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Tensor characterizations of summing poly-
nomials

Dahmane Achour, Ahlem Alouani, Pilar
Rueda and Enrique A. Sánchez Pérez

Abstract. Operators T that belong to some summing operator ideal,
can be characterized by means of the continuity of an associated tensor
operator T that is defined between tensor products of sequences spaces.
In this paper we provide a unifying treatment of these tensor product
characterizations of summing operators. We work in the more general
frame provided by homogeneous polynomials, where an associated “ten-
sor” polynomial —which plays the role of T—, needs to be determined
first. Examples of applications are shown.

Mathematics Subject Classification (2010). 47B10, 46B28, 46G25 .
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1. Introduction

Tensor products have proved to be a useful tool for the theory of operator
ideals. Indeed, the excellent monograph [16] deals with the tensor product
point of view of the theory and provides many applications to the study of the
structure of several spaces of summing linear operators. In the last decades
this linear theory has spreaded to non-linear contexts that include multi-
linear mappings, polynomials, holomorphic functions or Lipschitz mappings
among others. Transferring summability properties to non linear mappings
is not an obvious task as shows the variety of different generalizations of
several classes of summing operators to the multilinear case, and to hit the
multilinear class that is closest, in some sense, to the original linear class
is not trivial (see e.g. [12, 10, 21, 22]). Even more complicated is working
with polynomials, where important lacks of basic results, as a Pietsch type
factorization theorem for dominated polynomials, proved deep differences be-
tween the linear and the polynomial theories (e.g. [9, 11, 24]). The way that
summing linear and multilinear mappings transform vector-valued sequences
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is the essence of the theory of summing operators. Botelho and Campos [7]
show how these transformations can be treated from an unified point of view,
and recover in detail some former inaccuracies that have appeared in the lit-
erature. If S(X) denotes a X-valued sequence space, the summability with
respect to S of an operator T : X → Y (being X and Y Banach spaces

over K = R or C) is related to the associated operator T̂ : S(X) → S(Y )

given by T̂ ((xi)i) := (T (xi))i. For instance, we will work with the following
vector-valued sequence spaces (1 ≤ p ≤ ∞):

• `p(X), the space of all absolutely p-summable sequences in X; that is,
sequences (xi)i in X such that

‖(xi)i‖`p(X) := (
∑
i

‖xi‖p)1/p <∞,

if 1 ≤ p <∞ or,

‖(xi)i‖`∞(X) := sup
i
‖xi‖,

if p =∞,
• `wp (X), the space of all weakly p-sequences in X; that is, sequences (xi)i

in X such that

‖(xi)i‖`wp (X) := sup
x∗∈X∗,‖x∗‖≤1

(
∑
i

|x∗(xi)|p)1/p <∞,

if 1 ≤ p <∞ or,

‖(xi)i‖`w∞(X) := sup
i

sup
x′∈X∗,‖x′‖≤1

|x′(xi)| = sup
i
‖xi‖,

if p =∞,
• `p〈X〉, the space of all strongly p-summable sequences in X; that is,

sequences (xi)i in X such that

‖(xi)i‖`p〈X〉 := sup
(x∗i )i∈`wp′ (X

∗),‖x∗‖`w
p′

(X∗)≤1

∣∣∑
i

x∗i (xi)
∣∣ <∞.

Several classes of linear operators that relate weakly/absolutely/strongly
summable sequences have been extensively treated in the literature (e.g.[8,
16, 17, 23]).

