

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/125658

Esparcia Alcázar, AI.; Almenar-Pedrós, F.; Vos, TE.; Rueda Molina, U. (2018). Using genetic
programming to evolve action selection rules in traversal-based automated software testing:
results obtained with the TESTAR tool. Memetic Computing. 10(3):257-265.
https://doi.org/10.1007/s12293-018-0263-8

http://doi.org/10.1007/s12293-018-0263-8

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Using genetic programming to evolve action selection
rules in traversal-based automated software testing

Results obtained with the TESTAR tool

Anna I Esparcia-Alcázar · Francisco
Almenar · Tanja EJ Vos · Urko Rueda

Received: date / Accepted: date

Abstract Traversal-based automated software testing involves testing an ap-
plication via its graphical user interface (GUI) and thereby taking the user’s
point of view and executing actions in a human-like manner. These actions are
decided on the fly, as the software under test (SUT) is being run, as opposed
to being set up in the form of a sequence prior to the testing, a sequence that
is then used to exercise the SUT. In practice, random choice is commonly
used to decide which action to execute at each state (a procedure commonly
referred to as monkey testing), but a number of alternative mechanisms have
also been proposed in the literature. Here we propose using genetic program-
ming (GP) to evolve such an action selection strategy, defined as a list of
IF-THEN rules. Genetic programming has proved to be suited for evolving
all sorts of programs, and rules in particular, provided adequate primitives
(functions and terminals) are defined. These primitives must aim to extract
the most relevant information from the SUT and the dynamics of the testing
process. We introduce a number of such primitives suited to the problem at
hand and evaluate their usefulness based on various metrics. We carry out
experiments and compare the results with those obtained by random selection
and also by Q-learning, a reinforcement learning technique. Three applications
are used as Software Under Test (SUT) in the experiments. The analysis shows
the potential of GP to evolve action selection strategies.

Keywords automated software testing via the GUI · genetic programming ·
action selection for testing · testing metrics

A. I. Esparcia-Alcázar
Department of Systems Engineering and Control
Universitat Politècnica de València
E-mail: esparcia@upv.es

T.E.J. Vos and U. Rueda
Software Production Methods Research Centre
Universitat Politècnica de València

2 Esparcia-Alcázar et al.

1 Introduction

Testing a software application at the Graphical User Interface (GUI) level is
an important step when ensuring software quality, mainly because it implies
taking the user’s perspective and is thus the ultimate way of verifying a pro-
gram’s correct behaviour. GUIs can account for 45-60% of the source code [2]
in any application and are often large and complex. Automating the process
of testing via the GUI is therefore a very relevant issue in order to minimise
time-consuming and tedious manual testing, a task hindered by the fact that
GUIs are designed to be operated by humans, not machines.

Traversal-based automated software testing is a technique for automatically
testing applications by means of their GUI [1]. Its name derives from the fact
that the GUI is traversed using information obtained from it (GUI reflection),
which can be used to check some general properties. This approach differs from
other approaches to testing via the GUI that can be found in the literature,
such as capture-and-replay (C&R), which involves recording user interactions
and converting them into a script that can be replayed repeatedly, and visual-
based testing, which relies on image recognition techniques to visually interpret
the images of the target UI [3]. Of the three approaches, traversal-based testing
is the closest to the user’s perspective and is also the one that copes better
with the dynamic nature of applications, which can be subject to frequent
changes due to updates in functionality, improvements in their usability, or
modifications in the requirements.

Traversal-based testing tools often resort to random choice in order to
decide what action to execute given the current state (or window) the system
is in, a procedure known as monkey testing. Attempts to add intelligence to
the action selection process have involved using metaheuristics or machine
learning techniques, such as Q-learning [10] and Ant Colony Optimisation
[7]. Here we extend the findings of [11], where we used Genetic Programming
to evolve action selection rules for the traversal-based software testing tool
TESTAR1. GP has previously been used in software testing, e.g. by [21,18]
and more recently by [13] but these works focused on evolving test cases for
object oriented software; they neither deal with testing via the GUI, nor with
evolving an action selection mechanism.

