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ABSTRACT 

 

Cryopreserved human tendons were sutured with different variations of 

a modified Kessler-type grasping suture in a series of different designs in 

order to assess the influence of the distance between the cross-stitch on the 

core suture (5 and 10 mm from the cut tendon edge) on the peripheral 

suture. An original mathematical model was employed to explain the 

mechanical behaviour (strength, deformation, and distribution of load) of 

the different suture designs. The effect of the peripheral epitendinous suture, 

combined with the distance of the core suture, was evaluated. 

The variation of core suture distance had no relevant consequences on 

the overall resilience of the design. However, increasing the distance 

between the cross-stitches of the core suture reduces the deformation that is 

absorbed not only by the core suture itself but also by the peripheral suture. 

Adding a peripheral epitendinous suture to a 10-mm design almost 

doubles the breaking load in absolute values. The mathematical model 

predicts that the peripheral suture will support a greater load when the 

distance of the core suture cross-stitches is increased. The evidence level is 

II. 

 

 

Keywords: Biomechanics; flexor tendon; repair; core and peripheral suture; 

resistance. 
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INTRODUCTION 

Outcomes after repairs of finger flexor tendons have certainly been improved by early 

motion programs (Ketchum et al., 1977; Silfverskiöld and Anderson, 1993; Wade et al., 

1989). Obtaining optimal tendon excursion reduces the risk of adhesions or minimizes their 

effect and makes them compatible with normal finger functions (Trail et al., 1989; Trail et 

al., 1992). However, early motion requires a design capable of resisting the forces applied 

without altering normal tendon healing biology. This involves a combination of high initial 

resistance (Ketchum et al., 1977; Mason and Allen, 1941; Wade et al., 1989) (avoiding the 

occurrence of gapping and snagging) with the minimum of tissue strangulation, which 

impedes intrinsic vascularization and thus healing potential (Mason and Allen, 1941). 

In the last years, several studies have been carried out about the materials and technique 

of tie (Gil et al., 2012; Ortillés et al., 2014, von Trotha et al., 2017). The Kessler type suture 

(Gil Santos, 1993; Kessler, 1973; Moriya et al., 2010) and its modifications have been the 

most frequently used in repairing flexor tendons in the hand. However, in our opinion, even 

though this type of suture is today widely employed, this design lacks systemization in 

several important aspects, such as in the distance of the cross-stitch from the cut tendon 

edge. The aim of this study was to apply an original mathematical model in order to assess 

the mechanical behavior of the Modified Kessler grasping tendon suture when the cross- 

stitch is placed at various distances from the edge and to quantify the influence of this 

distance on the peripheral epitendinous suture (also refered as “peripheral” or 

“epitendinous”). 

 

MATERIALS AND METHODS 

In the study 20 flexor tendons obtained from 10 human cadavers involved in violent 

deaths (10 in traffic accidents and one had been stabbed to death) with no history of organic 

pathology were used. The tendons were frozen by the Arnoczky method (Arnoczky et al., 
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1986) and after thawing in a saline ClNa 9‰ bath for 3 hours at a constant temperature of 

36º in a thermostatically controlled Kowell® oven; tenorrhaphy was carried out on the 

different series for a total of 30 tests. 

Tenorrhaphy. Experimental Model 

The tendon sutures were prepared by immersing specimens in a physiological solution 

under optical magnification by means of a Zeiss® OPMI-1 surgical microscope and Keeler® 

type 2.5 x 300 magnifiers, using a millimeter grid on the bottom of the recipient as a guide to 

place the sutures in the required position. 

All the core sutures had six simple knots, tied alternately towards right and left, with 

propylene monofilament non resorbable thread 4-0 sutures. The peripheral suture was also 

made with propylene monofilament non resorbable 6-0 single-stranded running 

epitendinous. Five different series of samples were tested (Fig.1): a) intact tendons; b) 

Kessler at 5 mm from the cut edge; c) Kessler at 10 mm; d) Kessler at 5 mm plus 

epitendinous suture at 2 mm; e) Kessler at 10 mm plus epitendinous at 2 mm. 

 

Fig. 1.- The five series tested (left to right): a) intact tendons; b) Kessler at 5 mm; c) 

Kessler at 10 mm; d) Kessler at 5 mm plus epitendinous suture; e) Kessler at 10 mm plus 

epitendinous. 
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Tendon Preconditioning and Biomechanical Study 

Samples were tested on an Adamel Lhomargy DY-34® 

device (Adamel Lhomargy S.A., France) (Fig.2). A stress-

strain test was carried out by applying a constant strain rate 

until the suture material reached breaking point, while 

measuring the load throughout the test. 

