficiency and higher order of convergence. Among them, Li et al. [3]
in 2009, Sharma and Sharma [4] and Li et al. [5] in 2010, Zhou et al. [6] in 2011, Sharifi et al. [7]
in 2012, Soleymani et al. [8], Soleymani and Babajee [9], Liu and Zhou [10] and Zhou et al. [11] in
2013, Thukral [12] in 2014, Behl et al. [13] and Hueso et al. [14] in 2015, and Behl et al. [15] in 2016
presented optimal fourth-order methods for multiple zeros. Additionally, Li et al. [5] (among other
optimal methods) and Neta [16] presented non-optimal fourth-order iterative methods. In recent
years, efforts have been made to obtain an optimal scheme with a convergence order greater than
four for multiple zeros with multiplicity m ≥ 1 of univariate function. Some of them only succeeded
in developing iterative schemes of a maximum of sixth-order convergence, in the case of multiple
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zeros; for example, see [17,18]. However, there are only few multipoint iterative schemes with optimal
eighth-order convergence for multiple zeros which have been proposed very recently.

Behl et al. [19] proposed a family of optimal eighth-order iterative methods for multiple roots
involving univariate and bivariate weight functions given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
, (2)

xn+1 = zn − untnG(hn, tn)
f (xn)

f ′(xn)
,

where weight functions Q : C→ C and G : C2 → C are analytical in neighborhoods of (0) and (0, 0),

respectively, with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
and tn =

(
f (zn)
f (yn)

) 1
m , being a1 and a2 complex nonzero

free parameters.
A second optimal eighth-order scheme involving parameters has been proposed by

Zafar et al. [20], which is given as follows:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −mun H(un)
f (xn)

f ′(xn)
, (3)

xn+1 = zn − untn(B1 + B2un)P(tn)G(wn)
f (xn)

f ′(xn)
,

where B1,B2 ∈ R are free parameters and the weight functions H : C→ C, P : C→ C and G : C→ C

are analytic in the neighborhood of 0 with un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m and wn =

(
f (zn)
f (xn)

) 1
m .

Recently, Geum et al. [21] presented another optimal eighth-order method for multiple roots:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0

wn = xn −mL f (s)
f (xn)

f ′(xn)
, (4)

xn+1 = xn −m
[

L f (s) + K f (s, u)
] f (xn)

f ′(xn)
,

where L f : C → C is analytic in the neighborhood of 0 and K f : C2 → C is holomorphic in the

neighborhood of (0, 0) with s =
(

f (yn)
f (xn)

) 1
m , u =

(
f (wn)
f (yn)

) 1
m .

Behl et al. [22] also developed another optimal eighth-order method involving free parameters
and a univariate weight function as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mu
f (xn)

f ′(xn)

1 + βu
1 + (β− 2)u

, β ∈ R (5)

xn+1 = zn − uv
f (xn)

f ′(xn)

(
α1 + (1 + α2v)Pf (u)

)
,

where α1, α2 ∈ R are two free disposable parameters and the weight function Pf : C→ C is an analytic

function in a neighborhood of 0 with u =
(

f (yn)
f (xn)

) 1
m , v =

(
f (zn)
f (yn)

) 1
m .
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Most recently, Behl at al. [23] presented an optimal eighth-order method involving univariate
weight functions given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −munG f (un)
f (xn)

f ′(xn)
, (6)

xn+1 = zn +
unwn

1− wn

f (xn)

f ′(xn)

(
H f (un) + K f (vn)

)
,

where B1, B2 ∈ R are free parameters and the weight functions G f , H f , K f : C→ C are analytic in the

neighborhood of 0 with un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (zn)
f (xn)

) 1
m and wn =

(
f (zn)
f (yn)

) 1
m .

Motivated by the research going on in this direction and with a need to give more stable
optimal higher-order methods, we propose a new family of optimal eighth-order iterative methods for
finding simple as well as multiple zeros of a univariate nonlinear function with multiplicity m ≥ 1.
The derivation of the proposed class is based on a univariate and trivariate weight function approach.
In addition, our proposed methods not only give the faster convergence but also have smaller residual
error. We have demonstrated the efficiency and robustness of the proposed methods by performing
several applied science problems for numerical tests and observed that our methods have better
numerical results than those obtained by the existing methods. Further, the dynamical performance of
these methods on the above mentioned problems supports the theoretical aspects, showing a good
behavior in terms of dependence on initial estimations.

