

Instalación fotovoltaica conectada a red para el túnel de San Juan (Alicante)

Grado en Ingeniería Eléctrica Trabajo final

Redactor: Andrés Tamará Martínez

Tutor: Miguel García Martínez

Co-tutor: Juan Ángel Saiz Jimenez

Junio de 2019

ÍNDICE

1.	IN	rodu	JCCIÓN	6
	1.1.	Obje	eto del trabajo	6
	1.2.	Just	ificación	7
	1.2	2.1.	Económica	7
	1.2	2.2.	Académica	7
	1.2	2.3.	Legal	8
	1.3.	Des	cripción de la instalación	9
	1.4.	Situ	ación	9
	1.4	l.1.	Túnel	9
	1.4	1.2.	Local técnico	12
2.	RE	СЕРТО	RES	14
	2.1.	Sens	sores	14
	2.2.	Siste	emas de señalización	15
	2.3.	Siste	emas de emergencia	15
	2.3	3.1.	Cajas SOS	15
	2.3	3.2.	Sistema de extinción de incendios	16
	2.3	3.3.	Sistema de megafonía	16
	2.3	3.4.	Barreras	17
	2.4.	Rece	eptores principales: Iluminación y ventilación	17
3.	EST	TUDIO	DE LOS CONSUMOS	18
	3.1.	Con	sumos fijos	18
	3.1	1.	Sensores	18
	3.1	2.	Sistemas de señalización	24
	3.2.	Con	sumos variables	27
	3.2	2.1.	Iluminación	27
	3.2	2.2.	Ventilación	32
4.	ELE	EMEN	TOS DE LA INSTALACIÓN FOTOVOLTAICA	34
	4.1.	Inve	rsor	34
	4.1	.1.	Cálculos	34

	4.1.2	2.	Modelo elegido	35
	4.2.	Pan	el solar	36
	4.2.1	1.	Modelo elegido	37
	4.2.2	2.	Dimensionamiento instalación	41
5.	CON	IEXIC	NADO	42
	5.1.	Cab	eado	43
	5.1.1	1.	Tramos de cableado	43
	5.1.2	2.	Cálculo del cableado	44
	5.2.	Prot	ecciones	50
	5.2.2	1.	Fusibles	50
	5.2.2	2.	Interruptor automático	52
	5.3.	Pue	sta a tierra	53
6.	NIVE	LES	DE RADIACIÓN, POTENCIA GENERADA Y DISTRIBUCIÓN DE CONSUMOS	55
	6.1.	Rad	ación	55
	6.2.	Dete	erminación del ángulo óptimo	57
	6.3.	Tabl	as y gráficas	60
	6.4.	Cálc	ulos	85
	6.5.	Alte	rnativa: Variación de Azimut	86
7.	COL	OCA	CIÓN DE LOS PANELES	89
	7.1.	Loca	ılización	89
	7.2.	Dist	ancia entre paneles	90
	7.3.	Sop	ortes	92
	7.3.2	1.	Soporte elegido	94
8.	ESTU	OIDL	ECONÓMICO	95
	8.1.	Pred	io W _{pico}	95
	8.4.	Alte	rnativa: Ampliación de la instalación	97
9.	AYU	DAS	Y SUBVENCIONES	99
1(D. PF	RESU	PUESTO	100
	10.1.	P	recios unitarios de los elementos de la instalación	100
	10.1	.1.	Paneles solares	100
	10.1	.2.	Inversor	101
	10.1	.3.	Soportes	101
	10.1	.4.	Cableado	101
	10.1	.5.	Caja de conexiones	103

10	0.1.6.	Fusibles	103
10	0.1.7.	Interruptor automático	103
10	0.1.8.	Puesta a tierra	104
10.2	2. Pr	recios por partidas	104
10	0.2.1.	Instalación fotovoltaica	104
10	0.2.2.	Cableado	105
10	0.2.3.	Protecciones	105
10	0.2.4.	Canalizaciones	105
10.3	3. Pr	recio total	106
11.	PLANO	S DE LA INSTALACIÓN	106
12.	PLIEGO	DE CONDICIONES	113
13.	ANEXC)	159

1. INTRODUCCIÓN

1.1. Objeto del trabajo

El objeto de estudio de este proyecto será el abastecimiento eléctrico del túnel de San Juan (Alicante) mediante el diseño de una instalación de autoconsumo conectada a red, de tal manera que se ahorre la mayor cantidad de energía posible, obteniendo ésta mediante fuentes energéticas alternativas, cuya explotación no generará más gastos que el mero mantenimiento una vez se haya realizado la instalación completa y cuya huella ecológica es baja, como es el caso de la energía solar fotovoltaica.

Para llevar a cabo la solución más adecuada ante esta demanda, se estudiará individualmente cada elemento de la instalación a realizar, así como la totalidad de los receptores y su funcionamiento y por último el balance de precios para obtener la rentabilidad final del proyecto.

Tras realizar un estudio de la instalación a realizar, así como de otras opciones alternativas, se opta por la solución que resulta más rentable, cubriendo las necesidades de la instalación y demandando la inversión económica más baja de las estudiadas.

Esta solución constará de un total de 590 placas solares modelo *SunPower Maxeon 3* con una potencia pico de 400 W que alimentarán a un inversor de 200 kW modelo *Riello Sirio K200*, de tal manera que cubrirán gran parte del consumo de la instalación, que demanda una potencia de 190,79 kW.

1.2. Justificación

1.2.1. Económica

La realización de una instalación solar fotovoltaica se realiza con el fin de cubrir parte o la totalidad del consumo energético del establecimiento en el que se instala, así como para realizar una generación energética.

La vida útil estimada de una instalación solar fotovoltaica resulta de 25 años aproximadamente, manteniendo unos niveles de producción adecuados. No obstante, con la implementación de nuevas tecnologías de producción y el uso de nuevos sistemas y mejores materiales la vida útil de una instalación fotovoltaica está en aumento.

Aunque la inversión inicial para realizar este tipo de instalaciones es alta, a posteriori se obtienen unos costes más interesantes ya que tan solo se tendrá que pagar por las labores de mantenimiento. Este coste será más constante durante la vida de la instalación de lo que pueden ser las facturas energéticas debido a las variaciones de los precios de la energía.

En los últimos meses, las instalaciones eléctricas conectadas a red se han convertido en una opción más rentable para el consumidor debido al descenso del precio de los componentes y a la implementación del Real Decreto-ley 15/2018, que elimina todo impuesto por auto consumir energía eléctrica. Lo que hace que la opción de utilizar una instalación conectada a red resulte más interesante para cubrir los consumos de un establecimiento.

1.2.2. Académica

La finalidad académica de este proyecto es la de poner en práctica los conocimientos aprendidos en los campos cubiertos en el grado en Ingeniería Eléctrica.

Se debe poder plantear una solución a un problema real, siendo la solución realizada, la más viable entre las posibles tanto en ámbito técnico como en económico, medioambiental y legal.

Como ingeniero, se pondrán en práctica las competencias transversales aprendidas a lo largo del grado con el fin de sacar provecho de los recursos naturales que se tienen, así como seguir los procedimientos oportunos para realizar este aprovechamiento de manera inteligente.

Además, se tiene la intención de facilitar y mejorar, en la medida de lo posible, la vida de las personas, así como la calidad del medio ambiente. Mediante la implementación de la energía solar fotovoltaica para la producción energética se eliminará la repercusión medioambiental que pueda crear la generación en fuentes de energía convencionales.

De esta manera, se podrá disminuir la huella realizada en nuestro planeta debido a la actividad humana.

1.2.3. Legal

Se seguirá la normativa y la legislación aplicada en instalaciones como la estudiada:

- Real Decreto-ley 15/2018, de 5 de octubre, de medidas urgentes para la transición energética y la protección de los consumidores.
- Ley 54/1997 del 27 de noviembre del sector eléctrico (BOE nº 285 del 28/11/1977).
- R.D 842/2002 del 2 de agosto, por el que se aprueba el Reglamento Electrotécnico de Baja Tensión.
- ORDEN CIRCULAR 248/74 C.E., de noviembre de 1974, Norma sobre disminución del Consumo de Energía Eléctrica en las Instalaciones de Alumbrado Público.
- UNE 20460-5-523:2004, para el cálculo de Intensidades admisibles en sistemas de conducción de cables.
- Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.
- Pliego de condiciones de instalaciones conectadas a red, IDAE.
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación

1.3. Descripción de la instalación

El túnel objeto de estudio situado en la población de Sant Joan d'Alacant, provincia de Alicante, fue puesto en servicio, totalmente acabado, el 29 enero de 1990.

Consta de un falso túnel formado por dos tubos colocados en paralelo y separados por un hastial de hormigón armado, construido para salvar las poblaciones de Sant Joan d'Alacant y Mutxamel. Estos tubos, presentan una longitud de 1.480m, un ancho de 12m y una altura máxima de 9m.

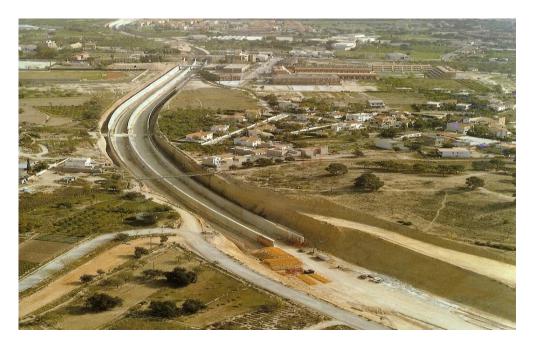


Imagen 1.1. Vista aérea del túnel en construcción.

A través de este túnel transcurre la autovía A-70 (Circunvalación de Alicante), desde su punto kilométrico 2+520 al 4+360. A través de cada uno de los tubos transita un sentido de circulación, de tal manera que cada uno de ellos supone una calzada independiente, conformada por dos carriles de igual sentido de circulación y los arcenes oportunos.

1.4. Situación

1.4.1. Túnel

Como se ha mencionado anteriormente, el túnel se sitúa en la población de Sant Joan d'Alacant (Alicante), separando a ésta de la población de Mutxamel, tal y como se muestra a continuación:

Imagen 1.2. Vista satélite del túnel.

Y en mapa cartográfico:

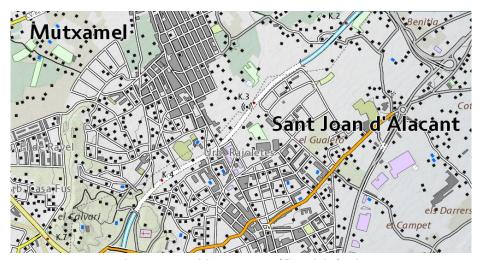


Imagen 1.3. Mapa cartográfico del túnel.

Las coordenadas del emplazamiento se muestran a continuación:

Latitud: 38°24'29.4"N
 Longitud: 0°26'24.8"O

Además, se adjuntan las coordenadas en formato UTM que ofrecen una localización exacta de los dos extremos del túnel en cuestión que se muestran en la *Imagen 1.4.* y la *Imagen 1.5.*

P.K. 2,520 = 724132 E / 4254856 N (Boca Norte)

Imagen 1.4. Boca Norte del túnel de San Juan.

- P.K. 4,360 = 722811 E / 4253612 N (Boca Sur)

Imagen 1.5. Boca Sur del túnel de San Juan.

1.4.2. Local técnico

Es el emplazamiento en el que se encuentra todos los elementos para la alimentación del túnel como son los transformadores que reciben la acometida, así como los cuadros generales de conexiones y las protecciones necesarias.

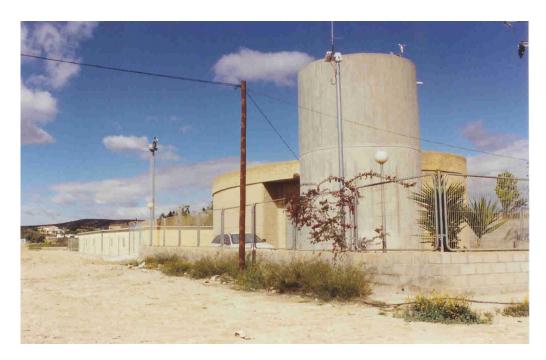


Imagen 1.6. Local técnico del túnel de San Juan.

El local técnico se sitúa en la capa superficial del túnel. Tal y como se muestra en la *Imagen 1.7.* y con más detalle en la *Imagen 1.8.*

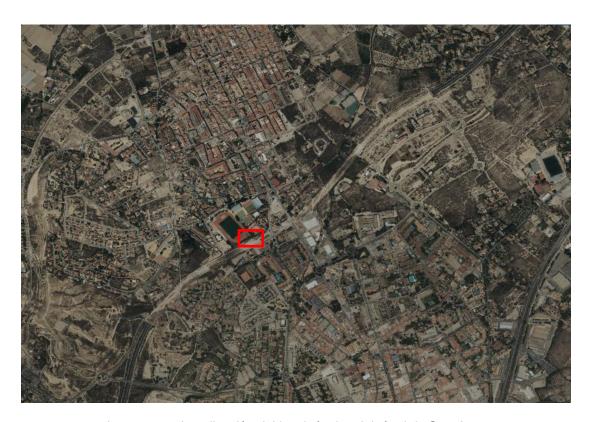


Imagen 1.7. Localización del local técnico del túnel de San Juan.

Imagen 1.8. Vista satélite del local técnico del túnel de San Juan.

2. RECEPTORES

La instalación existente en el túnel estará conformada por receptores que garanticen unas condiciones y unas medidas de seguridad adecuadas para el tránsito.

Para mantener unas condiciones adecuadas para el usuario, se deben proporcionar unos correctos niveles de iluminación, que variarán a lo largo del día según la luminancia del exterior, así como una correcta calidad del aire en el interior del túnel.

Para ello, se toman datos mediciones de diversos parámetros que afectan al túnel mediante los sensores oportunos.

Para mantener las condiciones de seguridad se deberá realizar un control del túnel mediante sensores y actuar mediante los sistemas de emergencia y señalización necesarios.

A continuación, se realiza un desglose de los receptores, situándolos en grupos según sus funciones y pautas de consumo.

2.1. Sensores

Presentan un consumo fijo durante toda su vida útil, el consumo energético realizado por los sensores es pequeño en comparación con el consumo total del túnel.

Los receptores dentro de este grupo son los siguientes:

- -Anemómetros
- -Equipos de detección de CO y opacidad
- -Sistemas de control antiincendios
- -Sistema de visualización y control
- -Espiras
- -Control de gálibo
- -Sistemas de detección de matrículas de vehículos de mercancías peligrosas

2.2. Sistemas de señalización

Receptores destinados, sobre todo, a la señalización del emplazamiento de manera que se garanticen unas adecuadas condiciones de seguridad.

- -Carteles SOS y extintor
- -Pictogramas salidas de emergencia
- -Guiado de emergencia
- -Semáforos

2.3. Sistemas de emergencia

Este grupo no se incluirá en el cálculo para el dimensionamiento de la instalación solar fotovoltaica ya que esta se calcula para condiciones normales de funcionamiento. Incluir estos sistemas en el cálculo provocaría un sobredimensionamiento que se traduciría en una pérdida de rentabilidad de la instalación, además, precisan de un suministro continuo y fiable las 24 horas, por lo que, en caso de entrar en funcionamiento, lo harán conectados a red.

Los receptores en cuestión serán los siguientes:

2.3.1. Cajas SOS

Diseñadas para permitir la comunicación de los usuarios del túnel con personal del centro de control en caso de incidente. El túnel está dotado con un total de 36 cajas SOS, 18 por cada tubo.

Imagen 2.1. Sistema SOS.

2.3.2. Sistema de extinción de incendios

El túnel cuenta con un grupo de presión formado por 2 bombas de impulsión eléctricas (100m³/h c/u) y 1 bomba diésel (de emergencia de 140m³/h), que dará servicio a la red con un caudal total de 180 m³/h.

Imagen 2.2. Sistema de presión de emergencia.

2.3.3. Sistema de megafonía

El túnel está dotado con un sistema de megafonía para la comunicación directa del operador de los mensajes pregrabados o de los mensajes que tuviesen que emitirse en caso de incidente para ordenar a los usuarios los pasos a seguir, hay instalados un total de 104 unidades de altavoces de elevado rendimiento en el propio túnel y 6 unidades en las salidas de emergencia.

Imagen 2.3. Sistema de megafonía.

2.3.4. Barreras

Dos barreras de 7 m de longitud, realizadas en aluminio reforzado, con colores reflectantes y dos posiciones de bloqueo, 6 segundos de velocidad de levantamiento, accionadas desde centro de control.

Imagen 2.4. Barrera boca Norte.

Además, en caso de incendio tendrán que entrar en funcionamiento todos los ventiladores presentes en el lado del túnel en el que se haya producido. No obstante, tampoco se incluirá en los cálculos de dimensionamiento por el motivo explicado anteriormente.

2.4. Receptores principales: Iluminación y ventilación

Para este grupo se estudiará la evolución que presentan sus consumos, de manera que se tendrán en cuenta para la elaboración de las curvas de consumo y la elección del equipo conveniente.

Estará compuesto por:

- -lluminación
- -Ventilación

3. ESTUDIO DE LOS CONSUMOS

Para el estudio de los consumos se tendrán en cuenta tres pautas de consumo, una será fija y dos de ellas variables con distinta curva de consumo.

El consumo fijo será producido por los sensores dispuestos a lo largo de la instalación y por los receptores destinados a la señalización, así como por el nivel más bajo del sistema de iluminación, que como se explicará posteriormente, permanece activado permanentemente.

En cuanto a consumo variable habrá dos pautas distintas:

- El consumo realizado por la ventilación, que se activará en las horas punta en días laborables, y en casos de aglomeración en festivos.
- El consumo realizado por la activación de los distintos niveles de iluminación, como serán la iluminación crepuscular, que entrará en funcionamiento durante la primera y última media hora de sol y la iluminación diurna que entrará en funcionamiento las demás horas de sol.

A continuación, se muestran los cálculos de energía consumida:

3.1. Consumos fijos

3.1.1. Sensores

Para los sensores se adopta un consumo fijo a lo largo de todo el año, ya que estarán trabajando permanentemente para recibir información correspondiente al estado del túnel y actuar en consecuencia.

En el grupo de sensores se encuentran los siguientes receptores:

- -Anemómetros
- -Equipos de detección de CO y opacidad
- -Sistema antincendios
- -Sistema de visualización y control
- -Espiras
- -Control de gálibo
- -Sistemas de detección de matrículas de vehículos de mercancías peligrosas

A continuación, se definen las potencias de cada receptor:

3.1.1.1. Anemómetros

Medirán los parámetros de velocidad y sentido del aire dentro de cada uno de los tubos. El túnel tiene instalados 8 anemómetros por tubo, un total de 16.

Imagen 3.1. Anemómetro.

La potencia consumida por cada anemómetro será de 24 W, lo que hace un consumo total de 384 W, esto supone una parte mínima de la potencia total del túnel.

3.1.1.2. Equipos de detección de CO y opacidad

La detección del monóxido de carbono (CO) y los niveles de Opacidad se realiza por medio de 12 detectores de la marca SICK y modelo VICOTEC 410 optoelectrónicos (12 detectores, repartidos 6 por tubo).

Imagen 3.2. Detectores optoelectrónicos utilizados.

Éstos, consumen una potencia de 26 W cada uno, lo que supone un total de 312 W en total.

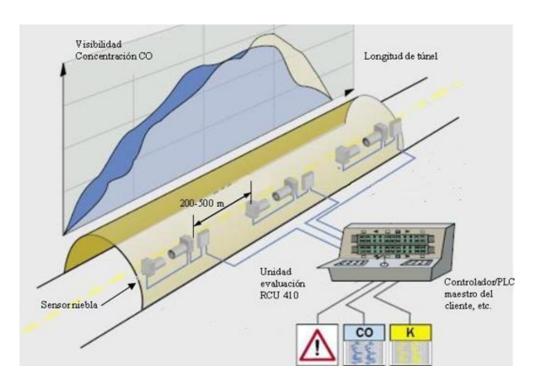


Imagen 3.3. Esquema lectura de niveles de CO y opacidad.

3.1.1.3. Sistema antiincendios

La detección de incendios se realiza mediante detectores termovelocimétricos/termoestáticos. El túnel recibe señales de un total 136 detectores instalados a lo largo de él.

Imagen 3.4. Sensor antiincendios utilizado.

Estos muestran un consumo de alrededor de 0,5 W por cada detector. Por tanto, la potencia total demandada por estos detectores será de 68W.

3.1.1.4. Sistema de visualización y control

El control del interior del túnel se efectúa mediante cámaras IP, en total hay una cantidad de 38 cámaras fijas cada 100 metros y 10 cámaras móviles (5 por tubo).

Imagen 3.5. Sistema de vigilancia del túnel.

A efectos de cálculo se considera que ambas consumen exactamente la misma potencia ya que la variación será minúscula.

Las cámaras fijas utilizadas serán de tipo IP, éstas se alimentan mediante fuente de alimentación a 12V, y presentan un consumo de 10 W cada unidad, por lo que en total presentarán un consumo de 480W.

Imagen 3.6. Imágenes captadas mediante el sistema de vigilancia del túnel.

3.1.1.5. Sistemas de detección de matrículas de vehículos de mercancías peligrosas

Cámaras de reconocimiento de imágenes instaladas en los carriles de circulación a la entrada y salida de cada tubo, detectan todas las matrículas de los vehículos y placas identificativas de mercancías peligrosas que circulan por el interior del túnel. Las cámaras se colocan siguiendo el esquema mostrado en la *Imagen 3.7*.

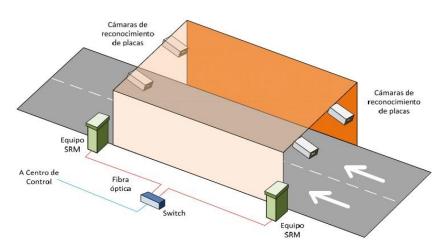


Imagen 3.7. Esquema sistema de detección de matrículas

Hay un total de 8 cámaras, con un consumo de 10 W cada una, lo que hace un total de 80W.

3.1.1.6. Espiras

Cuentan la cantidad de vehículos que circulan, de esta manera se permite obtener información como la fluencia del tráfico y su densidad, la velocidad de circulación y la cantidad de vehículos que pasan por el túnel.

Hay una espira por carril del túnel, habiendo un total de 4 espiras.

Estas espiras presentan una potencia de 20W cada una. Por tanto, la potencia demandada será de 80W.

3.1.1.7. Control de gálibo

Permite detectar vehículos con altura superior a 4,5 m y advertirlo a los usuarios con el fin de evitar el bloqueo del túnel. Su sistema de actuación es el mostrado en la *Imagen* 3.8.

En caso de detectar un vehículo de altura mayor a la permitida pone en marcha los sistemas de señalización oportunos.

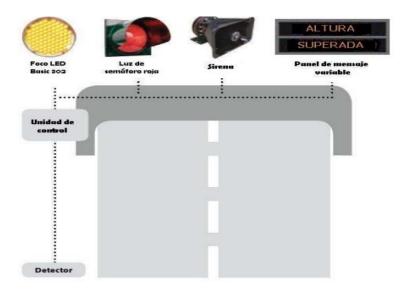


Imagen 3.8. Sistema de actuación del control de gálibo.

Se utilizarán dos sensores de escáner láser, con sistema de medida TOF de la marca TECNIVIAL, estos consumen una potencia de 5W cada uno a tensión 12 V con fuente de alimentación.

Hacen un consumo total de 10 W.

3.1.1.8. Consumo total de los sensores

Puesto que todos los sensores presentes en la instalación permanecen conectados las 24h, se sumarán las potencias nominales de cada sensor y se multiplicará el conjunto por las horas diarias.

	CANTIDAD	POT.UNITARIA (W)	POT. TOTAL (W)	HORAS DIARIAS	CONSUMO DIARIO (kWh)
Anemómetros	16	24	384	24	9,22
Opacímetros	12	26	312	24	7,49
Antiincentios	136	0,5	68	24	1,63
Cámaras	48	10	480	24	11,52
Matrículas	8	10	80	24	1,92
Espiras	4	20	80	24	1,92
Gálibo	2	5	10	24	0,24

TOTAL	1414	34,94

Tabla 3.1. Consumos de los sensores.

Lo que sumará un consumo diario de 34,94 kWh/día y una potencia demandada permanente de 1414 W.

3.1.2. Sistemas de señalización

Los receptores destinados a la señalización muestran, al igual que los sensores, un consumo fijo durante toda su vida útil. Excepto los semáforos, todos los sistemas de señalización presentan una batería para que, en caso de corte de suministro, puedan seguir funcionando durante un tiempo considerable. A continuación, se calculan los consumos de dichos receptores:

3.1.2.1. Carteles SOS y extintor

Se señalizan mediante cartel iluminado por dos bombillas de 18W. Se ubican junto a las cajas de SOS. En total hay 36 postes en todo el túnel, presentando 18 postes en cada tubo.

Imagen 3.9. Sistema SOS.

Hacen un consumo total de 1,3 kW.

3.1.2.2. Pictogramas salidas de emergencia

Iluminados mediante 4 bombillas LED con una potencia de 23W cada una. Hay un total de 72 pictogramas en todo el túnel, teniendo 36 por cada tubo. En la *Imagen 3.11.* se puede apreciar un pictograma de salida de emergencia iluminado al fondo de la imagen. Hacen un consumo total de 6,6 kW.

3.1.2.3. Guiado de emergencia

Luminarias situadas en las salidas de emergencia del túnel, se colocan 9 luminarias por salida de emergencia, habiendo un total de 54 luminarias en todo el túnel. La situación de estas salidas se muestra en la *Imagen 3.10.*

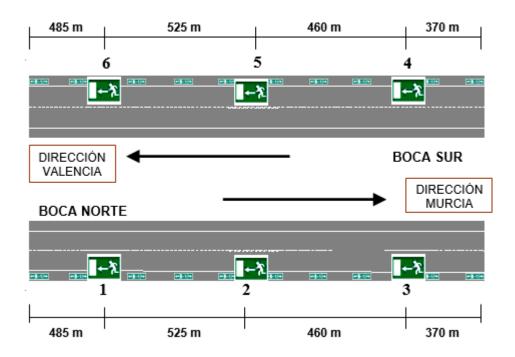


Imagen 3.10. Disposición de las salidas de emergencia.



