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Needle electrodes, widely used in clinical procedures, are responsible for creating an electric field in the treated biological tissue.
This is achieved by setting a constant voltage along the length of their metallic section. In accordance with Laplace’s equation, the
electric field is spatially non-uniform around the electrode surface. Mathematical modelling can provide useful information on the
spatial distribution of electrical fields. Indeed, exact solutions for the electrical problem are indispensable for validating numerical
codes. All the analytical models developed to date to solve the needle electrode electrical problem have been one-dimensional
models, which assumed an electrode of infinite length. We here propose the first analytical solution based on a two-dimensional
model that considers the real length of the electrode in which the Laplace equation is solved through the method of separation of
variables, dealing with the nonhomogeneous source term and boundary conditions by Green’s functions. On assuming a needle
electrode of given length, the problem combines boundary conditions on the electrode boundary (of the first and second kind).
Since this rules out using the Sturm-Liouville Theorem, the problem is decomposed into two different problems and the principle
of superposition is used. The solution obtained can reproduce a reasonable electric field around the electrode, especially the edge

effect characterized by an extremely high gradient around the electrode tip.

1. Introduction

Needle electrodes consist of a thin cylindrical metal piece
partially coated with plastic. The electrode is really the
exposed part (i.e., the non-insulated portion, also known as
the conductive tip) beveled to a sharp point. During clinical
use, the exposed part is completely surrounded by tissue.
Single shaft needle electrodes are employed in many clinical
procedures that require the creation of an electric field and
the resulting current density field. To create this field a voltage
difference has to be set between two electrodes, one of which
is the needle electrode and the other is a large area electrode,
also known as a patch, reference electrode, or dispersive
electrode. A large variety of electrodes for soft tissue have been

developed, such as the plain, single internally cooled, cluster
internally cooled, expandable and wet electrodes [1]. The
target tissue is the region near the needle because the current
density there is high, producing the desired effect over the
tissue. The accurate modeling of the electrical problem of
current circulation between needle electrode and dispersive
electrode through the tissue is important to determine if
the desired effect can be obtained. Many clinical procedures
employ needle electrodes of several types, such as electrical
stimulation of excitable tissues [2, 3], characterization of
tissue impedance [4], and thermal destruction of tissue by
applying radiofrequency (RF) current [5, 6].

Mathematical modeling is able to provide useful infor-
mation on the electrical behavior of needle electrodes,
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FIGURE I: (a) The model represented a needle electrode comprised of a conductive tip (green zone) and a portion coated with a plastic material
(orange zone). The electrode is completely surrounded by tissue (gray zone). (b) The two-dimensional model presents axial symmetry around
the electrode axis, and its domain is limited by the electrode surface (radius r;), tissue dimension (radiusr, ), and height z,. The needle electrode

is modeled by a boundary zone of length z, — z,.

especially on the spatial distribution of the electrical field
E and current density J produced in the tissue next to the
electrode. The general electric behavior of any electrode is
basically as follows: a voltage V is uniformly set along the
entire surface of the electrode, while both current density J
and electric field E distributions are spatially non-uniform at
the electrode surface, as they result from solving the Laplace
equation (assuming electrical conductivity o to be constant).
This behavior has previously been correctly reproduced
by mathematical models using numerical methods [7-10].
Since the numerical simulation has to be able to accurately
reproduce the physical situation expressed by the partial
differential equations that model the process, comparing
their results with any existing benchmark analytical solutions
would be one way of validating the numerical simulations.
In other words, exact solutions for the electrical problem are
indispensable to validate numerical codes, since the mesh
refinements used in the codes should be able to capture
the large gradients of voltage and electric field around
the needle electrode, which the analytical solution must
accurately determine. Closed form solutions may also be
useful in designing control strategies [11], as well as for
a quick check of operating conditions in clinical proce-
dures.

To our knowledge, all the previous analytical models
that aimed to solve the electrical problem produced by a
needle electrode were one-dimensional models and assumed
an electrode of infinite length [12-14]. Since the real length
of the electrode (non-insulated tip) was not considered,
their solutions were not able to reproduce the edge effect
characterized by an extremely high gradient around the
tip and the joint between the insulated and non-insulated
portions [9, 10]. Our goal was thus to find a two-dimensional
analytical solution for the electric fields created by a needle
electrode of a given length.