The rest of the paper is organized as follows: Section 2 provides the construction of the
new family of iterative methods and the analysis of convergence to prove the eighth order of
convergence. In Section 3, some special cases of the new family are defined. In Section 4, the numerical
performance and comparison of some special cases of the new family with the existing ones are given.
The numerical comparisons is carried out using the nonlinear equations that appear in the modeling of
the predator–prey model, beam designing model, electric circuit modeling, and eigenvalue problem.
Additionally, some dynamical planes are provided to compare their stability with that of known
methods. Finally, some conclusions are stated in Section 5.

2. Construction of the Family

This section is devoted to the main contribution of this study, the design and convergence
analysis of the proposed scheme. We consider the following optimal eighth-order class for finding
multiple zeros with multiplicity m ≥ 1:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −munG (un)
f (xn)

f ′(xn)
,

xn+1 = zn −mun H(un, tn, wn)
f (xn)

f ′(xn)
,

(7)

where G : C → C and H : C3 → C are analytical functions in a neighborhood of (0) and (0, 0, 0),

respectively being un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m and wn =

(
f (zn)
f (xn)

) 1
m .

In the next result, we demonstrate that the order of convergence of the proposed family reaches
optimal order eight.
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Theorem 1. Let us consider x = ξ (say) is a zero with multiplicity m ≥ 1 of the involved function f .
In addition, we assume that f : C → C is an analytical function in the region enclosing the multiple zero ξ.
The proposed class defined by Equation (7) has an optimal eighth order of convergence, when the following
conditions are satisfied:

G(0) = 1, G1 = G′(0) = 2, G2 = G′′(0) = 4− G3

6
, G3 = G

′′′
(0)

H000 = 0, H100 = 0, H010 = 1, H101 = 3− G3

12
, H110 = 2− H001,

H011 = 4, H020 = 1, |G3| < ∞, |H001| < ∞,

(8)

where Hijk =
1

i!j!k!
∂i+j+k

∂uj
n∂tj

n∂wk
n

H(un, tn, wn)|(un=0,tn=0,wn=0) for 0 ≤ i, k ≤ 1, 0 ≤ j ≤ 2.

Proof. Let us assume that en = xn − ξ is the error at nth step. By expanding f (xn) and f ′(xn) about
x = ξ using Taylor series expansion, we have:

f (xn) =
f (m)(ξ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)
)

(9)

and:

f ′(xn) =
f (m)(ξ)

m!
em−1

n

(
m + c1(m + 1)en + c2(m + 2)e2

n + c3(m + 3)e3
n + c4(m + 4)e4

n + c5(m + 5)e5
n

+c6(m + 6)e6
n + c7(m + 7)e7

n + c8(m + 8)e8
n + O(e9

n)
)

,
(10)

respectively, where ck =
m!

(m + k)!
f (m+k)(ξ)

f (m)(ξ)
, k = 1, 2, 3, . . . 8.

By inserting the above Equations (9) and (10), in the first substep of Equation (7), we obtain:

yn − ξ =
c1e2

n
m

+

(
2mc2 − (m + 1)c2

1

)
e3

n

m2 +
4

∑
k=0

Akek+4
n + O(e9

n), (11)

where Ak = Ak(m, c1, c2, . . . , c8) are given in terms of m, c1, c2, c3, . . . , c8 with two explicitly

written coefficients A0 = 1
m3

{
3c3m2 + c3

1(m + 1)2 − c1c2m(3m + 4)
}

and A1 = − 1
m4

{
c4

1(m + 1)3 −

2c2c2
1m(2m2 + 5m + 3) + 2c3c1m2(2m + 3) + 2m2(c2

2(m + 2)− 2c4m
)}

, etc.
With the help of Taylor series expansion and Equation (11), we get:

f (yn) = f (m)(ξ)e2m
n

 ( c1
m )m

m!
+

(
2mc2 − (m + 1)c2

1

)
( c1

m )men

m!c1
+

6

∑
k=0

Ākek+2
n + O(e9

n)

 . (12)

Using Equations (9) and (12), we have:

un =

(
f (yn)

f (xn)

