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Abstract The provision of services based on wireless sensor
data is analyzed dynamically. In the proposed scenario, two
competing service providers deploy their own wireless sensor
networks in order to collect the data and provide services to

final users. The service providers compete in prices dynamically

in order to maximize their profits, while the behavior of
the users is modeled using a discrete choice model. The
model is analyzed using game theory. The changes in the
population of users are analyzed through an evolutionary
game and the Logit dynamic, while the dynamic competition
in prices is studied using a differential game. We conclude
that the dynamic pricing competition is economically feasible
for the service providers and, in addition, the dynamic solution
converges to the static solution of the scenario.

Keywords wireless sensor networks - network economics -
dynamic pricing - differential game - internet of things -
game theory

1 Introduction

The world is moving from a standalone devices scenario to
a all-connected scenario also known as Internet of Things
(IoT). The basic idea is to have connected almost all objects
around us, being able to communicate with each other
and connected to the Internet. The relevance of the IoT is
growing due to the increasing number of connected devices
[1]. In the Ericsson Mobility Report it is estimated that the
number of devices connected by 2020 will be 26 billion,
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and only 6.6 billion will be human type devices [2]. Several
new problems must be solved in order to be able to serve
this growing number of IoT connected devices [3], from the
development of new technologies and protocols [4], to the
economic analysis of the emerging scenarios [5].

In this paper we are centered in the economic analysis.
This analysis uses several tools, and the pricing is one of the
most extended. It has been used successfully in networks to
avoid or mitigate congestion scenarios [6] as well as a tool
to improve the energy usage of the devices [7]. For instance,
the work in [8] proposes a pricing mechanism to avoid the
congestion due to massive Machine Type Communication
(MTC) accesses, increasing the price of the service when the
network usage increases. Reference [9] proposes a model
where a centralized system is implemented to control the
channel sharing in cognitive radio networks based on a
credits system and how this mechanism allows to achieve
different sharing objectives.

Network pricing is a useful tool for congestion control,
but also is a tool needed in the study of the economic
viability of a scenario. It helps us to obtain the equilibrium
prices where supply and demand are balanced and the
operator profits are maximized [10]. To study the economic
viability of a network scenario the users utility and the
operators profits should be known, and consequently a
pricing scheme is needed. In this research line there
are several examples, from simple scenarios, where a
monopolistic operator offers several services with different
pricing policies, based on the quality of each service [11],
to more complex scenarios, where two or more operators
compete for serving users while they try to maximize their
own profits. In these cases the study of competition is
needed. Historically, the concepts of the economic analysis
of transport systems field [12], based on game theory
approaches, have been applied to the competition in the
networks field [13]. Many works study the competition
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between operators with several considerations. Some studies
analyze the competition in models with homogeneous traffic
profiles [14], and also that analyze the competition between
operators offering heterogeneous services like [15].

Typically, the economic viability was studied in network
connectivity provision scenarios, however, due to the
growing of the IoT and the WSN, the study of provision
of different services over the network is becoming more
relevant. The economic analysis of the services provision
allows us to study how the IoT data could be monetized,
and therefore study the economic viability from the point
of view of actors other than the operators, such as the IoT
devices owner. The works in this line are mainly focused in
static scenarios, where the conditions of the scenario remain
fixed and the solution obtained is the static equilibrium [16].
However, there are studies that go one step further, analyzing
evolving scenarios, where the analyzed conditions change
over time, and therefore, the optimal strategies [17-19].
Nevertheless, these works do not study the pricing problem
dynamically.

Our work extends the analysis performed by the authors
in [20], where the analysis was based on two coupled
one-shot games. In the second game two Internet of
Things Service Providers (IoT-SPs) compete to provide
sensor-data-based services to their clients, the final users.
In the first game the sensors compete to transmit the data
gathered to their IoT-SP through the access network of a
Network Operator (OP) and Internet. Here the analysis goes
further and models and analyzes a dynamic competition
between the service providers.

Our main contribution is to show that the dynamic
competition in prices is economically viable for all the
actors in the market. In addition, we also show how the
initial distribution of users in the market alters the profit
of the IoT-SPs and how the number of sensors deployed by
each IoT-SP modifies the profits obtained by the providers.