Preconditioning is considered necessary in in vitro 

experiments before accepting the registered values (Hooley, 

1977; Monleón and Díaz, 1990). It simply consists of a 

preliminary loading and unloading of the specimen, in such 

way that after this loading and unloading, the results can be 

considered as repetitive (Fig.3). 

Fig. 3.- Experimental program. 

 

The experimental loading program itself consisted of two consecutive stretching cycles 

divided into three stages: 1st stage, stretching at 5 mm/min to an absolute value of 5mm; 2nd 

stage, the tendon was allowed to return to its original position (null force) at a rate of 5 

mm/min; 3rd stage, stretching at 5 mm/min until breakage of sutured specimens. This 

Fig. 2.- DY.34 (Adamel 

Lhomargy S.A.) mechanical 

testing machine. 
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program was used in all the tests, the unsutured tendons being stretched between clamps. 

The device’s associated software converts the experimentally measured load and 

displacement magnitudes into the values that appear on the graphs. 

 

Mathematical Model 

A mechanical model is proposed in order to understand the experimental results. This 

model divides the sutured tendons into three mechanically different parts, consisting of: the 

tendon, the Kessler core suture, and the epitendinous peripheral suture. Each of these parts 

was characterized by essays on different samples, as indicated above. 

Fig. 4.- Mechanical model: a) single element; b) tendon plus core suture 

associated in series; c) two elements associated in parallel. 

 

In the stretching device, a force F and displacement ∆l are measured (Fig. 4a). If lo is 

the initial length of the sample, 
0l

l
 denotes the strain of the specimen. E is the ratio 

between load and strain, which we call “stretching modulus”: 


F
E  . As the stretching 

modulus can only be assumed to be approximately constant in the linear zone (in the non-

linear zone it varies), only in this behavioral zone can a numerical comparison be carried out 

between intact and sutured tendons. 
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This definition of stretching modulus is not frequently used in material science. Instead 

stretching modulus is usually stated as the ratio between stress, 
A

F
  (A being the cross-

section of the specimen), and strain, 



. This magnitude is not significant for our purposes, 

since our specimens has have a badly-defined cross-sectional area, due both to the lack of 

uniformity of the tendinous bundles and, more importantly, to the fact that the effectively 

loaded section of the sutured tendons was not that of the tendon itself but that of the suture 

strands. Therefore, these issues justifie our definition of E. 

In order to understand the deformation mechanisms in the specimens we can modelize 

the experimental behaviour as follows: 

a) Intact Tendons 

Intact tendons (no sutures) were tested in accordance with the scheme shown in Figure 

4a. The stretching modulus of tendon Et was taken as the average value of the linear 

stretching modulus in the linear tendon deformation zone during the 2nd loading stage of 

every experimental measurement. 

 

b) Tendons with core sutures only (no epitendinous peripheral suture) 

The specimen model is now heterogeneous and consists of two elements in series 

representing, respectively, the tendon and the Kessker core suture loop as it is actually 

configured (i.e. its effectiveness from a mechanical standpoint (Fig.4b)). These elements are 

individually characterized by the corresponding stretching moduli Et and Ec, while the 

specimen as a whole is characterized by an apparent strectching modulus, Eap, as used in the 

experiments. The taken value for Et is that of intact tendons; Ec is given by the computed 

value from the tests on tendons with core sutures. Since two different core sutures were 

performed (at 5 and 10 mm), the value of Ec is obtained for each one. In order to calculate 
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these values we must on first establish the mechanical model of two elements in series, as can 

be seen in Figure 4b. 

The initial length of the element representing the tendon is called 
0

tl ; the inital length of 

the core suture element is 
0

cl ; and 
0

c

0

t

0 lll   is the initial length of the specimen model. As 

both of them are associated in series, the load withstood by the specimen is the same as that 

withstood by the tendon element and the core suture element: ct FFF   

If ct lll  and,  are respectively the deformation of the specimen, tendon element and 

core suture element, ct  and, the corresponding strains, ctap EEE and,  their stretching 

moduli, 
0

0

c0

c
l

l
k   and 

0

0

t0

t
l

l
k   the ratios of initial length, and 

l

lt
t




 and 

l

lc
c




  the 

corresponding strain ratios of the tendon and core suture elements, then: 

t

0

t

c

0

c

ap E

k

E

k

E

1
    [1]  ccttap EEE      [2]  1tc     [3] 

c) Tendons with core and peripheral sutures 

Again an heterogeneous model specimen is considered, this time with three elements: 

core suture, epitendinous suture and tendon. The core and epitendinous sutures work together 

and share the load. As these sutures have different lengths, a small part of the tendon will be 

associated in series with the epitendinous suture, and this set will be in parallel with the core 

suture. Everything associated in series with the tendon element. Each of these sets is 

individually characterized by its stretching modulus, as can be seen in Figure 5. 