) 1
m
=

c1en

m
+

(
2mc2 − (m + 2)c2

1

)
e2

n

m2 + τ1e3
n + τ2e4

n + τ3e5
n + O(e6

n), (13)

where τ1 = 1
2m3

[
c3

1(2m2 + 7m + 7) + 6c3m2 − 2c1c2m(3m + 7)
]
, τ2 = − 1

6m4

[
c4

1(6m3 + 29m2 +

51m + 34) − 6c2c2
1m(4m2 + 16m + 17) + 12c1c3m2(2m + 5) + 12m2(c2

2(m + 3) − 2c4m)
]

and τ3 =
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1
24m5

[
− 24m3(c2c3(5m+ 17)− 5c5m

)
+ 12c3c2

1m2(10m2 + 43m+ 49) + 12c1m2
{

c2
2(10m2 + 47m+ 53)−

2c4m(5m + 13)
}
− 4c2c3

1m(30m3 + 163m2 + 306m + 209) + c5
1(24m4 + 146m3 + 355m2 + 418m + 209)

]
.

It is clear from Equation (13) that un is of order one. Therefore, we can expand the weight function
G(un) in the neighborhood of origin by Taylor series expansion up to third-order terms for eighth-order
convergence as follows:

G(un) ≈ G(0) + unG′(0) +
u2

n
2!

G′′(0) +
u3

n
3!

G′′′(0). (14)

Now, by inserting Equations (11)–(14) in the second substep of the proposed class (Equation (7)),
we obtain:

zn − ξ = − (G(0)− 1)c1

m
e2

n −
((1 + G′(0) + m− G(0)(m + 3))c2

1 + 2mc2(G(0)− 1))
m2 e3

n

+
5

∑
j=1

Bje
j+3
n + O(e9

n),
(15)

where Bj = Bj(G(0), G′(0), G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, 3, 4, 5.
In order to obtain fourth-order convergence, the coefficients of e2

n and e3
n must be simultaneously

equal to zero. Thus, from Equation (15), we obtain the following values of G(0) and G′(0) :

G(0) = 1, G′(0) = 2. (16)

Using Equation (16), we have:

zn − ξ = −
((9− G′′(0) + m)c2

1 − 2mc1c2)

2m3 e4
n +

4

∑
j=1

Pje
j+4
n + O(e9

n), (17)

where Pj = Pj(G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, 3, 4.
With the help of Equation (17) and Taylor series expansion, we have:

f (zn) = f (m)(ξ)e4m
n


2−m

(
(9−G′′(0)+m)c3

1−2mc1c2
m3

)m

m!
−

(
2−m

(
(9−G′′(0)+m)c3

1−2mc1c2
m3

)m−1
η0

)
3(m3m!)

en

+
7

∑
j=1

Pje
j+1
n + O(e9

n)

]
,

(18)

where:

η0 =
(

124 + G′′′ (0)− 3G′′(0)(7 + 3m)c4
1 − 6m(−3G′′(0) + 4(7 + m)c2

1c2 + 12m2c2
2 + 12m2c1c3)

)
and Pj = Pj(G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, . . . 7.

Using Equations (9), (12) and (18), we further obtain:

tn =

(
f (zn)

f (yn)

) 1
m
=

c2
1(9− G′′(0) + m)− 2mc2

2m2 e2
n +

4

∑
j=1

Qje
j+2
n + O(e7

n), (19)
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where Qj = Qj(G′′(0), G′′′(0), m, c1, c2, . . . , c6), j = 1, 2, 3, 4 and:

wn =

(
f (zn)

f (xn)

) 1
m
=

c3
1(9− G′′(0) + m)− 2mc1c2

2m3 e3
n +

4

∑
j=1

Qje
j+3
n + O(e8

n), (20)

where Qj = Qj(G′′(0), G′′′(0), m, c1, c2, . . . , c6), j = 1, 2, 3, 4.
Hence, it is clear from Equation (13) that tn and wn are of order 2 and 3, respectively. Therefore, we

can expand weight function H(un, tn, wn) in the neighborhood of (0, 0, 0) by Taylor series expansion
up to second-order terms as follows:

H(un, tn, wn) ≈ H000 + unH100 + tnH010 +wn H001 + untn H110 + unwn H101 +wntnH110 + t2
n H020, (21)

where Hijk =
1

i!j!k!
∂i+j+k

∂uj
n∂tj

n∂wk
n

H(un, tn, wn)|(0,0,0), for 0 ≤ i, k ≤ 1, 0 ≤ j ≤ 2.