2. Materials and Methods

2.1. Description of the Model Geometry. The monopolar
needle-like electrode is a small radius cylindrical device,
which is inserted into a tissue. A voltage is applied between
the electrode’s surface and a grounded patch located on the
skin of the patient so that the current circulates through
the tissue. The spatial distribution of voltage and current
throughout all the tissues that comprise the electrical circuit
is really very complex, but since the voltage decays rapidly
as the radial distance from the electrode is increased, it
is standard to model the electrical problem of monopolar
cylindrical electrodes using a cylindrical coordinate sys-
tem, by looking for planes or symmetry axes. This allows
to model a three-dimensional physical problem with a
simplified two-dimensional geometry (axisymmetric case)
[15].

The analytical model represents a physical situation
in which a needle electrode with radius #; is completely
surrounded by homogeneous tissue (see Figure 1(a)). The
reference electrode is assumed to be placed far from the
needle electrode and has a comparatively much larger area.
As the electrode radius is much smaller than the tissue, we
assume the domain comprises an annular section of tissue of
height z, = 150 mm with inner radius #; = 0.75 mm and outer
radius 7, = 60 mm (see Figure 1(b)). Since the conductive
portion of the needle electrode is assumed to be in the middle
of the tissue block, its length is z, — z;.

The boundary r = r; is divided into three sections in
order to model the finite length of the electrode: 0 < z < z;
is the insulated portion of the electrode, z;, < z < z, is
the conductive portion of the electrode, i.e., through which
the electrical current flows, and finally z > z, is the tissue
below the electrode. The boundary conditions are insulation
on the boundary r = r;, except for the conductive portion of
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the electrode, where we assume a uniform voltage V,,. The
top axially normal surface (z = 0) is considered electrically
insulated, while both outer radius boundary (r = ;) and the
bottom surface (z = z;) are held at zero voltage, mimicking
the reference electrode.

The electrical problem is solved by the Laplace Equation

V-(eVV)=0 (Y

where o is the electrical conductivity of tissue (S/m), consid-
ered constant in the model, and V is the electric voltage (V).
The electric field E and electric current density J are obtained
from

E=-VV )

J=0E (3)

Equation (1) is a quasi-steady simplification of the basic rela-
tionship between electric current density and charge, called
continuity equation, which is obtained by manipulation of
Maxwell’s equations. The continuity equation states that the
net electrical current flowing in and out of a volume is equal
to the rate of change of electrical charge inside the volume.
Since the time scale of the electrical phenomenon is much
shorter than that of other associated phenomena, such as
thermal damage or electrostimulation, we can simplify in
this case the continuity equation as Laplace equation (1). On
the other hand the quasi-static approximation is suitable due
to the low value of the frequencies, which implies that the
wavelength is much larger than the physical dimensions, and
hence no electromagnetic wave is present. In practical terms
this means that the electrical problem is mathematically
solved as if it was a DC problem, and not a problem with AC
signals.

In practical terms, the electrical problem is analytically
solved through the method of separation of variables, where
the nonhomogeneous boundary conditions are handled
using Green’s functions.

2.2. Calculation (Analytical Solution). Considering that in
this problem the voltage V' is assumed to be a function of the
radial (r) and axial coordinates (z), Equation (1) can be stated

as
10 ([ oV\ 0V
i — =0 4
rar<rar)+azz )

subject to the following boundary conditions:

2,
0z (r,0)

V(r,z,) =0 (6)
V (ry,2) =0 7)

3
v .

[E]W) 0 ifz<z (8)
V(r,z)=V, ifz,<z<z 9
v .

[E]m,@ ~0 ifz>z (10)

where V|, is the voltage applied to the conductive portion
of the needle electrode. The electrical conductivity of the
electrode is very large compared to that of the tissue, and
for that reason the active surface of the electrode can be
considered at a constant voltage. Moreover, since the metallic
electrode is not considered as part of the domain, the solution
does not depend on the electrical properties of the electrode.

