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2. SUMMARIES  

2.1 Summary 

As an expensive fish from one of the most ancient teleost lineages, with a 

mysterious life cycle, exceptional aquaculture potential, and cultural 

associations and fishing activity in almost every country in Europe, the European 

eel possess huge socioeconomic value. This value only adds to the misfortune of 

the current critically endangered state of the wild European eel population. As 

the eel lifecycle has not yet been closed in captivity, the species will not be 

salvable if it went extinct in the wild. Closing the life-cycle of the European eel 

has thus been the ultimate objective of several studies. However, despite the 

substantial scientific investigation, since the 1930s, several aspects of eel 

maturation, such as the mechanism which blocks eel sexual maturation at the 

pre-pubertal stage in captivity, is still poorly understood. Therefore, it is 

necessary to broaden our knowledge of eel reproduction to induce better 

hypotheses and therethrough achieve substantial progress. In order to further 

this field, this thesis was conducted with the specific objective of developing 

innovative methods for induction of eel maturation and add to the pool of 

knowledge of European eel maturation processes.  

The hormonal procedures currently used for artificial eel sexual maturation are 

probably not inducing the natural maturation process. Therefore, this thesis has 

evaluated the potential of eel specific recombinant hormones to induce a more 

natural maturation process. This specific study showed that full 

spermatogenesis and spermiation can be induced with recombinant eel specific 

gonadotropins; however, the resulting gamete quality is still inferior to the 

results of established protocols. Nevertheless, the utilization of recombinant 

hormones holds a large potential for future implementation. Furthermore, the 
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recombinant gonadotropin experiment has generated novel insights into the 

effect of homologous gonadotropins on the BPG axis of European eels.  

Previous work has led to the hypothesis that the right thermal environmental 

treatment may reduce or partially replace the standard hormonal treatments 

for sexual maturation of European eel, or may improve gamete quality and/or 

quantity. In this thesis, the effect of various thermal regimes was tested on the 

BPG axis of pre-pubertal European eel males, without administration of 

hormones. The results clearly show that a 2 week cold (10 °C) seawater 

treatment effects the BPG-axis of European eel males. Specific results included 

an increase in the synchronization of spermatogonial cells, elevated 

testosterone and 11-ketotestosterone plasma levels, clustering of BPG-axis 

transcriptome samples from the cold seawater treated group and possibly 

increased levels of pituitary luteinizing hormone β-subunit protein. Differentially 

transcribed genes alluded to several interesting genes, processes, and pathways, 

which appears to be involved in early “natural” eel maturation and may prove 

to be suitable biomarkers for the stages of this process. However, further studies 

are needed to evaluate the biomarker potential of these genes and whether a 

cold seawater treatment can improve the response of European eels to artificial 

hormonal treatment, as the results suggest.  

In order for proper analysis of the transcriptomic data, a de novo European eel 

transcriptome was assembled. This de novo transcriptome was proven to have 

superior completeness to the available European eel genome and is thus a useful 

tool for further analysis of specific genes. An analysis of this transcriptome 

revealed a large number of paralog gene pairs, which showed low synonymous 

sequence divergence. Among the potential hypothesis regarding the origin of 

these paralog gene pairs, the hypothesis of a 4R whole genome duplication is 

among the most parsimonious. Several of these duplicated genes were involved 

in reproduction and the onset of puberty. Regardless of the origin, further 
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analysis of these genes may reveal eel specific adaptations, which could help to 

better understand the exceptional reproductive system of eels.  

2.2 Resumen 

Como pez de gran valor económico, procedente de una de las líneas de 

teleósteos más antiguas, con un ciclo de vida misterioso, un potencial de 

acuicultura excepcional, y con importancia cultural y actividades de pesca en casi 

todos los países de Europa, la anguila europea posee un enorme valor 

socioeconómico. Este valor se suma a la desgraciada situación actual en peligro 

crítico de población natural de anguilas europeas. Como el ciclo de vida de la 

anguila aún no se ha conseguido cerrar en cautiverio, si la especie se extingue 

en la naturaleza, no seremos capaces de recuperarla. El cierre del ciclo de vida 

de la anguila europea ha sido, por lo tanto, el objetivo final de varios estudios. 

Sin embargo, a pesar de una investigación científica sustancial, desde la década 

de 1930, varios aspectos de la maduración de la anguila, como el mecanismo 

que bloquea la maduración de la anguila en la etapa prepúber en cautiverio, aún 

no se conocen bien. Por lo tanto, es necesario ampliar nuestro conocimiento 

sobre la reproducción de la anguila para inducir mejores hipótesis y lograr un 

progreso sustancial. Para profundizar en este campo, esta tesis se realizó con el 

objetivo específico de desarrollar métodos innovadores para la inducción de la 

maduración de la anguila y aumentar el conjunto de conocimientos sobre los 

procesos europeos de maduración de la anguila. 

Los procedimientos hormonales utilizados actualmente para la maduración 

sexual de la anguila artificial probablemente no induzcan el proceso natural de 

maduración. Por lo tanto, esta tesis ha evaluado el potencial de las hormonas 

recombinantes específicas de la anguila para inducir un proceso de maduración 

más natural. Este estudio específico mostró que la espermatogénesis completa 

y la espermiación se pueden inducir con gonadotropinas específicas de anguila 
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recombinante; sin embargo, la calidad del gameto resultante es aún inferior a 

los resultados de los protocolos establecidos. Sin embargo, la utilización de 

hormonas recombinantes tiene un gran potencial para futuras 

implementaciones. Además, el experimento de gonadotropina recombinante ha 

generado nuevos detalles sobre el efecto de las gonadotropinas homólogas en 

el eje BPG de las anguilas europeas. 

Trabajos previos han llevado a la hipótesis de que un tratamiento térmico 

adecuado puede reducir o reemplazar parcialmente los tratamientos 

hormonales estándar para la maduración sexual de la anguila europea, o puede 

mejorar la calidad y / o cantidad de gametos. En esta tesis, se probó el efecto de 

varios regímenes térmicos en el eje BPG de machos de anguila europeos 

prepúberes, sin administración de hormonas. Los resultados muestran 

claramente que un tratamiento de agua de mar fría durante 2 semanas (10 ° C) 

afecta el eje BPG de los machos de anguila europeas. Los resultados específicos 

incluyeron un aumento en la sincronización de espermatogonias, niveles 

elevados de testosterona y 11-ketotestosterona en plasma, agrupamiento de 

muestras de transcriptomas del eje BPG del grupo tratado con agua de mar fría 

y posiblemente niveles aumentados de la proteína subunidad β de la hormona 

luteinizante de la hipófisis. Los genes transcritos diferencialmente incluyeron 

varios genes, procesos y vías interesantes, que parecen estar involucrados en la 

maduración "natural" temprana de la anguila y que pueden ser biomarcadores 

adecuados para las distintas etapas de este proceso. Sin embargo, se necesitan 

más estudios para evaluar el potencial como biomarcadores de estos genes, y si 

un tratamiento con agua de mar fría puede mejorar la respuesta de las anguilas 

europeas al tratamiento hormonal artificial, como sugieren los resultados. 

Para un análisis adecuado de los datos transcriptómicos, se creó un 

transcriptoma de anguila europea de novo. Se demostró que este transcriptoma 

de novo posee una superior integridad al genoma de anguila europea disponible 
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y, por lo tanto, es una herramienta útil para el análisis adicional de genes 

específicos. Un análisis de este transcriptoma reveló un gran número de pares 

de genes parálogos, que mostraron una baja divergencia entre secuencias 

sinónimas. Entre las hipótesis potenciales sobre el origen de estos pares de 

genes parálogos, la hipótesis de una duplicación del genoma completo 4R se 

encuentra entre las más parsimoniosas. Varios de estos genes duplicados están 

involucrados en la reproducción y el inicio de la pubertad. Independientemente 

del origen, un análisis más profundo de estos genes puede revelar adaptaciones 

específicas de la anguila, lo que podría ayudar a comprender mejor el sistema 

reproductivo excepcional de las anguilas. 

2.3 Resum 

Com a espècie de renom culinari que pertany a un dels llinatges teleostis més 

antics, amb un cicle vital misteriós, un potencial d'aqüicultura excepcional, i una 

tradició pesquera a gairebé tots els països d'Europa, l'anguila europea posseeix 

un enorme valor socioeconòmic. No obstant això, aquest valor només fa que 

augmentar la preocupació de la seva població, que actualment es troba 

catalogada com “en perill crític d'extinció”. Atès que el cicle de vida de les 

anguiles encara no ha estat tancat en captivitat, l'espècie no serà salvable en el 

cas que s'extingeixi en estat natural, per la qual cosa tancar el cicle de vida 

d’aquesta espècie ha estat l'objectiu final de diversos grups d'investigació durant 

els últims anys.. No obstant això, i malgrat la investigació científica de qualitat 

duta a terme des de la dècada de 1930, encara hi han diversos aspectes de la 

maduració de les anguiles -com el mecanisme que bloqueja la maduració sexual 

de l'anguila a l'etapa pre-puberal en captivitat- que son poc coneguts en 

l’actualitat. Per tal d’ampliar els coneixements sobre la reproducció de les 

anguiles i aconseguir un progrés substancial, aquesta tesi es va dur a terme amb 

l'objectiu específic de desenvolupar mètodes innovadors per a la inducció de la 
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maduració de l’anguila europea, a més de afegir-hi el coneixement en els 

processos de maduració bàsics d’aquesta espècie. 

Els procediments hormonals utilitzats actualment per a la maduració artificial de 

l'anguila europea no acaben d’induir el procés de maduració natural tal i com 

probablement es dóna a la natura. Doncs, en primer lloc, aquesta tesi va avaluar 

el potencial d’hormones recombinants específiques d’anguila europea per 

induir un procés de maduració molt més natural. Aquest estudi específic va 

mostrar que mitjançant estes gonadotropines específiques d'anguila europea és 

possible induir l’espermatogènesi i l’espermiació completes. Tot i que els 

resultats van mostrar que la qualitat dels gamets va ser inferior als resultats que 

generen els protocols establerts fins ara amb un altre tipus d'hormones 

(generalment d’origen humà), la utilització d’hormones recombinants 

específiques es presenta amb un gran potencial per a la seva implementació 

futura en la inducció de la maduració sexual de l’anguila europea, ja que l’estudi 

va generar noves idees sobre l’efecte de les gonadotropines l’eix BPG de 

l’anguila europea. 

En segon lloc, i treballant amb la hipòtesi que un tractament tèrmic adequat pot 

reduir o substituir parcialment els tractaments hormonals estàndards per a la 

maduració sexual de l'anguila europea, en aquesta tesi es va provar l’efecte de 

diversos règims tèrmics (sense administració d'hormones) en l’eix BPG dels 

mascles europeus pre-puberals amb l’objectiu de millorar la qualitat i / o 

quantitat dels gamets. Els resultats mostraren clarament que un tractament 

d’aigua de mar de 2 setmanes a baixa temperatura (10 °C) va afectar l’eix BPG 

dels mascles europeus d’anguila. Resultats més específics van mostrar un 

augment de la sincronització de les espermatogonies, elevats nivells plasmàtics 

de testosterona i 11-ketotestosterona, una agrupació de mostres de 

transcriptoma de l'eix BPG del grup tractat amb aigua de mar freda i, 

possiblement, un augment dels nivells de la proteïna de la subunitat β de la 
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hormona luteinitzant de la hipofisi. Els gens transcrits diferencials van al·ludir a 

diversos gens, processos i vies interessants, que semblen estar implicats en la 

maduració inicial de l'anguila "natural" i podrien resultar biomarcadors adequats 

per a les etapes d'aquest procés. No obstant això, es necessiten estudis 

addicionals per avaluar el potencial dels biomarcadors d’aquests gens i, de 

manera complementària, comprovar si un pre-tractament d’aigua de mar freda 

pot millorar la resposta de les anguiles europees a un tractament hormonal 

artificial, com suggereixen els resultats. 

Finalment, amb l’objectiu de fer un anàlisi adequat de les dades 

transcriptòmiques, es va utilitzar el transcriptoma de novo d’anguila europea. 

S'ha demostrat que aquest transcriptoma té una integritat superior al genoma 

europeu disponible de l'anguila i, per tant, pot ser una eina útil per a l'anàlisi 

posterior de gens específics. L’anàlisi d’aquest transcriptoma va revelar un gran 

nombre de parells de gens paralògics, que mostraven una divergència baixa de 

seqüències. Entre les hipòtesis potencials sobre l’origen d’aquests parells de 

gens paralògics, la hipòtesi d’una quarta duplicació del genoma (4R) es troba 

entre les més parsimonioses. Atenent a aquesta hipòtesi, diversos d'aquests 

gens duplicats estarien implicats en la reproducció i l'aparició de la pubertat. No 

obstant això, i independentment de l’origen, l’anàlisi posterior d’aquests gens 

podria revelar adaptacions específiques de l’anguila, que podrien ajudar a 

entendre millor l’excepcional sistema reproductiu d’aquesta espècie. 
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3. GENERAL INTRODUCTION 

3.1 European eel life cycle 

Reproduction of the European eel (Anguilla anguilla L., 1758) has been a source 

of wondering for millennia, with the first text hypothesizing about the 

phenomenon dating back to 350 B.C. The author of this text, Aristotle, 

hypothesized that eels spontaneously came to be from the mud during rain 

(Aristotle 1910). Centuries later, in 23 A.C., a new hypothesis was proposed in 

which adult eels would rub their skin against rocks, and the new generation 

would emerge from the pealing pieces of eel skin (Elder 1855). Although 

seemingly silly, these hypotheses were scientifically sound, as they concurred 

with the experimental data available at the time. In particular, the immature 

gonad of eel was not known until discovered by Syrski in 1874, who 

consequently named the organ. Furthermore, these hypotheses had not been 

experimentally opposed, as other means of reproduction had not been observed 

for eels. Today more experimental data and observations are available. 

However, these still paint the picture of the European eel as a unique fish with 

a complex and mysterious lifecycle.  

 

Figure 1. Distribution patterns of eel larvae with the size of the larvae in mm, from Schmidt 
(1923) 
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The catadromous European eel is believed to hatch and begin its journey at ~200 

m depth under the seaweed islands of the Sargasso Sea (Fig. 1). This hypothesis 

is based on the pioneer observations of the Danish explorer Johannes Schmidt 

(Schmidt 1923) who caught European eel larvae in the open Atlantic Ocean and 

by larvae size distribution determined their origin to the Sargasso Sea. However, 

no spawning adult European eel or European eel eggs have been caught in the 

Sargasso Sea. From laboratory hatching experiments the newly hatch larvae 

have been observed. These look like an oil droplet with a tail, presenting no clear 

eye or mouth (Sørensen et al. 2016). In the wild, it is believed that these larvae 

will be passively transported by the Gulf Stream towards Europe. Within a few 

days (~3 days) the oral opening of the larvae will appear and after ~14 days the 

larvae will be capable of feeding (Sørensen et al. 2016), although first feeding 

has not been observed before day 16 (Butts et al. 2016). The natural diet of these 

larvae is unknown, and their teeth seem unpractically large and are protruding 

out from the mouth (Fig. 2).  

 

Figure 2. Lateral view of head morphology of European eel larvae at 40×magnification. 12 days 
post-hatching. Scale bar: 0.5 mm. Picture is modified from Sørensen et al. (2016).  
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Together with the odd teeth, the bite force and gape of these larvae further 

seem to limit even the hypothetical food sources such an animal could ingest 

(Bouilliart et al. 2015).  

Hereafter, the larvae are believed to transform into the leptocephalus larvae 

stage. At this stage the body shape of the larvae vastly changes, it becomes 

laterally compressed and sagittally elongated, resembling a willow leaf drifting 

with the current. This larval stage was once believed to be a species of its own 

and it was only after the Italian scientists Giovanne Battista Grassi and Salvatore 

Calandruccio brought some of these specimens home and observed their 

transformation in the lab that it was discovered that they, in fact, were European 

eels (Grassi 1896). The time it takes these larvae to reach the European cost has 

been yet another topic of controversy (Bonhommeau et al. 2010) as some 

estimates indicate a journey of fewer than 10 months (Lecomte-Finiger 1994), 

while others indicate that it takes more than 2 years (Bonhommeau et al. 2009; 

Martin et al. 2010) for the leptocephalus to reach the coastal waters of Europe 

and North Africa. Regardless of their age, the larvae here undergo yet another 

metamorphosis in which they gain the classic eel body shape, although without 

pigmentation (Tesch 2003; Fig. 3). 

 

Figure 3. Glass eels of European eel in latex glow covered human hand. The picture was taken 
by Dr. Victor Gallego of ICTA.  
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These transparent eels are called glass eels and are the seed for most inland 

aquaculture production. The glass eels migrate into coastal water and estuaries 

mostly from mid fall to mid spring. Here they gain pigmentation and become 

elvers which then migrate further into coastal freshwaters where they feed and 

grow. Larger elvers gain a yellow ventral site and are thus named yellow eels. As 

yellow eels, they can reach the most remote lakes and streams, where they 

undertake a sedentary grow out phase. This phase commonly lasts 2-25 years 

(Tesch 2003); however, specific individuals have been observed to stay for more 

than 50 years in poor growing conditions, and more than 150 years if migration 

is obstructed (https://www.smithsonianmag.com/smart-news/rip-worlds-

oldest-eel-180952306/). At the end of the growth phase, the yellow eels start 

their descent towards the coastal waters and undertake yet another 

metamorphosis-like event called silvering. Along with other changes, this 

transformation turns their ventral side white or silver, and their dorsal side turns 

darker. Silvering is a process related to puberty, which along with some sexual 

maturation prepares the eels for their oceanic migration (Aroua et al. 2005). This 

preparation for the oceanic migration includes enlargement of the eyes and 

degeneration of the digestive tract since eels do not feed during migration. The 

migration itself is among the longest in the animal kingdom, stretching more 

than 5000 km if the shortest possible route is considered. Recent satellite tag 

studies have, however, generated evidence that the eel rarely takes the shortest 

route, and some individuals have been registered to have covered more than 

6900 km before they reached the midway point on the way to the Sargasso sea 

(Righton et al. 2016). Additionally, the eels undergo daily vertical migrations of 

~500 m. As different eel species appear to swim deeper during full moon than 

during new moon (Chow et al. 2015; Schabetsberger et al. 2013), this behavior 

is likely an attempt to minimize the light environment as this may affect 

important reproductive hormones (Liu et al. 2014; Burgerhout et al. 2018) or 

simply minimize the chance of being spotted by predators (Righton et al. 2016; 
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Wahlberg et al. 2014). However, the daily vertical migration could also be 

implemented as a mean of controlling the thermal environment as eel at later 

stages of migration appear to dive even deeper during the day, where they reach 

similar temperatures (~10 °C) as those experienced during early migration 

(Wysujack et al. 2015). This behavior may explain peculiar early findings, that eel 

eyes not only increase before migration but continues to increase during 

migration and maturation (Boëtius and Boëtius 1967 and Chapter 1). Moreover, 

the behavior to favor darkness seems to start with migration, since eels have 

been hypothesized to only migrate during the darkness of night and not migrate 

if the water is too shallow for them to find darkness in the depths (Lennox et al. 

2018). Although the entire migration can be covered by the eels in 6-7 months, 

the satellite data suggests that some eels simply give up on reaching the 

spawning ground in time for the coming spawning season and slow down as to 

arrive for the spawning of the following season (Righton et al. 2016). At the end 

of the tremendous migration, the adult European eels are believed to die after 

securing the next generation through spawning. As spawning of European eels 

has never been observed in the wild this process is largely unknown. However, 

spawning is possibly synchronized by the moon phases in related eel species 

(Tsukamoto et al. 2011), and genetic data strongly suggest that eels spawn in 

panmixia (Palm et al. 2009; Als et al. 2011; Pujolar et al. 2014), which technically 

leaves all European eels from North Africa to Iceland part of one single 

population.  

3.2 Current status of the European eel  

In the year 1085 the first Normand king of England ordered a survey of all taxable 

properties from all landowners in his kingdom. The results filled a book today 

known as “the Domesday book”. From this book, eel catches have been 

estimated to potentially exceeding 500 tons from only a portion of England 

(Dekker and Beaulaton 2015). Although large uncertainty is associated with 
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these numbers, it is highly likely that the total catches of adults eels far exceeds 

recent catches from the area of ~30 tons (Dekker and Beaulaton 2015). Similarly, 

between 1574 and 1582, under the reign of King Philip II, questionaries 

regarding the wealth, means, and history of the people was distributed through 

central Spain (Clavero and Hermoso 2015). From these questionaries 66.8% of 

freshwater fisheries accounts included eels. Today eels have completely 

disappeared from the vast majority of this area (Clavero and Hermoso 2015). 

Thus it seems eels have been extremely aboundant in Europe through history 

and the eel stock has likely declined gradually for centuries (Dekker and 

Beaulaton 2015). However, the common consensus of a declining eel stock was 

not held until after the glass eel crash of 1980 (Dekker and Beaulaton 2015). Due 

to the long life history, large body, late maturation, long reproductive migration 

and semelparous nature of the European eel, it is particularly vulnerable to 

anthropogenic intervention, and thus the glass eel recruitment crash is likely a 

result of anthropogenic factors. This is further supported by the wide array of 

exploitation means currently in action, as such the European eel are being fished 

in fresh, brackish, and coastal waters and in all life stages from glass eels to silver 

eels (Dekker 2004, 2000). Furthermore, other factors such as the construction 

of hydropower plants also constitute a major threat to the European eel. 

Currently, the European eel is considered critically endangered (Jacoby and 

Gollock 2014). In 2009 the glass eel recruitment indices were reported to be 

below 5% of the levels from the 1960s and 1970s in Europe, and less than 1% in 

the North Sea (Dekker and Beaulaton 2015). Due to the troubling state of the 

eels, large conservation initiatives were launched, e.g. the European Council 

Regulation (EC) 1100/2007. This Regulation requires EU member states to 

produce and implement eel management plans, which should raise the 

minimum escapement of eels to 40% of the levels estimated to be the case in 

the absence of an anthropogenic impact. Although the regulation has been 

implemented since 2009, only 16 out of the 76 eel management units of the EU 
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have managed to live up to the requirements (ICES 2018). However, potentially 

as a result of these efforts, the recruitment has increased in the past years, 

although still remaining between 2 and 10% (ICES 2018). Greater improvement 

has been seen for yellow eel recruitment which has risen to 29% of the levels of 

the 1960s and 1970s (ICES 2018); however, these improvements are not enough 

for the eel to be classified as simply endangered.  

3.3 Phylogeny of the freshwater eels  

The European eel is a species of the Anguillidae family commonly referred to as 

freshwater eels. These are part of the Anguilliform order, which in turn are part 

of the Elopomorpha cohort (Applegate et al. 1967), which all share the 

leptocephalus larval stage (Chen et al. 2014). The freshwater eel family has been 

suggested to originate about 20-50 million years ago (Minegishi et al. 2005) it 

includes 19 species and subspecies, which are distributed over tropical, 

subtropical and temperate areas. The phylogeny of the eels, like its 

reproduction, have been quite a conundrum, with the predominantly selected 

hypotheses changing until recent years. In 2010 a hypothesis was proposed that 

the freshwater eels originated from a deep-sea ancestor (Inoue et al. 2010) and 

in 2011 a new common ancestor was found for the anguilliforms (Johnson et al. 

2011). As late as 2015 it was commonly accepted that the clade of the 

freshwater eels, the Elopomorpha clade, was among the most basal note of the 

teleosts tree with the Osteoglossomorphas clade branching off at a later stage 

from the remaining teleosts. However, as omics results have become more 

frequent, this hypothesis has been challenged and newer studies based on more 

data now more often supports the hypothesis that Elopomorphs and 

Osteoglosomorphas branched of together as one of the most basal teleosts 

clades and only later formed sister clades (Bian et al. 2016; Ravi and Venkatesh 

2018; and Chapter 3). In all cases, the Elopomorphs are among the most basal 



18 
 

teleosts and studies of these fish may thus provide insights into the ancestral 

regulatory functions of teleosts. 

3.4 Teleost reproduction with an eel focus 

3.4.1 Spermatogenesis  

Spermatogenesis is the process in which primordial germ cells differentiate and 

proliferate to form spermatozoa, and it is controlled by Sertoli and Leydig cells 

(Schulz et al. 2010). The process starts at a stage of spermatogonial renewal in 

which primordial germ cells or spermatogonia (SPG) proliferate or differentiate. 

Each SPG cell is surrounded by the extensions of a single Sertoli cell. The most 

undifferentiated SPG cells are called undifferentiated SPG type A (SPGAund) 

cells. Those SPGAund cells which proliferate assure the next generation of germ 

cells while those SPGAund cells which differentiate start the developmental 

process to become spermatozoa. Two types of SPGAund can be distinguished; 

however, it is unclear whether they possess different stem cell potential or 

simply are different phenotypes of the same cell type (Schulz et al. 2010; Fig. 19 

Chapter 2). 

Development of SPGAund creates differentiated SPG type A (SPGAdiff) cells, 

which occur during a stage of spermatogonial proliferation, where the number 

of SPG can be multiplied many fold (Schulz et al. 2010). Due to this proliferation 

SPG cell now appears in cysts of multiple cells. Each cyst is surrounded by the 

extensions of one Sertoli cell, and all cells within one cyst differentiate 

synchronously. SPGAdiff cells then differentiate into early SPG type B (early 

SPGB) cells, which is the most differentiated stage found in captive European eel 

males due to a neuroendocrine blockage of puberty which effects all eels (Vidal 

et al., 2004). In teleosts, early SPGB cells differentiate into late SPGB cells which 

in turn differentiate into spermatocytes. This change is further the last mitotic 
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stage of spermatogenesis, and primary spermatocytes thus differentiate into 

secondary spermatocytes and further into haploid spermatids through meiosis. 

Spermatids are still classical round cells; however, these are the cells which can 

form a condensed nucleus/head, and a flagellum to become immotile 

spermatozoa, in the process called spermiogenesis (Aida and Tsukamoto 2003). 

3.4.2 The brain of the gonadotropic axis 

In teleosts, as in higher vertebrates, reproduction is controlled by the Brain-

Pituitary-Gonad (BPG) axis. Here, the brain is responsible for gonadotropin-

releasing hormone (GnRH) release along with other inhibitory or stimulatory 

factors (Zohar et al. 2010; Lethimonier et al. 2004). One such stimulating factor 

is kisspeptin, which specifically has been shown to be involved in the onset of 

puberty, through its regulation of gonadotropins from the pituitary (Roa et al. 

2008) and GnRH from the brain (Zohar et al. 2010). Specifically, in European eel 

3 kisspeptin receptors have been shown to be differentially expressed in the BPG 

axis during maturation (Pasquier et al. 2012). Therefore, kisspeptine may be an 

important piece in the puzzle of eel reproduction. One of the most important 

inhibitory factors released by the teleost brain is dopamine (DA), which is seen 

as the counteraction of GnRH. In particular, DA has been shown to drive an 

inhibitory control of gonadotrope activity (Peter et al. 1986; Vidal et al. 2004; 

Dufour et al. 2005), especially at later stages of maturation. Specifically, this 

inhibition may be projected through the inhibition of luteinizing hormone (Lh) 

release (Dufour et al. 2010). DA inhibition of maturation has been shown to be 

especially strong in cyprinids (e.g. Cyprinus carpio; Yaron 1995), catfishes (e.g. 

Silurus glanis; Brzuska 2001), mullets (e.g. Mugil cephalus; Aizen et al. 2005) and 

eels. Different from other teleosts, DA appears to inhibit maturation at an earlier 

stage in eels and possibly induce an effect which is much harder to overcome 

(Dufour et al. 1988, 2005, 2010; Vidal et al. 2004). This was shown through 

experimental injections of GnRH and androgens which commonly are sufficient 
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to induce early stages of maturation in teleosts (Crim and Evans 1983; Holland 

et al. 1998; Kumakura et al. 2003). However, in eels, a DA antagonist was also 

needed (Dufour et al. 1988, 2005; Vidal et al. 2004). Therefore, DA tone is 

commonly seen as the key factor of the neuroendocrine blockage that inhibits 

progression of puberty in eels. In this regard eel males and females have shown 

some differences. In particular, in males, a low gonadotrophic release has been 

seen without the administration of a DA antagonist (Olivereau et al. 1986; 

Palstra et al. 2008). Although, Kagawa et al. (2009) observed that GnRHa did not 

affect maturation (i.e. no increase of GSI) in farmed male Japanese eels (Anguilla 

japonica). These results thus suggest a weaker DA inhibition in eel males 

compared to female although ultimately puberty is blocked by dopamine in male 

eels as well. As triggers for maturation are likely similar between eel sexes, eel 

males can be seen as a preferred model to test various factors on eel maturation.  

3.4.3 The pituitary of the gonadotropic axis 

When not inhibited by DA, GnRH stimulates gonadotropin [Lh and follicle-

stimulating hormone (Fsh)] production from the pituitary (Burns and Matzuk 

2002). In semelparous teleosts, like salmonids (e.g. Oncorhynchus mykiss), Fsh is 

often found in high concentrations at early maturational stages (Gomez et al. 

1999; Schulz et al. 2010) while Lh is often found in higher concentrations at later 

stages (Gomez et al. 1999; Schulz et al. 2010). However, in multiple spawners 

e.g. European sea bass (Dicentrarchus labrax; Mateos et al. 2003), red seabream 

(Pagrus major; Gen et al. 2000), goldfish (Carassius auratus; Kobayashi et al. 

1997), the blue gourami (Trichogaster trichopterus; Jackson et al. 1999), and the 

Japanese flounder (Paralichthys olivaceus; Kajimura et al. 2001b) Fsh and Lh 

release follows specific and synchronized projections during spermatogenesis. 

In artificially matured eel males and females, lhb and fshb have been shown to 

be differentially transcribed in the pituitary during gametogenesis (Schmitz et al. 

2005; Peñaranda et al. 2010b; Yoshiura et al. 1999; Jeng et al. 2007; Saito et al. 
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2003). Generally, an early maximum in fshb and a late maximum of lhb is 

observed (Schmitz et al. 2005; Peñaranda et al. 2010b; Yoshiura et al. 1999; Jeng 

et al. 2007; Saito et al. 2003). However, the respective projection of eel Fsh and 

Lh might be more complex than simply decrease of Fsh and increase of Lh. In 

particular, a local peak of Fsh has been observed in European, Japanese, and 

marble (Anguilla marmorata) eel females around the mid-vitellogenic stage 

(Schmitz et al. 2005; Huang et al. 2009; Saito et al. 2003; Pérez et al. 2011). 

Furthermore, increasing Fsh levels, until the mid-vitellogenic stage, have also 

been seen in Japanese conger (Conger myriaster) and New Zealand longfinned 

eels (Anguilla dieffenbachii) during their natural maturation (without hormonal 

injections; Saito et al. 2003; Kajimura et al. 2001a). In male European eels, this 

phenomenon was not observed (Peñaranda et al. 2010b). Similar but opposite 

projection are also seen for Lh as the generally increasing tendency seems to 

slow down or even decrease around the mid-vitellogenic stage or mid-

spermatogenesis in European, Japanese, and marble female eels, and European 

eel males (Schmitz et al. 2005; Saito et al. 2003; Huang et al. 2009; Peñaranda et 

al. 2010b).  

3.4.4 The gonad of the gonadotropic axis 

After secretion from the pituitary, Lh and Fsh are transported by the 

bloodstream to the gonad where they can activate their respective membrane 

receptors (Fshr and Lhr). Most commonly Fsh will regulate Sertoli cell activity 

involved in gametogenesis, while Lh regulates Leydig cell steroidogenesis (Schulz 

et al. 2010). However, these common gonadotropin functions in the gonads are 

not the entire picture as teleost Leydig cells have also been shown to express 

Fshr and Fsh have been shown as a steroidogenic hormone (García-López et al. 

2009; Ohta et al. 2007; Zmora et al. 2007). Furthermore, Lh has been shown to 

stimulate Fshr in some teleosts (Bogerd et al. 2001; So et al. 2005; Chauvigne et 

al. 2012). Indeed, both gonadotropins have been shown to induce testosterone 



22 
 

(T) and 11-ketotestosterone (11KT) production from testes of eel males (Kazeto 

et al. 2008; and Chapter 1).  

3.4.5 The steroids of the gonadotropic axis 

The BPG-axis possibly also include mechanisms of self-regulation since a 

feedback mechanism of steroids on gonadotropins are seen in teleosts (Planas 

and Swanson 1995; Amer et al. 2001). In particular, in eels, androgens have been 

shown to stimulate lhb transcription (Huang et al. 1997) and suppress fshb (Aida 

and Tsukamoto 2003) from the pituitary (Schmitz et al. 2005).  

However, the main function of steroids resulting from the gonadotropin 

activation is to drive the further development of the teleostean gonad, possibly 

in coorperation with a variety of growth factors (Schulz et al. 2010). In particular, 

T has been shown to increase in the plasma during maturation of teleost males 

(Fostier et al. 1983). However, in eels, an early (1-4 week) maximum of T plasma 

levels are seen followed by gradual decreases through artificial maturation 

(Peñaranda et al. 2016a; Khan et al. 1987; Peñaranda et al. 2010b). In the 

enzymatic process of DA synthesis, the protein tyrosine hydroxylase (TH) is likely 

the bottleneck enzyme in teleosts (Weltzien et al. 2006), and TH transcription is 

thus often used as an indicator of DA tone. Interestingly, increase in T has been 

shown to upregulate TH specifically in European eel brain and pituitary, and in 

the brain of Japanese eel, a relatively low aromatase level has been shown, 

indicating that even a low T level could result in significant effects (Jeng et al. 

2005). Therefore, T might also be involved in the inhibition of maturation in eels 

(Weltzien et al. 2006).  

Another important androgen is 11KT, which is a major androgen in teleost 

species. 11KT is produced by Leydig cells and can possibly activate Sertoli cells, 

which play a major role in spermatogenesis (Miura et al. 1991c). 11KT has been 
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shown to increase in concentration during silvering of Japanese and European 

eel (Sudo et al. 2012; Lokman and Young 1998) and to reach maximum plasma 

levels early during artificially induced testicular development of European eel, 

often reaching levels of ~100 ng/ml (Khan et al. 1987; Peñaranda et al. 2016a). 

Furthermore, 11KT has been shown to induce increases in GSI and eye index in 

both female Japanese and shortfinned New Zealand eel (Anguilla australis; 

Setiawan et al. 2012; Sudo et al. 2012). Interestingly, in male Japanese eels 11KT 

has been shown to induce the complete spermatogenesis in vitro (Ohta et al. 

2007; Miura et al. 1991b) and 11KT is thus considered the major androgen for 

eel testis development. However, these results could not be reproduced in vivo 

in shortfinned New Zealand eel (Lokman et al. 2016). Although estrogens and 

specifically estradiol-17β (E2) are commonly associated with female vertebrates, 

it has shown strong presence and importance in male teleost as well (Miura et 

al. 1999; Amer et al. 2001). As seen for T, E2 also increased in European eel males 

as a response to saltwater acclimation (Morini et al. 2017b), and T and E2 have 

been shown to affect GnRH levels in European eel brain and pituitary (Montero 

et al. 1995). In Japanese eels, E2 has been shown to stimulate mitotic divisions 

in the testis and thus induce spermatogonia stem cell renewal (Miura et al. 

1999). Miura et al. (1999) further showed that Sertoli cell in Japanese eel testis 

expresses E2-receptors and thus hypothesized that the effect of E2 is mediated 

through these cells. E2 was only able to induce mitosis and not meiosis and was 

thus hypothesized mainly to be important at early development (Miura et al., 

1999). The effect of E2 was seen at concentrations as low as 10 pg/ml in vitro, 

which is very low compared to the main androgen 11KT, which only showed an 

effect at 10 ng/ml (Miura et al. 1991b). Furthermore, Miura et al. (1999) 

demonstrated that the renewed spermatogonia stem cell produced after E2 

stimulation was able to differentiate fully into spermatozoa after the 

introduction of 11KT. 
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3.5 Artificial manipulation of teleost sexual maturation 

Fish maturation is commonly manageable simply through regulating the housing 

environmental conditions (Bromage et al. 2001; Mañanós et al. 2009). In 

particular, light and temperature regimes are commonly used to induce fish 

maturation. However, for many economically important aquaculture species, 

reproductive challenges hinder large scale propagation (Mylonas et al. 2010; 

Duncan et al. 2013). In many cases, these challenges can only be overcome with 

the administration of exogenous hormones (Mylonas et al. 2017). The purpose 

and effect of the hormonal treatments applied varies greatly among fish species, 

from improved seminal volume as seen in catfishes (Siluridae sp.; Cacot et al. 

2003; Viveiros et al. 2002), to activation of the complete processes as seen in 

eels (see section below) and golden rabbitfish (Siganus guttatus; Komatsu et al. 

2006). Although, in some species Fsh has been shown to induce the full process 

of spermatogenesis and spermiation (Mazón et al. 2014; Zhang et al. 2015a; Chu 

et al. 2015), most hormonal treatments have used Lh preparations, which acts 

on the gonad level or GnRH´s, which have the effect of Lh release from the 

pituitary (Mylonas et al. 2017). A commonly used Lh preparation is pituitary 

extracts (PEs) from spawning fish (commonly carp or salmon). These contain 

many unknown compounds; however, mainly Lh and to a lesser extent Fsh 

(Mylonas et al. 2017). Pituitary extract has been widely used to enhance fish 

maturation e.g. in common tench (Tinca tinca; Linhart et al. 1995), common 

bream (Abramis brama; Kucharczyk et al. 1997), European catfish (Silurus glanis; 

Linhart et al. 2004), streaked prochilod (Prochilodus lineatus; Viveiros et al. 

