

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/125654

Martínez Iranzo, MA.; Herrero Durá, JM.; Sanchís Saez, J.; Blasco, X.; García-Nieto, S.
(2009). Applied Pareto multi-objective optimization by stochastic solvers. Engineering
Applications of Artificial Intelligence. 22(3):455-465.
https://doi.org/10.1016/j.engappai.2008.10.018

http://doi.org/10.1016/j.engappai.2008.10.018

Elsevier

Applied Pareto multi-objective optimization

by stochastic solvers

Miguel Mart́ınez-Iranzo, Juan M. Herrero, Javier Sanchis,

Xavier Blasco, Sergio Garćıa-Nieto

Predictive Control and Heuristic Optimization Group

Department of Systems Engineering and Control

Polytechnic University of Valencia

Camino de Vera 14, 46022 - Valencia, Spain

e-mail: mmiranzo@isa.upv.es http://ctl-predictivo.upv.es

Abstract

It is well known that many engineering design problems with different objectives,

some of which can be opposed to one another, can be formulated as multi-objective

functions and resolved with the construction of a Pareto front that helps select

the desired solution. Obtaining a correct Pareto front is not a trivial question,

because it depends on the complexity of the objective functions to be optimized,

the constraints to keep within and, in particular, the optimizer type selected to carry

out the calculations. This paper presents new methods for Pareto front construction

based on stochastic search algorithms (GAs and MOGAs) that enable a very good

determination of the Pareto front and fulfill some interesting specifications. The

advantages of these applied methods will be proven by the optimization of well-

known benchmarks for metallic supported I-beam and gearbox design.

Key words: Multi-objective optimization, Pareto front, Engineering design,

Preprint submitted to Elsevier Science September 5, 2019

Genetic Algorithms, Multi-objective Genetic Algorithms.

1 Introduction

Many engineering design problems can be translated into multi-objective opti-

mization (MO) problems. This is particularly important when the objectives

may be opposed to one another. For example, the volume or the cost of a

structure may be opposed to its deflation. Examples can be found in almost

any branch of science where MO problems and decision making are present.

MO techniques offer advantages over single-objective optimization techniques

because they can provide a solution with different trade-offs among different

individual objectives of the problem, so that the Decision Maker (DM) can

select the best final solution [10, 11]. Solving an MO problem is, in general,

associated with the construction of a Pareto front. Each point of this front

represents one solution in the objective function space of the MO problem.

Therefore, given any pair of solutions as vectors of their objective function

values, an improvement of one component involves a deterioration of the oth-

ers. Thus, there is no point of a front that is better than another point in this

front (non-dominated points), and the rest of the objective space points are

also dominated by one or more points of the front (dominated points).

The construction of a Pareto front can be very complex, even impossible to

construct, depending on the nature of the MO problem to be solved. The

presence of multi-modal objective functions and non-convex constraints can

complicate the task of the optimizer. Specifically, the use of numeric optimizers

based on non-linear programming (NLP) derived from Gauss-Newton methods

2

can present problems when determining Pareto fronts - since NLP depends on

the starting point chosen for the search, given its nature as a local optimizer.

Although Messac et al. presents in [14] good alternatives for the construction of

Pareto fronts using NLP optimizers, clear limitations in the case of solving bi-

objective problems are shown [12]. These limitations are even greater for three-

objective and multi-objective problems in general, therefore more research in

that direction could be challenged.

Using stochastic optimizers, which deals with multi-modal and non-convex

problems, can be a very effective way to solve these limitations. As design

problems are performed off-line, the computational cost involved using this

kind of optimizer to solve MO problems is not a key point in this research.

This paper presents two approaches to solve MO engineering design problems

with stochastic optimizers. Firstly, a Genetic Algorithm (GA) is used as a

substitute of the NLP in the Normalized Normal Constraint method (NNC)

[13, 14]. The NNC method focuses on achieving well distributed Pareto front

solutions. Secondly, Pareto solutions with a Smart distribution around the

Pareto Front are generated using the ε↗-MOGA algorithm. In a smart dis-

tribution, the density of Pareto points is usually non-uniform, depending on

the trade-offs among the objectives [13]. The greater the trade-off, the greater

the density of points achieved. However, in regions with insignificant trade-

off, fewer Pareto solutions are needed, and therefore the number of Pareto

solutions to consider is reduced, making the choice of a final solution easier.

The paper is organized as follows: section 2 presents the mathematical foun-

dations of the NNC method for MO problems. In section 3, deficiencies of the

NNC method are discussed and their solutions are proposed with a method

3

based on the previous method - called the WNNC method. Two application

examples of MO design problems are solved in section 4, presenting well-

distributed Pareto fronts. The following section, offers a synopsis of the ε↗-

MOGA algorithm and discusses its natural ability to solve MO problems with

smart characteristics. Comparison with WNNC results are also presented in

this section. And finally, section 6 provides the concluding remarks.

2 An introduction to the Normalized Normal Constraint Method

The NNC method was originally formulated for bi-objective optimization [14],

and was developed for the three-objective case in [13]. This method produces

reasonably well distributed Pareto fronts.

