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Highlights

• A completely new solution for fraud scoring in card pay-
ments validated by one of the biggest bank in the world

• Experiments were performed with real dataset with more
than 900 millions of credit card operations

• Experiments performance is comparable to state of the
art solutions but without any human intervention

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

End-to-end Neural Network Architecture for Fraud Scoring in Card Payments
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València, Spain
{jon,rparedes}@dsic.upv.es

bBBVA Data & Analytics
Madrid, Spain

{jordi.nin, juanmaria.arevalo}@bbvadata.com

Abstract

Millions of euros are lost every year due to fraudulent card transactions. The design and implementation of efficient fraud detection
methods is mandatory to minimize such losses. In this paper, we present a neural network based system for fraud detection in
banking systems. We use a real world dataset, and describe an end-to-end solution from the practitioner’s perspective, by focusing
on the following crucial aspects: unbalancedness, data processing and cost metric evaluation. Our analysis shows that the proposed
solution achieves comparable performance values with state-of-the-art proprietary and costly solutions.

Keywords: Fraud Detection, Credit Card Payments, Deep Learning, Neural Networks
2010 MSC: 00-01, 99-00

1. Introduction

The advent of new payment solutions, most of them based
on cloud solutions [1], such as person-to-person mobile pay-
ments and mobile card-based contactless proximity payments,
has significantly increased the use of credit and debit cards. Ad-5

ditionally, the Single Euro Payments Area (SEPA) implemented
in 2014 allowed consumers and businesses to use a single pay-
ment account for all euro credit card payments [2], hence easing
card payment. These and other factors have established credit
and debit card as the most popular payment mode for both on-10

line as well as daily purchases. Unfortunately, with the arrival
of these new technologies, card fraud has also been increased.

The security of card payments and the trust of the general
public in making card payments is a matter of concern for any
bank in the world. Fraud with cards issued within SEPA stood15

at 1.3 billion of euros in 2012, i.e., 0.038% of the value of card
transactions [3]. Technological advances have made card trans-
actions safer, e.g. with the use of a chip instead of a magnetic
stripe for authenticating the card. However, fraudsters con-
stantly change their strategies to avoid being detected, making20

traditional fraud detection tools –such as expert rules or ma-
chine learning static models– inadequate [4, 5]. In this regard,
one of the main challenges is to counteract the increasing fraud
for “card-not-present” payments, especially in e-commerce ac-
tivities.25

Different techniques have been proposed to deal with the
automatic credit card fraud detection [6, 7, 8, 9, 10, 11]. How-

∗Jon Ander Gómez

ever, several aspects must be considered when building an en-
gine for card fraud detection. For instance, the skewness of the
data makes model training challenging; typically, only a very30

small portion of card transactions are fraudulent (in our dataset,
only 1 out of 5,000 transactions is fraudulent). On the other
hand, the search space has a high dimensionality, so perform-
ing a good feature pre-processing step is mandatory to obtain
decent classification results. Another critical aspect is that the35

system has to response in very short times to become useful in
real scenarios. In addition, due to the varying nature of fraud
strategies, online training or at least frequent re-training is a
must in any credit card fraud detection model [12].

However, the most difficult issue to tackle down is that credit40

card fraud detection is by definition a cost-sensitive problem, in
the sense that the cost produced by a false positive is different
than the cost of a false negative [13]. Notice that, when the
system predicts a transaction as fraudulent when in fact it is
not (false positive), the financial institution has an administra-45

tive cost, as well as a decrease in customer satisfaction. On the
contrary, when the system does not detect a fraudulent transac-
tion (false negative), the amount of that transaction is lost [14].
Moreover, it is not enough to assume a constant cost difference
between false positives and false negatives, since the amount of50

the transactions varies significantly; therefore, its financial im-
pact is not constant because it depends on the amount of each
transaction.