For Et and Ec we take the values expressed above as calculated in previous assays. Ep is 

calculated from the results of the tests on samples with both sutures, applying the equations 

corresponding to the model in Figure 5. 
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Fig. 5.- Model of tendon with core suture plus epitendinous peripheral. 

 

However, in order to find the equations leading to this model we must on first set up the 

equations of two elements in parallel (Fig.4c): 

Both elements are now of the same length ba lll  . As the force applied is shared 

between both blocks: ba FFF   

The apparent stretching modulus of the specimen made up by two elements in parallel 

(Fig.4c) is: 

   
ba

0

ba

0

ap EE

l

l

FF

l

l

F
E 







     [4] 

Once the relationship between the stretching moduli of an association in parallel is known 

we can write the equations of the model in Figure 5, bearing in mind that the initial length of 

the epitendinous suture 
0

pl  is associated in series with a length of the tendon element with an 

initial value of 
0

p

0

c ll  . This association in series is at once in parallel with the core suture 

element, with an initial length 
0

cl  and this association is in series with the rest of the tendon 
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element. By expressing the equations of these associations in the same way as the previous 

ones (
0

0
0

l

l
k c

c  ,
0

0
0

l

l
k t

t  ,
0

0

0

c

p

pc
l

l
k  ,

l

lc
c




 ,

l

lt
t




  and 

l

lp

p



 ), it comes:  

t

0

pc

p

0

pc

c

0

c

t

0

t

ap

E

k1

E

k

1
E

k

E

k

E

1






     [5] 

0

pc

pp

ccttap
k

E
EEE


      [6] 

1tc        [7] 

11
k

1

E

E
pp0

pct

p

t   )(     [8] 

cpt

c

FFF

F




1

1
     [9] 

pct

p

FFF

F




1

1
     [10] 

 

Statistical analysis 

The statistics were calculated assuming parametric data of a normally distributed 

population and considering multiple comparisons among the preestablished series using the 

student t-test. The criterion for significant difference was a value of P< 0.05. 

RESULTS 

Experimental results. Applying the model. 

a) Intact tendons. Series 1. 

In this series the mean value of the linear stretching modulus was N2000SD5000E t  , 

which was taken as the value of the tendon element in the subsequent model applications. 
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b) Tendons with core suture. Series 2 and 3. 

Two types of core suture were tested: those with a cross-stitch at a distance of 5 mm 

(Series 2) and 10 mm from the tendon edge (Series 3). The mean value of the stretching 

modulus of the tested specimens was taken as the apparent stretching modulus of each series. 

The initial length of the core suture element of the cross-stitch in each case was taken 

equal to the position from the tendon edge, mm5l0

c   and mm10l0

c  . By applying Eq.[1] 

the linear modulus of each core suture were obtained. Applying Eq.[2] and Eq.[3] we 

calculated αt and αc for the tendon and core suture elements, obtaining the results shown in 

Table I. 

 

Series 2 

5 mm Cross-Stitch 

Series 3 

10 mm Cross-Stitch 

Eap (N) 370 (SD 110) 350 (SD 210) 

Ec (N) 14 (SD 3) 23 (SD 8) 

c 0.93 0.96 

t 0.07 0.04 

Table I: Results of measurements and applying the model to Series 2 and 3. 

c) Tendons with core suture plus a peripheral epitendinous. Series 4 and 5 

The initial length of the epitendinous suture element was taken mm2l0

p  . As on the 

preceding case, two different core sutures were made with mm5l0

c   and  mm10l0

c  . The 

apparent stretching modulus of each tested serie tested was taken the mean value of the serie. 

The stretching modulus of the epitendinous suture in each serie was calculated from these 

values plus those of the previously calculated stretching moduli of the tendon and core suture 

elements, applying Eq. [5]. However, since the epitendinous suture was included in both 

series, the mean value of all the specimens tested in Series 4 and 5 was taken as the value of 
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the linear stretching modulus of this suture, pE . αt, αc and αp were computed from the 

stretching modulus thus obtained applying Eqs.[6] [7] and [8]. Finally, from Eqs.[9] and [10] 

we calculated the force on the core and epitendinous sutures related to the total force applied 

to the suture in each series. The results are given in Table II. 