The NNC method begins formulating an MO problem as follows:

minx [µ1(x) µ2(x) · · ·µn(x)] (1)

subject to:

gq(x) ≤ 0, (1 ≤ q ≤ r)

he(x) = 0, (1 ≤ e ≤ s)

xli ≤ xi ≤ xui, (1 ≤ i ≤ nx)

(2)

Where x is the vector of the nx design variables to be optimized; gq(x) and

he(x) are each of the r inequality and s equality problem constraints respec-

tively; and xli and xui are the lower and upper constraint limits in the nx

dimensions of the search space D, respectively.

4

This problem does not have a single solution and, therefore the Pareto optimal

set ΘP (solutions where none dominate the others) must be found.

Pareto dominance is defined as follows:

A solution x1 dominates another solution x2, denoted by x1 ≺ x2, if

∀i, k ∈ [1 . . . n], µi(x
1) ≤ µi(x

2) ∧ ∃k : µk(x
1) < µk(x

2) .

Therefore, the Pareto optimal set ΘP , is given by

ΘP = {x ∈ D | 6= ∃ x̃ ∈ D : x̃ ≺ x} . (3)

The Pareto set, ΘP , is unique and normally includes infinite solutions. Hence

a set Θ∗P , with a finite number of elements from ΘP , should be obtained 1 .

The NNC method begins calculating the minimum in each objective function,

µi(x
i∗) (i = 1, 2, ..., n). Thus, the solutions of the following n optimization

problems are calculated as

xi∗ = arg min
x

µi(x) subject to (2) (4)

Using the solutions xi∗, the anchor points µi∗ are formed as vectors of n

components:

µi∗= [µi∗1 µi∗2 . . . µi∗n]T = (5)

= [µ1(x
i∗) µ2(x

i∗) . . . µn(xi∗)]T

Notice that the anchor points will determine the extremes of the Pareto fron-

tier. In addition, two characteristic points are calculated: the utopia point, µU ,

1 Notice that Θ∗P is not unique.

5

composed of the best components 2 of each anchor point:

µU = [µU1 µU2 . . . µUn]T = (6)

= [µ1(x
1∗) µ2(x

2∗) . . . µn(xn∗)]T

and the nadir point written as the worst design objective values of the anchor

points:

µN = [µN1 µN2 . . . µNn]T (7)

where

µj
N = max[µj(x

1∗) . . . µj(x
n∗)]; (j = 1, . . . , n) (8)

To avoid scaling deficiencies, the optimization is performed in the normalized

objective space (Fig. 1). In order to obtain the required normalized space,

let vector L = [l1, l2, · · · , ln]T the difference between the nadir point and the

utopia point, L = µN − µU . Hence, the following equation is used to perform

the mapping:

µi(x) =
µi(x)− µUi

li
, i = (1, . . . , n) (9)

Let vectors Nk, for k = 1, . . . , n− 1, defined as

Nk = µn∗ − µk∗ (10)

where each vector Nk represents the direction from the normalized anchor

point for the n objective, µn∗, to the normalized anchor point corresponding

2 Since it corresponds to all objectives simultaneously at their best possible values

- however, it cannot be reached.

6

Figure 1. Normalized utopia hyperplane for a three objective problem.

to the k objective, µk∗.

Along the direction of each vector Nk and for a prescribed number of divisions

mk, a normalized increment δk is defined as

δk =
1

mk − 1
, k = 1, . . . , n− 1 (11)

which will lead to a resulting segment size of δk ‖ Nk ‖ for each vector Nk.

Once the vectors Nk have been segmented, a set of distributed points Xpj

over the normalized utopia hyperplane can be calculated as 3

Xpj =
n∑
k=1

αkjµ
k∗ (12)

where

αkj = [0, 1, . . . ,mk − 1]δk, k = 1, . . . , n− 1

αnj = 1−
n−1∑
k=1

αkj

(13)

3 For a tri-objective problem, the normalized utopia hyperplane is a triangle.

7

and the coefficients αkj must fulfill the following property

n−1∑
k=1

αkj ≤ 1 (14)

The NNC method states that the solution of the MO problem (1) can be

transformed into a series of single objective minimizations, but in the nor-

malized domain. Thus, for each point Xpj belonging to the normalized utopia

hyperplane, a single optimization problem can be stated as:

min
x

µn(x) (15)

subject to:

gq(x) ≤ 0, (1 ≤ q ≤ r)

he(x) = 0, (1 ≤ e ≤ s)

xli ≤ xi ≤ xui, (1 ≤ i ≤ mx)

(16)

N
T

k (µ−Xpj) ≤ 0, k = 1, 2, . . . n− 1 (17)

µ = [µ1(x), · · · , µn(x)]T (18)

Therefore, the Pareto frontier can be obtained solving the series of optimiza-

tion problems stated as (15). However, the frontier constructed in this way can

include non Pareto or local Pareto points 4 . These local Pareto points could

be marked differently when presenting results to an engineer, but at the same

time, they provide information about the boundary of the constraint design

4 Local Pareto points are those that are not locally dominated by any other point.

Non Pareto points are even dominated locally.

8

space, and can always can be avoided. In [12] an algorithm with memory and

bidirectional search for bi-objective problems, and in ([14]) a filtering pro-

cess after optimization are proposals to eliminate these local and non Pareto

solutions.