In this paper we propose a new approach for online credit
card fraud detection based on a set of artificial neural networks55

(ANN) [15]. Firstly, we apply a cascade of two consecutive
filters to each transaction. The goal of this cascade is not to

Preprint submitted to Journal of Pattern Recognition Letters August 22, 2017
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definitively classify a transaction as fraudulent or genuine, but
to reduce the data unbalance as much as possible, keeping the
largest amount of fraudulent transactions whilst removing as60

many genuine transactions as possible. Each filter is imple-
mented as an ensemble of ANNs. Each single ANN is trained as
a binary classifier (genuine vs fraudulent transactions), whose
output layer has two neurons with the softmax activation func-
tion. Using this combination of ensembles and cascading meth-65

ods, the ratio of genuine to fraudulent transactions is typically
reduced from 5, 000 : 1 to around 100 : 1. Once the data skew-
ness has been mitigated as much as possible, another ANN is
trained to finally score and classify each transaction.

As aforementioned, in order to construct a credit card fraud70

detection model, it is very important to use those features that
allow an accurate classification. Traditional systems only ex-
ploit raw transactional features –such as time, amount or place
of the transaction– and do not consider the spending behavior
of the customer or the merchant, which is expected to help the75

model to discover complex fraud patterns [16]. In reference
[17] a transaction aggregation strategy is applied to take into
account the customer spending behavior. The computation of
the aggregated features consists of grouping the transactions
made during the last given number of hours. The aggregation is80

made first by card or account number; then by transaction type,
merchant group, country or other; finally, the number of trans-
actions or the total amount spent on those transactions is cal-
culated. Instead of these approaches, in this paper we propose
to mix raw transactional features with aggregated spending be-85

havior at customer, merchant, currency and country level.
Our dataset consists of more than 900 millions of anonymized

real card transactions from January 2014 to June 2015 provided
by BBVA, together with another anonymized data set corre-
sponding to all fraud claims of BBVA’s customers. In order to90

label transactions as fraudulent or genuine, we have created an
approximate record linkage system to relate fraud claims with
real transactions. With such datasets, we have been able to re-
produce all the issues of a real environment to test our approach.
Furthermore, we have trained our system and tested it obtain-95

ing similar results to the ones provided by actual commercial
solutions.

The rest of this paper is organized as follows. Firstly, in
Section 2, we describe the credit card fraud detection scenario.
Then, in Section 3 we introduce some required concepts about100

artificial neural networks. Later, Section 4 gives all the details
of our proposal. Experiments are detailed in Section 5. Finally,
the paper ends with some conclusions and future works.

2. Credit Card Fraud Detection Scenario

Although it is important to understand that there are multi-105

ple payment systems, all of them function in a similar fashion.
Here, we introduce a generic overview of the card transaction
process without describing the particularities of each card sys-
tem.

From a general point of view, every credit card transaction is110

the result of a series of interactions among several participants,

Figure 1: Card Transaction Validation Flow.

see Figure 1 for a representation of the full transaction cycle.
Such cycle is typically characterized by the following steps:

1. The cardholder presents a card to pay for purchases, or
type the card information in online payments.115

2. The merchant processes the card and transaction infor-
mation, and request an authorization from the bank.

3. The bank submits the authorization request to the card
issuer.

4. The card issuer approves or declines the transaction.120

5. The bank forwards the response to the merchant.
6. The merchant receives the authorization response and com-

pletes the transaction accordingly.

Authorization (step 4) involves assessing card’s transaction
risk and, if approved, reserving the sales amount on the card-125

holder’s account. Here is where fraud scoring algorithms are
executed and, depending on the obtained score, the authoriza-
tion response can be approved, declined, called for referrals,
picked up or not match. Then, the merchant must proceed ac-
cordingly.130