As the electrode radius is much smaller than the radial
dimension of the mathematical domain, we considered the
region r = r; and z > z, as a quasi-symmetric region.
A symmetric condition is mathematically equivalent to an
insulated boundary.

Since this is a problem with combined boundary condi-
tions (of the first and second kind) on the boundary r = r;,
it is not suitable for direct solution by the Sturm-Liouville
Theorem. The option is to decompose it into two different
problems and use the principle of superposition.

V(r,z) =V, (r,2) + V, (1, 2) 1)

The decomposition of V into V; and V, was used to make it
possible to solve a mathematical problem, which combines
both Dirichlet and Neumann boundary conditions at r = r;.
This decomposition is possible because of the linearity of the
governing equation and boundary conditions, which allows
the use of the principle of superposition.

V, is obtained solving

12 (%), 2
ror \ or 0%z

subject to the following boundary conditions:

=0 (12)

[%] ~0 (13)
0z |0
Vi(r.29) =0 (14)
Vi (rp2) =0 (15)
Vi (r,z)=Vy ifz<z (16)
V,(r,z) =V, ifz;<z<z, (17)
V,(rsz)=Vy ifz>z, (18)

where Vi is a constant voltage with no physical significance
(i.e., it does not correspond to the real applied voltage V), but
was chosen to guarantee the final satisfaction of the original
problem expressed by Equations (4)-(10). Details of how to



choose the value of Vi are given in Section 4. By using the
method of separation of variables, the solution to Equations
(12)-(18) can be written as
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where I,(1,,r) and K, (#,,,r) are the modified Bessel functions
of the first and second kind, respectively, and #,, are the
eigenvalues for this problem

V,(r,z) = Z A,, cos (1,,2) _@m-Dn (20)
m=1 K ( ) (19) m 220
Mm!
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Iy (o) and
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V, the magnitude of the electric field vector E is calculated as
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Boundary conditions (27) and (28) guarantee that, by
superposing the solutions for V; and V,, the gradients 0V /dz
at r; are zero for sections 0 <z < z, and z, <z < z;. The
solution to Equations (22) to (28) is

V, (r, 2)

@ Ky (170) (29)

= Z Cn cos (nnz) KO (’M’) - HIO (’M’)
n=1 Iy (1,75)
where
C, = -2, (ﬂnro)
2y n
oM, (30)
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Ky (1,1:) I (11a70) + Ko (1,70) Iy (1147)

After solving the equations analytically, Matlab (Mathworks,
Natick, MA, USA) was used to compute each value at any
particular point, so that all the plots were created by choosing
a particular set of points.

3. Results

As mentioned, the value of V. must be suitably chosen to
achieve a mathematical result compatible with the physics,
i.e., a uniform voltage distribution along the electrode sur-
face. Figure 2 shows the voltage distributions obtained for
three different values of V..

We found that if a small value is chosen for Vi
(Vp=0.1xV;), the resulting voltage V along the electrode
surface is not constant and shows a convex shape, with higher
voltage at both ends (see Figure 2(a)). In contrast, if a large
value is chosen (V=0.8xV})), the resulting voltage V along the
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FIGURE 2: Voltage distributions computed for different values of V.. (a) V;=0.1xV;; (b) V;=0.378xV,; and (c) V;=0.8xV}. V; is the applied
voltage of value (25 V). Plots are of a needle electrode of 1.5 mm diameter (r; = 0.75 mm) and conductive portion of 30 mm. The following
domain dimensions were considered: r, = 60 mm, z; = 60 mm, z, = 90 mm, and z, = 150 mm.

electrode surface is not constant and shows a concave shape,
with lower voltage at both ends (see Figure 2(c)). In the case
of a needle electrode with 1.5 mm diameter (r; = 0.75 mm)
and conductive portion of 30 mm, we found that a value V.
= 0.378xV,, produced a constant voltage along the electrode
surface, which makes sense from a physical point of view (see
Figure 2(b)). The effect of changing V. is clearer in Figure 3,
which shows the voltage profile on the electrode surface (r =
r;).