• Let 1 ≤ p < ∞. An operator T : X → Y is absolutely p-summing if
there is a constant C ≥ 0 such that∥∥∥(T (xi)

)n
i=1

∥∥∥
`p(Y )

≤ C‖(xi)ni=1‖`wp (X)

for all x1, . . . , xn ∈ X and all n ∈ N.
• Let 1 < p < ∞. An operator T : X → Y is Cohen p-nuclear if there is

a constant C ≥ 0 such that∥∥∥(T (xi)
)n
i=1

∥∥∥
`p〈Y 〉

≤ C‖(xi)ni=1‖`wp (X)

for all x1, . . . , xn ∈ X and all n ∈ N.
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• Let 1 < p ≤ ∞. An operator T : X → Y is strongly p-summing if there
is a constant C ≥ 0 such that∥∥∥(T (xi)

)n
i=1

∥∥∥
`p〈Y 〉

≤ C‖(xi)ni=1‖`p(X)

for all x1, . . . , xn ∈ X and all n ∈ N.

These classes of linear operators T can be characterized by means of the

associated operator T̂ (see [15]):

• T is absolutely p-summing if and only if T̂ : `wp (X)→ `p(Y ) is continu-
ous.
• T is Cohen p-nuclear if and only if T̂ : `wp (X)→ `p〈Y 〉 is continuous.

• T is strongly p-summing if and only if T̂ : `p(X)→ `p〈Y 〉 is continuous.

Indeed, Botelho and Campos [7] have unified these results by analyz-
ing the transformations of vector-valued sequences by multilinear operators.
In this paper, we provide the tensor product counterpart of this unifying
approach in the context of polynomials.

The tensor product `p ⊗ X can be seen as a subspace of XN via the
algebraic isomorphism into sp,X : `p ⊗X → XN given by sp,X(

∑n
i=1(aij)j ⊗

xi) := (
∑n
i=1 aijxi)j . The following facts are well-known and can be found in

e.g. [15]:

• Let 1 ≤ p ≤ ∞ and let p′ be the conjugate of p, i.e. 1
p + 1

p′ = 1.

The space `wp (X) induces the injective norm ε on `p ⊗ X, defined as

ε(u) := sup‖x′‖`
p′
≤1,‖y′‖≤1

∣∣∑n
i=1 x

′(xi)y
′(yi)

∣∣, for any u =
∑n
i=1 xi ⊗

yi ∈ `p ⊗X.
• Let 1 ≤ p ≤ ∞. The space `p(X) induces the ∆p norm on `p ⊗ X,

defined as ∆p(
∑n
i=1 ei ⊗ xi) = (

∑n
i=1 ‖xi‖p)1/p.

• Let 1 ≤ p < ∞. The space `p〈X〉 induces the projective norm π on
`p ⊗ X, defined as π(u) := inf

∑n
i=1 ‖xi‖`p‖yi‖ where the infimum is

taken over all representations of u =
∑n
i=1 xi ⊗ yi ∈ `p ⊗X.

The following characterizations (see [15]) provide nice examples of how
tensor products come into the theory of summing operators:

• An operator T : X → Y is absolutely p-summing if and only if I ⊗ T :
`p ⊗ε X → `p ⊗∆p

Y is continuous.
• An operator T : X → Y is strongly p-summing if and only if I ⊗ T :
`p ⊗∆p X → `p ⊗π Y is continuous.

• Let 1 < p <∞. An operator T : X → Y is Cohen p-nuclear if and only
if I ⊗ T : `p ⊗ε X → `p ⊗π Y is continuous.

A m-homogeneous polynomial is a mapping P : X → Y such that
P (x) = A(x, . . . , x), x ∈ X, for some m-linear operator. Among all m-linear
operators whose restriction to the diagonal is P , there is only one that is
symmetric (i.e. A(x1, . . . , xm) = A(xσ(1), . . . , xσ(m)) for any permutation σ
of {1, 2, . . . ,m}). This unique symmetric m-linear operator associated to P

will be denoted by
◦
P . We write P(mX;Y ) for the set of all continuous m-

homogeneous polynomials from X to Y . Every continuous m-homogeneous



4Dahmane Achour, Ahlem Alouani, Pilar Rueda and Enrique A. Sánchez Pérez

polynomial is bounded on bounded sets and so P(mX;Y ) becomes a Banach
space when endowed with the supremum norm ‖P‖ := sup‖x‖≤1 ‖P (x)‖,
P ∈ P(mX;Y ).