Imagen 3.11. Salida de emergencia.

Presentan un consumo de 11W por tubo fluorescente, cada luminaria tiene 2 tubos. Hacen un consumo total de 1,2 kW.

3.1.2.4. Semáforos

Colocados en ambas bocas del túnel, uno por cada sentido de circulación. Presentan un consumo de 18 W cada uno.

Imagen 3.12. Semáforos boca sur.

Hacen un consumo total de 72 W.

3.1.2.5. Consumo total de señalización

Puesto que, al igual que los sensores, los receptores para señalización permanecen conectados las 24h, sumaremos las potencias nominales de cada receptor y multiplicaremos el conjunto por las horas diarias.

	CANTIDAD	POT.UNITARIA (W)	POT. TOTAL (W)	HORAS DIARIAS	CONSUMO DIARIO (kWh)
Cartel extintor	72	18	1296	24	31,104
Pictograma S. Emergencia	288	23	6624	24	158,976
Guiado emergencia	108	11	1188	24	28,512
Semáforo	4	18	72	24	1,728

TOTAL	9180	220,32

Tabla 3.2. Consumo de los sistemas de señalización.

Lo que sumará un consumo diario de 220,32 kWh/día y una potencia demandada permanente de 9180 W.

3.2. Consumos variables

3.2.1. Iluminación

La iluminación presentará un consumo fijo y un consumo variable. Esto significa que está clasificada por niveles, estos se muestran en la

Este encendido por niveles se debe a la necesidad de ajustar la iluminancia interior según la exterior, de manera que cuando el usuario entre al túnel no sufra un cambio brusco de los niveles de iluminancia, lo que podría llegar a suponer un peligro para él.

De esta manera, se dispone de un nivel fijo de iluminación y dos niveles adicionales que aumentarán la iluminancia interior según las necesidades.

NIVEL	DENOMINACIÓN DEL ENCENDIDO	POTENCIA KW	CONTROL
N	Nocturna	61.6	(24 h ENCENDIDA)
С	Crepuscular (días nublados)	37.8	Operador / Horario El arranque y parada depende de la iluminación solar
D	Diurna (pleno sol)	37.8	Operador / Horario El arranque y parada depende de la iluminación solar

Tabla 3.3. Detalles de los niveles de encendido

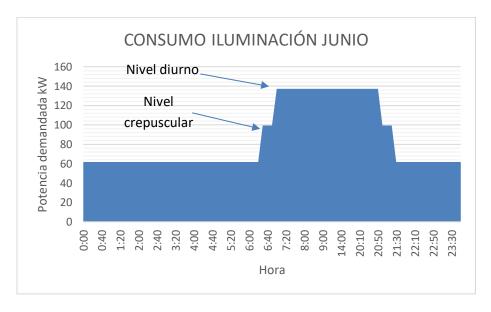

El nivel nocturno es un nivel fijo, permanece conectado las 24 horas del día durante todo el año. Este nivel presenta la iluminancia adecuada para circular de noche, tal y como se muestra en la *Imagen 3.12.*

Imagen 3.12. Iluminación nocturna en el interior del túnel.

El segundo nivel es el crepuscular, entra en funcionamiento en la primera y última media hora de sol y en días nublados, ya que las necesidades de iluminación interior serán más bajas.

Por último, está el nivel diurno, este entra en funcionamiento en días soleados, cuando la iluminancia exterior es alta. Este nivel entra en funcionamiento junto con el nivel crepuscular, es decir, el nivel crepuscular permanece conectado cuando se conecta el nivel diurno. Cuando el nivel diurno entra en funcionamiento se dobla la potencia demandada por el nivel crepuscular. Esta distribución de consumos se puede apreciar en la *Gráfica 3.1*.

Gráfica 3.1. Curva de consumos diaria de iluminación.

Además, se definirán unos tramos de adaptación a las entradas y salidas para que el cambio de iluminancia sea más suave. Por el día no se deben superar los 1.500 lux y, durante la noche, los valores de iluminancia se encontrarán en torno a los 50 lux.

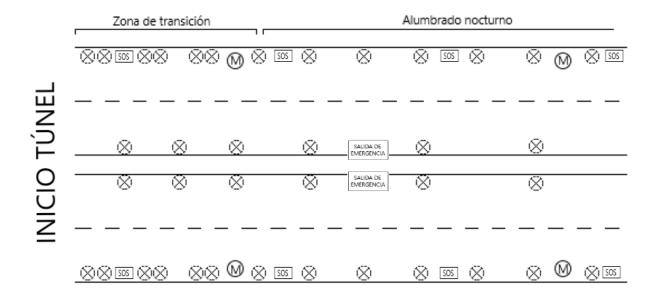


Imagen 3.12. Esquema tramos de iluminación del túnel.

De esta manera, el sistema de iluminación de este túnel estará dividido en zonas debido a la necesidad de realizar esta adaptación a la iluminancia interior del túnel para el usuario. La distribución de iluminancias a lo largo del túnel será la siguiente:

Tramo de entrada de adaptación (Umbral) = 1.200 lux
 Tramo 1 de adaptación (Transición) = 400 lux
 Tramo 2 de adaptación (Transición) = 126 lux
 Iluminación nocturna (Interior) = 50 lux

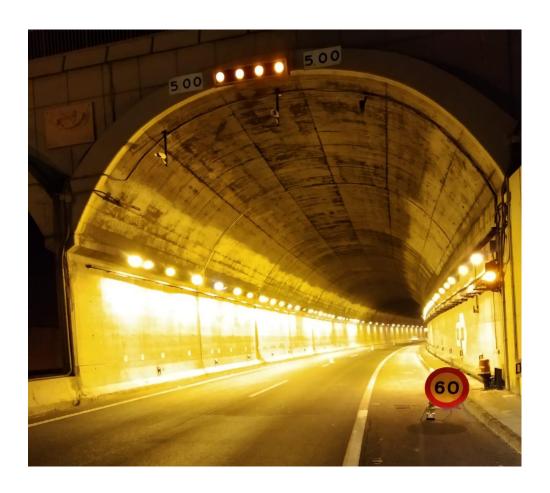


Imagen 3.13. Detalle de tramo de adaptación en boca Norte.

Los niveles de iluminancia interiores se rigen según la *Orden Circular N.º 248/74 del Ministerio de Obras Públicas de noviembre de 1974.*

Para la distribución de horas de consumo se acepta que el alumbrado nocturno está encendido las 24 horas del día. Por otra parte, para el alumbrado crepuscular y exterior (farolas de entrada y salida) se toma una duración de los periodos crepusculares fijos para todo el año, ya que, a lo largo del año, la duración varía en 2 minutos como mucho. Por último, las horas de alumbrado diurno las obtenemos mediante las tablas de salidas y puestas de sol del ministerio de fomento, que presenta la dirección a continuación:

https://www.fomento.gob.es/salidapuestasol/2018/Alicante-2018.txt

De donde se extrae la siguiente tabla:

ALICANTE/ALA	CANT			SALIDA Y	PUESTA DE	SOL PARA 20	018	Obse	rvatorio A	stronómico	Nacional
Latitud y lo	ngitud: 38	20 48, -	0 28 55					In	stituto Ge	ográfico N	acional
Año 2018			Ho	ra oficial	en la pen	insula y Ba	aleares	Mi	nisterio d	e Fomento,	España
						•					
Dia Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiem.	Octubre	Noviemb.	Diciemb.
Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas	Ort Ocas
hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm
1 819 1752	807 1824	734 1855	747 2025	705 2053	640 2120	642 2130	704 2112	731 2032	757 1945	728 1803	800 1742
2 819 1753	806 1825	733 1856	746 2026	704 2054	640 2120	642 2129	705 2111	732 2030	758 1944	729 1801	801 1742
3 819 1754	805 1826	731 1857	744 2027	703 2055	639 2121	643 2129	706 2110	733 2029	759 1942	730 1800	802 1741
4 819 1755	804 1828	730 1858	743 2028	702 2056	639 2122	643 2129	707 2109	734 2027	800 1940	731 1759	803 1741
5 819 1756	803 1829	728 1859	741 2029	701 2057	639 2122	644 2129	707 2108	735 2026	801 1939	732 1758	804 1741
6 819 1756	803 1830	727 1900	740 2030	700 2058	639 2123	644 2129	708 2107	736 2024	802 1937	733 1757	804 1741
7 819 1757	801 1831	725 1901	738 2031	659 2059	638 2123	645 2128	709 2106	736 2023	803 1936	734 1756	805 1741
8 819 1758	800 1832	724 1902	737 2032	658 2100	638 2124	646 2128	710 2104	737 2021	804 1934	736 1755	806 1741
9 819 1759	759 1833	723 1903	735 2033	657 2101	638 2125	646 2128	711 2103	738 2020	805 1933	737 1754	807 1741
10 819 1800	758 1834	721 1904	734 2033	656 2102	638 2125	647 2127	712 2102	739 2018	806 1931	738 1754	808 1741
11 819 1801	757 1836	720 1905	732 2034	655 2103	638 2126	648 2127	713 2101	740 2017	807 1930	739 1753	809 1742
12 818 1802	756 1837	718 1906	731 2035	654 2103	638 2126	648 2127	714 2100	741 2015	808 1929	740 1752	809 1742
13 818 1803	755 1838	716 1907	729 2036	653 2104	638 2126	649 2126	715 2058	742 2013	809 1927	741 1751	810 1742
14 818 1804	754 1839	715 1908	728 2037	652 2105	638 2127	650 2126	715 2057	742 2012	810 1926	742 1750	811 1742
15 818 1805	753 1840	713 1909	726 2038	651 2106	638 2127	650 2125	716 2056	743 2010	811 1924	743 1749	812 1742
16 817 1806	751 1841	712 1910	725 2039	650 2107	638 2128	651 2125	717 2055	744 2009	812 1923	744 1749	812 1743
17 817 1807	750 1842	710 1911	724 2040	649 2108	638 2128	652 2124	718 2053	745 2007	813 1921	745 1748	813 1743
18 816 1809	749 1843	709 1912	722 2041	648 2109	638 2128	653 2123	719 2052	746 2006	814 1920	746 1747	814 1743
19 816 1810	748 1844	707 1913	721 2042	648 2110	638 2128	653 2123	720 2051	747 2004	815 1919	747 1747	814 1744
20 816 1811	746 1845	706 1914	719 2043	647 2110	638 2129	654 2122	721 2049	748 2002	816 1917	749 1746	815 1744
21 815 1812	745 1847	704 1915	718 2044	646 2111	638 2129	655 2121	722 2048	749 2001	817 1916	750 1746	815 1745
22 814 1813	744 1848	703 1916	717 2045	645 2112	639 2129	656 2121	722 2047	749 1959	818 1915	751 1745	816 1745
23 814 1814	742 1849	701 1917	715 2046	645 2113	639 2129	656 2120	723 2045	750 1958	819 1913	752 1745	816 1746
24 813 1815	741 1850	700 1917	714 2047	644 2114	639 2129	657 2119	724 2044	751 1956	820 1912	753 1744	817 1746
25 813 1816	740 1851	758 2018	713 2048	644 2115	640 2130	658 2118	725 2042	752 1954	821 1911	754 1744	817 1747
26 812 1817	738 1852	756 2019	712 2049	643 2115	640 2130	659 2118	726 2041	753 1953	822 1910	755 1743	817 1748
27 811 1819	737 1853	755 2020	710 2049	642 2116	640 2130	700 2117	727 2039	754 1951	823 1908	756 1743	818 1748
28 810 1820	736 1854	753 2021	709 2050	642 2117	641 2130	701 2116	728 2038	755 1950	724 1807	757 1743	818 1749
29 810 1821	200	752 2022	708 2051	641 2118	641 2130	701 2115	729 2036	756 1948	725 1806	758 1742	818 1750
30 809 1822		750 2023	707 2052	641 2118	641 2130	702 2114	729 2035	757 1947	726 1805	759 1742	819 1750
31 808 1823		749 2024		641 2119		703 2113	730 2034		727 1804		819 1751
h m h m	hm hm	h m h m	hm hm		hm hm		h m h m	hm hm		hm hm	h m h m

Tabla 3.4. Horarios de salidas y puestas de sol.

Obteniendo así las tablas de horas de conexión de los niveles Crepuscular y Diurno:

	MEDIA DE HORAS DE USO (horas de iluminacion crepuscular)										
Ene	ne Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic										
9,9	10,9	12	13,1	14,8	14,9	14,7	13,8	12,5	11,6	10,2	9,5

	MEDIA DE HORAS DE USO (horas de iluminacion diurna)										
Ene	Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic										
8,9	9,9	11	12,1	13,8	13,9	13,7	12,8	11,5	10,6	9,2	8,5

Tabla 3.5. Media de horas de utilización de los distintos niveles de iluminación.

Explicada la distribución de la iluminación, se muestran el número y características de las luminarias de las que disponen los túneles en su interior:

MARCA	TIPO	LAMPARAS	N.º	PORTALAMPARAS	DIMENSIONES
			UDS.		(largo x Alto - Peso)
Socelec	SR-C	70 W	748	Tipo E-40	450 X 275 mm- 8,5 kg
		V.A.S.P.			
Socelec	SR-C	100 W H.M.	72	Tipo E-40	450 X 275 mm- 8,5 kg
Socelec	SR-L	150 W	32	Tipo E-40	690 x 270 mm- 14,7 kg
		V.A.S.P.			
Socelec	SR-L	400 W	160	Tipo E-40	690 x 270 mm- 14,7 kg
		V.A.S.P.			

Tabla 3.6. Detalles luminarias utilizadas.

Obteniendo un total de 1.012 luminarias con distintas potencias instaladas en el interior de los túneles. En su conjunto, demandan una potencia total de 137,2kW.

3.2.2. Ventilación

La ventilación del túnel es de tipo longitudinal y se realiza mediante ventiladores por chorro en el sentido de conducción de cada tubo que lo compone. Hay una cantidad de 13 ventiladores por tubo, lo que supone un total de 26 ventiladores en toda la instalación.

Imagen 3.13. Ventilador longitudinal utilizado.

La orden de arranque de los ventiladores se efectúa mediante interruptores temporizados, éstos efectúan el encendido de los ventiladores en las horas programadas para ello, que se detallarán a continuación. Cada ventilador se puede arrancar por individual según las necesidades de renovación de aire, sin embargo, normalmente tan solo se realiza el arranque individual de los ventiladores para tareas de mantenimiento.

A continuación, se muestra el ventilador utilizado, así como sus características principales.

MARCA	TIPO	CAUDAL (m³/s)	VELOCIDAD (m/s)	N.º UNIDADES	POTENCIA ABSORBIDA (kW)
Zitrón	JZ 5-5.5/2	5,7	29	26	4,3

Tabla 3.7. Características del ventilador utilizado.

Para realizar el cálculo se estimarán unas horas diarias de uso y un número de ventiladores a lo largo del año, en condiciones de funcionamiento normales.

Para calcular los consumos se realiza una distribución de horas de conexión diarias. Los ventiladores se encenderán en los períodos en que la densidad de tráfico sea muy elevada. En estos casos, el número de ventiladores conectados son 5 por tubo, es decir, un total de 10, ya que los 16 ventiladores restantes se conectan solo en estado de emergencia, por lo que no entrarán en el cálculo de autoconsumo.

Como se explicaba anteriormente, los ventiladores se encenderán en horas puntas debido al tráfico hacia el trabajo o la costa.

- En días laborables, estos períodos estarán comprendidos entre las 7:30 y las 8:30, entre las 13:30 y las 14:30 y entre las 18:00 y las 19:00.
- En fines de semana solo habrá un encendido los sábados por la mañana, es decir, de 7:30 a 8:30 y de 13:30 a 14:30.
- En los meses de julio y agosto se tomará un encendido de 10:00 a 11:00 y de 18:00 a 19:00, debido al tráfico producido hacia la costa, el cual provoca aglomeraciones.

Por tanto, cuando se produzca el encendido del equipo de ventilación se añadirá una potencia de 43kW.

4. ELEMENTOS DE LA INSTALACIÓN FOTOVOLTAICA.

Para calcular los elementos de la instalación primero se necesita fijar unos parámetros como sería la tensión de trabajo de la parte de corriente continua, es decir, de las placas hasta los inversores.

Puesto que la instalación es de una potencia elevada, se trabajará con una tensión de 48 V en la parte de continua, que a nivel comercial es la máxima que se puede instalar. De esta manera se reducen perdidas proporcionales a la corriente, como serían las pérdidas por efecto Joule. A su vez, bajarán los costes del cableado.

4.1. Inversor

El inversor es el elemento de la instalación que realiza la conversión de energía eléctrica en corriente continua, proveniente de las placas fotovoltaicas, a corriente alterna senoidal, para poder ser utilizado por los receptores o inyectado a red además de mejorar las condiciones de transporte de esta energía.

4.1.1. Cálculos

Se deberá disponer un inversor capaz de soportar la demanda de potencia de la instalación. A este se conectarán todas las placas que suministrarán a la instalación la potencia deseada además de la línea de alimentación a todos los receptores que vayan a alimentarse con los paneles.

Primero se calcula la potencia instantánea del circuito:

Potencia iluminación	137,2 kW	
Potencia sensores	1,41 kW	
Potencia señalización	9,18 kW	
Potencia motores	43 kW	

TOTAL	190,79 kW	

Tabla 4.1. Potencia total demandada

Por tanto, el inversor elegido tendrá que poder suministrar una potencia nominal de hasta 200 kW.

4.1.2. Modelo elegido

El inversor elegido para soportar esta potencia es el *Riello Sirio K200*, que soporta una potencia de 200 kW, valor que supera el valor máximo de potencia que se puede demandar en el túnel.

Máxima energía y seguridad

El algoritmo de búsqueda del punto de máxima potencia (MPPT), implementado en el sistema de control de los inversores Sirio Centralizados, permite aprovechar completamente, en cualquier condición de radiación y de temperatura, el generador fotovoltaico haciendo que el equipo trabaje constantemente con un rendimiento máximo.

En el caso de ausencia de sol, el convertidor se sitúa inmediatamente en stand-by, retomando el funcionamiento normal cuando vuelve el sol; esta característica permite reducir al mínimo el autoconsumo y maximizar la producción

Imagen 4.1. Inversor Riello Sirio K200.

Se ha adoptado esta configuración debido a que la solución más económica es la de instalar un solo inversor para toda la instalación, ya que la demanda podría cubrirse con varios inversores actuando independientemente. No obstante, puesto que se trata de una instalación conectada a red y en caso de avería en el inversor no caerá el suministro porque pasará a ser cubierto por la red no se tiene la necesidad de utilizar más de un inversor para garantizar cierta fiabilidad.

Esta solución resulta, por tanto, la más viable económicamente, así como la más sencilla a la hora de realizar la instalación y las labores de mantenimiento, además de ser la que menos espacio ocupa.

MODELO	SIRIO K200	
Potencia nominal corriente alterna	200 KVA	
Potencia máxima corriente alterna	200 KW (cosφ=1)	
ENTRADA		
Tensión continúa máxima en circuito abierto	800 Vdc	
Rango completo de MPPT	330 ÷ 700 Vdc	
Intervalo de ejercicio	330 ÷ 700 Vdc	
Corriente de entrada máxima	650 Acc	
SALIDA		
Tensión de ejercicio	400 Vca	
Intervalo operativo _	340 ÷ 460 Vca	
Corriente nominal	289 Aca	
Corriente máxima	364 Aca	
Contributo alla corrente di cortocircuito	546 Aca	
Distorsión armónica (THDi)	<3%	
Factor de potencia	de 0,9 ind. a 0,9 cap.	
Separación galvánica	Transformador BF	
Rendimiento máximo	96,2%	

Tabla 4.2. Placa de características del inversor Riello Sirio K200.

Se podría optar por la adquisición de un inversor de mayor potencia, no obstante, esto encarecería la instalación y no se prevé un aumento de potencia instalada, sino una bajada considerable cuando se realice la inversión oportuna para cambiar las bombillas halógenas a dispositivos LED, que demandarán una potencia mucho menor. No obstante, este tema va más allá del alcance de este proyecto.

4.2. Panel solar

El panel solar es el elemento de la instalación que realiza la generación eléctrica. Estos, están formados por una cantidad determinada de células que se encuentran encapsuladas sobre un material plástico y, a su vez, protegidas por una lámina de vidrio y enmarcadas por un perfil de aluminio tal y como se puede observar en la siguiente imagen:

ELEMENTOS DE UN PANEL FOTOVOLTAICO

Imagen 4.2. Esquema panel solar fotovoltaico.

4.2.1. Modelo elegido

Para cubrir esta demanda se escogerá el panel solar *SunPower SPR-MAX3-400* por ser uno de los paneles solares más eficientes del mercado en la actualidad.

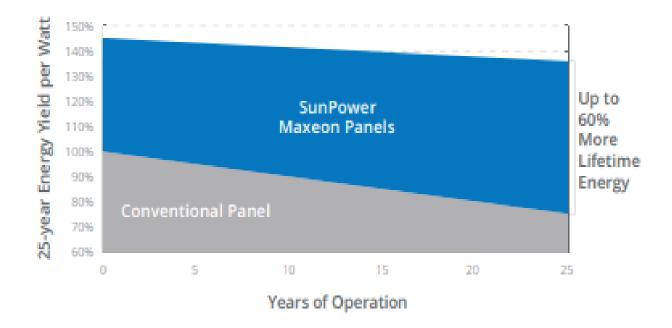
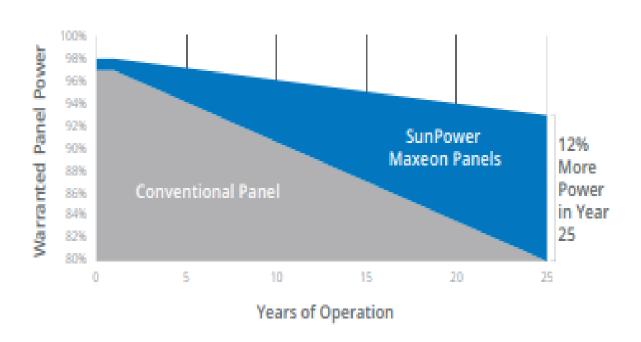


Imagen 4.3. Panel solar SunPower Maxeon 3 400W.

Este panel solar cuenta con una potencia pico de 400W, además presenta una eficiencia del 22.6% (récord mundial). De esta manera, después de 25 años, generan un 60% más de energía que otros paneles convencionales de las mismas características.

	Superficie	Potencia	Eficiencia
SunPower MAX3-400	1.75m ²	400W	22.6%
Panel 260W estándar	1.65m ²	260W	16%

Tabla 4.3. Comparativa eficiencia con otros paneles.


Gráfica 4.1. Comparativa eficiencia con otros paneles.

Además, se dispone de una garantía de producto y rendimiento combinada de 25 años.

El motivo por el que se ha escogido un panel de alta calidad, como es el caso del, MAX3-400, es que presenta una degradación máxima anual del -0.25%, de manera que se tiene una garantía de que seguirá produciendo energía, como mínimo, al 92% de su capacidad inicial después de 25 años.

	Garantía de Producto	Garantía de Producción	Degradación Anual
SunPower MAX3-400	25 años	92% a los 25 años	-0,25%
Panel solar convencional	10-12 años	80% a los 25 años	-0,7%

Tabla 4.4. Comparativa degradación con otros paneles.

Gráfica 4.2. Comparativa degradación con otros paneles.

Además, resulta ser viable económicamente ya que en la web de la distribuidora oficial *SunFields Europe* se aplica un descuento del 45% a instaladores en paneles solares, de manera que el precio del Wpico de la placa queda en 0.79 €

Las características fundamentales del módulo SPR-MAX3-400, se muestran a en la *Tabla 4.5*.

Parámetros Eléctricos	
Potencia máxima (P _{máx})	400 W
Tensión en punto de máxima potencia(V _{mpp})	65,8 V
Intensidad en punto de máxima potencia(I _{mpp})	6,08 A
Tensión circuito abierto(V _{oc})	75,6 V
Intensidad cortocircuito(I _{sc})	6,58 A
Eficiencia	22,60%
Tolerancia de potencia	± 5%
Tensión máxima admisible	1000 V IEC
Temperatura de funcionamiento	-40°C/85°C

Tabla 4.5. Placa de características del panel SunPower Maxeon 3 400W.

Además, a continuación, se detallan sus características dimensionales:

- Dimensiones 1690 x 1046 x 40 mm
- Peso 19 Kg

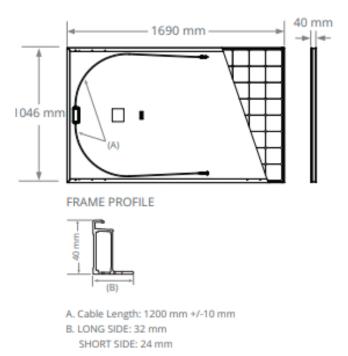


Imagen 4.4. Dimensiones del panel SunPower Maxeon 3 400W.

4.2.2. Dimensionamiento instalación

El dimensionamiento de la generación de la instalación se efectuará teniendo en cuenta los consumos de potencia mensuales. Éste, variará en función de la potencia máxima demandada. Para obtener el número total de paneles a instalar se realizará este dimensionamiento para cada uno de los meses del año, tomando como referencia el mes que necesite un menor número de paneles, por ser el caso más desfavorable para los demás meses y no tener un sobredimensionamiento excesivo.

Dado que la legislación vigente lo permite, los excedentes del autoconsumo serán vendidos y no se penalizará al productor por ello, a diferencia de la legislación anterior, que forzaba al proyectista a realizar los dimensionamientos para obtener el menor excedente posible. Por ello, se utiliza la potencia máxima demandada a la hora de realizar los cálculos, ya que se busca cubrir la mayor parte del consumo posible, con la finalidad de obtener una alta rentabilidad.