The model described in this paper is valid for time
sensitive applications. One possible application is a weather
alert system, where the weather sensors are our sinks, that
transmit the weather data in different places through an
OP network. The service provider gathers that data of their
sensors and offers a bad weather alert service to the people
or companies that subscribe to it, which are the users of
our model. This scheme is also valid for other kind of
applications, such as traffic jams monitoring.

The structure of this paper is the following: in Section 2,
it is described the model analyzed with the actors involved,
their behavior and the monetary flow. In Section 3, the
model is described in terms of game theory, where two
games are proposed to solve the sensor data acquisition and
the users’ service provision. Section 4 shows and explains
the results. Finally, Section 5 presents the conclusions.

2 General Model

Fig. 1 depicts the scenario under analysis in this paper.
There are two competing IoT-SPs providing services based
on wireless sensor-supplied data to final users using their
WSNs. The sensors are grouped into clusters using Machine
to Machine communications (M2M) and are owned by one
IoT-SP. All the data obtained in a cluster is transmitted to
their [oT-SP server (IoT-SP; srv) by the sink node, using the
connectivity service of the OP and Internet. The data stored
in the IoT-SP servers is is used to provide the services. In
order to improve the readability of the paper, we are going
to explain briefly all the elements of the model. The actors
identified in our model are:

— Sinks.

— Network Operator.

— Final users.

— Internet of Things-Service Providers.

2.1 Sinks

The sinks subscribe to the connectivity service of the OP
in order to transmit the gathered data to their IoT-SP.
The connectivity service received by the sinks is modeled
through the quality function Q(t) = cﬁ [11], where T is
the mean sensing-data-unit (s.d.u) transmission time and
T is the mean s.d.u service time, obtained for an OP
service modeled as an M/M/1 system. This quality function
decreases when the delay of the transmitted data increases,
therefore is valid for time sensitive applications such as real
time traffic or weather monitoring. The sinks’ behavior is
modeled using the quality perceived for the connectivity
service minus the price charged by the OP to the users that
subscribe their connectivity service, trough the well known
compensated utility function [21]:

Us(t)

0(t) — p(t) = e(1—x (1)eNF) - p(t), ()

where ¢ is a conversion factor, x; is the fraction of sinks
subscribed to the OP, r is the sink data generation rate,
N = Ni + N is the total number of sinks and where N; is
the number of sinks of the IoT-SP; and p(z) is the price in
monetary units (m.u) that each IoT-SP; (j = 1,2) pays to the
OP when its sinks transmit one s.d.u. Note that the IoT-SP
is who pays to the OP, however, the subscription decision is
made individually by each sink. Assuming that the sinks that
do not subscribe to the service perceive zero utility, equation
(1) models that the users will subscribe to the service only
if the quality of the service perceived is not lower than the
price charged by the OP.

The sinks’ distribution is represented by X,(r) =
(x0(2),x1(¢)), where xp and x|, are the fraction of sinks
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Figure 1 Actors involved and their relations. The sinks collect the data of the WSNs and transmit it to the IoT-SPsy;, through the OP. The IoT-SPs
process the data in the servers in order to offer the sensing data-based services to the final users.

subscribed and not subscribed to the OP connectivity service
respectively and Z xi(t)=1.
i=0,1

2.2 Network Operator

The OP provides a connectivity service to the sinks. Each
ToT-SP pays a price p(¢) to the OP per s.d.u. transmitted by
its sinks. Therefore, the OP instantaneous profit at time ¢ can
be obtained as price at time ¢, p(f) multiplied by the amount
of data transmitted by all the sinks subscribed to the service
in the same time instant:

Hop,, (1) = p(t)xi (t)rN. )

2.3 Users

The users subscribe to the sensing-data-based service of the
IoT-SPs. The preferences a user j are modeled using the
Logit discrete choice model and a utility function based on
[19]:

Uu;(t) = @log (R;(1) = (1)) + Kuy 3)

where Ku, is random variable that follows a Gumbel
distribution of mean 0 that models the unobserved individual
user preferences, such as the fidelity of the users with a

specific company, R () = x1(t)rN; is the data rate generated
by the sinks of the IoT-SP; and transmitted to them through
the OP and Internet, f;(z) is the price in m.u per second that
the IoT-SP; charges to the users for its service and ¢ > 0 is
a sensitivity parameter that models the relative importance
of the difference R () — f;(). In this case, the users’ utility
is better if the data rate R; increases and worst when the
price charged by the IoT-SP;, f;(r), increases. In addition,
it has been proved through the Weber-Fechner law, that the
human perception of the physical stimuli use to be logarithm
[22], which justifies the usage of the logarithm in the utility
function.