Once the authorization process ends, card transactions are
still in process as they must be settled. Depending on the set-
tling process this may require some time, from minutes to days.
For this reason, when an approved payment is a fraudulent oper-
ation, cardholders cannot see the movement in the bank account135

immediately. Moreover, it may happen that a cardholder does
not check card balance quite often; therefore, the reporting of
fraudulent payments to the card issuer may have an important
delay, or even present involuntary mistakes. Besides, cardhold-
ers may report non-fraudulent payments among fraudulent ones140

for their own benefit.
In order to mitigate this problem, reported fraudulent pay-

ments are only linked with payments in the card transactions
database when a one to one relation between two operations
is found. To do this, we have applied an approximate record145

linkage process with the import and timestamp fields. Specifi-
cally, we match two operations when imports differ less than a
10% and timestamps differ in less than ±36 hours. Using this
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process, we link around 90% of reported fraudulent payments.
Note that, this linkage is completely unsupervised and it may150

contain incorrect links (i.e. wrong labeled operations).

3. Artificial Neural Networks

In the last years, artificial neural networks, under the new
branding of Deep Learning (DL), have improved the state of the
art in machine learning domains in which the data is related to155

high level concepts, hence requiring many levels of abstraction.
Deep architectures are able to be self-trained in order to catch
these different abstraction levels in different layers [18]. Due
to this, DL has been successfully applied in different domains
such as speech recognition or image processing.160

DL approaches consist of avoiding most of the preprocess-
ing steps on the input data by training (usually by backpropa-
gation) a many layers Neural Network. Deep Neural Networks
(DNN) are able to learn different levels of abstraction in each
of its layers, even when a minimum preprocessing is applied on165

the input data. Specifically Neural Networks cascades (NNC)
have been successfully trained for face detection in images [19],
among others. NNCs take advantage of their architecture re-
quiring less parameters in each layer than other types of net-
works [20] making its training easier.170

In the rest of this section we introduce the main ANN details
used in our architecture.

3.1. Artificial Neural Networks for classification

An artificial neural network is a set of units –called neurons–
interconnected. The units are essentially simple mathematical
models defining a non-linear projection Φ : RD → R, where D
is the dimension of the input space. It is customary to represent
this transformation in matrix notation as

Φ(x) = s(b + wT · x). (1)

Here, x ∈ RD is the input vector, while the bias b ∈ R and
the weight vector w ∈ RD are learnable parameters. The func-175

tion s is a vanishing function known as the activation function.
Typical choices for s include hyperbolic tangent, tanh(a) =

(1 − e−2a)/(1 + e−2a), or the logistic sigmoid function, σ(a) =

1/(1 + e−a). A neuron is said to be activated when Φ is greater
than its minimum value.180

Neural units are combined together forming a layer, so that
the layer projects the input vector into a L-dimension space,
Φ : RD → RL:

Φ(x) = s(b + W · x), (2)

where now the bias is a vector b ∈ RL and the weights W ∈
RL×D a matrix. The activation function is applied point-wise.

An artificial neural network consists of several of such lay-
ers interconnected. Connections among different units of the
same layer are not allowed here –as opposed to, e.g., Boltzmann185

machines or probabilistic graphical models–. The network is
said to be a feedforward network if connections between units
of different layers do not form a cycle –in contrast to recurrent
neural networks–. The simplest kind of feedforward ANN is

a single-unit perceptron, i.e. a binary linear classifier like that190

of eq. (1). Notice that this processing unit can only classify
linearly separable inputs.

A Multi Layer Perceptron (MLP) [21] is a set of feedfor-
ward layers stacked one after the other. The last layer is a single
unit classifier, see eq. (1), making the MLP a non-linear clas-195

sifier. The intermediate layers are referred to as hidden layers.
It is proven that a single hidden layer MLP is sufficient to ap-
proximate continuous functions on compact subsets of RD with
a finite number of neurons. However there are substantial ben-
efits when using more than one hidden layer.200

Formally, a single hidden layer MLP is a function f : RD →
R, such that:

f (x) = Φ(2)(Φ(1)(x)) = s(2)(b(2) + w(2)Φ(1)(x))

= s(2)(b(2) + w(2) · (s(1)(b(1) + W(1) · x))). (3)