4.2.2.1. Pérdidas

Para el cálculo del número de placas se deberán tener en cuenta las pérdidas que de forma habitual se producen en la instalación. Para ello, se realiza el cálculo añadiendo un coeficiente multiplicador que tenga en cuenta dichas pérdidas, lo que aumentará el número de placas a disponer.

Estas pérdidas se producirán entre la etapa de generación en placas y la salida del inversor, es decir: por caída de tensión, por suciedad, por no ser la temperatura de 25°, por no trabajar en el punto de máxima potencia, etc.

A este número de placas calculado, se le aplicará un coeficiente de sobredimensionamiento de alrededor del 18% de manera que se tengan en cuenta las pérdidas producidas en la instalación, ya que presentarán valores entre el 17% y el 20%.

4.2.2.2. *Cálculos*

Para obtener la configuración serie-paralelo correcta se toma la tensión de entrada del inversor, que es de 330 a 700 V en este caso. Además, se tendrá en cuenta que el inversor elegido admite una tensión máxima de 800 V y una corriente de 650 A.

El número de placas en serie para condiciones óptimas de trabajo será, por tanto:

Núm. Máximo de placas serie = $700 \text{ V} / 65,8 \text{ V} = 10,64 \rightarrow 10 \text{ placas}$

También se calculará el número límite ya que puede ser más restrictivo:

Núm. Límite de placas serie = $800 \text{ V} / 75,6 \text{ V} = 10,58 \rightarrow 10 \text{ placas}$

Puesto que el número límite de placas y el número máximo restringen por igual, a 10 placas, tomamos este número para realizar los cálculos.

Se calculará ahora el número de líneas a disponer en paralelo. Se calcula mediante Excel el número de placas a disponer y se obtiene un número de 590 placas. Por tanto:

Núm. Líneas en paralelo = 590 placas / 10 placas por línea = 59 líneas

Además, se comprobará que no se supere la máxima corriente admisible por el inversor:

Núm. Límite de líneas en paralelo = 59 líneas / 6,58 A = 388,22 A < 650 A

Por tanto, no será necesario limitar las líneas en paralelo.

Obtenidos ambos valores, se procede al cálculo del número total de placas de la instalación:

Núm. Total de placas = 59 líneas / 10 placas por línea = 590 placas

Que suministrarán una potencia pico de:

Potencia pico = 400 *Wpico* * 590 = 236.000 *Wpico*

Lo que supone un sobredimensionamiento de la instalación de un 23,6 %. Aun así, como se puede observar en las curvas de generación, no se llega alcanza la potencia máxima del inversor en ningún mes del año. No obstante, el inversor podrá llegar a soportar hasta un 120% de su potencia nominal sin problemas. Por tanto, no existirá riesgo de sobrecarga para el inversor.

5. CONEXIONADO

La instalación realizada garantizará un transporte correcto de la energía desde su generación hasta su consumo, asegurando cierta calidad de suministro, así como la integridad de la instalación ante cualquier fallo. Para ello, se realizará el dimensionamiento de cada uno de los elementos que forman parte del conexionado, comenzando por el cableado y los conexionados y terminando por los dispositivos de protección y las tomas de tierra.

5.1. Cableado

Como bien es sabido, la forma de interconectar los distintos elementos que conforman la instalación es mediante conductores eléctricos. Estos establecerán un transporte de la energía eléctrica desde su generación hasta su consumo. Éstos, han de ser estudiados y correctamente dimensionados, ya que presentan características como su conductividad, sección, recubrimiento, longitud o la máxima intensidad que son capaces de soportar. Para cada distinto tramo de conexión será necesario realizar un correcto dimensionamiento del conductor a emplear de manera que se pueda garantizar cierta calidad de la energía, evitando pérdidas por caídas de tensión, calentamiento excesivo y cortocircuitos.

El cableado utilizado será no propagador de la llama y libre de halógenos. Su aislamiento se realizará con polietileno reticulado (XLPE), envuelto en una cubierta exterior compuesta de poliolefina termoplástica libre de halógenos. Así, se tendrá una temperatura máxima de servicio de hasta 90°C, siendo capaz de trabajar a una temperatura mínima de hasta -40°C.

Para seleccionar la sección del conductor se seguirá el criterio de caída de tensión y corriente máxima admisible, eligiendo el resultado más desfavorable. La caída de tensión máxima estará fijada en un 1,5%. Se calculará cada conductor de manera que no se supere este rango.

5.1.1. Tramos de cableado

Se definen los distintos tramos que conforman el cableado:

Cableado corriente continua.

- Desde cada uno de los strings de los diferentes módulos hasta la caja de conexión.
- Desde la caja de conexión hasta el inversor.

Cableado corriente alterna

Desde el inversor hasta el cuadro general.

5.1.2. Cálculo del cableado

Se realiza el cálculo de las secciones del cableado de la parte de la instalación en continua siguiendo las pautas del *Reglamento Electrotécnico de Baja Tensión de 2002 y del Pliego de Condiciones Técnicas de Instalaciones Conectadas de Red, del IDAE.*

Para la realización del dimensionamiento de los conductores, existen dos criterios entre los cuales habrá que optar por seguir el que resulte más desfavorable. Estos criterios son:

Máxima intensidad admisible en el conductor

Se establece en el REBT 2002 (ITC-40), que a los cables de conexión se les realizará un sobredimensionamiento mayor del 125% de la intensidad máxima del generador.

De este modo, será necesario basarse en la norma UNE 20460-5-523/2004 para calcular la sección buscando la sección necesaria en base a la intensidad y tipo de canalización en la tabla A.52-1.

Máxima caída de tensión admisible por el conductor.

Se define en la ITC-40 del REBT 2002 que no se superará una caída de tensión del 1,5% en la línea que transcurre entre el generador y el punto de interconexión, a una intensidad nominal. Se dividirá el cálculo de caída de tensión en varios tramos para facilitarlo. Estos son los siguientes:

- Desde cada uno de los strings de los diferentes módulos hasta la caja de conexión: 0,5%
- Desde la caja de conexión hasta el inversor:1%
- Desde el inversor hasta el cuadro general: 0,5%

Dicho esto, se procede al cálculo de las secciones:

5.1.2.1. Primer tramo, módulos a caja de conexión.

Se definen las magnitudes de la línea:

$$P_{linea} = Potencia\ pico\ placa\ *N^{o}\ de\ placas = 400\ *10 = 4.000\ W$$
 $V_{linea} = Tensi\'on\ pico\ placa\ *N^{o}\ placas\ en\ serie = 65,8\ *10 = 658\ V$
 $I_{linea} = 6,08\ A$

Se calcula la máxima caída de tensión:

$$\Delta V = V_{linea} * 0.005 = 658 * 0.005 = 3,29 V$$

Con estos datos, ya se puede calcular la sección mediante el método de máxima caída de tensión admisible:

$$S = \frac{2 * I * l}{\sigma * \Delta V}$$

Siendo:

I: Intensidad nominal de la línea

I: Longitud de la línea

 σ : Conductividad del material (m/ Ωmm²) [Cobre = 56 m/ Ωmm²]

Conociendo estos parámetros, se calcula la sección:

$$S = \frac{2*6,08*150}{56*3.29} = 9.9 \text{ mm2} \Rightarrow 10 \text{ mm2}$$

Se tomará una sección de 10 mm² debido a que es la sección comercial inmediata superior tal y como se muestra en la tabla blablablá,

	mm2
	1,5
	2,5
	4
	6
	10
	16
	25
Cobre	35
	50
	70
	95
	120
	150
	185
	240
	300

Tabla 5.1. Secciones normalizadas de conductores.

Posteriormente, se calcula la sección mediante el método de la máxima intensidad admisible:

D		Cables BIPOLARES entubados y enterrados.												2PVC / 2EPR 2XLPE	
D		Cables TRIPOLARES entubados y enterrados.													3PVC / 3EPR 3XPLE
		mm ²	1	2	3	4	5	6	7	8	9	10	-11	12	13
		1,5	13	13,5	14,5	15,5	17	18,5	19,5	22	23	24	26	22/26	18/22
		2,5	17,5	18	19,5	21	23	25	27	30	31	33	36	29/34	24/29
		4	23	24	26	28	31	34	36	40	42	45	49	38/44	31/37
		6	29	31	34	36	40	43	46	51	54	58	63	47/56	39/46
	Calan	10 16	39 52	42	46	50	54	60	63	70	<u>75</u>	80	86	63/73	52/61
	Cobre			56	61	68	73	80	85	94	100	107	115	81/95	67/79
		25	68	73	80	89	95	101	110	119	127	135	149	104/121	86/101
		35 50 70				110	117	126	137	147	158	169	185	125/146	103/122
		50				134 171	141 179	153	167	179	192	207	225	148/173	122/144
		95				207	216	196 238	213 258	229 278	246 298	268 328	289 352	183/213 216/252	151/178 179/211
						239	249	276	299	322	346	382	410	246/287	203/240
		120				239									
		150 185					285 324	318 362	344 392	371 424	395 450	441 506	473 542	278/324 312/363	230/271 258/304
		240					380	424	461	500	538	599	641	361/419	297/351
	_	240		<u> </u>	<u> </u>	<u> </u>	360	424	401	500	338	399	041	301/419	297/331

Tabla 5.2. Cálculo de sección mediante UNE 20460-5-523/2004

Obteniéndose una sección de 1,5 mm².

Puesto que se ha de escoger la sección más desfavorable, se tomará una sección final de 10 mm².

Tras el dimensionamiento realizado, se obtiene una caída de tensión del 0,495%.

5.1.2.2. Segundo tramo, caja de conexión a inversor.

Se definen las magnitudes de la línea:

$$P_{linea}=Potencia\ pico\ m\'odulo\ *N^{o}\ de\ m\'odulos=4.000\ *59=236.000\ W$$
 $I_{linea}=Intensidad\ pico\ m\'odulo\ *N^{o}\ m\'odulos\ en\ paralelo=6,08\ *59=358,72\ A$ $V_{linea}=658\ V$

Se calcula la máxima caída de tensión:

$$\Delta V = V_{linea} * 0.01 = 658 * 0.01 = 6.58 V$$

Con estos datos, ya se puede calcular la sección mediante el método de máxima caída de tensión admisible:

$$S = \frac{2*358,72*50}{56*6,58} = 97,35 \, \text{mm2} \Rightarrow 120 \, \text{mm2}$$

Se tomará una sección de 120 mm² debido a que es la sección comercial inmediata superior.

Posteriormente, se calcula la sección mediante el método de la máxima intensidad admisible:

D		Cables BIPOLARES entubados y enterrados.												2PVC / 2EPR 2XLPE	
D		Cables TRIPOLARES entubados y enterrados.													3PVC / 3EPR 3XPLE
		mm ²	1	2	3	4	5	6	7	8	9	10	11	12	13
		1,5	13	13,5	14,5	15,5	17	18,5	19,5	22	23	24	26	22/26	18/22
		2,5	17,5	18	19,5	21	23	25	27	30	31	33	36	29/34	24/29
		4	23	24	26	28	31	34	36	40	42	45	49	38/44	31/37
		6	29	31	34	36	40	43	46	51	54	58	63	47/56	39/46
	0.1	10 16	39	42 56	46	50	54	60	63	70	75	80	86	63/73	52/61
	Cobre	16	52		61	68	73	80	85	94	100	107	115	81/95	67/79
		25	68	73	80	89	95	101	110	119	127	135	149	104/121	86/101
		35 50 70				110	117	126	137	147	158	169	185	125/146	103/122
		50				134	141	153	167	179	192	207	225	148/173	122/144
		70				171	179	196	213	229	246	268	289	183/213	151/178
		95				207	216	238	258	278	298	328	352	216/252	179/211
		120				239	249	276	299	322	346	382	410	246/287	203/240
		150					285	318	344	371	395	441	473	278/324	230/271
		185					324	362	392	424	450	506	542	312/363	258/304
		240					380	424	461	500	538	599	641	361/419	297/351

Tabla 5.3. Cálculo de sección mediante UNE 20460-5-523/2004

Obteniéndose una sección de 185 mm².

Puesto que se ha de escoger la sección más desfavorable, se tomará una sección final de 185 mm².

Tras el dimensionamiento realizado, se obtiene una caída de tensión del 0,526%.

5.1.2.3. Tercer tramo, inversor a cuadro general.

Se definen las magnitudes de la línea:

$$P_{linea}$$
 = Potencia pico salida inversor = 200.000 * 1,1 = 220.000 W

$$V_{linea} = 400 V$$

$$I_{linea} = \frac{P}{\sqrt{3}*V*cos\omega} = \frac{220,000}{\sqrt{3}*400*0.95} = 334,25 A$$

Se sobredimensionará el valor de la intensidad en un 125% de manera que no se instalen las protecciones al límite de su capacidad. Por tanto:

$$I_{linea} = 334,25 * 1,25 = 417,82 A$$

No obstante, debido al alto valor de la corriente, se optará por repartir la conducción entre dos conductores idénticos, de esta manera:

$$I_{linea} = 417,82 \, A / 2 = 208,91 \, A$$

Se calcula la máxima caída de tensión:

$$\Delta V = V_{linea} * 0.005 = 400 * 0.005 = 2 V$$

Con estos datos, ya se puede calcular la sección mediante el método de máxima caída de tensión admisible:

$$S = \frac{\sqrt{3} * \rho * l * l * cos\varphi}{\Delta V} = \frac{\sqrt{3} * 0.017 * 15 * 208.91 * 95}{2} = 44.08 \text{ mm}^2 \rightarrow 50 \text{ mm}^2$$

Siendo:

 ρ = Resistividad del cobre (0.0171 $\Omega \cdot mm^2/m$)

Se tomará una sección de 50 mm² debido a que es la sección comercial inmediata superior.

Posteriormente, se calcula la sección mediante el método de la máxima intensidad admisible:

Е		Cables multi- conductores al aire libre. Dis- tancia a la pa- red no inferior a 0,3 veces D ⁴⁻⁵						3x PVC		2x PVC	3x XLPE O EPR		2x XLPE O EPR		
D		Cables BIPOLARES entubados y enterrados.												2PVC / 2EPR 2XLPE	
D		Cables TRIPOLARES entubados y enterrados.													3PVC / 3EPR 3XPLE
		1,5 2,5 4	1 13 17,5 23	13,5 18 24	3 14,5 19,5 26	15,5 21 28	5 17 23	6 18,5 25	7 19,5 27	22 30	9 23 31	10 24 33	26 36	12 22/26 29/34	13 18/22 24/29
	Cobre	6 10 16 25 35 50 70 95 120 150 185	29 39 52 68	31 42 56 73	26 34 46 61 80	36 50 68 89 110 134 171 207 239	31 40 54 73 95 117 141 179 216 249 285	34 43 60 80 101 126 153 196 238 276 318	36 46 63 85 110 137 167 213 258 299 344	40 51 70 94 119 147 179 229 2/8 322 371	42 54 75 100 127 158 192 246 298 346 395	45 58 80 107 135 169 207 268 328 382 441	49 63 86 115 149 185 225 289 352 410 473	38/44 47/56 63/73 81/95 104/121 125/146 148/173 183/213 216/252 246/287 278/324	31/37 39/46 52/61 67/79 86/101 103/122 122/144 151/178 179/211 203/240 230/271

Tabla 5.4. Cálculo de sección mediante UNE 20460-5-523/2004

Obteniéndose una sección de 70 mm².

Puesto que se ha de escoger la sección más desfavorable, se tomará una sección final de 70 mm².

Tras el dimensionamiento realizado, se obtiene una caída de tensión del 0,315%.

5.1.2.4. Caída de tensión total.

Por último, se suman las caídas de tensión de cada tramo.

$$\Delta V = 0.495 + 0.526 + 0.315 = 1.336\% < 1.5\%$$

5.2. Protecciones

Se garantizará la protección de la instalación contra sobrecargas, cortocircuitos y sobretensiones de manera que se mantenga su integridad, así como la seguridad del personal que la manipule mediante la puesta a tierra de marcos y estructuras metálicas y los sistemas oportunos para evitar contactos indirectos.

Para ello, es de vital importancia el dimensionamiento adecuado de los distintos componentes de la instalación.

5.2.1. Fusibles

Para realizar el dimensionamiento de los fusibles en la parte de CC, se seguirán las pautas marcadas en el Reglamento Electrotécnico de Baja Tensión, además de la ITC-BT-22.

El fusible elegido debe cumplir la siguiente condición:

$$I_b \leq I_n \leq I_z$$

Siendo:

lb: Intensidad de diseño del circuito.

In: Corriente nominal del fusible.

Iz: Corriente máxima admisible del cable.

La intensidad de diseño será la utilizada para realizar el dimensionamiento del cableado, es decir, la máxima que entregará el módulo fotovoltaico que se quiere proteger, 6,08 A.

La corriente nominal se adaptará a uno de los valores normalizados existentes, mostrados en la tabla blablá.

2	4	6	10	16	20	25	35
40	50	63	80	100	125	160	200
250	315	400	425	500	630	800	1000

Tabla 5.5. Intensidades normalizadas de fusibles.

La corriente máxima admisible se obtendrá de la tabla A.52-1 BIS (UNE 20.460-5-523:2004), la cual se ha utilizado anteriormente para el cálculo de las secciones, tomando el valor máximo de corriente para la sección elegida. En este caso será de 56 A, que corresponde a la sección y método de instalación elegidos. Por tanto:

$$6,08 \le I_n \le 56$$

Se deberá cumplir, además, una segunda condición:

$$I_f \le 1,45 * I_z$$

Siendo:

If: Corriente que garantiza un funcionamiento adecuado de la protección, obtenida en la Tabla blablá.

In (A)	Tiempo convencional (h)	Corriente convencional de fusión
In ≤ 4	1	2,1 ln
4 < In ≤ 16	1	1,9 ln
16 < In ≤ 63	1	1,6 ln
63 <ln 160<="" td="" ≤=""><td>2</td><td>1,6 In</td></ln>	2	1,6 In
160 <ln 400<="" td="" ≤=""><td>3</td><td>1,6 ln</td></ln>	3	1,6 ln
400 < In	4	1,6 In

Tabla 5.6. Cálculo de corriente convencional de fusión

Iz: Corriente máxima admisible del cable.

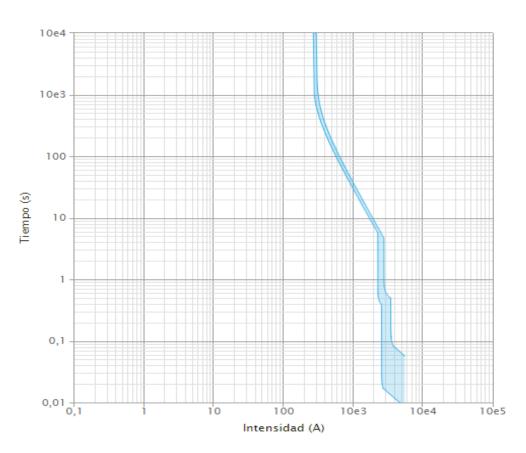
Por tanto:

$$1,9 * I_n \le 1,45 * 56$$

Se prueba un fusible de 16 A para ver si cumple ambas condiciones:

$$6,08 \le 16 \le 56$$

$$1.9 * 16 < 1.45 * 56$$


Puesto que el fusible elegido cumple las condiciones asignadas, se seleccionarán fusibles de 16 A para cada una de las líneas de entrada de los distintos módulos.

5.2.2. Interruptor automático

Se escogerá un interruptor automático para cada una de las ternas de cables que salen del inversor. Para dimensionarlo, se escogerá el inmediato superior a la corriente de diseño de cada uno de los circuitos, esta corriente habrá sido sobredimensionada en un 125%. Por tanto:

Idiseño = 208, 91 A → Interruptor automático de 250 A

Vista esta corriente de diseño, se opta por el interruptor *Schneider Compact NSX250F* - *LV431630*, el cual cumple correctamente con los requisitos técnicos y muestra la curva de disparo que se muestra en la *Gráfica 5.1*, en la que se muestra el tiempo de corte del interruptor en función del valor de la corriente que lo atraviesa. Este interruptor y su curva se obtienen mediante la herramienta de cálculo "*Electrical calculation tool*" de la página web de *Schneider Electric*.

Gráfica 5.1. Curva de disparo del interruptor automático seleccionado.

5.3. Puesta a tierra

La instalación realizada se contempla en la ITC-BT-18 como un local conductor debido a la disposición de paneles a la intemperie. Por ello, cualquier masa presente no podrá dar lugar a tensiones de contacto superiores a 24 V .

Por ello, se hace necesaria la conexión a tierra de los marcos de las placas, así como de sus estructuras de aluminio mediante cable de cobre desnudo de 35 mm2.

Los conductores estarán conectados siguiendo el esquema de la *imagen 5.7*. hasta un electrodo de puesta a tierra de 2m, que será clavado en el terreno para evitar que se superen los 24 V de tensión de contacto.

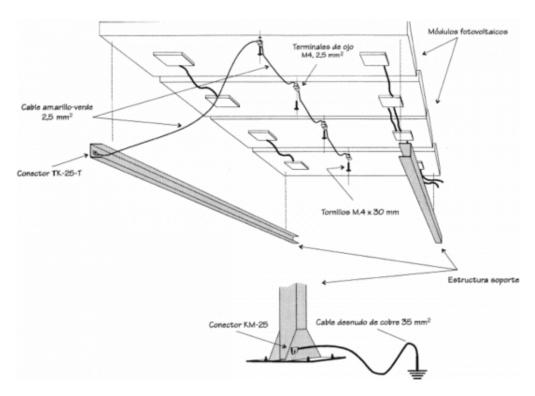


Imagen 5.1. Esquema de puesta a tierra de placas.

Se calculará el número de picas necesario para crear una resistencia de puesta a tierra que impida llegar a tensiones de contacto superiores a los 24 V.

El valor máximo de puesta a tierra se calculará de la siguiente forma:

$$R_{PaT} = \frac{V_{contacto}}{I_{m\acute{a}x}} = \frac{24}{6,08} = 3,95 \,\Omega$$

Posteriormente, se calculará el número de electrodos de 2 m necesario para que se tenga esta resistencia:

$$R_{Tpicas} = \frac{\rho}{N * L}$$

Siendo:

ho: Valor de la resistividad del terreno, se tomará un terreno de arena arcillosa que, según la tabla 4 de la ITC-BT-18 es de 500 Ω ·m.

N: Número de picas a instalar.

L: Longitud del electrodo.

Por tanto, el número de electrodos a instalar será de:

$$N = \frac{500}{3,95 * 2} = 63,3 \rightarrow 64 \ picas$$

Se colocarán, por tanto, un total de 64 picas alrededor de la instalación, separadas entre ellas por una distancia mínima de 2 veces su longitud, es decir, 4 metros.

6. NIVELES DE RADIACIÓN, POTENCIA GENERADA Y DISTRIBUCIÓN DE CONSUMOS

Se obtendrán las curvas de potencia y consumos a partir de los niveles de radiación obtenidos para un ángulo de inclinación óptimo para esta instalación.

6.1. Radiación

La radiación solar es la energía liberada del Sol en forma de radiaciones electromagnéticas emitidas por los procesos de fusión del hidrógeno que contiene.

Esta radiación es aprovechada mediante las células fotovoltaicas que, a través del efecto fotovoltaico, generan una fuerza electromotriz.

La radiación solar final absorbida por la placa fotovoltaica se puede desglosar en tres componentes:

- Radiación solar directa. Es la que llega a la placa desde la dirección del Sol.
- Radiación solar difusa. Esta radiación se considera venida desde todas las direcciones ya que su dirección ha sido modificada por factores externos como puede ser un día nublado.
- Radiación solar reflejada. Radiación solar que llega a la placa después de haber sido reflejada en la superficie terrestre.

La suma de todas ellas se denomina radiación global y se mide en kW/m².

Radiación directa, difusa y reflejada

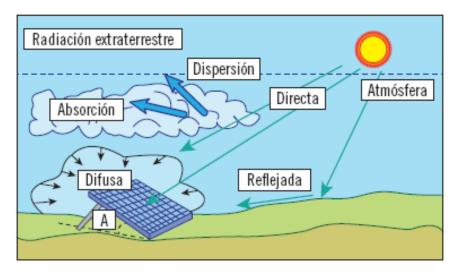


Imagen 6.1. Esquema tipos de radiación.

Para realizar un estudio de los niveles de radiación solar se debe elegir una zona a estudiar, ya que, como se muestra en los mapas de radiación, ésta varía dependiendo de la situación geográfica.

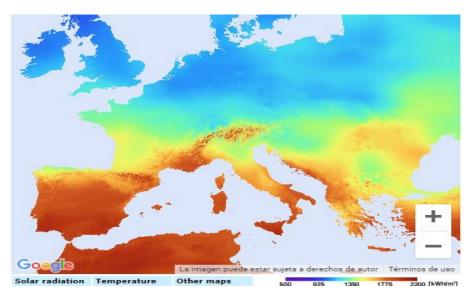


Imagen 6.2. Mapa europeo de radiación solar. Fuente: PVGis

Como se aprecia en la *Imagen 6.2*, a medida que se reduce la latitud aumentan los valores de radiación solar.

Además, se adjunta el mapa de radiación solar global horizontal para la península ibérica, *Imagen 6.3*.



Imagen 6.3. Mapa español de radiación solar. Fuente: Centro Extremeño de Tecnologías Avanzadas (CETA), perteneciente al Ministerio de ciencia, innovación y universidades.

Por suerte, Alicante, ubicación del proyecto, goza de niveles de radiación altos con respecto al resto de territorio europeo, de entre 5,1 kWh/m² y 5,2 kWh/m², tal y como se muestra en la leyenda.

Además, se hace de especial importancia estudiar el ángulo de incidencia de la radiación solar ya que se deberá optimizar el ángulo de la placa para que absorba la mayor cantidad de energía posible.