Assuming that the users are rational players, they will
choose the strategy (IoT-SP;) that maximizes their utility
Uy (t) > Uy, () ¥ j # i.The total number of users is M, while
the users’ distribution is described by X,,(z) = (y1(¢),y2(2)),
where y;(r) is the fraction of users that subscribes to
IoT-SP;. Note that y;(f) +y2(¢) = 1, and that every user
subscribes to one IoT-SP.

2.4 IoT-SPs

The IoT-SPs collect the data of their sensors in order to
provide a data-based service to their users. The IoT-SP; pays
a price p to the OP every time its sensors transmit one s.d.u.
On the other hand, the users subscribed to the IoT-SP; pay a
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price fj(t) every time unit. The IoT-SP; instantaneous profit
is:

H]oT—SP,-,,Sj (t) =y;(e)Mf;(t) —R;(t)p(t). (C))

In the first part of the equation (y;(t)M f;(t)) we observe the
revenues obtained from the users subscribing to the service,
while the second part (R;(1)p(r)) are the costs of keeping
the sinks transmitting data through the OP.

3 Game Analysis

The scenario described in the previous section is modeled
and analyzed using game theory with two different games
connected through the value of R;. The structure of the two
games is similar: firstly, there is a pricing stage, where the
operator and providers choose their pricing decisions and
secondly a subscription stage, where the sinks and users
decide to subscribe or not based on the utility perceived. The
structure of the games is shown in Figure 2.

In this scenario we can assume that the changes in
Game I, for instance in the price charged to the sinks or
the deployment of WSNs, are much less frequent than the
changes in Game II, such as the variation in the price
charged to the users and the number of users in the market.
In this case, we can consider that most of the time, the
outcome of Game I is constant while Game II is being
played. In addition, the outcome of Game I is a stationary
point that matches the Nash equilibrium obtained in [20],
where the game is analyzed statically. On the other hand,
the changes in Game II, and particularly the prices, are
relatively frequent, and therefore, the equilibrium solution
is a function of time, which is obtained using differential
games [23].

3.1 Game I: Sinks and OP

In this game, the sinks make their subscription decision to
the OP service to transmit the collected sensing data to their
ToT-SP based on the utility perceived, while the OP chooses
the price p that maximizes its profit. Given that we can
consider Game I static from the point of view of Game II
the solution is those obtained in [20]:

i} c(1—tNr)Nr if 1< -
Tor :{L‘ 0oy ©)
47 2Nr —
. Je(l—1Nr) if T< 5 ©)
u < if 2-<7
1
xT:{l if T< -
1 1
2TtNr if WST

3.2 Game II: Users and IoT-SPs

In this game we analyze the competition in prices between
the two IoT-SPs in order to maximize their profit and the
subscription of the users to the [oT-SPs service. This game is
analyzed both statically and dynamically assuming the static
solution for Game I obtained above.

In the static analysis we obtain the Stackelberg
equilibrium, where the IoT-SPs are the leaders and the users
are the followers. The pricing strategies of the competing
[0oT-SPs are obtained using the concept of Nash equilibrium,
while the users’ subscription decision is obtained through
the Logit probability of choice.

The objective of the dynamic analysis is to analyze more
realistic scenarios, where the optimal decisions may vary
over time due to changing conditions. In order to obtain
more general results and restrictions we use continuous
time unless otherwise specified. The dynamic analysis is
conducted using evolutionary game theory for the Users
Subscription Game and differential games for the IoT-SPs
pricing stage.

In order to be able to compare the results we first analyze
the static solution of the game, and once it is obtained we
proceed with the dynamic solution.