Using Equations (9)–(21) in the last substep of proposed scheme (Equation (7)), we have:

en+1 = −H000c1

m
e2

n +
5

∑
i=1

Eiei+2
n + O(e8

n), (22)

where Ei = Ei(m, G′′(0), G′′′(0), H000, H100, H010, H001, H101, H110, H020, c1, c2, . . . , c6), i = 1, 2, 3, 4.
From Equation (22), it is clear that we can easily obtain at least cubic order of convergence, for:

H000 = 0. (23)

Moreover, E1 = 0 for H100 = 0, we also have:

E2 =
(−1 + H010) c1(−9 + G′′ (0) c2

1 + 2mc2)

2m3 .

Thus, we take:
− 1 + H010 = 0, (24)

Thus, by inserting Equation (24), it results that E2 = 0 and:

E3 =
(−2 + H001 + H110) c2

1(−9 + G′′ (0) c2
1 + 2mc2)

2m4 . (25)

Therefore, by taking:
H110 = 2− H001, (26)

we have at least a sixth-order convergence. Additionally, for H020 = 1:

E4 =
(−2 + 2H101 − G′′ (0)) c3

1(−9 + G′′ (0) c2
1 + 2mc2)

4m5 , (27)

which further yields:

H101 = 1 +
G′′ (0)

2
. (28)

Finally, we take:

H011 = 4, G′′ (0) = 4− G3

6
.

where G3 = G
′′′
(0) .
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Then, by substituting Equations (23), (24), (26) and (28) in Equation (22), we obtain the following
optimal asymptotical error constant term:

en+1 =
c1

288m7 (G3 + 6(5 + m))c2
1 − 12mc2)((G3(25 + m) + 2(227 + 90m + 7m2))c4

1

− 2m(180 + G3 + 24m)c2
1c2 + 24m2c2

2 + 24m2c1c3)e8
n + O(e9

n).
(29)

Equation (29) reveals that the proposed scheme (Equation (7)) reaches optimal eighth-order
convergence using only four functional evaluations (i.e., f (xn), f ′(xn), f (yn) and f (zn)) per iteration.
This completes the proof.

3. Some Special Cases of Weight Function

In this section, we discuss some special cases of our proposed class (7) by assigning different
kinds of weight functions. In this regard, please see the following cases, where we have mentioned
some different members of the proposed family.

Case 1: Let us describe the following polynomial weight functions directly from the hypothesis of
Theorem 1:

G(un) = 1 + 2un +

(
2− G3

12

)
u2

n +
1
6

G3u3
n,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(30)

where H001 and G3 are free parameters.
Case 1A: When H001 = 2, G3 = 0, we obtain the corresponding optimal eighth-order iterative

method as follows:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun(1 + 2un + 2u2
n)

f (xn)

f ′(xn)
,

xn+1 = zn −mun(t2
n + wn(2 + 3un + 4tn) + tn)

f (xn)

f ′(xn)
.

(31)

Case 2: Now, we suggest a mixture of rational and polynomial weight functions satisfying
condition Equation (8) as follows:

G(un) =
1 + a0un

1 + (a0 − 2) un + a3u2
n

,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(32)

where a3 = −2 (a0 − 1) + G3
12 and a0, G3 and H001 are free parameters.

Case 2A: When a0 = 2, H001 = 2, G3 = 12, the corresponding optimal eighth-order iterative
scheme is given by:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun

(
1 + 2un

1− u2
n

)
f (xn)

f ′(xn)
,

xn+1 = zn −mun(tn + 2 (1 + un)wn + (tn + 4wn) tn)
f (xn)

f ′(xn)
.

(33)
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Case 3: Now, we suggest another rational and polynomial weight function satisfying Equation (8)
as follows:

G(un) =
1 + a0un

1 + (a0 − 2) un + a3u2
n + a4u3

n
,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(34)

where a3 = −2(a0 − 1) + G3
12 , a4 = 2a0 + (a0 − 6) G3

12 and a0, H001 and G3 are free.
Case 3A: By choosing a0 = 4, a3 = −5, a4 = 6, H001 = 2, G3 = 12, the corresponding optimal

eighth-order iterative scheme is given by:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun

(
1 + 4un

1 + 2un − 5u2
n + 6u3

n

)
f (xn)

f ′(xn)

xn+1 = zn −mun(tn + 2 (1 + un)wn + (tn + 4wn) tn)
f (xn)

f ′(xn)
.