6.2. Determinación del ángulo óptimo

Para llevar a cabo los cálculos oportunos para la realización de la instalación se deberán utilizar valores de radiación que variarán en función de diversos factores, uno de ellos,

que habrá que optimizar, será el ángulo de inclinación de las placas de manera que se obtenga el mayor aprovechamiento posible de la radiación solar.

Dadas las dimensiones de la instalación, los paneles solares se colocarán en un ángulo fijo durante todo el año. Tal y como se explica en el apartado de soportes.

Para calcular este ángulo se hará uso de la herramienta PVGIS (Photovoltaic Geographical Information System) de la página web oficial de la Comisión Europea.

Esta herramienta hace posible la obtención de información para un punto concreto como es el valor de radiación solar, ángulo de inclinación óptimo, etc.

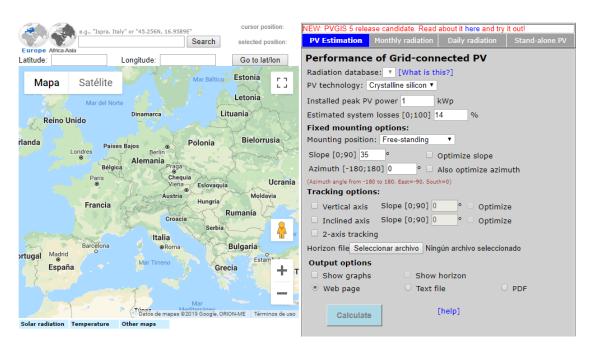


Imagen 6.4. Mapa europeo de radiación solar. Fuente: PVGis

Para realizar este cálculo se accederá a la herramienta en cuestión y se marcará en el mapa la localización del túnel de San Juan (Alicante). Además de eso, se seleccionará el cálculo del ángulo de inclinación óptimo (Optimal inclination angle) y el cálculo de la irradiación para este ángulo (Irradiation at optimal angle), tal y como se muestra en la siguiente imagen.



Imagen 6.5. Mapa europeo de radiación solar. Fuente: PVGis

Una vez se han introducido los parámetros oportunos se obtiene la siguiente tabla:

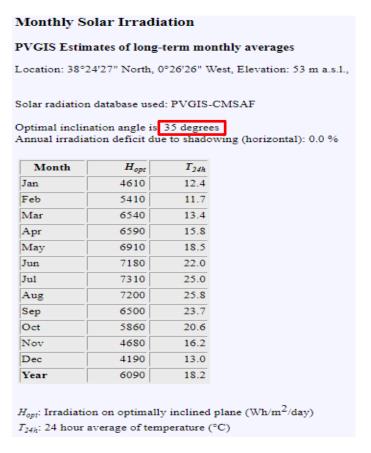


Imagen 6.6. Tabla de radiación mensual.

Obteniendo los niveles de radiación mensual y un ángulo de inclinación óptimo de 35°, un valor normal para la zona en cuestión.

Se tendrán los niveles de radiación diarios para un ángulo de inclinación de 35° y para todos los meses del año.

Posteriormente, mediante la herramienta PVGIS Climate, se obtendrán los niveles de radiación diarios cada cuarto de hora.

Además, se obtienen los niveles de potencia generados mediante la siguiente ecuación:

$$Potencia = Irradiancia * P_{vico}/1000$$

Se obtienen las tablas de radiación cuarto horaria para cada mes del año, de manera que se calculará la potencia instantánea producida cada quince minutos y la energía real que se generará al cabo de un día, esta energía estará multiplicada por un coeficiente de pérdidas de valor 0,82 (-18%), que está dentro del rango normal, entre 17% y 20%, de tal manera que el valor de la energía generada caerá.

Para compensar esta pérdida de potencia se multiplicará el número de placas por un coeficiente de sobredimensionamiento de valor 1,18, de este modo, se cubrirá, en la medida de lo posible, la caída de rendimiento.

En cuanto al número de placas, se toma un número de 590 placas repartidas en 10 líneas en paralelo de 59 placas en serie, tal y como se ha calculado anteriormente.

A continuación, se muestran las tablas de producción y consumos de todo el año con su gráfico correspondiente.

6.3. Tablas y gráficas.

N		
	R	

Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E. perdida sábados (kWh)	E perdida domingos (kWh)
8:37	142	56,8	27,5	110,45	110,45	110,5	0,0	0,0	0,0
8:52	208	83,2	40,3	110,45	110,45	110,5	0,0	0,0	0,0
9:07	263	105,2	50,9	148,25	148,25	148,3	0,0	0,0	0,0
9:22	316	126,4	61,2	148,25	148,25	148,3	0,0	0,0	0,0
9:37	366	146,4	70,8	148,25	148,25	148,3	0,0	0,0	0,0
9:52	414	165,6	80,1	148,25	148,25	148,3	0,0	0,0	0,0
10:07	458	183,2	88,6	148,25	148,25	148,3	0,0	0,0	0,0
10:22	500	200	96,8	148,25	148,25	148,3	0,0	0,0	0,0
10:37	538	215,2	104,1	148,25	148,25	148,3	0,0	0,0	0,0
10:52	572	228,8	110,7	148,25	148,25	148,3	0,0	0,0	0,0
11:07	603	241,2	116,7	148,25	148,25	148,3	0,0	0,0	0,0
11:22	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
11:37	653	261,2	126,4	148,25	148,25	148,3	0,0	0,0	0,0
11:52	673	269,2	130,2	148,25	148,25	148,3	0,0	0,0	0,0
12:07	689	275,6	133,3	148,25	148,25	148,3	0,0	0,0	0,0
12:22	701	280,4	135,7	148,25	148,25	148,3	0,0	0,0	0,0
12:37	708	283,2	137,0	148,25	148,25	148,3	0,0	0,0	0,0
12:52	712	284,8	137,8	148,25	148,25	148,3	0,0	0,0	0,0
13:07	712	284,8	137,8	148,25	148,25	148,3	0,0	0,0	0,0
13:22	708	283,2	137,0	148,25	148,25	148,3	0,0	0,0	0,0
13:37	701	280,4	135,7	191,25	191,25	148,3	0,0	0,0	0,0
13:52	689	275,6	133,3	191,25	191,25	148,3	0,0	0,0	0,0
14:07	673	269,2	130,2	191,25	191,25	148,3	0,0	0,0	0,0
14:22	653	261,2	126,4	191,25	191,25	148,3	0,0	0,0	0,0
14:37	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
14:52	603	241,2	116,7	148,25	148,25	148,3	0,0	0,0	0,0
15:07	572	228,8	110,7	148,25	148,25	148,3	0,0	0,0	0,0
15:22	538	215,2	104,1	148,25	148,25	148,3	0,0	0,0	0,0
15:37	500	200	96,8	148,25	148,25	148,3	0,0	0,0	0,0
15:52	458	183,2	88,6	148,25	148,25	148,3	0,0	0,0	0,0
16:07	414	165,6	80,1	148,25	148,25	148,3	0,0	0,0	0,0
16:22	366	146,4	70,8	148,25	148,25	148,3	0,0	0,0	0,0
16:37	316	126,4	61,2	148,25	148,25	148,3	0,0	0,0	0,0
16:52	263	105,2	50,9	148,25	148,25	148,3	0,0	0,0	0,0
17:07	208	83,2	40,3	148,25	148,25	148,3	0,0	0,0	0,0
17:22	142	56,8	27,5	110,45	110,45	110,5	0,0	0,0	0,0
17:37	85	34	16,4	110,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		1,84	889,08	1376,51	1376,51	1333,51	0,0	0,0	0,0
Total mensual		56,97	27.561,46	28.906,76	6.882,56	6.667,56	0,0	0,0	0,0
(kWh)	'		27.561,46		42.456,89			0,0	
V	alor máximo de	irradiancia			712				

284,8 792

Valor máximo de potencia (kW)

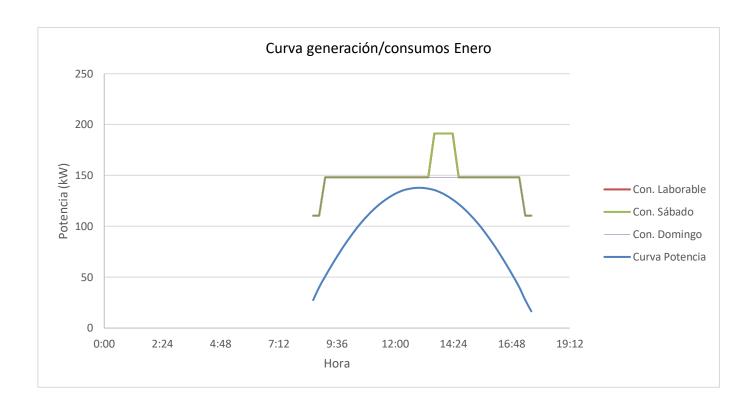


Tabla y gráfica 6.1. Generación Enero.

	·		·	FEBRE	RO				·
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)
8:07	105	42	20,3	153,45	153,45	110,5	0,0	0,0	0,0
8:22	166	66,4	32,1	153,45	153,45	110,5	0,0	0,0	0,0
8:37	222	88,8	43,0	148,25	148,25	148,3	0,0	0,0	0,0
8:52	277	110,8	53,6	148,25	148,25	148,3	0,0	0,0	0,0
9:07	332	132,8	64,2	148,25	148,25	148,3	0,0	0,0	0,0
9:22	385	154	74,5	148,25	148,25	148,3	0,0	0,0	0,0
9:37	436	174,4	84,4	148,25	148,25	148,3	0,0	0,0	0,0
9:52	484	193,6	93,7	148,25	148,25	148,3	0,0	0,0	0,0
10:07	530	212	102,6	148,25	148,25	148,3	0,0	0,0	0,0
10:22	572	228,8	110,7	148,25	148,25	148,3	0,0	0,0	0,0
10:37	611	244,4	118,2	148,25	148,25	148,3	0,0	0,0	0,0
10:52	647	258,8	125,2	148,25	148,25	148,3	0,0	0,0	0,0
11:07	679	271,6	131,4	148,25	148,25	148,3	0,0	0,0	0,0
11:22	707	282,8	136,8	148,25	148,25	148,3	0,0	0,0	0,0
11:37	732	292,8	141,7	148,25	148,25	148,3	0,0	0,0	0,0
11:52	752	300,8	145,5	148,25	148,25	148,3	0,0	0,0	0,0
12:07	768	307,2	148,6	148,25	148,25	148,3	0,1	0,1	0,1
12:22	781	312,4	151,1	148,25	148,25	148,3	0,4	0,4	0,4
12:37	789	315,6	152,7	148,25	148,25	148,3	0,7	0,7	0,7
12:52	793	317,2	153,5	148,25	148,25	148,3	0,8	0,8	0,8
13:07	793	317,2	153,5	148,25	148,25	148,3	0,8	0,8	0,8
13:22	789	315,6	152,7	148,25	148,25	148,3	0,7	0,7	0,7
13:37	781	312,4	151,1	191,25	191,25	148,3	0,0	0,0	0,4
13:52	768	307,2	148,6	191,25	191,25	148,3	0,0	0,0	0,1
14:07	752	300,8	145,5	191,25	191,25	148,3	0,0	0,0	0,0
14:22	732	292,8	141,7	191,25	191,25	148,3	0,0	0,0	0,0
14:37	707	282,8	136,8	148,25	148,25	148,3	0,0	0,0	0,0
14:52	679	271,6	131,4	148,25	148,25	148,3	0,0	0,0	0,0
15:07	647	258,8	125,2	148,25	148,25	148,3	0,0	0,0	0,0
15:22	611	244,4	118,2	148,25	148,25	148,3	0,0	0,0	0,0
15:37	572	228,8	110,7	148,25	148,25	148,3	0,0	0,0	0,0
15:52	530	212	102,6	148,25	148,25	148,3	0,0	0,0	0,0
16:07	484	193,6	93,7	148,25	148,25	148,3	0,0	0,0	0,0
16:22	436	174,4	84,4	148,25	148,25	148,3	0,0	0,0	0,0
16:37	385	174,4	74,5	148,25	148,25	148,3	0,0	0,0	0,0
16:52	332	132,8	64,2	148,25	148,25	148,3	0,0	0,0	0,0
17:07	277	110,8	53,6	148,25	148,25	148,3	0,0	0,0	0,0
17:07	222	88,8	43,0	148,25	148,25	148,3	0,0	0,0	0,0
					1			· ·	
17:37 17:52	166	66,4 42	32,1	148,25	148,25	148,3	0,0	0,0	0,0
18:07	105 56	22,4	20,3 10,8	110,45 153,45	110,45 110,45	110,5 110,5	0,0	0,0	0,0
Total diario (kWh)		2,16	1.044,62	1557,01	1546,26	1481,76	3,4	3,4	3,9
Total managed		60,46	29.249,39	28.026,23	7.731,31	7.408,81	16,9	3,4	3,9
Total mensual (kWh)		00,40	29.249,39	26.020,23	43.166,35	7.400,01	10,9	104,0	3,9
V	alor máximo de	irradiancia			793				
	lor máximo de _l				317,2		1		
7 44		(II 11)			0.1,2		ı		

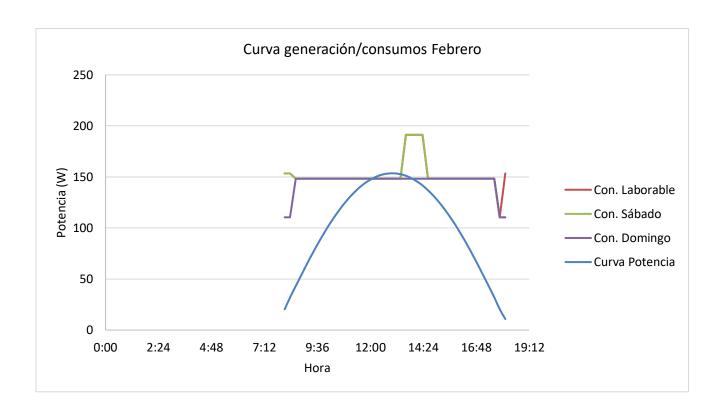


Tabla y gráfica 6.2. Generación Febrero.

	MARZO								
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E perdida sábados (kWh)	E. perdida domingos (kWh)
7:22	58	23,2	11,2	110,45	110,45	110,5	0,0	0,0	0,0
7:37	109	43,6	21,1	153,45	153,45	110,5	0,0	0,0	0,0
7:52	161	64,4	31,2	191,25	191,25	148,3	0,0	0,0	0,0
8:07	216	86,4	41,8	191,25	191,25	148,3	0,0	0,0	0,0
8:22	272	108,8	52,6	191,25	191,25	148,3	0,0	0,0	0,0
8:37	329	131,6	63,7	148,25	148,25	148,3	0,0	0,0	0,0
8:52	384	153,6	74,3	148,25	148,25	148,3	0,0	0,0	0,0
9:07	438	175,2	84,8	148,25	148,25	148,3	0,0	0,0	0,0
9:22	490	196	94,8	148,25	148,25	148,3	0,0	0,0	0,0
9:37	540	216	104,5	148,25	148,25	148,3	0,0	0,0	0,0
9:52	586	234,4	113,4	148,25	148,25	148,3	0,0	0,0	0,0
10:07	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
10:22	671	268,4	129,9	148,25	148,25	148,3	0,0	0,0	0,0
10:37	709	283,6	137,2	148,25	148,25	148,3	0,0	0,0	0,0
10:52	743	297,2	143,8	148,25	148,25	148,3	0,0	0,0	0,0
11:07	773	309,2	149,6	148,25	148,25	148,3	0,2	0,2	0,2
11:22	800	320	154,8	148,25	148,25	148,3	1,0	1,0	1,0
11:37	823	329,2	159,3	148,25	148,25	148,3	1,7	1,7	1,7
11:52	842	336,8	162,9	148,25	148,25	148,3	2,2	2,2	2,2
12:07	857	342,8	165,8	148,25	148,25	148,3	2,6	2,6	2,6
12:22	869	347,6	168,2	148,25	148,25	148,3	3,0	3,0	3,0
12:37	876	350,4	169,5	148,25	148,25	148,3	3,2	3,2	3,2
12:52	880	352	170,3	148,25	148,25	148,3	3,3	3,3	3,3
13:07	880	352	170,3	148,25	148,25	148,3	3,3	3,3	3,3
13:22	876	350,4	169,5	148,25	148,25	148,3	3,2	3,2	3,2
13:37	869	347,6	168,2	191,25	191,25	148,3	0,0	0,0	3,0
13:52	857	342,8	165,8	191,25	191,25	148,3	0,0	0,0	2,6
14:07	842	336,8	162,9	191,25	191,25	148,3	0,0	0,0	2,2
14:22	823	329,2	159,3	191,25	191,25	148,3	0,0	0,0	1,7
14:37	800	320	154,8	148,25	148,25	148,3	1,0	1,0	1,0
14:52	773	309,2	149,6	148,25	148,25	148,3	0,2	0,2	0,2
15:07	743	297,2	143,8	148,25	148,25	148,3	0,0	0,0	0,0
15:22	709	283,6	137,2	148,25	148,25	148,3	0,0	0,0	0,0
15:37	671	268,4	129,9	148,25	148,25	148,3	0,0	0,0	0,0
15:52	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
16:07					148,25	,		· '	
16:22	586 540	234,4	113,4 104,5	148,25	148,25	148,3 148,3	0,0	0,0	0,0
		216		148,25				0,0	0,0
16:37	490	196	94,8	148,25	148,25	148,3	0,0	0,0	0,0
16:52	438	175,2	84,8	148,25	148,25	148,3	0,0	0,0	0,0
17:07	384	153,6	74,3	148,25	148,25	148,3	0,0	0,0	0,0
17:22	329	131,6	63,7	148,25	148,25	148,3	0,0	0,0	0,0
17:37	272	108,8	52,6	148,25	148,25	148,3	0,0	0,0	0,0
17:52	216	86,4	41,8	148,25	148,25	148,3	0,0	0,0	0,0
18:07	161	64,4	31,2	191,25	148,25	148,3	0,0	0,0	0,0
18:22	109	43,6	21,1	191,25	148,25	148,3	0,0	0,0	0,0
18:37	58	23,2	11,2	153,45	110,45	110,5	0,0	0,0	0,0
18:52	22	8,8	4,3	153,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		2,61	1.264,36	1833,14	1790,14	1704,14	24,9	24,9	34,3
Total mensual		73,18	39.195,25	38.495,89	8.950,69	8.520,69	124,3	24,9	34,3
(kWh)	<u> </u>		39.195,25		55.967,26			792,99	
V	alor máximo de	e irradiancia			880				
Val	lor máximo de j	potencia (kW)			352				

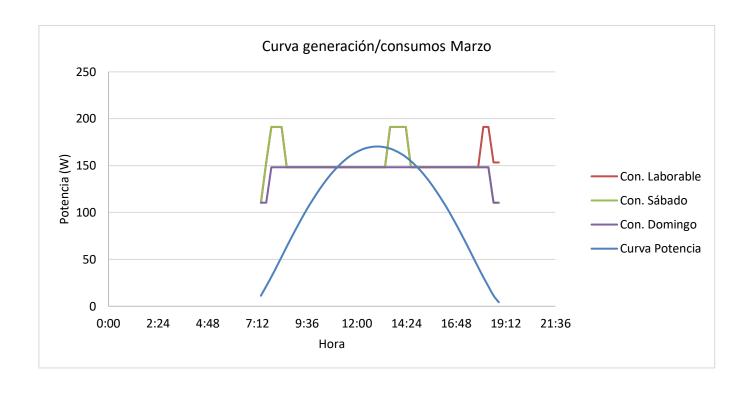


Tabla y gráfica 6.3. Generación Marzo.

		•	,	ABRI	Ĺ	•			•
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)
6:52	38	15,2	7,4	110,45	110,45	110,5	0,0	0,0	0,0
7:07	61	24,4	11,8	110,45	110,45	110,5	0,0	0,0	0,0
7:22	98	39,2	19,0	148,25	148,25	148,3	0,0	0,0	0,0
7:37	142	56,8	27,5	191,25	191,25	148,3	0,0	0,0	0,0
7:52	189	75,6	36,6	191,25	191,25	148,3	0,0	0,0	0,0
8:07	239	95,6	46,3	191,25	191,25	148,3	0,0	0,0	0,0
8:22	290	116	56,1	191,25	191,25	148,3	0,0	0,0	0,0
8:37	341	136,4	66,0	148,25	148,25	148,3	0,0	0,0	0,0
8:52	392	156,8	75,9	148,25	148,25	148,3	0,0	0,0	0,0
9:07 9:22	442 491	176,8 196,4	85,5 95,0	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
9:37	537	214,8	103,9	148,25	148,25	148,3	0,0	0,0	0,0
9:52	582	232,8	112,6	148,25	148,25	148,3	0,0	0,0	0,0
10:07	623	249,2	120,6	148,25	148,25	148,3	0,0	0,0	0,0
10:22	662	264,8	128,1	148,25	148,25	148,3	0,0	0,0	0,0
10:37	698	279,2	135,1	148,25	148,25	148,3	0,0	0,0	0,0
10:52	731	292,4	141,5	148,25	148,25	148,3	0,0	0,0	0,0
11:07	760	304	147,1	148,25	148,25	148,3	0,0	0,0	0,0
11:22	786	314,4	152,1	148,25	148,25	148,3	0,6	0,6	0,6
11:37	808	323,2	156,4	148,25	148,25	148,3	1,2	1,2	1,2
11:52	827	330,8	160,0	148,25	148,25	148,3	1,8	1,8	1,8
12:07	842	336,8	162,9	148,25	148,25	148,3	2,2	2,2	2,2
12:22	854	341,6	165,3	148,25	148,25	148,3	2,6	2,6	2,6
12:37	861	344,4	166,6	148,25	148,25	148,3	2,8	2,8	2,8
12:52	865	346	167,4	148,25	148,25	148,3	2,9	2,9	2,9
13:07	865	346	167,4	148,25	148,25	148,3	2,9	2,9	2,9
13:22	861	344,4	166,6	148,25	148,25	148,3	2,8	2,8	2,8
13:37	854	341,6	165,3	191,25	191,25	148,3	0,0	0,0	2,6
13:52	842	336,8	162,9	191,25	191,25	148,3	0,0	0,0	2,2
14:07	827	330,8	160,0	191,25	191,25	148,3	0,0	0,0	1,8
14:22	808	323,2	156,4	191,25	191,25	148,3	0,0	0,0	1,2
14:37	786	314,4	152,1	148,25	148,25	148,3	0,6	0,6	0,6
14:52	760	304	147,1	148,25	148,25	148,3	0,0	0,0	0,0
15:07	731	292,4	141,5	148,25	148,25	148,3	0,0	0,0	0,0
15:22	698	279,2	135,1	148,25	148,25	148,3	0,0	0,0	0,0
15:37	662	264,8	128,1	148,25	148,25	148,3	0,0	0,0	0,0
15:52	623	249,2	120,6	148,25	148,25	148,3	0,0	0,0	0,0
16:07	582	232,8	112,6	148,25	148,25	148,3	0,0	0,0	
16:22 16:37	537 491	214,8 196,4	103,9 95,0	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
16:52	442	176,8	95,0 85,5	148,25	148,25	148,3	0,0	0,0	0,0
17:07	392	156,8	75,9	148,25	148,25	148,3	0,0	0,0	0,0
17:22	341	136,4	66,0	148,25	148,25	148,3	0,0	0,0	0,0
17:37	290	116	56,1	148,25	148,25	148,3	0,0	0,0	0,0
17:52	239	95,6	46,3	148,25	148,25	148,3	0,0	0,0	0,0
18:07	189	75,6	36,6	191,25	148,25	148,3	0,0	0,0	0,0
18:22	142	56,8	27,5	191,25	148,25	148,3	0,0	0,0	0,0
18:37	98	39,2	19,0	191,25	148,25	148,3	0,0	0,0	0,0
18:52	61	24,4	11,8	191,25	148,25	148,3	0,0	0,0	0,0
19:07	38	15,2	7,4	110,45	110,45	110,5	0,0	0,0	0,0
19:22	23	9,2	4,5	110,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		2,63	1.274,38	1981,39	1938,39	1852,39	20,2	20,2	27,9
Total mensual (kWh)		73,75	38.231,33 38.231,33	39.627,75	9.691,94 58.581,63	9.261,94	100,8	20,2	27,9
· · · · ·	1		30.231,33					2.2,00	
	Valor máximo de irradiancia				865				
Val	Valor máximo de potencia (kW)				346 652				

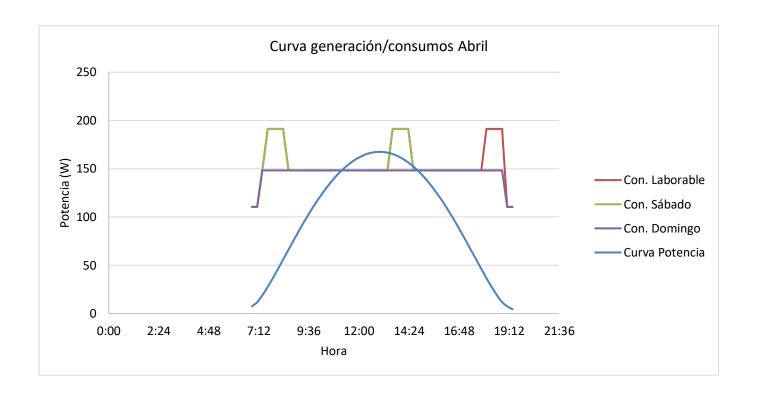


Tabla y gráfica 6.4. Generación Abril.