3.2.1 Static Analysis

In this stage we analyze the equilibrium reached when all
the system parameters remain static and the actors can make
their decision only once. Under such circumstances we can
consider the equations defined in previous sections without
time dependency.

Users Subscription Stage
In this stage the users decide which IoT-SP to subscribe.
The behavior of the users is modeled by the utility function
described in (3), which is a Logit discrete choice model.
In the logit model, we can obtain the probability of a user
choosing the I0T-SP; as :

elOg (Rj 7«fj)
0j=—-—". ®)
y e1o8(Re—fi)
k=1

If we consider a number of users large enough, the portion
of users subscribing with the IoT-SP; equals the probability
of a user choosing that IoT-SP. Therefore, we obtain:

_ Ri—fi
. (Ri —fi)+(Ra— f2)’
B Ry—fh
TR -+ Re—f2) ®
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s N

Game I: Sinks and OP
Stage I: OP Pricing Stage
The OP chooses dynamically
the pricing strategy p(¢) that
maximizes its own profit

Stage II: Sinks Subscription Stage
The sinks make their subscription
decision in each time instant

. v

-

.

Game II: Users and IoT-SPs
Stage I: IoT-SPs Pricing Stage
Both IoT-SPs compete dynamically
with their pricing strategies f;(r)
in order to maximize their profits

|

Stage II: Users Subscription Stage
Final users decide to subscribe
with a IoT-SP in each time
instant given the utility perceived

Figure 2 Structure of the games and description of the stages in each game.

loT-SPs Pricing Stage

Given the profit of the IoT-SPs described in (4) and the
solution of the Users Subscription Stage (9), we can rewrite
the profit of the IoT-SPs as:

M (fi—Ry)

Mior s, (f1, /2) = fitfa—Ri—Rs

i=1,2.
(10)

— PRy,

In this case, the equilibrium reached is the Nash equilibrium,
which can be obtained as the crossing point of the best
response functions. In our scenario we can define the best
response as the best strategy of IoT-SP; given a strategy of
IoT-SP; (i # j):

BRi(fj) = f(f;) = Mgr}}ggnlorfszz- (fis fi)5

Lje{l,2} i# ],

and the Nash equilibrium is obtained solving the following
equations system:

fi =BRi(f5),
f> = BRy(f7).

Fig. 3 shows the representation of the best responses and
the Nash equilibrium. Note than in this case, there is only
one equilibrium, given that the analytical solution of the best
responses represented in the figure is only valid for 0 < f> <
100 and 0 < f; < 200.

(1)

12)

3.2.2 Dynamic Analysis

The objective of the dynamic analysis is to analyze a more
realistic scenario, where the system parameters such as the
number of sinks or the number of users may vary over time.
Therefore, the static equilibrium obtained in the previous
stage is not a valid solution, given that the optimal strategy
for all the actors may evolve with time.

In these scenarios the pricing strategies of the IoT-SPs
are functions of time and may evolve, in addition, the
classical tools employed to find static Nash equilibria are
not a valid. Under such circumstances, where the parameters

100 -

80

60 -

- —
=

BRf1(f2")
— — BRf(f")

a0

20+

0 50

I I i f
100 150 200

Figure 3 Representation of best responses and Nash Equilibrium (NE)
in a particular case.

of the system, the strategies of the other IoT-SP and the
distribution of users change over time we need to use a
new mathematical framework known as differential games
[17,23].

Related with the users, in the static analysis we have
considered that all the users make their decisions once
for all, which is not realistic. In order to analyze a
more realistic behavior the users are modeled using an
evolutionary game, where the population of users change
their decisions progressively until they reach the optimal
strategy following an evolutionary dynamic. In addition, this
dynamic allows the users to change their decisions when
the prices announced by the IoT-SPs change, which is a
requirement for the differential game.

Users Subscription Stage
In order to maximize dynamically the utility of the users
defined in (3), we define the following game:

— Strategies: S = {S1,5,}, where S; means to subscribe to
the IoT-SP; service.

— Social State: X,,(t) = {y1(¢),y2(t)}, y1 +y2 = 1. Users’
distribution between IoT-SPs.

— Payoffs: F(t) = {U,, (t),U,,(t)}. Note that the utility is
a function of time, given that the social state and the
prices also vary with time.