(35)

In a similar way, we can develop several new and interesting optimal schemes with eighth-order
convergence for multiple zeros by considering new weight functions which satisfy the conditions of
Theorem 1.

4. Numerical Experiments

This section is devoted to demonstrating the efficiency, effectiveness, and convergence behavior of
the presented family. In this regard, we consider some of the special cases of the proposed class,
namely, Equations (31), (33) and (35), denoted by NS1, NS2, and NS3, respectively. In addition, we
choose a total number of four test problems for comparison: The first is a predator–prey model, the
second is a beam designing problem, the third is an electric circuit modeling for simple zeros, and the
last is an eigenvalue problem.

Now, we want to compare our methods with other existing robust schemes of the same order on
the basis of the difference between two consecutive iterations, the residual errors in the function,
the computational order of convergence ρ, and asymptotic error constant η. We have chosen
eighth-order iterative methods for multiple zeros given by Behl et al. [19,23]. We take the following
particular case (Equation (27)) for (a1 = 1, a2 = −2, G02 = 2m) of the family by Behl et al. [19] and
denote it by BM1 as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m (1 + 2hn)
f (xn)

f ′(xn)
un, (36)

xn+1 = zn −m
(

1 + tn + t2
n + 3h2

n + hn(2 + 4tn − 2hn)
) f (xn)

f ′(xn)
untn.
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From the eighth-order family of Behl et al. [23], we consider the following special case denoted
by BM2:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun (1 + 2un)
f (xn)

f ′(xn)
, (37)

xn+1 = zn + m
unwn

1− wn

f (xn)

f ′(xn)

(
−1− 2un − u2

n + 4u3
n − 2vn

)
.

Tables 1–4 display the number of iteration indices (n), the error in the consecutive iterations
|xn+1 − xn|, the computational order of convergence ρ ≈ log| f (xn+1)/ f (xn)|

log|( f (xn)/ f (xn−1))|
, n ≥ 1, (the formula by

Jay [24]), the absolute residual error of the corresponding function (| f (xn)|), and the asymptotical error

constant η ≈
∣∣∣∣ en

e8
n−1

∣∣∣∣. We did our calculations with 1000 significant digits to minimize the round-off

error. We display all the numerical values in Tables 1–4 up to 7 significant digits with exponent. Finally,
we display the values of approximated zeros up to 30 significant digits in Examples 1–4, although a
minimum of 1000 significant digits are available with us.

For computer programming, all computations have been performed using the programming
package Maple 16 with multiple precision arithmetics. Further, the meaning of a(±b) is a× 10(±b) in
Tables 1–4.

Now, we explain the real life problems chosen for the sake of comparing the schemes as follows:

Example 1 (Predator-Prey Model). Let us consider a predator-prey model with ladybugs as predators and
aphids as preys [25]. Let x be the number of aphids eaten by a ladybug per unit time per unit area, called the
predation rate, denoted by P(x). The predation rate usually depends on prey density and is given as:

P (x) = K
x3

a3 + x3 , a, K > 0.

Let the growth of aphids obey the Malthusian model; therefore, the growth rate of aphids G per hour is:

G (x) = rx, r > 0.

The problem is to find the aphid density x for which:

P (x) = G (x) .

This gives:
rx3 − Kx2 + ra3 = 0.

Let K = 30 aphids eaten per hour, a = 20 aphids and r = 2−
1
3 per hour. Thus, we are required to find the

zero of:
f1 (x) = 0.7937005260x3 − 30x2 + 6349.604208

The desired zero of f1 is 25.198420997897463295344212145564 with m = 2. We choose x0 = 20.
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Table 1. Comparison of different multiple root finding methods for f1(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 2.064550(1) 4.789445 1.219414(1) 1.214342(1) 1.213887(1)
| f (x1)| 1.008384(4) 4.963523 1.739946(3) 1.712863(3) 1.710446(3)
|x2 − x1| 1.544682(1) 4.088744(−1) 6.995715 6.944984 6.940438
| f (x2)| 1.967429(−6) 3.035927(−7) 3.672323(−9) 6.792230(−9) 4.951247(−9)
|x3 − x2| 2.560869(−4) 1.005971(−4) 1.106393(−5) 1.504684(−5) 1.284684(−5)
| f (x3)| 5.685107(−81) 6.093227(−29) 1.223217(−100) 5.427728(−98) 2.522949(−99)