2010) and many others (Mylonas et al. 2017). However, since pituitary extracts 

may vary in concentration of hormones and since the exact cocktail of included 

compounds is not known these treatments sometimes produces variable results 

(Le Gac et al. 1993; Cyr and Eales 1996; Negatu et al. 1998). Therefore, purified 

hormones or recombinant hormones are often preferred when available. One 
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of the most widely used purified hormones is of mammalian origin namely 

human chorionic gonadotropin (hCG; Mylonas et al. 2017), which is purified 

from the urine of pregnant human women. hCG is an Lh analog (Mylonas et al. 

2017) and the effect of hCG I plausibly mediated through an Lh receptor since 

these have been shown to be activated by hCG (Mcfarland et al. 1989; Kwok et 

al. 2005). Subsequently, hCG has been shown to induce steroidogenesis in 

catfish through activation of Lhr (Kumar et al., 2001). hCG further has the 

advantages of a long half-life in circulation (Ohta and Tanaka 1997), rapid 

response in the gonad, and its availability world-wide due to it being used in 

assisted reproduction of humans.  

The use of recombinant gonadotropins has recently gained attention. As 

species-specific variations of gonadotropin functions (Gomez et al. 1999; 

Mateos et al. 2003) and sequence exist between teleosts (Levavi-Sivan et al. 

2010), recombinant homologous gonadotropin injections may give superior 

results to pituitary extract injections in any given species. Recombinant proteins 

are produced through the cloning of the DNA sequence of the protein into a 

vector. This vector is then transfected into a selected host organism or cell type, 

which then produces the protein. Most hormone proteins are glycoproteins, and 

correct glycosylation is required for the correct function of the hormone. 

Therefore, mammalian cells are often preferred as host cells for hormone 

production as these have the most sophisticated glycosylation mechanism 

(Demain and Vaishnav 2009). Recombinant gonadotropins have been 

successfully produced and used via injection for zebrafish (Danio rerio; So et al. 

2005), channel catfish (Ictalurus punctatus; Zmora et al. 2007) goldfish 

(Hayakawa et al. 2008b), European sea bass (Molés et al. 2011b), Senegalese 

sole (Solea senegalensis; Chauvigné et al. 2012) and others (Mylonas et al. 2017). 

Although the stimulation of these recombinant gonadotropins of their 

respective receptors was often more potent in vitro than in vivo. As such, 
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recombinant hormones have a high potential for use in aquaculture, although 

procedures of both production and administration still need improvement 

(Mylonas et al. 2017). 

3.6 Recombinant hormones in Japanese eels  

In particular in the Japanese eel recombinant hormones have been substantially 

tested since 2003 (Kamei et al. 2003), with increasing success. In 2006, Kamei et 

al. injected Japanese eel males with recombinant Japanese eel Fsh, and thereby 

induced increased 11KT production and minor progression of spermatogenesis 

although the experiment only lasted 12 days (Kamei et al. 2006a). As a 

production organisms Kamei et al. used the yeast Pichia pastoris (Kamei et al. 

2006a), this organism may not generate the optimal glycosylation of the 

proteins, which could be an important factor for correct gonadotropin function. 

In 2008, Kazeto et al. changed the host organism to Drosophila S2 cells and 

produced bioactive recombinant Japanese eel Fsh and Lh. These hormones were 

further tested for glycosylation and induced a strong reaction in vitro including 

increased 11KT and full spermatogenesis from both gonadotropins separately. 

However, little to no effect was observed in vivo, with slightly further 

developmental stages of spermatogonia observed in Fsh injected males. Kazeto 

et al. (2008) hypothesized that the differences between in vitro and in vivo result 

may be due to a short half-life of the hormones in vivo. Also in 2008, Hayakawa 

et al. had more success using recombinant goldfish Fsh and Lh, which were 

produced by the baculovirus-silkworm (Bombyx mori) larvae system. In 

particular, spermatogenesis was induced until the stage of spermatozoa in vivo 

in Japanese eels using only the recombinant goldfish Lh, although with only 

minor increases of GSI at the highest dosages and no spermiation was observed 

(Hayakawa et al. 2008b). The same production system (baculovirus-silkworm 

larvae) was later used to create Japanese eel specific gonadotropins, with similar 

results (Kobayashi et al. 2010). In particular, both gonadotropins induced 
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spermatogenesis until spermatozoa; however, only minor increases in GSI and 

no spermiation was seen (Kobayashi et al. 2010). Full Japanese eel spermiation 

was recently achieved using injections of 500 µg/kg bodyweight recombinant Lh, 

produced by CHO cells (Ohta et al. 2017), similar to the protocol described in 

Chapter 1. Ohta et al. (2017) further hypothesized that a possible reason for the 

poor in vivo results of previous experiments may be a high metabolic clearance 

of protein with a non-vertebrate type of glycosylation (Ohta et al. 2017). 

3.7 Artificial European eel maturation 

Eels in captivity do not spontaneously mature due to a dopaminergic blockage 

that inhibits the progression of puberty. Therefore, extensive hormonal 

maturation is needed for the eel to mature in captivity. Although European and 

Japanese eel are closely related and able to hybridize (Müller et al. 2018; 

Burgerhout et al. 2011), significant differences have been observed between 

these fish in their response to artificial hormonal maturation. E.g. European eels 

appear to show greater individual viability and a slower response to the 

hormonal treatment (Palstra et al. 2005; Pérez et al. 2009; Herranz-Jusdado et 

al. 2019). Furthermore, Japanese eel males appear to be more sexually advanced 

at the start of migration (Boëtius and Boëtius 1967). Nevertheless, researches 

working on the reproduction of these species have traditionally looked to one 

another for inspiration. In the early days of eel reproductive science, European 

scientist were ahead, since the first artificially matured European eel males were 

produced in the 1930s (Fontaine 1936), using intraperitoneal injections of urine 

from pregnant women, and the first sexually mature female European eel was 

produced in 1964 using carp PE (CPE; Fontaine et al. 1964). Meanwhile, the first 

artificial maturation of Japanese eel was attempted in the late 1960s. Hereafter 

the Japanese scientist advanced faster in their research and the first 

documented Japense eel egg fertilization was achieved in 1973 with the first 

larvae of Japanese eel obtained in the same year (Yamamoto and Yamauchi 
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1974). These experiments utilized salmon PE (SPE) injections for female eel 

maturation and a combination of SPE and hCG for males. Learning from these 

milestone achievements the first documented fertilization of European eel eggs 

were achieved in 1980 (Boëtius and Boëtius 1980) using a combination of CPE 

and hCG twice a week, while the first European eel larvae in captivity were 

hatched in 1983 (Bezdenezhnykh et al. 1983). In these cases, however, the 

larvae died before the transition to the leptocephalus larval stage, possibly due 

to starvation. It took additionally almost 30 years for the breakthrough of 

successful exogenous feeding and metamorphosis into the leptocephalus stage 

of Japanese eel larvae, which was first achieved in 2001 (Tanaka et al. 2001). To 

induce female maturation they used SPE injections followed by a 17,20β-

dihydroxy-4-pregnen-3-one (DHP) injection for ovulation induction, while the 

males were injected with hCG. The main achievement responsible for this 

milestone was the identification of a suitable pre-leptocephalus larvae food 

item, freeze-dried shark egg yolk, which was supplied to the larvae from 8 days 

post-hatching. From here on development accelerated as an F1 generation of 

glass eels were already acquired in 2003 (Tanaka et al. 2003), using the same 

hormonal treatments with the addition of an SPE primer 24 h before the DHP 

injection of the females. The pre-leptocephalus diet was also similar although 

including the additives: krill hydrolysate, soybean peptide, vitamins, and 

minerals. Finally, in 2010 the successful closing of the Japanese eel lifecycle was 

completed in captivity (Masuda et al. 2012).  

Regarding the European eel, 30 years have already passed since the first 

successful production of larvae (Bezdenezhnykh et al. 1983); however, high 

variability in hormone response, fertilization, hatching, and larval survival rates 

are still the norm and the leptocephalus larvae stage has not been reached yet. 

This achievement may not be far away as European eel larvae production has 

steadily improved over the years and the first successful exogenous feeding of 
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European eel larvae has been achieved (Butts et al. 2016). The current state-of-

the-art of European eel maturation involves a weekly intraperitoneal injection 

of recombinant hCG for the males (Asturiano et al. 2005, 2006; Gallego et al. 

2012; Herranz-Jusdado et al. 2019). For females, weekly intraperitoneal 

injections of CPE or SPE are used, followed by a CPE or SPE primer when a 

significant weight increase is observed and oocytes biopsies show the 

appropriate oocyte stage (determined by lipid droplet size). Twenty-four hours 

after the priming a DHP induction of spawning is administered (F.G. da Silva et 

al. 2018). It should, however, be noted that a consensus of the exact protocol 

for European eel maturation has not been reached and variation is common 

between protocols of different research groups e.g. (Chai et al. 2010; Mordenti 

et al. 2012; Lokman et al. 2015; Di Biase et al. 2016; Kucharczyk et al. 2016; 

Vílchez et al. 2016). In particular, in some protocols spawning is induced by 

stripping, while other protocols allow for spontaneous spawning which often 

results in superior fertilization results (Di Biase et al. 2016). Furthermore, 

feminization of farmed broodstock by E2 administration through the diet, during 

the early growth phase, is sometimes used (Chai et al. 2010; Davey and Jellyman 

2005) and pre- or co-treatment with androgens have been used in some eel 

species with success (Lokman et al. 2015; Mordenti et al. 2017; Di Biase et al. 

2017).  

3.8 Natural eel sexual maturation factors  

As described above, eels can be artificially matured via hormonal injection; 

however, the procedures often results in high individual variation and low 

gamete quality (Durif et al. 2006; Kagawa et al. 2005; Pedersen 2004; Ohta et al. 

2001; Burgerhout et al. 2018). Part of the explanation for the problems with 

artificial eel sexual maturation may be that the treatments do not exactly induce 

the natural maturation process. In particular, the hormonal induction of male 

eels sexual maturation, using hCG, likely bypasses the BPG-axis and works 
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directly on the testis level (Boëtius and Boëtius 1967; Khan et al. 1987). 

Furthermore, pituitary extracts of other teleosts are unlikely to have exactly the 

same compound levels and efficiencies as eel pituitary compounds during 

natural eel maturation (Aida and Tsukamoto 2003; Mylonas et al. 2017). 

Previously, it has also been considered evidence of unnatural maturation of 

hormonally matured eels, that a discrepancy exists between observed batch 

spawning development of eel oocytes and a gonadotropin profile which 

indicates that eels should mature all gametes at once (Aida and Tsukamoto 

2003). However, the capture of wild naturally matured Japanese eels also 

indicated the existence of polycyclic ovaries with the potential for multiple 

(group-synchronous) spawning (Ijiri et al. 2011). Therefore, in order to improve 

current artificial eel maturation protocols, either by lowering the total dosages 

of hormones needed or improving gamete quality and/or quantity, a more 

natural maturation should be desired (Ijiri et al. 2011; Gallego et al. 2012; 

Burgerhout et al. 2018). In this regard, it is likely that the right environmental 

conditions may be beneficial or even induce natural maturation as seen in many 

other fish species (Mylonas et al. 2010, 2017; Taranger et al. 2010; Wang et al. 

2010; Duncan et al. 2013). Substituting some hormonal injections with simple 

environmental changes may; furthermore, lower the stress level induced in the 

fish during this procedure. Reduced stress is another commonly observed factor 

of improved reproductive success (Schreck 2010). Natural sexual maturation of 

eels likely happens during or after migration (van Ginneken et al. 2005; Palstra 

et al. 2010), therefore the environmental condition of the migration and 

spawning ground are good candidates to potentially induced sexual maturation 

of eels. Although final eel maturation likely happens after or at late stages of the 

reproductive migration (van Ginneken et al. 2005; Palstra et al. 2010), earlier 

stages of eel maturation might be induced by environmental conditions of 

earlier stages of migration (Bast and Klinkhardt 1988). Each of these 

maturational stages could be more susceptible to artificial hormonal maturation 
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than the previous. E.g. even the progression through the proposed 5 freshwater 

eel stages, from yellow eels to migratory silver eels, are associated with 

maturational progression (Durif et al. 2005) and eels which have progressed 

further towards silvering have been shown to be better responders for artificial 

hormonal maturation (Aroua et al. 2005; Durif et al. 2006; Mordenti et al. 2013; 

Dirks et al. 2014; Burgerhout et al. 2016). Furthermore, different Anguilla 

species are found to show different stages of maturation at the initiation of 

migration (Durif et al. 2005; Hagihara et al. 2012; Lokman et al. 1998; Lokman 

and Young 1998). These observations support the hypothesis that eel 

maturation progresses through different stages from the onset of migration. 

In line with the above mentioned views, several environmental factors have 

been proposed to affect eel maturation. E.g. since eels are believed not to feed 

during migration and are commonly not feed during artificial maturation the 

nutritional condition of pre-maturation eels have been suggested as a factor 

which may influence eel maturation. Nutritional status has been observed to 

influence fertility in animals for more than a century (Darwin 1859) and it is likely 

a natural cue on which eels bases their individual decision of initiating migration 

(Durif et al. 2005). Therefore, this factor has received some attention in the field 

of eel reproduction (Støttrup et al. 2013; Baeza et al. 2014, 2015a; da Silva et al. 

2016; Støttrup et al. 2016). In particular, da Silva et al. (2016) showed that 

dietary fatty acids can influence gonadal development and individual eels 

response to hormonal treatment (Baeza et al. 2015a; da Silva et al. 2016). 

Additionally, another factor which might influence eel maturation is the fasting 

itself, which is commonly assumed to occur naturally during migration and thus 

be beneficial for artificial eel maturation. However, experiments in which feed 

was offered to maturing broodstock, no clear disadvantages were observed in 

the resulting maturation (Mordenti et al. 2012), and the fasting state of 

artificially maturing eels could thus be reconsidered. 
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After maturing to the silver eel stage, eels start their reproductive migration 

(Durif et al. 2005), which in most cases starts during autumn. An effect of the 

time of year of maturation was seen in some of the earliest studies of eel 

reproduction (Boëtius and Boëtius 1967), and this factor may thus be important 

for eel maturation although until today this factor has not received a lot of 

attention.  

Another environmental factor which might influence eel maturation is the light 

regime. During continental migration, eels appear to prefer low light 

environments (Righton et al. 2016; Aarestrup et al. 2009; Wysujack et al. 2015; 

Lennox et al. 2018; Chow et al. 2015). Based on this behavior it has been 

suggested that light should be considered as a factor involved in eel maturation 

and even the earliest documented eel reproduction experiments hypothesized 

about the importance of light for eel maturation (Fontaine 1936). So far, a few 

experiments have been conducted on this environmental factor e.g. Boëtius and 

Boëtius (1967) showed that maturation will progress normally with standard 

hormonal injections at all tested light regimes. More interestingly, however, 

Parmeggiani et al. (2015) showed increased E2 and T levels, and increased GSI in 

eel kept in a dark environment (Parmeggiani et al. 2015) and Mordenti et al. 

(2012) showed that eels kept in darkness, matured earlier, and with a higher 

success rate than eels kept in a 14:10 light cycle. In fact 4 out of 4 eels kept in 

complete darkness ovulated in this study (Mordenti et al. 2012), which is 

impressive compared to the maturation rates of other studies (Pedersen 2004; 

Kagawa et al. 2005; Palstra et al. 2005). Molecularly there is some support for 

the importance of the light environment on eel reproduction, although opposite 

to what the results indicate. In particular, melatonin which is released during 

low light regimes (Falcón et al. 2010; Saha et al. 2018; Zohar et al. 2010) have 

been shown to upregulate TH, and downregulate fshb and Lhb transcription in 

European eels (Sebert et al. 2008). These results were further followed by 
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decreasing steroid levels, thus it appears plausible that high melatonin levels are 

a strong reinforce of the DA block of European eel puberty (Sebert et al. 2008). 

Therefore, it appears that more light rather than less light might release the DA 

blockage of eel maturation trough decreased melatonin secretion (Burgerhout 

et al. 2018).  

Later, during migration, eels enter marine waters and thus experiences a drastic 

change in salinity of their environment. The transition from freshwater to 

saltwater has been shown to induce several maturation associated factors. E.g. 

increased eye size even compared to hormonally injected eels (Nowosad et al. 

2014). Furthermore, increased GSI and oocyte diameter, and faster response to 

hormonal treatment was observed in Japanese eels after 3 months of saltwater 

rearing (Kagawa et al. 1998). Additionally, fshb and E2 are often observed to 

increase in eel after saltwater acclimatization (Aida and Tsukamoto 2003; 

Peñaranda et al. 2010b, 2016a). Although maturation can be induced in 

freshwater (Horváth et al. 2011) a lower rate of retarded development and a 

faster maturation have been observed in saltwater (Boëtius and Boëtius 1967). 

Therefore, salinity also appears to be an important environmental factor of eel 

maturation. 

After some migratory distance in saltwater the eels leave the continental shelf 

(>10° West longitude; Fig. 1), and from hereon migrates at relatively stable 

temperatures (average of ~10 °C), ranging from up to ~12 °C at night and down 

to ~8 °C during the day, due to daily vertical migration (Righton et al. 2016; 

Aarestrup et al. 2009; Wysujack et al. 2015). Temperature is considered among 

the most important environmental factors for teleosts sexual maturation 

(Migaud et al. 2010; Bromage et al. 2001). However, eels do commonly not 

mature fully at such low temperature (Boëtius and Boëtius 1967; Gallego et al. 

2012; Baeza et al. 2014), possibly due to low progestin synthesis (Peñaranda et 

al. 2016a), and constant low temperature is thus not a candidate as a cue of 
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spontaneous full maturation. Although, a study has reported on the observation 

of a single female European eel with a GSI of 10 and with gonads containing 

advanced oocyte stages, caught close to the Azores in the Atlantic ocean (Bast 

and Klinkhardt 1988). Furthermore, several studies have indicated that low 

temperatures does have an effect on the PBG axis of European eels, other than 

simply blocking maturation (Baeza et al. 2014; Pérez et al. 2011; Mazzeo et al. 

2014; Ahn et al. 2012; Gallego et al. 2012; Peñaranda et al. 2016a). This effect 

has also been hypothesized to potentially be a result of melatonin regulation 

(Burgerhout et al. 2018; Saha et al. 2018; Sebert et al. 2008). E.g. low 

temperatures have been suggested to accelerate the last stages of silvering 

(Durif et al. 2005; Vøllestad et al. 1994). Moreover, Mazzeo et al. (2014) showed 

an increase in 11KT, E2 and aromatase levels at 10 °C (compared to 18 °C) in CPE 

injected European eel females. Some studies have also indicated that lower 

temperatures during artificial maturation or an increasing temperature regime 

may improve resulting gamete quality. E.g. Pérez et al. (2011) showed that a 

variable temperature regime starting from 10 °C, slowly increasing to 20 °C, 

induced early maturation faster than a constant 20 °C rearing in female 

European eel. These eels furthermore had increased Fshb and Lhb transcription 

in their pituitaries, higher esr1 and vtg2 transcription in the ovary during early 

vitellogenesis, and higher levels of E2 in their blood. Interestingly, in this study, 

the specific projection of Fsh and Lh until the mid-vitellogenesis stage appeared 

more similar to those observed from naturally maturing Elopomorphs (Saito et 

al. 2003; Kajimura et al. 2001a). 

In hormonally treated European eel males kept at 10 °C and later introduced to 

gradually warmer water spermiation was induced with increasing motility, 

volume, and progressive motility throughout the experiment. At the termination 

of the experiment this group showed close to the highest observed motility 

values of any other group in the experiment, and it is thus open for speculation 
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whether the increasing tendencies would have continued (Gallego et al. 2012). 

Furthermore, Kucharczyk et al. (2016) showed that lower temperatures (15 ºC) 

during artificial maturation improved egg quality and increased the rate of 

spontaneous spawning. Interestingly, in that study, spontaneous spawning was 

induced successfully simply by raising the water temperature after the 

significant weight increase (30%) that eel females experiences at the end of 

maturation (Kucharczyk et al. 2016).  

Low temperature has also been shown beneficial in Japanese eel maturation E.g. 

higher oocyte diameters and oil droplet formation was observed when Japanese 

eels were kept at lower temperatures during early maturation (Sudo et al. 2011), 

and other authors have suggested benefits of thermal regimes increasing from 

low temperatures (Unuma et al. 2011; Ijiri et al. 2011) or ending with lower than 

common temperatures (20 °C; Yoshikawa 2012). It should also be noted that full 

maturation can be induced in the anguilla family related species the Japanese 

conger (Conger myriaster) simply by manipulating temperature (Utoh et al. 

2013). As an added benefit of lower rearing temperatures during eel maturation, 

generally, reduce mortality seems to follow cold water experiments (Mordenti 

et al. 2012; Pérez et al. 2011).  

Another environmental factor to consider regarding eel maturation is the social 

interaction of migratory eels. It has been shown that males eels can significantly 

increase their swimming efficiency by swimming in groups (Burgerhout et al. 

2013), and thus it should be considered whether the interacting with other eels 

or maybe mature eels could promote maturation. Some studies have supplied 

support of such hypothesis, indicating that mature eel indeed promote 

maturation of other European eel males (Huertas et al. 2006; Pérez et al. 2000). 

However, the effect is also seen when immature eels are only exposed to the 

water of mature individuals and the signal must thus be considered chemical 

rather than social.  
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Swimming is another significant aspect of the oceanic migration and in the case 

of European eel represents and extraordinary endurance challenge due to the 

duration, distance and apparent complete fasting state of the eel during 

migration (van Ginneken et al. 2005). Therefore, resources have been allocated 

to construct swim-tunnels and conduct extensive swim trial (van Ginneken et al. 

2007; Palstra et al. 2007, 2008, 2009; Burgerhout et al. 2013; Mes et al. 2016). 

One of the earliest experiments testing the effects of swimming on eel 

maturation was in fact set up to test the metabolic characteristics of migrating 

eels (van Ginneken et al. 2007). From this experiment van Ginneken et al. (2007) 

unexpectedly observed increased oocyte diameter, E2 plasma levels and 

increased Lh pituitary concentration in eels exposed to > 5000 km swimming. 

Later, the result of increased oocyte diameter was reproduced for eels 

swimming in freshwater, together with an apparently increased oil droplet 

incorporation into the oocytes (Palstra et al. 2007). Furthermore, results have 

been published showing significant increases of lhb transcription and GSI from 

wild eel males which had swum for 3 months (Palstra et al. 2008); however, 

these results could not be reproduced with farmed silver eel males (Burgerhout 

et al. 2013). Further studies of swimming seems to suggest an inhibition of 

maturation in swimming females rather than increased maturation, evident by 

decreased vitellogenin (vtg) expression (Palstra et al. 2010, 2007), which 

supports an hypothesis that eel maturation (from vitellogenesis) happens after 

the oceanic migration (Palstra et al. 2010). Interestingly, eel males appear to 

mature faster while females mature slower after swimming (Palstra et al. 2009), 

but preliminary trials does not seem to indicate increased hormonal sensitivity 

of eels after swimming (Palstra et al. 2009), thus the effect of swimming does 

not appear to accumulate to a net benefit (Burgerhout et al. 2018). An 

interesting argument for swimming as an important maturation inducing factor 

is the observation that lipid droplets and yolk globules appear simultaneous in 

hormonally injected eels (Palstra et al. 2010). While a large built up of lipid 
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droplets are observed in swimming eels with no yolk globules, which is probably 

due to the low levels of vtg (Palstra et al. 2010, 2007). It should, however, be 

noted that lipid droplets and yolk globules not always appear simultaneous in 

hormonally injected eels. E.g. in CPE injected eels kept at 18 °C, 25% of fish only 

contained lipid droplets in their oocytes after 4 weeks of CPE injection (Mazzeo 

et al. 2014), while in another study oocytes of 20% of CPE injected eels did not 

contain yolk globules after 4 weeks at 20 °C (Pérez et al. 2011). Even after 13 

weeks of SPE treatment ~12% of the eel of yet another experiment did not 

present yolk globules (da Silva et al. 2016), although these should be considered 

as non-responders. Furthermore, at 15 ºC oocytes without yolk globules appears 

to be the norm after 3 weeks of CPE injection (Nowosad et al. 2015). Also, 

vitellogenesis seems to be induced simply by the environmental factor of salinity 

in the Japanese eel (Kagawa et al. 1998), and at the early stages of migration 

observed in nature of the New Zealand eels (Anguilla dieffenbachii and Anguilla 

australis; Lokman et al. 1998).  

As a culmination of the current state of research Mes et al. (2016) attempted to 

mimic several parameters of the eel migration including temperature, salinity, 

social interaction, light regime, and swimming. This study showed a ~4.5 fold 

increase in plasma T levels of male European eel kept at 11.7 °C while swimming 

compared to male European eel kept at 23.5 °C, without swimming. This study 

further show a ~1 fold increase in T level between male European eel kept at 

variable temperature (10.1-11.7 °C) in saltwater, while swimming, compared to 

male European eel kept at 11.5 °C in freshwater, while swimming. However, 

these effects seem similar to equivalent studies of salinity and temperature 

without swimming treatment. Interestingly, however, hormonal injections were 

subsequently administered to some of the fish, which received the simulated 

migration treatment, which resulted in 79% maturation of females and 100% 

maturation of males, which must be considered as high (Mes et al. 2016). 
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Although it should be noted that only 23% of the females which matured 

produced fertilizable eggs.  

After the eel leave the continental shelf, as stated above, their daily vertical 

migration pattern takes them down to ~700 m during the day, at which the 

water pressure is ~70 times higher than at the surface (Righton et al. 2016). As 

migration progresses, migration likely decent to even greater depths, of around 

1000 m during the day (Righton et al. 2016; Wysujack et al. 2015). As such, eel 

probably experiences high hydrostatic pressure around the time of maturation 

in nature and pressure has thus been considered as a potential trigger for 

maturation. Some of the earliest pressure treatment experiments of eels tested 

the effect of 101 atm under laboratory conditions (Sebert and Barthelemy 1985), 

which is roughly equivalent to the highest pressures eel commonly migrate at 

(Righton et al. 2016). Unfortunately, however, these results indicated no 

maturational progression. Interestingly, similar experiments in the field, where 

cages of eels were sunk to 450 m depth for 3 months revealed more positive 

results (Dufour and Fontaine 1985). In particular, increased GSI and a 

tremendous increase of 27-fold of Lh were observed in treated eels. More 

recently, Sebert et al. (2007) have furthered this particular field and found that 

3 weeks pressure treatment appear to increase E2, and vtg levels, increase the 

ratio of lhb/fshb and inhibit TH transcription in eel brains (Sébert et al. 2007). 

Therefore, pressure also appears to be an important environmental factor of eel 

maturation.  

Finally, the oxygen concentration is also worth considering as an environmental 

factor influencing eel maturation, since the depths in which eels probably 

migrate may show high variations in oxygen levels. To my knowledge; however, 

this factor has not been experimentally tested to date. 
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In summary, it is clear that environmental factors do affect eel maturation, and 

it is plausible that the right regimes of these factors can promote maturation. As 

more developed eels have been shown to be more responsive to hormonal 

treatment (Aroua et al. 2005; Durif et al. 2006; Mordenti et al. 2013; Burgerhout 

et al. 2016; Dirks et al. 2014), manipulation of these environmental factors 

before hormonal injections might thus improve artificial European eel sexual 

maturation results. In particular temperature and pressure seems like good 

candidates for pretreatments while salinity and light regime alterations also 

show potential; however, to this day these latter factors are less studied.  

3.9 Whole genome duplication  

Although whole genome duplications (WGDs) are presumed to be extremely 

rare in mammals (Mable et al. 2004), this is not the case for eukaryotes in 

general (Hufton and Panopoulou 2009; Parisod et al. 2010). Specifically, WGDs 

are recurrently found in amphibians crustaceans reptiles and insects (Otto and 

Whitton 2000; Van De Peer et al. 2017), and are frequently suggested in fungi 

(Albertin and Marullo 2012; Blischak et al. 2018; Sémon and Wolfe 2007a) and 

plants (Schmutz et al. 2010; Del Pozo and Ramirez-Parra 2015; Soltis et al. 2014) 

especially in angiosperms (Masterson 1994; Soltis et al. 2014). Even in mammals, 

which are presumed to be exceptionally intolerant of polypliodism (Ganem et 

al. 2009; Hufton and Panopoulou 2009) WGDs do occur although, as presumed, 

these cases are rare (Gallardo et al. 2004). Recent WGD event has traditionally 

been observed by cytological studies through the observation of additional 

chromosomes and chromosome behavior (Soltis et al. 2014). However, ancient 

WGD event can only be discovered through whole genome or transcriptome 

analysis because these are often hidden by massive gene losses (Inoue et al. 

2015; Wolfe 2001; Kassahn et al. 2009; Wendel 2000) and fusion or loss of 

chromosomes (Wang et al. 2015; Glasauer and Neuhauss 2014; Albertin and 

Marullo 2012; Chester et al. 2012; Gordon et al. 2011). Specifically, the loss of 
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genes, often seen after WGD events, is hypothesized to be driven by the 

functional redundancy of duplicated genes (Ohno 1970), while chromosome loss 

or fusion may in part be driven by meiotic and mitotic abnormalities, which is 

expected with increased chromosome number (Albertin and Marullo 2012; 

Gordon et al. 2011). These processes are vastly accelerated after WGD events, 

thus such events can quickly be undetectable by traditional methods (Sémon 

and Wolfe 2007b; Inoue et al. 2015).  

In particular, in teleosts, gene loss (Pasquier et al. 2017; Inoue et al. 2015) and 

large and small scale genome rearrangements (Nakatani and Mclysaght 2017; 

Blischak et al. 2018) have been shown to happen quickly and greatly affect gene 

compliments and synteny patterns after WGD events. The resulting 

underestimation of WGD event from these factors has been suggested as an 

explanation for the observation that species that are currently polyploid 

outnumber ancient WGDs by several orders of magnitude (Soltis et al. 2015; Van 

De Peer et al. 2017). Due to these phenomena, several authors have 

hypothesized that the discoveries of WGD events in eukaryotes will accelerate 

as sequencing techniques become more capable and available (Parisod et al. 

2010; Soltis et al. 2014; Sémon and Wolfe 2007a; Blanc 2004; Mable et al. 2004; 

Glasauer and Neuhauss 2014). To some extent these predictions have already 

come true, e.g. development of sequencing techniques have already allowed for 

the discovery of WGDs in species that previously were considered highly unlikely 

to have experienced such events. E.g. in Arabidopsis thaliana, which has a very 

small genome of 157Mb and only five chromosome pairs (Bennett et al. 2003), 

2 or maybe 3 additional WGD events were suggested after whole genome 

sequencing (Vision et al. 2000; Bowers et al. 2003). Similarly, in fungi genetics, 

low chromosome numbers and hardly available data made WGD events seem 

rare or even absent; however, recent advances have strongly challenged this 

hypothesis (Albertin and Marullo 2012; Cottrill et al. 2009). Recently, the rate of 
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WGD discoveries has reached new heights, best illustrated by a study currently 

in progress and described by Blischak et al. (2018). So far in this study 1.173 plant 

and algae genomes and transcriptomes have been analyzed and 240 ancient 

WGD events have been strongly suggested including over 150 previously 

unknown events. Thus, strongly supporting the common hypothesis that WGD 

event discoveries will keep drastically increasing following the development of 

sequencing techniques (Parisod et al. 2010; Soltis et al. 2014; Sémon and Wolfe 

2007a; Blanc 2004; Mable et al. 2004; Glasauer and Neuhauss 2014). 

Furthermore, all indications point to the same phenomenon occurring in fish 

(Glasauer and Neuhauss 2014). 

Conserved duplicated genes can end up sharing the original function of the 

ancestral singleton (subfunctionalization) or gain entirely new functions 

(neofunctionalization; Blanc 2004; Pasquier et al. 2017), which can be displayed 

in different transcription patterns between tissues or even developmental 

stages (Van De Peer et al. 2017). E.g. 76-87% of paralog pairs in wheat (Triticum 

aestivum) showed differential gene transcription patterns in different tissues 

(Mutti et al. 2017), and 50% of duplicated genes showed a differential 

transcription patterns in soybean (Glycine max; Roulin et al. 2013). These 

patterns have also been seen in fish (Ren et al. 2017; Blischak et al. 2018). 

Interestingly, in the in progress study described by Blicshak (2018) an association 

was also found between WGD events and key evolutionary innovations such as 

multicellularity, vascular systems, roots, seeds, flowers, and fruits. Such 

innovations of evolutionary novelty have been frequently suggested to follow 

WGD events and to result in improved adaptation to adverse environments 

(Hughes and Liberles 2008; Tautz and Domazet-lošo 2011; Soltis et al. 2014; 

Blischak et al. 2018). The hypothesized improved adaptation capabilities may 

result from the new genomic redundancy of conserved duplicated genes, which 

in turn creates an increased effective population size (Soltis et al. 2014; Parisod 
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et al. 2010) and commonly after WGD events also creates increased 

heterozygosity (Van De Peer et al. 2009). In this way, the potential for novelty 

exists with all duplications (Ohno 1970), some authors even estimate that most 

evolutionary innovations in gene functions are associated in some way with 

gene duplication (Conant and Wolfe 2008). However, after WGDs substantially 

more genes, including whole pathways, can be freed for mutation which 

drastically increases the potential for the development of novelty (Wisecaver et 

al. 2017; Smith et al. 2017; Lopez-Nieves et al. 2017; Roth et al. 2007; Moriyama 

and Koshiba-Takeuchi 2018). This new potential has further been hypothesized 

to result in evolutionary advantages of polyploids which then might be a 

contributing factor of the relatively high occurrence of polyploids in eukaryotes 

(Ramsey and Schemske 2002).  

Despite novel gene functions often resembling the original gene function 

(Conant and Wolfe 2008), slight differences in function, affinity or transcription 

can have significant consequences. One example of this phenomenon is the 

voltage-gated sodium channel gene (Scn4a), which long after duplication has 

diverged in function in some teleosts. This divergence has lead one Scn4a 

paralog to retain the classical function of a sodium channel and the other to 

facilitate the myogenic electric organ of South American gymnotiform fishes, like 

the electric eel (Electrophorus electricus; Arnegard et al. 2010). Although 

duplicated genes typically become lost or silenced within 4 million years (Lynch 

and Conery 2000), duplicated genes which develop novel functions are 

presumed to be created, fixed and first hereafter optimized for a new function 

through selection (Conant and Wolfe 2008; Blischak et al. 2018; Thompson et al. 

2016). In some cases, this process has been shown to be incredibly long term, 

e.g. the evolution of the Scn4a genes is believed to has occurred more than 100 

million years ago following their duplication event (3R; Thompson et al. 2016). 

Furthermore, chromosomal rearrangement and rediploidization may also be 
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processes which can be protracted in time (Robertson et al. 2017), and therefore 

polyploids have been hypothesized to endure a prolonged period of increased 

potential for alterations to genome structure, changes to gene transcription and 

potential for phenotypic novelty (Van De Peer et al. 2017; Blischak et al. 2018). 

As such, massive gene duplication events, and the age of these, plausibly have 

an important impact on the gene complement and phenotype of any given 

species (Blischak et al. 2018). 
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5. OBJECTIVES  

The IMPRESS Project, from which I have my predoctoral contract, considered the 

long-term objective of closing the life-cycle of the European eel in captivity. 

Specifically, this thesis has focused on the main objective to develop innovative 

methods for induction of male eel maturation and add to the pool of knowledge 

of European eel maturation. As female eel sexual maturation is presumed to be 

more strongly hormonally inhibited than that of the male, while the triggers and 
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mechanisms of maturation are hypothesized to be the same, we focused on 

male eel maturation. The following specific levels of objectives were considered 

for this thesis: 

 

5.1 Specific objectives:  

1) To test eel-specific recombinant gonadotropins for artificial eel male 

maturation 

a. To evaluate the potency of eel-specific recombinant 

gonadotropins to induce eel maturation 

b. To evaluate the potential of eel-specific recombinant 

gonadotropins to improve artificial eel male maturation 

c. To obtain knowledge on specific eel gonadotropin functions 

 

2) To test the effect of thermal treatments on eel male reproductive 

competence through a suite of morphological, cellular, hormonal and 

genetic tools.  

a. To evaluate the effect of thermal treatments on eel male 

physiological maturation, without hormonal stimulation 

b. To evaluate the effect of thermal treatments on natural eel male 

endocrine mechanisms during maturation 

c. To evaluate the potential of thermal treatments to reduce or 

partially replace standard hormonal treatments of eel males 

d. To obtain novel insights on the processes of natural eel 

maturation, potentially including identification of suitable 

biomarkers of eel maturation 

3) To generate a new de novo transcriptome resource to improve 

transcriptomic analysis and further the pool of knowledge of the 

controversial field of eel duplicated gene evolutionary history. 
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6. CHAPTER 1: Using specific recombinant 

gonadotropins to induce spermatogenesis and 

spermiation in the European eel (Anguilla anguilla) 
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Abstract 

New specific European eel (Anguilla anguilla) recombinant gonadotropins 

(aarGths) produced in the ovarian cells of Chinese hamsters (CHO) were used to 

induce maturation in captive male eels. In the first experiment, five different 

hormonal treatments were assayed: one group was given a constant dose of 

recombinant European eel follicle-stimulating hormone (aarFsh; 4 µg/fish) for 9 

weeks, and the second group received a constant dose of recombinant European 

eel luteinizing hormone (aarLh; 2 µg/fish) also for 9 weeks. The other three 

groups were injected with different combinations of both aarGths (some doses 

constant, some variable). All five treatments stimulated androgen synthesis, but 

the increase was more pronounced in the fish treated with a combination of 

both aarGths. Unlike aarLh, aarFsh alone was able to induce spermiation, the 

best results were achieved in the fish that were treated with a constant dose of 

aarFSH and an increasing dose of aarLH, with spermiation being induced (20% 

motile cells) despite the fact that these fish were immature at the start of the 

experiment. In order to improve sperm quality, a second experiment was 

performed. Immature males received three constant doses of aarFsh (2.8, 1.4 or 

0.7 µg/fish) and increasing doses of aarLh (every 3 weeks; 1, 2, 6 µg/fish). All the 

treatments induced spermiation, however the best sperm quality (with ≥50% 

motile cells) was observed in the males treated with the highest dose of aarFsh. 