The previous game is modeled using a evolutionary
dynamic, that represents the evolution over time of the
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Figure 4 Evolution of the Logit dynamic when R = 15, Ry, = 20,
f1 =5,f2 =3, 52 l,yl(O) =1 andyz(O) =0

population of users. The usage of evolutionary dynamics
allows us to model realistic users, with limited information
and inertia in their global behavior. The dynamic of the users
is:

yi=06(w;—yi), (13)

where 0 is the learning rate, @; is the logit probability of
choosing the strategy i defined in (8) and y; represents the
instantaneous variation of the population of users subscribed
to the IoT-SP;. This mean dynamic is known as the Logit
dynamic [19, 24]. Note that in this dynamic, the value of
y; converges to @;, however, y; = @; is only reached in the
stationary states. Substituting the values of our model in
(13), we obtain the instantaneous variation of the population
of users subscribed to each IoT-SP:

)"15< Ri—fi y1>
(R1 = fi) +(R2— f2)

- Ro—1fa B
y2_6<(R1—f1)+(R2—f2) ”)' (1

Figure 4 shows the evolution of the population of users as a
function of time, when their behavior is modeled by (14).
The Logit dynamic, unlike the replicator dynamic, has
the property that the pure strategies are not necessarily
steady states, as shown in Figure 5, where we observe the
evolution of the Logit dynamic in a particular case with
four different initial states, where the Globally Evolutionary
Stable Strategy (GESS) is the mixed strategy equilibrium.

IoT-SPs Pricing Stage

In this stage, each IoT-SP tries to maximize its profits
within a time horizon ¢ € [0,T], and not only maximizing
its instantaneous profits in every time instant. In addition,
it is common to introduce a discount rate 7], which
modifies value of future payoffs in the present moment. The
aggregated profit functions of the IoT-SPs are

T
jor—sp, = /0 meloT—Sﬂ-mj dr. j=1,2. (15)

1 Yy YNV Y OY Yy
'BEEREERERERERE
0.9 YV Y Y Y Y Yy Yy
B EEEEREERERER
0.8 S TR TR TR S S R SR R
I3 I3 I I Yy
0.7 3343333999
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SEEEEREEERRREEE
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= A4 4441114444444 44
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Figure 5 Convergence of the Logit dynamic in the case where a mixed
equilibrium is the GESS.

The objective of the IoT-SPs is to maximize their aggregated
profits, where the price charged to the users f; is the
maximization variable. In this case, both IoT-SPs have
conflicting interests and therefore, this cannot be solved
as two independent maximization problems. This strategic
interaction in static scenarios is solved using the Nash
equilibrium however, in dynamic problems, one of the
equilibrium concepts employed is the Open-Loop Nash
Equilibrium (OLNE). In order to solve the OLNE for
dynamic problems we introduce the concepts of optimal
control problems and differential games. An optimal control
problem allows us to solve problems with restrictions such
as (15), where the optimal strategy is not a static value, but a
function of time, also known as optimal path. When there are
several actors with conflicting interests solving an optimal
control problem each one we have a differential game.
In order to solve the optimal path within a time horizon
t € [0,T] of both competing IoT-SPs, each one solves an
optimal control problem that maximizes its profit given the
strategies of the other IoT-SP and the behavior of the users.
The formulation of the optimal control problem for each
[oT-SP is:

T —nt
maxy; Ior—sp;, = fo e " ior—sp,,, dt,

st y1=06(w—y),
Y2 =0 (mn—y2),
Xu(0) = {10,520}
fi, (i=1,2) €Reo,

where HI(,T,Spim_/_ is the instantaneous profit of the IoT-SP;
shown in (4), y ; is the instantaneous variation of the
population of users shown in (14) given the strategies of both
IoT-SPs and X,,(0) is the initial distribution of the population
of users.
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In order to solve the maximization problem with
restrictions defined in (3.2.2) we used the Pontryagin’s
Maximum Principle (PMP), which defines the necessary
conditions that the candidate optimal strategies must meet.
The solution obtained in this paper is the open-loop solution.
The IoT-SPs’ Hamiltonian function is:

Hi(f1,/2) = ior —sp,,,, + 0111+ C12)2
Hy(f1, f2) = ior —sp,,,, + O22Y2 + G21)1.

where 0;; are the adjoint variables of the OP, that model
the changes in the population state as a consequence of the
variation in the prices of all the IoT-SPs. The PMP necessary
conditions for the IoT-SP; are:

fi (@) = H; (16)
¥j=08(wj—yj), (17)
, OH;

Oji = 0jil =5 5 (18)
Gj,‘(T) =0. (19)

where i,j = 1,2, (16) is the maximality condition, (17)
is the Logit dynamic, which models the evolution in the
population of users, (18) are the adjoint equations and (19)
are the transversality conditions. Solving (16) we obtain the
candidate strategies f', f; to optimal paths in terms of the
state y;, y» and the adjoint variables o1y, Gj2, 02, O2j.
Replacing the optimal candidate strategies f},f; in the
remaining PMP conditions and with the initial state
conditions we have the following system of PDE:

i = §(af —y1),
V2 = 6(w5—y2),
. OH;
O11 = oun—35;>
. oH;}
O12 = ol -5,
. ot
022 = 0N =55
. oH;
021 = 0211 — ENE . (20)

y1(0) = yio,
»2(0) = yp,
G]](T) = 0,
Glz(T) = 0,
Gzz(T) = 07
Gzl(T) = 0,

where o and H;" are the probability of choice the strategy i
and the Hamiltonian function of the operator i when prices
f1, f> are replaced by the candidates to optimal paths f', f5.

The system (20) is a Two Point Boundary Value Problem
(TPBVP) that models the solution to the differential game,
and cannot be solved using traditional methods for PDE:s.
We have solved the TPBVP numerically using the shooting

Table 1 Game I parameters

Game I parameter Scenario1  Scenario 2
Conversion factor (¢ [ o ]) 1 1
Sink data generation ratio (r ["f” ]) 1 1
Mean s.d.u e 1
transmission time (T [ﬁ]) 600 600
Number of IoT-SP; Sinks (N;) 200 150
Number of IoT-SP; Sinks (N;) 100 150
Table 2 Game I solutions
Game I Variable Scenario1  Scenario 2

OP price (p [%]) 0.5 0.5

Fraction os sinks subscribed (x;) 1 1
Amount of IoT-SP; data (R, [“"‘j‘”}) 200 150
Amount of IoT-SP, data (R [ =4 ]) 100 150

Table 3 Reference Case - Game II Differential Game parameters

Parameter Scenario 1 and 2 Value
Number of final users (M) 1000
Dynamic’s learning rate (5) 0.7

Initial social state (X, (0)) {0.2, 0.8}

Final time horizon (T [s]) 10

Discount rate (1) 0

method [25], and the results are shown in Section 4. This
method requires the discretization of time, nevertheless, this
is absolutely transparent for the researchers.

4 Results and Discussion

In this section, we present the numerical results for Game II.

The value of Game I parameters for the two scenarios
that we analyzed are shown in Table 1, and the solutions
of Game I given that parameters are shown in Table 2. On
the other hand, Game II is solved using the reference case
parameters shown in Table 3 for both scenarios.

4.1 Scenario 1: IoT-SPs dynamic competition with
different number of sinks

In this subsection we show the results of Game II when each
provider has a different amount of sinks deployed, given the
solution for Game I shown in Table 2, column Scenario 1”.

Fig. 6 shows the variation of the dynamic prices
(f1(t), f2(t)), compared with the equilibrium prices of the
static analysis (f}-Static, f;-Static). At the beginning, the
providers change their prices, due to the differences between
the static equilibrium values and the initial populations.
Once the static equilibrium is reached the behavior of the
providers is stationary, until # is close to 7, where the
providers increase their prices.

Fig. 7 shows the evolution of the users’ social state in
the dynamic case (y; (), y2(¢)), compared with social state
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Figure 6 Scenario 1: IoT-SPs equilibrium prices in the dynamic and
static approach as a function of 7.

equilibrium in the static analysis (y] — Static, y5 — Static). At
the beginning, the social state evolves due to the difference
between the initial and the equilibrium values. Once the
social state reaches the equilibrium it remains constant. We
do not observe significant changes in the users’ social at
the end of the time interval, when the prices increase, given
that we have not included the option of not subscribing. It
is also interesting to note that the provider with more sinks
gathering and transmitting data (R;), is able to fix a higher
price and still maintain a higher number of users subscribing
to it.