3 The wide NNC method for multi-objective optimization

The NNC method includes two undesirable features that result in the genera-

tion of unevenly distributed, and even incomplete, Pareto fronts. The first

aspect is related to the calculation of normalized utopia hyperplanes and

the distribution of points for more than two objectives. The second aspect

is the absence of a guarantee that the generated set of solutions will repre-

sent the complete Pareto front for problems with more than two objectives.

More specifically, the NNC method leaves some regions of the Pareto frontier

unexplored.

This section provides important developments that overcome the limitations

of the originally developed NNC method. Specifically, the new developments

ensure that the generated Pareto set represents the complete Pareto frontier. It

enables the generation of an entire discrete description of the Pareto frontier,

which is a powerful feature that the original NNC method did not possess.

In [17] application of the NNC method for MO is discussed, particulary the

impossibility of generalizing the transformation from the utopia plane to a

normalized plane. It states an alternative enhanced normalized normal con-

straint (ENNC) method, which can be applied to MO problems of any number

of objectives when they have disparate scales. The approach involves the use

9

of an exact matrix transformation between the objective space and the nor-

malized space to obtain a normalized space with equal scales, instead of a

linear transformation (9):

µi∗ = T(µi∗ − µU) (19)

Without loss of generality, the linear transformation matrix T for a three

objective optimization problem can be calculated from

µ1∗

µ2∗

µ3∗


9x1

=



T [0] [0]

[0] T [0]

[0] [0] T


9x9



µ1∗ − µU

µ2∗ − µU

µ3∗ − µU


9x1

(20)

Matrix T enables mapping any point of the objective function space with

disparate scales to the normalized space with equal scales, and vice versa. 5

However, it does not guarantee that the orthogonal projections of the points

over the normalized utopia hyperplane take in the whole Pareto front.

Figure 2 shows how the orthogonal projection of the normalized utopia hy-

perplane leaves parts of the Pareto front unexplored. This fact implies that

the set of distributed points Xpj over this plane - calculated as in (12) - is

insufficient for the correct determination of the whole Pareto front.

The proposed method, called wide normalized normal constraint method (WNNC)

can overcame this problem. WNNC modifies the approach used to generate

5 Notice that, for the three objective case, Eq. (20) results in an independent system

of 33 equations. In general, for MO problems of n objectives, the independent system

(20) will always be of nn equations.

10

Figure 2. Solid: Normalized utopia hyperplane projection over Pareto front gener-

ated by the NNC method. Dashed: the complete Pareto front.

the points Xpj on the normalized utopia hyperplane, by simply resizing the

normalized utopia hyperplane section. If the normalized utopia hyperplane

is enlarged to the first quadrant limits, its projection will enclose the entire

Pareto front in the normalized space. Doing this will ensure that Pareto points

can be obtained using the NNC method anywhere in the hypercube.

In a three objective case, this new hyperplane, termed an enlarged normalized

utopia hyperplane, is formed by the triangle limited by the vertices (figure 3):

µ1∗
E = [2 0 0]

µ2∗
E = [0 2 0] (21)

µ3∗
E = [0 0 2]

And the new set of distributed points Xpj over the enlarged normalized utopia

hyperplane can be now calculated as:

Xpj =
n∑
k=1

αkjµ
k∗
E (22)

11

Notice that a greater number of points will be calculated as the enlarged utopia

hyperplane covers a larger surface area. This means that the computational

burden of the method will be increased.

Figure 3. Enlarged normalized utopia hyperplane for a three objective problem.

Let’s consider an example that shows the effectiveness of the proposal. This

numerical example is presented in [13] and defined as

minx [µ1(x) µ2(x) µ3(x)]

subject to:

µ1(x) = x1

µ2(x) = x2

µ3(x) = x3

(µ1(x)− 1)4 + (µ2(x)− 1)4 + (µ3(x)− 1)4 − 1 ≤ 0

(23)

12

Figure 4 shows the normalized utopia hyperplane and the orthogonal projec-

tions when the NNC method is applied in its original form. Figure 5 shows the

results in the normalized space when the enlarged normalized utopia plane is

used with the WNNC method. Notice how new points belonging to the Pareto

front now appear. It is important to note that the search in each orthogonal

direction by means of an NLP algorithm (such as SQP 6) did not produce

adequate results in the upper area of the enlarged triangle. Therefore, a GA

was used 7 , together with a filter to eliminate non-Pareto points.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

µ
1

µ
2

µ
3

µ
1*

N
2

µ
2*

µ
3*

µ

X
pj

N
1

Figure 4. Solution of example (23) with the original NNC method.

4 Engineering application examples

In this section, we consider two engineering design problems that show the

effectiveness of proposed methods for generating Pareto frontiers. The first

problem, is a benchmark used in the area of civil engineering. The second

example entails the optimization of a gearbox related with mechanical engi-

neering. Notice that the examples are limited to two and three objectives in

6 Sequential Quadratic Programming.
7 The characteristics of the GA are presented in the appendix.

13

0

0.5

1

1.5

2 0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ
2µ

1

µ
3

Figure 5. Enlarged utopia hyperplane (dots). The whole projection over the Pareto

front that WNNC generates (squares).

order to present the results graphically.