However, the value of V. depends on the electrode
dimensions. For instance, when the electrode diameter is

I mm (r; = 0.5 mm) V- has to be 0.335xV,,, while that for 2 mm
(r; = 1mm) Vi has to be 0.435xV,,. Figure 4 shows voltage
plots for these electrode diameter values. Note that these
values of V- produce a uniform voltage along the electrode
surface.

Similarly, different values of V; have to be found for
different lengths of the conductive portion of the electrode.
Importantly, in the search for the suitable Vi value, the
dimensions of the domain must be sufficiently large in
the z direction; otherwise it is difficult to find a value
Vi that meets the requirement. Figure 5 shows the voltage
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FIGURE 3: Voltage profiles at r = r; computed for different values of V.. (a) V;:=0.1xV; (b) V:=0.378xV,; and (c) V;:=0.8xV. V}, is the applied
voltage of value (25 V). Plots are of a needle electrode of 1.5 mm diameter (+; = 0.75mm) and conductive portion of 30 mm. The following
domain dimensions were considered: r, = 60 mm, z; = 60 mm, z, = 90 mm, and z, = 150 mm.

distribution obtained for two different values of the length
of the conductive portion. Note that the domain had to be
enlarged for longer lengths.

Once V had been obtained, the magnitude of the vectors
E (electric field) and J (current density) were calculated from
the distribution of 0V /0r and 0V /0z as expressed in Egs. (33)
and (34). For instance, Figure 6 shows the profile distribution
0V /or computed on the symmetry axis. Note that the value
of V- was suitably changed to achieve a uniform voltage on
the electrode surface.

The combination of these two terms made it possible to
plot the vector field. For instance, Figure 7 shows the vector
distributions of the current density (J), in which the edge
effect, characterized by an extremely high value of J at the
electrode edges, is easily appreciated. This behavior is even
more marked when the Joule heating (q) is plotted. This
term is the volumetric power density (W/m?) in the tissue
caused by the electrical current flow and is given by q =
J - E. In some clinical applications, such as radiofrequency

ablation, this term is responsible for creating a thermal lesion.
Figure 8 shows an example of this distribution. It can be
seen that higher power is applied at the electrode tip than
at the proximal edge (where the insulated and exposed parts
meet).

4. Discussion

In this study we found a novel analytical solution for the two-
dimensional electrical problem associated with a limited-
length needle electrode. To date, all the analytical solutions
have been based on an oversimplified scenario in which
the electrode was assumed to have an infinite length [12—
14] and did not reflect the characteristic performance of
the electric field around the electrode, especially at the
tips.

While the solution was obtained by using standard
mathematical methods (separation of variables), an original
approach based on the principle of superposition was used to
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FIGURE 4: Voltage distributions computed for three different values of electrode diameter. In each case the value of V7. was suitably changed
to achieve a uniform voltage on the electrode surface. (a) 1 mm diameter (r; = 0.5 mm) with V;=0.335xV;; (b) L5 mm diameter (r; = 0.75 mm)
with V;=0.378xV,; and (c) 2mm diameter (r; = 1mm) with V;:=0.435xV],. Vj, is the applied voltage of value (25 V). Plots are of a needle
electrode with a conductive portion of 30 mm. The following domain dimensions were considered: r, = 60 mm, z;, = 60 mm, z, = 90 mm,

and z, = 150 mm.

handle the combined boundary conditions on the electrode-
tissue boundary. The solution obtained has the minor prob-
lem of requiring the search for an appropriate value for the
parameter Vi in order to achieve a uniform voltage on the
electrode surface, which is the only thing that makes sense
from a physical point of view. In the future this search could
be automated for specific electrode dimensions. For now, the
proposed solution realistically represents the electric behav-
ior of a needle electrode and provides a reliable and useful