In [11] we use GP to evolve a population of rules whose quality (or fitness)
is evaluated by using each new rule as the action selection mechanism in TES-
TAR. The fitness is based on a suitable metric of the testing efficiency. Defining
such a metric (or combination of metrics) is not an easy task; for instance, the
aim of testing is to find faults, but not finding them is not necessarily a proof
that the testing process was adequate. Different approaches have been taken in
the literature, also depending on the type of SUT. For instance, in [9] metrics
are proposed for event driven software; [16] defines a coverage criteria for GUI
testing, while in [19] the number of crashes of the SUT, the average time it
takes to crash and the reproducibility of these crashes are used. In this work we

1 https://testar.org

GP to evolve action selection functions in software testing 3

will follow the approach taken in [10], where we proposed four metrics which
are suitable for testing web applications, based on the assumption that source
code is not available.

Here we extend the work done in [11] by introducing new primitives (nodes
and terminals) and allowing longer, more elaborate, decision strategies, con-
sisting of a list of IF-THEN rules. We have also adapted the crossover and
mutation operators so as to better handle these kinds of rules. The aim is
to ascertain which are the interesting primitives to use when evolving action
selection rules with GP and also if the improvements have a positive effect on
the performance.

The rest of this paper is structured as follows. Section 2 describes the TES-
TAR tool and the way it works; Section 3 describes the use of genetic program-
ming to evolve action selection algorithms. Section 4 introduces the metrics
used for quality assessment of the testing procedure. Section 5 summarises
the experimental set up, the results obtained and the statistical analysis car-
ried out; it also highlights the problems encountered. Finally, in section 6 we
present some conclusions and outline areas for future work.

2 TESTAR

TESTAR (or Test*) is an open source tool that performs automated testing
via the GUI, using the operating system’s Accessibility API to recognise GUI
controls (or widgets) and their properties2, and enabling programmatic inter-
action with them. It derives sets of possible actions for each state the GUI
is in and selects and executes appropriate ones, thus creating a test sequence
on the fly. TESTAR has been successfully applied to various commercial and
open source applications, both desktop and web-based ones, as shown in e.g.
[5,6,17,20].

TESTAR performs the following steps (as shown in Figure 1): (1) start
the SUT; (2) obtain the GUI state (a widget tree); (3) derive a set of sensible
actions that a user could execute in a specific SUT state (i.e. clicks, text inputs,
mouse gestures); (4) select one of these actions ; (5) execute the selected action;
(6) apply the available oracles to check (in)validness of the new UI state. If a
failure is found, stop the SUT (7) and save a replayable sequence of the test
that found the fault. If not, keep on testing if more actions are desired within
the test sequence.

TESTAR can detect the violation of general-purpose system requirements
through implicit oracles [4] like those stating that (1) the SUT should not
crash, (2) the SUT should not find itself in an unresponsive state (freeze) and
(3) the GUI state should not contain any widget with suspicious words like
error, problem, exception, etc.

2 E.g. display position, widget size, ancestor widgets, etc.

4 Esparcia-Alcázar et al.

Fig. 1 How TESTAR works.

3 Evolution of action selection rules by Genetic Programming

Traditional Genetic Programming [14] involves the evolution of a population
of individuals, or candidate solutions, that can be represented as expression
trees, given suitable nodes (functions) and leaves (terminals) are defined for
the problem at hand. In this work rather than represent individuals as trees,
we will follow the linear GP approach initiated by [8]; our action-selection
strategies will be a list of IF-THEN rules that, given the current state of the
SUT, pick the next action to execute. An example rule would be something
like this:

IF condition1

THEN action1

IF condition2

THEN action2

· · ·
IF conditionN

THEN actionN

ELSE

pick random action

Hence, conditions are evaluated and actions taken in consequence, and if
no conditions are met a random action is chosen by default.