				MAY	0				•
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E perdida sábados (kWh)	E perdida domingos (kWh)
6:22	37	14,8	7,2	110,45	110,45	110,5	0,0	0,0	0,0
6:37	50	20	9,7	110,45	110,45	110,5	0,0	0,0	0,0
6:52 7:07	63 86	25,2 34,4	12,2 16,6	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
7:22	126	50,4	24,4	148,25	148,25	148,3	0,0	0,0	0,0
7:37	171	68,4	33,1	191,25	191,25	148,3	0,0	0,0	0,0
7:52	218	87,2	42,2	191,25	191,25	148,3	0,0	0,0	0,0
8:07	267	106,8	51,7	191,25	191,25	148,3	0,0	0,0	0,0
8:22	317	126,8	61,3	191,25	191,25	148,3	0,0	0,0	0,0
8:37	368	147,2	71,2	148,25	148,25	148,3	0,0	0,0	0,0
8:52	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
9:07	466	186,4	90,2	148,25	148,25	148,3	0,0	0,0	0,0
9:22	514	205,6	99,5	148,25	148,25	148,3	0,0	0,0	0,0
9:37 9:52	559 603	223,6 241,2	108,2 116,7	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
10:07	644	257,6	124,6	148,25	148,25	148,3	0,0	0,0	0,0
10:22	682	272,8	132,0	148,25	148,25	148,3	0,0	0,0	0,0
10:37	717	286,8	138,8	148,25	148,25	148,3	0,0	0,0	0,0
10:52	749	299,6	144,9	148,25	148,25	148,3	0,0	0,0	0,0
11:07	778	311,2	150,6	148,25	148,25	148,3	0,3	0,3	0,3
11:22	804	321,6	155,6	148,25	148,25	148,3	1,1	1,1	1,1
11:37	826	330,4	159,8	148,25	148,25	148,3	1,7	1,7	1,7
11:52	844	337,6	163,3	148,25	148,25	148,3	2,3	2,3	2,3
12:07	859	343,6	166,2	148,25	148,25	148,3	2,7	2,7	2,7
12:22	871	348,4	168,6	148,25	148,25	148,3	3,0	3,0	3,0
12:37	878	351,2	169,9	148,25	148,25	148,3	3,2	3,2	3,2
12:52	882	352,8	170,7 170,7	148,25	148,25 148,25	148,3 148,3	3,4	3,4	3,4
13:07 13:22	882 878	352,8 351,2	169,9	148,25 148,25	148,25	148,3	3,4	3,4 3,2	3,4
13:37	871	348,4	168,6	191,25	191,25	148,3	0,0	0,0	3,0
13:52	859	343,6	166,2	191,25	191,25	148,3	0,0	0,0	2,7
14:07	844	337,6	163,3	191,25	191,25	148,3	0,0	0,0	2,3
14:22	826	330,4	159,8	191,25	191,25	148,3	0,0	0,0	1,7
14:37	804	321,6	155,6	148,25	148,25	148,3	1,1	1,1	1,1
14:52	778	311,2	150,6	148,25	148,25	148,3	0,3	0,3	0,3
15:07	749	299,6	144,9	148,25	148,25	148,3	0,0	0,0	0,0
15:22	717	286,8	138,8	148,25	148,25	148,3	0,0	0,0	0,0
15:37	682	272,8	132,0	148,25	148,25	148,3	0,0	0,0	0,0
15:52	644	257,6	124,6	148,25	148,25	148,3	0,0	0,0	0,0
16:07 16:22	603	241,2	116,7 108,2	148,25	148,25	148,3	0,0	0,0	0,0
16:22	559 514	223,6 205,6	99,5	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
16:52	466	186,4	99,3	148,25	148,25	148,3	0,0	0,0	0,0
17:07	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
17:22	368	147,2	71,2	148,25	148,25	148,3	0,0	0,0	0,0
17:37	317	126,8	61,3	148,25	148,25	148,3	0,0	0,0	0,0
17:52	267	106,8	51,7	148,25	148,25	148,3	0,0	0,0	0,0
18:07	218	87,2	42,2	191,25	148,25	148,3	0,0	0,0	0,0
18:22	171	68,4	33,1	191,25	148,25	148,3	0,0	0,0	0,0
18:37	126	50,4	24,4	191,25	148,25	148,3	0,0	0,0	0,0
18:52	86	34,4	16,6	191,25	148,25	148,3	0,0	0,0	0,0
19:07	63	25,2	12,2	148,25	148,25	148,3	0,0	0,0	0,0
19:22	50	20	9,7	148,25	148,25	148,3	0,0	0,0	0,0
19:37 19:52	37 22	14,8 8,8	7,2 4,3	110,45 110,45	110,45 110,45	110,5 110,5	0,0	0,0	0,0
Total diario (kWh)	22	2,76	1.335,97	2129,64	2086,64	2000,64	25,9	25,9	35,6
					,		·		
Total mensual (kWh)		77,32	41.414,92	44.722,39	10.433,19 65.158,76	10.003,19	129,3	25,9 824,78	35,6
			41.414,92					024,70	
Valor máximo de irradiancia					882				
Valor máximo de potencia (kW)					352,8				
Número de placas					639				

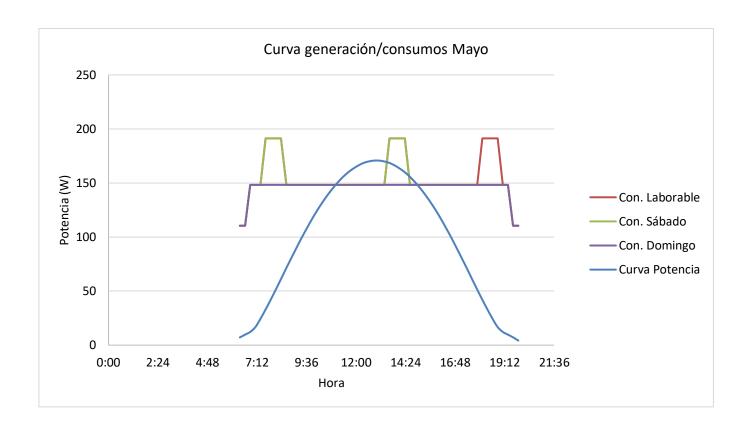


Tabla y gráfica 6.5. Generación Mayo.

	JUNIO									
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E. perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)	
6:07	32	12,8	6,2	110,45	110,45	110,5	0,0	0,0	0,0	
6:22	44	17,6	8,5	110,45	110,45	110,5	0,0	0,0	0,0	
6:37	56	22,4	10,8	148,25	148,25	148,3	0,0	0,0	0,0	
6:52	66	26,4	12,8	148,25	148,25	148,3	0,0	0,0	0,0	
7:07 7:22	89 130	35,6 52	17,2 25,2	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0	
7:22	175	70	33,9	191,25	191,25	148,3	0,0	0,0	0,0	
7:52	224	89,6	43,3	191,25	191,25	148,3	0,0	0,0	0,0	
8:07	274	109,6	53,0	191,25	191,25	148,3	0,0	0,0	0,0	
8:22	326	130,4	63,1	191,25	191,25	148,3	0,0	0,0	0,0	
8:37	377	150,8	73,0	148,25	148,25	148,3	0,0	0,0	0,0	
8:52	429	171,6	83,0	148,25	148,25	148,3	0,0	0,0	0,0	
9:07	480	192	92,9	148,25	148,25	148,3	0,0	0,0	0,0	
9:22	529	211,6	102,4	148,25	148,25	148,3	0,0	0,0	0,0	
9:37	577	230,8	111,7	148,25	148,25	148,3	0,0	0,0	0,0	
9:52	623	249,2	120,6	148,25	148,25	148,3	0,0	0,0	0,0	
10:07	666	266,4	128,9	148,25	148,25	148,3	0,0	0,0	0,0	
10:22	707	282,8	136,8	148,25	148,25	148,3	0,0	0,0	0,0	
10:37	744	297,6	144,0	148,25	148,25	148,3	0,0	0,0	0,0	
10:52	779	311,6	150,8	148,25	148,25	148,3	0,4	0,4	0,4	
11:07	810	324	156,8	148,25	148,25	148,3	1,3	1,3	1,3	
11:22	837	334,8	162,0	148,25	148,25	148,3	2,1	2,1	2,1	
11:37	861	344,4	166,6	148,25	148,25	148,3	2,8	2,8	2,8	
11:52	881	352,4	170,5	148,25	148,25	148,3	3,3	3,3	3,3	
12:07	897	358,8	173,6	148,25	148,25	148,3	3,8	3,8	3,8	
12:22	909	363,6	175,9	148,25	148,25	148,3	4,1	4,1	4,1	
12:37	917	366,8	177,5	148,25	148,25	148,3	4,4	4,4	4,4	
12:52	921	368,4	178,2	148,25	148,25	148,3	4,5	4,5	4,5	
13:07	921	368,4	178,2	148,25	148,25	148,3	4,5	4,5	4,5	
13:22	917	366,8	177,5	148,25	148,25	148,3	4,4	4,4	4,4	
13:37	909	363,6	175,9	191,25	191,25	148,3	0,0	0,0	4,1	
13:52	897	358,8	173,6	191,25	191,25	148,3	0,0	0,0	3,8	
14:07 14:22	881 861	352,4	170,5	191,25	191,25	148,3	0,0	0,0	3,3	
14:37	837	344,4 334,8	166,6 162,0	191,25 148,25	191,25 148,25	148,3 148,3	2,1	2,1	2,8 2,1	
14:52	810	324	156,8	148,25	148,25	148,3	1,3	1,3	1,3	
15:07	779	311,6	150,8	148,25	148,25	148,3	0,4	0,4	0,4	
15:22	744	297,6	144,0	148,25	148,25	148,3	0,0	0,0	0,0	
15:37	707	282,8	136,8	148,25	148,25	148,3	0,0	0,0	0,0	
15:52	666	266,4	128,9	148,25	148,25	148,3	0,0	0,0	0,0	
16:07	623	249,2	120,6	148,25	148,25	148,3	0,0	0,0	0,0	
16:22	577	230,8	111,7	148,25	148,25	148,3	0,0	0,0	0,0	
16:37	529	211,6	102,4	148,25	148,25	148,3	0,0	0,0	0,0	
16:52	480	192	92,9	148,25	148,25	148,3	0,0	0,0	0,0	
17:07	429	171,6	83,0	148,25	148,25	148,3	0,0	0,0	0,0	
17:22	377	150,8	73,0	148,25	148,25	148,3	0,0	0,0	0,0	
17:37	326	130,4	63,1	148,25	148,25	148,3	0,0	0,0	0,0	
17:52	274	109,6	53,0	148,25	148,25	148,3	0,0	0,0	0,0	
18:07	224	89,6	43,3	191,25	148,25	148,3	0,0	0,0	0,0	
18:22	175	70	33,9	191,25	148,25	148,3	0,0	0,0	0,0	
18:37	130	52	25,2	191,25	148,25	148,3	0,0	0,0	0,0	
18:52	89	35,6	17,2	191,25	148,25	148,3	0,0	0,0	0,0	
19:07	66	26,4	12,8	148,25	148,25	148,3	0,0	0,0	0,0	
19:22	56	22,4	10,8	148,25	148,25	148,3	0,0	0,0	0,0	
19:37	44	17,6	8,5	148,25	148,25	148,3	0,0	0,0	0,0	
19:52	32	12,8	6,2	110,45	110,45	110,5	0,0	0,0	0,0	
20:07	20	8	3,9	110,45	110,45	110,5	0,0	0,0	0,0	
Total diario (kWh)		2,87	1.390,44	2203,76	2160,76	2074,76	39,2	39,2	53,3	
Total mensual		80,47	41.713,24	44.075,25	10.803,81	10.373,81	196,1	39,2	53,3	
(kWh)	<u> </u>		41.713,24		65.252,88			1.246,72		
	Valor máximo de irradiancia				921					
Valor máximo de potencia (kW)					368,4					

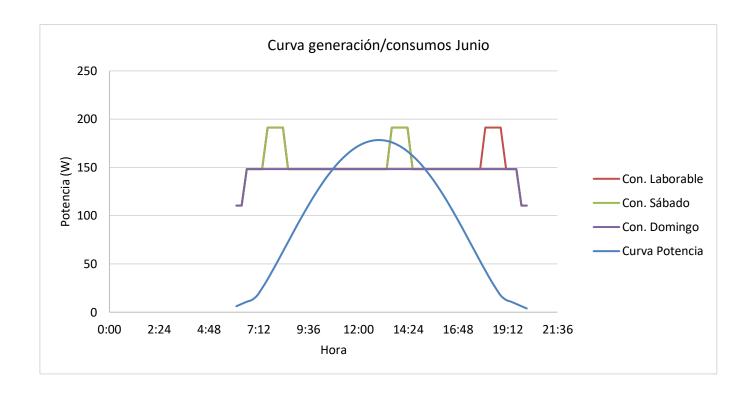


Tabla y gráfica 6.6. Generación Junio.

	JULIO									
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E. perdida laborables (kWh)	E. perdida sábados (kWh)	E perdida domingos (kWh)	
6:07	25	10	4,8	110,45	110,45	110,5	0,0	0,0	0,0	
6:22	37	14,8	7,2	110,45	110,45	110,5	0,0	0,0	0,0	
6:37 6:52	48 59	19,2 23,6	9,3 11,4	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0	
7:07	82	32,8	15,9	148,25	148,25	148,3	0,0	0,0	0,0	
7:22	124	49,6	24,0	148,25	148,25	148,3	0,0	0,0	0,0	
7:37	170	68	32,9	191,25	191,25	148,3	0,0	0,0	0,0	
7:52	219	87,6	42,4	191,25	191,25	148,3	0,0	0,0	0,0	
8:07	271	108,4	52,4	191,25	191,25	148,3	0,0	0,0	0,0	
8:22	325	130	62,9	191,25	191,25	148,3	0,0	0,0	0,0	
8:37	379	151,6	73,3	148,25	148,25	148,3	0,0	0,0	0,0	
8:52	432	172,8	83,6	148,25	148,25	148,3	0,0	0,0	0,0	
9:07 9:22	486 537	194,4 214,8	94,1 103,9	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0	
9:37	588	235,2	113,8	148,25	148,25	148,3	0,0	0,0	0,0	
9:52	636	254,4	123,1	148,25	148,25	148,3	0,0	0,0	0,0	
10:07	681	272,4	131,8	191,25	191,25	191,3	0,0	0,0	0,0	
10:22	724	289,6	140,1	191,25	191,25	191,3	0,0	0,0	0,0	
10:37	763	305,2	147,7	191,25	191,25	191,3	0,0	0,0	0,0	
10:52	800	320	154,8	191,25	191,25	191,3	0,0	0,0	0,0	
11:07	832	332,8	161,0	148,25	148,25	148,3	1,9	1,9	1,9	
11:22	861	344,4	166,6	148,25	148,25	148,3	2,8	2,8	2,8	
11:37	886	354,4	171,5	148,25	148,25	148,3	3,5	3,5	3,5	
11:52 12:07	907 924	362,8 369,6	175,5 178,8	148,25 148,25	148,25 148,25	148,3 148,3	4,1	4,1 4,6	4,1	
12:22	937	374,8	181,3	148,25	148,25	148,3	5,0	5,0	5,0	
12:37	946	378,4	183,1	148,25	148,25	148,3	5,2	5,2	5,2	
12:52	950	380	183,8	148,25	148,25	148,3	5,3	5,3	5,3	
13:07	950	380	183,8	148,25	148,25	148,3	5,3	5,3	5,3	
13:22	946	378,4	183,1	148,25	148,25	148,3	5,2	5,2	5,2	
13:37	937	374,8	181,3	191,25	191,25	148,3	0,0	0,0	5,0	
13:52	924	369,6	178,8	191,25	191,25	148,3	0,0	0,0	4,6	
14:07	907	362,8	175,5	191,25	191,25	148,3	0,0	0,0	4,1	
14:22	886	354,4	171,5	191,25	191,25	148,3	0,0	0,0	3,5	
14:37 14:52	861 832	344,4 332,8	166,6 161,0	148,25 148,25	148,25 148,25	148,3 148,3	2,8 1,9	2,8 1,9	2,8 1,9	
15:07	800	320	154,8	148,25	148,25	148,3	1,0	1,0	1,0	
15:22	763	305,2	147,7	148,25	148,25	148,3	0,0	0,0	0,0	
15:37	724	289,6	140,1	148,25	148,25	148,3	0,0	0,0	0,0	
15:52	681	272,4	131,8	148,25	148,25	148,3	0,0	0,0	0,0	
16:07	636	254,4	123,1	148,25	148,25	148,3	0,0	0,0	0,0	
16:22	588	235,2	113,8	148,25	148,25	148,3	0,0	0,0	0,0	
16:37	537	214,8	103,9	148,25	148,25	148,3	0,0	0,0	0,0	
16:52	486	194,4	94,1	148,25	148,25	148,3	0,0	0,0	0,0	
17:07 17:22	432 379	172,8	83,6	148,25	148,25	148,3	0,0	0,0	0,0	
17:22	379	151,6 130	73,3 62,9	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0	
17:52	271	108,4	52,4	148,25	148,25	148,3	0,0	0,0	0,0	
18:07	219	87,6	42,4	191,25	191,25	191,3	0,0	0,0	0,0	
18:22	170	68	32,9	191,25	191,25	191,3	0,0	0,0	0,0	
18:37	124	49,6	24,0	191,25	191,25	191,3	0,0	0,0	0,0	
18:52	82	32,8	15,9	191,25	191,25	191,3	0,0	0,0	0,0	
19:07	59	23,6	11,4	148,25	148,25	148,3	0,0	0,0	0,0	
19:22	48	19,2	9,3	148,25	148,25	148,3	0,0	0,0	0,0	
19:37	37	14,8	7,2	148,25	148,25	148,3	0,0	0,0	0,0	
19:52 20:07	25 12	4,8	4,8 2,3	110,45 110,45	110,45 110,45	110,5 110,5	0,0	0,0	0,0	
Total diario (kWh)	12	2,93	1.416,08	2246,76	2246,76	2160,76	48,6	48,6	65,7	
Total mensual		81,96	43.898,56	47.182,01	11.233,81	10.803,81	242,8	48,6	65,7	
(kWh)		01,50	43.898,56	47.102,01	69.219,64	10.005,01	272,0	1.542,58	03,7	
v	alor máximo de	e irradiancia			950					
	or máximo de p				380					
,	Número de				593					

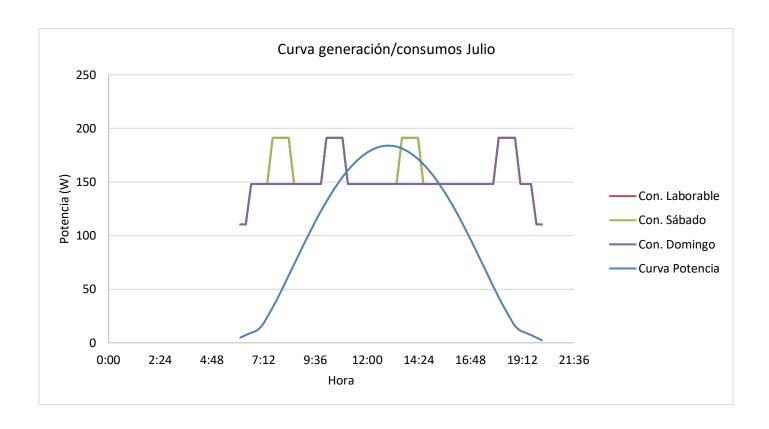


Tabla y gráfica 6.7. Generación Julio.

				AGOS	ТО				
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E perdida sábados (kWh)	E perdida domingos (kWh)
6:37	29	11,6	5,6	110,45	110,45	110,5	0,0	0,0	0,0
6:52	42	16,8	8,1	110,45	110,45	110,5	0,0	0,0	0,0
7:07 7:22	64 102	25,6 40,8	12,4 19,7	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
7:37	147	58,8	28,4	191,25	191,25	148,3	0,0	0,0	0,0
7:52	197	78,8	38,1	191,25	191,25	148,3	0,0	0,0	0,0
8:07	250	100	48,4	191,25	191,25	148,3	0,0	0,0	0,0
8:22	305	122	59,0	191,25	191,25	148,3	0,0	0,0	0,0
8:37	361	144,4	69,9	148,25	148,25	148,3	0,0	0,0	0,0
8:52	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
9:07	472	188,8	91,3	148,25	148,25	148,3	0,0	0,0	0,0
9:22	527	210,8	102,0	148,25	148,25	148,3	0,0	0,0	0,0
9:37	579	231,6	112,0	148,25	148,25	148,3	0,0	0,0	0,0
9:52	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
10:07	678	271,2	131,2	191,25	191,25	191,3	0,0	0,0	0,0
10:22	723	289,2	139,9	191,25	191,25	191,3	0,0	0,0	0,0
10:37 10:52	764 802	305,6 320,8	147,8 155,2	191,25 191,25	191,25 191,25	191,3 191,3	0,0	0,0	0,0
11:07	837	334,8	162,0	148,25	148,25	148,3	2,1	2,1	2,1
11:22	867	346,8	167,8	148,25	148,25	148,3	2,1	2,1	2,1
11:37	894	357,6	173,0	148,25	148,25	148,3	3,7	3,7	3,7
11:52	916	366,4	177,3	148,25	148,25	148,3	4,4	4,4	4,4
12:07	934	373,6	180,7	148,25	148,25	148,3	4,9	4,9	4,9
12:22	947	378,8	183,3	148,25	148,25	148,3	5,3	5,3	5,3
12:37	956	382,4	185,0	148,25	148,25	148,3	5,5	5,5	5,5
12:52	961	384,4	186,0	148,25	148,25	148,3	5,7	5,7	5,7
13:07	961	384,4	186,0	148,25	148,25	148,3	5,7	5,7	5,7
13:22	956	382,4	185,0	148,25	148,25	148,3	5,5	5,5	5,5
13:37	947	378,8	183,3	191,25	191,25	148,3	0,0	0,0	5,3
13:52	934	373,6	180,7	191,25	191,25	148,3	0,0	0,0	4,9
14:07 14:22	916 894	366,4 357,6	177,3 173,0	191,25	191,25 191,25	148,3	0,0	0,0	4,4 3,7
14:22	867	346,8	167,8	191,25 148,25	191,25	148,3 148,3	0,0 2,9	0,0 2,9	2,9
14:52	837	334,8	162,0	148,25	148,25	148,3	2,1	2,1	2,9
15:07	802	320,8	155,2	148,25	148,25	148,3	1,0	1,0	1,0
15:22	764	305,6	147,8	148,25	148,25	148,3	0,0	0,0	0,0
15:37	723	289,2	139,9	148,25	148,25	148,3	0,0	0,0	0,0
15:52	678	271,2	131,2	148,25	148,25	148,3	0,0	0,0	0,0
16:07	630	252	121,9	148,25	148,25	148,3	0,0	0,0	0,0
16:22	579	231,6	112,0	148,25	148,25	148,3	0,0	0,0	0,0
16:37	527	210,8	102,0	148,25	148,25	148,3	0,0	0,0	0,0
16:52	472	188,8	91,3	148,25	148,25	148,3	0,0	0,0	0,0
17:07	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
17:22	361	144,4	69,9 50.0	148,25	148,25	148,3	0,0	0,0	0,0
17:37 17:52	305 250	122 100	59,0 48,4	148,25 148,25	148,25 148,25	148,3 148,3	0,0	0,0	0,0
18:07	197	78,8	38,1	191,25	191,25	191,3	0,0	0,0	0,0
18:22	147	58,8	28,4	191,25	191,25	191,3	0,0	0,0	0,0
18:37	102	40,8	19,7	191,25	191,25	191,3	0,0	0,0	0,0
18:52	64	25,6	12,4	191,25	191,25	191,3	0,0	0,0	0,0
19:07	42	16,8	8,1	148,25	148,25	148,3	0,0	0,0	0,0
19:22	29	11,6	5,6	110,45	110,45	110,5	0,0	0,0	0,0
19:37	15	6	2,9	110,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		2,88	1.394,17	2098,51	2098,51	2012,51	51,6	51,6	69,7
Total mensual		80,69	43.219,16	44.068,76	10.492,56	10.062,56	257,8	51,6	69,7
(kWh)	'		43.219,16		64.623,89			1.637,64	
v	alor máximo de	: irradiancia			961		_ 		
	lor máximo de 1				384,4				
, , ,	Número de				587				
					55.			75	

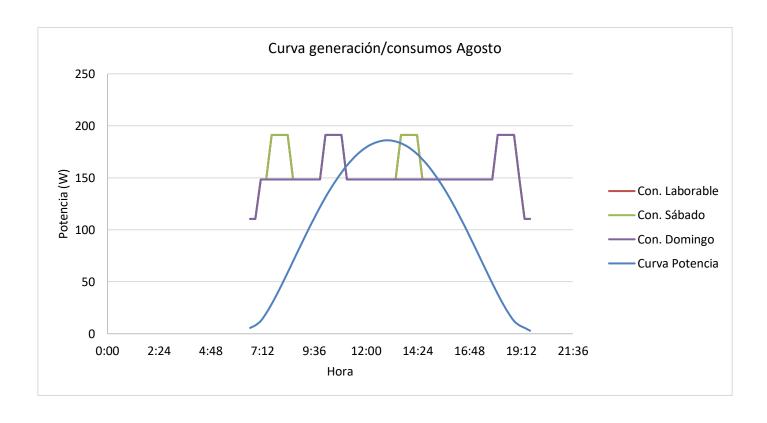


Tabla y gráfica 6.8. Generación Agosto.