η 7.900841 0.1287852 1.928645(−12) 2.780193(−12) 2.386168(−12)
ρ 7.676751 3.0078946 7.834927 7.814388 7.825421

Example 2 (Beam Designing Model). We consider a beam positioning problem (see [26]) where an r meter
long beam is leaning against the edge of the cubical box with sides of length 1 m each, such that one of its ends
touches the wall and the other touches the floor, as shown in Figure 1.

Figure 1. Beam positioning problem.

What should be the distance along the floor from the base of the wall to the bottom of the beam? Let y be the
distance in meters along the beam from the floor to the edge of the box and let x be the distance in meters from the
bottom of the box to the bottom of the beam. Then, for a given value of r, we have:

f2 (x) = x4 + 4x3 − 24x2 + 16x + 16 = 0.

The positive solution of the equation is a double root x = 2. We consider the initial guess x0 = 1.7.

Table 2. Comparison of different multiple root finding methods for f2(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.288477 2.734437(−1) 7.427026(−1) 7.391615(−1) 7.388023(−1)
| f (x1)| 35.99479 1.670143(−2) 5.783224 5.682280 5.672098
|x2 − x1| 9.884394(−1) 2.654643(−2) 4.427007(−1) 4.391589(−1) 4.388001(−1)
| f (x2)| 3.566062(−8) 2.333107(−9) 8.652078(−11) 1.664205(−10) 1.1624462(−10)
|x3 − x2| 3.854647(−5) 9.859679(−6) 1.898691(−6) 2.633282(−7) 2.200800(−6)
| f (x3)| 7.225712(−77) 5.512446(−30) 2.306147(−95) 1.620443(−92) 4.8729521(−94)

e η 4.230427(−1) 3.997726(7) 1.286982(−3) 1.903372(−3) 1.601202(−3)
ρ 7.629155 3.0090640 7.812826 7.7859217 7.800775

Example 3 (The Shockley Diode Equation and Electric Circuit). Let us consider an electric circuit
consisting of a diode and a resistor. By Kirchoff’s voltage law, the source voltage drop VS is equal to the
sum of the voltage drops across the diode VD and resistor VR :

Vs = VR + VD. (38)
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Let the source voltage be VS = 0.5 V and from Ohm’s law:

VR = RI. (39)

Additionally, the voltage drop across the diode is given by the Shockley diode equation as follows:

I = IS

(
e

VD
nVT − 1

)
, (40)

where I is the diode current in amperes, IS is saturation current (amperes), n is the emission or ideality constant
(1 ≤ n ≤ 2 for silicon diode), and VD is the voltage applied across the diode. Solving Equation (40) for VD and
using all the values in Equation (38), we obtain:

−0.5 + RI + nVT ln
(

I
IS

+ 1
)
= 0

Now, for the given values of n, VT , R and IS, we have the following equation [27]:

−0.5 + 0.1I + 1.4 ln (I + 1) = 0.

Replacing I with x, we have

f3 (x) = −0.5 + 0.1x + 1.4 ln (x + 1) .

The true root of the equation is 0.389977198390077586586453532646. We take x0 = 0.5.

Table 3. Comparison of different multiple root finding methods for f3(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.100228(−1) 1.100228(−1) 1.100228(−1) 1.100228(−1) 1.100228(−1)
| f (x1)| 3.213611(−12) 1.902432(−10) 7.591378(−11) 4.728795(−10) 1.626799(−10)
|x2 − x1| 2.902439(−12) 1.718220(−10) 6.856308(−11) 4.270907(−10) 1.469276(−10)
| f (x2)| 9.512092(−97) 6.797214(−81) 2.215753(−84) 2.393956(−77) 1.758525(−81)
|x3 − x2| 8.591040(−97) 6.139043(−81) 2.001202(−84) 2.162151(−77) 1.588247(−81)
| f (x3)| 5.604505(−773) 1.805114(−644) 1.1671510(−672) 1.032863(−615) 3.278426(−649)

η 1.705849(−4) 8.081072(−3) 4.097965(−3) 1.953099(−2) 7.312887(−3)
ρ 7.999999 7.999999 7.999999 7.999999 7.999999

Example 4 (Eigenvalue Problem). One of the challenging task of linear algebra is to calculate the eigenvalues of
a large square matrix, especially when the required eigenvalues are the zeros of the characteristic polynomial
obtained from the determinant of a square matrix of order greater than 4. Let us consider the following
9 × 9 matrix:

A =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


.