In conclusion, these specific recombinant gonadotropins have demonstrated 

their capacity to induce spermatogenesis and spermiation in vivo in a teleost 

fish, the European eel. 

Keywords: aarFsh, aarLh, maturation, sperm, testis 
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6.1. Introduction 

The European eel (Anguilla anguilla) population has decreased by 95-99%, 

compared to levels in 1960-80 (ICES 1999), and as a result the species has been 

placed on the Red List of Threatened Species and listed as “Critically 

Endangered” by the International Union for Conservation of Nature (IUCN). 

However, the wild eel populations still sustain important fisheries and 

aquaculture industries (based on harvesting juvenile ‘glass eels’ from the wild) 

in Europe. To reduce the dependency of eel industry on wild populations, and 

even for stocking purposes, the development of new protocols to reproduce this 

species in captivity is crucial. The full life-cycle of the European eel has yet to be 

successfully closed in captivity, thus limiting aquaculture to ranching of wild 

caught glass eel. Some of the main hurdles encountered include the stagnation 

of puberty (Vidal et al. 2004), finding alternative treatments to induce full 

maturation (Gallego et al. 2012; Pérez et al. 2011) and obtaining high quality 

gametes (Baeza et al. 2015a).  

Gonadal activity (steroidogenesis and gametogenesis) is controlled by pituitary 

gonadotropin hormones (Gths), responsible for the control of reproduction in 

both teleost fish and other vertebrates. The follicle-stimulating hormone (Fsh) 

regulates the Sertoli cell activities, including structural, nutritional and 

regulatory (paracrine) support of germ cell development, and the luteinizing 

hormone (Lh) regulates the Leydig cell sex steroid production (Schulz et al. 

2010). Both Gths, Lh and Fsh, are considered the most important pituitary 

hormones regulating testicular physiology.  

At present, it is possible to induce eel maturation using exogenous hormones in 

both males (Peñaranda et al. 2010b; Gallego et al. 2012), and females (Butts et 

al. 2014), but these hormonal treatments result in low rates of fertilization and 

hatching, mainly attributed to low gamete quality (Palstra and van den Thillart 
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2009). The traditional method used to induce eel maturation has involved the 

use of human chorionic gonadotropin (hCG) in males (Asturiano et al. 2006) and 

carp or salmon pituitary extract in females (Pérez et al. 2008). However, the 

administration of non-native Lh or equivalents has not resulted in a reliable level 

of percentage of matured fish nor gamete quality (Asturiano et al. 2005; Kagawa 

2003). Therefore, in order to solve the reproductive problems encountered 

when using the current hormonal treatments in both male and female eels, a 

native eel Fsh purified from immature Japanese eel (Anguilla japonica) was 

tested to induce spermatogenesis in vitro (Kamei et al. 2005). The native Fsh was 

able to stimulate androgen synthesis but, due to the difficulty in obtaining an 

adequate amount of native Gths, tools for producing recombinant 

gonadotropins (rGths) in eel were developed (Mylonas et al. 2017). 

Later on, a recombinant Japanese eel Fsh (ajrFsh) was synthesized using 

methylotropic yeast (Pichia pastoris), and was successful in inducing 

steroidogenesis in the gonads of both sexes cultured in vitro (Kamei et al. 2003, 

2005, 2006b). In vivo trials were also carried out on male eels, inducing testicular 

growth and the beginning of spermatogenesis (Kamei et al. 2006a). 

Subsequently, with the aim of improving the biological activity of rGths, new 

Japanese eel rGths were produced using a Drosophila expression system (Kazeto 

et al. 2008). Both recombinant Fsh and Lh induced complete spermatogenesis in 

in vitro conditions, but small effects were observed in vivo. In order to obtain a 

large-scale production of rGths, Hayakawa et al. (Hayakawa et al. 2008b) used a 

baculovirus-silkworm larvae system to produce rGths in Japanese eel. Complete 

spermatogenesis was accomplished in vivo, but no male reached spermiation 

(Hayakawa et al. 2008a, 2008b; Kobayashi et al. 2010).  

rGths have also been tested in other teleosts (Mylonas et al. 2017). They have 

been successful in inducing steroidogenesis and gonad development both in 

vitro and in vivo, however, the in vivo results have been variable (Levavi-Sivan et 
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al. 2010). rGths have been reported to induce androgenesis e.g. in zebrafish 

(Danio rerio; García-López et al. 2010) and Russian sturgeon (Acipenser 

gueldenstaedtii; Yom-Din et al. 2016) and recombinant Fsh has triggered 

spermatogenesis in immature European sea bass (Dicentrarchus labrax; Mazón 

et al. 2014). In general, the hormonal treatment was unable to induce 

spermiation in vivo, except in the case of goldfish (Carassius auratus; Kobayashi 

et al. 2003) and European sea bass (Mazón et al. 2013), but both these cases the 

treated fish were already sexually mature at the beginning of the experiment. A 

different approach to the administration of rGths was to inject a plasmid 

containing the Gth sequence directly into the muscle. Mazón et al. (Mazón et al. 

2013) reported an improvement in sperm quality of European sea bass using an 

Lh sequence, but again the treated fish were already sexually mature at the 

beginning of the experiments. 

The main objective of this study was to test if new European eel recombinant 

gonadotropins (aarFsh and aarLh) were able to induce in vivo eel 

spermatogenesis and spermiation in captivity, and demonstrate the differential 

function of Fsh and Lh during spermatogenesis in eel.  

6.2. Materials and methods 

6.2.1 Fish maintenance 

Immature yellow European eel males from the Valenciana de Acuicultura, S.A 

fish farm. (Puzol, Valencia; East coast of Spain) were moved to the aquaculture 

facilities at the Universitat Politècnica de València (UPV, Spain). The fish (6-8 

fish/aquarium) were distributed into 150-L aquaria equipped with separate 

recirculation systems, a temperature control system (with heaters and coolers) 

and completely covered to maintain as maximum possible a constant dark 

photoperiod. Before the hormonal treatment, the eels were gradually 
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acclimatized from freshwater to sea water (37 g/L) increasing the salinity 10‰ 

each 2 days for 8 days, and 2 days more of resting at 37‰. The temperature, 

oxygen level and pH of rearing were 20 ºC, 7-8 mg/L (thanks to aerators) and 

~8.2, respectively. Finally, due to its ethology during its reproductive migration, 

the fish were fasted throughout the treatment.  

6.2.2 Production of recombinant gonadotropins 

Homologous single-chain recombinant Fsh and Lh, containing a modified linker, 

were produced in the ovarian cells of Chinese hamster (CHO) in suspension by 

Rara Avis Biotec S.L. (Valencia, Spain) using in-house technology. The purity was 

determined by western blot using specific antibodies and the final amount of 

rGth was quantified by immunoassay using these same specific antibodies.  

European eel β and α subunits (GenBank accession numbers: CAA43373.1 (α 

common subunit), AAN73407.1 (βfsh), CAA43374.1 (βlh) were used to obtain 

the single chain Gths. 

6.2.3 Experimental setup: hormonal treatments and samplings 

Two experiments were carried out in order to evaluate the effect of specific 

rGths had on inducing maturation in European eels in captivity. In experiment 1 

(October to December; 2015), the aim was to test the effect of aarFsh and aarLh 

on their own, as well as the optimum combination of both rGths. Meanwhile in 

experiment 2 (January to March; 2016), the objective was to improve 

maturation and sperm quality using the treatment that yielded the best results 

in terms of aquaculture purposes in experiment 1.  

Experiment 1 

Sixty immature male eels were used in this trial (mean body weight = 89.21±5.44 

g; mean body length = 38.12±2.28 cm). Before starting the hormonal 
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treatments, 10 eels were sampled as soon as they arrived at our facilities (thus 

in freshwater, FW); and 10 new eels were sacrificed after they had been 

acclimatized to sea water (SW). Subsequently, intramuscular hormonal 

treatments were administered weekly using the protocol described by Asturiano 

et al. (Asturiano et al. 2006). The fish were anaesthetized with benzocaine (60 

ppm) before receiving the hormone by intramuscular injection. 
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Figure 4. Descriptive diagram of the hormonal treatments for the five experimental groups in 
the experiment 1. 
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Forty immature fish (90.04±1.92 g; 38.10±0.33 cm) underwent five hormonal 

treatments (~8 males per treatment; Fig. 4) for 9 or 11 weeks. Two groups, group 

F and L, were injected once per week for 9 weeks only with aarFsh (4 µg/fish; 

Fig. 4A) or aarLh (2 µg/fish; Fig. 4B) respectively. The other three groups, F/L, 

F/LI and FD/LI, were injected with different combinations of both hormones 

once per week for 11 weeks. Group F/L (Fig. 4C) was treated with 4 µg 

aarFsh/fish for the first 4 weeks, followed by 2 µg aarLh/fish for the last 8 weeks. 

Group F/LI (Fig. 4D) was treated with 4 µg aarFsh/fish throughout the 

experimental period, combined with increasing doses of aarLh, from 0.5 to 2 

µg/fish (between weeks 1 and 4) and then a constant dose of 2 µg aarLh/fish 

from week 4. Group FD/LI (Fig. 4E) received decreasing doses of aarFsh from 4 

to 0.5 µg/fish (from week 3 to week 8) combined with increasing doses of aarLh 

from 0.5 to 2 µg/fish (between week 1 and week 4) and then a constant dose of 

2 µg aarLh/fish from the 4th week on. 

In order to evaluate the progression of maturation, every two weeks blood 

samples were taken for steroids analyses, and biometric parameters, such as eye 

index [EI = 100 p 0.25 (Dh + Dv)2/Lt); Lt: total length; Dh: horizontal distance; Dv: 

vertical distance; (Pankhurst 1982)] and fin colour (FC; 0 = Transparent, 1= Light 

grey, 2= Dark grey, 4 = Black) were registered. Both biometric parameters have 

previously been used in eel as indicators of maturation (Peñaranda et al. 2010b). 

After beginning of spermiation, samples were collected and analysed as 

described by Gallego et al. (Gallego et al. 2013). Once the experiment had 

finished, the gonadosomatic index was calculated (GSI = 100 gonad weight/total 

body weight) and testis samples were collected to determine the stage of 

development by histology. 

Experiment 2  

In order to improve eel maturation in captivity, new hormonal treatments were 
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designed, with the treatment that yielded the best results in experiment 1 in 

terms of aquaculture requirements, being used as the basis. The aarFsh levels 

were reduced slightly, in order to find the minimum effective dose, whereas the 

aarLh dose was increased to enhance its effect on the spermatogenesis process.  

As with experiment 1, before starting the hormonal treatments, 8 immature eels 

were sampled after they had been acclimatized to sea water (SW). 

Subsequently, 72 immature fish (99.98±2.01 g; 38.56±2.28 cm) underwent three 

intramuscular hormonal treatments (24 males/treatment), administered weekly 

for a total of 12 weeks. The males received a constant dose of aarFsh, with the 

Low treatment group receiving 0.7, and the Medium and High treatment groups 

receiving 1.4 and 2.8 µg/fish respectively. This was combined with an increasing 

dose of aarLh: 1, 2, 6 µg/fish. The aarLh dose was increased every 3 weeks, from 

the 3rd week of the treatment (Fig. 5). In order to evaluate the progression of 

maturation, three males per treatment were sacrificed every 3 weeks to collect 

blood and gonad samples, and to measure biometric parameters, including GSI.  
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Figure 5. Descriptive diagram of hormonal treatments for the three experimental groups in the 
experiment 2. 

During the weeks of spermiation, sperm samples were collected and analysed 

as described by Gallego et al. (2013). 



54 
 

 

Figure 6 Histological sections of eel testis at different developmental stages. A) Testis at SPG1. 
B) Testis at SPG2. C) Testis at SPC1. D) Testis at SPC2. E) Testis at SPD. F) Testis at SZ1. G, H) 
Testis at SZ2. See main text for definition of gonad developmental stages. SPGA= 
Spermatogonia type A; SPGB= Spermatogonia type B; SPC: Spermatocytes; SPD: Spermatids; 
SPZ: Spermatozoa. Scale bars, 25 μm (A, B, C, D, E, F, H) and 100 μm (G). 
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6.2.4 Gonadal histology 

For experiment 1, sections from the mid-part of testis were preserved in 4% 

buffered (PBS) glutaraldehyde at 4 ºC overnight. The tissue was dehydrated and 

embedded in Technovit® 7100. Nevertheless, in the experiment 2, sections from 

the mid-part of testis were preserved in 10% formalin buffered at pH 7.4, 

dehydrated in ethanol and embedded in paraffin. In both cases, between 10-20 

sections/testis (5 µm thickness) were cut with a Microm HM325, and stained 

with 1% toluidine blue (Exp. 1) or with a Shandom Hypercut manual microtome 

and stained with haematoxylin and eosin (Exp. 2). Two slides/testis were 

observed with a Nikon Eclipse E-400 microscope, and pictures were taken with 

a Nikon DS-5M camera attached to the microscope. The stages of 

spermatogenesis were determined by the following parameters: germ cell types 

present in the testis and their relative abundance (according to Leal et al. 2009), 

the degree of development of the seminal tubules and the GSI by the male at 

the time of sacrifice (Peñaranda et al. 2016a; Fig. 6: SPG1: Dominance of A 

spermatogonia, with a general absence of lobule lumen.  

Gonad in non-proliferating stage. Stage SPG2: Dominance of A spermatogonia, 

with some B spermatogonia and presence of lobule lumen. Stage SPC1: 

Dominance of B spermatogonia and presence of spermatocytes. Stage SPC2: 

Dominance of spermatocytes and B spermatogonia. Stage SD: is characterized 

by an abundance of spermatids. Stage SPZ1: Early spermiation stage. Stage SPZ2: 

Stage of maximum spermiation, showing fusion of sperm lobules.  

6.2.5 Plasma steroid assays  

Blood was collected and centrifuged at 3500 r.p.m. for 15 min, and the blood 

plasma was stored at -80 ºC until steroid analysis. Plasma levels of testosterone 

(T) and 11-ketotestosterone were analyzed by a specific enzyme immunoassay 
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(EIA) following the methods developed for European sea bass (Rodríguez et al. 

2000, 2005). The lower limits of detection (80% binding) were 0.00117 ng/ml for 

11KT and 0.019 ng/ml for T. Analysis of serial dilutions of eel plasma dilutions 

were shown to be parallel to the standard curve. The inter-assay coefficients of 

variation were 9.74% (n=7) for 11KT and 12.6% (n=7) for T. The intra-assay 

coefficients of variation were 8.64% (n=10) for 11KT y 2.93% (n=4) for T.  

6.2.6 Sperm collection and evaluation 

Sperm samples were collected 24 h after the administration of the hormone to 

obtain the highest quality sperm (Asturiano et al. 2005). After the eels were 

anesthetized, the genital area was first cleaned with distilled water and 

thoroughly dried to avoid the sperm becoming contaminated with faeces, urine 

or sea water. The sperm was then collected by the application of gentle 

abdominal pressure, and with the help of a small-modified aquarium air pump 

which produced a vacuum the sperm was collected into plastic Falcon tubes. 

The sperm was diluted (1:10) before being activated in P1 medium (Peñaranda 

et al. 2010a); in mM: 125 NaCl, 20 NaHCO3, 2.5 MgCl2⋅6H2O, 1 CaCl2⋅2H2O, 30 

KCl). The sperm was activated by mixing 0.5 µl of this dilution with 4 µl of 

artificial sea water and 2% BSA (w/v), and by adjusting the pH to 8.2 (Asturiano 

et al. 2005). All the motility analyses were performed in triplicate using the 

motility module of ISAS (Proiser R+D, S.L.; Paterna, Spain) as described by 

Gallego et al. (2013). 

The sperm parameters considered in this study were total motility (TM, %), 

defined as the percentage of motile cells; progressive motility (PM, %), defined 

as the percentage of spermatozoa which swim in essentially a straight line; 

curvilinear velocity (VCL, µm/s), defined as the time-average velocity of a sperm 

head along its actual curvilinear trajectory; straight line velocity (VSL, µm/s), 
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defined as the time/average velocity of a sperm head along the straight line 

between its first detected position and its last position. Spermatozoa were 

considered immotile if their VCL was lower than 10 µm/s.  

6.2.7 Statistical analysis 

The mean and standard errors were calculated for all the biometric indexes (GSI, 

EI, and FI) and sperm parameters (volume, density, motility and rest of kinetic 

parameters). Shapiro-Wilk and Levene tests were used to check the normality of 

data distribution and variance homogeneity, respectively. One-way analyses of 

variance (ANOVA) and Student's t-test were used to analyse data (normal 

distribution) between groups at the same week. Significant differences between 

treatments were detected using the Tukey multiple range test (P<0.05). For non-

normally distributed populations, Kruskal-Wallis one-way ANOVA on ranks and 

Mann-Whitney U-test were used. Moreover, GLM for repeated measures was 

used for comparing data over the weeks within the same hormonal treatment; 

and significant differences were also detected using the Tukey multiple range 

test (P<0.05). All statistical analyses were performed using the statistical 

package SPSS version 19.0 for Windows software (SPSS Inc., Chicago, IL, USA). 

6.2.8 Human and animal rights 

This study was carried out in strict accordance with the recommendations given 

in the Guide for the Care and Use of Laboratory Animals of the Spanish Royal 

Decree 53/2013 regarding the protection of animals used for scientific purposes 

(BOE 2013). The protocol was approved by the Experimental Animal Ethics 

Committee from the Universitat Politècnica de València (UPV) and final 

permission was given by the local government (Generalitat Valenciana, Permit 

Number: 2014/VSC/PEA/00147). The fish were sacrificed using anaesthesia and 

all efforts were made to minimize suffering. The fish were not fed throughout 
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the experiment and were handled in accordance with the European Union 

regulations concerning the protection of experimental animals (Dir 

86/609/EEC). 

6.3. Results 

6.3.1 Experiment 1 

 

Table 1. Biometric parameters (eye index and fin colour) before hormone administration 
(freshwater, FW; and sea water, SW) and over the weeks of hormonal treatments on the five 
experimental groups in the experiment 1 (groups F and L until 9th week; groups F/L, F/LI and FD/LI 
until 11th week) 6-8. Data are expressed as mean (SEM); n= 6-8. Different letters indicates 
significant differences between groups at the same week and different letters indicate significant 
differences among weeks for the same hormonal treatment. 

  Eye Index             

 Group F  Group L  Group F/L  Group F/LI  Group FD/LI 

FW 3.8 (0.1) c  3.8 (0.1) c  3.8 (0.1) c  3.8 (0.1) d  3.8 (0.1) c 

SW 4.7 (0.1) ab  4.7 (0.1) b  4.7 (0.1) ab  4.7 (0.1) bc  4.7 (0.1) ab 

W3 4.4 (0.2) abc  4.8 (0.2) b  4.4 (0.2) bc  5.3 (0.3) ab  3.9 (0.1) c 

W5 4.1 (0.1) bc  4.5 (0.1) b  4.3 (0.2) bc  4.5 (0.2) c  4.5 (0.2) b 

W7 4.2 (0.2) bc  5.1 (0.2) 

ab 

 4.8 (0.2) ab  4.8 (0.1) bc  4.4 (0.2) b 

W9 4.9 (0.2) a  5.6 (0.3) a  5.2 (0.1) a  5.3 (0.2) ab  4.8 (0.1) ab 

W11       5.3 (0.3) a  5.7 (0.2) a  5.1 (0.2) a 

 Fin Colour       
 

     

 Group F  Group L  Group F/L  Group F/LI  Group 

FD/LI FW 1.8 (0.3)  1.8 (0.3)  1.8 (0.3)  1.8 (0.3)  1.8 (0.3) 

SW 2.7 (0.4)  2.7 (0.4)  2.7 (0.4)  2.7 (0.4)  2.7 (0.4) 

W3 3.3 (0.3)  3.3 (0.2)  2.1 (0.1)  3.4 (0.4)  3.1 (0.3) 

W5 4.0 (0.0)  3.9 (0.1)  3.0 (0.3)  3.8 (0.3)  3.9 (0.1) 

W7 4.0 (0.0)  3.8 (0.2)  4.0 (0.0)  4.0 (0.0)  4.0 (0.0) 

W9 4.0 (0.0)  3.8 (0.2)  4.0 (0.0)  4.0 (0.0)  4.0 (0.0) 

W11       3.6 (0.2)  4.0 (0.0)  4.0 (0.0) 
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Biometric parameters: EI, FC and GSI 

Regarding Eye Index (EI; Table 1), significant differences between the FW and 

SW values (before hormone administration), were observed in all the groups. 

Fin Colour (FC) became progressively dark throughout the hormonal treatment, 

becoming almost completely black around the week 5 in groups F, L, F/LI and 

FD/LI, and around week 7 in group F/L.  
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Figure 7. Gonadosomatic indexes before hormone administration (freshwater (FW) and 
seawater (SW) conditions) and at the end of hormonal treatments (groups F and L until 9th week; 
groups F/L, F/LI and FD/LI until 11th week) in the experiment 1. Data are expressed as mean ± 
SEM (n = 6-8 per sampling and treatment). Asterisk indicates significant differences between 
treatments at the end of the trial. 

 

Before hormonal treatment, the eels showed a GSI of 0.20±0.05% in FW and 

0.22±0.04% in SW (Fig. 7). No significant differences were found at the end of 

the different hormonal treatments except in group F/LI, which showed a mean 

GSI of 3.83±0.84% after eleven weeks. On the other hand, eels from groups F 

and FD/LI showed increases in GSI (of around 1%) at week 9 and 11, respectively. 

The difference however was not significant compared to the initial values (FW 

and SW). 
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Figure 8. Relative percentages of the stages of testis development (SPG1-SPZ2) at the end of 
the hormonal treatments in the experiment 1 (groups F and L until 9th week; groups F/L, F/LI 
and FD/LI until 11th week; n= 6-8). See main text for definition of gonad developmental stages: 
Stages: SPG1: Spermatogonia 1; SPG2: Spermatogonia 2; SPC1: Spermatocyte 1; SPC2: 
Spermatocyte 2; SD: Spermatid; SPZ1: Spermatozoa 1; SPZ2: Spermatozoa 2; Regression. 

 

 

Figure 9. Histological sections of testis from different treatments (experiment 1). A) aarFsh alone, 9 
weeks; stage SPZ1; B) aarLh alone, 9 weeks, SPG2 stage; C) aarFsh+aarLh, 12 weeks, SPZ2 stage; D) 
aarFsh+aarLh 3, 12 weeks, regression. Scale bar: A=100 µm; B, C, D= 10 µm. See main text for definition 
of gonad developmental stages: SPGA (spermatogonia A); SPGAdiff (spermatogonia A differenciated); 
SPGB (spermatogonia B); SPC I (spermatocyte I); SPD (spermatid), SPZ (spermatozoa); Ap (apoptotic 
cells).  
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Progression of gonad development 

Regarding testis development (Figs. 8 and 9), aarFsh alone was able to induce 

spermatozoa stages (SPZ1, SPZ2) in 37.5% of fish, and SPD stage in 25% of fish.  

In contrast, all aarLh treated males were less developed, with 100% being in 

stage SPG2, with a dominance of SPGA, clusters of differentiated SPGA (Fig. 9B), 

and in some cases the presence of SPGB. In groups F/LI and FD/LI, the treatments 

which combined aarFsh and aarLh, 87.5% of fish reached normal spermiation 

stages (SPZ1 and SPZ2). However, treatment F/L, also combining both 

hormones, induced abnormal testis development in 50% of fish: whilst the testis 

had the structure of stage SPG2, with dominance of SPGA, a few small 

spermatozoa cysts were present. We considered this to be a regressive stage, 

with the spermatocytes and even the SPGB having disappeared from the testis 

after an initial production of spermatozoa. This is supported by the fact that 

apoptotic cells were observed in this stage of development (Fig. 9D). 

Steroid evolution during hormonal treatment 

The administration of aarFsh or aarLh alone (groups F and L, respectively) was 

enough to initiate steroidogenesis (Fig. 10), inducing the production of both 

11KT and T. However, the treatment which combined both aarGths (groups F/LI 

and FD/LI) yielded higher levels of these steroids. On the other hand, a 

sequential administration of aarGths (group F/L) provided a steroid profile closer 

to group F and L than to the profiles showed by aarGths combined treatments 

(group F/LI and FD/LI). 

Sperm quality analyses 

Eels treated with a single Gth showed the lowest percentage of spermiating 

males (Fig. 11A): in the case of aarLh (group L) no spermiating males at all were 

observed, whereas in group F (aarFsh) they were only registered in weeks 8 and 
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9. The percentage of spermiating males was higher when aarFsh and aarLh were 

combined.  
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Figure 10. Profile plasma levels of testosterone (T) and 11-ketotestosterone (11KT) before 
hormone administration (sea water conditions, SW) and throughout the hormonal treatments 
(groups F and L until 9th week; groups F/L, F/LI and FD/LI until 11th week) in the experiment 1. 
Steroid levels (T and 11KT) are represented as fold change with respect to the mean value of 
samples from freshwater fish (1.80 ± 0.14 ng T/ml and 0.29 ± 0.05 ng 11KT/ml). Data are 
expressed as mean ± SEM (n = 6-8 per sampling and treatment). Different letters indicate 
significant differences over the weeks within the same hormonal treatment. 
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Figure 11. Evolution of sperm production parameters throughout the recombinant 
gonadotropin treatments (groups F and L until 9th week; groups F/L, F/LI and FD/LI until 11th 
week) in the experiment 1. A) Percentage of spermiating males; B) Sperm volume; and C) Sperm 
density. Data are expressed as mean ± SEM (n = 6-8 per sampling and treatment). Capital letters 
indicate statistical differences between groups (treatments), and lowercase letters indicate 
statistical differences over the time in the same treatment. 

Group F/LI (which received constant doses of aarFsh and increasing doses of 

aarLh) yielded the best results, with 100% of males reaching spermiation at 

weeks 10 and 11. Sperm volumes were remarkably low in all the treatments, 

with no significant differences observed over the course of the weeks neither 

within the individual groups nor between the different treatments (Fig. 6A and 

11B). The highest density values were observed in group F/LI, with significant 

differences observed in weeks 8 and 10 (Fig. 11C). Regarding sperm quality, total 

(TM) and progressive (PM) motilities (Figs. 12A and 11B) yielded the highest 
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values at week 8 in group F/LI (without significant differences inter-treatments 

but with significant differences intra-treatment (Fig. 6B), with the maximum 

values reached being 20% TM and 2% PM. From the 8th week on, males from all 

the treatments displayed a marked decrease in total and progressive motility. 

The kinetic parameters of the sperm cells (VCL and VSL; Figs. 12C and 12D) 

showed a similar evolution in groups F/LI and FD/LI, with the highest peak being 

observed at week 8 followed by a progressive decrease until the end of the 

treatment. Groups F and F/L did not show any variations over the course of the 

weeks and the velocity values remained low and constant throughout the weeks 

of spermiation. 
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Figure 12. Evolution of sperm kinetic parameters throughout the recombinant gonadotropin 
treatments (groups F and L until 9th week; groups F/L, F/LI and FD/LI until 11th week) in the experiment 
1. A) Total motility; B) Progressive motility; C) Curvilinear velocity (VCL); and D) Rectilinear velocity 
(VSL). Data are expressed as mean ± SEM (n = 6-8 per sampling and treatment). Capital letters indicate 
statistical differences between groups (treatments), and lowercase letters indicate statistical 
differences over the time in the same treatment. 
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6.3.2 Experiment 2 

Biometric parameters: EI, FC and GSI 

Table 2. Biometric parameters (eye index and fin colour) over the weeks in the three experimental 
groups (High, Medium and Low) in the experiment 2. Data are expressed as mean (SEM); n= 3-7. 
Different letters indicates significant differences between groups at the same week and different 
letters indicate significant differences among weeks for the same hormonal treatment. 

  Eye Index        

  High  Medium  Low  

 SW 3.3 (0.2) c  3.3 (0.2) c  3.3 (0.2) c  

 W3 4.6 (0.1) b  4.2 (0.2) b  4.0 (0.2) bc  

 W6 5.0 (0.2) b  4.4 (0.2) b  3.8 (0.4) bc  

 W9 5.4 (0.5) a  6.5 (0.7) ab  4.7 (0.4) ab  

 W12 7.0 (0.6) a  5.8 (0.3) a  5.6 (0.2) a  

  Fin Colour   

  High   Medium  Low  

 SW 1.0 (0.0)  1.0 (0.0)  1.0 (0.0)  

 W3 2.7 (0.3)  1.3 (0.3)  2.0 (0.0)  

 W6 4.0 (0.0)  2.7 (0.3)  3.0 (0.6)  

 W9 4.0 (0.0)  4.0 (0.0)  3.3 (0.3)  

 W12 3.7 (0.3)  3.1 (0.3)  3.7 (0.2)  

   

           

Regarding EI (Table 2), a significant increase was observed in all the groups 

between the initial SW values and the values recorded in the 3rd week. This was 

followed by a continual increase in this parameter throughout the hormonal 

treatments, with peaks in weeks 9 and 12. FC progressively darkened, but at 
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different rates depending on the treatment, becoming almost completely black 

in weeks 6, 9 and 12 in the High, Medium and Low treatments, respectively. 

Irrespective of the treatment, no significant differences were observed in the 

GSI until the 12th week, when the values became significantly higher than 

controls, reaching values of 0.9, 1.8 and 4.3% in the Low, Medium and High 

treatments, respectively (Fig. 13). In addition, significantly higher GSI values 

were achieved in the High treatment compared to the other treatments, thus 

indicating an interaction between factors (week and treatment). 

Progression of gonad development 

Regarding testis development (Table 3), 6 weeks after the start of the 

treatments, the High and Medium groups demonstrated the most advanced 

development, with 33% of fish from both groups having arrived at stage SPC2, 

with meiosis as the dominant process. The Low treatment did not induce an 

evident testis development until week 9, when first spermatogonia B, and well 

developed testis lumen were observed. In all the treatments, the spermiating 

stages (SPZ1 and SPZ2) were reached in week 12, but only high doses of aarFsh 

resulted in 100% of eel males reaching the spermiation stages (SPZ1 and SPZ2), 
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Figure 13. Gonadosomatic indexes of three experimental groups (High, Medium and Low 
treatments) over the weeks in the experiment 2. Data are expressed as mean ± SEM (n = 3-7). 
Asterisk indicates significant differences between groups at the same week and different letters 
indicate significant differences between weeks for the same hormonal treatment. 
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with the Medium and Low doses only able to induce these stages in 57% (4/7) 

and 42% (3/7) of the fish, respectively. 

Table 3. Distribution of stages of testis development reached by the different males through 
the samplings (W3-12) in the three experimental groups: (●) High (2.8 µg aarFsh/fish); (●) 
Medium (1.4 µg aarFsh/fish); and (○) Low (0.7 µg aarFsh/fish). Stages: SPG1: 
Spermatogonia 1; SPG2: Spermatogonia 2; SPC1: Spermatocyte 1; SPC2: Spermatocyte 2; 
SD: Spermatid; SPZ1: Spermatozoa 1; SPZ2: Spermatozoa 2. 
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Steroid evolution during hormonal treatment 

The administration of aarFsh and aarLh throughout the Low and Medium 

treatments was able to initiate the production of 11KT and T (Fig. 14), but 

without reaching significant differences in comparison to the initial levels.  

However, the aarGths doses used in the High treatment generated a progressive 

increase in the plasma levels of both androgens, which reached their highest 

values in the 6th week (Fig. 14A), followed by a progressive decrease until the 

end of the treatment. 
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Sperm quality analyses  

The percentage of spermiating males was constant (around 60%) at High 

treatment for first weeks of spermiation, but then they increased to 80% at week 

11 (Fig. 15A).  
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 Figure 14. Profile plasma levels of testosterone (T) and 11-ketotestosterone (11KT) before 
hormone administration (sea water conditions, SW) and throughout the hormonal treatments 
(High, Medium and Low) in the experiment 2. Steroid levels (T and 11KT) are represented as fold 
change with respect to the mean value of samples from freshwater fish (2.12 ± 0.22 ng T/ml 
and 1.80 ± 0.21 ng 11KT/ml). Data are expressed as mean ± SEM (n = 3-7 per sampling and 
treatment). Different letters indicate significant differences over the weeks for the same 
hormonal treatment. 
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Figure 15. Evolution of sperm production parameters throughout the recombinant 
gonadotropin treatments (High, Medium and Low) in the experiment 2. A) Percentage of 
spermiating males; B) Sperm volume; and C) Sperm density. Data are expressed as mean ± SEM 
(n = 3-7 per sampling and treatment). Capital letters indicate statistical differences between 
groups (treatments), and lowercase letters indicate statistical differences over the time in the 
same treatment. 

 

The Medium and Low treated males did not begin to produce sperm until weeks 

9 and 10, respectively, reaching approximately 40% (Low group) and 70% 

(Medium group) of spermiating males in week 12. Sperm volumes were 

remarkably low and showed a progressive increase over the weeks (Fig. 15B and 

16A). The High treatment yielded the highest volumes every week, with the 

values being significantly higher than those recorded in the Medium and Low 

treatments at week 10. Sperm density values followed the same pattern as 

volume, but with significantly lower values in the Low treatment at weeks 10, 11 

and 12 (Fig. 15C). 
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Figure 16. Evolution total motility throughout the recombinant gonadotropin treatments in the 
experiment 1: Group F ( ), Group F/L ( ), Group F/LI ( ), and Group FD/LI ( ) treatment. Each 
point means a data from an individual male. 
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Figure 17. Evolution total motility throughout the recombinant gonadotropin treatments in the 
experiment 2: High ( ), Medium ( ), and Low ( ) treatment. Each point means a data from 
an individual male. 
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Regarding the kinetic parameters, total (TM) and progressive (PM) motility (Figs. 

17B, 18A and 18B), yielded the best values in the High treatment, with significant 

differences at weeks 10 and 12, and maximum values of 60 and 30% of TM and 

PM, respectively. Moreover, by analyzing these parameters an interaction 

between factors (week and treatment) became apparent. The motility values of 

the sperm in the Medium and Low groups did not reach more than 50% in any 

week. The velocity values (VCL and VSL; Figs. 18D and 18E) were significantly 

higher in the group treated with the High dose of aarFsh, with the highest peak 

being observed in week 10 followed by a progressive decrease until the end of 

the treatment. Little or no variations were observed in the Medium and Low 

treatments over the course of the weeks, and the velocity values remained low 

and regular during the weeks of spermiation. 

6.4. Discussion 

6.4.1 Experiment 1 

The present study demonstrated that the aarGths produced by a CHO system 

are biologically active and their half-life is long enough to induce in vivo effects. 

aarFsh alone and all the combined aarFsh and aarLh treatments were able to 

induce spermiation, whereas aarLh alone failed to induce completion of the 

maturation cycle, with the fish maturation being interrupted at the pre-meiosis 

stage (SPG2), with testis showing only SPGA and some lumen development.  

Biometric parameters: EI, FC and GSI  

With the aim of monitoring the progression of maturation, different biometric 

parameters (EI and FC) were used. EI changed according to the maturation stage 

and the treatment. Similarly, an increase in EI was observed when the aarGths 

were combined or when aarLh alone was administered, nevertheless aarFsh 

alone registered a lower EI. Results from previous studies corroborate our data, 
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since consecutive injections with eel Lh-producing implants induced a significant 

increase in the EI in European eel females (Ron Dirks, personal communication). 

Furthermore, the coexistence of duplicated Lh receptors in the European eel 

genome has recently been demonstrated (Maugars and Dufour 2015).  
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Figure 18. Evolution of sperm kinetic parameters throughout the recombinant gonadotropin 
treatments (High, Medium and Low) in the experiment 2. A) Total motility; B) Progressive 
motility; C) Curvilinear velocity (VCL); and D) Rectilinear velocity (VSL). Data are expressed as 
mean ± SEM (n = 3-7 per sampling and treatment). Capital letters indicate statistical 
differences between groups (treatments), and lowercase letters indicate statistical differences 
over the time in the same treatment. 
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A comparative tissue distribution study in silvering migrating females, a high 

transcription of both Lh receptors but no Fsh receptor transcription was 

reported in eye tissue. This therefore would indicate that aarLh is the main 

factor involved in inducing eye development and EI increase. 

The FC became darker throughout the course of maturation, irrespective of the 

treatment. This could mean that both rGths stimulate this process. Rohr et al. 

(Rohr et al. 2001) proposed that 11KT was responsible for silvering in short-

finned eel (Anguilla australis). This hipothesis is supported by our results, since 

darker fins and higher 11KT plasma levels were registered in the same weeks. 

All hormonal treatments were able to promote spermatogenesis, but only group 

F/LI induced a significant increase in the GSI (around 4%). This value was lower 

than the values previously registered using rhCG hormones with maximum 

values of 10%, hormonal treatment which have been demonstrated until now 

the most effective to mature male eel in captivity (Baeza et al. 2014; Gallego et 

al. 2012), what indicates that the treatments used in the first experiment can be 

improved. 