				SEPTIEN	/BRE				•
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E perdida sábados (kWh)	E perdida domingos (kWh)
7:07	28	11,2	5,4	110,45	110,45	110,5	0,0	0,0	0,0
7:22	60	24	11,6	110,45	110,45	110,5	0,0	0,0	0,0
7:37	100	40	19,4	191,25	191,25	148,3	0,0	0,0	0,0
7:52	147	58,8	28,4	191,25	191,25	148,3	0,0	0,0	0,0
8:07	197	78,8	38,1	191,25	191,25	148,3	0,0	0,0	0,0
8:22	251	100,4	48,6	191,25	191,25	148,3	0,0	0,0	0,0
8:37	306	122,4	59,2	148,25	148,25	148,3	0,0	0,0	0,0
8:52	362	144,8	70,1	148,25	148,25	148,3	0,0	0,0	0,0
9:07	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
9:22	471	188,4	91,1	148,25	148,25	148,3	0,0	0,0	0,0
9:37	523	209,2	101,2	148,25	148,25	148,3	0,0	0,0	0,0
9:52	573	229,2	110,9	148,25	148,25	148,3	0,0	0,0	0,0
10:07	620	248	120,0	148,25	148,25	148,3	0,0	0,0	0,0
10:22	665	266	128,7	148,25	148,25	148,3	0,0	0,0	0,0
10:37	706	282,4	136,6	148,25	148,25	148,3	0,0	0,0	0,0
10:52	744	297,6	144,0	148,25	148,25	148,3	0,0	0,0	0,0
11:07	778	311,2	150,6	148,25	148,25	148,3	0,0	0,3	0,0
11:22	808	323,2			· · · · · · · · · · · · · · · · · · ·		1,2		1,2
			156,4	148,25	148,25	148,3	-	1,2	•
11:37	834	333,6	161,4	148,25	148,25	148,3	2,0	2,0	2,0
11:52	856	342,4	165,7	148,25	148,25	148,3	2,6	2,6	2,6
12:07	874	349,6	169,1	148,25	148,25	148,3	3,1	3,1	3,1
12:22	887	354,8	171,7	148,25	148,25	148,3	3,5	3,5	3,5
12:37	896	358,4	173,4	148,25	148,25	148,3	3,8	3,8	3,8
12:52	900	360	174,2	148,25	148,25	148,3	3,9	3,9	3,9
13:07	900	360	174,2	148,25	148,25	148,3	3,9	3,9	3,9
13:22	896	358,4	173,4	148,25	148,25	148,3	3,8	3,8	3,8
13:37	887	354,8	171,7	191,25	191,25	148,3	0,0	0,0	3,5
13:52	874	349,6	169,1	191,25	191,25	148,3	0,0	0,0	3,1
14:07	856	342,4	165,7	191,25	191,25	148,3	0,0	0,0	2,6
14:22	834	333,6	161,4	191,25	191,25	148,3	0,0	0,0	2,0
14:37	808	323,2	156,4	148,25	148,25	148,3	1,2	1,2	1,2
14:52	778	311,2	150,6	148,25	148,25	148,3	0,3	0,3	0,3
15:07	744	297,6	144,0	148,25	148,25	148,3	0,0	0,0	0,0
15:22	706	282,4	136,6	148,25	148,25	148,3	0,0	0,0	0,0
15:37	665	266	128,7	148,25	148,25	148,3	0,0	0,0	0,0
15:52	620	248	120,0	148,25	148,25	148,3	0,0	0,0	0,0
16:07	573	229,2	110,9	148,25	148,25	148,3	0,0	0,0	0,0
16:22	523	209,2	101,2	148,25	148,25	148,3	0,0	0,0	0,0
16:37	471	188,4	91,1	148,25	148,25	148,3	0,0	0,0	0,0
16:52	417	166,8	80,7	148,25	148,25	148,3	0,0	0,0	0,0
17:07	362	144,8	70,1	148,25	148,25	148,3	0,0	1	
17:07	306		59,2	148,25				0,0	0,0
		122,4			148,25	148,3	0,0	0,0	0,0
17:37	251	100,4	48,6	148,25	148,25	148,3	0,0	0,0	0,0
17:52	197	78,8	38,1	148,25	148,25	148,3	0,0	0,0	0,0
18:07	147	58,8	28,4	191,25	148,25	148,3	0,0	0,0	0,0
18:22	100	40	19,4	191,25	148,25	148,3	0,0	0,0	0,0
18:37	60	24	11,6	191,25	148,25	148,3	0,0	0,0	0,0
18:52	28	11,2	5,4	153,45	110,45	110,5	0,0	0,0	0,0
19:07	11	4,4	2,1	110,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		2,60	1.258,70	1907,26	1864,26	1778,26	29,7	29,7	40,9
Total mensual		72,85	37.761,07	38.145,25	9.321,31	8.891,31	148,4	29,7	40,9
(kWh)			37.761,07		56.357,88			946,26	
V	alor máximo de	irradiancia			900				
Val	lor máximo de j	ootencia (kW)			360				
	***				606				

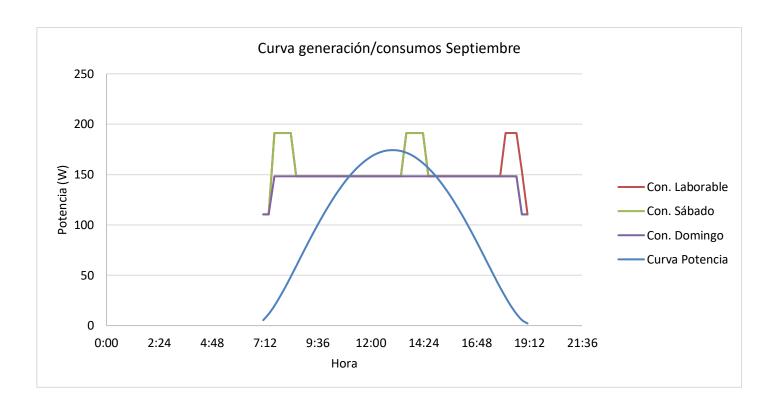


Tabla y gráfica 6.9. Generación Septiembre.

			•	OCTUE	BRE			•	•
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E. perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)
7:52	89	35,6	17,2	153,45	153,45	110,5	0,0	0,0	0,0
8:07	148	59,2	28,6	153,45	153,45	110,5	0,0	0,0	0,0
8:22	203	81,2	39,3	191,25	191,25	148,3	0,0	0,0	0,0
8:37	260	104	50,3	148,25	148,25	148,3	0,0	0,0	0,0
8:52	316	126,4	61,2	148,25	148,25	148,3	0,0	0,0	0,0
9:07	371	148,4	71,8	148,25	148,25	148,3	0,0	0,0	0,0
9:22	425	170	82,2	148,25	148,25	148,3	0,0	0,0	0,0
9:37	476	190,4	92,1	148,25	148,25	148,3	0,0	0,0	0,0
9:52	525	210	101,6	148,25	148,25	148,3	0,0	0,0	0,0
10:07	571	228,4	110,5	148,25	148,25	148,3	0,0	0,0	0,0
10:22	614	245,6	118,8	148,25	148,25	148,3	0,0	0,0	0,0
10:37	654	261,6	126,6	148,25	148,25	148,3	0,0	0,0	0,0
10:52	690	276	133,5	148,25	148,25	148,3	0,0	0,0	0,0
11:07	722	288,8	139,7	148,25	148,25	148,3	0,0	0,0	0,0
11:22	751	300,4	145,3	148,25	148,25	148,3	0,0	0,0	0,0
11:37	775	310	150,0	148,25	148,25	148,3	0,0	0,0	0,0
11:52	796	318,4	150,0	148,25	148,25	148,3	0,9	0,9	0,3
12:07	813	325,2	157,3	148,25	148,25	148,3	1,4	1,4	1,4
					1				
12:22	825	330	159,7	148,25	148,25	148,3	1,7	1,7	1,7
12:37	834	333,6	161,4	148,25	148,25	148,3	2,0	2,0	2,0
12:52	838	335,2	162,2	148,25	148,25	148,3	2,1	2,1	2,1
13:07	838	335,2	162,2	148,25	148,25	148,3	2,1	2,1	2,1
13:22	834	333,6	161,4	148,25	148,25	148,3	2,0	2,0	2,0
13:37	825	330	159,7	191,25	191,25	148,3	0,0	0,0	1,7
13:52	813	325,2	157,3	191,25	191,25	148,3	0,0	0,0	1,4
14:07	796	318,4	154,0	191,25	191,25	148,3	0,0	0,0	0,9
14:22	775	310	150,0	191,25	191,25	148,3	0,0	0,0	0,3
14:37	751	300,4	145,3	148,25	148,25	148,3	0,0	0,0	0,0
14:52	722	288,8	139,7	148,25	148,25	148,3	0,0	0,0	0,0
15:07	690	276	133,5	148,25	148,25	148,3	0,0	0,0	0,0
15:22	654	261,6	126,6	148,25	148,25	148,3	0,0	0,0	0,0
15:37	614	245,6	118,8	148,25	148,25	148,3	0,0	0,0	0,0
15:52	571	228,4	110,5	148,25	148,25	148,3	0,0	0,0	0,0
16:07	525	210	101,6	148,25	148,25	148,3	0,0	0,0	0,0
16:22	476	190,4	92,1	148,25	148,25	148,3	0,0	0,0	0,0
16:37	425	170	82,2	148,25	148,25	148,3	0,0	0,0	0,0
16:52	371	148,4	71,8	148,25	148,25	148,3	0,0	0,0	0,0
17:07	316	126,4	61,2	148,25	148,25	148,3	0,0	0,0	0,0
17:22	260	104	50,3	148,25	148,25	148,3	0,0	0,0	0,0
17:37	203	81,2	39,3	148,25	148,25	148,3	0,0	0,0	0,0
17:52	148	59,2	28,6	148,25	148,25	148,3	0,0	0,0	0,0
18:07	89	35,6	17,2	153,45	110,45	110,5	0,0	0,0	0,0
18:22	25	10	4,8	153,45	110,45	110,5	0,0	0,0	0,0
Total diario (kWh)		2,34	1.132,91	1652,64	1631,14	1555,89	12,3	12,3	16,5
Total mensual		65,57	35.120,35	34.705,39	8.155,69	7.779,44	61,6	12,3	16,5
(kWh)	'		35.120,35		50.640,51			390,62	
V	alor máximo de	irradiancia			838				
Val	or máximo de j	potencia (kW)			335,2				

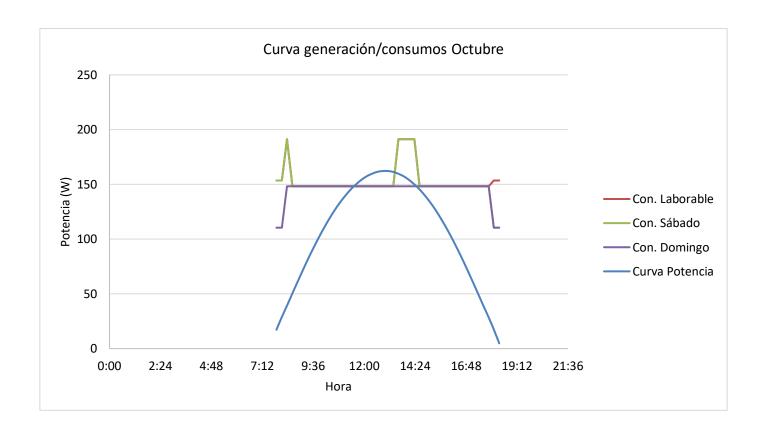


Tabla y gráfica 6.10. Generación Octubre.

	NOVIEMBRE									
Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)	
8:22	99	39,6	19,2	153,45	153,45	110,5	0,0	0,0	0,0	
8:37	161	64,4	31,2	110,45	110,45	110,5	0,0	0,0	0,0	
8:52	215	86	41,6	148,25	148,25	148,3	0,0	0,0	0,0	
9:07	269	107,6	52,1	148,25	148,25	148,3	0,0	0,0	0,0	
9:22	321	128,4	62,1	148,25	148,25	148,3	0,0	0,0	0,0	
9:37	371	148,4	71,8	148,25	148,25	148,3	0,0	0,0	0,0	
9:52	418	167,2	80,9	148,25	148,25	148,3	0,0	0,0	0,0	
10:07	462	184,8	89,4	148,25	148,25	148,3	0,0	0,0	0,0	
10:22	503	201,2	97,3	148,25	148,25	148,3	0,0	0,0	0,0	
10:37	541	216,4	104,7	148,25	148,25	148,3	0,0	0,0	0,0	
10:52	575	230	111,3	148,25	148,25	148,3	0,0	0,0	0,0	
11:07	606	242,4	117,3	148,25	148,25	148,3	0,0	0,0	0,0	
11:22	634	253,6	122,7	148,25	148,25	148,3	0,0	0,0	0,0	
11:37	657	262,8	127,1	148,25	148,25	148,3	0,0	0,0	0,0	
11:52	677	270,8	131,0	148,25	148,25	148,3	0,0	0,0	0,0	
12:07	693	277,2	134,1	148,25	148,25	148,3	0,0	0,0	0,0	
12:22	705	282	136,4	148,25	148,25	148,3	0,0	0,0	0,0	
12:37	713	285,2	138,0	148,25	148,25	148,3	0,0	0,0	0,0	
12:52	717	286,8	138,8	148,25	148,25	148,3	0,0	0,0	0,0	
13:07	717	286,8	138,8	148,25	148,25	148,3	0,0	0,0	0,0	
13:22	713	285,2	138,0	148,25	148,25	148,3	0,0	0,0	0,0	
13:37	705	282	136,4	191,25	191,25	148,3	0,0	0,0	0,0	
13:52	693	277,2	134,1	191,25	191,25	148,3	0,0	0,0	0,0	
14:07	677	270,8	131,0	191,25	191,25	148,3	0,0	0,0	0,0	
14:22	657	262,8	127,1	191,25	191,25	148,3	0,0	0,0	0,0	
14:37	634	253,6	122,7	148,25	148,25	148,3	0,0	0,0	0,0	
14:52	606	242,4	117,3	148,25	148,25	148,3	0,0	0,0	0,0	
15:07	575	230	111,3	148,25	148,25	148,3	0,0	0,0	0,0	
15:22	541	216,4	104,7	148,25	148,25	148,3	0,0	0,0	0,0	
15:37	503	201,2	97,3	148,25	148,25	148,3	0,0	0,0	0,0	
15:52	462	184,8	89,4	148,25	148,25	148,3	0,0	0,0	0,0	
16:07	418	167,2	80,9	148,25	148,25	148,3	0,0	0,0	0,0	
16:22	371	148,4	71,8	148,25	148,25	148,3	0,0	0,0	0,0	
16:37	321	128,4	62,1	148,25	148,25	148,3	0,0	0,0	0,0	
16:52	269	107,6	52,1	148,25	148,25	148,3	0,0	0,0	0,0	
17:07	215	86	41,6	148,25	148,25	148,3	0,0	0,0	0,0	
17:22	161	64,4	31,2	148,25	148,25	148,3	0,0	0,0	0,0	
17:37	99	39,6	19,2	110,45	110,45	110,5	0,0	0,0	0,0	
17:52	20	8	3,9	110,45	110,45	110,5	0,0	0,0	0,0	
otal diario (kWh)		1,87	904,42	1461,39	1461,39	1407,64	0,0	0,0	0,0	
Total mensual		52,34	27.132,47	29.227,75	7.306,94	7.038,19	0,0	0,0	0,0	
(kWh)	'		27.132,47		43.572,88			0,00		
V	alor máximo de	irradiancia			717					
Va	lor máximo de _l	ootencia (kW)			286,8					

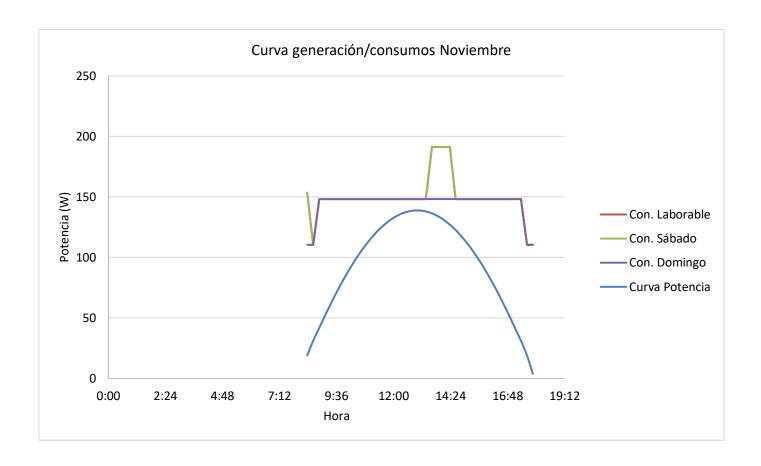


Tabla y gráfica 6.11. Generación Noviembre.

DICIFMERE									
DICITIVISKE	1	וח	\cap	IFI	M	R	R	F	

Hora	Irradiancia global (W/m²)	Potencia 1 placa (W)	Potencia total (kW)	Consumo laborables (kW)	Consumo sábados (kW)	Consumo domingos (kW)	E. perdida laborables (kWh)	E. perdida sábados (kWh)	E. perdida domingos (kWh)
8:37	113	45,2	21,9	110,45	110,45	110,5	0,0	0,0	0,0
8:52	172	68,8	33,3	110,45	110,45	110,5	0,0	0,0	0,0
9:07	232	92,8	44,9	148,25	148,25	148,3	0,0	0,0	0,0
9:22	283	113,2	54,8	148,25	148,25	148,3	0,0	0,0	0,0
9:37	331	132,4	64,1	148,25	148,25	148,3	0,0	0,0	0,0
9:52	376	150,4	72,8	148,25	148,25	148,3	0,0	0,0	0,0
10:07	419	167,6	81,1	148,25	148,25	148,3	0,0	0,0	0,0
10:22	458	183,2	88,6	148,25	148,25	148,3	0,0	0,0	0,0
10:37	493	197,2	95,4	148,25	148,25	148,3	0,0	0,0	0,0
10:52	526	210,4	101,8	148,25	148,25	148,3	0,0	0,0	0,0
11:07	555	222	107,4	148,25	148,25	148,3	0,0	0,0	0,0
11:22	580	232	112,2	148,25	148,25	148,3	0,0	0,0	0,0
11:37	602	240,8	116,5	148,25	148,25	148,3	0,0	0,0	0,0
11:52	621	248,4	120,2	148,25	148,25	148,3	0,0	0,0	0,0
12:07	635	254	122,9	148,25	148,25	148,3	0,0	0,0	0,0
12:22	647	258,8	125,2	148,25	148,25	148,3	0,0	0,0	0,0
12:37	654	261,6	126,6	148,25	148,25	148,3	0,0	0,0	0,0
12:52	658	263,2	127,3	148,25	148,25	148,3	0,0	0,0	0,0
13:07	658	263,2	127,3	148,25	148,25	148,3	0,0	0,0	0,0
13:22	654	261,6	126,6	148,25	148,25	148,3	0,0	0,0	0,0
13:37	647	258,8	125,2	191,25	191,25	148,3	0,0	0,0	0,0
13:52	635	254	122,9	191,25	191,25	148,3	0,0	0,0	0,0
14:07	621	248,4	120,2	191,25	191,25	148,3	0,0	0,0	0,0
14:22	602	240,8	116,5	191,25	191,25	148,3	0,0	0,0	0,0
14:37	580	232	112,2	148,25	148,25	148,3	0,0	0,0	0,0
14:52	555	222	107,4	148,25	148,25	148,3	0,0	0,0	0,0
15:07	526	210,4	101,8	148,25	148,25	148,3	0,0	0,0	0,0
15:22	493	197,2	95,4	148,25	148,25	148,3	0,0	0,0	0,0
15:37	458	183,2	88,6	148,25	148,25	148,3	0,0	0,0	0,0
15:52	419	167,6	81,1	148,25	148,25	148,3	0,0	0,0	0,0
16:07	376	150,4	72,8	148,25	148,25	148,3	0,0	0,0	0,0
16:22	331	132,4	64,1	148,25	148,25	148,3	0,0	0,0	0,0
16:37	283	113,2	54,8	148,25	148,25	148,3	0,0	0,0	0,0
16:52	232	92,8	44,9	148,25	148,25	148,3	0,0	0,0	0,0
17:07	172	68,8	33,3	148,25	148,25	148,3	0,0	0,0	0,0
17:22	113	45,2	21,9	148,25	148,25	148,3	0,0	0,0	0,0
17:37	20	8	3,9	148,25	148,25	148,3	0	0	0
Total diario (kWh)		1,67	809,40	1395,41	1395,41	1352,41	0,0	0,0	0,0
Total mensual		46,84	25.091,32	29.303,66	6.977,06	6.762,06	0,0	0,0	0,0
(kWh)	'		25.091,32		43.042,79			0,00	
V	alor máximo de	irradiancia			658				

263,2 857

Valor máximo de potencia (kW)

\sim	1
×	~
u	J

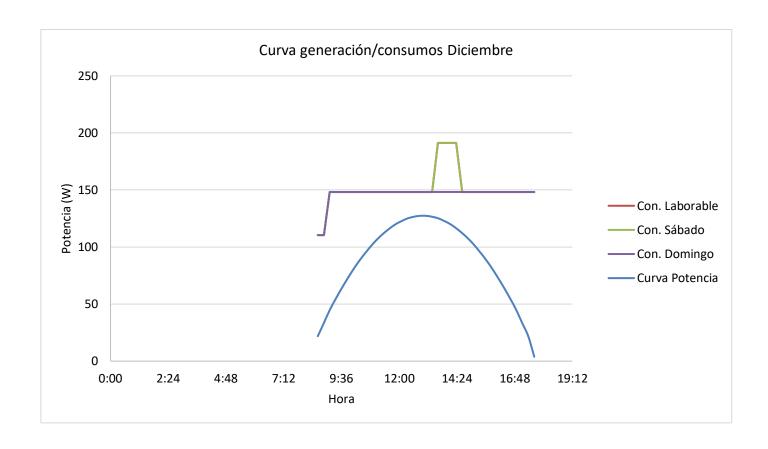
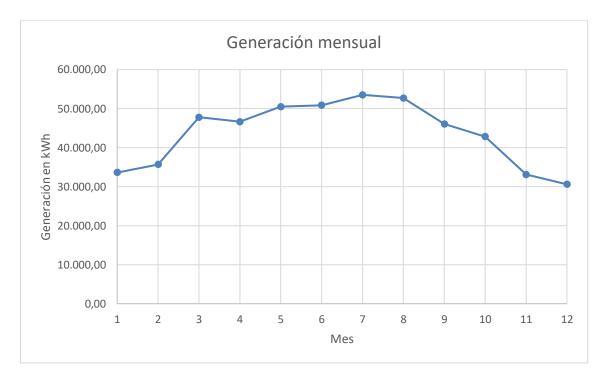



Tabla y gráfica 6.12. Generación Diciembre.

6.4. Cálculos

Mostrados los valores de generación y consumos en el punto anterior, se procede a la realización de los cálculos oportunos para obtener los valores anuales, así como el balance de los excedentes respecto a la generación.

Gráfica 6.13. Generación mensual.

Para calcular el consumo, puesto que se tendrán tres perfiles distintos de consumo, a efectos de cálculo se aceptará que todos los meses tienen cinco fines de semana, de tal manera que para obtener el consumo mensual se multiplicará por 5 el consumo de sábados y domingos y los laborables por el número de días restante en cada mes.

El consumo no cubierto mediante la instalación fotovoltaica se cubrirá con la red eléctrica.

Dicho esto, a continuación, se muestran los valores de generación y consumo mensuales y anuales.

Mes	Energía generada en placas (kWh)	Energía generada tras pérdidas (kWh)	Energía aprovechada de placas (kWh)	Energía consumida de red (kWh)	Consumo total (kWh)	Energía sobrante (k Wh)
Enero	33.611,53	27.561,46	27.561,46	14.895,43	42.456,89	0,00
Febrero	35.669,98	29.249,39	29.145,42	13.916,96	43.166,35	103,97
Marzo	47.799,09	39.195,25	38.402,26	16.772,01	55.967,26	792,99
Abril	46.623,57	38.231,33	37.588,00	20.350,30	58.581,63	643,33
Mayo	50.506,01	41.414,92	40.590,15	23.743,84	65.158,76	824,78
Junio	50.869,80	41.713,24	40.466,52	23.539,64	65.252,88	1.246,72
Julio	53.534,83	43.898,56	42.355,98	25.321,08	69.219,64	1.542,58
Agosto	52.706,29	43.219,16	41.581,52	21.404,73	64.623,89	1.637,64
Septiembre	46.050,09	37.761,07	36.814,82	18.596,80	56.357,88	946,26
Octubre	42.829,69	35.120,35	34.729,73	15.520,16	50.640,51	390,62
Noviembre	33.088,38	27.132,47	27.132,47	16.440,40	43.572,88	0,00
Diciembre	30.599,17	25.091,32	25.091,32	17.951,47	43.042,79	0,00
Total (kWh)	523.888,44	429.588,52	421.459,63	228.452,82	658.041,34	8.128,88

Tabla 6.13. Valores energéticos mensuales.

Mediante el valor real de energía y el valor total de excedentes se calcula el porcentaje de excedentes:

Como se puede apreciar, se ha obtenido un porcentaje de excedentes muy pequeño. Este dato muy favorable para la instalación, ya que la hará más rentable. Esto se debe a que las pautas de consumo del túnel son muy constantes, con algunos picos en los encendidos del motor, por esto, las curvas de generación están por debajo de la curva de consumo en casi todos los meses del año y los excedentes son muy bajos.

6.5. Alternativa: Variación de Azimut

Se estudia el comportamiento de la instalación al variar el grado de azimut de las placas. De esta manera se consigue desplazar la curva de generación en el tiempo para ajustar su parte superior con el encendido de los ventiladores y aprovecharla mejor. Con esta solución se cubriría mejor el consumo de la instalación, presentando menores cantidades de energía sobrante y, por tanto, menor precio de la energía.

Se eligen distintos ángulos de azimut para observar la evolución de la curva de generación conforme se aumenta el ángulo. Éstos, serán comparados con la curva inicial, con ángulo de valor 0° para estudiar si es rentable realizar esta variación.