Here,Φ(1)(x) = s(1)(b(1) + W(1) · x) constitutes the hidden layer,
also denoted by h(x). On the other hand, Φ(2)(h) is a single unit
classifier.205

In the general case of having C output classes, a Softmax
layer can be used at the last layer of a ANN classifier, where
the activation is defined as

s j :=
ey j

∑C
i=1 eyi

. (4)

Here, j indicates a given neuron, C is the total number of neu-
rons and yi stands for the ith-component of the linear projection
of the input vector x to the layer, y = b + W · x. The Soft-
Max layer thus represents a non-linear variant of the multino-
mial logistic regression setting. Notice that softmax activation210

is computationally expensive, as it requires knowledge of all the
values of the neurons in a layer.

The idea behind this type of layer is that output classes are
mutually exclusive; indeed, the Softmax layer tries to take ad-
vantage of this fact within the network architecture. Ideally,215

the most suitable architecture for this requirement would be to
directly apply a maximum layer output, which will provide a
probability equal to one for the maximum output of previous
layer and a probability equal to zero for rest of the output neu-
rons. However, such output layer will not be differentiable, and220

thus, impossible to train with back-propagation.
The optimization of ANN classifiers is expressed in this

work in terms of the cross-entropy between the true value of a
label and the distribution of predicted values by the model [22],
although other losses such as the sum of the squared differ-225

ences are very extended [23]. With the cross-entropy loss, the
minimization process implies making the probability of the pre-
dicted class as close as possible to the true label.

3.2. Learning the parameters

In a feedforward ANN the information flows from the in-230

put to the output layer. The initial information is propagated
through the network in training time until it produces a scalar
cost J(θ), parameterized by a set of parameters θ – in the sin-
gle hidden layer MLP, eq. (3), θ ≡ {b(1),W(1), b(2),w(2)}. This
process is known as forward propagation. In order to minimize235
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the cost J, the information must flow backwards through the
network, so that the gradient of the cost respect to the parame-
ters can be computed. This is called back-propagation, see e.g.
[24]. The gradient can be expressed in terms of the operations
defined in each layer by applying the chain rule of calculus.240

The updates of the learning parameters θ can be calculated
using gradient descent as

θ := θ − η∇θJ(θ), (5)

where η stands for the learning rate which determines the size
of the steps we take to reach a (local) minimum. As observed,
gradient descent updates the parameters in the opposite direc-
tion of the gradient of the objective function ∇θJ(θ). Roughly,
it follows the direction of the slope of the surface created by245

the objective function downhill until a valley is reached. As
we need to calculate the gradients for the whole dataset to per-
form just one update, gradient descent can be very slow and it
is intractable for datasets that do not fit in memory.

In contrast, stochastic gradient descent (SGD) performs a
parameter update for each training example x(i) and label y(i)
[25]:

θ := θ − η∇θJ(θ; x(i), y(i)). (6)

Notice that this expression approximates the true value of the250

gradient by its value at a single training point. This allows one
to parallelize the code, but induces at the same time large fluctu-
ations in the parameters θ. Although such fluctuations may ulti-
mately complicate the convergence to the exact minimum, this
same fact enables the iteration process to jump to new and po-255

tentially better local minima, in contrast to normal gradient de-
scent operation, which converges to the minimum of the basin
where the initial parameters are placed in.

There are several ways of improving SGD that we use in
our training. In particular, the use of mini-batches to compute260

the gradients at more than one training point in each iteration,
which smooths the fluctuations provoked by SGD; and the use
of adaptive learning rates, such as momentum techniques.

There are many non-linear functions that can be used to ac-
tivate a neuron in eq. (1). A Rectified Linear Unit (ReLu) [26] is265

a neuron with an activation function defined as s(x) := max(0, x).
In contrast to the vanishing property of hyperbolic tangent or
the sigmoid activations, the ReLu does not go to a finite value
for large values of the input. This helps to prevent zero gradi-
ents when back-propagating the error through large networks.270

For this reason ReLu units have become one of the most popu-
lar activation functions for Deep Neural Networks [27].