The lowest GSI values were obtained in the groups L and F/L, what may indicate 

that the stimulation of the Fsh receptor is crucial in order to complete 

spermatogenesis, since a total or temporary lack of Fsh has a negative impact 

on gonad development. On the other hand, in Japanese eel, the administration 

of only ajrLh (produced in baculovirus-silkworm larvae system) was able to 

induce a higher GSI than ajrFsh alone (Hayakawa et al. 2008b; Kobayashi et al. 

2010). The differences in these studies could be explained by the fact that 

different systems have been used to produce the rGths, meaning that their 

bioactivity and half-life could differ (Molés et al. 2011a). In fact, the level of testis 

development in Japanese eel reached using ajrGths was lower than that 

obtained in this study with either aarGths (Fig. 7) or hCG (Pérez et al. 2009; 
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Mylonas et al. 2017), both of which resulted in complete testis maturation. 

Therefore, further in vivo studies on the interaction between Gths and their 

receptors are necessary. 

Progression of gonad development 

All the treatments, with the exception of group L (treated with only aarLh), 

induced complete spermatogenesis, with the most advanced stages of gonad 

development (SPZ1 and 2) being reached. aarFsh was able not only to induce 

complete spermatogenesis, as previously observed in vitro in Japanese eel (Ohta 

et al. 2007; Kazeto et al. 2008), but even 50% of spermiating males. Fish from 

treatment F/L, in which aarFsh administration was arrested after 4 weeks, 

showed abnormal testis development, with a few spermatozoa cysts in small 

gonads (GSI 0.15-0.16%) showing type A spermatogonia, but no spermatocytes 

nor spermatids, which is the common feature when spermatozoa are present. 

Two processes could explain this: either the spermatocytes, spermatids, or most 

type B spermatogonia, have undergone an apoptotic process and were not 

present in the testes, leaving some spermatozoa cysts, or an abnormal restricted 

meiosis and spermiogenesis have happened only in a few cysts. We consider the 

first hypothesis, a regression after Fsh cessation, to be more likely, as apoptotic 

cells were found.  

aarLh stimulated the onset of testis maturation, but it did not induce complete 

spermatogenesis by itself, unlike Japanese eel rLhs (Hayakawa et al. 2008b). In 

fact, in Japanese eel, ajrLh (produced by silkworm larvae) resulted in a higher 

level of testis development than ajrFsh (Kobayashi et al. 2010). Other studies on 

Japanese eel have shown that ajrFsh (produced in a Drosophila expression 

system) was able to stimulate the recombinant Fsh receptor even at low doses, 

but not the Lh receptor. Furthermore ajrLh activated both Gths receptors, 

although only at high doses (Kazeto et al. 2008). Similar results have been 
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observed in other teleosts (Vischer et al. 2003; So et al. 2005; Zmora et al. 2007). 

Therefore, one possible explanation for the differences found between the 

Japanese and European eel results could be the fact that the minimum aarLh 

dose required to stimulate both receptors and obtain a complete 

spermatogenesis is higher than the one we used in the current study. Moreover, 

other factors, such as the number of receptors or their sensitivity could also have 

an effect, and therefore new studies are required in order to understand the 

mechanism. 

Steroid evolution during hormonal treatment 

In previous studies, all Japanese eel rGths were able to induce testis 

steroidogenesis (Kamei et al. 2005, 2006b; Kazeto et al. 2008; Kobayashi et al. 

2010), increasing the T and 11KT levels both in vitro and in vivo. Furthermore, it 

is known that in Japanese eel 11KT alone is able to induce complete 

spermatogenesis in vitro (Ohta et al. 2007). In the present study, when both 

aarGths were administered separately they were able to induce androgen 

steroidogenesis, and resulted in similar profiles. Thus, a lack of 11KT in aarLh-

treated fish (group L, Fig. 10A) would not explain the differences in maturation 

between aarLh and aarFsh treated fish.  

Similar androgen production levels were observed using a sequential treatment; 

first aarFsh and later aarLh (group F/L). But, the abnormal testis development 

found in the F/L group would suggest that, unlike what happens in Japanese eel 

testis in vitro (Ohta et al. 2007), the androgen synthesis was not enough to 

achieve complete spermatogenesis in vivo. This is corroborated by studies on 

zebrafish which have shown that Fsh has a direct effect on the testis, not 

mediated by androgen production. Zebrafish testes cultured with rFsh and 

trilostane (a 3-hydroxisteroid dehydrogenase inhibitor blocking the steroid 

production), showed an up-regulation of gene transcription in Leydig cells: insl3, 
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cyp17a1 (García-López et al. 2010) and Igf3 (Nóbrega et al. 2015). This in turn 

stimulated the proliferation and differentiation of the spermatogonia, as well as 

the beginning of meiosis and development into adult zebrafish testis (Nóbrega 

et al. 2015). On the other hand, 11KT production was higher in the fish treated 

with both aarGths (groups F/LI and FD/LI). These groups reached the last stages 

of maturation and induced sperm production earlier than the other groups. 

Sperm quality parameters 

In previous studies, complete in vivo spermatogenesis of immature Japanese eel 

males has been accomplished after treatment with rGths, but unlike the current 

study no spermiating male has been obtained (Hayakawa et al. 2008a, 2008b; 

Kobayashi et al. 2010). Treatment with rGths has resulted in spermiating males 

in Japanese eel and other teleosts (Kobayashi et al. 2003; Mazón et al. 2013), 

but the treated fish were already sexually mature. Therefore, as far as we know, 

this is the first study where spermiating males have been obtained after rGths 

treatment using totally immature male fish.  

The sperm quality was different depending on the hormonal treatment. 

Although the histological features from the testis in SPZ1 or SPZ2 from 

treatments F, F/LI and FD/LI were similar, the best sperm quality was observed 

in group F/LI, with almost 100% spermiating males and 20% sperm motility. This 

group also showed higher levels of testis growth (GSI), sperm volume and sperm 

density, indicating that a sustained level of aarFsh and an increasing level of 

aarLh is a good system for inducing the highest sperm production and quality. 

Even so, the sperm quality was significantly lower than that registered when 

using rGths of human origin (rhCG; Gallego et al. 2012, 2014b). Consequently, 

taking into account the results observed in Experiment 1, new hormonal 

treatments were assayed in Experiment 2. 



77 
 

6.4.2 Experiment 2 

In this second experiment, we confirmed that the combination of both rGths is 

necessary to induce the sex maturation of European eel in captivity. The High 

treatment group showed similar results in terms of gonad development to the 

High group in experiment 1. 2.8 µg aarFsh/fish was established as the minimum 

effective dose to induce maturation in male European eel. Moreover, doses 

higher than 2 µg aarLh/fish registered better results in terms of sperm quality. 

Biometric parameters: EI, FC and GSI 

Generally, EI levels were higher in this second experiment than in the first. The 

aarLh doses were higher in this second experiment, supporting the hypothesis 

that aarLh is main factor contributing to the increase in EI. In terms of FC change, 

the results were similar to those of the first experiment, with high 11KT levels 

coinciding with darker fins.  

Unlike in Experiment 1, all the treatments in Experiment 2 resulted in a 

significant increase in the GSI, confirming that combining both rGths is the best 

method of inducing eel maturation. No significant differences were observed in 

the GSI of group F/LI from Experiment 1 (3.83%; 4 µg aarFsh/fish) and that of the 

High treatment group from Experiment 2 (4.3%; 2.8 µg aarFsh/fish). This 

suggests that 2.8 µg aarFsh/fish is the minimum effective dose for inducing 

gonad development.  

Progression of gonad development 

All three treatments (High, Medium and Low) induced complete 

spermatogenesis, but the progression of gonad development was delayed and 

the percentage of fish observed in the spermiating stages (SPZ1 and 2) was lower 

in the Medium and Low groups. These results suggest that the administration of 
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rFsh is relevant for the advancement of spermatogenesis. On the other hand, in 

previous experiences, rhCG treatments reported faster progression in 

spermatogenesis and a higher percentage of spermiating males (Peñaranda et 

al. 2010b; Gallego et al. 2012; Baeza et al. 2014). Thus, further studies are 

necessary to test if any alternative treatments are able to yield the same or 

better results than those observed using the traditional method with rhCG. 

Steroid evolution during hormonal treatment 

The androgen profiles in this second experiment were similar to those obtained 

in experiment 1, with higher levels (only significant in the High group) being 

reached at around week 6 and levels later decreasing (around week 9). However, 

although the androgen profiles were similar, the results in terms of gonad 

development were different, with the fish in the second experiment maturing 

further (reaching the SPD stage at least). These results support the theory that 

androgen levels on their own are not enough to induce complete 

spermatogenesis in vivo, and that rGths may have a direct effect on the testes. 

In fact, 11KT implants in male short-finned eel (Anguilla australis) were not able 

to induce the same stage of maturation as hCG treatment (Lokman et al. 2016). 

Sperm quality parameters 

Motilities close to 60% were registered in the High treatment group. These 

values are 3 times higher than the best values obtained in experiment 1, and 

similar to those reported with the use of rhCG (Gallego et al. 2014a, 2012, 

2014b). With regards to other sperm parameters, such as density, progressive 

motility and kinetic parameters (VCL and VSL), the values observed were similar 

to those reported in experiments using rhCG (Gallego et al. 2012). Nevertheless, 

the volume was lower than that achieved by hCG treatments (Peñaranda et al. 

2010b). Moreover, after a progressive increase in sperm quality up to week 10, 

a subsequent decrease was observed, while longer spermiation periods were 
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found with rhCG treatments (Gallego et al. 2012).  

In this second experiment, the combination of both aarGths and higher levels of 

aarLh resulted in an improvement in sperm quality compared to experiment 1, 

but without reaching the values reported with rhCG treatments. In 

consequence, further studies are necessary in order to find out the proper 

aarGth amount and/or timing of administration. 

In conclusion, this study has demonstrated that aarGths are able to induce the 

spermiation in European eel, and confirmed that the half-life of these rGths is 

long enough to induce in vivo effects. Nevertheless, due to the fact that a 

decrease in sperm quality was observed at the end of the treatment, further 

experiments combining these recombinant hormones are required in order to 

improve hormonal treatments.  
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Abstract 

Background: The impossibility of closing the life cycle of the European eel 

(Anguilla anguilla) in captivity troubles the future of this critically endangered 

species. In addition, the European eel is a highly valued and demanded resource, 

thus the successful closing of its life cycle would have a substantial economic 

and ecological impact. With the aim of obtaining the highest gamete quality, the 

study of the effects of environmental factors, such as temperature, on 

reproductive performance may prove valuable. This is especially true for the 

exposure to cold water, which has been reported to improve sexual maturation 

in multiple other Actinopterygii species.  

Results: European eel males treated with cold seawater (10 °C; T10) for 2 weeks 

showed an increase in the proliferation of differentiated spermatogonial type A 

cells, and elevated testosterone and 11-ketotestosterone plasma levels. 

Transcriptomes from the tissues of the brain-pituitary-gonad (BPG) axis of T10 

samples revealed a differential gene expression profile compared to the other 

experimental groups, with clustering in a principal component analysis and in 

heat maps of all differentially expressed genes. Furthermore, a functional 

analysis of differentially expressed genes revealed enriched gene ontology 

terms involved in the regulation of circadian rhythm, histone modification, 

meiotic nuclear division, and others. 

Conclusions: Cold seawater treatment had a clear effect on the activity of the 

BPG-axis of European eel males. In particular, our cold seawater treatment 

induces the synchronization and increased proliferation of specific 

spermatogonial cells. In the transcriptomic results, genes related to 

thermoception were observed. This thermoception may have caused the 

observed effects through epigenetic mechanisms, since all analysed tissues 

further revealed differentially expressed genes involved in histone modification. 
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The presented results support our hypothesis that a low temperature seawater 

treatment induces an early maturational stage in European eels. This hypothesis 

is logical given that the average temperature experienced by eels in the early 

stages of their oceanic reproductive migration is highly similar to that of this cold 

seawater treatment. Further studies are needed to test whether a cold seawater 

treatment can improve the response of European eels to artificial hormonal 

treatment, as the results suggest.  

7.1 Background 

The decrease in the wild population of the European eel (Anguilla anguilla) has 

led to this species being listed as critically endangered by the International Union 

for Conservation of Nature (Jacoby, D. and Gollock 2014). Although it is possible 

to induce sexual maturation in eel using exogenous hormones (Peñaranda et al. 

2018; Pérez et al. 2000; Butts et al. 2014; Mylonas et al. 2017), these treatments 

are long (several months), expensive, result in highly variable rates of 

fertilization and hatching, and have never resulted in an adult F1 generation. 

Therefore, it is necessary to improve these procedures in order to reproduce 

eels in captivity, which in turn would reduce the fishing pressure. Spawning 

European eels have never been observed in the wild, and the precise 

environmental conditions under which maturation happens are thus unknown. 

However, it is commonly hypothesized that maturation is initiated early on in 

the oceanic reproductive migration, and first comes to completion after or in the 

late stages of this migration (van Ginneken et al. 2005; Aarestrup et al. 2009). 

During the last decade, satellite pop-up tag experiments have shown that, after 

the eels leave the continental shelf (>10° West longitude), they all migrate at 

similar temperatures (average of ~10 °C), ranging from up to ~12 °C at night and 

down to ~8 °C during the day, due to daily vertical migration (Righton et al. 2016; 

Aarestrup et al. 2009). The hypothetical spawning area, the Sargasso Sea, is 

believed to be ~20 °C at the predicted time of spawning (Boëtius and Boëtius 
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1967). Therefore, most artificial European eel maturation experiments have 

been performed at ~20 °C (Pérez et al. 2000; Butts et al. 2014; Peñaranda et al. 

2010b; Asturiano et al. 2006), but the apparent discrepancy between artificial 

maturation temperatures and the natural temperatures eels experience during 

early maturation is an obvious candidate for investigation. Furthermore, cold 

temperatures in particular, can be beneficial for Actinopterygii sexual 

maturation, e.g. in white sturgeon (Acipenser transmontanus) 3 months of cold 

water at 10-12 ºC, instead of 16-24 ºC, have been shown to improve late 

oogenesis, prevent ovarian regression and increase blood estradiol (E2) and 11-

ketotestosterone (11KT) levels (Webb et al. 1999, 2001). Also, lower fecundity 

and egg quality in wild Actinopterygii populations have been observed in years 

with warmer winters, e.g. seen in striped bass (Morone saxatilis; Clark et al. 

2005), white sturgeon (Webb et al. 1999, 2001), and others (for review see 

Hokanson 1977; Wang et al. 2010). Cold water treatments have additionally 

been shown to be a modulating factor of sexual maturation induction in several 

teleosts; Particularly in wolffish (Anarhichas lupus; Tveiten and Johnsen 1999), 

cod (Gadus morhua; Davie et al. 2007; Hansen et al. 2001), pollack (Pollachius 

pollachius; Suquet et al. 2005), European sea bass (Dicentrarchus labrax; Prat et 

al. 1999; Mañanós et al. 1997), Eurasian perch (Perca fluviatilis; Migaud et al. 

2002), and yellow perch (Perca flavescens; Hokanson 1977).  

Previous temperature studies on European eel have illustrated the importance 

of this environmental factor (Baeza et al. 2014; Pérez et al. 2011; Peñaranda et 

al. 2016; Mazzeo et al. 2014; Ahn et al. 2012; Gallego et al. 2012). E.g. in 

hormonally treated females, higher E2 plasma levels and follicle-stimulating 

hormone beta subunit (fshb) expression was registered at low temperatures (10 

°C; Pérez et al. 2011), meanwhile in hormonally treated males, a temperature 

higher than 10 °C was necessary in order to achieve complete gonad maturation 

(Peñaranda et al. 2016). In all these studies, a combination of temperature and 
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hormonal treatment effects were studied. If a cold seawater treatment is, in 

fact, needed for the initiation of early maturation, this should be tested without 

the administration of hormonal treatments, which bypass the natural endocrine 

control of maturation. 

Thus, we hypothesized that a thermal treatment of low temperatures would be 

able to stimulate early maturation in the European eel, and could possibly 

improve current artificial maturation procedures. In order to test the effect of a 

cold seawater treatment, we exposed European eel males to 3 different 

temperature regimes, including a constant low temperature (10 °C; T10), a 

constant high temperature (20 °C; T20) and a variable temperature (Tvar) over 

the course of 2 weeks. From these fish, we analyzed changes in biometric 

characteristics (length, weight, fin index, eye index, and hepatosomatic index), 

key male sex-steroids: namely testosterone (T) and 11KT, pituitary gonadotropin 

protein levels, the effect on transcriptomes of the BPG axis (brain, pituitary and 

testis), and histologically identified and quantified spermatogonial cells. 

7.2 Materials and methods 

7.2.1 Fish maintenance 

110 farmed European eel males (mean body weight 97.5 ± 1.97 g) were supplied 

by Valenciana de Acuicultura S.A. (Puzol, Valencia, Spain) and transported to the 

Aquaculture Laboratory at the Universitat Politècnica de València (Valencia, 

Spain), in 2 batches. The fish were kept in 200-L tanks, equipped with individual 

recirculation systems, temperature control systems (with heaters and coolers), 

and aeration. The fish were gradually acclimated to seawater (final salinity 37 ± 

0.3‰), over the course of 2 weeks. The temperature, oxygen level and pH of 

rearing were 20 °C, 7-8 mg/L and ~8.2, respectively. The tanks were covered to 

keep the level of light as low as possible and to reduce fish stress. The fish were 
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not fed throughout the experiment and were sacrificed using an overdose of 

anesthesia (benzocaine). 

7.2.2 Experimental design 

The following experiment was conducted twice with the same acclimation, 

control, and treatment but with different n’s and samples collected. The first 

experimental run was conducted with a total of 70 fish while the second run 

included 40 fish. In both runs, before the experiments began, ten fish were 

sacrificed at the end of the acclimation period to act as the Control group, and 

biometric measurements were collected. The biometric measurements 

included: total weight, total length, vertical and horizontal eye diameters, fin 

color, liver weight, and pectoral fin length. From these measurements, the eye 

index (Pankhurst 1982), fin index (Durif et al. 2006) and HSI were calculated as: 

(eye area / total length) X 100, (fin length / total length) X 100, and (liver weight 

/ total weight) X 100, respectively. Precise gonadosomatic indexes could not be 

calculated due to the low testes weight, as a consequence of the early 

maturation state.  

In the first run of the experiment, blood samples from the caudal vein were 

taken from all sacrificed fish and kept in heparinized vials, centrifuged (3500 

rpm, 15 min), and blood plasma was stored at 4 °C. Sampled pituitaries, 

forebrain (telencephalon, diencephalon, and olfactory bulb), and testes from 3 

fish were stored in RNA-later at 4 °C for 24 h and then at -20 °C until RNA 

extraction. Additional testis samples were fixed in 10% paraformaldehyde (PFA) 

diluted in PBS (pH 7.4; 10% PFA-PBS) for histological analysis. In the second run 

of the experiment, only the pituitaries were sampled and immediately fixed in 

ice-cold 4% PFA in PBST (PBS with 0.1 % Tween 20, pH= 7.4). 
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After this control sampling, in both runs, the remaining fish were randomly 

distributed into 3 200-L tanks with the same conditions that the fish experienced 

after seawater and temperature acclimation. These 3 tanks were then set up to 

expose the fish to 3 different temperature regimes for 2 weeks. The 3 regimes 

included 2 with a constant temperature of 10 °C (T10) or 20 °C (T20), and 1 with 

a variable temperature regime (Tvar) which alternated between 10 and 20 °C 

every 12 hours. No hormonal treatments were administered at any time. After 

the 2 weeks of thermal treatment, biometric measurements were collected 

from all the fish from both experimental runs. From the first experimental run 3 

samples of brain, pituitary, and testes, were collected from 3 fish per group for 

transcriptome analysis and blood was collected for RIA steroid analysis from all 

the sacrificed fish. From the second experimental run, the pituitaries of 10 fish 

per group were sampled for immunofluorescence visualization of 

gonadotropins.  

7.2.3 Histology 

The testis samples collected from the first experimental run and fixed in 10% 

PFA-PBS, were dehydrated in increasing percentages of ethanol, after which the 

samples were embedded in paraffin. Sections 5-10 μm thick were cut with a 

Shandom Hypercut manual microtome and stained with hematoxylin and eosin. 

The slides were then observed with a Nikon Eclipse E-400 microscope, and 

pictures were taken with a Nikon DS-5M camera attached to the microscope. 

Cell types (Fig. 19) were categorized following the description suggested by 

Schulz et al. (Schulz et al. 2010). As such, the most undifferentiated SPG type A 

cells (SPGAund*; Fig. 19) were characterized as single cells, surrounded by 

Sertoli cells, with irregular or convoluted nuclear envelopes, with low nuclear 

heterochromatin, 1 or 2 nuclei, and containing large perinuclear amounts of the 

electron-dense material called “nuage”. The second most undifferentiated SPG 

type A cells (SPGAund; Fig. 19) were characterized as single cells, surrounded by 
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Sertoli cells, with regular nuclear envelopes, 1 prominent nucleolus, with low 

levels of nuclear heterochromatin, and containing low amounts of perinuclear 

nuage. Differentiated SPG type A cells (SPGAdiff; Fig. 19) were characterized as 

cells found in clusters of 2-8 cells surrounded by Sertoli cells, with regular and 

round or oval nuclear envelopes, 1 or more nucleolus, and with low levels of 

nuclear heterochromatin or perinuclear nuage. Early SPG type B cells (early 

SPGB; Fig. 19) were characterized as smaller cells, with little cytoplasmic volume, 

found in clusters of many cells, with an oval or round nucleus with large amounts 

of heterochromatin. Furthermore, some cells were identified as SPG cells but 

could not be distinguished into a specific SPG type (Undefined cells) e.g. due to 

unclear Sertoli cell projections, broken cells, unfocused field area etc. The 

number of each cell type was counted, using FIJI/ImageJ software, from 5 

microscope fields per sample, and from ten samples per treatment group and 

the Control.  

7.2.4 Steroid analysis  

Heparinized blood plasma samples were assayed for plasma T and 11KT levels 

by radioimmunoassays (RIA) following the protocol described by Schulz (Schulz 

1985). Assay characteristics and cross-reactivities of T antisera have previously 

been examined by Frantzen et al. (Frantzen et al. 2004) and further validated for 

eel plasma by Mazzeo et al. (Mazzeo et al. 2014). The cross-reactivity of the 11KT 

antiserum used in the current study has previously been described by Johnsen 

et al. (Johnsen et al. 2013) and validated for European eel plasma by Baeza et al. 

(Baeza et al. 2015b). In summary, 5 mL diethylether was used to extract free 

steroids from 100-300 µL plasma by mixing and shaking for 4 min. The aqueous 

phase was then frozen in liquid nitrogen and the organic phase was transferred 

to a glass tube. Diethylether was then evaporated in a water bath at 45 °C and 

the sample was then reconstituted by the addition of 3X volume of RIA-buffer 

(300-900 µL) and then assayed for each steroid.  
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7.2.5 RNA extraction and sequencing 

Total RNA of brain, pituitary and testis samples of 3 fish were extracted using 

Ambion (mirVana) and Qiagen (AllPrep) columns following the protocol of Peña-

Llopis and Brugarolas (Peña-Llopis and Brugarolas 2013). Resulting RNA was 

quality and quantity tested on a bioanalyser (Agilent Technologies, USA). RNA 

samples with RIN values >8 and with >3 µg of total RNA were selected for 

sequencing. Total RNA samples were shipped to the company Macrogen Korea 

(Seoul, South Korea). Here, mRNA purification was carried out using Sera-mag 

Magnetic Oligo (dT) Beads, followed by buffer fragmentation. Reverse 

transcription was followed by PCR amplification to prepare the samples for 

sequencing, in an Illumina Hiseq-4000 sequencer (Illumina, San Diego, USA), 

keeping the strand information. The resulting raw sequences are available at the 

NCBI Sequence Read Archive (SRA) as stated in the section titled “Availability of 

data and materials”. 

7.2.6 Transcriptome analysis  

Raw reads obtained from Macrogen were quality assessed using fastQC 

software (Andrews 2010) and were quantified with RSEM (Li and Dewey 2011) 

using our de novo European eel transcriptome (Rozenfeld et al. 2017) as a 

template. The differentially expressed transcripts were annotated using the 

Trinotate functional annotation pipeline (Haas et al. 2013) and assigned GO 

terms by blasting them to the EggNOG gene family database (Huerta-cepas et 

al. 2016). Successfully annotated transcripts have been described as genes in the 

results and discussion sections. Fisher’s analysis of enrichment was performed 

on these GO terms (Alexa and Rahnenfuhrer 2016), to assess significantly 

affected functions and processes. 
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7.2.7 Immunofluorescence 

The experiment (explained above) was repeated with ten fish per treatment 

group and from the Control. Immunolabelling of European eel Lhβ and Fshβ 

proteins was carried out using the pituitaries of these fish. For this procedure 

the fixed pituitaries were dehydrated in an increasing gradient series of ethanol 

solutions and preserved in 100% methanol at -20 °C until rehydration in 

decreasing concentrations of ethanol, embedding in 3 % agarose, and then 

cutting into 60 µm thick sagittal sections with a vibratome (Leica VT 1000 S, Leica 

Biosystems GmbH, Nussloch, Germany). 5-10 sections per sample were divided 

into 2 sets and incubated with agitation for 1 h at room temperature in blocking 

solution (normal goat serum 4%, dimethyl sulfoxide 1%, and Triton X-100 

(Sigma-Aldrich) 0.3%, in PBST) followed by overnight incubation at 4 °C, with 

agitation, with a rabbit antibody specific to European eel Fshβ or Lhβ (Rara Avis 

Biotec S.L., Valencia, Spain), in either set. Hereafter the sections were incubated 

for 4 h at room temperature with a goat anti-rabbit IgG coupled to Rb488 

(Jackson Immuno Research Europe Ltd.) as the secondary antibody. Finally, 

sections were treated with DAPI (4,6-diamidino-2-phenylindole dihydrochloride, 

1:1000, Sigma-Aldrich) for overnight nuclear counterstaining at 4 °C. The stained 

sections were mounted on slides using Vectashield H-1000 (Vector laboratories, 

Burlingame, CA). The results were evaluated with a fluorescence microscope and 

the fields were captured with the same image parameters. Signal intensity was 

evaluated on a scale of 1-5 in a blind test. The highest signal from each group is 

presented in the results section as pictures taken with a Zeiss LSM710 laser 

scanning confocal microscope equipped with a 10X Plan Neofluar objective lens 

(N.A. 0.3). The presented pictures were adjusted for brightness and contrast 

using FIJI/ImageJ software (Fig. 24). Control experiments were performed on 

tissue slices using the same protocol but without the primary antibody. 
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7.2.8 Statistics 

Results are shown as the mean ± standard error of the mean (SEM) and 

differences were considered significant when P-values < 0.05, when not 

otherwise specified. We used R version 3.1.3 (R core team, 2015) to perform 

Pearson’s Chi-squared tests with simulated P-values to compare the distribution 

of fin colour between the 3 treatment groups (T10, T20, and Tvar) and the 

Control group. After establishing data normality using the asymmetry standard 

coefficient and Curtosis coefficient we also used R to run general linear models 

(GLM) to identify significant differences between the groups in the remaining 

biometric parameters as well as differences in steroid levels. We used a 

generalized linear mixed model with a negative binominal distribution, and with 

“field“ as a random effect, to compare cell counts and proportions of the 

histological testis analysis. These tests were also executed with R version 3.1.3. 

We furthermore used R to perform a Principal Component Analysis (PCA) for all 

the quantified expression data from the RNA-sequencing results. Only principal 

component 1 and 2 were included in the results as they together account for 

>98% of the variance in the data, from all tissues. Significantly differentially 

expressed transcripts were located with DEseg (Anders and Huber 2010) with a 

threshold for a false discovery corrected P-value (FDR) of <0.05. R was also used 

to run one-way ANOVA tests of the transcripts per million (TPM) of both 

gonadotropin beta-subunits from the pituitaries; in the case of lhb a log 

transformation of the data was performed to improve the homogeneity of 

variance across the groups. Finally, R was used to create heat maps and 

unsupervised hierarchical clusters using a Euclidean distribution of all 

significantly differentiated expressed genes from each tissue.  
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7.3 Results  

7.3.1 Biometric parameters  

No differences between the Control and the treated groups were seen in total 

length, total weight, fin color, eye index, or hepatosomatic index. However, 

significantly shorter fin lengths were found in the T10 and T20 groups (18.08 ± 

0.36 and 18.19 0.36 mm, respectively) compared to the Control and Tvar groups 

(19.37 ± 0.38 and 19.31 ± 0.39 mm, respectively; Table 4).  

Table 4.  Average biometric measurements observed in the 3 treatment groups and Control. Total 
fish weight (total weight), total fish length (total length), standardized European eel eye index (eye 
index), pectoral fin color (fin color), pectoral fin length (fin length), standardized pectoral fin index 
(fin index), total liver weight (liver weight) and hepatosomatic index (HSI) were measured. Avg. 
indicates group averages and SEM indicates standard error of the mean. 

Parameter\Group  Control T10 T20 
Tvar 

Total weight Avg. 96.67 96.04 96.19 101.06 
        (g) SEM 3.64 4.19 3.41 3.94 
 Sign. a a a a 
Total length Avg. 36.88 38.21 38.02 38.11 
       (cm) SEM 0.68 0.60 0.43 0.49 
 Sign. a a a a 
Eye Index Avg. 4.15 3.62 3.94 4.11 
 SEM 0.31 0.21 0.11 0.13 
 Sign. a a a a 
Fin Length Avg. 19.37 18.08 18.19 19.31 
     (mm) SEM 0.38 0.36 0.31 0.39 
 Sign. a b b a 
Fin index Avg. 5.25 4.75 4.79 5.07 
 SEM 0.07 0.11 0.07 0.10 
 Sign. a b b a 
Liver weight Avg. 0.67 0.86 0.72 0.76 
        (g) SEM 0.04 0.04 0.04 0.04 
 Sign. a b a ab 
       HSI Avg. 0.69 0.78 0.75 0.75 

 SEM 0.03 0.06 0.03 0.03 
 Sign. a a a a 

 

These differences also resulted in significantly lower fin indexes (P-value = 0.008) 

in the T10 and T20 groups (4.75 ± 0.11 and 4.79 ± 0.07, respectively) compared 



92 
 

to the Control and Tvar groups (5.25 ± 0.07 and 5.07± 0.10, respectively; Table 

4). 

7.3.2 Gonad histology  

SPGAund* (Fig. 19) composed a significantly higher average proportion of the 

cells identified in the Control samples (11.7 ± 1.4% cells per field) compared to 

all the 3 treatment groups (< 1% cells per field; Fig. 20).  

 

Figure 19. Forty times magnification fields of selected histological sections representing the 
spermatogonia stages: the most undifferentiated spermatogonia type A (SPGAund*; panel A), 
the second most undifferentiated spermatogonia type A (SPGAund; panel B), differentiated 
spermatogonia type A cells (SPGAdiff; panel C), and early spermatogonia type B cells (SPGB; 
panel D). These identifiable characteristics are further labelled with arrows: Blood vessels (Bv), 
nucleus (Nu), nucleoli (No), Sertoli cells (Sc), Sertoli cell cytoplasmic extensions (Scce), 
heterochromatin (Hech) and nuage (Nuage). 
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Figure 20. Boxplots of cell counting results for the T10, T20, Tvar and Control groups. The panels 

show the percentage proportion of the most undifferentiated spermatogonia type A cells 

(SPGAund*), the second most undifferentiated spermatogonia type A cells (SPGAund), the 

differentiated spermatogonia type A cells (SPGAdiff), and the early spermatogonia type B cells 

(Early SPGB) in each group. The panels labelled “Undefined cells” presents the percentage 

proportion of cells in each group, which were identified as spermatogonial cells but could not 

be distinguished between the specific spermatogonial cell types. The panels labelled “Total 

cells” presents the accumulated cells count of all identified cell types in each group. Letters 

indicate significant differences. 
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The Control samples also contained a higher average proportion of SPGAund 

(Fig. 19) cells per field (52.1 ± 1.9%) compared to Tvar, T20, and T10 (28.7 ± 1.2, 

26.8 ± 1.3, and 9.3 ± 0.4%, respectively). The proportion of SPGAund cells had 

an inverse relationship with the proportion of SPGAdiff cells with the T10 

samples contained a significantly higher average proportion of SPGAdiff cells per 

field (69.6 ± 1.0%) compared to the T20, Tvar and Control groups (57.1 ± 1.5, 

52.3 ± 1.5, and 23.8 ± 1.9%, respectively). Undefined cells were also registered 

in higher proportions in the T10 samples. Although all the experimental groups 

contained relatively low average proportions of early SPGB cells (Fig. 19), the 

T20 and Tvar groups (7.5 ± 1.1 and 8.2 ± 1.2%, respectively) reported a higher 

proportion than the T10 and Control groups (4.7 ± 0.5 and 4.5 ± 0.8%, 

respectively). Finally, the average total number of SPG cells per field was 

significantly higher in the T10 samples (189.9 ± 3.0 cells per field), compared to 

the T20, Tvar, and Control groups (134.0 ± 3.7, 130.7 ± 3.6, and 117 ± 3.8 cells 

per field, respectively), while the average total number of SPG cells per field was 

significantly lower in the Control samples compared to T20 and Tvar (Fig. 20). 

7.3.3 Steroid analysis  

The plasma T analysis revealed a basal level of 0.99 ± 0.12 ng/ml in the Control 

group, which increased significantly to 2.32 ± 0.17 ng/ml after rearing the fish 

for 2 weeks at 10 °C. No differences were observed in the rest of the 

experimental groups (Fig. 21). The basal 11KT plasma level was 1.67 ± 0.31 

ng/ml, which increased significantly after 2 weeks of rearing to 4.46 ± 0.43 ng/ml 

and 3.37 ± 0.30 ng/ml at 10 or 20 °C, respectively (Fig. 21). 
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Figure 21. Boxplots of radioimmunoassay steroid results from the blood of fish from the T10, 
T20, Tvar and control groups. Significant differences are indicated with letters. Panel A shows 
the testosterone (T) results, while panel B shows the 11-ketotestosterone (11KT) results.  

7.3.4 Gonadotropin analysis 

Due to their biological relevance, fshb and luteinizing hormone beta subunit 

(lhb) were chosen as target genes for additional analysis. In particular, the TPM 

for these genes in the pituitary transcriptome were pulled (Fig. 22) and the 

variance between the groups was analysed with a one-way analysis of Variance 

(ANOVA). The analysis indicated that temperature caused a significant change 

to the lhb (P-value = 0.0296) expression, while the differences observed in fshb 

were insignificant (P-value = 0.0746).  
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Figure 22. Boxplot of follicle stimulating hormone beta subunit gene expression (fshb) and 
luteinizing hormone beta subunit gene expression (lhb), from the pituitary transcriptome 
analysis. Results are presented for the control group (“Control”), the 10 °C treated group 
(“T10”), the 20 °C treated group (“T20”), and the variable temperature treated group (“Tvar”). 
Expression values are presented as transcripts per million (TPM). A tendency of decreased fsh-
β expression and increased lh-β expression is seen after T10 treatment, with the variable 
temperature treatment presenting intermediate values. 

Furthermore, additional fish were treated in a different experimental run, under 

the same conditions, and the pituitaries of these fish were sampled. Fshβ and 

Lhβ immunofluorescence labelling was performed on these pituitaries. The TPM 

of Tvar were in all cases close to the mean between the expression of T10 and 

Control or of T10 and T20 (Fig. 22), thus we decided not to include this group in 

the analysis. Due to loss of pituitary tissue during laboratory analysis (e.g. 

pituitary drying during incubation or breaking during sectioning), initial “n” (10) 

decreased to 6, 5, and 4 for T10, Control, and T20, respectively, for the Lhβ 

immunofluorescence labelling, and to 2, 2, and 3 for T10, Control, and T20 

respectively for the Fshβ immunofluorescence labelling. All remaining pituitaries 

were successfully labelled with both Fshβ and Lhβ; however, no reliable 

difference could be observed from the Fshβ immunofluorescence labelling (Fig. 

23), possibly due to the low n. On the other hand, a reliably stronger Lhβ signal 
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was seen in the pituitaries of T10 treated fish compared to either Control or T20 

(Fig. 24).  

 

Figure 23. Confocal images of the histochemical labeled European eel (Anguilla anguilla) male 
pituitaries, which showed the strongest FSHβ signal from each of the successfully analyzed 
groups: the two week 10 °C pretreated group (T10; panel D, E, and F), and control (Panel A, B, 
and C). “Dapi” indicates pictures filtered to only reveal fluorescents labeled to 4,6-diamidino-2-
phenylindole dihydrocholride (Panel A and D). “FSHβ” indicates pictures filtered to only reveal 
fluorescents labeled to follicle stimulating hormone beta subunit protein (Panel B and E). “Dapi 
/ FSHβ” indicates pictures filtered to reveal both fluorescents labeled to follicle stimulating 
hormone beta subunit protein and 4,6-diamidino-2-phenylindole dihydrocholride (Panel C and 
F). 