Fig. 8 shows the instantaneous profits in the dynamic
case (ILorsp, (1), Ihorsp, (), compared with the profits
in the static analysis (Ior-sp, -Static, Il,t.sp,-Static). We
observe a similar behavior in the instantaneous profit of the
providers, compared with the prices and the social state,
where there is a transition stage until the stationarity is
reached, and the profit only deviates from the equilibrium
when ¢ is close to 7. The aggregated profit, obtained
numerically integrating the instantaneous profit, for the
IoT-SP; is 839325 while for the IoT-SP, is 298900. We
observe that the profit for the IoT-SP; are higher than the
profit of the IoT-SP, as expected, given that Ry > R».

4.2 Scenario 2: [oT-SPs dynamic competition with same
number of sinks

In this subsection we analyze the same variables when both
providers have the same amount of sinks deployed, given the
solution for Game I shown in Table 2, column “Scenario 2”.

In this scenario we observe a similar behavior than
in Scenario 1, with the difference that given that the two
provider have the same amount of sinks, the equilibrium
values for the prices, social state and profits are the same for
both providers, as shown in Figs. 9, 10 and 11, respectively.
In this case, the aggregated profit are 492837 for IoT-SP;
and 558575 for 10T-SP,. They are not the same due to

Figure 7 Scenario 1: Social state in the dynamic and static approach
as a function of 7.

MioT-sp;(t)

140000 |- . .
Mot-spy(t) ===== = MioT-sp, *—Static

120000 |- MioT-sp,(t) == MioT-sp, *—Static
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80000 S A e e T e e e e
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40000 -
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0 2 4 6 8 10 (€)

Figure 8 Scenario 1: IoT-SPs profits in the dynamic and static
approach as a function of ¢.
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200 -
150 +
100 - . - - - - -
I
50 -
» () ====- - f,*~Static
Bty =——=  £*-Static
T S S S, 1)1
0 2 4 6 8 10

Figure 9 Scenario 2: IoT-SPs equilibrium prices in the dynamic and
static approach as a function of 7.

the differences between the initial state of the population
of users and the equilibrium. It is interesting to point out
that the dynamic approach is able to evolve from any initial
population and reach the stationarity, that matches with the
Nash equilibrium of the static approach. In addition, the
dynamic approach is also able to choose the best strategies
in scenarios where the parameters of the system, such as the
number of sinks deployed or the number of users, evolve.
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Figure 10 Scenario 2: Social state in the dynamic and static approach
as a function of 7.
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Figure 11 Scenario 2: IoT-SPs profits in the dynamic and static
approach as a function of 7.

5 Conclusions

The dynamic provision of services based on wireless
sensor-data, has been studied. The model was studied
using game theory, evolutionary games, Logit dynamic,
maximization and differential games.

Firstly, the model was analyzed as two games. The first
game analyzed the interaction between the OP and the sinks,
while the second game analyzed the competition between
IoT-SPs to provide services to final users and the behavior
of the users. The first game was considered static from
the point of view of the users and IoT-SPs, given that the
frequency of the changes in that game is much lower than in
the second game.

Secondly, a Logit dynamic was chosen to model users’
behavior, while the competition between I0T-SPs in order
to maximize their profit was analyzed using a differential
game.

It has been shown that the competition in prices is
economically viable for both operators, as shown in the
stationary values of the profits and that the dynamic pricing
is possible and converges to the static equilibrium. In
addition, we have observed that the competition between

providers keeps the prices bounded until time is close to
the end of the interval, therefore, it is recommended to
introduce a reservation value or an infinite interval in order
to observe the long term behavior. We also have shown how
the provider with more sinks is able to fix a higher price,
to keep a higher portion of subscribers and therefore, to
obtain a higher profit. Finally, it has been shown how the
initial distribution of users alters the profit of two competing
providers with the same number of sensors in short term
optimizations.
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