A smoother and differentiable variant to ReLu units is the
softplus function [28], s(x) := ln(1 + ex). The derivative of
this function is the traditional logistic function. ReLu units are275

widely used in many applications such as computer vision or
speech recognition, see e.g. [29, 30].

4. Methodology

ANNs are seamless representation and classification mod-
els that learn simultaneously an appropriate hidden representa-280

tion of the input data and a discriminative model that connects

these hidden representations with the discriminant information.
Recently, ANNs have grabbed attention in many areas, such as
biomedicine [31], mainly for two reasons: the very good results
obtained in real problems such as image recognition or natu-285

ral language processing; and the possibility to train them with
very large data sets on clusters of graphical processing units
(GPUs). In contrast to other classification problems, fraud de-
tection entails a very difficult detection problem: first, it is an
extremely unbalanced problem where the ratio between gen-290

uine and fraudulent transactions is greater than 5, 000 : 1; sec-
ond, fraudulent transactions use to mimic genuine transactions
in order to avoid being detected. These two issues lead to a very
complicated scenario where standard techniques fail.

There are different techniques to deal with imbalance data295

but not all of them scale properly to millions of samples. Sim-
ilarity based methods like k-nn and oversampling [32] does not
scale properly. The k-nn is a direct estimator of the posterior
probability thus is not affected by the prior. However k-nn scal-
ability, even when approximate search is used, is problematic.300

Moreover k-nn and oversampling techniques are quite sensible
to outliers, and fraud detection is a problem where noise la-
belling is present and editing techniques aim to remove outliers
does not scale properly to such as large scale problems. On the
other hand, cascade of classifiers has demonstrated to be a very305

feasible way to deal with the unbalanced problems. In fact we
find lot of similarities between fraud and face detection where
cascade of classifiers is among the state of the art, see for in-
stance [33] a face detector based on a cascade of Adaboost clas-
sifiers. In fact, the fraud detection problem resembles the face310

detector problem where the number of pixels where a face is not
present is much larger than the number of pixels where a face is
present. In our problem, as the cascade gets deeper, more and
more samples of genuine transactions are discarded,making the
last classifier in the cascade better suited for distinguishing be-315

tween the hard examples of fraud and the ones that are genuine.
Therefore, we propose the use of a cascade of two filters to

deal with the first problem (unbalanced ratio fraudulent/genuine
transactions), and a neural network classifier to deal with the
second problem (fraudulent transactions use to mimic genuine320

transactions). As explained in the Introduction, the two filters
are implemented as an ensemble of ANNs, where each single
ANN is trained as a binary classifier. Thanks to using ensem-
bles of ANNs, it is not necessary to adjust a threshold for mak-
ing the decision at the output of each filter. Those transactions325

rejected by the cascade of filters are the ones the system accepts
as genuine ones and will not reach the final neural network clas-
sifier.

4.1. Data preprocessing
Raw data consists of the records, known as transaction mes-330

sages, that every bank stores from credit or debit card trans-
actions. We process the stream of records in order to obtain
a representation of each transaction message as a feature vec-
tor. Feature vectors are composed of both aggregated and non-
transformed attributes, a total of 62 features. Appendix A con-335

tains a description of the attributes used for composing each
feature vector ∈ R62.
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4.1.1. Splitting of the dataset
The dataset contains transactions corresponding to card pur-

chases made during 18 months, from January 2014 to June340

2015. But June 2015 was not used because there is a lack of
fraud information for some days of this month. In order to sim-
ulate the regular operation of fraud-detection systems in real
scenarios, we trained classifiers with data of previous months
for predicting a particular month. Since annotated fraud mes-345

sages are not available immediately we never considered the
previous month for training. As an example, for testing with
data of March 2015, we never considered to train using data of
February 2015.