The interplay between tensor products and summing polynomials has
been explored for a long time, for example in [19, 18, 14, 11, 13]. In this paper
we unify and characterize particular classes of summing polynomials by intro-
ducing an associated polynomial defined between tensor product subspaces
of vector-valued sequences spaces. This approach can be applied to several
classes of summing polynomials, as p-dominated polynomials, strongly Cohen
p-summing polynomials or Cohen p-nuclear polynomials. Note that P(1X;Y )
coincides with the space of all continuous linear operators from X to Y en-
dowed with the usual norm, and so, to unify the linear case it just suffices
to take m = 1. In that case, P = T is a continuous linear operator and the
associated polynomial defined between tensor product spaces is nothing but
the associated tensor product operator (see the next section for definitions).
The concept of finitely determined sequence classes introduced in [7], that
was the key of that study, also plays a fundamental role when dealing with
the transformation of tensor product spaces by homogeneous polynomials.

2. Associated polynomials

Given a linear operator T : X → Y , its associated tensor product operator
I ⊗ T : `p ⊗X → `p ⊗ Y is defined by

I ⊗ T (

n∑
i=1

(cij)j ⊗ xi) :=

n∑
i=1

(cij)j ⊗ T (xi),

and this map is clearly linear. When dealing with a m-homogeneous polyno-
mial P : X → Y one can be tempted näıvely to replace the T by the P in the
above definition with the hope to have an associated polynomial. However, a
quick look makes us to refuse such an approach as the resulting map is not
even well defined when m ≥ 2. So, some extra work is required to introduce
an associated tensor polynomial that plays the role of I ⊗ T .

This kind of tensor product of homogeneous polynomials has already
been considered in the literature (see, e.g., [6, Section 6] and [4]). For our
purposes we will consider the vector space `0p of all sequences in `p with all

entries 0 but finitely many. Let ej denote the canonical unit vector of `0p with

1 in the jth coordinate and 0 otherwise. Note that if u belongs to `0p⊗X then

there exist non-necessarily unique (aij)
ki
j=1 ∈ `0p and xi ∈ X, i = 1, . . . , n, so

that

u =

n∑
i=1

(aij)
ki
j=1 ⊗ xi.

Adding 0 if necessary, we can assume that all the ki are equal. Let us denote
them by k. Now define the associated “tensor” polynomial P : `0mp ⊗ X →
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`p ⊗ Y by

P (

n∑
i=1

(aij)
k
j=1 ⊗ xi) :=

k∑
j=1

ej ⊗ P (

n∑
i=1

aijxi).

To check that the map P is well defined we do

u =

n∑
i=1

(aij)
k
j=1 ⊗ xi =

n∑
i=1

k∑
j=1

aijej ⊗ xj =

k∑
j=1

ej ⊗ yj

where yj :=
∑n
i=1 aijxi, j = 1, . . . , k. An easy calculation shows that the

representation of an element u ∈ `0p ⊗X of the form u =
∑k
j=1 ej ⊗ yj with

yj ∈ X is unique and so P is well defined.
When we take k = n and aij := 1 if i = j and 0 otherwise, in particular

we get

P (

n∑
i=1

ei ⊗ xi) =

n∑
i=1

ei ⊗ P (xi).