 

 
Series 4 

5 mm Cross-Stitch 

Series 5 

10 mm Cross-Stitch 

Eap (N) 440 (SD 120) 680 (SD 230) 

Ep (N) 7 16 

pE  (N) 14 

c 0.92 0.88 

p 0.92 0.87 

t 0.08 0.12 

Fc/Ft 0.29 0.24 

Fp/Ft 0.71 0.76 

Table II: Results of measurements and applying the model to Series 4 and 5. 

 

Macroscopic Findings. During the preliminary stretching tests, carried out as part of the 

system setup, was noticed that the longitudinal stitches tended to occupy the tendon central 

zone (due to the axialization phenomenon). It was also noticed the rotation of the tendon 

near the cut edge if the suture had not been properly placed (longitudinal stitches in the same 

frontal plane and equidistant from the sagittal tendinous plane) (Fig.6). 
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Fig. 6.- Phenomenon of axialization and rotation of the tendon near the cut edge 

 

The core suture did not come untied in any of the tests, as breakage always happened on  

first at different points of the design for the 5 mm and 10 mm sutures. In all the tests 

breakage occurred in the longitudinal stitch, close to the knot in the 10 mm cross-stitch 

suture specimens, and near to the longitudinal-transversal loop in the 5 mm cross-stitch 

specimens (Fig.7). After the breakage of the longitudinal stitch, the knot disappeared inside  

 

Fig. 7.- Location of breaks in material. (left) sutures at 10 mm; (right) sutures at 5 mm. 

 

the tendon on the side on which the force was applied, (coinciding with a drop in the load 

level) and became trapped at the same level as the loop (when the load level again rose) and 
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frequently caused a second break in the other longitudinal stitch in Series 3 and 5. 

Sometimes it caused the strand to untie at the distal end, which generally happened in Series 

2 and 4. 

The sequence of failure from breakage during the study, first in the peripheral 

epitendinous and finally in the core (Kessler) suture, suggest us that better gap tolerance is 

provided by core than peripheral sutures and highlights the latter’s importance in preventing 

the formation of the gap. 

Deformation. The following conclusions can be drawn from the analysis carried out with 

the mathematical model: 

In the series without an epitendinous suture, the deformation absorbed by the core suture 

increases with the distance from the cut tendon edge; it absorbs 93% of total deformation (at 

time of breakage) when it is placed at 5 mm and 96% when it is at 10 mm from the cut edge. 

The tendon itself absorbs 7 and 4% of the deformation, respectively. 

In the series containing an epitendinous suture, the percentage of stretching absorbed by 

the tendon is higher than when this suture is omitted. When the core suture is at 5 mm, the 

tendon absorbs 8% of the total deformation (7% with no epitendinous) and 12% when it is at 

10 mm (4% with no epitendinous). The core suture reduces its percentage of total absorbed 

deformation, regardless of where it is placed, absorbing 92% at 5 mm and 88% at 10 mm, as 

compared to 93 and 96% with no epitendinous suture. The epitendinous absorbs 

deformations very similar to those of the core suture, no matter where the latter is positioned, 

with values of 92 and 87%, respectively. 

Load. On studying the series performed at 5 and 10 mm with no peripheral we found no 

significant difference on the breaking load, with mean numerical values of 22.13 N and 

16.25 N. We did’t find significant differences between those performed at 5 mm with and 

without peripheral. There were, however, significant differences (P=0.003) between the 
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sutures performed at 10 mm with and without peripheral. In general, the stretching force 

required to break the series tied with a peripheral show a numerical value of 32.65 N, which 

is almost twice than that of those without a peripheral (18.77 N). Applying the model 

predicts a greater load to be supported by the peripheral than the core suture, whether this is 

placed at 5 mm (in this case the peripheral supports 71% of the total load) or 10 mm (76% of 

total load on peripheral suture). 

Gap. In our series there were no significant differences in the final gap at the time of 

breakage, with mean values around 4.52 mm in the series sutured at 5 mm and 4.71 mm in 

the series sutured at 10 mm. Neither did we find significant differences between the series 

with core suture only and those with an additional peripheral epitendinous, which had 

similar mean numerical values of 5.00 and 4.50 mm, respectively. There were however 

significant differences in the relationship between strength and gap in favor of the series 

including epitendinous sutures, which withstood higher loads before the gap had started to 

develop at a later time. 