4.1 Example 1: Simply supported I-beam design

The supported I-beam was originally proposed in [4]. This problem has four

design parameters, x, related to different longitudinal magnitudes of the I-

beam (figure 6). It should minimize both the total cross-sectional area, f1(x),

and its deflection at the midspan ,f2(x), under the applied loads P and Q. The

constants of this problem are P = 600 kN , Q = 50 kN , E = 2 · 104 kN/cm2

(Young’s module), σ = 16 kN/cm2 (maximum stress), L = 200 cm.

14

Figure 6. Simply supported I-beam of example 1.

Therefore, the MO design problem can be stated as:

minx [f1(x) f2(x)]

x = [x1, x2, x3, x4]

subject to

0.3Px1
x3(x1−2x4)3+2x2x4[4x24+3x1(x1−2x4)] + 0.3Qx2

(x1−2x4)x33+2x32x4
≤ 0.001σ

10 ≤ x1 ≤ 80

10 ≤ x2 ≤ 50

0.9 ≤ x3 ≤ 5

0.9 ≤ x4 ≤ 5

where

f1(x) = 2x2x4 + x3(x1 − 2x4)

f2(x) = PL3

48EI

I =
x3(x1−2x4)3+2x2x4[4x24+3x1(x1−2x4)]

12

15

Figure 7 presents the domain of feasible solutions where it is possible to iden-

tify the Pareto front. This result is achieved by exhaustive calculations and

it seeks to serve as a confirmation when the Pareto front is obtained by the

WNNC method.

Figure 7. Example 1: Domain of feasible solutions.

Figure 8 presents the Pareto front obtained using WNNC. To generate this

front a GA was used in each orthogonal search (15), instead of an NLP method

(such as SQP) as originally proposed in the NNC method. Since the Pareto

front reproduces the lower limit of the domain of feasible solutions presented

in figure 7, it is possible to affirm that this front has been found correctly.

200 300 400 500 600 700 800

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

f 2
 (

c
m

)

f
1
 (cm

2
)

Figure 8. Example 1: Pareto front generated by the WNNC method.(m1 = m2 = 50)

16

The optimization results from [6] - using a fuzzy multi-objective optimization

method (FMO) - are also listed in Table 1 for comparison. This table shows

how some points selected from the WNNC solution dominate the points ob-

tained using the FMO method 8 . It means that the proposed method offers

better optimum results.

Table 1

Optimization results of example 1 with FMO and WNNC methods.

FMO FMO WNNC WNNC

(x1, x2, x3, x4) (f1, f2) (x1, x2, x3, x4) (f1, f2)

1 (80,26.1303,1.4637,4.7086) (349.3860,0.0128) (80,50.0,0.9,2.8160) (348.5352,0.0111)

2 (80,49.9860,1.2242,2.3464) (326.7680,0.0126) (80,50.0,0.9,2.5837) (325.7217,0.0119)

3 (80,50.0000,1.1312,2.2856) (313.8876,0.0130) (80,50.0,0.9,2.4565) (313.2271,0.0125)

4 (80,35.7683,1.0355,3.0966) (297.9494,0.0138) (80,50.0,0.9,2.2934) (297.2155,0.0132)

5 (80,50.0000,0.9000,2.0820) (276.4525,0.0143) (80,50.0,0.9,2.0820) (276.4525,0.0143)

4.2 Example 2 - Gearbox design

In [8] a gearbox design is presented as a bi-objective optimization problem. In

this paper, the same problem, but reformulated as in [6] with three objectives,

is solved. The objectives are: to minimize the speed reducer volume (cm3),

and minimize the stress in the shafts 1 and 2. The MO problem has seven

design variables constrained by their upper and lower limits. Furthermore,

the problem is subjected to a number of constraints imposed by gear and

8 Only point 5 is not dominated.

17

shaft design practices. Figure 9 and table 2 describe the physical meaning of

variables and constraint functions.

18

Below, the mathematical formulation of the example is described:

minx [f1(x) f2(x) f3(x)]

x = [x1, x2, x3, x4, x5, x6, x7]

subject to

g1(x) = 27x−11 x−22 x13 − 1 ≤ 0

g2(x) = 397.5x−11 x−22 x−23 − 1 ≤ 0

g3(x) = 1.93x−12 x−13 x34x
−4
6 − 1 ≤ 0

g4(x) = 1.93x−12 x−13 x35x
−4
7 − 1 ≤ 0

g5(x) = x2x3 − 40 ≤ 0

g6(x) = x1x
−1
2 − 12 ≤ 0

g7(x) = 5− x1x−12 ≤ 0

g8(x) = 1.9− x4 + 1.5x6 ≤ 0

g9(x) = 1.9− x5 + 1.1x7 ≤ 0

g10(x) = A1

B1
− 1300 ≤ 0

g11(x) = A2

B2
− 850 ≤ 0

2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5 ≤ x7 ≤ 5.5

19

where

f1(x) = 0.7854x1x
2
2(10x23/3 + 14.9334x3 − 43.0934)

−1.508x1(x
2
6 + x27) + 7.4777(x36 + x37)

+0.7854(x4x
2
6 + x5x

2
7)

f2(x) = A1

B1

A1 =
√

(745x4x
−1
2 x−13)2 + 1.69e7, B1 = 0.1x36

f3(x) = A2

B2

A2 =
√

(745x5x
−1
2 x−13)2 + 1.575e8, B2 = 0.1x37

X7

X6

X5

X1

X4

Figure 9. Example 2: Graphical representation of the gearbox.