In [25] tensor products have been used to characterize summability prop-
erties of linear and multilinear operators by means of an “order reduction”
procedure and the calculus of traced tensor norms. The map P is the restric-
tion to the diagonal of the m-linear symmetric operator

T : (`0mp ⊗X)× (`0mp ⊗X)× · · · × (`0mp ⊗X)→ `0p ⊗ Y
defined as

T ((

n∑
i=1

ei ⊗ x1
i , . . . ,

n∑
i=1

ei ⊗ xmi )) :=

n∑
i=1

ei ⊗ T (x1
i , . . . , x

m
i ),

where T is the unique symmetric m-linear operator such that T (x, . . . , x) =
P (x). Therefore P : `0mp ⊗X → `0p ⊗ Y is a m-homogeneous polynomial and
◦
P=

◦
P .
The class of all Banach spaces over K is denoted by BAN and if X,Y ∈

BAN then X
1
↪→ Y means that X is a linear subspace of Y and ‖x‖Y ≤ ‖x‖X

for all x ∈ X. The set of all sequences in X with all entries 0 but finitely
many is denoted by c00(X). We take from [7] the following definition, that
will be of interest in our study.

Definition 2.1. A class of vector-valued sequences S, or simply a sequence
class S, is a rule that assigns to each X ∈ BAN a Banach space S(X) of
X-valued sequences such that

c00(X) ⊂ S(X)
1
↪→ `∞(X) and ‖ej‖S(K) = 1 for every j.

A sequence class S is finitely determined if for every sequence (xj)
∞
j=1 ∈

XN, (xj)
∞
j=1 ∈ S(X) if and only if supk ‖(xj)kj=1‖S(X) < +∞ and, in this

case,

‖(xj)∞j=1‖S(X) = sup
k
‖(xj)kj=1‖S(X).
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The sequences classes `∞(·), `p(·), `wp (·) and `p〈·〉 are finitely determined
[7, Remark 1.3].

Given a m-homogeneous polynomial P : X → Y , let us consider the

associated m-homogeneous polynomial P̂ : XN → Y N naturally defined by

P̂ ((xi)i) := (P (xi))i.

The linear space `0p ⊗ X can be seen as a vector subspace of XN by
means of the map

sp,X(

n∑
i=1

(aij)
k
j=1 ⊗ xi) := (

n∑
i=1

aijxi)
k
j=1,

which is an algebraic isomorphism into.

Lemma 2.2. If P : X → Y is a m-homogeneous polynomial then

P̂ ◦ smp,X = sp,Y ◦ P .

Proof. For
∑n
i=1(aij)

k
j=1 ⊗ xi ∈ `0p ⊗X we have

P̂ ◦ smp,X

(
n∑
i=1

(aij)
k
j=1 ⊗ xi

)
= P̂

(( n∑
i=1

aijxi
)k
j=1

)
=

(
P
( n∑
i=1

aijxi
))k

j=1

= sp,Y

 k∑
j=1

ej ⊗ P
( n∑
i=1

aijxi
)

= sp,Y ◦ P

(
n∑
i=1

(aij)
k
j=1 ⊗ xi

)
.

�

Lemma 2.3. Let S1 and S2 be two finitely determined sequence classes. Let

P ∈ P(mX;Y ) be such that P̂ (S1(X)) ⊂ S2(Y ). Then c00(X) is a norming

set for P̂ : S1(X)→ S2(Y ).

Proof. Let us write N(P̂ ) := sup ‖(P (xi))i‖S2(Y ), where the supremum is

taken over all (xi)i ∈ c00(X) with ‖(xi)i‖S1(X) ≤ 1. Clearly N(P̂ ) ≤ ‖P̂‖.
If N(P̂ ) = ∞ there is nothing to be proved. If we assume that N(P̂ ) <

‖P̂‖, there is (xi)
∞
i=1 ∈ S1(X) with ‖(xi)∞i=1‖S1(X) ≤ 1 such that N(P̂ ) <

‖(P (xi))
∞
i=1‖S2(Y ). Since S1(X) and S2(Y ) are finitely determined,

‖(xi)Ni=1‖S1(X) ≤ ‖(xi)∞i=1‖S1(X) ≤ 1

for every N ∈ N and

‖(P (xi))
∞
i=1‖S2(Y ) = sup

N
‖(P (xi))

N
i=1‖S2(Y ) ≤ N(P̂ ),

which is a contradiction. �
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From now on we consider two classes of vector-valued sequences S1 and

S2, and P ∈ P(mX;Y ) so that P̂ (S1(X)) ⊂ S2(Y ). Note that

smp,X(`0mp ⊗X) ⊂ c00(X) ⊂ S1(X) and sp,Y (`0p ⊗ Y ) ⊂ c00(Y ) ⊂ S2(Y ).