ANNs used for the definitive decision were trained with350

data of six months, then, for testing March 2015 it was used
the data from August 2014 to January 2015.

In order to prepare filtered data, first and second level filters
were trained in a similar way but using two months (due to the
very large scale before filtering) instead of six. Therefore to ob-355

tain the filtered data of August 2014 the second level filter was
trained with data of May and June of 2014. Again the previous
month, July 2014, was not used. Finally, to obtain the filtered
data of May 2014, the first level filter was trained with data of
February and March of 2014. January 2014 was used for esti-360

mating the initial values for the aggregated attributes used for
preparing the input to ANNs, in particular P( f raud | currency),
P( f raud | country), P( f raud | trader), and P( f raud | card).
These aggregated attributes are updated every month. Accord-
ing to this, we can test last three months.365

4.2. Cost sensitive metrics

As aforementioned, credit card fraud detection is by defini-
tion a cost-sensitive problem, in the sense that the cost produced
by a false positive is different than the cost of a false negative.
Normally this kind of problem is assessed by means of the area370

under the ROC; in fact some of the recent state-of-the art works
on fraud detection used this measure [34]. However, in this
paper we also evaluate two other quantities: the Value Detec-
tion Rate (VDR) and the True False Positive Ratio (TFPR). The
former, VDR, is defined as the amount of money associated375

to fraudulent operations that are detected by the system. The
later, TFPR, is the ratio between the total number of transaction
blocked by the system and the number of fraudulent transac-
tions blocked.

The VDR is formally described as the ratio between the to-380

tal amount of informed fraud and the fraud amount detected:

VDR =
fraud detected

total fraud
. (7)

For the sake of readability of the results, VDR is usually ex-
pressed in percentage.

On the other hand, TFPR aims at evaluating the cost of a
false positive, and it is much more challenging because it af-385

fects to the social credibility of the bank security measures. The
goal is to minimize the amount of false positive but at the same

time do not block many genuine transactions. TFPR is formally
defined as:

TFPR =
TP + FP

TP
, (8)

where T P is the True Positives and FP the False Positives.390

4.3. Cascade of classifiers for filtering

The goal of a filter is to remove as many genuine trans-
actions as possible while conserving the maximum number of
fraudulent transactions. Instead of using a unique filter, a cas-
cade of filters based on ensembles of ANNs is applied for this395

purpose. The performance of filters is measured with the VDR
defined in eq. (7) and the ratio of genuine vs fraudulent transac-
tions. Here, VDR refers to the percentage of fraud the system
preserves after each filter in the cascade. The amount of fraud
corresponding to those fraudulent transactions rejected by the400

filters is the fraud the system will never recover.
Experiments were conducted for testing different ANN

topologies and depths of the cascade of filters. We found that
two levels of filtering were sufficient to reduce the ratio of gen-
uine to fraudulent transactions to acceptable levels. The chosen405

topologies for these two filters are presented in Table 1 jointly
with their performance. In both levels of filtering 10 ANNs per
ensemble were used, no improvements were observed in the
accuracy of first and second level filters when increasing the
number of ANNs per ensemble. All the ANNs in an ensemble410

had the same topology. The differences among ANNs in the
same ensemble were the weight initialization and the order the
samples were processed, because samples are shuffled at each
epoch.

Original data as it was provided has an overall ratio of gen-415

uine/fraudulent transactions greater than 5, 000 : 1. The first
level filter reduces this ratio to around 420:1, a reduction slightly
greater than 90% of the total amount of transactions with a
93.7% of preserved VDR. The second level filter reduces the
ratio close to 100 : 1, but in this case the preserved VDR is420

lower, around 66.4%. In all cases both quantities, the ratio of
genuine/fraudulent transactions and the VDR, are reported in
average for all months used for testing. It can be the case of
days where these values are far from the average. But the goal
in this task is to know the behavior of the detector system in the425

long term, that is why the values of interest are the average of
these measures.