In this example, the anchor, utopia, and nadir points are respectively:

20

Table 2

Physical variables and gear constraints.

x1 Gear face width (cm)

x2 Teeth module (cm)

x3 Number of teeth on pinion

x4 Distance between bearing 1 (cm)

x5 Distance between bearing 2 (cm)

x6 Diameter of shaft 1 (cm)

x7 Diameter of shaft 2 (cm)

g1(x) Bending stress of teeth

g2(x) Constant stress of teeth

g3(x) Transverse displacement of shaft 1

g4(x) Transverse displacement of shaft 2

g5(x) Generated torque constraint

g6(x) Generated torque constraint

g7(x) Generated torque constraint

g8(x) Generated torque constraint

g9(x) Generated torque constraint

g10(x) Stress of shaft 1

g11(x) Stress of shaft 2

21

µ1∗= [2948.2 1308.0 850.6]

µ2∗= [6012.9 694.7 809.9]

µ3∗= [5950.8 1048.5 754.5]

µU = [2948.2 694.7 754.5]

µN = [6012.9 1308.0 850.6]

Using the simple linear transformation (9), the following normalized anchor

points result:

µ1∗= [0 1 1]

µ2∗= [1 0 0.5767] (24)

µ3∗= [0.9797 0.5769 0]

which do not have the desired form of

µ1∗= [0 1 1]

µ2∗= [1 0 1] (25)

µ3∗= [1 1 0]

To obtain the anchor points of 25, an exact matrix transformation as in 19

must be applied, with

T =



0.3296 0.0289 −0.1847

0.0697 2.2347 −3.8552

0.0698 −0.5921 14.1837


· 10−3

derived from the system of equations (20).

The Pareto front generated using the NNC method and the exact matrix

transformation with T as normalization procedure is shown in figure 10.

22

2000
3000

4000
5000

6000
7000 600

800
1000

1200
1400

740

760

780

800

820

840

860

f
2

f
1

f 3

Figure 10. Example 2: Pareto front and utopia plane generated with NNC corrected

with transformation matrix T. (m1 = m2 = 75).

As stated in section 3, using the enlarged utopian hyperplane expands the

obtainable Pareto solutions because unexplored regions of the Pareto front

are reduced. This fact can be observed in figure 11 which depicts the results

in the objectives space. Once more, a GA is used in each orthogonal search

(15) to generate the front, instead of an NLP method (such as SQP) as this

gradient-based method produces inaccurate results.

Differences between the use of the NNC method with the normalized utopia

hyperplane and the proposed WNNC can be observed in figure 12.

As in the previous example, the optimization results from [6] - using the FMO

method - are listed in Table 3 for comparison. In this case, the WNNC results

again significantly improved on those obtained by FMO 9 .

9 For the sake of simplicity, the values of the design variables x corresponding to

the selected points of the Pareto front are not included.

23

2000
4000

6000
8000

10000 500
1000

1500
2000

750

800

850

900

950

f
2

f
1

f 3

Figure 11. Example 2: Pareto front and enlarged utopia plane generated with

WNNC (m1 = m2 = 50).

2000
4000

6000
8000

10000 600 800 1000 1200 1400 1600 1800 2000

750

800

850

900

950

f
2f

1

f 3

Figure 12. Example 2: Comparison of solutions generated by the WNNC method

(squares) and the NNC method (dots).

5 ε↗-MOGA algorithm with ’smart’ characteristics

Previous sections have shown the WNNC algorithm can generate complete

and evenly distributed Pareto fronts. This uniform distribution is achieved

24

Table 3

FMO vs. WNNC optimization results for the gearbox design.

FMO WNNC

(f1, f2, f3) (f1, f2, f3)

1 (4361.3, 1004.5, 797.4) (4202.9, 844.8, 754.7)

2 (4588.8, 870.0, 810.8) (4508.7, 695.7, 754.7)

3 (3765.5, 1089.3, 793.0) (3614.9, 795.9, 754.8)

4 (4821.6, 757.7, 762.9) (4508.7, 695.7, 754.7)

5 (3425.0, 879.8, 797.6) (3412.1, 829.4, 754.7)

6 (3762.0, 939.8, 775.7) (3569.0, 895.4, 754.8)

7 (4001.6, 822.1, 775.7) (3466.5, 729.9, 754.8)

8 (3812.9, 702.0, 793.0) (3664.9, 696.9, 760.1)

solving an increased number of single optimization problems - one per each

solution generated. This computational burden can be relaxed using other

types of algorithms which generate solutions with smart distributions. Smart

means that the density of the points belonging to the Pareto front depends

on its rate of change. Front zones with lower rates of change have fewer points

than higher rated zones.

One of the algorithms with smart characteristics is the ε↗-MOGA. It is an elitist

multi-objective evolutionary algorithm based on the concept of ε-dominance

[9] which is used to control the content of the archive A(t) where the problem

solutions are stored.

25

Other alternatives, also based on the concept of ε-dominance are the ε-MOEA

[7] and the ε-MOGA [5] algorithms. In [7], a comparison between the ε-MOEA

method and other well known algorithms such as NSGA-II, PESA, SPEA2,

etc. is performed, showing the superiority of the ε-MOEA. In [5] the ε-MOGA

- an earlier version of the ε↗-MOGA - is compared with the ε-MOEA algorithm.