 

DISCUSSION 

The results obtained from this study show that the in vitro behavior of sutured tendons 

varies according to whether or not an epitendinous suture is included, and also that the 

mechanical behavior of the normal intact tendon is considerably different from that of the 

tendon with a core suture both with and without an epitendinous suture. The shape of the 

curves obtained when a peripheral suture is added is closer to those obtained with intact 

tendons. This suggests firstly, as reflected in Kastelic’s mathematical model (Kastelic et al., 

1980) that the tendon fibers that take the first loads are the peripheral and secondly that the 

tendon plays a greater role because of a better anchorage. 
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The epitendinous suture improves the response of the sutured tendon, which raised by 

an average of 1.2 and 1.6 times (with the core suture at 5 or 10 mm, respectively) the linear 

stretching modulus and the breaking load by 1.54 times (54%). It is also closer to the 

characteristic force strain curve of the intact tendon, clearly presenting a first non-linear 

deformation zone of approximately the same amplitude as the intact tendon (giving mean 

values of 2.5%  in sutured tendons with an epitendinous, against 2.8% in intact tendons). The 

epitendinous peripheral suture also has the effect of reinforcing the core suture. Applying the 

model to the values considered predicts higher forces than on the core suture itself, which 

explains why the suture always starts to fail at the peripheral. This observation agrees with 

the findings of the forementioned model (Kastelic et al., 1980) which predicts that the 

peripheral tendon fibers will come into action before the central fibers. This load supported 

by the peripheral suture increases with the length of the core suture and indicates the 

importance of the peripheral suture, which has higher resistance when placed at 10 mm. 

Other authors (Alavanja et al., 2005; Moriya et al., 2010; Moriya et al., 2012) found that 

there was no difference between 3-0 or 4-0 tendinous core sutures. 

Early motion methods (by active flexing of the affected muscle) can cause a gap to 

appear which will be associated with the formation of more collagenous tissue between the 

cut tendon ends, slower maturing and a weaker repair. However, gradually applying tension 

to the repair area, besides reorganizing the collagen, seems to be the best way to obtain 

satisfactory functional results and a rapid increase in resistance. 

Whatever the type of suture used, the load applied to the sutured tendon finally caused 

the same gap at the time of breakage. 

From our work it can be seen that reducing the amount of material by shortening the 

longitudinal stitch (situating the cross-stitch at 5 mm instead of 10 mm) has no effect on the 

design’s mechanical resistance and does not significantly improve the gap. In the series with 
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a core suture plus peripheral, increasing the length of the longitudinal stitches means they 

absorb less deformation, as does the peripheral component, and also transfers some of the 

load from the core to the peripheral suture. Conversely, the shorter the distance from the core 

suture the higher the deformation supported by both the core and the peripheral sutures, 

although this has little impact on the total resistance of the design. We therefore propose 

situating the core suture cross-stitch at approximately 10 mm from the tendon edge (Gil 

Santos, 1993). 

In agreement with some other authors, we believe that the gap depends more on the 

number and configuration of the anchorages and to a lesser extent on the length and 

stretching qualities of the material employed (Mashadi and Amis, 1991). Also, the 

importance of the distance of the locking loop (locking cross-stitch) in 4-strand sutures has 

been pointed out; 4 mm locking stitches provide higher resistance to gap formation and 

greater axial loads in the tendon than 2 mm locking stitches (Alavanja et al., 2005; Peltz et 

al., 2011). 

The strength of the repair is known to be proportional to the number of longitudinal 

stitches crossing the repair zone (Winters et al., 1998; Barrie et al., 2000; Cao and Tang, 

2005; Tang et al., 2005; Cao et al., 2006; McLarney et al., 1999; Xie et al., 2005) and that it 

is also affected by the size of the locking loops, so that the grasping force is in direct relation 

to the diameter of the loop (Xie et al., 2005) We are of the opinion that designs should 

contain at least 4 longitudinal passes and include 2 or 3 mm grasping loops. 

Surgical repairs on flexor tendons should be performed with the minimum of carefully 

controlled actions (Moriya et al., 2010a; Moriya et al., 2010b; Moriya et al., 2012), aided by 

optical magnification in the most delicate stages, such as when inserting the correct 

peripheral suture. 
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We advise using a 4-0 core suture placed at 10 mm from the severed tendon and adding 

a 6-0 running peripheral to double the strength in absolute values. Knots should be tied 

parallel to the stitch in a DSD design with a minimum of three, which are less likely to 

become untied. If more than three are applied the knots will hold but the suture may rupture 

(Gil Santos et al., 2012). We would like to add that the first signatory of this paper in his 

clinical practice usually adds a fourth double knot in the opposite direction DSDD to ensure 

the safety of the design. Anyway, the suture strength can also decrease because of other 

factors as the torsion of monofilament suture (Hennessey et al., 2012). 
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