Hora	Irradiancia global azimut 0°(W/m²)	Irradiancia global azimut 15°(W/m²)	Irradiancia global azimut 30°(W/m²)	Irradiancia global azimut 50°(W/m²)
7:37	142	100	54	38
7:52	208	155	98	48
8:07	263	204	139	50
8:22	316	254	183	86
8:37	366	302	228	125
8:52	414	349	273	165
9:07	458	394	318	207
9:22	500	437	361	249
9:37	538	477	403	290
9:52	572	515	443	331
10:07	603	550	480	370
10:22	630	581	515	408
10:37	653	610	547	443
10:52	673	635	577	476
11:07	689	656	603	507
11:22	701	674	626	535
11:37	708	688	645	560
11:52	712	698	661	582
12:07	712	704	673	600
12:22	708	706	681	615
12:37	701	705	686	627
12:52	689	699	686	634
13:07	673	689	682	638
13:22	653	675	675	638
13:37	630	658	662	633
13:52	603	636	646	624
1.4.07	570	600	60.5	610

ENERO

Tabla 6.14. Generación Enero con variación de azimut.

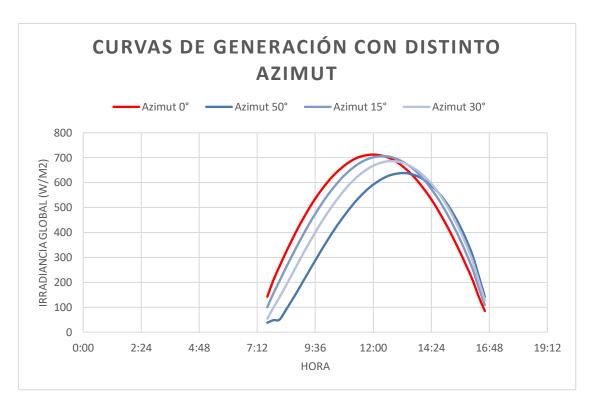
14:07

14:22

14:37 14:52

15:07

15:22


15:37

15:52

16:07

16:22

16:37

Gráfica 6.14. Generación Enero con variación de azimut.

No obstante, tal y como se observa en la tabla y la gráfica, al variar el ángulo de azimut se disminuye la producción considerablemente sin desplazar demasiado la curva. Por tanto, se opta por mantener el ángulo de 0°, puesto que obtendrá el mayor rendimiento.

7. COLOCACIÓN DE LOS PANELES

Los paneles fotovoltaicos se dispondrán en la capa superficial por la cual transcurre el túnel, ya que ésta no es edificable. De este modo se aprovechará el terreno y no se tendrá que invertir en la compra de un nuevo terreno para colocarlos. Además, se tendrá la posibilidad de colocarlos cerca del local técnico, donde se encuentra el inversor, para minimizar las pérdidas.

7.1. Localización

A continuación, se muestra una imagen vía satélite del túnel de San Juan, el área enmarcada por la línea roja representa la superficie del túnel, que estará a total disposición para colocar los paneles. Además, existe opción de compra de terreno sin edificar cercano al túnel si fuera necesario.

Imagen 7.1. Detalle de la zona de colocación de los paneles.

No obstante, la instalación de las placas se realizará en la zona circundante del local técnico, donde se sitúa el inversor, de manera que se instale la menor cantidad de cable posible.

Imagen 7.2. Zona de colocación de los paneles.

7.2. Distancia entre paneles

Se estudiará la disposición de los paneles fotovoltaicos de manera que se logre el máximo aprovechamiento del terreno sin que se proyecten sombras entre ellos, ya que esto provocaría una caída del rendimiento de la instalación. Se muestran las dimensiones del panel a disponer en la *Imagen 7.3*.

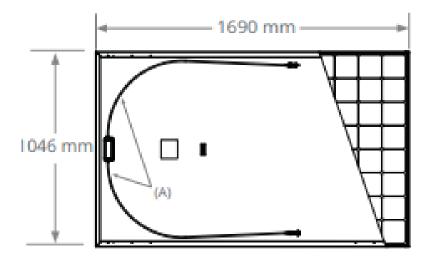


Imagen 7.3. Dimensiones placa SunPower Maxeon 3 400W.

Tras calcular el número de paneles a disponer, se calcula la distancia mínima a la que pueden ser colocados.

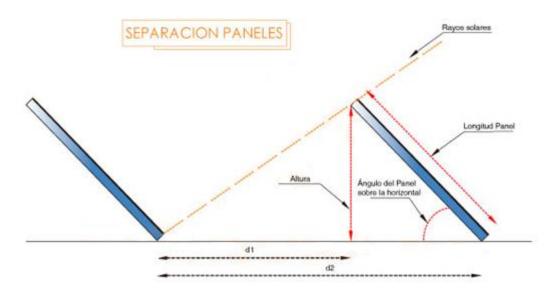


Imagen 7.4. Esquema cálculo de separación de paneles.

En primer lugar, se calcula la altura que presenta la placa, ya que ésta estará inclinada un ángulo de 35°, tal y como se ha calculado anteriormente.

$$h = sen(35)*1,690 = 0,969m$$

Una vez realizado este cálculo, la distancia entre filas se calculará mediante la siguiente fórmula:

$$d = h * k / m /$$

Siendo *k* un coeficiente adimensional que varía en función de la latitud de la instalación tal y como se muestra en la *Tabla 7.1*.

Latitud	29 °	37°	39°	41°	43°	45°
k	1,6	2,246	2,475	2,747	3,078	3,487

Tabla 7.1. Valores de coeficiente k.

Siendo las coordenadas de la instalación las siguientes:

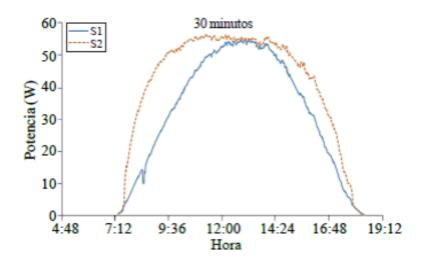
Latitud: 38°24′29.4″NLongitud: 0°26′24.8″O

Por tanto, atendiendo a la *Tabla 7.1.* el coeficiente *k* tendrá un valor de 2,36.

La distancia mínima entre filas de módulos será, por tanto:

$$l = k * h = 2.36 * 0.969 = 2.287 m$$

7.3. Soportes


Los soportes tienen la función de servir como apoyo para la placa y de mantenerla en la posición necesaria para la generación.

Estos pueden ser soportes fijos, conformados por una estructura metálica o con seguidor, con control de la posición exacta del panel mediante servomotores o pistones hidráulicos.

Imagen 7.5. Soporte con seguidor solar para placas solares.

Las estructuras con seguidor consiguen un mayor rendimiento en la generación ya que se orienta la placa para que en todo momento esté recibiendo la máxima radiación solar posible. No obstante, estas estructuras requieren de labores de mantenimiento, tienen un mayor coste y ocupan más espacio por placa que las estructuras fijas.

Gráfica 7.1. Curvas de generación de placa solar con y sin seguimiento.

Por ello, la diferencia de energía producida no compensa la inversión a realizar para colocar soportes con seguimiento ya que, como se aprecia en la *Gráfica 7.1.* la diferencia de producción no es tan sustancial.

Se optará por soportes fijos a fin de reducir la inversión inicial, simplificar el montaje y abaratar costes de mantenimiento. La inclinación será de 35° y el azimut será de 0°, tal y como se ha calculado en apartados anteriores.

Imagen 7.6. Soportes fijos para placas solares.

7.3.1. Soporte elegido

Para llevar a cabo esta instalación, se opta por la solución de colocar soportes fijos regulables, que podrán ser ajustados para que sostengan a la placa en el ángulo adecuado.

Se utiliza el soporte con denominación *Estructura Suelo 10 Panel FV915 1 Fila 24v.*, una estructura compuesta por perfiles de aluminio de alta calidad con tornillería de acero inoxidable. El método de sujeción de la placa será universal, colocándose ésta en vertical. Éstas se fijarán a un bloque de hormigón enterrado, tal y como se muestra en la *Imagen 7.7.* de manera que se garantice la integridad de la estructura en todo momento.

Imagen 7.7. Instalación de los soportes elegidos.

El diseño de la Estructura Suelo 10 Panel FV915 1 Fila 24V hará que sea capaz de soportar cargas de nieve de hasta 200N/m2, y cargas de viento de hasta 29 m/s, cargas muy superiores a las que se pueden presentar en el emplazamiento de la instalación.

Se elegirá el modelo de 10 paneles consecutivos, de forma que se instalará una estructura para cada uno de los módulos en paralelo, instalando un total de 59 estructuras.

Imagen 7.8. Estructura Suelo 10 Panel FV915 1 Fila 24V.

8. ESTUDIO ECONÓMICO

8.1. Precio W_{pico}.

El precio del W_{pico} se calculará en función de la potencia pico instalada y el coste total de la instalación.

La potencia máxima que podrá suministrar el panel elegido será de 400 W_{pico}

Se calcula la potencia instalada en placas:

Potencia en placas =
$$590 * 400 = 236 \text{ kW}$$

Con el precio total de la instalación se podrá calcular el precio del W_{pico}

.

Coste
$$W_{pico} = 293.965,06 / 236.000 = 1,24 \notin /W_{pico}$$

Lo que supone un precio razonable teniendo en cuenta que los precios del W_{pico} para instalaciones fotovoltaicas de autoconsumo pueden estar entre 0,90€ y 1,45€.

Además, se ha hecho uso de placas de calidad cuyo fabricante asegura una caída de rendimiento de un 8% a los 25 años, por tanto, el precio del Wpico se verá incrementado al principio, pero con el tiempo esta solución será más rentable ya que el precio del kWh caerá, como se comprobará en el siguiente apartado.

Podría rebajarse el precio del Wpico mediante incentivos o subvenciones hasta conseguir un precio más bajo, de hasta 0,95€, pero puesto que se trata de un proyecto financiado con dinero público esto no tendría sentido.

8.2. Precio kWh

Se realiza el cálculo del kWh generado para el primer año y para 25 años de funcionamiento. Para ello, se tendrá en cuenta un seguro de la instalación del 5% del coste del kWh vertido a la red.

De tal manera que se obtendrán los siguientes resultados:

Coste total	293.965,06 €
Coste año 1	295.361,22 €
Coste a 25 años	328.869,13 €
Coste Wpico	1,245614657 €
Coste kWh 1 año	0,56378649 €
Coste kWh 25 años	0,031897687 €

Tabla 8.1. Costes de la instalación.

Se puede apreciar que el precio del kWh a los 25 años de funcionamiento es bastante bajo con respecto a otras instalaciones fotovoltaicas conectadas a red. Esto se debe, principalmente, a que los paneles solares utilizados, cuyo precio supone un porcentaje alto del coste total, emplean tecnología de última generación. Debido a esto, generarán un 60% más de energía que un panel convencional durante sus primeros 25 años de funcionamiento, tal y como se muestra en la *Gráfica 4.1*.

Debido a esto, se genera más energía que puede ser vendida y aumentar beneficios.

8.3. Balance económico

Se realiza el balance económico de la instalación, teniendo en cuenta la energía generada anualmente y el dinero ahorrado con ésta.

Los cálculos se llevan a cabo siguiendo el Real Decreto 15/2018.

El Real Decreto 15/2018 en su artículo 9, punto 5, dice: "Los excedentes de las instalaciones de generación asociadas al autoconsumo estarán sometidos al mismo tratamiento que la energía producida por el resto de las instalaciones de producción, precio pool (aprox. 0,06 €/kWh)."

Para el dinero ahorrado se tendrán en cuenta unos costes anuales por mantenimiento del 5%. Además, para acercarlo lo más posible a la realidad, se tomará un aumento anual del precio de la energía de un 4%, siendo conservadores, ya que el aumento del precio de la energía probablemente resultará mayor.

Para calcular el dinero ahorrado se tomará un precio de 0,145011€ el kWh generado, que es el precio actual que ofrece *Iberdrola*, y un precio de 0.06 € el kWh de exceso, como se ha mencionado anteriormente, obteniendo de tal manera la *Tabla 8.2*.

Año	Coeficiente (%)	Energía aprovechada de placas (kWh)	Energía sobrante (kWh)	Dinero ahorrado (€)	Dinero acumulado (€)
1	100,00	421.459,63	8.128,88	58.523,82	58.523,82
2	99,75	420.405,99	8.108,56	60.694,12	119.217,93
3	99,50	419.352,34	8.088,24	62.852,81	182.070,74
4	99,25	418.298,69	8.067,92	64.999,89	247.070,63
5	99,00	417.245,04	8.047,59	67.135,36	314.205,99
6	98,75	416.191,39	8.027,27	69.259,21	383.465,20
7	98,50	415.137,74	8.006,95	71.371,45	454.836,65
8	98,25	414.084,09	7.986,63	73.472,08	528.308,73
9	98,00	413.030,44	7.966,30	75.561,10	603.869,83
10	97,75	411.976,79	7.945,98	77.638,51	681.508,34

Tabla 8.2. Tabla de amortización.

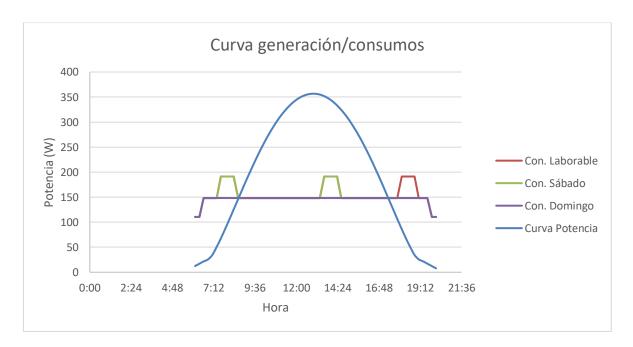
Como se aprecia en la tabla 8.2., la energía obtenida de placas se multiplica por un coeficiente que resulta de la pérdida de rendimiento de los paneles con el tiempo.

Debido a esta caída de rendimiento, se realentizará la recuperación de la inversión. No obstante, puesto que la energía aumenta su coste en un 4% anual, no afectará la caída del rendimiento de las placas. Es más, el dinero anual recuperado será cada vez mayor.

Como se puede apreciar, el coste de la instalación se ve cubierto en vista al año 5, lo que significa que la instalación resulta muy rentable ya que el período medio de amortización de instalaciones de conexión a red es de 7 años a partir de su puesta en marcha. Esto se debe, como se ha mencionado en el apartado anterior, a la tecnología utilizada por los paneles solares, que les permite generar más del doble de energía que un panel convencional durante los primeros 25 años. La venta de esta energía producida aumentará los beneficios en gran medida y provocará una reducción del período de amortización.

8.4. Alternativa: Ampliación de la instalación

Puesto que la aprobación del *Real Decreto-ley 15/2018, de 5 de octubre* suprime toda penalización por energía vertida a la red, se plantea la posibilidad de ampliar la instalación de generación para cubrir más parte del consumo y vender una mayor cantidad de energía.


A modo de observación, se plantea la misma instalación para los mismos receptores, pero con el doble de potencia instalada. Para esto habrá que duplicar todo el equipo de la instalación y con ello, los costes.

De tal manera, los costes obtenidos serán los siguientes:

Coste total	587.930,12 €
Coste año 1	590.722,44 €
Coste a 25 años	657.738,25 €
Coste Wpico	1,245614657 €
Coste kWh 1 año	0,56378649 €
Coste kWh 25 años	0,031897687 €

Tabla 8.3. Costes de la instalación alternativa.

Como se observa, los costes de la instalación se han duplicado, no obstante, los precios del Wpico y del kWh siguen iguales debido a que, al igual que el coste, se ha duplicado la potencia instalada, tal y como se muestra en la *Gráfica 8.1.*

Gráfica 8.1. Curva generación Junio instalación alternativa.

Se puede ver que la generación supera con creces la curva de consumos. Se estudiará ahora, el período de amortización que esto conllevaría.

Año	Coeficiente (%)	Energía aprovechada de placas (kWh)	Energía sobrante (kWh)	Dinero ahorrado (€)	Dinero acumulado (€)
1	100,00	637.375,65	221.801,38	100.447,84	100.447,84
2	99,75	635.782,21	221.246,88	103.700,14	204.147,98
3	99,50	634.188,77	220.692,38	106.934,89	311.082,86
4	99,25	632.595,33	220.137,87	110.152,07	421.234,93
5	99,00	631.001,89	219.583,37	113.351,69	534.586,63
6	98,75	629.408,46	219.028,87	116.533,76	651.120,38
7	98,50	627.815,02	218.474,36	119.698,26	770.818,64
8	98,25	626.221,58	217.919,86	122.845,20	893.663,84
9	98,00	624.628,14	217.365,35	125.974,58	1.019.638,41
10	97,75	623.034,70	216.810,85	129.086,39	1.148.724,81

Tabla 8.4. Tabla de amortización instalación alternativa.

Como se puede observar en la *Tabla 8.4.*, el período de amortización aumentará en un año con respecto a la alternativa estudiada. No obstante, una vez se cubre esta inversión, los beneficios obtenidos son mucho mayores que antes, un 42% mayores para ser exactos.

Esto hace interesante la alternativa de aumentar el tamaño de la instalación todo lo que sea posible. No obstante, también se tendrá la limitación de la inversión inicial que esté dispuesto a realizar el *Ministerio de Fomento*.

9. AYUDAS Y SUBVENCIONES

Puesto que el túnel de San Juan está administrado por el *Ministerio de Fomento, que forma parte del Gobierno de España*, no será necesario buscar información sobre ayudas y subvenciones ya que se trata de una obra pública.

10.PRESUPUESTO

El precio final de la instalación se calculará en base a los precios individuales de cada uno de los elementos que la conforman, además se incluirá un coste adicional que incluirá la mano de obra, otros costes como el cableado, protecciones y soportes de los paneles solares y el beneficio del proyectista. Estos costes se supondrán del 15% de los costes de la instalación.

Dicho esto, se procede al cálculo de costes de los diferentes elementos que conforman la instalación:

10.1. Precios unitarios de los elementos de la instalación

10.1.1. Paneles solares

Los paneles solares *SunPower SPR-MAX3-400*, con una potencia pico de 400W, tensión pico de 65,8 V y corriente pico de 6,08 A, presentan un precio unitario de 576 €. A este precio se le deberá aplicar un descuento del 45% que ofrece la distribuidora *SunFields Europe* para instaladores.

Por tanto, el precio final sin IVA de los paneles solares será de:

Precio final = 576* 0,55 = 316,80 €

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,15	3,75
h	Ayudante de electricista	18,00	0,15	2,70
ud	Módulo fotovoltaico SunPower SPR-MAX3-400	316,80	1,00	316,80
		TOTAL	323,25	

10.1.2. Inversor

El inversor *Riello Sirio K200 HV*, con una potencia de 200 kW, elegido para este proyecto cuenta con un precio unitario de 27.208,11 €, al que la distribuidora Autosolar aplica un descuento para instaladores del 10%. Por tanto, se obtiene un precio final de:

Precio final = 27.208,11*0,9 = 24.487,3 €

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	1,00	25,00
h	Ayudante de electricista	18,00	1,00	18,00
ud	Inversor Riello Sirio K200 HV	24.487,30	1,00	24.487,30
		TOTAL	24.530,30	

10.1.3. Soportes

La estructura *Suelo 10 Panel FV915 1 Fila 24V*, de perfiles de aluminio, inclinación 35°, capaz de soportar cargas de nieve de hasta 200N/m2, y cargas de viento de hasta 29 m/s, elegida para este proyecto cuenta con un precio unitario de 419,14 €, al que la distribuidora Autosolar aplica un descuento para instaladores del 10%. Por tanto, se obtiene un precio final de:

Precio final = 419,14*0,9 = 377,23 €

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Ayudante de electricista	18,00	0,75	13,50
ud	Estructura Suelo 10 Panel FV915 1 Fila 24V	377,23	1,00	377,23
		TOTAL	390,73	

10.1.4. Cableado

10.1.4.1. De placas a cuadro de conexiones.

Se utilizará el cable unipolar *Afumex Class 1000 V* (AS), fabricado por *PRYSMIAN*. Este cable presenta un fácil pelado y tendido ahorrando a los instaladores hasta un 30% de tiempo. Tipo *RZ1-K* (AS), tensión nominal 0,6/1 kV, de alta seguridad en caso de incendio (AS), reacción al fuego clase *Cca-s1b,d1,a1*, con conductor de cobre recocido, flexible (clase 5), de 1x10 mm² de sección, aislamiento de polietileno reticulado (XLPE), de tipo DIX3, cubierta de poliolefina termoplástica, de tipo Afumex Z1.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,05	1,25
h	Ayudante de electricista	18,00	0,05	0,90
m	Afumex Class 1000 V 1x10mm2	3,31	1,00	3,31
		TOTAL	5,46	

10.1.4.2. De cuadro de conexiones a inversor.

Se utilizará el cable unipolar *Afumex Class 1000 V* (AS), fabricado por *PRYSMIAN*. Este cable presenta un fácil pelado y tendido ahorrando a los instaladores hasta un 30% de tiempo. Tipo *RZ1-K* (AS), tensión nominal 0,6/1 kV, de alta seguridad en caso de incendio (AS), reacción al fuego clase *Cca-s1b,d1,a1*, con conductor de cobre recocido, flexible (clase 5), de 1x185 mm² de sección, aislamiento de polietileno reticulado (XLPE), de tipo DIX3, cubierta de poliolefina termoplástica, de tipo Afumex Z1.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,05	1,25
h	Ayudante de electricista	18,00	0,05	0,90
m	Afumex Class 1000 V 1x185mm2	16,67	1,00	16,67
		TOTAL	18,82	

10.1.4.3. De inversor a cuadro general.

Se utilizará el cable unipolar *Afumex Class 1000 V* (AS), fabricado por *PRYSMIAN*. Este cable presenta un fácil pelado y tendido ahorrando a los instaladores hasta un 30% de tiempo. Tipo *RZ1-K* (AS), tensión nominal 0,6/1 kV, de alta seguridad en caso de incendio (AS), reacción al fuego clase *Cca-s1b,d1,a1*, con conductor de cobre recocido, flexible (clase 5), de 3x70 mm² de sección, aislamiento de polietileno reticulado (XLPE), de tipo DIX3, cubierta de poliolefina termoplástica, de tipo Afumex Z1.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,05	1,25
h	Ayudante de electricista	18,00	0,05	0,90
m	Afumex Class 1000 V 3x70mm2	31,96	2,00	63,92
		TOTAL	66,07	

10.1.5. Caja de conexiones

Se encargará una caja de conexiones con capacidad para 59 strings a la empresa SMA.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1º electricista	25,00	0,75	18,75
ud	Caja de conexiones marca SMA	5.240,00	1,00	5.240,00
		TOTAL	5.258,75	

10.1.6. Fusibles

Los fusibles de 16 A, elegido para este proyecto cuenta con un precio unitario de 2,75€, al que la distribuidora *Autosolar* aplica un descuento para instaladores del 10%. Por tanto, se obtiene un precio final de:

Precio final =
$$2,75*0,9 = 2,47$$
 €

Además, se hará uso de portafusibles del mismo amperaje, que *Autosolar* ofrece a un precio de 2,61€ al que se le puede aplicar el mismo descuento del 10%, teniendo un precio final de:

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
ud	Fusible 16 A	2,47	1,00	2,47
ud	Portafusibles 16 A	2,35	1,00	2,35
			TOTAL	4,82

10.1.7. Interruptor automático

El interruptor automático *Schneider Compact NSX250F - LV431630*, con una corriente nominal de 250 A y un poder de corte de 35kA, elegido para este proyecto cuenta con un precio unitario de 2.188,5 €, comprado de la distribuidora *Schneider Electric*.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,02	0,50
ud	Schneider Compact NSX250F - LV431630	2.188,50	1,00	2.188,50
		TOTAL	2.189,00	

10.1.8. Puesta a tierra

Se cuenta con la instalación de la puesta a tierra formada por una pica de acero cobreado de 2 m de longitud y 15 mm de diámetro, clavada en el terreno, bajo una arqueta de polipropileno de 30x30 cm, así como el cable conductor conectado a los marcos y estructuras de las placas solares.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
h	Oficial de 1ª electricista	25,00	0,25	6,25
h	Ayudante de electricista	18,00	0,25	4,50
h	Peón de construcción	16,00	0,02	0,32
m	Conductor de cobre desnudo de 35mm2	2,81	0,50	1,41
ud	Electrodo de puesta a tierra	18,00	1,00	18,00
ud	Arqueta de registro de 300x300 mm	74,00	1,00	74,00
ud	Material auxiliar	1,15	1,00	1,15
		TOTAL	105,63	

10.2. Precios por partidas

Se suman los precios unitarios mostrados anteriormente para obtener el precio total de cada fase de la instalación.

10.2.1. Instalación fotovoltaica

Coste total de la parte de instalación fotovoltaica.

Nō	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
10.1.1.	Módulo fotovoltaico SunPower SPR-MAX3-400	323,25	590,00	190.717,50
10.1.2.	Inversor Riello Sirio K200 HV	24.530,30	1,00	24.530,30
10.1.3.	Estructura Suelo 10 Panel FV915 1 Fila 24V	390,73	59,00	23.053,07
10.1.5.	Caja de conexiones marca SMA	5.258,75	1,00	5.258,75
10.1.6.	Fusible 16 A	2,47	59,00	145,73
			TOTAL	243.705,35

10.2.2. Cableado

Coste total instalación del cableado.

Nο	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
10.1.4.1.	Afumex Class 1000 V 1x10mm2	5,46	2.250,00	12.285,00
10.1.4.2.	Afumex Class 1000 V 1x185mm2	18,82	50,00	941,00
10.1.4.3.	Afumex Class 1000 V 4x95mm2	66,07	30,00	1.982,10
			TOTAL	15.208,10

10.2.3. Protecciones

Coste total instalación de las protecciones.

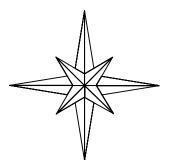
Nο	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
10.1.8.	Puesta a tierra	105,63	64,00	6.760,00
10.1.7.	Schneider Compact NSX250F - LV431630	2.189,00	2,00	4.378,00
			TOTAL	11.138,00

10.2.4. Canalizaciones

Coste total tubos y canalizaciones.