The main differences between the two algorithms are:

• Different genetic operators are used on each algorithm. For crossover,ε-

MOEA uses the SDX operator but ε-MOGA uses linear recombination and

gaussian mutation.

• ε-MOEA just creates one individual per iteration. In ε-MOGA, n individuals

per iteration are created. This makes its parelization easier.

Furthermore, with ε↗-MOGA, the anchor points - the Pareto front limits -

are not required to determine the archive size as in ε-MOEA. In ε↗-MOGA,

this size is settled with the nbox parameter and the cell width ε is adapted

dynamically 10 . As a result, in addition to the genetic nature of its operators,

the ε↗-MOGA algorithm achieves a better characterization of the Pareto fronts

than the ε-MOEA approach.

On the other hand, ε↗-MOGA tries to ensure that A(t) converges towards an

ε-Pareto set, Θ∗P , in a smartly distributed manner along the Pareto front,

µ(ΘP), with limited memory resources. It also adjusts the limits of the front

µ(Θ∗P) dynamically and prevents the anchor points being lost.

To reach this goal, the objective space is split into a fixed number of boxes

10 Details of the ε↗-MOGA algorithm and its parameters are described in appendix

B.

26

n boxi. Hence, for each dimension i ∈ [1 . . . n], n boxi cells of εi width are

created where

εi = (µmaxi − µmini)/n boxi,

µmaxi = max
x∈Θ∗

P

µi(x), µmini = min
x∈Θ∗

P

µi(x).

This grid preserves the diversity of µ(Θ∗P), since one box can be occupied by

only one solution, and at the same time it produces a smart distribution as

will be shown later.

The concept of ε-dominance is defined as follows. For a solution x ∈ D, boxi(x)

is defined by

boxi(x) =

⌈
µi(x)− µmini

µmaxi − µmini

· n boxi
⌉
∀i ∈ [1 . . . n]. (26)

A solution x1 with value µ(x1) ε-dominates the solution x2 with value µ(x2),

denoted by x1 ≺ε x2, if and only if

box(x1) ≺ box(x2) ∨
(
box(x1) = box(x2) ∧ x1 ≺ x2

)
.

where box(x) = {box1(x), . . . , boxs(x)}.

Hence, a set Θ∗P ⊆ ΘP is ε-Pareto, if and only if

∀x1,x2 ∈ Θ∗P ,x
1 6= x2, box(x1) 6= box(x2) ∧ box(x1) ⊀ε box(x2) (27)

Therefore, ε↗-MOGA is responsible for updating the content of A(t) by saving

only ε-dominant solutions that do not share the same box. When two mutually

ε-dominant solutions compete, the solution that prevails in A(t) will be the

closest to the center of the box. It is thereby possible to prevent solutions

belonging to adjacent boxes (neither one dominating the other)and from being

too close to each other, thus encouraging a smart distribution.

27

Figure 13 illustrates the ε-dominance idea. For a bi-objective case, this figure

depicts what Θ∗P would be when n box1 = n box2 = 10 is used. The values ε1

and ε2 depend on the limits of the front (µmin1 , µmin2 , µmax1 and µmax2), which

are dynamically adjusted as they are located in accordance with the solutions.

It can be seen that the distribution of solutions comprised by µ(Θ∗P), along

the front, depends on the slope, the greatest number of points accumulating

in the central area (indicated by a dotted line) where the slope is greatest.

Figure 13. Two objective optimization example. Dots: ε-Pareto front µ(Θ∗P); µmin1 ,

µmin2 , µmax1 , µmax2 : Pareto front limits; ε1, ε2: box widths and n box1, n box2; number

of boxes for each dimension.

The aim of ε↗-MOGA is to achieve a Θ∗P with the greatest possible number of

solutions in order to adequately characterize the Pareto front. Although the

number of possible solutions will depend on the shape of the front, and on

n boxi, it will not exceed the following level

|Θ∗Pε| ≤
∏n
i=1 n boxi + 1

n boxmax + 1
, n boxmax = max

i
n boxi (28)

which is advantageous, as it is possible to control the maximum number of

28

solutions that will characterize the Pareto front.

Furthermore, thanks to the definition of the box, the anchor points µi∗ are

assigned a value of boxi(x
i∗) = 0, since µi(x

i∗) = µmini . Therefore, no solution

x can ε-dominate them, as their boxi(x) ≥ 1 by applying the box definition.

In order to check the ε↗-MOGA performance, the same examples shown in

section 4 have been solved. The parameters of the ε↗-MOGA algorithm were

set to:

• NindG = 4 and NindP = 100.

• tmax = 10000 for example 1, 50000 for example 2.

• Pc/m = 0.1.

• n boxi = 40.

Figure 14 shows the front µ(Θ∗P) obtained for the I-beam design problem com-

pared with that generated by the WNNC method. Notice how the ε↗-MOGA

algorithm has characterized the Pareto front with just sixteen solutions (in-

cluding the anchor points) distributed in a smart manner. In this case, the

trade-off is lower near the anchor points than near the ideal point, so the den-

sity solutions in the first area are larger than in the latter area. Characterizing

the Pareto front with fewer points makes the subsequent decision-making task

easier, as well as involving a lower computational cost than when using WNNC

with GA.