Due to the nature of immunofluorescence labelling and the use of an objective 

“quantitative” measuring technique, these results should only be considered as 

suggestive evidence of Lhβ protein level changes. 
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Figure 24. Confocal images of the immunofluorescence labelled European eel (Anguilla anguilla) male 
pituitaries, which showed the strongest Lhβ signal from each of the analyzed groups: the 2 week 10 
°C pretreated group (T10; panel D, E, and F), the 2 week 20 °C pretreated group (T20; panel G, H, and 
I), and Control (Panel A, B, and C). “DAPI” indicates pictures filtered to only reveal fluorescents labeled 
to 4,6-diamidino-2-phenylindole dihydrochloride (Panel A, D, and G). “Lhβ” indicates pictures filtered 
to only reveal fluorescents labeled to luteinizing hormone beta subunit protein (Panel B, E, and H). 
“DAPI / Lhβ” indicates pictures filtered to reveal both fluorescents labelled to luteinizing hormone 
beta subunit protein and 4,6-diamidino-2-phenylindole dihydrochloride (Panel C, F, and I). 
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7.3.5 RNA-sequencing  

Our raw Illumina data contained between 48 and 75 million 101 bp paired-end 

reads, sense strand, per library. Using BWA-MEM (Li and Durbin 2010) to map 

our transcripts to our de novo transcriptome resulted in a mapping percentage 

range of 89 to 96%. Out of the 77,247 transcripts in our transcriptome, 25,368 

protein coding genes were predicted. Using DEseq, differentially expressed 

transcripts (FDR<0.05) were determined between the 3 treatment groups (T10, 

T20, and Tvar) and the Control group, in all combinations and for the 3 tissues: 

brain, pituitary, and testes. Approximately half of the differentially expressed 

transcripts could be annotated with a gene symbol and assigned gene ontology 

(GO) terms, with little variation between groups (Table 5). All differentially 

expressed genes have been accumulated into 3 heat maps (one per tissue), 

which can be found in figure 25-27. 

Table 5. Quantitative data of differential transcript and gene expression between transcriptomes from 
brain, pituitary, and testis samples. E.g. The row header “T10 vs Control” indicates differentially expressed 
transcripts and genes between T10 and Control. The quantity of transcripts characterized as differentially 
expressed by DEseq analysis provided in columns labeled “DEseq (down)”, the number in the parenthesis 
indicates the quantity, which was found to be down regulated in the first group of the row headers. 
“ANNOT” indicates the quantity for the differentially expressed genes, which could successfully be 
annotated. “GO” indicates the quantity of differentially expressed genes, which could be assigned GO 
terms. 
 Brain   Testis   Pituitary  

 DESeq 
(down) 

ANNOT GO DESeq 
(down) 

ANNOT GO DESeq 
(down) 

ANNOT GO 

T10 vs Control 377 (124) 210 190 76 (34) 31 28 350 (204) 182 159 

T20 vs Control 37 (14) 11 9 20 (17) 4 3 25 (15) 11 6 

TVar vs Control 25 (11) 9 6 18 (15) 7 6 39 (27) 14 11 

Tvar vs T10  322 (192) 178 158 476 (207) 246 223 731 (401) 461 419 

Tvar vs T20 24 (17) 14 10 57 (41) 32 28 42 (31) 24 23 

T10 vs T20  385 (147) 237 204 241 (105) 104 94 343 (186) 150 133 
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Figure 25. Heat map displaying Z-score of all differentially expressed genes between the testis 
samples found from all combinations of the 4 sample groups (Control, T10, T20, and Tvar), these 
genes are ordered into hierarchical clusters. Z-score color key and histogram of the Z-score 
distributions are presented in the top left-hand corner. Each row of the heat map represents a 
gene illustrated by the protein symbol to the right of the row. Each column represents a sample. 
Each column is labeled at the top with a color code according to the treatment group to which 
the sample belongs (▬ Control, ▬T10, ▬T20, ▬Tvar). The heat map has been split into two 
sections (one left and one right). A dendrogram which presenting the sample similarities is 
printed above the right-hand heat map section. 
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Figure 26. Heat map displaying Z-score of all differentially expressed genes between the 
pituitary samples found from all combinations of the 4 sample groups (Control, T10, T20, and 
Tvar), these genes are ordered into hierarchical clusters. Z-score color key and histogram of the 
Z-score distributions are presented in the top left-hand corner. Each row of the heat map 
represents a gene illustrated by the protein symbol to the right of the row. Each column 
represents a sample. Each column is labeled at the top with a color code according to the 
treatment group to which the sample belongs (▬ Control, ▬T10, ▬T20, ▬Tvar). The heat map 
has been split into two sections (one left and one right). A dendrogram which presenting the 
sample similarities is printed above the right-hand heat map section. 
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Figure 27. Heat map displaying Z-score of all differentially expressed genes between the brain 
samples found from all combinations of the 4 sample groups (Control, T10, T20, and Tvar), these 
genes are ordered into hierarchical clusters. Z-score color key and histogram of the Z-score 
distributions are presented in the top left-hand corner. Each row of the heat map represents a 
gene illustrated by the protein symbol to the right of the row. Each column represents a sample. 
Each column is labeled at the top with a color code according to the treatment group to which 
the sample belongs (▬ Control, ▬T10, ▬T20, ▬Tvar). The heat map has been split into two 
sections (one left and one right). A dendrogram which presenting the sample similarities is 
printed above the right-hand heat map section. 
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In general, differentially expressed transcripts were more frequently found in 

T10 samples relative to any other group for all tissues (Table 5 and Fig. 28).  

 

Figure 28. Venn diagrams of differentially expressed (FDR < 0.05) transcripts, from the 3 tissues 
(brain, pituitary, and testes), and from the 3 treatments (T10, T20, and Tvar) and Control 
groups. Values in brackets indicate downregulated genes relative to the group indicated in the 
row label. Magenta circles include transcripts differentially expressed in T10 relative to the 
group indicated in the row label. Green circles include transcripts differentially expressed in T20 
relative to the group indicated in the row label. Yellow circles include transcripts differentially 
expressed in Tvar relative to the group indicated in the row label. Cyan circles include transcripts 
differentially expressed in Control relative to the group indicated in the row label. 
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Tvar pituitary and testis samples had the highest number of differentially 

expressed transcripts compared to T10 (Table 5 and Fig. 28). In the brain 

samples, the quantities of differentially expressed transcripts between groups 

relative to T10 were more similar; however, T20 showed the highest number of 

differentially expressed genes (Fig. 28). In a PCA analysis, clusters of T10 samples 

were observed from the normalized expression data of the pituitary and testis 

samples, while no cluster could be seen among the brain samples (Fig. 29).  

 

Figure 29. Principal component 2 (PC2) over principal component 1 (PC1) from 3 principal 
component analysis of all normalized expression data from all transcriptomes of the pituitary, 
testes, and brain samples. Hollow circles labeled “Cont.”, “T20”, and “Tvar” represents 
transcriptomes of Control, T20 and Tvar samples, respectively. T10 samples are marked with 
red filled circles, and labelled “T10”. 

Additionally, all the differentially expressed genes from each tissue were 

hierarchically clustered in 3 heat maps presented in the additional file 1 (Fig. 25-

27). This analysis revealed clusters of T10 in all the tissues, and of the Tvar 

samples in the brain. Some of the genes the were found to be upregulated in the 

in the brain and pituitary of the T10 group are known for their involvement in 

thermoception e.g. heat shock protein HSP 90-alpha 1 (h90a1) and transient 

receptor potential cation channel subfamily V member 1 (trpv1; Fig. 26 and 27). 

Several genes involved in reproduction were also found to be differentially 

expressed in the T10 group including, dopamine receptor drd4 and the estrogen 

receptor esr1 (Fig. 26 and 27). In the testes, some reproductively relevant genes 

were found to be upregulated in the T10 group e.g. follicle-stimulating hormone 
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receptor (fshr), EH domain-containing protein 1 (ehd1; Fig. 25 and several 

growth factor related genes including platelet-derived growth factor receptor 

beta (pgfrb) or vascular endothelial growth factor C (vegfc; Fig. 25). Meanwhile 

other interesting reproduction-related genes were found to be downregulated 

in the testes of the T10 group e.g. OB domain-containing protein (meiob), 

synaptonemal complex protein 2 (Sycp2), testis expressed protein 11 (tex11), 

bromodomain testis-specific protein (brdt), and bromodomain-containing 

protein 2 (brd2; Fig. 25). 

 

Figure 30. Treemap of the significantly enriched biological process GO term from the 
significantly differentially expressed genes found between the T10 and Tvar groups from the 
pituitary samples. Each rectangle represents a single cluster of related terms. Loosely related 
single cluster rectangles are clustered together in superclusters of the same color. The size of 
each cluster is adjusted to reflect the false discovery rate corrected P-value (FDR) of the 
enrichment of the GO tem (larger rectangles indicates lower FDR). 
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7.3.6 Functional annotation 

The Fisher’s exact test found enriched GO terms among the differentially 

expressed genes (Table 6-10 and Fig. 30 and 31).  

 

Figure 31. Treemap of the significantly enriched biological process GO terms from the 
significantly differentially expressed genes found between the T10 and Control groups from the 
brain samples. Each rectangle represents a single cluster of related terms. Loosely related single 
cluster rectangles are clustered together in superclusters of the same color. The size of each 
cluster is adjusted to reflect the false discovery rate corrected P-value (FDR) of the enrichment 
of the GO terms (larger rectangles indicates lower FDR). 
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Table 6. Enriched GO terms from the differentially expressed genes found between T10 and 
Control, in the testes. OVER/UNDER indicates whether a term is over or under represented, 
respectively. GO Categories are biological processes (BP), and molecular function (MF). False 
discovery rate corrected P-values are presented in the column labeled FDR. 

 

OVER/UNDE
R GO ID GO Term 

GO 
Category FDR P-Value 

1 OVER 
GO:005157
4 

positive regulation of histone 
H3-K9 methylation BP 0.0013 6.92E-08 

2 OVER 
GO:000368
2 chromatin binding MF 0.0327 6.96E-06 

3 OVER 
GO:005157
0 

regulation of histone H3-K9 
methylation BP 0.0327 3.56E-06 

4 OVER 
GO:003106
1 

negative regulation of 
histone methylation BP 0.0327 5.46E-06 

5 OVER 
GO:004886
3 stem cell differentiation BP 0.0432 1.15E-05 

6 OVER 
GO:005156
7 histone H3-K9 methylation BP 0.0433 1.38E-05 

 

Most notably, the enriched terms found in the brain and pituitary included 

several GO terms related to immune response. However, several terms related 

to epigenetic alterations were also found to be enriched among the differentially 

expressed genes from all the tissues (Table 7, 9, and 10, and Fig. 31).  

Table 7. Enriched GO terms from the differentially expressed genes found between T10 and Tvar, 
in the testes. OVER/UNDER indicates whether a term is over or under represented, respectively. 
GO Categories are biological processes (BP), molecular function (MF), and cellular component 
(CC). False discovery rate corrected P-values are presented in the column labeled FDR. 

 OVER/UNDER GO ID GO Term GO Category FDR P-Value 

1 OVER GO:0051574 
positive regulation of histone H3-
K9 methylation BP 0.0081 4.34E+08 

2 OVER GO:0030198 extracellular matrix organization BP 0.0470 1.70E+11 

3 OVER GO:0005576 extracellular region CC 0.0470 8.77E+09 

4 OVER GO:0007140 male meiotic nuclear division BP 0.0470 9.31E+09 

5 OVER GO:0008238 exopeptidase activity MF 0.0470 1.71E+10 

6 OVER GO:0008241 peptidyl-dipeptidase activity MF 0.0470 1.41E+11 

7 OVER GO:0043062 
extracellular structure 
organization BP 0.0470 1.75E+10 
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Table 8. Enriched GO terms from the differentially expressed genes found between T10 and 
Control, in the pituitary. OVER/UNDER indicates whether a term is over or under represented, 
respectively. GO Categories are biological processes (BP), and molecular function (MF). False 
discovery rate corrected P-values are presented in the column labeled FDR. 

 OVER/UNDER GO ID GO Term GO Category FDR P-Value 

1 OVER GO:0097167 circadian regulation of translation BP 4.54E-05 2.42E-09 

2 OVER GO:0070932 histone H3 deacetylation BP 0.001734 1.85E-07 

3 OVER GO:0007623 circadian rhythm BP 0.007124 1.14E-06 

4 OVER GO:0072330 
monocarboxylic acid biosynthetic 
process BP 0.013066 2.78E-06 

5 OVER GO:0048511 rhythmic process BP 0.036725 1.17E-05 

6 OVER GO:0002028 regulation of sodium ion transport BP 0.036725 1.03E-05 

7 OVER GO:0051574 
positive regulation of histone H3-K9 
methylation BP 0.037242 1.39E-05 

8 OVER GO:0016575 histone deacetylation BP 0.044083 1.88E-05 

9 OVER GO:0035582 
sequestering of BMP in extracellular 
matrix BP 0.047353 4.03E-05 

10 OVER GO:1900920 regulation of L-glutamate import BP 0.047353 4.03E-05 

11 OVER GO:0051946 
regulation of glutamate uptake involved 
in transmission of nerve impulse BP 0.047353 4.03E-05 

12 OVER GO:0051941 
regulation of amino acid uptake involved 
in synaptic transmission BP 0.047353 4.03E-05 

13 OVER GO:1903789 
regulation of amino acid transmembrane 
transport BP 0.047353 4.03E-05 

14 OVER GO:0016053 organic acid biosynthetic process BP 0.047353 3.71E-05 

15 OVER GO:2000678 
negative regulation of transcription 
regulatory region DNA binding BP 0.047353 2.94E-05 

16 OVER GO:0046394 carboxylic acid biosynthetic process BP 0.047353 3.52E-05 

17 OVER GO:0033218 amide binding MF 0.04807 4.35E-05 

 

In particular, various functions and processes related to histone modification 

e.g. “positive regulation of histone H3-K9 methylation”, “histone H3 

deacetylation“, “chromatin binding”, or “histone displacement” (Table 5) were 

found to be enriched. In the pituitary and testes GO terms related to circadian 

rhythm were also found to be significantly enriched as a result of the T10 

treatment (Table 7; Fig. 30). Other GO terms found to be enriched among the 

differentially expressed genes in the testes included the term “male meiotic 

nuclear division” and “stem cell differentiation”. Specifically, the differentially 

expressed genes found between T10 and T20 in the pituitary only included 1 

enriched GO term “neurohypophyseal hormone activity”, while the biological 

process of “response to steroid hormone” was highly significant (p= 0.00006) 

before FDR correction but not after (FDR= 0.16181).  
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Table 9. Enriched GO terms from the differentially expressed genes found between T10 and Tvar, in the 
brain. OVER/UNDER indicates whether a term is over or under represented, respectively. GO Categories 
are biological processes (BP), molecular function (MF), and cellular component (CC). False discovery rate 
corrected P-values are presented in the column labeled FDR. 

 OVER/UNDER GO ID GO Term 
GO 
Category FDR P-Value 

1 OVER GO:0006955 immune response BP 5.83E-08 3.10E-12 

2 OVER GO:0002376 immune system process BP 8.94E-07 9.52E-11 

3 OVER GO:0006952 defense response BP 1.09E-04 1.74E-08 

4 OVER GO:0002684 positive regulation of immune system process BP 5.86E-04 1.25E-07 

5 OVER GO:0050778 positive regulation of immune response BP 0.0017 5.71E-07 

6 OVER GO:0045087 innate immune response BP 0.0017 5.11E-07 

7 OVER GO:0042571 immunoglobulin complex, circulating CC 0.0027 1.03E-06 

8 OVER GO:0009897 external side of plasma membrane CC 0.0060 2.57E-06 

9 OVER GO:0050776 regulation of immune response BP 0.0070 3.36E-06 

10 OVER GO:0006909 phagocytosis BP 0.0070 3.75E-06 

11 OVER GO:0002682 regulation of immune system process BP 0.0079 4.63E-06 

12 OVER GO:0002253 activation of immune response BP 0.0087 5.59E-06 

13 OVER GO:0002449 lymphocyte mediated immunity BP 0.0111 8.53E-06 

14 OVER GO:0003823 antigen binding MF 0.0111 8.16E-06 

15 OVER GO:0034987 immunoglobulin receptor binding MF 0.0111 8.88E-06 

16 OVER GO:0051574 
positive regulation of histone H3-K9 
methylation BP 0.0166 1.41E-05 

17 OVER GO:0048002 
antigen processing and presentation of 
peptide antigen BP 0.0173 1.57E-05 

18 OVER GO:0006956 complement activation BP 0.0196 1.88E-05 

19 OVER GO:0019814 immunoglobulin complex CC 0.0209 2.11E-05 

20 OVER GO:0072376 protein activation cascade BP 0.0213 2.27E-05 

21 OVER GO:0005773 vacuole CC 0.0250 2.79E-05 

22 OVER GO:0006089 lactate metabolic process BP 0.0256 3.00E-05 

23 OVER GO:0045321 leukocyte activation BP 0.0303 3.71E-05 

24 OVER GO:0006910 phagocytosis, recognition BP 0.0321 4.11E-05 

25 OVER GO:0002764 
immune response-regulating signaling 
pathway BP 0.0321 4.27E-05 

26 OVER GO:0005764 lysosome CC 0.0326 5.12E-05 

27 OVER GO:0006954 inflammatory response BP 0.0326 5.06E-05 

28 OVER GO:0002757 
immune response-activating signal 
transduction BP 0.0326 5.01E-05 

29 OVER GO:0000323 lytic vacuole CC 0.0326 5.21E-05 

30 OVER GO:0009986 cell surface CC 0.0326 4.94E-05 

31 OVER GO:0098797 plasma membrane protein complex CC 0.0329 5.43E-05 

32 OVER GO:0042611 MHC protein complex CC 0.0338 5.75E-05 

33 OVER GO:0019882 antigen processing and presentation BP 0.0409 7.39E-05 

34 OVER GO:0006958 complement activation, classical pathway BP 0.0409 7.29E-05 

35 OVER GO:0002250 adaptive immune response BP 0.0421 7.85E-05 

36 OVER GO:0098552 side of membrane CC 0.0426 8.16E-05 
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Table 10. Enriched GO terms from the differentially expressed genes found between T10 and T20, in the brain. 
OVER/UNDER indicates whether a term is over or under represented, respectively. GO Categories are 
biological processes (BP), molecular function (MF), and cellular component (CC). False discovery rate corrected 
P-values are presented in the column labeled FDR. 

 OVER/UNDER GO ID GO Term 
GO 
Category FDR P-Value 

1 OVER GO:0006955 immune response BP 2.51E-08 1.34E-12 

2 OVER GO:0002376 immune system process BP 1.21E-06 1.29E-10 

3 OVER GO:0045087 innate immune response BP 1.29E-05 2.06E-09 

4 OVER GO:0005344 oxygen carrier activity MF 1.72E-05 4.55E-09 

5 OVER GO:0005833 hemoglobin complex CC 1.72E-05 4.57E-09 

6 OVER GO:0006952 defense response BP 5.73E-05 1.83E-08 

7 OVER GO:0009897 external side of plasma membrane CC 1.98E-04 7.38E-08 

8 OVER GO:0002684 
positive regulation of immune system 
process BP 4.00E-04 1.70E-07 

9 OVER GO:0140104 molecular carrier activity MF 4.42E-04 2.12E-07 

10 OVER GO:0051574 
positive regulation of histone H3-K9 
methylation BP 5.85E-04 3.11E-07 

11 OVER GO:0002682 regulation of immune system process BP 0.0031 2.00E-06 

12 OVER GO:0045321 leukocyte activation BP 0.0031 1.86E-06 

13 OVER GO:0003823 antigen binding MF 0.0037 2.71E-06 

14 OVER GO:0050776 regulation of immune response BP 0.0037 2.78E-06 

15 OVER GO:0006950 response to stress BP 0.0052 4.13E-06 

16 OVER GO:0034097 response to cytokine BP 0.0106 9.00E-06 

17 OVER GO:0019825 oxygen binding MF 0.0133 1.28E-05 

18 OVER GO:0046649 lymphocyte activation BP 0.0133 1.23E-05 

19 OVER GO:0050778 positive regulation of immune response BP 0.0151 1.60E-05 

20 OVER GO:0098552 side of membrane CC 0.0151 1.61E-05 

21 OVER GO:0002696 positive regulation of leukocyte activation BP 0.0300 3.36E-05 

22 UNDER GO:0003824 catalytic activity MF 0.0340 4.00E-05 

23 OVER GO:0050867 positive regulation of cell activation BP 0.0340 4.16E-05 

24 OVER GO:0002449 lymphocyte mediated immunity BP 0.0420 5.38E-05 

25 OVER GO:0071345 cellular response to cytokine stimulus BP 0.0447 5.95E-05 

26 OVER GO:0051570 regulation of histone H3-K9 methylation BP 0.0498 6.90E-05 

27 OVER GO:0001775 cell activation BP 0.0498 7.16E-05 

28 OVER GO:0002253 activation of immune response BP 0.0561 8.36E-05 
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7.4 Discussion  

7.4.1 Histological development, biometric parameters and plasma levels of 

androgens 

The highest level of spermatogonial proliferation was observed as a 

consequence of the cold seawater treatment (Fig. 20). However, the lower 

proportion of SPGAund* and SPGAund, and furthermore the higher total cell 

counts of all the treatments compared to the Control, indicate that prolonged 

housing after saltwater acclimation promotes spermatogonial differentiation 

and proliferation in European eel testes, regardless of the housing temperature 

(between 20 and 10 °C; Fig. 20). These processes are likely induced by steroids 

(Schulz et al. 2010; Miura and Miura 2003) and are thus an expected 

consequence of the increases in plasma steroid levels. Several studies on 

European eel males (Morini et al. 2017b; Peñaranda et al. 2016; Baeza et al. 

2015b) have documented increased plasma steroid levels as a result of saltwater 

acclimation alone, and it is, therefore, likely that even the Control group in this 

experiment represents a state of elevated steroid levels compared to freshwater 

housed eels, with resulting SPG proliferation and differentiation. 

However, the histological data also indicate that the T10 treatment in particular 

promotes differentiation and proliferation of SPGAund cells into SPGAdiff cells 

and that the T10 treatment is the only treatment for which prolonged housing 

did not promote a significant increase in the proportion of SPGB cells (Fig. 20). 

In an experiment where complete sexual maturation of European eel males was 

induced through weekly hormonal injections, plasma 11KT levels increased from 

1.14 ± 0.5 ng/ml to 4.7 ± 0.37 ng/ml after 1 week of treatment and did not 

change significantly after the second week (Peñaranda et al. 2010b). In 

comparison, our cold seawater treatment induced an increase in the average 

blood plasma level from 1.67 ± 0.31 ng/ml to 4.46 ± 0.43 ng/ml 11KT. This 
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similarity may suggest that a similar process is initially induced by both types of 

treatment; however, while the hormonally injected eels all contained 

spermatocytes in their testis after 2 weeks of treatment, the fish from the T10 

group did not contain cells of maturation stages higher than SPGB. Therefore, 

the androgen levels observed, together with the histological results, indicates 

that the effect of androgens on European eel SPG cell differentiation beyond 

SPGAdiff is actively being inhibited, during cold seawater treatment. This 

phenomenon has previously been observed during hormonally induced 

maturation of European eel males at 10 °C (Peñaranda et al. 2016). 

Interestingly, while the T10 treatment may induce elevated Lhβ protein levels, 

the observed histological stage of the T10 samples is highly similar to the stages 

which eel testes could not surpass during recombinant Lhβ injections 

(Peñaranda et al. 2018).  

Together, the proliferation, differentiation, and repression indicate that a cold 

seawater treatment promotes synchronization and increased proliferation of 

SPG cells at the SPGAdiff stage. It seems reasonable to assume that the 

synchronization and proliferation of SPG cells observed here also occur in 

nature, given that the environmental temperature eels experience during their 

early oceanic migration (Righton et al. 2016) is approximately the same as that 

of our T10 treatment (Righton et al. 2016; Aarestrup et al. 2009).  

The observed proliferation might have been stimulated by androgens since the 

T10 group contained significantly higher amounts of T and 11KT than the Control 

group. Furthermore, higher plasma androgen levels have been correlated with 

European eel SPGA proliferation in previous studies (Peñaranda et al. 2016). As 

mentioned above, increases in steroid levels have been reported in European 

eel after salinity acclimation (Morini et al. 2017b; Peñaranda et al. 2016; Baeza 

et al. 2014); however, the duration of these increases has not been reported. 
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Since the Control and T20 groups share all the same parameters except exposure 

time, the observed increase in 11KT levels (Fig. 20) may well be the result of a 

continued increase in 11KT levels rather than a specific increase that happens in 

the 2nd and 4th weeks of seawater housing.  

Few significant differences were registered in terms of the measured biometric 

parameters. This was to be expected due to the short treatment period, and lack 

of hormonal injections. Only lower fin index was observed, which has been 

traditionally attributed to a less mature sexual developmental stage of European 

eels (Pankhurst 1982; Peñaranda et al. 2010b), although fin length has not been 

found to correlate with maturity stage in other studies (Durif et al. 2006). 

Interestingly, the T20 group also showed a significantly lower fin index 

compared to the Control group, and therefore this change may not be a result 

of the temperature treatment, but rather a result of the prolonged fasting or 

housing in seawater during the experiment. A similar tendency was seen in the 

Tvar group, although without significant differences.  

7.4.2 Gonadotropins 

Pituitary gonadotropins stimulate testicular spermatogenesis and 

steroidogenesis. In both European eel males and females, lhb and fshb were 

shown to be differentially expressed in the pituitary during gametogenesis, with 

an maximum of fshb expression occurring early on in the maturation process, 

and a later maximum of lhb expression (Schmitz et al. 2005; Peñaranda et al. 

2010b). In eels, both gonadotropins have further been shown to induce 11KT 

and T production from the testes (Peñaranda et al. 2018; Kazeto et al. 2008). 

While 11KT can induce complete spermatogenesis in vitro (Ohta et al. 2007; 

Miura et al. 1991b), this is not the case in vivo (Lokman et al. 2016); however, 

11KT has been shown to stimulate the expression of the Fsh receptor (fshr; 

Levavi-Sivan et al. 2010) and thereby Fsh sensitivity and activity (García-López et 
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al. 2009; Planas and Swanson 1995). In Japanese eel, Fsh is an important factor 

in spermatogonial proliferation; however, only in combination with 

steroidogenesis (Ohta et al. 2007). Furthermore, a positive feedback loop of sex 

steroids on gonadotropins appears to exist in European eels, as androgens have 

been shown to stimulate Lhb expression from the pituitary (Huang et al. 1997). 

Our immunofluorescence labeling of Fsh did indicate that Fsh was present in all 

collected pituitaries, therefore it is plausible that Fsh was a mediating factor of 

the observed steroid increase and/or the documented proliferation in the T10 

group. We draw this conclusion based on the expression of fshr in the testes, 

which was up-regulated by our cold seawater treatment (Fig. 25), thus Fsh 

sensitivity and activity in the testes may have been enhanced. Our 

immunofluorescence labelling of Lhβ indicates that our cold seawater treatment 

induces a reliably stronger Lhβ signal in the pituitary. Higher Lh levels could, in 

turn, also be a stimulating factor generating the observed increases in 

androgens and thereby fshr expression and proliferation; however, since 

androgens can also stimulate Lhβ production, the question remains as to which 

factor came first. Furthermore, since Lhβ release was not analyzed in this study 

it is possible that the lower Lhβ levels suggested in the T20 and Control groups 

are in fact a result of a higher Lh release. However, increased lhb expression 

supports a hypothesis of increased protein production in the pituitaries of the 

eels from the T10 group.  

The FDR correction applied in this study to all gene expression analyses is rather 

conservative, making the significant results obtained after FDR correction 

reliable (Anders and Huber 2010). This claim is further supported by the 

immunofluorescence labelling results of Lhβ, as the lhb gene expression 

differences observed were not significant after FDR correction, yet strong 

enough for a reliably stronger Lhβ signal. Furthermore, the concurrence of the 

immunofluorescence labelling results and DEseq analysis results suggests that 
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our findings are reproducible, at least for lhb, since the fish used for 

immunofluorescence labelling were treated in the second experimental run, 

while those used for the transcriptome analysis were treated in the first 

experimental run. Of course, as only Lhβ was successfully analysed, this result is 

only conclusive for the Lhβ signal itself, and only provides suggestive evidence 

of the reproducibility of our experiment and of the validity of the FDR correction 

applied.  

7.4.3 Transcriptomic analysis 

Differential brain and pituitary gene expression 

The significant effect of the cold seawater treatment indicates that some 

mechanisms of thermoception were activated. Specifically, some genes found 

differentially expressed in the brain and pituitary are known for their 

involvement in thermoception e.g. h90a1 and trpv1 (Fig. 25 and 26) and thus 

these genes may be involved in the registration of temperature differences, 

which could be the driver of the changes observed in this study.  

Although the GO term “response to steroid hormone” was not significantly 

enriched after FDR correction, some interesting significantly differentially 

expressed genes were assigned this term. Among these were drd4 and esr1. It 

has been suggested that dopamine may be involved in the maturational 

blockage of puberty in European eels (Vidal et al. 2004) and the D2-like receptor, 

drd4, was significantly down-regulated in the pituitary after the cold seawater 

treatment (Fig. 26). Although speculative, this could indicate a weakening of 

dopamine-mediated neuroendocrine inhibition of eel puberty. The pituitary is a 

major target for estrogen in European eel (Morini et al. 2017b). In our data, esr1 

expression increased significantly in the pituitary after the T10 treatment (Fig. 

26). This result may suggest stimulation of maturation, as the expression of esr1 
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has been shown to increase in the pituitary of European eel males early on in 

artificial maturation (Morini et al. 2017b). 

The most notable results from the transcriptomic data from all the tissues were 

the enrichment of GO terms related to the immune response in the brain and 

pituitary. No visual signs of infection were seen on the animals during the 

experiment or at sampling, which would be expected if the massive differential 

expression of immune related genes was caused by an infection. Additionally, 

the brain and pituitary are not the most likely organs to observe differential 

expression patterns caused by an infection. Interestingly, several studies have 

documented a neural function for most of the enriched immune response GO 

terms found in this study (reviewed by Komal and Nashmi 2015; Boulanger 

2009). E.g. cytokines (Huising et al. 2004), Toll-like receptors (Huising et al. 

2004), major histone complexes (MHC; Corriveau et al. 1998; Shatz 2009; 

Needleman et al. 2010), and T-cell receptors (Syken and Shatz 2003; Komal and 

Nashmi 2015; Komal et al. 2014) have documented functions in neural 

development. Specifically, T-cell receptor signaling has been shown to be 

conveyed through cell-cell contact through MHC (Komal et al. 2014) and it has 

been speculated that the pruning of synapsis of the visual system (Lee et al. 

2014) can be facilitated by MHC/T-cell receptor signaling (Komal and Nashmi 

2015). As such, there seems to be a high occurrence of genes with documented 

and connected neural functions among the differentially expressed genes 

related to immune functions found in the brain and pituitary in the current 

study. The hypothesized involvement of these genes in the pruning of synapsis 

of the visual system leads to the speculation that the cold seawater treatment 

affects the synapsis of the visual system in the eel brain. Since the light 

environment of migrating eels is vastly different from that of premature eels 

foraging in shallow freshwaters, changes to the synapsis of the visual system 

have been hypothesized to be part of the adaptation of eels in preparation for 
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migration (Pankhurst and Lythgoe 1983). Furthermore, the upregulation of 

genes involved in photo signal transduction and visual system development 

(Churcher et al. 2014), and alterations to the retina, have previously been 

observed in developing European eels (Pankhurst and Lythgoe 1983).  

Differential testes gene expression  

The GO terms found to be enriched among the genes differentially expressed 

between T10 and Tvar groups, included the term “male meiotic nuclear 

division”. As previously discussed, a mechanism repressing spermatogonial 

differentiation towards meiosis may have been activated by the T10 treatment, 

as a decreased in differentiation beyond SPGA-diff was observed. This 

mechanism could be driven by an active downregulation of genes involved in 

later maturational processes, including meiosis, which could serve to optimize 

the synchronization of sexual maturation. The genes annotated to the GO term 

“male meiotic nuclear division”, could be involved in such a process, as the vast 

majority of these genes were down regulated in the T10 testis samples. Some of 

these downregulated genes were meiob, Sycp2, tex11, brdt, and brd2 (Fig. 25), 

all of which may, therefore, be interesting factors to analyse in future studies on 

the latter developmental stages of the European eel. 

Epigenetic factors  

The GO terms found to be enriched among the differentially expressed genes 

found in the testes, between the T10 and the Control groups, were often related 

to epigenetic alterations, similar to those seen in the pituitary and the brain 

(Table 7, 9, and 10, Fig. 23, 25 and 31). In particular, various functions and 

processes related to histone modification were found to be enriched. Histone 

modification can affect the alteration of transcription as a result of 

posttranslational modifications in the N-terminal tail of the histone proteins 

(Jenuwein and Allis 2001; Strahl and Allis 2000). Specifically methylation changes 
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of H3-K9 have, interestingly, been shown to be dependent on cold temperatures 

in Arabidopsis thaliana (Berr et al. 2011) and regulate gametogenesis specifically 

at the meiotic prophase in mice (Tachibana et al. 2007).  

Circadian rhythm factors 

GO terms related to circadian rhythm were also found to be significantly 

enriched in the testes and pituitary as a result of the T10 treatment (Table 7; Fig. 

23 and 30). The circadian clock is a central oscillator, which coordinates 

endogenous rhythms in the host. Although light is the strongest modulator, 

temperature has also been shown to influence the circadian rhythm system, 

especially in the absence of a light cycle (López-Olmeda and Sánchez-Vázquez 

2009; Lahiri et al. 2005). The strong regulation of the circadian rhythm system, 

caused by our T10 treatment, supports our hypothesis that the T10 treatment 

may have initiated alterations that the eels would naturally experience during 

early migration.  

Other differentially expressed genes  

Among the other significantly upregulated genes which were not related to 

enriched pathways were fshr, and ehd1 (Fig. 25). These genes are particularly 

important for the stimulation of early teleost maturation. ehd1 specifically, has 

been shown to be expressed in both Sertoli cells and spermatogonia, and to be 

vital in the pre-pubertal maturation and spermatogenesis of mice (Rainey et al. 

2010). Furthermore, the genes found to be differentially expressed in the testes 

between the T10 and Control groups, also included several growth factor related 

genes including pgfrb or vegfc (Fig. 25). Growth factor related genes have been 

associated with early maturation in teleost testes with decreasing expressions 

at later developmental stages (Schulz et al. 2010).  
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No GO terms were found to be significantly enriched (FDR<0.05) among the 94 

differentially expressed genes found between T10 and T20 in the testes. Since 

the Control and the T20 groups shared all the same conditions other than 

exposure time, a similar array of enriched GO terms were expected to be found 

within the differentially expressed genes from these groups relative to T10. 

Notably, when expanding the significance threshold to 0.1 (FDR<0.1), the GO 

terms “positive regulation of histone H3-K9 methylation”, “regulation of 

transcription involved in meiotic cell cycle”, “positive regulation of transcription 

involved in meiotic cell cycle” and “histone displacement” were found to be 

enriched. As the genes annotated to these GO terms are significantly 

differentially expressed following the same criteria as all the others, this 

indicates that the processes affected are similar in groups T20, Control and Tvar 

and therefore differ in a similar fashion to those of T10. Nevertheless, as shown 

in the histological results, the differences between T10 and T20 seem less 

pronounced than those found between T10 and Control. 

7.5 Conclusion  

In this study, clear effects of a cold seawater treatment were observed in 

European eel males, including increase in proliferation of SPGAdiff cells, 

decrease in the differentiation of SPGAdiff cells into early SPGB cells, changes in 

blood plasma steroid levels, possible increase in pituitary Lhβ protein levels, and 

BPG-axis transcriptomes. These results support our hypothesis that a cold 

seawater treatment causes a physiological transition that European eels 

naturally experience during the early stages of their oceanic migration. This 

hypothesis is logical given that the average temperature experienced by the eels 

in the early stages of their oceanic migration is highly similar to that of our cold 

seawater treatment. Apart from preparing the eels for migration, the 

hypothesized natural transition could improve the reproductive potential of eel 

males, which is indicated by the increased androgen levels (Burgerhout et al. 
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2016) and by increasing spermatogonial proliferation and synchronization. 

However, further studies would need to be conducted to test whether the cold 

seawater treatment can improve the eels´ response to hormonal treatments. 
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Abstract 

Paralogs pairs are more frequently observed in eels (Anguilla sp.) than in other 

teleosts. The paralogs often show low phylogenetic distances; however, they 

have been assigned to the third round of whole genome duplication (WGD), 

shared by all teleosts (3R), due to their conserved synteny. 

The apparent contradiction of low phylogenetic difference and 3R conserved 

synteny led us to study the duplicated gene complement of the freshwater eels. 

With this aim, we assembled de novo transcriptomes of two highly relevant 

freshwater eel species: The European (Anguilla anguilla) and the Japanese eel 

(Anguilla japonica). 

The duplicated gene complement was analysed in these transcriptomes, and in 

the genomes and transcriptomes of other Actinopterygii species. The study 

included an assessment of neutral genetic divergence (4dTv), synteny, and the 

phylogenetic origins and relationships of the duplicated gene complements. The 

analyses indicated a high accumulation of duplications (1217) among freshwater 

eel genes, which may have originated in a WGD event after the Elopomorpha 

lineage diverged from the remaining teleosts, and thus not at the 3R. However, 

very similar results were observed in the basal Osteoglossomorpha and 

Clupeocephala branches, indicating that the specific genomic regions of these 

paralogs may still have been under tetrasomic inheritance at the split of the 

teleost lineages. 

Therefore, two potential hypotheses may explain the results: i) The freshwater 

eel lineage experienced an additional WGD to 3R, and ii) Some duplicated 

genomic regions experienced lineage specific rediploidization after 3R in the 

ancestor to freshwater eels. The supporting/opposing evidence for both 

hypotheses has been discussed. 
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8.1 Introduction 

Large accumulations of gene duplications can originate from one single event, 

like a whole genome duplication (WGD; Ohno 1970) or from multiple small 

duplication events such as small segmental duplications (SDs; Gu et al. 2002), 

which are often found in tandem. Any of these duplication events may 

contribute to species evolution by providing raw genetic material for new 

phenotypic variation (Cañestro et al. 2013; Gu et al. 2002; Ohno 1970).  