Therefore, the following diagram arises

S1(X)
P̂ // S2(Y )

`0mp ⊗X

smp,X

OO

P // `0p ⊗ Y

sp,Y

OO

that, in virtue of Lemma 2.2, commutes.

Theorem 2.4. Let X and Y be Banach spaces and let S1 and S2 be sequence

classes. Let P ∈ P(mX;Y ) be so that P̂ (S1(X)) ⊂ S2(Y ). Let α and β be
norms on `0mp⊗X and `0p⊗Y respectively so that smp,X : `0mp⊗αX → S1(X)

and sp,Y : `0p ⊗β Y → S2(Y ) are continuous.

1. If sp,Y is an isometry into then P : `0mp ⊗α X → `0p ⊗β Y is continu-

ous whenever P̂ : S1(X) → S2(Y ) is continuous. In this case ‖P‖ ≤
‖P̂‖‖smp,X‖.

2. If S1(X) and S2(Y ) are finitely determined and smp,X is an isometry

into then P̂ : S1(X)→ S2(Y ) is continuous whenever P : `0mp ⊗α X →
`0p ⊗β Y is continuous. In this case ‖P̂‖ ≤ ‖P‖‖sp,Y ‖.

Proof. (1) It follows immediately from Lemma 2.2 and the hypothesis on sp,Y
being an isometry.

(2) Since S1(X) and S2(Y ) are finitely determined, by Lemma 2.3

c00(X) is a norming set for P̂ : S1(X) → S2(Y ). Take (xi)
n
i=1 ∈ c00(X)

with ‖(xi)ni=1‖S1(X) ≤ 1. Then,∥∥P̂ ((xi)ni=1

)∥∥
S2(Y )

=
∥∥(P (xi)

)n
i=1

∥∥
S2(Y )

=
∥∥∥(sp,Y ( n∑

i=1

ei ⊗ P (xi)
))∥∥∥

S2(Y )

=
∥∥∥sp,Y (P ( n∑

i=1

ei ⊗ xi
))∥∥∥

S2(Y )

≤ ‖sp,Y ‖β
(
P
( n∑
i=1

ei ⊗ xi
))

≤ ‖sp,Y ‖‖P‖α
( n∑
i=1

ei ⊗ xi
)m

= ‖sp,Y ‖‖P‖
∥∥(xi)

n
i=1

∥∥m
S1(X)

.

�

Corollary 2.5. Let X and Y be Banach spaces and let S1 and S2 be sequence

classes. Let P ∈ P(mX;Y ) so that P̂ (S1(X)) ⊂ S2(Y ). Let α and β be
norms on `0mp⊗X and `0p⊗Y respectively so that smp,X : `0mp⊗αX → S1(X)

and sp,Y : `0p ⊗β Y → S2(Y ) are isometries into. If S1(X) and S2(Y ) are
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finitely determined then P̂ : S1(X) → S2(Y ) is continuous if and only if

P : `0mp ⊗α X → `0p ⊗β Y is continuous. In this case ‖P̂‖ = ‖P‖.

The next result is the polynomial version of [7, Proposition 1.4]. Note
that although the proof cannot be adapted straightforwardly to polynomials
(because it uses the closed graph theorem for multilinear operators), it still
remains true.

Proposition 2.6. Let m ∈ N, P ∈ (mX;Y ) and let S1 and S2 be sequence
classes. The following are equivalent:

1. (P (xi))
∞
i=1 ∈ S2(Y ) whenever (xi)

∞
i=1 ∈ S1(X).