analytic solution that can be used by researchers to test their
own codes before running extensive numerical experiments,
in designing control strategies, as well as for a quick check
of the operating conditions in clinical procedures. Moreover,
even though the analytical solution is contextualized in the
medical field of needle electrodes, it could also be useful
for other scientific and industrial applications in which a
voltage is applied between a thin metal cylinder and a remote
reference electrode.
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FIGURE 5: Voltage distributions computed for two different lengths of conductive portion. In each case the value of V. was suitably changed
to achieve a uniform voltage on the electrode surface. (a) 30 mm length (i.e. z; = 60 mm, z, = 90 mm) with V;,=0.378xV}, and z, = 150 mm; (b)
45mm (i.e. z; = 90 mm, z, = 135 mm) with V;=0.282xV; and z, = 225 mm. Plots are of a needle electrode of 1.5 mm diameter (#; = 0.75 mm).
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FIGURE 6: Profiles of 0V /0r computed at r = r;. The value of V.
was suitably changed to achieve a uniform voltage on the electrode
surface. The plot is of a needle electrode with a conductive portion
of 30 mm. The following domain dimensions were considered: r, =
60mm, z, = 60 mm, z, = 90 mm, and z, = 150 mm.

Although most needle electrodes have a real physi-
cal structure based on hollow rather than solid bars, the
lumen being used for instance to circulate cooled liquid,
place thermocouples, introduces guide-wires, etc. In this
respect, although our mathematical model did not con-
sider the lumen, the electrical behavior is exclusively asso-
ciated with the distribution of the electrical variables in
the tissue, and hence what is included or not included

in the electrode is irrelevant in terms of these electri-
cal variables, as the electrode surface acts as a Faraday
cage.

It is important to point out that the analytical solution
was obtained by assuming uniform tissue surrounding the
electrode. In particular, a constant value for electrical con-
ductivity o had to be assumed in order to solve the electric
problem using the Laplace Equation (Eq. (1)). Although the
electrical conductivity changes significantly from tissue to
tissue, it does not change much for a single type of well
irrigated tissue, like the tissue around the electrode. The
model herein presented is valid in situations where electrical
conductivity is spatially and temporally constant, such as in
electrostimulation. In the case of RF heating, the proposed
solution is limited to represent the electric behavior (electric
field, current density, and Joule heating) in an initial state,
i.e.,, just before induced heating changes the o distribu-
tions.

For validation purposes, a comparison between this
analytical solution and a numerical simulation using COM-
SOL 4.2a (COMSOL, Burlington, MA, USA), for the same
dimensions and parameters, was conducted. The numerical
solution, based on Finite Element Method, does not include
the electrode as part of the computational domain, but
includes the region » < r, and z > z,, not included in
the analytical solution because the method of separation of
variables requires the use of a regular geometry. The results
obtained by both methods are shown in Figures 9 and 10.
Figures 9(a) and 9(b) compare vis-a-vis the voltage contour
plots obtained by both methods. Figure 10 compares the
voltage profiles along z at a line where r=0.75 mm (interface
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FIGURE 7: (a) Example of distribution of current density J in the vicinity of the electrode of a needle electrode with a conductive portion
of 30 mm. The following domain dimensions were considered: r, = 60 mm, z, = 60 mm, z, = 90 mm, and z, = 150 mm. (b) Detail of the

distribution around the tip.
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FIGURE 8: Example of distribution of Joule heating (q) in tissue of a
needle electrode with a conductive portion of 30 mm. The following
domain dimensions were considered: #; = 60 mm, z; = 60 mm, z, =
90 mm, and z, =150 mm.

electrode-tissue). Both figures show the very good agreement
in results obtained by both methods.

I

(a)

0.1
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FIGURE 9: Comparison of voltage contours obtained by two meth-
ods: (a) analytical solution with V;=0.378V and (b) numerical
solution using COMSOL. Contour lines for both cases are for values
of voltage ranging from 0.625 V to 24.375 V at intervals of 1.25 V.

5. Conclusions

A novel analytical solution is proposed, which allows accurate
reproduction of the electric behavior of a needle electrode
of given length surrounded by a homogenous space. Impor-
tantly, the solution also allows to reproduce the edge effect
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characterized by an extremely high gradient around the
electrode tip. The analytic solution was finally validated
against a numerical solution based on a commercial software
based on Finite Element Method.
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