In [11] we gave the first steps towards GP-evolution of action-selection
rules. Here we aim at finding answers to the following research questions:

1. Is Genetic Programming a good option for obtaining action-selection rules
in traversal-based testing?

GP to evolve action selection functions in software testing 5

Table 1 Functions and terminals - short version

Name Arity How it works Returns
(#args)

IFT 3 If 1st argument is true return 2nd action
pickSameAs 1 Returns a random action of the action

specified type.
arg1 is an action type

pickUnexecuted 1 Returns a random unexecuted action action
of the specified type.
arg1 is an action type
if there are none, return a random action

pickAnyUnexecuted 0 Returns a random unexecuted action; action
if there are none, return a random action

typeInto 0 Text field action type
leftClick 0 Left click action type

previousAction 0 The type of the last executed action action type
AND, OR 2 Boolean operators boolean

args are boolean
≤, EQ 2 Comparison operators boolean

args are numeric
NOT 1 Negation boolean

arg is boolean
nActions 0 Number of actions in current state integer

nTypeInto 0 Number of typeInto actions in current integer
state

nLeftClick 0 Number of leftClick actions in current integer
state

RND 0 Random value double

2. Which are the relevant features to take into consideration when selecting
the next action to execute?

3. Do the evolved rules generalise to ‘unseen’ SUTS, i.e. software for which
they were not evolved?

With this aim in mind, we have run two sets of experiments, one with
a simple set of functions and terminals (as described in Table 1) and fast
execution times, and the other which uses a larger set (given by Tables 1 and
2) and for which both the evolution and validation are left to run for a longer
time.

4 Testing performance metrics

As stated in Section 1, a number of metrics have been defined in the literature
to assess the quality of the testing, e.g. those given by [16] or [19]. However,
two main issues can be found with them: namely, that they either imply having
access to the SUT source code (which is not always the case) or that they focus
on errors encountered and reveal nothing about to what extent the SUT was

6 Esparcia-Alcázar et al.

Table 2 Functions and terminals - extended version

Name Arity How it works Returns

pickLeastExecuted 2 From the list of least executed actions action
of type= arg1, return the one
in position ceil(arg2 ∗ listSize)
arg1 is an action type
arg2 is a double ∈ [0, 1]

pickMostExecuted 2 From the list of most executed actions action
of type= arg1, return the one
in position ceil(arg2 ∗ listSize)
arg1 is an action type
arg2 is a double ∈ [0, 1]

pickDifferentFrom 1 Pick a random action of type ! = arg1 action
< 2 Less than boolean

args are numeric
RAC 0 Random action action

explored (which is particularly relevant if no errors are detected). For these
reasons, we decided on the following metrics, as defined by [10] :

– Abstract states This metric refers to the number of different states, or
windows in the GUI, that are visited in the course of an execution. An
abstract state does not take into account modifications in parameters; for
instance, a window containing a text box with a given text would be consid-
ered the same abstract state as the same window and text box containing
a different text.

– Longest path This is defined as the longest sequence of non-repeated
consecutive states visited.

– Minimum and maximum coverage per state The state coverage is
defined as the rate of executed over total available actions in a given
state/window; the metrics are the highest and lowest such values across
all windows.

Longest path and maximum coverage are in a way opposed metrics, one
measuring exploration and the other exploitation of the SUT. It must be noted
that the metrics given above can be used to compare the efficiency of different
testing methods, but not to assess the overall goodness of a method in isolation,
because we do not know the global optima for each metric; for instance, we
cannot know exactly how many different states there are as a consequence of
the assumption of not having access to the source code.

5 Experiments and results

5.1 Experiment 1: reduced primitives set

In this first experiment we have taken a simplified approach which involves
testing three SUTs; one of them, which we will refer to as the sandbox SUT,

GP to evolve action selection functions in software testing 7

Table 3 Genetic programming parameters for Experiment 1.