Table 1 summarizes the results of the filtering cascade. Two
filters have been enough to achieve a ratio affordable by the
definitive ANN used to classify transactions. In other words,430

adding more filters did not improve the results of the whole
system in the task of detecting fraudulent transactions.

5. Experiments

In order to asses our approach we run experiments with a
database of 18 months of transactions. We have tested our ap-435

proach in the last three months using the previous months to
train the models.
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Table 1: Topologies used in the first and second level filters of the cascade.
Several topologies were tested for each filtering level. In all cases the out-
put layer has two neurons because ANNs are used here as binary classifiers
(genuine/fraudulent), and the number of neurons of the input layer is the di-
mensionality of the samples. The activation function of all hidden layers is the
hyperbolic tangent and the activation of the output layer is the softmax. The
performance of each filter is presented as VDR and the reduction in average of
the ratio of genuine/fraudulent transactions.

Filter Topology VDR Ratio
Original data – – >5, 000:1
First level 62×500×500×2 93.7% 420:1
Second level 62×500×500×500×2 66.4% 100:1

As explained in subsection 4.2, we use the VDR and TFPR
metrics to evaluate our model from a business point of view.
As each blocked transaction must be further analyzed by a hu-440

man, TFPR ratio values should be around 4 [35]. This ratio is a
good compromise to avoid to saturate the back-end alert system
managed by humans within the bank. In order to properly ad-
just TFPR, both metrics (VDR and TFPR) are computed once
the network is trained considering all the possible threshold val-445

ues (from 1 to 99), then experts select the final threshold score
before put the network in production for the next months.

5.1. Last Neural Network and Results

After the cascade of filters we use a MultiLayer Perceptron
(MLP) with ReLu hidden units and softmax output units for450

classifying transactions as genuine or fraudulent. In order to
improve the stability and convergence of the SGD backpropa-
gation we apply different techniques: drop out, adaptive learn-
ing rate, batch normalization or Maxnorm regularization.

We apply Batch Normalization (BN) [36] to all the layers.455

Usually, ANN convergence tends be slow because the distribu-
tion of each layer’s inputs changes during training as the pa-
rameters of the previous layers change. This slows down the
training by requiring lower learning rates and careful parameter
initialization. BN aims at eliminating the internal covariate shift460

in order to ease the convergence. A key issue is that normaliza-
tion is a part of the model, therefore backpropagation gradients
flow through this process as well. BN allows to use much higher
learning rates and be less careful about initialization in all the
layers.465

On the other hand, we use maxnorm regularization. Maxnorm
is a regularization that restricts the norm of the weights to a
given value c as maximum, thus preventing from a runaway
growth of the weights. Hence, the possible space where the
neurons can learn from is set to a hypersphere of c radius. We470

set the maxnorm parameter c to 3.0.
One important issue is to define the ANN topology. Here we

propose to use simultaneously several topologies with one and
two hidden layers and combine all these topologies in order to
get the final score. This approach allows us to avoid to test any475

possible topology but use all (a weighted combination). More-
over, this ensemble provides an effective regularization of the
network. The resulting neural network has 4 hidden layers in
the deepest path. To this end we use a publicly available toolkit

D1

N1:in [62]

N1:f1_1 [256] N1:f1_2 [128] N1:f1_3 [64]

N1:f2_1 [256]

N1:out1_1 [2]

N1:f2_2 [128]

N1:out1_2 [2]

N1:f2_3 [64] N1:out1_3 [2]

N1:out2_1 [2] N1:out2_2 [2] N1:out2_3 [2]

N1:fc [16]

N1:outc [2]

Figure 2: ANN combination used in the experiments

Layers[37] that allows to create any kind of feedforward neural480

network. In this work we have combined neural networks with
64, 128 and 256 hidden units. The model combination is per-
formed with an extra hidden layer with 16 units, see figure 2 for
more details.