Relatively recent SDs are often found in tandem and have been found in high 

abundance in several organisms including yeast (Llorente et al. 2000), daphnia 

(Colbourne et al. 2011), humans (Bailey et al. 2002; Gu et al. 2002; Vallente 

Samonte and Eichler 2016) and teleosts (Blomme et al. 2006; David et al. 2003; 

Jaillon et al. 2004; Lu et al. 2012; Rondeau et al. 2014). Soon after a SD, one 

paralog is most commonly lost (Ohno 1970) possibly due to an accumulation of 

deleterious mutations or genetic drift (Albalat and Cañestro 2016). In a few 

cases, a high abundance of SDs can persist for millions of years as seen in yeast 

(Llorente et al. 2000), common carp (David et al. 2003) and humans (Bailey et al. 

2002; Gu et al. 2002; Hafeez et al. 2016). This process has been associated with 

adaptation to new environments (Colbourne et al. 2011; Tautz and Domazet-

lošo 2011; Chain et al. 2014). On the other hand, WGDs are presumed rare in 

mammals (Mable et al. 2004), but are recurrently found in amphibians and 

reptiles (Otto and Whitton 2000) and have frequently been suggested in insects 

(Otto and Whitton 2000), fungi (Albertin and Marullo 2012), and plants (Schmutz 

et al. 2010; Del Pozo and Ramirez-Parra 2015; Soltis et al. 2014; Masterson 

1994). Recent WGD events have traditionally been observed by cytological 

studies through the observation of additional chromosomes (Soltis et al. 2014); 

however, ancient WGD events are often hidden (Parisod et al. 2010; Soltis et al. 

2014; Blanc 2004; Sémon and Wolfe 2007a) by massive gene losses (Inoue et al. 

2015; Wolfe 2001; Kassahn et al. 2009) and the fusion or loss of duplicated 
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chromosomes (Wang et al. 2015; Glasauer and Neuhauss 2014; Albertin and 

Marullo 2012; Chester et al. 2012; Gordon et al. 2011). Therefore, an ancient 

WGD event can only be discovered through specific analysis at a whole genome 

level. Consequently, discoveries of WGD events have accelerated as sequencing 

techniques have improved and genome-scale data has become more accessible 

(Parisod et al. 2010; Soltis et al. 2014; Sémon and Wolfe 2007a). It has been 

suggested that early on in the vertebrate lineage two WGDs (1R and 2R) 

occurred resulting in species radiation and evolution of new traits (Cañestro et 

al. 2013; Dehal and Boore 2005; Gu et al. 2002; Ohno 1970). In teleosts, strong 

genomic evidence supports the existence of an additional WGD called the 

teleost specific 3rd round of vertebrate WGD (3R), which occurred in the base of 

the teleost lineage between 350 and 320 million years go (MYA) (Christoffels et 

al. 2004; Vandepoele et al. 2004).  

In addition to 3R, WGD events appear to be a reoccurring phenomenon in 

Actinopterygians even when only considering cytological evidence (Leggatt and 

Iwama 2003; Comber and Smith 2004). Furthermore, Inoue et al. (Inoue et al. 

2015) found that 70-80% of the genes originating from the 3R WGD get lost after 

just 60 million years. Similarly, other studies have found that in most teleosts 3-

20% of the genes generated during 3R are conserved today (Glasauer and 

Neuhauss 2014). Moreover, extensive chromosome reorganizations have been 

suggested in the teleost lineage associated with 3R (Braasch et al. 2016; Bian et 

al. 2016) and after the salmonid specific 4th round of WGD (Ss4R; Lien et al. 

2016). Therefore, it has been suggested that further discoveries of new WGDs 

in teleosts may increase following the development of sequencing techniques 

and the increase in the number of studies specifically analysing the temporal 

distribution and quantity of gene duplications (Glasauer and Neuhauss 2014). 

This phenomenon of accelerating rates of WGD discoveries is currently observed 
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in plant genomics (Schmutz et al. 2010; Del Pozo and Ramirez-Parra 2015; Soltis 

et al. 2014; Blischak et al. 2018). 

Following a WGD event, paralog genes will start to diverge after the 

recombination between duplicated genes has stopped at the transition from 

tetrasomic to disomic inheritance (Robertson et al. 2017; Lien et al. 2016; Martin 

and Holland 2014), also referred to as cytological rediploidization. However, 

after autotetraploidization tetrasomic segregation may continue due to the high 

similarity between the duplicated chromosomes, and thus rediploidization may 

be vastly delayed after a WGD event (Robertson et al. 2017). Therefore, 

variations in phylogenetic divergences between paralog gene pairs originating 

from the same WGD event can appear in cases where a genomic region is under 

tetrasomic inheritance, at the time of a speciation event (Robertson et al. 2017). 

The resulting phylogenetic gene family trees from such event are virtually 

indistinguishable from gene trees where additional gene duplications have 

occurred (Martin and Holland 2014). In particular, in salmonids, strong evidence 

suggests that rediploidization after the Ss4R has been protracted in time for 

approximately a quarter of the genome (Lien et al. 2016; Wright et al. 1983). In 

turn, this mechanism has led to several salmonid gene duplicates to not present 

1:1 orthology relationships among different salmonid species, despite being 

created at the Ss4R (Lien et al. 2016; Berthelot et al. 2014; Allendorf and 

Thorgaard 1984). A protracted pseudotetraploid period has also been suggested 

in teleosts after 3R (Martin and Holland 2014). In particular, the peculiar Hox 

gene complement of the African butterfly fish (Pantodon buchholzi) is most 

parsimoniously explained by a hypothesis which includes protracted 

rediploidization for some genomic regions (Martin and Holland 2014). However, 

unequivocal support of protracted rediploidization beyond salmonids will 

require further careful phylogenomic analysis (Robertson et al. 2017). 
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Several studies have revealed a high occurrence of duplicated genes in 

freshwater eels (Anguilla spp., Elopomorpha; Dufour et al. 2005; Pasqualini et 

al. 2009; Henkel et al. 2012; Pasquier et al. 2012; Maugars and Dufour 2015; 

Morini et al. 2015; Lafont et al. 2016; Rozenfeld et al. 2016; Morini et al. 2017a, 

2017b). While these duplicated genes often present weak conserved synteny, 

suggesting a 3R origin, they also present low phylogenetic divergence between 

paralogs, indicating that they recently started to diverge. For example, Lafont et 

al. (Lafont et al. 2016) hypothesize that the entire genomic region containing the 

gene gper could have been duplicated in freshwater eels, and maybe also in 

other teleosts; and that the retention of duplicated genes may be higher in these 

eels than in other teleosts.  

The occurrence of duplicated genes in freshwater eels seems to be higher than 

for most teleost lineages, and specifically, the remarkably high conservation of 

duplicated gene sequences since 3R, often hypothesized for freshwater eel 

genes (Dufour et al. 2005; Pasqualini et al. 2009; Henkel et al. 2012; Pasquier et 

al. 2012; Maugars and Dufour 2015; Morini et al. 2015; Lafont et al. 2016; 

Rozenfeld et al. 2016; Morini et al. 2017a, 2017b), would be unique (Ravi and 

Venkatesh 2018). Owing to the fact that the availability of genetic raw material 

has been suggested to increase the potential of novel adaptation (Blischak et al. 

2018), information on the duplicated gene complement of eels may prove 

valuable in understanding the biology of these endangered species. Therefore, 

the peculiarity of the published data led us to quantify and analyse duplications 

in the most relevant freshwater eel species and investigate the temporal 

distribution of the events that created them. To this end, we assembled de novo 

transcriptomes of Japanese (Anguilla japonica) and European eel (Anguilla 

anguilla) from downloaded and newly generated Illumina RNA sequencing data, 

respectively. Furthermore, we performed phylogenetic reconstructions, 

assigned paralog pairs to branches of the resulting species tree, and calculated 

fourfold synonymous third-codon transversion (4dTv) distances for each paralog 
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pair identified within these transcriptomes. These analyses were run on our de 

novo transcriptomes and on multiple other fish transcriptomes and genomes. 

Our analysis supports the commonly suggested hypothesis of a high abundance 

of paralog pairs, unique to the freshwater eel species. However, the 

phylogenetic and 4dTv analyses suggest a post 3R origin, and a strong signal of 

synteny between the genomic environments of these paralogs opposes a 

hypothesis of a SD origin. Similar results were also obtained from the included 

Osteoglossomorpha branches and the basal Clupeocephala branch. This, in turn, 

suggests that the results were generated by protracted rediploidization in 

teleosts after the 3R. These results thus open a discussion on whether these 

duplicated genes are the result of a 4R WGD in a common ancestor to freshwater 

eels or rather have been conserved on chromosomal regions, which have 

experienced delayed rediploidization after the 3R. 

8.2 Materials and methods 

8.2.1 Fish husbandry 

Ten immature farm Euroepan eel males (mean body mass 96.7±3.6 g ± SEM) 

supplied by Valenciana de Acuicultura S.A. (Puzol, Valencia, Spain) were 

transported to the Aquaculture Laboratory at the Universitat Politècnica de 

València, Spain. The fish were kept in a 200-L tank, equipped with individual 

recirculation systems, a temperature control system (with heaters and coolers), 

and aeration. The fish were gradually acclimatized to seawater (final salinity 37 

± 0.3‰), over the course of two weeks. The temperature, oxygen level and pH 

of rearing were 20 ºC, 7-8 mg/L and ~ 8.2, respectively. The tank was covered to 

maintain, as far as possible, a constant dark photoperiod, and the fish were 

starved throughout the holding period. After acclimation, the fish were 

sacrificed in order to collect samples of the forebrain (telencephalon, 

diencephalon, and olfactory bulb), pituitary, and testis tissues.  
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8.2.2 Human and animal rights 

This study was carried out in strict accordance with the recommendations given 

in the Guide for the Care and Use of Laboratory Animals of the Spanish Royal 

Decree 53/2013 regarding the protection of animals used for scientific purposes 

(BOE 2013), and in accordance with the European Union regulations concerning 

the protection of experimental animals (Dir 86/609/EEC), Guidelines of the 

European Union (2010/63/EU). The protocol was approved by the Experimental 

Animal Ethics Committee from the Universitat Politècnica de València (UPV) and 

final permission was given by the local government (Generalitat Valenciana, 

Permit Number: 2014/VSC/PEA/00147). The fish were sacrificed using an 

overdose of anaesthesia. 

8.2.3 RNA extraction and sequencing 

High quality RNA was extracted from the forebrain, pituitary, and testis samples 

of one individual male eel (weight: 105.4 g, length: 38.5 cm, and eye index: 4.62), 

following the protocol developed by Peña-Llopis and Brugarolas (Peña-Llopis 

and Brugarolas 2013). The quantity and quality were tested using a bioanalyser 

(Agilent Technologies, USA), the samples with sufficient RNA integrity number 

(RIN) values (RIN > 8.2) and RNA amounts (>3 µg of total RNA) were selected. 

Total RNA of the three samples were shipped to the company Macrogen Korea 

(Seoul, South Korea). mRNA purification was carried out on these samples, using 

Sera-mag Magnetic Oligo (dT) Beads, followed by buffer fragmentation. Reverse 

transcription was followed by PCR amplification to prepare the samples for 

sequencing following the TruSeq stranded mRNA LT sample prep kit (Illumina, 

San Diego, USA). The strand information was kept in an Illumina Hiseq-4000 

sequencer (Illumina, San Diego, USA). Resulting raw sequences were 101bp 

paired-end reads which are available at the NCBI Sequence Read Archive (SRA) 

under the accession no. SRP126643.  
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Figure 32. Pipeline of the bioinformatics methodology. Folders describe the software used, 
light grey boxes describe the action taken, light brown bobbles describes the rationale for 
selected actions, and light blue boxes describe the specific goal of each section. Finally, green 
boxes represent external data input. 

8.2.4 Transcriptome assemblies and genomes 

The bioinformatics methodology described below is illustrated in figure 32. 

Specifically, FastQC (Andrews 2010) software was used to assess the quality of 
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the raw reads generated by Macrogen. Thereafter, trimmomatic (Bolger et al. 

2014) was used to trim the reads, eliminating known adaptor sequences, and 

low quality regions. Finally, trimmed reads shorter than 50 bp were filtered out. 

European eel reads were digitally normalized before assembly by Khmer 

software (Crusoe et al. 2015) using a k-mer length of 25 and a coverage of 100. 

Furthermore, the RNA-Seq raw reads of a Japanese eel Fertilized egg (SRA, NCBI: 

SRR1930110), preleptocephalus (SRA, NCBI: SRR1930112), leptocephalus (SRA, 

NCBI: SRR1930115) and glass eel (SRA, NCBI: SRR1930117) were downloaded 

from NCBI. The RNA-Seq raw reads for Northern pike (Esox lucius), elephantnose 

fish (Gnathonemus petersii) and silver arowana (Osteoglossum bicirrhosum) 

were downloaded from the PhyloFish project (Pasquier et al. 2016). All 

transcriptomes were then assembled using Trinity software (Haas et al. 2013), 

taking the strand orientation (for European eel) into account. Naturally 

produced transcripts may include intervals with a high bias for specific 

nucleotides (low-complexity), such transcripts may give high-scoring blast 

results but in fact be biologically insignificant. Therefore, the transcripts 

assembled were filtered according to their complexity (with a DUST score 

threshold of 7 and a DUST window of 64), length (with a minimum length of 500 

bp), and level of expression (with a transcripts per million (TPM) threshold of 1). 

The DUST module from BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used 

for this filtering, and Salmon software was used to estimate TPM. After 

assembly, the coding DNA sequences (CDSs) and proteins were annotated using 

the Trinotate functional annotation pipeline (Haas et al. 2013). Transcripts that 

share k-mers were clustered by Trinity. However, these transcripts might 

correspond to different transcript forms of the same gene or to closely related 

genes from a gene family. We split these transcripts into genes by running a 

transitive clustering based on a blast search. In this clustering, transcripts, which 

shared at least 100 bp with a minimum identity of 97%, were considered to be 

isoforms of the same gene. Thus, some Trinity clusters were split into several 
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genes. For each gene, the most expressed transcript, according to the Salmon 

software (Patro et al. 2017), was chosen as its representative (Fig. 32). 

For the synteny analysis, the available European (Henkel et al. 2012) and 

Japanese (Nomura et al. 2018) eel genomes were downloaded from the ZF-

Genomics and the DDBJ web site, respectively. The Atlantic salmon (Salmo salar) 

genome assembled by the International Cooperation to Sequence the Atlantic 

Salmon Genome (Lien et al. 2016) and the Asian arowana (Scleropages 

formosus) genome (Bian et al. 2016) were downloaded from NCBI. The genomes 

of zebrafish (Danio rerio; Howe et al. 2013), fugu (Takifugu rubripes; Kai et al. 

2011), spotted gar (Lepisosteus oculatus; Braasch et al. 2016), and platyfish 

(Xiphophorus maculatus; Schartl et al. 2013) were downloaded from ENSEMBL 

(release 87). The Northern pike genome (Rondeau et al. 2014) was downloaded 

from the Northern Pike Genome web site (Genbank accession 

GCA_000721915.1). For each gene in the genomes, the longest transcript was 

chosen as the representative. For the synteny analysis, the available European 

(Henkel et al. 2012) and Japanese (Nomura et al. 2018) eel genomes were 

downloaded from the ZF-Genomics and the DDBJ web site, respectively (Fig. 32). 

8.2.5 Genome and transcriptome quality assessment  

In order to assess the quality of the transcriptomes and genomes, we looked for 

the Benchmarking set of Universal Single-Copy Orthologues (BUSCO) conserved 

gene set in them (Simão et al. 2015). BUSCOs are conserved proteins which are 

expected to be found in complete genomes or transcriptomes. Therefore, the 

number of present, missing, or fragmented BUSCOs can be used as a quality 

control of a genome or transcriptome assembly. For this assessment, the 

Actinopterygii (odb9) gene set, which consists of 4584 single-copy genes that are 

present in at least 90% of Actinopterygii species, was used. As an additional 

comparison between the transcriptome and genomes of pike and eels, RNA-seq 
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reads were mapped both to the genome and transcriptome assemblies using 

HISAT2 (Pertea et al. 2016) and BWA-MEM (Li and Durbin 2010) software, 

respectively (Fig. 32), using default settings in both programs. 

8.2.6 Gene families 

Genes were clustered into gene families by the OrthoMCL web service (Li et al. 

2003), which uses the Markov Cluster algorithm to group homologs of all the 

included datasets, based on all against all BLASTP searches. Therefore, the 

OrthoMCL gene families were also considered gene families for this study. For 

each gene family, a multiple protein alignment was built. To avoid transcriptome 

assembly artefacts, proteins longer than 1,500 amino acids, transcripts with a 

DUST score higher than 7 and sequences with more than 40% gaps in the 

alignment, were filtered out. The software Clustal Omega (Sievers et al. 2011) 

carried out the protein multiple alignment and trimAl (Capella-gutiérrez et al. 

2009) removed the regions with too many gaps or those difficult to align. The 

protein alignment was used as a template to build the codon alignment by 

aligning the transcript sequences against the corresponding protein using the 

protein2dna exonerate algorithm (Slater and Birney 2005; Fig. 32). 

8.2.7 Phylogenetic reconstruction and duplication dating 

The resulting protein alignments were used by PHYLDOG (Boussau et al. 2012) 

software to generate a species tree as well as a gene family tree corresponding 

to each alignment. Due to the high memory requirements of PHYLDOG, not all 

the gene families could be run in the same analysis, therefore 10 analyses were 

carried out, with 8,000 protein alignments being chosen at random for each. 

Once all runs were finished, we checked that the species tree topology of all the 

10 species trees matched exactly. PHYLDOG uses a maximum likelihood 
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approach to simultaneously co-estimate the species and gene family trees from 

all individual alignments. 

 

Figure 33. Visualization of the assigned synteny types: “some synteny” (●), paralogs of genes found 
close to one duplicate are also found close to the other duplicate; “no synteny” (●), less than two 
paralogs for other genes are found close to both paralog duplicates; “close” (●), duplicated genes 
are close in the genome; “no information” (●), the duplicated genes are located in small scaffolds 
with too few gene families close by; “conflicting syntenies” (●), different synteny classification 
found in the genomes of the different species affected by the duplication. Sand coloured boxes 
represent genes which have not been assigned to a gene family, pink boxes represent the gene from 
which synteny is being assessed; all other colour boxes represent other genes which have been 
assigned to a gene family.  
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In order to confirm the tree topology of the PHYLDOG species tree, the species 

phylogeny was also reconstructed using a Bayesian approach with PhyloBayes 

MPI version 1.7 (Lartillot et al. 2009). Furthermore, from the gene families that 

had one gene for each species, 100 were chosen at random to create a 

concatenated alignment of 43,566 amino acids. The model used was CAT-GTR 

and three independent MCMC chains were run for 39,872, 56,328, and 39,285 

iterations (Fig. 32).  

PHYLDOG further tagged duplications and assigned these to specific tree 

branches based on the gene family trees. Between any pair of duplicated 

sequences, the number of transversions found in the third base of the codon 

was divided by the number of four-fold degenerated codons resulting in the 

4dTv distance. A correction to the 4dTv was applied: ln (1 - 2 * distance) / -2. The 

4dTv was calculated for all the duplications tagged by PHYLDOG within any gene 

family. The distribution of 4dTvs was fitted with a lognormal mixture model 

using the scikit-learn Gaussian Mixture class (Fig. 32).  

8.2.8 Synteny 

The kind of event that created each duplication was characterized by analysing 

the conserved synteny between the paralogs created by that duplication within 

a particular genome. Tandem SDs would create paralogs found close to each 

other in the genome, whereas the paralogs created by a WGD would be far 

apart, but surrounded by similar genes in each of the duplicated regions. Also, 

we have to consider that several phylogenetically close species can be affected 

by the same older duplication event. With this in mind, we categorized 

duplications as one of 4 classes (Fig. 33): i) the paralog genes that were found 

close to each other in the genome, within the 50 neighbouring genes to either 

side, were labelled as “close”, ii) the paralogs which were found in syntenic 

regions where 2 or more paralogs from other gene families were located within 
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the 50 neighbouring genes to either side, not necessarily in the same collinear 

order, were labelled as “some synteny”, iii) the cases in which fewer than 2 gene 

families could be identified within the 50 neighbouring genes to either side, from 

either of the paralogs genes, were labelled as “no info”, and iv) the cases where 

conflicting evidence was found in the genomes of the different species affected 

by the duplication were labelled as “conflicting syntenies”.  

This labelling of the duplications was carried out by a Python function and the 

Python class GenomeLocator. The location of each gene in a genome was 

obtained by performing a BLAST search with its representative transcript against 

the genome (Fig. 32). 

8.2.9 Investigation of functional category enrichment 

The EggNOG database has gene ontology (GO) annotations for each of its gene 

families (Huerta-Cepas et al. 2016). To match our gene families with those from 

the EggNOG database, the protein sequence with least gaps per each of our 

families was selected and a HMMER search (Finn et al. 2011) was carried out 

against the EggNOG position weight matrices with an e-value threshold of 10-4. 

The GO annotation of the best EggNOG hit in this search was transferred to our 

family. The enrichment analysis was carried out using the Fisher statistic and the 

weight algorithm of the topGO library (Alexa and Rahnenfuhrer 2016) from the 

Bioconductor project. Freshwater eel transcripts were annotated using the 

BlastKOALA KEGG service (Kanehisa et al. 2016) and a Fisher exact test was 

carried out, using the scipy implementation, to look for overrepresented KEGG 

pathways in the duplications assigned to the basal freshwater eel branch (Fig. 

32). 
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8.3 Results 

8.3.1 Transcriptome assemblies 

Forebrain, testis, and pituitary RNA samples, from an individual European eel, 

were sequenced, generating a total of 191 million Illumina reads (66, 60 and 65 

million from the forebrain, testis, and pituitary, respectively), with a length of 

101 bp. These reads were assembled into one de novo transcriptome, using the 

Trinity assembler after a digital normalization step (Crusoe et al. 2015) that left 

75 million representative reads. The same procedure was used to generate one 

de novo transcriptome from Illumina RNA-sequencing reads of the Japanese eel, 

which was downloaded from the NCBI's Sequence Read Archive (Hsu et al. 

2015). The transcriptomes of Northern pike, elephantnose fish and silver 

arowana were also assembled by Trinity using Illumina reads from the Phylofish 

database (Pasquier et al. 2016). The number of unigenes (henceforth referred 

to as transcripts) assembled ranged from 64,857 to 78,610 (Table 11) and the 

number of transcript clusters ranged from 46,585 to 55,667 (henceforth 

referred to as genes; Table 12).  

Table 11: Metrics of included raw read datasets from European eel (Anguilla 
anguilla), Japanese eel (Anguilla japonica), northern Pike (Esox lucius), elephantnose 
fish (Gnathonemus petersi), and silver arowana (Osteoglossum bicirrhosum). 

 

Species N.º Reads Q30 Transcripts 
Mean GC 

content (%) 

European eel 181,322,106 0.994 77,247 51.17 

Northern Pike 553,710,218 0.989 68,489 48.05 

Elephantnose fish 498,451,616 0.993 74,642 49.75 

Silver arowana 490,649,254 0.992 78,610 49.18 

Japanese eel  458,032,126 0.986 64,857 48.13 
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Table 12: Quantities of included genes per included species: European eel (Anguilla 
anguilla), Japanese eel (Anguilla japonica), zebrafish (Danio rerio), northern pike (Esox 
lucius), elephantnose fish (Gnathonemus petersi), spotted gar (Lepisosteus oculatus), 
Asian arowana (Scleropages formosus), silver arowana (Osteoglossum bicirrhosum), 
Atlantic salmon (Salmo salar), fugu (Takifugu rubripes), and platyfish (Xiphophorus 
maculatus). “Transcripts” represents unigenes, “Genes” represents the number of 
transcript clusters, “Representative transcripts with predicted protein” represents the 
number of genes with a successful protein annotation, “Gene family transcripts” 
represents the representative transcripts with predicted protein with a successful gene 
family annotation, and “% of genes assigned to a gene family” represents the percentage 
of representative transcripts with predicted protein with successful gene family 
annotation. 

Species Transcripts Genes 

Representative 
transcripts with 

predicted protein 

 
Gene family 
transcripts 

% of genes 
assigned to a 
gene family 

European eel 77,247 54,879 27,696 25,862 93.38 

Japanese eel 64,857 46,585 23,780 23,098 97.13 

Zebrafish 58,274 32,189 25,790 22,703 88.03 

Northern pike 68,489 49,154 23,843 21,696 90.99 

Elephantnose fish 74,642 50,455 24,857 22,036 88.65 

Spotted gar 22,483 18,341 18,341 17,872 97.44 

Silver arowana 78,610 55,667 24,938 21,604 86.63 

Asian arowana 43,354 23,799 22,740 20,637 90.75 

Atlantic salmon 109,584 55,104 48,593 42,625 87.72 

Fugu 47,841 18,523 18,523 17,698 95.55 

Platyfish 20,454 20,379 20,379 19,807 97.19 

 
 

8.3.2 Genome and transcriptome quality 

The genomes and transcriptomes considered for inclusion in the analysis were 

quality tested by a BUSCO assessment of completeness. In general, when 

available, genomes were used instead of transcriptomes, except for pike, and 

European eel, where the transcriptomes outperformed the genomes according 

to the BUSCO assessment (Fig. 34). Furthermore, the Japanese eel transcriptome 

was preferred due to a problem with the Japanese eel genome annotation. 

These transcriptomes also provided a higher mapping of RNA sequencing reads 
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compared to their corresponding genomes. The percentage of reads that 

mapped concordantly against the genome and the transcriptome were 65.8 and 

91.9%, respectively, for European eel, 74.3 and 88.4% for Japanese eel and 44.6 

and 85.8% for pike. Furthermore, previously published European eel RNA-

sequencing experiments were also mapped to the available European eel 

genome and our de novo transcriptome. In this case, 52.2% (Coppe et al. 2010), 

57.9% (Burgerhout et al. 2016), and 66.18% (Ager-Wick et al. 2013) reads 

mapped concordantly against the eel genome whereas 84.3% (Coppe et al. 

2010), 69.5% (Burgerhout et al. 2016), and 87.32% (Ager-Wick et al. 2013) 

mapped against the transcriptome. 

 

Figure 34. BUSCO (Benchmarking set of Universal Single-Copy Orthologues) result for included 
genome and transcriptome. The sequence of a BUSCO gene can be found complete or 
fragmented in each genome and it can be found once (single copy), more than once (duplicated) 
or not found (missing). Included genomes are: European eel (Anguilla anguilla), Japanese eel 
(Anguilla japonica), Asian arowana (Scleropages formosus), zebrafish (Danio rerio), northern 
pike (Esox lucius), spotted gar (Lepisosteus oculatus), fugu (Takifugu rubripes), platyfish 
(Xiphophorus maculatus) and Atlantic salmon (Salmo salar). Included transcriptomes: European 
eel, Japanese eel, northern pike, elephantnose fish (Gnathonemus petersii) and silver arowana 
(Osteoglossum bicirrhosum). 

8.3.3 Gene families 

Genes were assigned to gene families according to the gene family 

categorization of OrthoMCL (Li et al. 2003). The percentage of genes with 
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predicted proteins assigned to a family by the OrthoMCL web service (Li et al. 

2003) ranged from 86.6% (silver arowana) to 97.4% (spotted gar; Table 12). 

Overall, 15,771 gene families were covered, from which 13,972 protein and 

codon alignments were built. These families contained between 2 and 172 

genes, with 11 genes per family being the mode. 

8.3.4 Phylogenetic reconstruction and duplication characteristics 

PHYLDOG software was used to tag gene duplications, create a species tree, and 

assign duplications to tree branches, based on gene family phylogenetic trees. 

Overall, trees for 10,714 gene families were created by PHYLDOG and based on 

the tree topology, branches in which a gene appeared to duplicate were 

labelled. The resulting PHYLDOG species tree matched the species tree topology 

created by phylobayes (Lartillot et al. 2009) and the resulting tree of the 

concatenated alignment; a cladogram of these trees is included in figure 35. 

Since PHYLDOG distinguishes between gene divergence at speciation events and 

duplications, all genes resulting from tagged duplications are assumed to be 

paralogs. The assigned duplications were subsequently characterized by synteny 

and 4dTv distance. The 4dTv distance is used to estimate the accumulation of 

synonymous mutation, which can be used to estimate the time that has passed 

from when mutations started to accumulate. The assigned synteny classes 

include: “close” which indicates SDs that are a result of tandem duplications; 

“some synteny” which indicates a potential WGD origin (or at least a potential 

duplication event containing >100 genes); and “no synteny”, which supports 

neither a SD nor a WGD origin (Fig 33). 

PHYLDOG labelled 5,063 duplications to the basal teleost branch, after the split 

of the spotted gar, with a 4dTv mode of 0.75 (Fig 35, Node 3). Of the paralogs 

created by these duplications, 73.8% were located in regions with some synteny, 

1.5% were close to each other, and 22.5% had no synteny (Fig 35, Node 3). These 

percentages were calculated without taking into account the duplications where 
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no information regarding the physical location of the genes could be established. 

The duplications assigned to this basal teleost branch (Fig 35, Node 3) included 

all gene families with members in both sister clades and thus are assumed to 

have originated at the 3R. This branch further included hundreds of duplications 

found in the eels. From these duplications, 30 families had conserved 2 paralog 

pairs, one of which had started to diverge at 3R and one in a common ancestor 

of freshwater eels after the split with Ostoglosomorphas. From these 30 

families, all paralog pairs which had started to diverge in a common ancestor of 

freshwater eels (Fig 35, Node 9) were located in regions with some synteny. 

1,280 duplications were assigned to the branch basal to the included 

Clupeocephalan teleosts: zebrafish, fugu, platyfish, northern pike, and Atlantic 

salmon (Fig 35, Node 4). These duplications showed a very similar distribution 

with those of the 3R branch, with an overall 4dTv mode of 0.75 (Fig 35, Node 3). 

The basal freshwater eel branch was assigned 1,217 duplications of which 55.3, 

15.8, and 24.3% were labelled as some synteny, close and without synteny, 

respectively (Fig 35, Node 9). The European and Japanese eel specific branches 

were assigned 510 and 127 duplications, from which 32.2, and 34.7% were 

labelled as some synteny, 50.0 and 48.4% were labelled as close, and 17.1 and 

14.7% were labelled as without synteny, respectively (Fig 35, Nodes 14 and 15). 

The basal Osteoglossomorpha and the basal arowana branches were assigned 

618 and 661 duplications, from which 95.7, and 76.2% were labelled as some 

synteny, 0.9 and 17.7% were labelled as close, and 3.5 and 5.1% were labelled 

as without synteny, respectively (Fig 35, Nodes 8 and 12). 

The salmon and zebrafish specific branches were assigned 8,787 and 1,525 

duplications, respectively, and most of these duplications seemed recent, 

according to their 4dTv distances. In the salmon branch, most of the duplications 

(87.0%) were characterized by paralogs located in syntenic regions, whereas 
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most of the zebrafish paralogs (60.5%) were characterized as “close” (Fig 35, 

Nodes 16 and 7). 

 

Figure 35. Quantity, 4dTv and synteny distributions of duplications assigned to each branch of 
the PHYLDOG species tree. Each panel represents the branch with the corresponding number in 
the cladogram in the bottom right-hand corner. Species included in this study are: European eel 
(Anguilla anguilla), Japanese eel (Anguilla japonica), zebrafish (Danio rerio), northern pike (Esox 
lucius), spotted gar (Lepisosteus oculatus), fugu (Takifugu rubripes), platyfish (Xiphophorus 
maculatus), Atlantic salmon (Salmo salar), elephantnose fish (Gnathonemus petersii), Asian 
arowana (Scleropages formosus) and silver arowana (Osteoglossum bicirrhosum). The synteny 
types are the following: close (●), duplicated genes are close in the genome; some synteny (●), 
paralogs of genes found close to one duplicate are also found close to the other duplicate; no 
synteny (●), less than two paralogs for other genes are found close to both paralog duplicates; 
no information (●), the duplicated genes are located in small scaffolds with too few genes close 
by; conflicting syntenies (●), different synteny classifications found in the genomes of the 
different species affected by the duplication. 
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For all the included species the “close” paralogs (tandem SDs) tended to show 

low divergence according to their 4dTv, whereas the duplications found in 

synteny and most of the duplications without sufficient genomic location 

information, were more often found to have higher 4dTv distance (Fig. 35). 

The duplications assigned to the basal freshwater eel branch showed a 4dTv 

mode of ~0.4 (Fig 35, Node 9). In order to investigate the relative age of all the 

homolog pairs found in the eels, we ran a 4dTv distance analysis independent of 

the PHYLDOG tree topology. In this analysis, we compared the 4dTv distribution 

found for European eel homologs with Japanese eel, elephantnose fish, silver 

arowana and Asian arowana (Fig 36). The results showed a homolog density 

mode at 4dTv of ~0.4 for the European and Japanese eel, and 0.5 for the 

speciation event that separated elephantnose fish, silver arowana, and Asian 

arowana from the freshwater eels (Fig 36). 

 

Figure 36. 4dTv distribution of European eel (Anguilla anguilla) and Japanese eel homologs (▬), 
European eel and elephantnose fish (Gnathonemus petersii) homologs (▬), and European eel, 
silver arowana (Osteoglossum bicirrhosum) homologs (▬), and European eel and Asian 
arowana (Scleropages formosus) homologs (▬).  

 



143 
 

 

Figure 37. Histograms of all 4dTv distances between paralogs of the included teleosts, 
presented with yellow and blue bars. Furthermore, a probability density estimate curve is 
plotted on top of the histograms in red. Density values (y-axis) do not correspond to the density 
estimate. The included species are: European eel (Anguilla anguilla), Japanese eel (Anguilla 
japonica), zebrafish (Danio rerio), northern pike (Esox lucius), spotted gar (Lepisosteus 
oculatus), fugu (Takifugu rubripes), platyfish (Xiphophorus maculatus), Atlantic salmon (Salmo 
salar), elephantnose fish (Gnathonemus petersii), Asian arowana (Scleropages formosus) and 
silver arowana (Osteoglossum bicirrhosum). 
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Furthermore, in order to obtain comparisons between older eel paralogs (>0.2 

of 4dTv) and other teleosts, we produced histograms of the 4dTv distances 

calculated between all paralogs within each species from 0.2 to 1.4 of 4dTv (Fig 

37). Additionally, a nonparametric probability density estimate was calculated, 

using the Gaussian mixture model and plotted on top of the histogram (Fig 37). 

These results show an older local density maximum (likely originating from 3R) 

for all teleosts ranging from 0.62 (Zebrafish) to 0.88 (Fugu) of 4dTv. 

Furthermore, European eel, Japanese eel, Asian arowana and possibly silver 

arowana showed an additional 4dTv local density maximum at 0.41, 0.42, 0.56 

and 0.55 of 4dTv, respectively (Fig 37). A more recent local density maximum 

was seen in the Atlantic salmon distribution at 0.15 (Fig 35, Node 16). 

8.3.5 Functional category enrichment 

To investigate whether some functional categories were overrepresented 

among the paralogs assigned to the basal eel branch, two enrichment tests were 

carried out. First, 1,041 unique GO terms were assigned to 3,607 genes from the 

basal eel branch, by comparing them to the annotated EggNOG gene families. 

From these terms, we performed an enrichment analysis using the topGO R 

library (Alexa and Rahnenfuhrer 2016). The resulting enriched GO terms are 

presented in Table 13. In many cases, these terms were involved either in 

signalling (e.g. receptor activity, molecular transducer activity, or small GTPase 

mediated signal transduction), development (e.g. embryonic camera-type eye 

morphogenesis, gastrulation with mouth forming second, or cell migration 

involved in gastrulation), ion transport (e.g. anion binding, ATP hydrolysis 

coupled proton transport, or organic anion transmembrane transporter 

activity), metabolism (e.g. carbohydrate phosphorylation, ubiquitin-dependent 

protein catabolic process, or lipopolysaccharide biosynthetic process), or 

neuronal function (e.g. forebrain development, motor neuron axon guidance, or 

neuromast development; Table 13). Secondly, KEGG terms were assigned to 
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1,674 freshwater eel genes using BlastKOALA (Kanehisa et al. 2016) and mapped 

onto the KEGG pathways using the KEGG Mapper tool. A Fisher test, corrected 

for multiple comparisons using False Discovery Rate, was used to look for 

enriched KEGG pathways in the basal eel branch (Table 14). Most of the KEGG 

pathways found to be enriched were related to the immune system, nervous 

system, metabolism and signal transduction. Interestingly, the most significantly 

enriched KEGG pathway was “Dopaminergic synapse”. 