Feature Value

Population size 20
Max rule size 20 nodes

Functions Pick, PickAny, PickAnyUnexecuted,
AND, OR, LE, EQ, NOT

Terminals nActions, nTypeInto, nLeftClick,
previousAction, RND,

typeLeftClick, typeTypeInto, Any
Evolutionary operators Mutation (probability = 0.05)

Crossover (probability = 1)
Evolutionary method Steady state

Selection method Tournament of size 5
Termination criterion Generating more than 30 different states

or SUT0, will be used in the evolutionary process. For this, the fitness will be
given by the Abstract States metric. Then, the best evolved rule is validated
by using it to test two more SUTs, SUT1 and SUT2. For this latter phase
we carried out 30 runs of 500 actions each, for each SUT. In this way we can
ascertain how well the GP-evolved rule generalises to SUTs not encountered
during evolution. In the validation phase all metrics are calculated and used
for comparison.

The best evolved rule was as follows:
IF nLeftClick LT nTypeInto
PickAny leftClick
ELSE
PickAnyUnexecuted
For the sake of comparison, the validation process was also carried out using

random and Q-learning-based action selection. Q-learning [22] is a model-free
reinforcement learning technique in which an agent, at a state s, must choose
one among a set of actions As available at that state. By performing an action
a ∈ As, the agent can move from state to state. Executing an action in a spe-
cific state provides the agent with a reward (a numerical score which measures
the utility of executing a given action in a given state). The goal of the agent is
to maximise its total reward, since it allows the algorithm to look ahead when
choosing actions to execute. It does this by learning which action is optimal
for each state. The action that is optimal for each state is the action that has
the highest long-term reward. The choice of the algorithm’s two parameters,
maximum reward, Rmax and discount γ, will promote exploration or exploita-
tion of the search space. In our case we chose those that had provided best
results in [10]

A summary of the experimental settings is given in Table 4.

The software under test (SUT) We used three different applications in order to
evaluate our action selection approach, namely PowerPoint - which will be the

8 Esparcia-Alcázar et al.

Table 4 Experimental set up for Experiment 1.

Set Action Selection Parameters Max. actions Runs

Algorithm per run

Ev GP-evolved rule See Table 3 500 30
Qlearning Q-learning Rmax = 9999999; 500 30

γ = 0.95
RND Random N/A 500 30

Table 5 Genetic programming parameters for Experiment 2.

Feature Value

Population size 100
Max no. of rules per strategy 14

Functions & terminals See Tables 1 and 2
Evolutionary operators Crossover (probability = 1)

Mutation (probability = 0.05)
Evolutionary method Steady state

Selection method Tournament of size 11
Termination criterion Time limit

(10 hours)

sandbox SUT - Odoo, and Testona. PowerPoint is a slide show presentation
program part of the productivity software Microsoft Office. It is currently one
of the most commonly used presentation programs available. Odoo is an open
source Enterprise Resource Planning software consisting of several enterprise
management applications; of these, we installed the mail, calendar, contacts,
sales, inventory and project applications in order to test a wide number of
options. Testona (formerly known as Classification Tree Editor) is a software
testing tool that runs on Windows. It implements tree classification, which
involves classifying the domain of the application under test and assigning
tests to each of its leaves.

Figure 2 shows how the experimental procedure; genetic programming is
used as the evolutionary engine, that calls the testing tool TESTAR to evaluate
the individuals and calculate their fitness. Once the evolutionary process ends,
the best action selection rule found is evaluated with 30 runs of TESTAR in
SUT1 and SUT2; the metrics obtained are subject to a statistical comparison.

Statistical analysis We run the Kruskal-Wallis non parametric test, with α =
0.05, on the results for the three action selection mechanisms. The test shows
that all the metrics have significant differences among the sets. Running pair-
wise comparisons by means of the Mann-Whitney-Wilcoxon test provides the
results shown in Table 6, where the shaded column is the best option. It can
be seen that the GP approach wins in the abstract states and longest path
metrics for Odoo and comes second in Testona, where, surprisingly, randon
testing performs best.

GP to evolve action selection functions in software testing 9

Fig. 2 The evolutionary (training) process and the subsequent validation.

Table 6 Results of the statistical comparison for all algorithms and metrics, in SUT1 and
SUT2. The shaded column represents the best choice, the remaining ones are in order of
preference.