2. The induced map P̂ : S1(X) → S2(Y ) is a well-defined continuous m-
homogeneous polynomial.

The conditions above imply condition (3) below, and they are all equivalent
if the sequence classes S1 and S2 are finitely determined.

(3) There is a constant C > 0 such that
∥∥(P (xi)

)n
i=1

∥∥
S2(Y )

≤ C‖(xi)ni=1‖S1(X)

for all x1, . . . , xn ∈ X and all n ∈ N.

In this case, ‖P̂‖ = inf{C : (1) holds }.

Proof. (2) implies (1) clearly. Assuming (2), it is also clear that P̂ is well-
defined and a m-homogeneous polynomial. Let us prove the continuity. It

suffices to be proved that the associated m-linear symmetric operator
◦
P̂ is

continuous. Consider them-linear operator induced by
◦
P , that is,

◦̂
P : S1(X)×

· · ·×S1(X)→ S2(Y ) given by
◦̂
P ((x1

i )
∞
i=1, . . . , (x

m
i )∞i=1) :=

( ◦
P (x1

i , . . . , x
m
i )
)∞
i=1

,

(xji )
∞
i=1 ∈ S1(X), j = 1, . . . ,m. By the polarization formula (see e.g. [20, The-

orem 1.10]), for each i ∈ N
◦
P (x1

i , . . . , x
m
i ) =

1

m!2m

∑
ε1,...,εm=±1

ε1 · · · εmP (ε1x
1
i + · · ·+ εmx

m
i ). (1)

Since S1(X) is a Banach space, the sequence (ε1x
1
i + · · ·+ εmx

m
i )∞i=1 belongs

to S1(X). Then, by (1) the sequence (P (ε1x
1
i + · · · + εmx

m
i )
)∞
i=1
∈ S2(Y ).

The equality (1) gives now that the sequence
( ◦
P (x1

i , . . . , x
m
i )
)∞
i=1
∈ S2(Y ).

From Proposition 1.4 in [7] we get that
◦̂
P is well-defined and continuous.

Since
◦
P̂=

◦̂
P , it follows that P̂ is continuous and condition (2) is proved. We

have actually shown that if P satisfies (1) then
◦
P satisfies [7, Proposition

1.4.(a)], part (c) of that result gives easily (3). The rest of the proof follows
the lines of [7, Proposition 1.4]. Immediately one gets (2) implies (3) and

that ‖P̂‖ ≥ inf{C : (1) holds }. We now assume (3) and that S1(X) and
S2(Y ) are finitely determined. Taking the supremum over n in (3) we get its

equivalence with (2) and ‖P̂‖ ≤ inf{C : (1) holds }. �
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3. Applications to classes of summing polynomials

We apply now Theorem 2.4 and Proposition 2.6 to some classes of sum-
ming polynomials to get new characterizations in terms of tensor product
transformations and also to recover probably known characterizations of
these classes in terms of transformations of vector-valued sequences. With
our approach, all the results are straightforward applications of Corollary
2.5 and Proposition 2.6, just using that the sequences classes `∞(·), `p(·),
`wp (·) and `p〈·〉 are finitely determined [7, Remark 1.3] and that the maps
sp,X : `p⊗εX → `wp (X), sp,X : `p⊗∆pX → `p(X) and sp,X : `p⊗πX → `p〈X〉
are isometries into.

3.1. p-dominated polynomials

Let m ∈ N, m ≤ p < ∞ and let X and Y be Banach spaces. A m-
homogeneous polynomial P ∈ P(mX;Y ) is p-dominated if there is a constant
C ≥ 0 such that ∥∥∥(P (xi)

)n
i=1

∥∥∥
`p/m(Y )

≤ C‖(xi)ni=1‖m`p,w(X)

for all x1, . . . , xn ∈ X and all n ∈ N. The infimum of all such C > 0 de-
fines a norm on the space Pp,d(mX;Y ) of all p-dominated m-homogeneous
polynomials from X to Y , that we denote ‖P‖p,d. For more information on
p-dominated polynomials we refer to [5] and the references therein.