Table 13: Enriched GO terms from the duplicated genes shared by freshwater eels. “Aspects” indicates the 
specific GO term aspect of each enriched GO term(BP= Biological process, CC= Cellular component, and MF = 
Molecular function. “GO ID” indicates the identification number of each enriched GO term. “Term “indicates 
the verbal description of each enriched GO term. “Annotated” indicates the number of GO terms which are 
associated with each enriched GO term. “Significant” indicates the number of GO terms associated to each 
enriched GO term found among the duplicated genes. “Expected” indicates the number of GO terms expected 
to be found linked to each enriched GO term. “FDR” indicates the False Discovery Rate adjusted P-value from 
the Fisher exact test of enrichment. 
Aspect GO ID Term Annotated Significant Expected FDR 

BP GO:0007264 
small GTPase mediated signal 
transductio... 256 43 22.97 0.000064 

BP GO:0045176 apical protein localization 3 3 0.27 0.00072 

BP GO:0008045 motor neuron axon guidance 10 5 0.9 0.00099 

BP GO:0048514 blood vessel morphogenesis 121 20 10.86 0.00257 
BP GO:0000132 establishment of mitotic spindle orienta... 8 4 0.72 0.00335 
BP 

GO:0048596 
embryonic camera-type eye 
morphogenesis 11 4 0.99 0.00625 

BP GO:0015991 ATP hydrolysis coupled proton transport 20 6 1.79 0.00661 
BP GO:0008333 endosome to lysosome transport 2 2 0.18 0.00804 
BP GO:0015031 protein transport 284 39 25.48 0.00900 
BP GO:0006886 intracellular protein transport 156 19 14 0.00907 
BP GO:0007160 cell-matrix adhesion 16 5 1.44 0.01084 
BP GO:0001756 somitogenesis 50 10 4.49 0.01200 
BP GO:0060042 retina morphogenesis in camera-type eye 37 9 3.32 0.01887 
BP GO:0072358 cardiovascular system development 280 44 25.12 0.01905 
BP GO:0040023 establishment of nucleus localization 4 3 0.36 0.02262 
BP GO:0009826 unidimensional cell growth 3 2 0.27 0.02268 
BP GO:0030326 embryonic limb morphogenesis 3 2 0.27 0.02268 
BP GO:0008202 steroid metabolic process 34 3 3.05 0.02280 
BP 

GO:0007179 
transforming growth factor beta 
receptor... 13 4 1.17 0.02382 

BP 
GO:0071840 

cellular component organization or 
bioge... 846 81 75.91 0.02822 

BP GO:0048884 neuromast development 15 4 1.35 0.02854 
BP GO:0001569 patterning of blood vessels 8 3 0.72 0.02858 
BP 

GO:0016998 
cell wall macromolecule catabolic 
proces... 8 3 0.72 0.02858 

BP GO:0046835 carbohydrate phosphorylation 8 3 0.72 0.02858 
BP GO:0043473 pigmentation 57 7 5.11 0.02863 
BP 

GO:0060059 
embryonic retina morphogenesis in 
camera... 14 4 1.26 0.03104 

BP GO:0001702 gastrulation with mouth forming second 23 6 2.06 0.04241 
BP GO:0060034 notochord cell differentiation 6 3 0.54 0.04259 
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BP GO:0061035 regulation of cartilage development 7 3 0.63 0.04260 
BP 

GO:0009103 
lipopolysaCellular Componentharide 
biosynthetic process 4 2 0.36 0.04268 

BP GO:0043114 regulation of vascular permeability 4 2 0.36 0.04268 
BP GO:0015721 bile acid and bile salt transport 4 2 0.36 0.04268 
BP 

GO:0006511 
ubiquitin-dependent protein catabolic 
pr... 91 14 8.17 0.04728 

BP GO:0030900 forebrain development 53 10 4.76 0.04832 
BP GO:0042074 cell migration involved in gastrulation 37 9 3.32 0.04885 

CC GO:0031105 septin complex 6 4 0.54 0.00084 
CC GO:0030018 Z disc 10 5 0.9 0.00099 
CC GO:0031461 cullin-RING ubiquitin ligase complex 28 8 2.52 0.00555 
CC GO:0008290 F-actin capping protein complex 2 2 0.18 0.00807 
CC GO:0005915 zonula adherens 2 2 0.18 0.00807 
CC GO:0005737 cytoplasm 1750 175 157.31 0.01734 
CC GO:0005768 endosome 47 8 4.22 0.01771 
CC 

GO:0033180 
proton-transporting V-type ATPase V1 
do... 10 4 0.9 0.01913 

CC GO:0030424 axon 7 3 0.63 0.01920 
CC GO:0000159 protein phosphatase type 2A complex 3 2 0.27 0.02275 
CC GO:0005667 transcription factor complex 79 12 7.1 0.02336 
CC GO:0005912 adherens junction 7 4 0.63 0.04255 
CC GO:0031519 PcG protein complex 9 4 0.81 0.04258 
CC 

GO:0005890 
sodium:potassium-exchanging ATPase 
compl... 4 2 0.36 0.04281 

CC GO:0043198 dendritic shaft 4 2 0.36 0.04281 
CC GO:0005885 Arp2/3 protein complex 4 2 0.36 0.04281 
CC GO:0005765 lysosomal membrane 16 4 1.44 0.04914 

MF GO:0005525 GTP binding 251 43 22.24 1.6e-05 
MF GO:0043168 anion binding 1289 142 114.24 0.0018 
MF GO:0060089 molecular transducer activity 778 56 68.95 0.0078 
MF 

GO:0004331 
fructose-2 6-bisphosphate 2-phosphatase 
... 2 2 0.18 0.0078 

MF GO:0045296 cadherin binding 2 2 0.18 0.0078 
MF 

GO:0046933 
proton-transporting ATP synthase 
activit... 10 4 0.89 0.0083 

MF 
GO:0004702 

receptor signaling protein 
serine/threon... 19 7 1.68 0.0112 

MF GO:0008242 omega peptidase activity 6 3 0.53 0.0113 
MF 

GO:0031683 
G-protein beta/gamma-subunit complex 
bin... 6 3 0.53 0.0113 

MF GO:0008013 beta-catenin binding 7 3 0.62 0.0185 
MF GO:0016820 hydrolase activity acting on acid anhyd... 38 8 3.37 0.0219 
MF 

GO:0004749 
ribose phosphate diphosphokinase 
activit... 3 2 0.27 0.0221 

MF 
GO:0008601 

protein phosphatase type 2A regulator 
ac... 3 2 0.27 0.0221 

MF GO:0003796 lysozyme activity 3 2 0.27 0.0221 
MF GO:0008146 sulfotransferase activity 43 10 3.81 0.0249 
MF GO:0051287 NAD binding 22 5 1.95 0.0298 
MF GO:0003714 transcription corepressor activity 9 3 0.8 0.0388 
MF 

GO:0008514 
organic anion transmembrane 
transporter ... 22 5 1.95 0.0399 

MF GO:0004872 receptor activity 695 41 61.59 0.0495 
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Table 14: Enriched KEGG-terms from the duplicated genes shared by freshwater eels. “KEGG ID” 

indicates the identification number of each enriched KEGG pathway. “Term“ indicates the verbal 
description of each enriched KEGG pathway. “Annotated” indicates the number of KEGG pathways, 
which are associated with each enriched KEGG pathway. “Significant” indicates the number of KEGG 
pathways associated with each enriched KEGG pathway found among the duplicated genes. “Expected” 
indicates the number of KEGG pathways expected to be found associated with each enriched KEGG 
pathway. “FDR” indicates the False Discovery Rate adjusted P-value from the Fisher exact test of 
enrichment.  

 

KEGG ID Term Annotated Significant Expected FDR 

04728 Dopaminergic synapse 38 283 12 0,000001 

03015 mRNA surveillance pathway 21 129 5 0,000082 

04660 T cell receptor signaling pathway 27 204 8 0,000082 

04071 Sphingolipid signaling pathway 29 238 10 0,000112 

05142 Chagas disease (American trypanosomiasis) 23 180 7 0,000518 

04659 Th17 cell differentiation 23 184 7 0,000596 

05162 Measles 21 168 7 0,001190 

04390 Hippo signaling pathway 29 282 11 0,001190 

04658 Th1 and Th2 cell differentiation 19 148 6 0,001601 

04261 Adrenergic signaling in cardiomyocytes 28 291 12 0,004378 

05100 Bacterial invasion of epithelial cells 20 183 7 0,005845 

05032 Morphine addiction 18 155 6 0,005845 

00625 
Chloroalkane and chloroalkene 
degradation 5 10 0 0,005845 

04640 Hematopoietic cell lineage 12 79 3 0,006536 

04910 Insulin signaling pathway 26 276 11 0,006551 

04630 Jak-STAT signaling pathway 18 171 7 0,012920 

04016 MAPK signaling pathway - plant 6 22 1 0,014553 

04022 cGMP-PKG signaling pathway 29 350 14 0,015915 

04917 Prolactin signaling pathway 15 133 5 0,015915 

05130 Pathogenic Escherichia coli infection 13 108 4 0,019059 

05418 Fluid shear stress and atherosclerosis 22 245 10 0,022738 

00020 Citrate cycle (TCA cycle) 8 47 2 0,022808 

04080 Neuroactive ligand-receptor interaction 31 395 16 0,023393 

04151 PI3K-Akt signaling pathway 37 499 20 0,023393 

04514 Cell adhesion molecules (CAMs) 21 231 9 0,023393 

04391 Hippo signaling pathway - fly 16 158 6 0,034750 

05340 Primary immunodeficiency 7 41 2 0,036069 

04350 TGF-beta signaling pathway 16 164 7 0,038388 

05133 Pertussis 12 111 5 0,045104 

05152 Tuberculosis 21 247 10 0,047421 

04664 Fc epsilon RI signaling pathway 12 113 5 0,048089 

00510 N-Glycan biosynthesis 9 71 3 0,048943 

04144 Endocytosis 37 533 22 0,048943 

00350 Tyrosine metabolism 6 34 1 0,048943 

04510 Focal adhesion 28 379 15 0,048943 
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8.4 Discussion  

The present study found more than one thousand gene families in which the 

gene family tree topology indicates a duplication in a common ancestor of 

freshwater eels sometime after the split of Elopomorpha and 

Osteoglossomorpha. Only phylogenetic species tree branches with previously 

documented WGDs (Fig 35, Nodes 1, 3, 4, and 16) and the zebrafish specific 

branch (Fig 35, Node 7) were assigned more duplications than the basal 

freshwater eel branch (Fig 35, Node 9). The vast majority of the assigned 

zebrafish specific duplications formed a 4dTv local density maximum at ~0 and 

were found “close” in the genome, thus these duplications appear to be tandem 

SDs, the presence of which concurs with previous studies (Blomme et al. 2006; 

Lu et al. 2012; Howe et al. 2013).  

8.4.1 The origin of the duplications assigned to the basal freshwater eel 

branch 

In some cases, it has been shown that SDs could be retained at specific points in 

time (Chain et al. 2014; Colbourne et al. 2011; Tautz and Domazet-lošo 2011). 

However, most duplications assigned to the basal freshwater eel branch were 

detected in large syntenic blocks which opposes a hypothesis of a SD origin.  

Rather the synteny results suggest that the duplications assigned to the basal 

freshwater eel branch originated in larger portions e.g. whole regions (large 

SDs), chromosomes or genomes. In particular, a WGD origin is consistent with 

the number of duplications observed and the 4dTv distribution (Fig 35, Node 9), 

which showed one distinct 4dTv density mode (4dTv ~0.4) placed along the long 

branch leading to the freshwater eels. Figure 37 (and Fig. 36) further shows 

duplications which started diverging at the 3R in the eel transcriptome, as a 4dTv 

local density maximum of ~0.75. The notable similarity between this local 
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density maximum and the local density maximum of the other 3R generated 

genes from all the included teleosts (Figs. 35 and 37) suggests that these 

paralogs (4dTv ~ 0.75) were created by the 3R. This hypothesis is further 

supported by the results of the phylogenetic analysis (Fig. 35, Node 3), which 

assigned hundreds of duplications, which are still present in the eel, to the 3R 

branch. Moreover, no modes of comparable magnitude at 4dTv ~ 0.75 can be 

seen in any of the post 3R branches leading to the freshwater eels (Fig. 35, Nodes 

5 and 9). Therefore, if the duplications assigned to the basal freshwater eel 

branch were created by a WGD event, and assuming instant rediploidization 

after the 3R, this event would be more recent and different to the 3R, and thus 

should be named a 4R WGD event. 

However, cytological rediploidization is not always completed immediately after 

an autotetraploidization WGD event, as shown in the case of salmonids 

(Robertson et al. 2017). Therefore, the origin of the duplications assigned to the 

basal freshwater eel branch could also be explained by a hypothesis of lineage-

specific rediploidization after the 3R. Protracted rediploidization could result in 

lower rates of gene losses since deleterious mutations have less time to 

accumulate in one paralog and thereby create a pseudogene, which could 

explain the high number of paralog pairs found in eel. This hypothesis could also 

explain both the PHYLDOG and 4dTv results, as paralog genes only start to 

diverge after the rediploidization of their genomic region (Robertson et al. 2017; 

Lien et al. 2016; Martin and Holland 2014). If the duplications assigned to the 

basal freshwater eel branch had, in fact, experienced delayed rediploidization 

from the 3R, the same genomic regions would have also experienced delayed 

rediploidization in the lineage of the remaining teleosts. Interestingly, relatively 

large quantities of duplications, with conserved synteny, were also assigned to 

the basal Clupeocephala branch and the Osteoglossomorpha branches (Fig. 35, 

Nodes 4, 8, and 12). This observation supports the hypothesis that the 
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duplications assigned to the basal freshwater eel branch were located in 

genomic regions, which experienced delayed rediploidization after the 3R. 

However, lineage-specific rediploidization has only been unequivocally 

documented in salmonids, and more studies are needed to demonstrate this 

process in other species. Therefore, it remains to be determined if this 

mechanism is a salmonid specific phenomenon. Furthermore, due to the 

observed 4dTv distances, the mechanisms would have protracted 

rediploidization for a longer time in eels than in salmonids. Moreover, the 4dTv 

analysis revealed very similar results for the 3R branch and the basal 

Clupeocephala branch (Fig. 35, Nodes 3 and 4) and for the shared 

Osteoglossomorpha and Arowana branches, respectively (Fig. 35, Nodes 8 and 

12). This result supports the hypothesis that these duplications were divided due 

to a potential PHYLDOG artefact, explained below. Additionally, 30 gene families 

were found which showed a topology concurring with a 3R event followed by a 

4R event, since duplication had been conserved from both events in the same 

gene family. Furthermore, the suspected 4R duplications were located in regions 

with some synteny. These trees directly oppose the hypothesis of protracted 

rediploidization; however, only for these 30 families. In the event of an eel 4R 

WGD, more such trees would be expected. 

8.4.2 Possible PHYLDOG artefact 

According to PHYLDOG, the shared teleost duplications split into two events 

placed in the 3R branch and the basal Clupeocephala branch (Fig. 35, Nodes 

3and 4). These results could be caused by an artefact from the phylogenetic 

analysis. Specifically, PHYLDOG software assigns duplications to branches based 

on the successful identification of the daughter genes on the branches of both 

sister clades, thus lower genomic information (fewer or less complete 

genomes/transcriptomes) increases the chance of not finding a gene and thus 

misplacing duplications. In this case, although the number of 
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genomes/transcriptomes are the same, the amount of genomic information is 

substantially different between the two daughter clades, since the 

genomes/transcriptomes on one side (Figs.  35, from Node 5), are generally 

much less complete than those on the other side (Figs. 34 and 35, from Node 4). 

In support of this hypothesis is the 4dTv analysis, in which the duplications 

assigned to the 3R and the basal Clupeocephala branch indicate approximately 

the same mode (Fig. 35, Nodes 3 and 4), suggesting that they started to diverge 

at the same time. Therefore, a PHYLDOG artefact, in which duplications can leak 

down to a daughter branch which is basal to a clade containing more genomic 

information, is also a parsimonious explanation for most of the duplications 

assigned to the basal Clupeocephala branch.  

8.4.3 Arowana results 

As an unexpected result of our analysis, the included Osteoglossomorphas also 

appear to contain a high quantity of duplications, which likely started diverging 

after the split between Elopomorphs and Osteoglossomorphas. These 

duplications also included a high occurrence of paralogs with some conserved 

synteny between them. This result suggests that these genes were duplicated in 

larger portions e.g. whole regions (large SDs), chromosomes or genome and not 

by smaller SDs. When combining the basal Osteoglossomorpha and the basal 

arowana branches these were assigned a similar quantity of duplications as the 

basal freshwater eel branch. This result supports the hypothesis that some 

genomic regions were still under tetrasomic inheritance, from the 3R, at the 

time of the split between Elopomorphs and Osteoglossomorphas. However, it is 

also possible that the duplications were generated by a separate duplication 

event in a common ancestor to the included Osteoglossomorphas but have 

leaked into the basal arowana branch and the Asian arowana specific branch in 

the phylogenetic analysis due to the PHYLDOG artefact described above. The 

PHYLDOG artefact hypothesis is supported by the 4dTv analysis, as the 4dTv 
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modes of these branches are very similar, and since the Elephantnose fish 

transcriptomes are the least complete dataset of these branches. To generate a 

better supported hypothesis of the origin of these duplications a study 

dedicated to this purpose should be conducted.  

8.4.4 Start of divergence of the duplications assigned to the basal 

freshwater eel branch 

In the independent 4dTv analysis, without considering phylogenetic tree 

topologies, the 4dTv of the homologs between the European eel and the 

Japanese eel, the elephantnose fish and the arowanas, showed that European 

eel and Japanese eel homologs have a 4dTv mode at ~ 0.4. On the other hand, 

the homologs between the European eel and any Osteoglossomorpha species 

form a 4dTv mode at ~ 0.5 (Fig. 36). This result indicates that the duplications 

found in the freshwater eel species started diverging after the split between 

Elopomorphs and Osteoglossomorphas (Fig. 36). Therefore, the phylogenetic 

reconstruction and the 4dTv distances together suggest that the duplications 

assigned to the basal freshwater eel branch (4dTv ~ 0.4) started diverging after 

the teleost specific 3R duplication event (320-350 MYA; Vandepoele et al. 2004; 

Christoffels et al. 2004) and after the split between eels and 

Osteoglossomorphas, but before the Ss4R (88-103 MYA; Macqueen et al. 2014).  

If the 4dTv mode observed in the basal freshwater eel branch was the result of 

new duplications, then these duplications would likely have originated in a 

common ancestor to all members of the anguillidae family, as these first appear 

20-50 MYA (Minegishi et al. 2005). Due to the 4dTv observed, this event could 

also be shared by wider Elopomorpha; however, without analysing other 

anguilliforms or Elopomorpha transcriptomes or genomes, this hypothesis 

remains speculative.  
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8.4.5 Previously published related data 

In concurrence with the present study, other studies have reported data 

suggesting an unusually high quantity of gene duplications in eels. In the 

additional data included by Inoue et al. (Inoue et al. 2015), the eel and zebrafish 

are the species with the highest percentage of duplicated genes (36.6% and 

31.9%, respectively). Furthermore, an unexpectedly high number of Hox genes 

(73 genes) were found in the analysis of the draft eel genome (Henkel et al. 

2012). In this study (Henkel et al. 2012), the phylogenetic distance between Hox 

clusters was remarkably short, making it impossible to distinguish between the 

3R “a” or “b” association of 3 out of 4 cluster pairs based on DNA sequence 

alone. Several other studies focusing on particular genes have likewise found 

paralog pairs in eels, which are not found in other teleosts (Dufour et al. 2005; 

Pasqualini et al. 2009; Henkel et al. 2012; Pasquier et al. 2012; Maugars and 

Dufour 2015; Morini et al. 2015; Lafont et al. 2016; Rozenfeld et al. 2016; Morini 

et al. 2017a, 2017b) and similarly, an unexpected short phylogenetic distance is 

often found between eel paralog pairs. These results support both a 4R 

hypothesis and a hypothesis of a 3R origin followed by protracted 

rediploidization. However, many of the referenced studies also presented 

results of weak conserved local synteny indicating a 3R origin. These synteny 

results are unexpected following both a 4R hypothesis and the hypothesis of 

protracted rediploidization. We draw this conclusion based on the notion that 

the close genomic region of genes, which experienced delayed rediploidization, 

is highly expected to also have been under tetrasomic inheritance for an 

extended period (Robertson et al. 2017). Thus, these neighbouring genes should 

not accumulate mutations similarly to homolog regions of other teleosts, which 

experienced immediate rediploidization, and thus the synteny of these regions 

are unlikely to math. 
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8.4.6 Allele avoidance of transcriptome assemblies 

Transcriptomes of 3 tissues collected from one individual European eel were 

used to assemble the European eel de novo transcriptome. The decision to use 

one eel was made due to the fact that transcriptome assemblies based on 

multiple individuals are more prone to mistake allelic variants for recent gene 

duplications. Despite our transitive clustering, alleles could still be present in our 

transcriptome. However, these would resemble very similar paralogs, and be 

assigned a very low 4dTv distance. Therefore, it is implausible that the local 

density maximum of eel paralogs found at 4dTv ~ 0.4 could be alleles. 

Additionally, since our assessment of synteny was based on the genome, the 

paralog pairs from which synteny could be assessed are highly unlikely to include 

these potential alleles. 

8.5 Conclusions 

The data presented in this study support the hypothesis that a remarkably high 

amount of paralogs pairs started to diverge in a common ancestor of the 

freshwater eel lineage after the split from the Osteoglossomorpha lineage. The 

4dTv and phylogenetic analyses revealed a clear clustering of these paralogs in 

the basal freshwater eel branch with a 4dTv mode at ~0.4. The synteny of these 

paralog pairs suggests they originated in large portions, most likely from a WGD 

event. However, the results do not unequivocally support/oppose whether i) i) 

These paralogs originated from the 3R but are located in genomic regions which 

have experienced protracted rediploidization; ii) These paralogs originated in a 

4R WGD in a common ancestor to freshwater eels; or iii) Both i and ii have 

contributed to these paralogs. The present results offer robust information on 

the duplicated gene complement of freshwater eels, thus providing novel 

insights into the peculiar biology of the critically endangered European eel. 

However, additional high quality genome resources of other Elopomorpha 
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members are needed to further study the dynamics of gene duplication and 

conservation in early teleost evolution. 
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9. GENERAL DISCUSSION 

9.1 Recombinant hormones for eel maturation  

Species-specific variations of gonadotropin functions (Gomez et al. 1999; 

Mateos et al. 2003) and sequence exist between teleosts (Levavi-Sivan et al. 

2010). These findings suggest that the maturation of each teleost is fitted for 

homologous gonadotropins in species-specific optimal concentrations. 

Therefore, homologous recombinant gonadotropins in optimized 

concentrations might improve artificial eel maturation (Ohta et al. 2017). 

However, the field of recombinant gonadotropin use in fish is still developing. 

Our results (Chapter 1) indicates that recombinant gonadotropins can induce 

the entire spermatogenesis and spermiation process in European eel. However, 

the results also illustrate some of the challenges of recombinant gonadotropin 

use. E.g. the results are still inferior to those obtained with standard hCG 

treatments. This difference can likely be mitigated through optimization of the 

recombinant gonadotropin production protocols, as these have been subject to 

far less scrutiny than those of the purified/recombinant hCG.  

The observed full spermatogenesis and spermiation from the aarFsh treatment 

in Chapter 1 were expected since recombinant Fsh has been shown to have the 

same effect in zebrafish (Zhang et al. 2015b) and induce spermatogenesis in 

Japanese eel (Kobayashi et al. 2010). However, the reverse result of the aarLh-

treatment (with no aarFsh injection) was more surprising. In particular, because 

hCG (an Lh-analog; Pérez et al. 2000), goldfish recombinant Lh (Hayakawa et al. 

2008b) and Japanese eel recombinant Lh (Ohta et al. 2017) can induce full 

spermatogenesis in Japanese eels. Potentially, higher hormone dosages could 

improve sperm quality in our study (Chapter 1) in general, and especially in the 

case of our aarLh-treatment, potentially to account for the longer half-life of hCG 

in circulation (Ohta and Tanaka 1997). Higher LH dosages have been used with 
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better results in Japanese eel e.g. Kobayashi et al (2010) used 2000 µg/kg and 

Ohta et al. (2017) used 500 µg/kg recombinant Lh, the latter example being a 

~20 fold dosage compared to our aarLh–treatment (22.2 µg/kg; Chapter 1). This 

difference in concentration might explain why our aarLh-treatment only induced 

spermatogenesis to the pre-meiosis spermatogonial proliferation stage (Chapter 

1), despite elevated steroid levels. Thus, potentially a threshold concentration 

of Lh is needed for maturation to surpass the spermatogonial proliferation stage 

in eels, which potentially could be related to the threshold at which Lh can 

activate Fshr (Kazeto et al. 2008; Schulz et al. 2010). A low Lh concentration 

could potentially also explain the very low sperm volumes collected (Chapter 1), 

since Lh may be the main factor for increasing sperm volume (Mylonas et al. 

2017).  

Alternatively, a specific ratio of Fsh and Lh could be an important factor for 

further development. In particular, fshb and E2 are often observed to increase 

in eel after saltwater acclimation (Aida and Tsukamoto 2003; Peñaranda et al. 

2010b, 2016a). As the eels of Chapter 1 are exposed to saltwater acclimation 

before initiation of the experiment, the aarLh treatment is likely not a model for 

the effect of Lh in eel males without the influence of Fsh and other factors. 

Similarly, this co-transcription of fshb and lhb, progressing towards similar levels, 

has been documented in the last stages of the silvering process (Schmitz et al. 

2005; Aroua et al. 2005), at which stage the eels must be assumed to experience 

the pre-pubertal blockage. Thus, inhibition of Fsh and increased Lh 

concentration may be needed for further maturation, rather than simply 

increased lh concentration. Following this hypothesis continues hCG injection 

may cause further elevated lhb and suppressed fshb transcription (Peñaranda et 

al. 2010b) and therethrough forces further spermatogenesis. Supporting this 

hypothesis, high levels of Lh relative to the levels of Fsh may be the process 
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which induces later maturation in other semelparous teleosts (Schulz et al. 2010; 

Gomez et al. 1999).  

9.2 Pre-pubertal neuroendocrine blockage 

The above-mentioned hypotheses of the aarLh-treatment results may be too 

simple. In particular, under the assumption that Sertoli cells control 

spermatogonial proliferation (Schulz et al. 2010), and that Sertoli cells do not 

express Lhr (García-López et al. 2009), the additional assumption of the 

activation of Fshr by high concentrations of Lh is crucial for the above 

hypotheses. However, hCG is capable of inducing full spermiation as well 

(Asturiano et al. 2005, 2006; Gallego et al. 2012; Herranz-Jusdado et al. 2019), 

but hCG does probably not activate Fshr like Lh, even at high concentrations 

(Bogerd et al. 2001; Laan et al. 2002; Kwok et al. 2005). Although hCG has been 

shown to affect eel pituitary gonadotropin production (Peñaranda et al. 2010b), 

the effect of hCG is unlikely to be a result of pituitary Lh release, since the effect 

of hCG is also seen in hypophysectomised eels (Boëtius and Boëtius 1967; Khan 

et al. 1987). Thus, it is clear that the current understanding of the induction of 

eel spermatogenesis is not complete. Therefore, it is also possible that the 

observed aarLh–treatment results could have been caused by unknown factors 

of the pre-pubertal neuroendocrine blockage, which is hypothesized to obstruct 

eel male maturation further than the pre-meiosis spermatogonial proliferation 

stage (Durif et al. 2005). E.g. one such factor could be the expression of actively 

inhibitory molecules in the testis, similar to those discussed in Chapter 2. 

Commonly, this blockage of eel puberty is hypothesized to be projected through 

inhibition of luteinizing hormone (Lh) release (Dufour et al. 2010); However, the 

exact and complete mechanism of this blockage is largely unknown. E.g. some 

studies indicate that this blockage is, to some extent, alleviated in 

hermaphrodite eels (Geffroy and Bardonnet 2016; Geffroy et al. 2012). Based on 
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these findings, one may hypothesize that the steroids of a female eel would 

mature a male eel (thus the mature testis in hermaphrodite eels). However, 

although the androgen profiles were similar, the results in terms of gonad 

development were different in Chapter 1, and although 11KT can induce full 

spermatogenesis in vitro, 11KT implant could generally not induce 

spermatogenesis further than the spermatogonial proliferation stage in 

European eels despite relatively high 11KT plasma levels (Lokman et al. 2016).  

Furthermore, lack of Fsh, as seen in Chapter 1, may cause regression in the testis 

similar to what has been observed after artificial eel maturation with a single 

hCG injection (Boëtius and Boëtius 1967; Lokman et al. 2016). Which may be 

related to the observation that hCG injections appear to inhibit Fsh expression 

(Peñaranda et al. 2010b). An alternative hypothesis may be that the hCG 

treatment only affects the SPG cells present at the time of injection (Boëtius and 

Boëtius 1967). This hypothesis seems to concur with the results of Boëtius and 

Boëtius (1967) in which the maximum GSI was observed 30 days after the last 

hCG injection with gonads presenting only spermatozoa and spermatogonia 

(Boëtius and Boëtius 1967). According to this hypothesis, it appears that hCG (or 

factors influenced by hCG) can induce existing spermatogonia (or their Sertoli 

cells) to overcome a hurdle and from there on developing fully, while the 

remaining BPG-axis is largely not affected. Of course, these hypotheses are not 

mutually exclusive, and both regression and the notion of a hurdle to overcome 

could be true, which could indicate that some cells fail to complete their 

maturation and as a consequence are reabsorbed (Lokman et al. 2016).  

Chapter 2 of this thesis might also provide some additional insight into this pre-

pubertal neuroendocrine blockage. Although cold seawater likely induces some 

progression of early maturation it is also strongly evident that this treatment 

alone does not overcome the blockage (Boëtius and Boëtius 1967; Gallego et al. 

2012; Peñaranda et al. 2016a). E.g. males kept at 10 °C cannot mature further 
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than the spermatogonial proliferating stage despite hCG injection (Gallego et al. 

2012). This phenomenon may be related to the result that the T10 treatment 

also appears to increase T production, which has been shown to upregulate TH, 

in the brain of European eels, and therethrough increased inhibition of puberty 

through the action of DA (Weltzien et al. 2006). Interestingly, both the T10 and 

aarLh treated European eel males of Chapter 1 and 2, appeared hormonally 

blocked at the pre-meiosis spermatogonial proliferation stage. This stage was 

also seen after 2 weeks of hCG treatment at 20 °C (Peñaranda et al. 2010b) at 

which point the pituitary levels of Lh and Fsh had progressed toward similar 

levels, highly similar to the projection of gonadotropins found in Chapter 2 (Fig. 

38). 

 

Figure 38. Boxplot comparing Lh, Fsh, and 11KT levels between Chapter 2 (Cold-water 
treatment), and the results of Peñaranda et al. (2010; hCG treatment), both at control and after 
2 weeks (2W) of treatment.  

Likewise, female Japanese eel at early vitellogenesis (the blocked stage of 

Japanese eel females) also contains similar levels of Fsh and Lh (Aida and 

Tsukamoto 2003). These results may also suggest that the pre-pubertal 
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neuroendocrine blockage is induced in European eel males at the 

spermatogonial proliferation stage under conditions which promotes similar 

levels of Fsh and Lh production, similar to the observation in Chapter 1. Although 

caution should be applied as these suggestive results could be mere correlation 

rather than causation and surely more factors than Lh and Fsh levels must be 

involved, as hCG injection cannot overcome the blockage at 10 °C (Gallego et al. 

2012).  

9.3 A deeper look at the cold seawater treatment experiment  

A cold seawater treatment of European eel males clearly affects the BPG-axis 

(Chapter 2). This result is not particularly surprising as our group previously has 

done extensive analyses of the effect of temperature on European eels during 

artificially maturing (Pérez et al. 2011; Gallego et al. 2012; Baeza et al. 2014; 

Mazzeo et al. 2014; Peñaranda et al. 2016a). Specifically, increased 

spermatogonial proliferation as a result of cold seawater treatment, as shown 

in Chapter 2, was recently speculated in the Ph.D. thesis of Dr. Morini of our 

group (Morini 2016). It is, however, noteworthy that the same histological stage 

of the testis (the spermatogonial proliferation stage) reached after 2 weeks of 

the cold seawater treatment (Chapter 2) was also not exceeded after 2 weeks of 

hCG treatment at 20 °C (Peñaranda et al. 2010b). Furthermore, the 2 week cold 

seawater treatment induced similar development of eye index and of liver 

weight (although without reaching significant differences in either case; 

Peñaranda et al. 2010b). Moreover, the pituitary levels of lhb and fshb in both 

cases progressed toward similar levels (Fig. 38) and reported 11KT levels were 

highly similar between the two studies (Fig. 38). Similar levels of Fsh and Lh 

during early maturational stages, at which eels maturation is commonly blocked, 

have previously been reported in eels (Jeng et al. 2007; Saito et al. 2003; Pérez 

et al. 2011; Huang et al. 2009). 
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The observed levels of 11KT seen in the T10 group of Chapter 2 (Fig. 21 and 38) 

is further similar to those observed after a single hCG injection of Japanese eel 

(Miura et al. 1991a, c). In particular, Miura et al. (1991a) reported 11KT levels 

increasing from 0.24 ± 0.10 ng/ml to 5.86 ± 1.1 ng/ml one day after a single hCG 

injection, this level later reached a maximum of 7.83 ± 1.22 ng/ml. Moreover, 

Miura et al. (1991c) found 11KT levels increasing from 0.20 ± 0.11 ng/ml to 4.9 

± 1.1 ng/ml after the first hCG injection (Miura et al. 1991c). Regarding T, a 

similar trend of increasing levels is also observed, although the levels of T shown 

in Chapter 2 (T increased from 0.99 ± 0.12 ng/ml to 2.32 ± 0.17 ng/ml; Fig. 21) 

for European eel males were higher than those presented by Miura et al. (1991a 

and c) for Japanese eel males. In particular, Miura et al. (1991a) showed T 

increases from 0.08 ± 0.02 ng/ml to 0.88 ± 0.22 ng/ml one day after a single hCG 

injection and Miura et al. (1991c) found that T reached 1.7 ± 0.41 ng/ml after 

the first hCG injection. Thus, multiple parameters of reproductive development 

seem highly similar between the initial development of hCG- and low 

temperature-treated eel males (T10, Chapter 2), which may suggest that a 

similar process is initially induced by both types of treatment.  

The experimental design of Chapter 2, not including hormonal treatment and 

the use of RNA-sequencing, has generated a tremendous amount of data, which 

have broadened our knowledge on some aspects of eel natural maturation. 

Furthermore, the vast amount of statistically significant data far exceeded the 

scope of Chapter 2 and thus several interesting findings were not discussed in 

that paper. As such the hypothesis of an important regulation of the BPG-axis 

function of European eel males by cold seawater is supported by more specific 

gene transcription data than what could be fitted into Chapter 2. 

E.g. Among the genes annotated with GO terms related to histone modifications 

were jard2. jard2 is involved in the release of methyl groups from histone 

protein through Fe2+ dioxygenase activity, and thereby regulation of gene 



163 
 

transcription (Takeuchi et al. 2006; Klose et al. 2006; Fodor et al. 2006; Chen et 

al. 2006). The function of jard2 has been associated to reproduction in Pacific 

oyster (Crassostrea gigas; Fellous et al. 2014) and has been found to be 

upregulated with resulting lower histone methylation levels at colder 

temperatures (Fellous et al. 2015). Furthermore, both the gene family, which 

jard2 belongs to and the process of histone methylation has been associated 

with circadian rhythm regulation (Jones et al. 2010). As shown in Chapter 2 

several enriched GO terms were related to “circadian rhythm regulation”. 

Although light is the strongest synchronizer of the circadian clock, temperature 

has also been shown to influence the system, especially in the absence of a light 

cycle (López-Olmeda and Sánchez-Vázquez 2009; Lahiri et al. 2005), e.g. Lahiri 

et al. (2005) found that cold temperatures increased the transcription of per1b 

and cry3 in zebrafish. Circadian rhythm genes have further been suggested to 

regulate melatonin synthesis is mammals (Korf et al. 2003) and fish (Vatine et al. 

2011; Saha et al. 2018). Reversely, melatonin itself has also been shown to affect 

the transcription of circadian rhythm genes (Alonso-Vale et al. 2008) and to be 

regulated by temperature in fish (Falcón et al. 2010; Saha et al. 2018). Indeed, 

melatonin has been suggested as a key transmitter of environmental signals in 

fish (Dufour et al. 2010; Burgerhout et al. 2018), and changes in the melatonin 

level has been suggested as crucial for the onset of puberty (Malpaux et al. 2001; 

Burgerhout et al. 2018). Specifically, in eels, melatonin has been shown to 

upregulate Th, downregulate fshb and lhb transcription, and induce decreasing 

steroid levels in European eels (Sebert et al. 2008). Thus it appears plausible that 

high melatonin levels are a strong reinforce of the DA block of European eel 

puberty (Sebert et al. 2008; Dufour et al. 2010; Burgerhout et al. 2018). Although 

melatonin was not measured in Chapter 2, it should be considered whether the 

substantial differential transcription of the circadian clock genes may have 

affected or be affected by melatonin. 
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Also among the differentially transcribed genes, from the testis, annotated to 

GO terms related to circadian rhythm were the zinc-finger transcription factor 

(gli1). gli1 is a zinc finger protein, which is involved in transcriptional regulation. 

gli1 has been found to be transcribed in testes specifically in type A and B 

spermatogonia in mice, where it has been shown to be important for 

spermatogenesis (Persengiev et al. 1997). The role of gli1 on spermatogenesis is 

possibly a result of its interaction with the desert hedgehog (Dhh) signaling 

pathway (Bitgood et al. 1996; Echelard et al. 1993). Several other genes found 

differentially transcribed in Chapter 2, have also been associated with this 

pathway which may be involved in an autocrine signaling loop which sustains 

SPGA cells in the mouse testis (Sahin et al. 2014). The Dhh pathway seems highly 

involved in spermatogenesis as male mice with a Dhh null mutation are sterile 

(Bitgood et al. 1996; Kroft et al. 2001). Furthermore, the Dhh pathway has been 

shown to be significantly regulated during the salmon transition into puberty 

(Skaftnesmo et al. 2017). Like gli1, myocyte enhancer factor 2A (mef2a) was also 

found differentially transcribed in the testes between the T10 group and control 

and was annotated with GO terms related to histone modification and similar to 

gli1, mef2a has been suggested as an important component of Dhh signaling 

(Wang et al. 2006).  