For the gearbox design problem, figure 15 shows the µ(Θ∗P) together with

the WNNC results. In this case, the ε↗-MOGA algorithm has characterized

the Pareto front - in a smart manner - by means of 54 points. The number of

points has been considerably reduced (in comparison with the WNNC results)

29

200 300 400 500 600 700 800

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

f
1
(cm

2
)

f 2
(c

m
)

Figure 14. Pareto front solution of example 1. Generated by ε↗-MOGA (circles) and

by WNNC (solid).

since the front solution presents large areas where the trade-off is insignificant.

6 Conclusions

In this paper the NNC method for multi-objective optimization has been anal-

ysed and its drawbacks identified. A new method with two new improvements

over the original NNC method has been proposed: the definition of an exact

linear transformation between µ and µ spaces for correct calculation of the

normalized anchor points - and the definition of an enlarged utopian hyper-

plane to expand the obtainable Pareto solutions. Hence, unexplored regions of

the Pareto front have been reduced, but the computational cost of the method

has been increased.

The WNNC method is applied to two engineering design examples, and in

both cases, a GA has been used because NLP optimization was insufficient

30

2500

3000

3500

4000

4500

5000

5500

6000

6500 600

700

800

900

1000

1100

1200

1300

1400

740

760

780

800

820

840

860

f
2
(x)

f
1
(x)

f 3
(x

)

Figure 15. Pareto front solution of example 2. Generated by ε↗-MOGA (circles) and

by WNNC (dots).

for achieving good results. A comparison with other optimal solutions of the

examples are presented too, showing a significant improvement in some cases.

Finally, the ε↗-MOGA algorithm is presented and its results are compared with

the WNNC. This algorithm tries to ensure that the final solution converges

towards an ε-Pareto set, in a smart distributed manner along the Pareto front

with limited memory resources. Therefore, the computational burden is re-

duced and the subsequent decision-making task made easier.

31

Acknowledgments

This research has been partially financed by GV06-026 Generalitat Valenciana

and DPI2005-07835, MEC (Spain)-FEDER.

Appendix A GA characteristics

In this paper, the implementation of GA has the following characteristics:

• Real value codification [15], i.e. each gene has a real value so the chromosome

is an array of real values.

• µ(x) is not directly used as a cost function. A ’ranking’ operation is per-

formed [3, 1]. The first individuals are sorted into decreasing µ(x) value,

and then, µ(x) is replaced by its position in such a distribution. Each indi-

vidual has a new cost function value µ′(x). The ranking operation prevents

clearly dominant individuals from prevailing too soon, thus exhausting the

algorithm.

• Selection is made by the operator known as Stochastic Universal Sampling

(SUS) [2]. The probability of survival of an individual, P (xi), is guaranteed

to be:

P (xi) =
µ′(xi)∑Nind

j=1 µ′(xj)
(29)

Where Nind is the number of individuals.

• For crossover, the intermediate recombination operator is used [16]. Off-

spring chromosomes x′1 and x′2 are obtained through the following operation

on the parents’ chromosomes (x1 and x2):

x′1 =α1 · x1 + (1− α1)x2

32

x′2 =α2 · x2 + (1− α2)x1

α1 ∈ [−d, 1 + d]

α2 ∈ [−d, 1 + d]

The operation can be performed on the whole chromosome, or on each

gene separately. In the latter case, random parameters α1 and α2 have to

be generated for each gene - increasing search capability but with a higher

computational cost.

Implemented GA has been adjusted as follows:

· α1 = α2 and generated for each chromosome.

· d = 0.

Crossover probability is set to Pc = 0.8.

• The mutation operation is made with a probability of Pm = 0.1 and a

normal distribution with standard deviation set at 20% of the search space

range.

Appendix B ε↗-MOGA algorithm

The algorithm is composed of three populations:

(1) The main population P (t) explores the searching space D during the

algorithm iterations (t). Population size is NindP .

(2) ArchiveA(t) stores the solution Θ∗P . Its sizeNindA is variable but bounded

(see equation (28)).

(3) Auxiliary population G(t). Its size is NindG, which must be an even

number.

33

The pseudocode of the ε↗−MOEA algorithm is given by:

1. t:=0

2. A(t):=∅

3. P(t):=ini random(D)

4. eval(P(t))

5. A(t):=storeini(P(t),A(t))

6. while t<t max do

7. G(t):=create(P(t),A(t))

8. eval(G(t))

9. A(t+1):=store(G(t),A(t))

10. P(t+1):=update(G(t),P(t))

11. t:=t+1

12. end while

The main steps of the algorithm are as follows:

Step 3. P (0) is initialized with NindP individuals (solutions) that have been

randomly selected from searching space D.

Step 4 and 8. Function eval calculates objective functions for each individ-

ual in P (t) (step 4) and G(t) (step 8).

Step 5. Function storeini checks individuals in P (t) that might be included

in the archive A(t), as follows:

(1) Non-dominated P (t) individuals are detected, ΘND.

(2) Pareto front limits µmaxi and µmini are calculated from µ(x),∀x ∈ ΘND.

(3) Individuals in ΘND are analyzed, one by one, and those that are not

ε-dominated by individuals in A(t), will be included in A(t).