Odoo Set

Abstract states GP rule Q-learning RND
Longest path GP rule Q-learning RND

Maximum coverage per state GP rule Q-learning RND
Minimum coverage per state RND Q-learning GP rule

Testona Set

Abstract states RND GP rule Q-learning
Longest path RND GP rule Q-learning

Maximum coverage per state GP rule Q-learning RND
Minimum coverage per state GP rule Q-learning RND

One metric we have not considered in the statistical analysis is the number
of failures encountered, shown in Table 7. Here we can see that in general,
the GP approach finds the most real failures3. In addition, we consider a false
positive a situation where the oracle detects a failure where there is not actually
one. For instance, a text message addressed to the end user that contains the
words error, problem or exception would be flagged as a failure, even when it is
not. This would be detected by the human tester. So, finding false positives can
actually be interpreted as an advantage, because their detection allows human
testers to improve the oracles. Finally, we term freeze the situation when the
SUT enters an unresponsive state. For instance, in a web-based application,

3 Note that ascertaining whether these failures are associated to any defects is beyond
the scope of the TESTAR tool

10 Esparcia-Alcázar et al.

Table 7 Number of failures encountered per SUT and algorithm.

SUT Algorithm Failures Freezes False positives

Odoo GP rule 4 0 2
RND 0 0 4

Q-learning 1 1 6

Testona GP rule 2 2 3
RND 0 3 6

Q-learning 1 1 3

it can be due to a page that takes a long time to load. This is not necessarily
related to a failure in the SUT.

A conclusion to this first experiment is that, even with this small set of
functions and terminals, the GP-evolved action selection rule proves to be
superior to random testing and also to Q-learning-based testing, even when
validated in SUTs different from that with which it has been evolved, i.e.
displaying a good generalisation ability. The evolved rule is however, very
simple, and often resorts to random selection of actions, so there seems to
be room for improvement with regards to the choice of nodes (functions and
terminals) with which rules are built. This is the aim of the second experiment.

5.2 Experiment 2: extended primitives set

The set up for the experiments is given in Table 8 and that of the GP runs
in Table 5. As in the previous experiment, the sandbox SUT is used during
evolution, while the fitness of each individual is, as before, calculated by using
it as the action selection rule for the traversal-based tool TESTAR. Because
in the previous experiment the Maximum and Minimum Coverage metrics did
not prove very useful, they have been discarded in this experiment; hence, only
two of the previously defined metrics are collected, namely Abstract States and
Longest Path, with the former being used as the fitness value.

The best evolved rule, after simplification, was as follows:
IF NOT nTypeInto < RND
THEN pickLeastExecuted (previousAction, 0.661547369064)
ELSE RAC
This solution is indeed making use of the extended set of primitives de-

scribed in Table 2.
In order to carry out statistical comparisons, the validation process was

repeated using random action selection.
A summary of the experimental settings is given in Table 8.

Statistical analysis As in the previous experiment, we run the Mann-Whitney-
Wilcoxon non parametric test, with α = 0.05, on the results for the two action
selection mechanisms. The test shows that both metrics used have significant

GP to evolve action selection functions in software testing 11

Table 8 Experimental set up for Experiment 2.

Action Selection Algorithm Parameters Max. actions per run Runs

GP-evolved rule See Table 5 500 30
Random N/A 500 30

differences among the sets for PowerPoint and Odoo, although they are indis-
tinguishable for Testona. The results of the tests are shown in the boxplots
contained in Figures 3, 4, and 5, which clearly indicate the superiority of the
GP approach in the case of PowerPoint. For Odoo, on the other hand, random
selection performs better.

5.3 Discussion

It could be argued that in the best solutions evolved by the GP approach the
random component introduced by many of the primitives described may lead
to a discrepancy between the observed quality of the individual at run time
and the fitness attributed to it during evolution. While this could indeed be
the case, the statistical tests show nevertheless the superiority of the solutions
evolved with the proposed method. A way to minimise the effect of random-
ness in the measured fitness and hence counteract the possible discrepancy
between measured fitness and actual performance would be to systematically
re-evaluate the best individuals at specified times; this would, however, be
costly in terms of computational effort so it has not been implemented in this
work; this is left for future study.