As mentioned before, the experiments were run over the485

last three months of transactions using the previous months for
learning the network parameters. For these three months the
TFPR, VDR and AROC (Area of Receiver Operating Charac-
teristic) are measured and displayed in table 2. Moreover figure
3 shows the ROC plots.490

Table 2: Results for each month
Month TFPR VDR AROC

March 2015 4,25 13,8% 0,884
April 2015 3,95 10,8% 0,849
May 2015 4,94 23,9% 0,871

The AROC results are very similar to the results reported in
[38]. Unfortunately it is imposible to perform an exact compar-
ison because the dataset used in [38] is not public, therefore the
comparison between both approaches should be considered as
a qualitative comparison instead of an exact quantitative result.495

On the other hand, it is important to note the different perfor-
mance obtained in different months; one of the reasons could be
the great variability and seasonality of the fraud techniques em-
ployed. These techniques are continuously changing in order to
pass the fraud detectors.500

6. Conclusions

The need to detect fraudulent credit card operations in al-
most real time demands the adoption of automatic methods.
The goal of our work is to give some insight to data practi-
tioners about how to solve this problem using artificial neural505
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Figure 3: ROC plot for the three months evaluated

networks, specifically using a cascade of classifiers to reduce
unbalancedness and cost metric evaluation.

The experimental part of this paper has shown that using
the proposed approach it is possible to achieve state-of-the-art
performance with real data.510

As future work, we would like to explore other types of DL
architectures such as LSTMs (Long Short Time Memory) [39],
a type of recurrent neural networks (RNN). The idea behind
such architectures is to exploit the inherent temporal informa-
tion of customer expending behaviors and fraud patterns.515
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Attribute Description
Amount in EUR The amount of the transactions in EUR as a float value. The original value is expressed

as an integer including the cents.
Amount ratio The amount in EUR of the current transaction divided by the moving average of this

variable. The moving average is computed independently for each card number.
Pr( f raud | currency) The probability of fraud per currency computed as the ratio of two counters. The numera-

tor is the counter of fraud transactions detected for the local currency and the denominator
is the counter of all transactions corresponding to the same local currency. Numerator
and denominator of a given local currency are updated after processing each transaction.

Pr( f raud | country) The probability of fraud per origin country of the transaction. The counters involved for
computing this probability are initialised and updated with the same strategy explained
for the previous attribute.

Pr( f raud | trader) The probability of fraud per trader. The counters involved for computing this probability
are initialised and updated with the same strategy explained for previous attributes.

Pr( f raud | card) The probability of fraud per card. The counters involved for computing this probability
are initialised and updated with the same strategy explained for previous attributes.

Seconds in Day (1) Time of the operation within the day according to the operation timestamp.
Seconds in Day (2) Time of the operation within the day according to the original timestamp.

Time diff. in sec. Time difference in seconds between the operation timestamp and the original timestamp.
Can be negative, but as all the integer or real values this field is scaled to zero mean and
variance one.

Time lapse 1 Time lapse in seconds between the current operation and the previous one of the same
card number.

time(current) − time(previous)
i.e.

time(transt) − time(transt−1)
The value of this attribute is limited by the number of seconds in a year.

Time lapse 2 Idem but the difference between the current and the previous of the previous.
time(transt) − time(transt−2)

Time lapse 3 Idem with respect to three previous transactions.
time(transt) − time(transt−3)

Previous rejection Three bits (true/ f alse) indicating if the three previous transactions for the card of the
current transactions were rejected for any reason attending to the value in the field answer
code (op17) of the transaction message.

Input mode op13 in the transaction message.
This field is converted into a bitmap with a total of 45 bits (true/ f alse). This field has
12 components and each component has a different set of possible values. Not all the
components have been used. The used components and the number of bits for representing
them are the following: 1 (8 bits), 2 (9 bits), 5 (7 bits), 6 (3 bits), 8 (12 bits) and 9 (7 bits).

Online indicator Online operation indicator (op23).
One bit (true/ f alse).
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