The corresponding characteristic polynomial of matrix A is given as follows:

f4(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960. (41)
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The above function has one multiple zero at ξ = 3 of multiplicity 4 with initial approximation x0 = 3.1.

Table 4. Comparison of different multiple root finding methods for f4(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.577283(−1) 9.9275251(−2) 1283418(−1) 1.283182(−1) 1.283180(−1)
| f (x1)| 9.361198(−4) 2.205656(−11) 5.299339(−5) 5.281568(−5) 5.281425(−5)
|x2 − x1| 5.772837(−2) 7.247474(−4) 2.834188(−2) 2.831824(−2) 2.831805(−2)
| f (x2)| 9.059481(−49) 7.0590148(−38) 2.755794(−55) 8.779457(−55) 5.772523(−55)
|x3 − x2| 3.262145(−13) 2.278878(−10) 7.661066(−15) 1.023515(−14) 9.216561(−15)
| f (x3)| 4.543117(−408) 2.278878(−117) 4.807225(−457) 1.869778(−452) 4.077620(−454)

η 2.644775(−3) 2.264227(15) 1.840177(−2) 2.474935(−2) 2.228752(−2)
ρ 7.981915 3.000250 7.989789 7.988696 7.989189

In Tables 1–4, we show the numerical results obtained by applying the different methods for
approximating the multiple roots of f1(x)− f4(x). The obtained values confirm the theoretical results.
From the tables, it can be observed that our proposed schemes NS1, NS2, and NS3 exhibit a better
performance in approximating the multiple root of f1, f2 and f4 among other similar methods. Only in
the case of the example for simple zeros Behl’s scheme BM1 is performing slightly better than the other
methods.

Dynamical Planes

The dynamical behavior of the test functions is presented in Figures 2–9. The dynamical planes
have been generated using the routines published in Reference [28]. We used a mesh of 400× 400
points in the region of the complex plane [−100, 100]× [−100, 100]. We painted in orange the points
whose orbit converged to the multiple root and in black those points whose orbit either diverged or
converged to a strange fixed point or a cycle. We worked out with a tolerance of 10−3 and a maximum
number of 80 iterations. The multiple root is represented in the different figures by a white star.
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Figure 2. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f1(x).
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Figure 3. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f1(x).
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Figure 4. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f2(x).
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Figure 5. Dynamical planes of the methods BM1 (Left) and BM2 (Right) on f2(x).
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Figure 6. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f3(x).
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Figure 7. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f3(x).
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Figure 8. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) on f4(x).
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Figure 9. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f4(x).

Figures 2–9 study the convergence and divergence regions of the new schemes NS1, NS2, and NS3
in comparison with the other schemes of the same order. In the case of f1(x) and f2(x), we observed
that the new schemes are more stable than BM1 and BM2 as they are almost divergence-free and
also converge faster than BM1 and BM2 in their common regions of convergence. In the case of
f3(x), BM1 performs better; however, NS1, NS2, and NS3 have an edge over BM2 for the region
in spite of the analogous behavior to BM2, as the new schemes show more robustness. Similarly,
in the case of f4(x), it can be clearly observed that the divergence region for BM1 is bigger than that for
NS1, NS2, and NS3. Additionally, these schemes perform better than BM2 where they are convergent.
The same behavior can be observed through the numerical comparison of these methods in Tables 1–4.
As a future extension, we shall be trying to construct a new optimal eighth-order method whose
stability analysis can allow to choose the optimal weight function for the best possible results.

5. Conclusions

In this manuscript, a new general class of optimal eighth-order methods for solving nonlinear
equations with multiple roots was presented. This family was obtained using the procedure of weight
functions with two functions: One univariate and another depending on three variables. To reach
this optimal order, some conditions on the functions and their derivatives must be imposed. Several
special cases were selected and applied to different real problems, comparing their performance with
that of other known methods of the same order of convergence. Finally, their dependence on initial
estimations was analyzed from their basins of attraction.
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