6 Conclusions and further work

We have shown the successful application of a genetic programming-evolved
action selection rule within the automated testing tool TESTAR. We have
carried out two sets of experiments, one with a simple primitives set and
another one using more primitives.

In the first experiment an action selection strategy evolved by GP using
the commercial software PowerPoint as the sandbox SUT was compared to
Q-learning and random (or monkey) testing. The performance was evaluated
on a commercial, desktop SUT (Testona) and an open source, web-based one
(Odoo) and according to four metrics. Statistical analysis reveals the superi-
ority of the GP approach in Odoo, although not in Testona.

In the second experiment, involving a larger set of primitives, the action
selection strategy was also evolved by GP using PowerPoint as the sandbox
SUT. Its performance was compared to random testing, by evaluation on Pow-
erPoint, Testona and Odoo and according to two metrics (abstract states vis-
ited and longest path traversed). The statistical analysis reveals the superiority

12 Esparcia-Alcázar et al.

Fig. 3 Boxplots for the Abstract States and Longest Path metrics with the results obtained
for PowerPoint.

of the GP approach over random testing when the validation is carried out on
the same SUT as used for the evolution. Also, the best evolved solution, when
simplified, includes some of the newly introduced functions.

Further work will thus involve analysing other options for new functions
and terminals.

By analysing the best evolved solutions obtained by GP in experiments
1 and 2, we can see that there is an important component of randomness in
both, as they both rely on random action selection as a last resort. This is
not considered to be undesirable, as random testing has often proved to be

GP to evolve action selection functions in software testing 13

Fig. 4 Boxplots for the Abstract States and Longest Path metrics with the results obtained
for Odoo.

the best option in many circumstances; but the GP-evolved rules can improve
over plain random selection, as the results of the tests show.

In response to our research questions formulated in Section 3:

1. Is Genetic Programming a good option for obtaining action-selection rules
in traversal-based testing? → Yes, provided the computational resources
are available for the evolution process

2. Which are the relevant features to take into consideration when selecting the
next action to execute? → The metrics used bias the evolutionary search
towards those features related to unexecuted actions

3. Do the evolved rules generalise to ‘unseen’ SUTS, i.e. software for which
they were not evolved? → Not always, so if possible, a better strategy would
be to evolve SUT-specific rules.

Always an issue when using evolutionary algorithms is the computational
expense. Evaluating the fitness of the solutions using TESTAR is time-costly,
especially if a large number of actions is desired in the testing sequence. A

14 Esparcia-Alcázar et al.

Fig. 5 Boxplots for the Abstract States and Longest Path metrics with the results obtained
for TESTONA.

possible solution would be to limit the number of fitness evaluations and use
similarity to obtain an approximate fitness measure, as done in [12].

An additional conclusion regards the relevance of the metrics used; if the
source code is not available direct measures of code coverage cannot be used
and we are forced to use surrogate measures, as the ones proposed here. How-
ever this might not be the best option, so a step ahead would involve elimi-
nating the fitness function completely (and hence the reliance on metrics) and
guiding the evolution based on novelty only [15].

Acknowledgements The authors wish to thank Xara Sharman for her help with the
graphics.

References

1. Aho, P., Menz, N., Rty, T.: Dynamic reverse engineering of GUI models for testing. In:
Proc. 2013 Int. Conf. on Control, Decision and Information Technologies (CoDIT’13)

GP to evolve action selection functions in software testing 15

(2013)
2. Aho, P., Oliveira, R., Algroth, E., Vos, T.: Evolution of automated testing of software

systems through graphical user interface. In: International Conference on Advances in
Computation, Communications and Services, Valencia (2016)

3. Alegroth, E., Feldt, R., Ryrholm, L.: Visual GUI testing in practice: challenges, prob-
lems and limitations. Empirical Software Engineering 20, 694–744 (2014). DOI
10.1007/s10664-013-9293-5