34

Step 7. With each iteration, the function create creates G(t) as follows:

(1) Two individuals are randomly selected, xP from P (t), and xA from A(t).

(2) A random number u ∈ [0 . . . 1] is generated.

(3) If u > Pc/m (probability of crossing/mutation), xP and xA are crossed

over by means of the extended linear recombination technique.

(4) If u ≤ Pc/m, xP and xA are mutated using random mutation with

Gaussian distribution and then included in G(t).

This procedure is repeated NindG/2 times until G(t) is filled up.

Step 9. Function store checks, one by one, which individuals in G(t) must

be included in A(t) on the basis of their location in the objective space (see

figure 16). Thus ∀xG ∈ G(t)

(1) If µ(xG) belongs to the area Z1 and is not ε-dominated by any individual

from A(t), it will be included in A(t) (if its box is occupied by an

individual not ε-dominated too, then the individual lying furthest away

from the center box will be eliminated). Individuals from A(t) which

are ε-dominated by xG will be eliminated.

(2) If µ(xG) belongs to the area Z2 then it is not included in the archive,

since it is dominated by all individuals in A(t).

(3) If µ(xG) belongs to the area Z3, the same procedure is applied as

was used with the function storeini but now applied over a popula-

tion P ′(t) = A(t)
⋃

xG, that is, storeini(P
′(t), ∅). In this procedure new

Pareto front limits and εi widths could be recalculated.

(4) If µ(xG) belongs to the area Z4, all individuals from A(t) are deleted

since they all are ε-dominated by xG. xG is included and objective space

limits are µ(xG).

Step 10. Function update updates P (t) with individuals from G(t). Every

individual xG from G(t) replaces an individual xP that is randomly selected

35

Figure 16. Objectives space areas (Z) that function store uses: (a) two-dimensional

case (b) three-dimensional case.

from the individuals in P (t) that are dominated by xG. xG will not be

included in P (t) if there is no individual in P (t) dominated by xG.

Finally, individuals from A(t) comprise Θ∗P , the smart characterization of the

Pareto front.

36

References

[1] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford Uni-

versity Press, New York, 1996.

[2] J.E. Baker. Reducing bias and inefficiency in the selection algorithms.

In Proceedings of the Second International Conference on Genetic Algo-

rithms, pages 14–21. Lawrence Erlbaum Associates, 1987.

[3] F.X. Blasco. Model based predictive control using heuristic optimization

techniques. Application to non-linear and multivariable processes. PhD

thesis, Universidad Politécnica de Valencia, Valencia, 1999 (In Spanish).

[4] P. Hajela and C.J. Shih. Multiobjective optimum design in mixed integer

and discrete design variable problems. AIAA Journal, 28(4):670–675,

1990.

[5] J.M. Herrero. Robust identification of non-linear systems using evolution-

ary algorithms. PhD thesis, Polytechnic University of Valencia, Valencia

(Spain), 2006 (In Spanish).

[6] H.Z. Huang, Y.K Gu, and X. Du. An interactive fuzzy multi-objective

optimization method for engineering design. Eng. Appl. Artif. Intel.,

19(5):451–460, 2006.

[7] S. Mishra K. Deb, M. Mohan. Evaluating the ε-domination based multi-

objective evolutionary algorithm for a quick computation of pareto-

optimal solutions. Evolutionary computation, 13(4):501–526, 2005.

[8] A. Kurapati and S. Azarm. Immune network simulation with multiob-

jective genetic algoritms for multidisciplinary design optimization. Eng.

Opt., 33:245–260, 2000.

[9] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence

and diversity in evolutionary multi-objective optimization. Evolutionary

37

computation, 10(3):263–282, 2002.

[10] M. Mart́ınez, J. Sanchis, and X. Blasco. Algoritmos genéticos aplicados

al diseño de controladores robustos. Revista de Automática e Informática

Industrial (RIAI). In Spanish., 3(1):39–51, 2006.

[11] M. Mart́ınez, J. Sanchis, and X. Blasco. Multiobjective controller de-

sign handling human preferences. Eng. Appl. Artif. Intel., 19(8):927–938,

2006.

[12] M. Mart́ınez, J. Sanchis, and X. Blasco. Global and well-distributed

pareto frontier by modified normalized normal constraint methods for

bicriterion problems. Struct. Multidiscip. Optimization, 34:197 – 209,

2007.

[13] C.A. Mattson, A.A. Mullur, and A. Messac. Smart pareto filter: Obtain-

ing a minimal representation of multiojective design space. Eng. Optimiz.,

26(6):721–740, 2004.

[14] A. Messac, A. Ismail-Yahaya, and C.A. Mattson. The normalized normal

constraint method for generating the pareto frontier. Struct. Multidiscip.

Optim., 25:86–98, 2003.

[15] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer series Artificial Intelligence. Springer, 3rd edition, 1996.

[16] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the

breeder genetic algorithm. continuous parameter optimization. Evolu-

tionary Computation. The MIT Press, 1(1):25–49, 1993.

[17] J. Sanchis, M. Mart́ınez, X. Blasco, and J.V. Salcedo. A new perspec-

tive on multiobjective optimization by enhanced normalized normal con-

straint method. Struct. Multidiscip. Optimization (DOI:10.1007/s00158-

007-0185-4), 2007.

38