Another enriched GO term from the testis transcriptome, which did not receive 

attention in Chapter 2, was “Stem cell differentiation”. Among the genes 

annotated to this GO term was semaphorin 7a and 3b (sem7a and sem3b). 

Various semaphorins, specifically sem7a, has been shown to be essential for the 

GnRH-1 neuronal system possibly regulated by various sex steroids (Messina et 

al. 2011; Lettieri et al. 2016), and male sem7a knockout mice showed significant 

gonad defects (Messina et al. 2011). Whether these results of Messina et al. 

(2011) are caused by an insufficient GnRH-1 neuronal system or due to other 

functions of sem7a in the testis itself was unclear for the authors, as sem7a 
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transcription has also been hypothesized in the testis (Perälä et al. 2005). Yet 

another significantly upregulated gene, which did not receive attention in 

Chapter 2 was cytochrome p450 2j2 (cp2j2). cp2j2 is an enzyme involved in the 

metabolism of arachidonic acid, which has been shown to stimulate T 

production in specific teleosts (Wade et al. 1994) and to be highly important for 

European eel sperm production (Baeza et al. 2015a). This result may be related 

to the significantly higher T and 11KT plasma levels observed in T10 samples 

compared to the control group, of Chapter 2, or could be an indicator for sexual 

development.  

Furthermore, as mentioned in Chapter 2, brdt, brd2, meiob, sycp2, and tex11 

were annotated to the GO term “male meiotic nuclear division”, were 

significantly downregulated in the T10 samples compared to Tvar, and were 

hypothesized to be involved in the inhibition of spermatogonial development 

(Chapter 2) in the eel testes. Interestingly, some of these genes were also 

observed to be upregulated in the Tvar and T20 treated samples, relative to 

control, which could indicate that some later spermatogenic processes are 

activated at higher or variating temperatures in migrating eels. Under natural 

conditions, this might suit the eels well, as water temperatures likely increases 

gradually at the late stages of their oceanic migration, while still fluctuating due 

to vertical migration (Wysujack et al. 2015). However, under artificial conditions, 

it is plausible that the timing of higher temperatures is mismatched with the 

developmental stage of the fish, which could cause hampering of reproductive 

capabilities.  

Similar to the testis results, several interesting differentially transcribed or 

enriched genes and GO terms found in the pituitary were not discussed in 

Chapter 2. E.g. the GO term “sequestering of BMP in extracellular matrix”. Bone 

morphogenetic proteins (BMP) are together with activin/inhibin, and 

transforming growth factor (TGF) beta among the best characterized secreted 
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growth factors (Bobe et al. 2004). Furthermore, BMP signaling has been 

suggested to cause H3-k9 histone demethylation resulting in control of stem cell 

fate (Chen et al. 2013). Finally, BMP has been shown to cause upregulation of 

circadian rhythm factors such as id1 (Chen et al. 2013), which also was 

differentially transcribed in the pituitary between T10 and Control groups, in 

Chapter 2. Similarly, the GO term “positive regulation of reactive oxygen species 

metabolic process” was also found enriched but not discussed. Reactive oxygen 

species (ROS) are metabolites of oxygen that are only partially reduced thus 

carrying reactive potential (Terasaka et al. 2017). In mammals, evidence 

suggests that ROS is involved in the regulation of the pulse interaction of GnRH 

on the pituitary through the MAP1/3 pathway (Kim and Lawson 2015).  

Another interesting gene found differentially transcribed in the pituitary was the 

transcription factor npas4. npas4 is involved in the control of the number of 

GABA-releasing synapses and has been shown to be targeting major 

histocompatibility complex 1 (MHC 1; Lin et al. 2008). GABA-immunoreactive 

neurons have been shown to be distributed throughout the European eel brain 

and pituitary (Medina et al. 1994). Specifically, the superficial layer of the optic 

tectum, an area of massive retina projection, contains a high density of GABA-

reactive fibers and terminals (Medina et al. 1994). Furthermore, a liberating 

effect on GnRH of GABA has been seen in goldfish pituitaries, and GABA has been 

shown to be regulated by temperature (Fraser et al. 2002).  

Apart from supporting the hypothesis of Chapter 2, the statistically significant 

RNA-sequencing results also advocate for several interesting aspects of natural 

eel maturation, which may call for further research. Interestingly, due to the 

nature of the RNA-sequencing analysis and the FDR-correcting (Benjamini and 

Hochberg 1995), hundreds of genes have likely been falsely assigned to be not 

differentially transcribed (false-negatives), even when only considering the 

testes transcriptomes. In particular, those genes that have a significant P-value 
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but an insignificant FDR-corrected P-value are ~95% likely to be differentially 

transcribed in a similar experiment in which only that gene transcription was 

measured (Noble 2009). Below such genes are referred to as “insignificant”. 

Furthermore, other phenomena can also generate false-negatives. E.g. the cases 

where a gene is transcribed by several different cell types in the testis, while a 

treatment only affects the transcription of one cell type. In such cases, the truly 

differentially transcribed gene may be undetected by whole tissue RNA-

sequencing as the differential transcription of the affected cell will be diluted by 

the unaffected transcription of not-affected cells. In our analysis, such genes 

may also appear as “insignificant”. 

Several of these “insignificant” genes have very well documented functions in 

sexual maturation and spermatogenesis and may also be important in natural 

eel maturation. E.g. Two nuclear estrogen receptors (esr1 and 2) are among 

these genes (Fig. 39).  
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Figure 39. Boxplots of the transcription pattern of estrogen receptor 1 and 2 (esr1 and esr2), 
androgen receptor beta (ar-b), and cytochrome P450 cholesterol side-chain cleavage (P450scc). 
Different letters indicate statistical significance between treatments before FDR correction.  

Estrogen receptors, on Sertoli cells, have been shown to be important for the 

control and preparation for early spermatogenesis and SPG proliferation as a 

mediator of estrogen signaling in Japanese eel (Miura et al. 1999; Miura and 

Miura 2011). Interestingly, estrogen-induced SPG proliferation does not 

promote differentiation, unlike 11KT- or DHP-induced proliferation. Thus this 

process mimics what was observed in the T10 group of Chapter 2 (Miura et al. 

1999; Miura and Miura 2011). Furthermore, In European eel testis, high 

transcription levels of esr’s were observed at early spermatogenesis and 

hypothesized to be mediating the role of E2 (Morini et al. 2017b).  

Another interesting “insignificant” gene is the androgen receptor beta (ar-b; Fig. 

39). In the teleost testes ar’s are mainly transcribed in Sertoli cells while the 

androgens are mainly produced by Leydig cells. However, ar’s have also been 

suggested in Leydig cells, and androgens have been shown to affect 

steroidogenic gene transcription in these cells (Schulz et al. 2010). In particular, 

in European eel, ar-b has been suggested as the most physiologically important 

ar and was shown to be particularly highly transcribed in the testis during early 

spermatogenesis (Peñaranda et al. 2014).  

Also among the “insignificant” genes are cytochrome P450 cholesterol side-

chain cleavage (P450scc; Fig. 39). P450scc is a bottleneck enzyme of steroid 

production. This gene has recently been shown to have increasing transcription 

levels correlating with the transition from yellow to fully matured (spawned) eel 

(Burgerhout et al. 2016), and peak expression at the spermatogonial 

proliferation stage (Peñaranda et al. 2016a).  
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Other interesting “insignificant” genes includes: hsp70 which has been shown to 

be involved in testis development in rainbow darter (Etheostoma caeruleum; 

Bahamonde et al. 2016); lhr1, which is important for Lh activity (Maugars and 

Dufour 2015); kisspeptin receptor 1 (kissr1), which may be important for the 

onset of puberty in European eel (Pasquier et al. 2012); steroidogenic acute 

regulatory protein (StAR), which is important for steroidogenesis as it facilitates 

the transport of cholesterol into mitochondria, a prerequisite for p450scc 

function, and was found to be involved in ovarian development in Japanese eels 

(Kazeto et al. 2006; Fig. 40). 

 

Figure 40. Boxplots of the transcription pattern of hsp70, lhr1, kisspeptin receptor 1 (kissr1), and 

steroidogenic acute regulatory protein (StAR). Letter indicate statistical significance before FDR corrects. 

Moreover the genes nanos2 which is often used as a molecular marker of teleost 

SPG cells (Robles et al. 2017); the putative mammalian Sertoli cell markers gata4 

and vimentin (Riboldi et al. 2012; Mali et al. 1987) should also be included as 

interesting “insignificant” genes (Fig. 41).  
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Furthermore, additional to the significantly differentially transcribed growth 

factors and growth factor related genes, which have been shown to be 

important for spermatogonial proliferation (Schulz et al. 2010; Aida and 

Tsukamoto 2003), several “insignificant” growth factors and growth factor 

related genes were also found in our experiment. E.g. insulin like growth factor 

1 (igf1; Fig. 43), igf receptor (igfr; Fig. 42), platelet-derived growth factor 

receptor-b (pgfrb; Fig. 42), platelet-derived growth factor-b (pdgf-b; Fig. 42), 

platelet-derived growth factor-c (pdgf-c; Fig. 42), and pro-vaccinia growth factor 

(vgf; Fig. 43) 

 

 

Figure 41. Boxplots of the transcription pattern of nanos2, gata4, and vimentin. Letter indicate statistical 

significance before FDR corrects. 

Finally, interesting genes were found “insignificantly” downregulated. E.g. 

dmc1 (Fig. 43), which has been shown to be meiosis-specific in Japanese eel 

(Ozaki et al. 2006); and anti-Müllerian hormone (amh; Fig. 43), which has 
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been shown to be downregulated by hCG treatment in eel testis (Schulz et al. 

2010), and recombinant eel AMH was shown to suppress 11KT-induced 

spermatogonial proliferation in vivo. Thus it has been hypothesized that 

inhibition of AMH is necessary to initiate spermatogenesis in eels (Schulz et 

al. 2010). 

 

Figure 42. Boxplots of the transcription pattern of igf receptor (igfr), platelet-derived growth factor 

receptor-b (pgfrb), platelet-derived growth factor-b (pdgf-b), platelet-derived growth factor-c (pdgf-c). 

Letter indicate statistical significance before FDR corrects. 

As the above-mentioned genes were not significantly differentially 

transcribed after FDR correction, the results should only be considered 

suggestive evidence. However, in studies applying qPCR to evaluate the 

transcription of these genes, they would likely have been found significantly 

differentially transcribed. Therefore, in order to investigate the early stages 

of natural eel maturation after silvering, the transcription profile, exact 

function, and regulatory pathway of these genes could also be considered 
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targets. Especially, considering that several of these genes present the same 

transcription profile as seen in the histological results of Chapter 2 (Fig. 20), 

e.g. higher expression in groups of higher total SPG counts (e.g. ar-b, hsp70, 

star, or pgfrb), or higher expression in groups of higher differentiation (e.g. 

amh). Such relationships suggest that they are somehow connected to the 

same mechanism. Both the significantly differentially transcribed genes, and 

the “insignificantly” differentially transcribed genes shown above could 

potentially be used as biomarkers for the early stages of natural eel 

maturation. However, substantially more experimentation is needed to assess 

the potential of these genes as biomarkers, e.g. development of specific qPCR 

assays.  

 

Figure 43. Boxplots of the transcription pattern of pro-vaccinia growth factor (vgf), insulin like 

growth factor 1 (igf1), anti-Müllerian hormone (amh), dosage suppressor of MCK1 homologue 

(dmc1). Letters indicate statistical significance before FDR corrects. 
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Other interesting results which were not related to gene transcription, were also 

excluded from Chapter 2. E.g. DHP plasma levels were measured via RIA 

together with T and 11KT (Fig. 44). 

 

Figure 44. Boxplots of DHP radioimmunoassay steroid results from the blood of fish from the T10, 

T20, Tvar and control groups. Significant differences are indicated with letters.  

DHP is commonly associated with late maturational processes in teleosts 

(Asturiano et al. 2000; Morini et al. 2017a), but this steroid (progestin) can also 

be measured in the blood at the onset of puberty in some fish (Amer et al. 2001) 

and specifically in eels during artificial maturation (Miura et al. 2006; Peñaranda 

et al. 2010b, 2016a). In particular, Miura et al. (2006) showed that DHP level 

peaks some days after the initial 11KT peak in Japanese eel blood during artificial 

maturation. Moreover, different DHP receptors have different cellular sites both 
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in Japanese and European eels (Miura et al. 2006; Morini et al. 2017a), which 

supports the hypothesis of multiple functions of DHP, including an early function 

in maturation. Furthermore, Miura et al. (2006) showed that 11KT-induced DNA 

synthesis (likely indication of proliferation) may happen in two phases, one 

which is DHP independent and one being DHP-dependent (which could be 

inhibited by anti-DHP treatment). The latter phase further appeared to correlate 

with the pro-meiosis stage of spermatogenesis (Miura et al. 2006). These results 

lead these authors to the hypothesis that DHP may affect late SPG proliferation 

possibly at the post-meiotic stage. Similarly, our group has previously found that 

DHP levels increase at a stage of high differentiation of SPGA cells into SPGB 

(Peñaranda et al. 2016a), which indicates a role of DHP in SPGAdiff 

differentiation into SPGB. This hypothesis is particularly interesting as our T10 

treatment, appears to inhibit differentiation towards meiosis, despite increased 

11KT levels, which according to this hypothesis (Miura et al. 2006; Peñaranda et 

al. 2016a), could be facilitated by DHP. However, our measurement of DHP only 

showed a slight insignificant decrease in the T10 group compared to T20 (Fig. 

44). Interestingly, the T20 group did show significant higher DHP levels 

compared to the Tvar and control group (Fig. 44), which could support a 

hypothesis of late maturational processes being activated at higher 

temperatures.  

9.4 Did the European eel lineage experience a WGD after 3R? 

Gene duplication is a key driver of evolutionary innovation (Ohno 1970). In 

particular, the presence of a large amount of duplicated genetic material has 

important phenotypic consequences (Van De Peer et al. 2017; Blischak et al. 

2018; and see introduction). Therefore, the question whether or not the eel 

lineage experienced an additional WGD is highly relevant. As shown in the 

introduction, the literature indicates that the assumption that WGDs are 

extremely rare in teleosts is not supported at the current level of knowledge and 
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should not be made before substantially more teleost genomes have been 

sequenced and analyzed. Furthermore, the most indicative parameters 

observed so far rather indicates the opposite hypothesis, that WGDs are as 

common in teleost as they are in insects, amphibians, and reptiles, although 

most lineages have simply not endured enough scrutiny for any conclusion to be 

made. This idea is well illustrated by the following quote: 

“Hence, it is probably safer to say that most lineages of life have simply not been 

sufficiently examined for polyploidy rather than claiming a priori that polyploidy 

is rare in certain lineages” (Blischak et al. 2018). 

In eels in particular, previous studies have shown data suggestive of an ancient 

eel specific duplication event. E.g. In the additional data included by Inoue et al. 

(2015), in their analysis of the gene loss process that followed the teleost 3R 

WGD, the eel is the species with the highest percentage of duplications. 

Supporting this result, several lineage specific (not found in other teleosts) 

paralog pairs have also been found and studied in eel (Dufour et al. 2005; 

Pasqualini et al. 2009; Henkel et al. 2012; Pasquier et al. 2012; Maugars and 

Dufour 2015; Morini et al. 2015; Lafont et al. 2016; Rozenfeld et al. 2016; Morini 

et al. 2017a, 2017b). E.g. Lafont et al. (2016) found two paralog genes of ift140, 

tleo2, nme4, xpo6, and unkl, in the gper genomic regions of the eel. Only one 

copy of these genes has been observed in other teleosts. These results led Lafont 

et al. to hypothesize i) that the whole region containing gper could have been 

duplicated in Anguilla eels, and maybe also in other teleosts, or ii) that the 

retention of duplicated genes may be higher in eels than in other teleosts. Most 

of the above-referenced studies hypothesize that the genes in question 

originated from 3R, primarily due to the observation of faint conserved local 

synteny, and despite often finding low phylogenetic divergence. E.g. In the case 

of the leptin receptor (lepr), the gene “leprot” account for this synteny while the 

gene “ak4” is missing in “b” synteny, however not consistently (Morini et al. 
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2015), while very low phylogenetic distance is seen between the lepr paralogs. 

The low phylogenetic distances, observed in these studies, are in turn 

hypothesized as a consequence of a slow molecular clock affecting European eel 

genes, which in turn may conserve more genes from 3R in eel than in other 

teleosts (Minegishi et al. 2005). Likewise, in the study of Henkel et al. (2012), a 

remarkably high number of Hox genes (73) were found in the eel (Henkel et al. 

2012). It was further shown that these genes covered 8 eel Hox clusters, which 

makes eels the only teleost with 8 Hox clusters, which has not been confirmed 

to have experienced a 4R WGD event. However, 8 is the expected number of 

Hox clusters if no clusters have been lost since 3R due to a high conservation of 

genes in the eel, and it is also within the expected number giving a 4R WGD and 

subsequent loss of Hox clusters in a similar rate as observed in salmonids (Lien 

et al. 2016; Mungpakdee et al. 2008). 

If eels have experienced a 4R WGD, it is possible that one or some of the present 

clusters are the results of this duplication event, rather than 3R. Therefore, in 

order to choose between these opposing hypotheses, one should investigate the 

evidence for or against a relatively recent origin of any of the 8 eel Hox clusters. 

In support of the 4R hypothesis, low phylogenetic distance and sometimes 

reversed cluster order was seen between Hox cluster pairs Ba/Bb, Ca/Cb, and 

Da/Db (Henkel et al. 2012). Opposing this hypothesis is the conserved synteny. 

However, in the case of the Hox clusters Ba/Bb, this synteny was only based on 

one gene (ttll6), while two other genes (skap1 and snx11) were included from a 

different scaffold. In the case of the Hox clusters Ca/Cb, the synteny was only 

based on one gene (rarg), which could only be included due to extended 

scaffolds. In the case of the Hox clusters Da/Db, this synteny is only based on 

one gene (evx2), while one gene (mtx2; which is “conserved” in Db clusters) is 

present on both the eel Da and Db Hox clusters. The result that genes like eel 

mtx2 and medaka cbx3 (from Hox Aa) were presented on both a and b 
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“conserved” syntenies (Henkel et al. 2012) indicates that great care that should 

be applied when drawing synteny conclusion based on only one gene. 

Additionally, the scaffolding software used by Henkel et al. (2012) is set to a 

default of a minimum of 5 connections between contigs before these can be 

joined into scaffolds with confidence. For the European eel genome published 

by Henkel et al. (2012), this value was lowered to 3, and for the extended 

scaffolds, this value was lowered to 2. As such, even greater care should be 

applied when drawing conclusions based on one gene from an extended 

scaffold.  

Interestingly, while the conserved synteny around the Hox clusters does indicate 

a 3R origin, the Hox genes themselves sometimes rather indicates the opposing 

hypothesis. In particular, the eel Bb cluster (Henkel et al. 2012) contains more 

similarities in conserved genes with the Ba clusters of zebrafish, salmon (Salmo 

salar), pufferfish (Tetraodon), medaka (Oryzias latipes; Henkel et al. 2012), 

salmon and common carp Hox cluster Ba (Xu et al. 2014) than with the 

corresponding Bb clusters (Henkel et al. 2012; Xu et al. 2014). Similarly, the eel 

Db cluster contains more similarities in conserved genes with the Da clusters of 

zebrafish, pufferfish, and medaka, than with the corresponding Db clusters 

(Henkel et al. 2012), while the Db cluster is completely lost in salmon. Regarding 

the C clusters, no indication can be drawn as the eel Ca and Cb does share 

similarities with zebrafish and salmon Ca and Cb respectively, while the Cb 

clusters are completely lost in pufferfish and medaka (Henkel et al. 2012). 

Additionally, homologous exchanges between duplicated chromosomes, biased 

fractionation (Freeling 2009) and other processes (Osborn et al. 2003; Gaeta and 

Chris Pires 2010; Scienski et al. 2015; He et al. 2017) can strongly interfere with 

synteny observations, and thus collinearity rather than simply synteny is 

commonly used for origin determination (Blischak et al. 2018; Edger et al. 2018). 

However, when analysis WGDs as old as 3R or the hypothesized eel event, little 
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or no collinearity can be expected, thus the most reliable methods for origin 

determination remains phylogenomic approaches (Blischak et al. 2018; Edger et 

al. 2018), similar to the approach of Chapter 3.  

Other suggestive arguments for an eel 4R WGD can also be found. E.g. the 

transcriptome of several teleosts have been sequenced (Pasquier et al. 2016), 

and, from these, the European eel was the species with the highest number of 

contigs, expected for species with a documented 4R WGD in their lineage. 

Moreover, the eel life history includes traits which are highly different from 

related species, and thus the adaptation of these traits have been hypothesized 

only to be possible, in one step, through the vast amount of raw genetic material 

which is generated by a WGD (Inoue et al. 2010). Furthermore, ancient 

polyploids would be expected in lineages with current incidences of polyploidy 

(Van De Peer et al. 2017), and several cases of existing viable eel polyploids have 

been documented (Ohta et al. 2003; Nomura et al. 2013). Also, WGDs are 

expected to be more common in organisms which produce a relatively high 

number of gametes (Mable et al. 2004) and eels likely produce an exceptionally 

high number of gametes (Barbin and McCleave 1997; MacNamara and McCarthy 

2012; Gallego et al. 2012). The majority of polyploid fish and amphibian 

discovered until today reproduce sexually (Wendel 2000). In most cases of 

polyploidity of sexually reproducing species these do not possess heteromorphic 

sex chromosomes (Otto and Whitton 2000), and eels likely do not have sex 

chromosomes (Geffroy and Bardonnet 2016). Also, species radiation is often 

associated with WGDs (Van De Peer et al. 2017) and previous studies have 

proposed that 3R is one of the possible causes of the massive species radiation 

observed in teleosts (Hoegg et al. 2004; Santini et al. 2009), in line of this result 

polyploids are found in 4 of the 6 most species-rich teleosts lineages, and eels 

belong to the 7th (Comber and Smith 2004). Furthermore, a striking relation 

exists between fish orders with polyploids and orders known to hybridize 



179 
 

(Comber and Smith 2004; Braasch and Postlethwait 2012), and eels do hybridize 

(Müller et al. 2018; Burgerhout et al. 2011). Moreover, polyploids often retain 

high heterozygosity (Parisod et al. 2010; Leggatt and Iwama 2003; Van De Peer 

et al. 2009), and eels retain high heterozygosity (Jansen et al. 2017). 

Furthermore, high nucleus DNA content has been used as suggestive evidence 

of WGDs (Lamatsch et al. 2000; Juchno and Lackowska 2010; Zhu et al. 2012). 

Although variable measurements have been published regarding the DNA 

content of European eels, ranging from 2.22 to 3.34 pg DNA per nucleus (pg/N; 

http://www.genomesize.com), even the lower values seem high for diploid 

fishes, which have an average size of 1.8 pg/N (Hardie and Hebert 2004). This is 

further interesting as genome sizes have been shown to be larger in freshwater 

species compared to marine/catadromous species (2.81 compared to 1.77 pg/N; 

Hardie and Hebert 2004), and because Actinopterygii families, which show a 

higher effort of parental care, have been shown to have significantly higher 

genome sizes (2.48 compared to 1.79 pg/N; Hardie and Hebert 2004). Although 

the level of parental care is not known for European eel, the hypothesized 

oceanic spawning of pelagic eggs (Schmidt 1923; Munk et al. 2010) suggests that 

their level of parental care is rather small. Furthermore, large variation in 

genome size not caused by WGD is rare (Lamatsch et al. 2000; Juchno and 

Lackowska 2010; Zhu et al. 2012), thus the eel genome size is also suggestive of 

the hypothesis of a 4R WGD ancient in the European eel lineage. However, it 

should be noted that large genome has also been associated with slow-evolving 

species (Hinegardner and Rosen 1972). 

Thus, eels compose most traits which are commonly associated with lineages 

that have experienced a WGD event, and as Chapter 3 shows, the eel genomes 

contain an exceptional complement of duplicated genes with relatively low 

sequence divergence in synonymous sites and which are indicated as eel-specific 

in the phylogenetic analysis (PHYLDOG). The results of Chapter 3 are generally 

http://www.genomesize.com/
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uncontroversial as they fit with most previous findings on both global (Inoue et 

al. 2015; Pasquier et al. 2016) and single gene scale (Dufour et al. 2005; Maugars 

and Dufour 2015; Pasqualini et al. 2009; Pasquier et al. 2012; Morini et al. 2015, 

2017b; Henkel et al. 2012; Lafont et al. 2016). However, the suggestion of a 4R 

WGD event has been strongly questioned. Traditionally, findings such as 

presented in Chapter 3 are considered as indicative of a recent large scale 

duplication event (Van De Peer 2004; Yu et al. 2017; Clarke et al. 2015; Jiao et 

al. 2011; Tang et al. 2008; Edger et al. 2018; Blischak et al. 2018). Additionally, 

WGDs cannot be determined to be rare in teleost with confidence and seem 

more likely to be as common in teleosts as in most other animals (except 

mammals). On the other hand, the most commonly selected opposing 

hypothesis of a slow molecular clock rate affecting eel genes has to overcome 

some opposing factors. E.g. if true, the eel would represent the first documented 

case of a teleost with a slow molecular clock rate (Glasauer and Neuhauss 2014). 

This, of course, does not make the hypothesis wrong but does indicate that such 

events are in fact very rare. Furthermore, several hundred genes were found in 

eels in Chapter 3, which presented all characteristics of other teleost 3R genes. 

Therefore, the hypothesis of a slow molecular clock rate in eels needs the ad hoc 

hypothesis of a mechanism which only affects some of the genes and not others. 

These points suggest that a 4R WGD or delayed rediploidization (presented in 

Chapter 3) hypothesis is the simplest (requires no ad hoc hypotheses or the 

invocation of highly exceptional characteristics of the eels), best supported by 

the evidence, and should thus be selected.  

9.5 Potentially important recently duplicated genes found in eels 

Regardless of the origin, the identified duplications of Chapter 3 may provide 

useful insight into eel biology. In particular, gene function analyses were carried 

out to study overrepresented functions among the eel specific duplications of 

Chapter 3. Conservation or loss of duplicated genes has been suggested to be 
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associated with environmental adaptation (Tautz and Domazet-lošo 2011; Chain 

et al. 2014) which could happen long after the duplication event (Conant and 

Wolfe 2008; Blischak et al. 2018; Thompson et al. 2016). Therefore, the 

overrepresentations found in Chapter 3 could be linked to adaptations that have 

taken place throughout eel evolution, e.g. the inclusion of a leptocephali larval 

stage to their life history (Inoue et al. 2004), the adaptation to a catadromous 

lifecycle (Inoue et al. 2010), and the adaptation for DA to inhibit maturation at 

an exceptionally early stage compared to other teleosts (Vidal et al. 2004; 

Dufour et al. 1988, 2005, 2010). The hypothesized 4R duplication event or 

delayed rediploidization could facilitate the genes for these events although 

they likely occurred tens of millions of years after the duplication event as 

phenotypic changes can be vastly delayed compared to their WGD origin 

(Conant and Wolfe 2008; Blischak et al. 2018; Thompson et al. 2016).  

Other mechanisms which perhaps influence the conservation of paralogs are 

dosage selection (Glasauer and Neuhauss 2014; Blischak et al. 2018) and 

segregation avoidance (Hahn 2009). It has been suggested that these 

mechanisms conserve duplicated genes related to specific biological processes, 

such as development, signaling, ion transport, metabolism and neuronal 

function after WGDs (Berthelot et al. 2014; Blomme et al. 2006; Brunet et al. 

2006; Kassahn et al. 2009; Blischak et al. 2018; Freeling 2009; Ming et al. 2015).  

Specifically, in Chapter 3, 54 GO terms and 54 KEGG pathways were found to be 

enriched among the duplications assigned to the freshwater eel branch. 

Interestingly, several of these enriched GO terms are sub-levels terms of the 

processes associated with a WGD origin. This result suggests that the duplication 

event that created the discussed genes of Chapter 3 is a WGD. If true, it is 

plausible that they have been conserved due to the mechanisms regulating gene 

conservation after WGD rather than due to specific necessities of the Anguilla 

species. Other GO terms that were found to be duplicated in eel are not usually 
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found after other WGDs, for example, “pigmentation”. As in the case of the GO 

terms, several of the KEGG pathways are also involved in processes associated 

with a WGD origin. However, the most significantly enriched pathway found in 

the eel duplications is the dopaminergic synapse pathway.  

As GO terms and pathways such as pigmentation, olfactory transduction, and 

dopaminergic synapse pathway are not commonly found conserved after WGDs, 

their conservation might be associated with new functions acquired in the 

Anguilla species. Specifically, the conservation of several genes of the 

dopaminergic synapse pathway suggests that these conserved genes are 

involved in the adaptation for DA to inhibit maturation at an exceptionally early 

stage. Among the duplicated genes assigned to the dopaminergic synapse 

pathway, we found TH. The presence of two TH genes in the eel encourages 

suspicion of potential differential transcription or function between the two, 

which may prove important for the regulation of the DA induced inhibition of 

puberty observed in pre-migration eels. Similarly, the conservation of genes 

related to pigmentation and olfactory transduction may be associated with 

adaptation to a catadromous lifecycle. These hypotheses, although speculative, 

are not implausible considering that conserved duplicated genes can facilitate 

new adaptation long after their origin (Conant and Wolfe 2008; Blischak et al. 

2018; Thompson et al. 2016). 

10. FUTURE PERSPECTIVES 

Each of the presented Chapters possesses a certain amount of novelty in 

methodology and findings and reaches rather broad, but this comes with the 

price of losing focus and depth. As mentioned in the discussion, the 

establishment of methodologies for production and use of recombinant eel 

gonadotropins, from Chapter 1, holds large potential. However, a substantial 

amount of work is needed to improve and optimize the protocols before actual 
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progress can be achieved. Likewise, the vast amount of data generated in 

Chapters 2 and 3 alludes to several potentially important aspects of early natural 

eel maturation. However, specific in-depth analysis is needed to evaluate the 

potential of each aspect.  

Nevertheless, some of the findings of this thesis can more easily be evaluated. 

E.g. it is clear that a cold seawater treatment does affect European eel males, 

but additional experiments are needed to evaluate whether this treatment can 

induce a net benefit for artificial eel reproduction. An experiment can easily be 

designed and conducted to test this hypothesis. If this experiment were to 

generate positive results, current artificial eel male maturation protocols could 

be significantly improved. The hypothesized treatment (cold seawater) further 

has the advantage of being very easy to apply by the aquaculture industry and 

is likely close to cost neutral, as heating of eel aquaculture systems is not an 

irrelevant cost, which could be saved during the treatment period.  

10.1 Other temperature treatments  

Full-scale experimentation of the effects of a cold seawater pretreatment should 

also consider different temperature regimes as it is far from conclusive that the 

conditions of Chapter 2 are optimal. As stated above, the selected experimental 

temperature regime should aim to mimic the natural temperature regime, 

which European eels experience during migration. Thus, as eel probably migrate 

at close to 10 °C during early migration, and due to the results of Chapter 2, this 

temperature may be a good starting point, for artificial eel maturation. 

However, possibly due to inhibitory factors (Chapter 2), maturation does 

commonly not progress at low temperatures (Boëtius and Boëtius 1967; Gallego 

et al. 2012; Peñaranda et al. 2016a), and as nightly temperatures increases at 

later stages of migration, higher temperatures later in the treatment may prove 

beneficial.  
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While migrating eels appears to endure some daily variation in temperature all 

through migration (Righton et al. 2016), this variation seems to increase as 

migration progresses (Wysujack et al. 2015). At later stages of eel migration 

temperatures reaches 8-10 ºC during the day and 16-17 ºC during the night 

(Wysujack et al. 2015), which could be considered similar to our Tvar treatment 

of Chapter 2. Therefore, it might prove valuable to test a cold water regime, 

which develops into a variable regime over time. However, variable temperature 

ranges vary greatly between Anguilla species (Manabe et al. 2011; 

Schabetsberger et al. 2013) and the specific range is thus less likely to be a 

conserved factor of maturation within eels. Finally, strong evidence suggests 

that ovulation and spermiation happens naturally at higher temperatures 

(Boëtius and Boëtius 1967; Kucharczyk et al. 2016), and thus experimental 

temperature regimes should end at higher temperatures.  

To some extent similar experiments have been conducted on both male and 

females European eels, although with constant hormonal injections (Pérez et al. 

2011; Gallego et al. 2012; Peñaranda et al. 2016a). In particular, an increasing 

temperature regime affected several parameters in European eel females (as 

described above), from which most notable Fsh kept increasing during 

maturation until the mid-vitellogenic stage (Pérez et al. 2011), which also 

appears to happen during natural maturation of both New Zealand longfinned 

eel (Saito et al. 2003) and Japanese conger (Kajimura et al. 2001a), and might 

thus be a more natural scenario. Furthermore, in a group of hormonally treated 

European eel males kept at 10 °C and later introduced to gradually warmer 

water spermiation with increasing motility, volume, and progressive motility 

throughout the experiment (Gallego et al. 2012). At the termination of the 

experiment this group show motility values similar to the highest observed 

values of any other group in this experiment, and it is thus open for speculation 

whether the increasing tendencies would have continued (Gallego et al. 2012). 
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While these studies do seem promising, additional studies should also test the 

possibility of a later initiation of hormonal injections. In support of this 

hypothesis, our 2 week T10 treatment (Chapter 2) induced similar changes in 

the eels as seen after 2 weeks of hCG treatment. Furthermore, European eel 

males which did not mature due to cold temperatures, despite hCG injection, 

matured fully after being introduced to warmer waters with no further 

hormonal injections (Boëtius and Boëtius 1967). Finally, preliminary results from 

one Japanese eel female showed that variable temperatures (between 5 and 15 

°C), without hormonal treatment, induced significant maturational progress (GSI 

of 8.5%; Mikawa et al. 2008). 

Therefore, these thermal treatments could potentially improve gametes quality 

through a more natural maturation process but more likely, at least, could help 

to lower the total hormone use. If experiments, as described above, prove 

successful on males, a natural next step would be to try out similar treatments 

for European eel female, since common factors are likely involved in the onset 

of maturation in both Anguilla sexes (Sudo et al 2012). Finally, in the scientific 

quest for knowledge, an in vitro study of the effect of a thermal regime and other 

factors on the testis, but also pituitary would greatly broaden our understanding 

of the mechanisms involved. 

10.2 Alternative eel species as a model  

Similar to our decision to use European eel males as our model rather than 

females, arguments have been made for the use of different Anguilla or even 

Elopomorpha species for further studies (Todd 1981; Burgerhout et al. 2011; 

Boëtius and Boëtius 1967; Aida and Tsukamoto 2003; Durif et al. 2005; Hagihara 

et al. 2012). Different Anguilla species are found to reach different stages of 

maturation at the initiation of migration (Durif et al. 2005; Hagihara et al. 2012). 

E.g. migratory shortfinned New Zealand eel males are found with late type B 
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spermatogonia in their testis (Lokman and Young 1998), while spermatozoa can 

be found in migratory longfinned New Zealand eel (Anguilla dieffenbachii; 

Lokman and Young 1998). Possibly, a correlation exists between shorter 

reproductive migration and higher developmental stage at initiation of 

migration and maybe a weaker pre-pubertal neuroendocrine blockage (Todd 

1981; Durif et al. 2005; Burgerhout et al. 2011; Hagihara et al. 2012), while the 

environmental tickers to overcome this block may be similar or the same. If true, 

Anguilla species with a short migratory distance seems optimal species to study 

environmental factors involved in natural eel maturation (Durif et al. 2005). 

Following this logic, it is possible that even non-Anguilla Elopomorphs could be 

good models of eel maturation. E.g. Conger eels have been shown to mature 

fully in captivity without hormonal treatments and may possess similar 

reproductive controlling mechanisms although obviously far weaker (Boëtius 

and Boëtius 1967; Aida and Tsukamoto 2003; Utoh et al. 2013). However, while 

less related species may show weaker pre-pubertal neuroendocrine blockage, 

they are also more likely to have evolved a different maturation controlling 

mechanism.  
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11. CONCLUSIONS 

 Recombinant European eel specific gonadotropins can be produced to a 

quality which can induce full spermiogenesis and spermiation. Although 

optimization is needed before these practices provide a net benefit to artificial 

eel maturation protocols 

 Despite the clear effect of hCG (an Lh-analog), aarLh injection did not 

induce significant progression of maturation in European eel males. This 

evidence may prove important for hypotheses about the mechanism of eel 

pubertal blockage 

 Cold seawater treatment clearly affects the BPG axis of European eel 

males. However, it has not been sufficiently tested whether a net benefit for 

reproduction can be obtained through cold seawater (pre)treatment, followed 

by commonly used artificial maturation at higher temperatures  

 Cold seawater treatments induce spermatogonial proliferation but do 

not induce significant progression spermatogenesis in European eel males. This 

evidence may prove important for hypotheses about the mechanism of the eel 

pubertal blockage 

 The eel genome contains a large number of paralog pairs with low 

phylogenetic divergence. Thus a large amount of raw genetic material has been 

available for eels during critical evolutionary innovations. The conserved genes 

from this raw material may thus provide novel insights into eel biology   
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