Corollary 3.1. Let m ∈ N, m ≤ p < ∞ and P ∈ P(mX;Y ). The following
are equivalent:

1. P is p-dominated.
2. (P (xi))

∞
i=1 ∈ `p/m(Y ) whenever (xi)

∞
i=1 ∈ `p,w(X).

3. The induced map P̂ : `p,w(X) → `p/m(Y ) is a well-defined continuous
m-homogeneous polynomial.

4. The induced m-homogeneous polynomial P : `0p,w⊗εX → `0p/m⊗∆p/m
Y

is continuous.

In this case ‖P‖p,d = ‖P̂‖ = ‖P‖.

3.2. Cohen strongly p-summing polynomials

Let m ∈ N, 1 < p ≤ ∞ and let X and Y be Banach spaces. An m-
homogeneous polynomial P ∈ P(mX;Y ) is Cohen strongly p-summing if
there is a constant C ≥ 0 such that∥∥∥(P (xi)

)n
i=1

∥∥∥
`p〈Y 〉

≤ C‖(xi)ni=1‖m`p(X)

for all x1, . . . , xn ∈ X and all n ∈ N. The infimum of all such C > 0 de-
fines a norm on the space Pcp,S(mX;Y ) of all strongly Cohen p-summing

m-homogeneous polynomials from X to Y , that we denote ‖P‖p,S . For more
information on Cohen strongly p-summing polynomials we refer to [3].

Corollary 3.2. Let 1 < p ≤ ∞, m ∈ N and P ∈ P(mX;Y ). The following are
equivalent:
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1. P is Cohen strongly p-summing.
2. (P (xi))

∞
i=1 ∈ `p〈Y 〉 whenever (xi)

∞
i=1 ∈ `p(X).

3. The induced map P̂ : `p(X) → `p〈Y 〉 is a well-defined continuous m-
homogeneous polynomial.

4. The induced m-homogeneous polynomial P : `0p ⊗∆p
X → `0p ⊗π Y is

continuous.

In this case ‖P‖p,S = ‖P̂‖ = ‖P‖.

3.3. Cohen p-nuclear polynomials

Let m ∈ N, 1 ≤ p ≤ ∞ and let X and Y be Banach spaces. An m-
homogeneous polynomial P ∈ P(mX;Y ) is Cohen p-nuclear if there is a
constant C ≥ 0 such that∥∥∥(P (xi)

)n
i=1

∥∥∥
`p〈Y 〉

≤ C‖(xi)ni=1‖m`wmp(X)

for all x1, . . . , xn ∈ X and all n ∈ N. The infimum of all such C > 0 defines
a norm on the space Pcp,N (mX;Y ) of all Cohen p-nuclear m-homogeneous

polynomials from X to Y , that we denote ‖P‖p,N .
Clearly, P is Cohen p-nuclear if and only if the (unique) symmetric m-

linear operator A given by A(x, . . . , x) = P (x), is either Cohen p-nuclear in
the sense of [2] or absolutely (1;mp, . . . ,mp, p′)-summing in the sense of [1].

Corollary 3.3. Let 1 < p <∞, m ∈ N and P ∈ P(mX;Y ). The following are
equivalent:

1. P is Cohen p-nuclear.
2. (P (xi))

∞
i=1 ∈ `p〈Y 〉 whenever (xi)

∞
i=1 ∈ `wmp(X).

3. The induced map P̂ : `wmp(X) → `p〈Y 〉 is a well-defined continuous
m-homogeneous polynomial.

4. The induced m-homogeneous polynomial P : `0mp ⊗ε X → `0p ⊗π Y is
continuous.

In this case ‖P‖p,N = ‖P̂‖ = ‖P‖.
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