4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: A survey. IEEE Transactions on Software Engineering 41(5), 507–525
(2015)

5. Bauersfeld, S., de Rojas, A., Vos, T.: Evaluating rogue user testing in industry: An
experience report. In: Research Challenges in Information Science (RCIS), 2014 IEEE
Eighth International Conference on, pp. 1–10 (2014). DOI 10.1109/RCIS.2014.6861051

6. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Evaluat-
ing the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2014, Torino,
Italy, September 18-19, 2014, p. 4 (2014)

7. Bauersfeld, S., Wappler, S., Wegener, J.: A metaheuristic approach to test sequence gen-
eration for applications with a GUI. In: M.B. Cohen, M. Ó Cinnéide (eds.) Search Based
Software Engineering: Third International Symposium, SSBSE 2011, Szeged, Hungary,
September 10-12, 2011. Proceedings, pp. 173–187. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

8. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, 1st edn. Springer Publish-
ing Company, Incorporated (2010)

9. Chaudhary, N., Sangwan, O.: Metrics for event driven software. International Journal
of Advanced Computer Science and Applications (IJACSA) 7(1), 85 – 89 (2016)

10. Esparcia-Alcázar, A.I., Almenar, F., Mart́ınez, M., Rueda, U., Vos, T.E.: Q-learning
strategies for action selection in the TESTAR automated testing tool. In: Proceedings
of META 2016 6th International Conference on Metaheuristics and Nature Inspired
computing, pp. 174–180 (2016)

11. Esparcia-Alcázar, A.I., Almenar, F., Rueda, U., Vos, T.E.J.: Evolving rules for action se-
lection in automated testing via genetic programming - a first approach. In: G. Squillero,
K. Sim (eds.) Applications of Evolutionary Computation: 20th European Conference,
EvoApplications 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings,
Part II, pp. 82–95. Springer International Publishing, Cham (2017)

12. Esparcia-Alcázar, A.I., Moravec, J.: Fitness approximation for bot evolution in genetic
programming. Soft Computing 17(8), 1479–1487 (2013)

13. He, W., Zhao, R., Zhu, Q.: Integrating evolutionary testing with reinforcement learning
for automated test generation of object-oriented software. Chinese Journal of Electronics
24(1), 38–45 (2015)

14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992). URL
http://mitpress.mit.edu/books/genetic-programming

15. Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. In: R. Riolo,
E. Vladislavleva, J.H. Moore (eds.) Genetic Programming Theory and Practice IX,
Genetic and Evolutionary Computation, pp. 37–56. Springer (2011)

16. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In: Pro-
ceedings of ESEC/FSE 2001, pp. 256– 267 (2001)

17. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.: TESTAR:
from academic prototype towards an industry-ready tool for automated testing at the
user interface level. In: J.H. Canos, M. Gonzalez Harbour (eds.) Actas de las XX
Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2015), pp. 236–245 (2015)

18. Seesing, A., Gross, H.G.: A genetic programming approach to automated test genera-
tion for object-oriented software. International Transactions on Systems Science and
Applications 1(2), 127–134 (2006)

19. Vos, T.E., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: Tool support for test automation at the user interface level. Int. J. Inf.
Syst. Model. Des. 6(3), 46–83 (2015). DOI 10.4018/IJISMD.2015070103. URL
http://dx.doi.org/10.4018/IJISMD.2015070103

16 Esparcia-Alcázar et al.

20. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener,
J.: TESTAR: tool support for test automation at the user interface level.
IJISMD 6(3), 46–83 (2015). DOI 10.4018/IJISMD.2015070103. URL
http://dx.doi.org/10.4018/IJISMD.2015070103

21. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming. In: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’06, pp. 1925–1932. ACM, New York,
NY, USA (2006). URL http://doi.acm.org/10.1145/1143997.1144317

22. Watkins, C.: Learning from Delayed Rewards. Ph.D. Thesis (1989). Cambridge Univer-
sity