UD	RESUMEN	PRECIO (€)	CANTIDAD	IMPORTE (€)
	Canalización soterrada para tubo de 10 mm de			
m	diámetro	3,31	1.275,00	4.220,25
	Canalización soterrada para tubo de 185 mm de			
m	diámetro	9,24	50,00	462,00
		TOTAL	4.682,25	

10.3. Precio total


El precio final consiste en la suma de los precios de cada una de las partidas.

N∘	PARTIDA	IMPORTE (€)
10.2.1.	Instalación solar fotovoltaica	243.705,35
10.2.2.	Cableado	15.208,10
10.2.3.	Protecciones	11.138,00
10.2.4.	Canalizaciones	4.682,25
Х	Otros costes y beneficio proyectista (7%)	19.231,36
		293.965,06

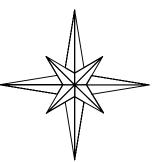
El precio obtenido será el precio sin IVA, ya que se trata de una obra pública.

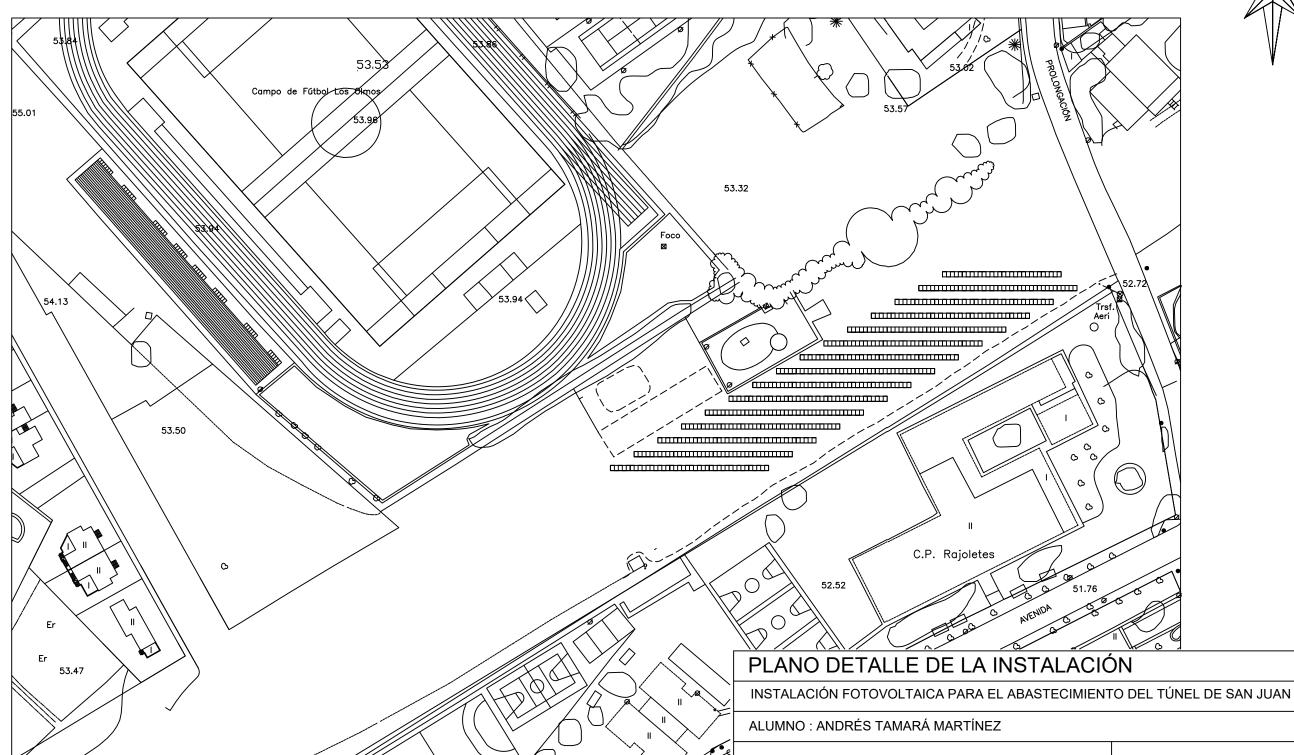
11. PLANOS DE LA INSTALACIÓN

PLANO DE ORDENACIÓN

INSTALACIÓN FOTOVOLTAICA PARA EL ABASTECIMIENTO DEL TÚNEL DE SAN JUAN

ALUMNO : ANDRÉS TAMARÁ MARTÍNEZ

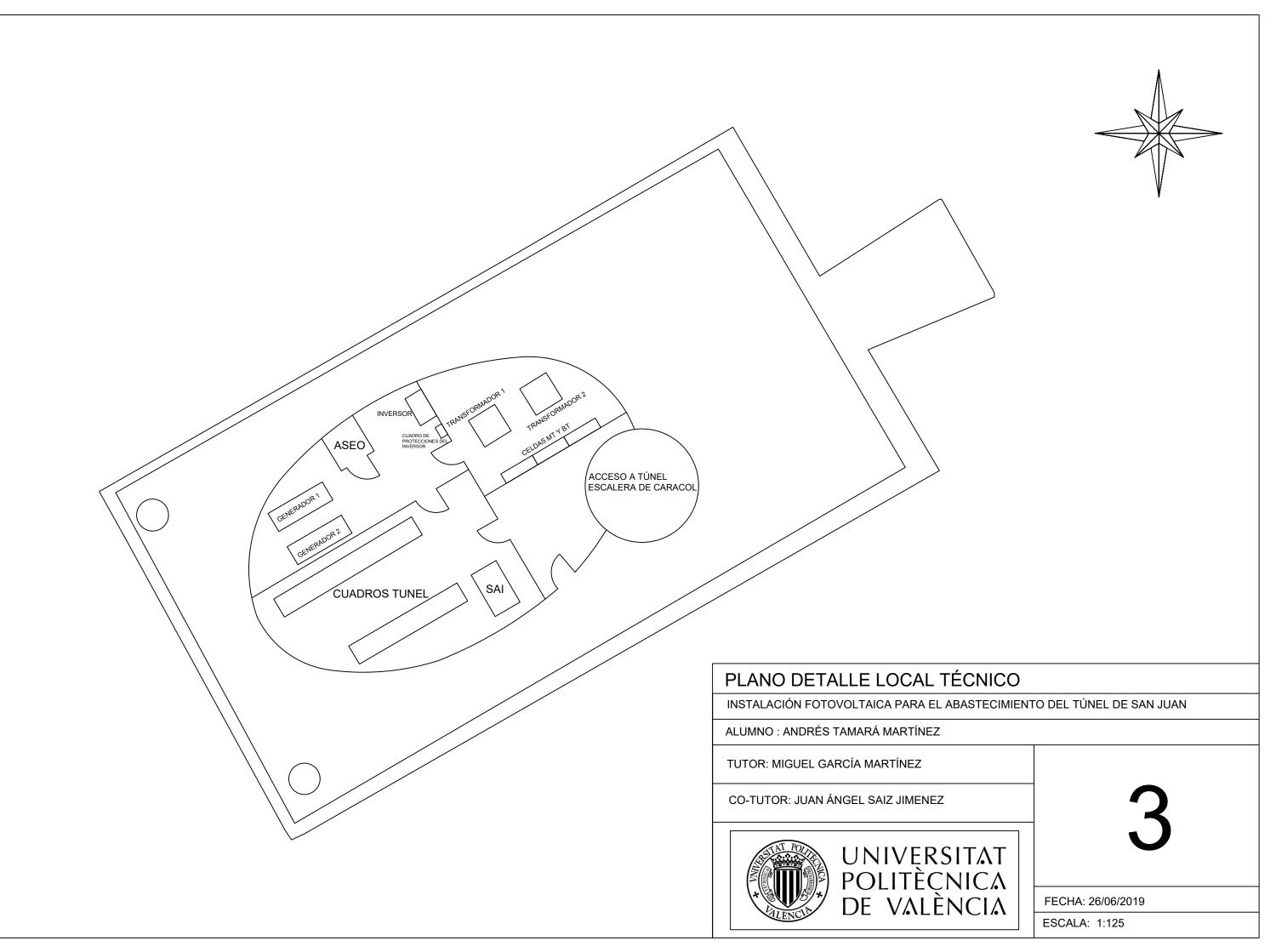

TUTOR: MIGUEL GARCÍA MARTÍNEZ

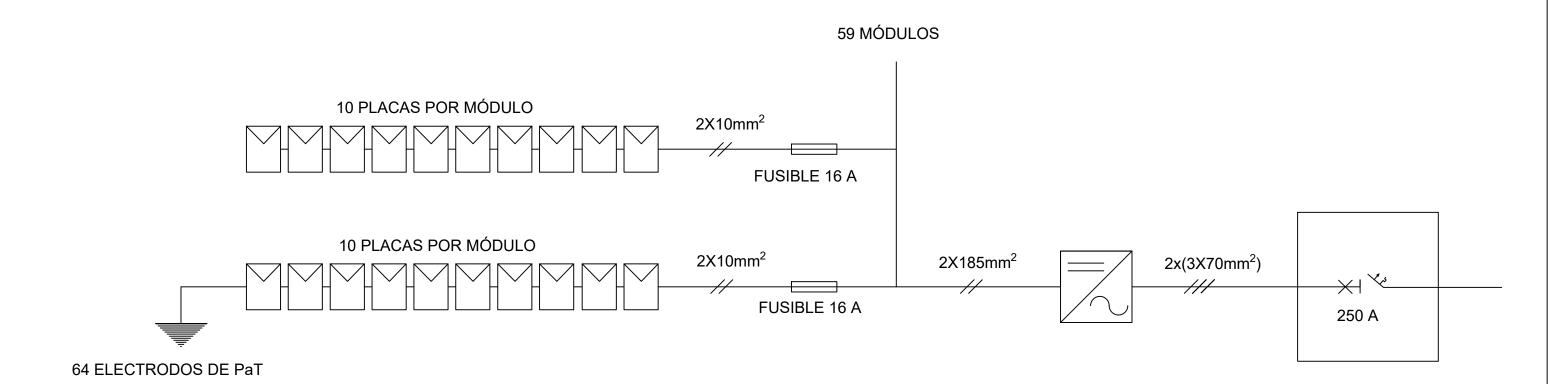

CO-TUTOR: JUAN ÁNGEL SAIZ JIMENEZ

FECHA: 26/06/2019

ESCALA: 1:1000

C. P. Rajoletes


TUTOR: MIGUEL GARCÍA MARTÍNEZ

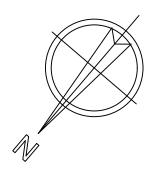

CO-TUTOR: JUAN ÁNGEL SAIZ JIMENEZ

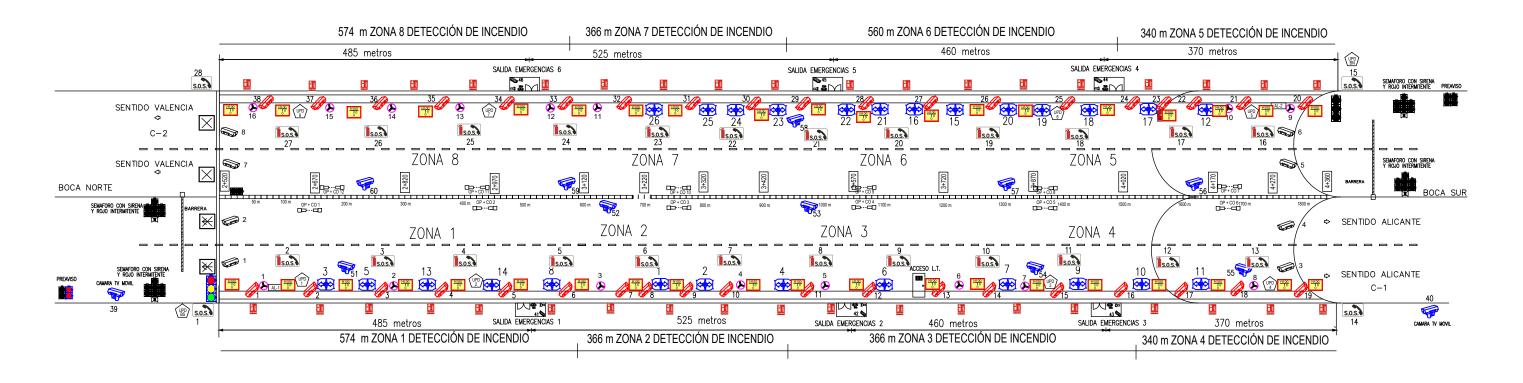
FECHA: 26/06/2019

ESCALA: 1:1000

5	SIMBOLOGIA			
PANEL SOLAR FOTOVOLTAICO				
PUESTA A TIERRA				
-	FUSIBLE			
	INVERSOR			
×I×	INTERRUPTOR AUTOMÁTICO			

ALUMNO : ANDRÉS TAMARÁ MARTÍNEZ


TUTOR: MIGUEL GARCÍA MARTÍNEZ


CO-TUTOR: JUAN ÁNGEL SAIZ JIMENEZ

4

FECHA: 26/06/2019

JPD (8+2BOCAS+1 L.T.)

ANEMOMETROS (16)

VENTILADORES (26)

CAMARAS (38)

CUADROS GENERALES

HIDRANTE (40)

CAMARA MOVIL (10 int+ 2 ext)

POSTES S.O.S CON EXTINTOR (28+6)

SISTEMA M.M.P.P. (8)

MEGAFONIA EN SALIDAS DE EMERGENCIA (6)

SALIDAS DE EMERGENCIA (6)

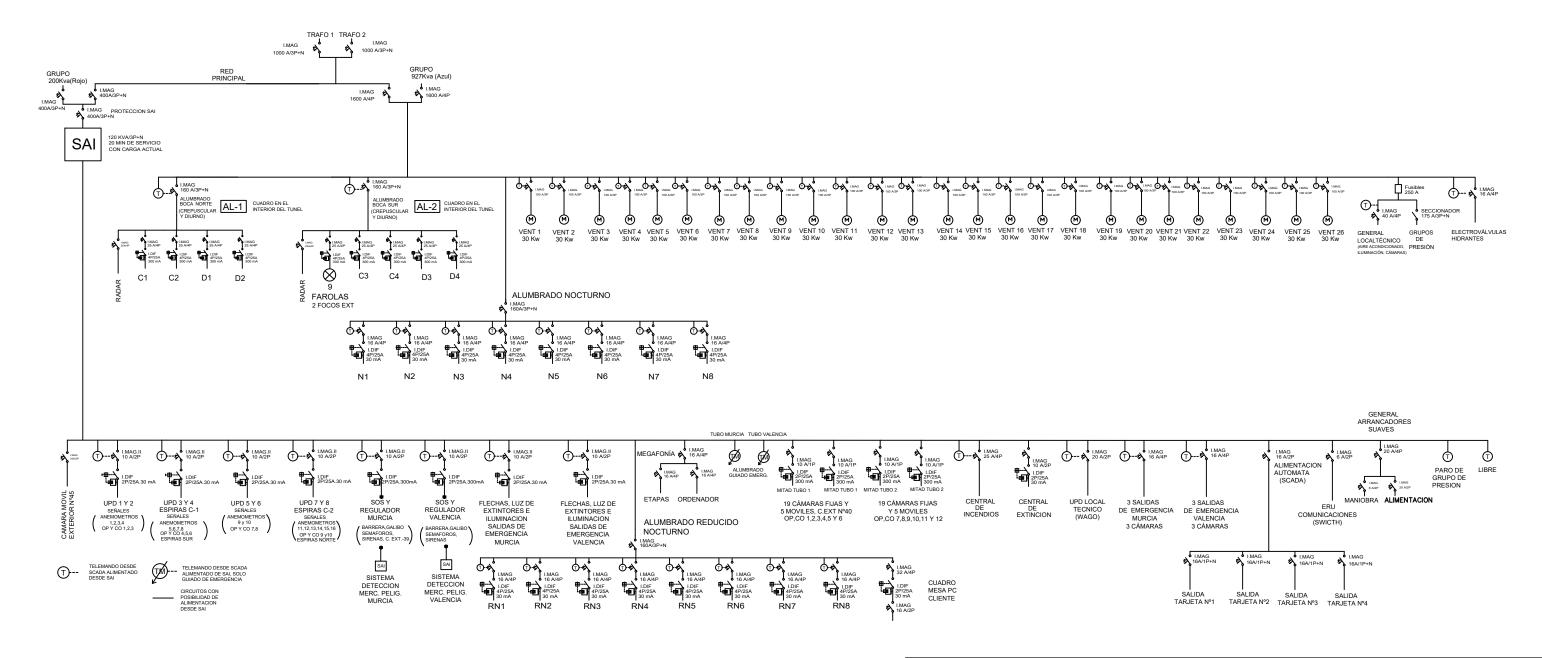
OP Y CO (12)

EXTINTOR POLVO ABC 9Kg (38)

PLANO GENERAL TÚNEL

INSTALACIÓN FOTOVOLTAICA PARA EL ABASTECIMIENTO DEL TÚNEL DE SAN JUAN

ALUMNO : ANDRÉS TAMARÁ MARTÍNEZ


TUTOR: MIGUEL GARCÍA MARTÍNEZ

CO-TUTOR: JUAN ÁNGEL SAIZ JIMENEZ

5

FECHA: 26/06/2019

ESQUEMA UNIFILAR TÚNEL

INSTALACIÓN FOTOVOLTAICA PARA EL ABASTECIMIENTO DEL TÚNEL DE SAN JUAN

ALUMNO : ANDRÉS TAMARÁ MARTÍNEZ

TUTOR: MIGUEL GARCÍA MARTÍNEZ

CO-TUTOR: JUAN ÁNGEL SAIZ JIMENEZ

6

FECHA: 26/06/2019

12. PLIEGO DE CONDICIONES

Instalaciones de Energía Solar Fotovoltaica

Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red

PCT-C-REV - julio 2011

IDAE
Instituto para la Diversificación y Ahorro de la Energía
C/ Madera, 8
E-28004 - MADRID
www.idae.es

Índice

1	Objet	to	
2	Gene	ralidades	
3	Defin	iciones	
	3.1	Radiación solar	8
	3.2	Instalación	8
	3.3	Módulos	9
	3.4	Integración arquitectónica	. 10
4	Diseñ	0	
	4.1	Diseño del generador fotovoltaico	. 10
	4.2	Diseño del sistema de monitorización	. 11
	4.3	Integración arquitectónica	. 11
5	Comp	ponentes y materiales	
	5.1	Generalidades	. 12
	5.2	Sistemas generadores fotovoltaicos	. 12
	5.3	Estructura soporte	. 14
	5.4	Inversores	. 15
	5.5	Cableado	. 16
	5.6	Conexión a red	. 17
	5.7	Medidas	. 17
	5.8	Protecciones	. 17
	5.9	Puesta a tierra de las instalaciones fotovoltaicas	. 17
	5.10	Armónicos y compatibilidad electromagnética	. 17
	5.11	Medidas de seguridad	. 17
6	Recep	pción y pruebas	
7	Cálcu	ılo de la producción anual esperada	
8	Requ	erimientos técnicos del contrato de mantenimiento	
	8.1	Generalidades	. 21
	8.2	Programa de mantenimiento	. 21
	8.3	Garantías	. 22
A	nexo I	Medida de la potencia instalada de una central fotovoltaica conectada a la red eléctrica	
A	nexo I	I: Cálculo de las pérdidas por orientación e inclinación del generador distinta de la óptima	
A	nexo I	II: Cálculo de las pérdidas de radiación solar por sombras	

Antecedentes

Esta documentación, elaborada por el Departamento de Energía Solar del IDAE y CENSOLAR, es una revisión del Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red editado por primera vez en el año 2002, con la colaboración del Instituto de Energía Solar de la Universidad Politécnica de Madrid y el Laboratorio de Energía Solar Fotovoltaica del Departamento de Energías Renovables del CIEMAT.

Su finalidad es establecer las condiciones técnicas que deben tomarse en consideración en las instalaciones de energía solar fotovoltaica conectadas a la red eléctrica de distribución.

1 Objeto

- 1.1 Fijar las condiciones técnicas mínimas que deben cumplir las instalaciones solares fotovoltaicas conectadas a red que se realicen en el ámbito de actuación del IDAE (proyectos, líneas de apoyo, etc.). Pretende servir de guía para instaladores y fabricantes de equipos, definiendo las especificaciones mínimas que debe cumplir una instalación para asegurar su calidad, en beneficio del usuario y del propio desarrollo de esta tecnología.
- 1.2 Valorar la calidad final de la instalación en cuanto a su rendimiento, producción e integración.
- 1.3 El ámbito de aplicación de este Pliego de Condiciones Técnicas (en lo que sigue, PCT) se extiende a todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de las instalaciones.
- 1.4 En determinados supuestos, para los proyectos se podrán adoptar, por la propia naturaleza de los mismos o del desarrollo tecnológico, soluciones diferentes a las exigidas en este PCT, siempre que quede suficientemente justificada su necesidad y que no impliquen una disminución de las exigencias mínimas de calidad especificadas en el mismo.

2 Generalidades

- 2.1 Este Pliego es de aplicación a las instalaciones solares fotovoltaicas conectadas a la red de distribución. Quedan excluidas expresamente las instalaciones aisladas de la red.
- 2.2 Podrá, asimismo, servir como guía técnica para otras aplicaciones especiales, las cuales deberán cumplir los requisitos de seguridad, calidad y durabilidad establecidos. En la Memoria de Diseño o Proyecto se incluirán las características de estas aplicaciones.
- 2.3 En todo caso serán de aplicación todas la normativas que afecten a instalaciones solares fotovoltaicas, y en particular las siguientes:
 - Ley 54/1997, de 27 de noviembre, del Sector Eléctrico.
 - Norma UNE-EN 62466: Sistemas fotovoltaicos conectados a red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.
 - Resolución de 31 de mayo de 2001 por la que se establecen modelo de contrato tipo y modelo de factura para las instalaciones solares fotovoltaicas conectadas a la red de baja tensión.
 - Real Decreto 1663/2000, de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.
 - Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
 - Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión (B.O.E. de 18-9-2002).
 - Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
 - Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.

- Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.
- Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología.

3 Definiciones

3.1 Radiación solar

3.1.1 Radiación solar

Energía procedente del Sol en forma de ondas electromagnéticas.

3.1.2 Irradiancia

Densidad de potencia incidente en una superficie o la energía incidente en una superficie por unidad de tiempo y unidad de superficie. Se mide en kW/m².

3.1.3 Irradiación

Energía incidente en una superfície por unidad de superfície y a lo largo de un cierto período de tiempo. Se mide en kWh/m², o bien en MJ/m².

3.2 Instalación

3.2.1 *Instalaciones fotovoltaicas*

Aquellas que disponen de módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica sin ningún paso intermedio.

3.2.2 Instalaciones fotovoltaicas interconectadas

Aquellas que disponen de conexión física con las redes de transporte o distribución de energía eléctrica del sistema, ya sea directamente o a través de la red de un consumidor.

3.2.3 Línea y punto de conexión y medida

La línea de conexión es la línea eléctrica mediante la cual se conectan las instalaciones fotovoltaicas con un punto de red de la empresa distribuidora o con la acometida del usuario, denominado punto de conexión y medida.

3.2.4 Interruptor automático de la interconexión

Dispositivo de corte automático sobre el cual actúan las protecciones de interconexión.

3.2.5 *Interruptor general*

Dispositivo de seguridad y maniobra que permite separar la instalación fotovoltaica de la red de la empresa distribuidora.

3.2.6 Generador fotovoltaico

Asociación en paralelo de ramas fotovoltaicas.

3.2.7 Rama fotovoltaica

Subconjunto de módulos interconectados en serie o en asociaciones serie-paralelo, con voltaje igual a la tensión nominal del generador.

3.2.8 Inversor

Convertidor de tensión y corriente continua en tensión y corriente alterna. También se denomina ondulador.

3.2.9 Potencia nominal del generador

Suma de las potencias máximas de los módulos fotovoltaicos.

3.2.10 Potencia de la instalación fotovoltaica o potencia nominal

Suma de la potencia nominal de los inversores (la especificada por el fabricante) que intervienen en las tres fases de la instalación en condiciones nominales de funcionamiento.

3.3 Módulos

3.3.1 Célula solar o fotovoltaica

Dispositivo que transforma la radiación solar en energía eléctrica.

3.3.2 Célula de tecnología equivalente (CTE)

Célula solar encapsulada de forma independiente, cuya tecnología de fabricación y encapsulado es idéntica a la de los módulos fotovoltaicos que forman la instalación.

3.3.3 Módulo o panel fotovoltaico

Conjunto de células solares directamente interconectadas y encapsuladas como único bloque, entre materiales que las protegen de los efectos de la intemperie.

3.3.4 *Condiciones Estándar de Medida* (CEM)

Condiciones de irradiancia y temperatura en la célula solar, utilizadas universalmente para caracterizar células, módulos y generadores solares y definidas del modo siguiente:

- Irradiancia solar: 1000 W/m²

- Distribución espectral: AM 1,5 G

- Temperatura de célula: 25 °C

3.3.5 Potencia pico

Potencia máxima del panel fotovoltaico en CEM.

3.3.6 *TONC*

Temperatura de operación nominal de la célula, definida como la temperatura que alcanzan las células solares cuando se somete al módulo a una irradiancia de 800 W/m² con distribución espectral AM 1,5 G, la temperatura ambiente es de 20 °C y la velocidad del viento, de 1 m/s.

3.4 Integración arquitectónica

Según los casos, se aplicarán las denominaciones siguientes:

3.4.1 Integración arquitectónica de módulos fotovoltaicos

Cuando los módulos fotovoltaicos cumplen una doble función, energética y arquitectónica (revestimiento, cerramiento o sombreado) y, además, sustituyen a elementos constructivos convencionales.

3.4.2 Revestimiento

Cuando los módulos fotovoltaicos constituyen parte de la envolvente de una construcción arquitectónica.

3.4.3 Cerramiento

Cuando los módulos constituyen el tejado o la fachada de la construcción arquitectónica, debiendo garantizar la debida estanquidad y aislamiento térmico.

3.4.4 Elementos de sombreado

Cuando los módulos fotovoltaicos protegen a la construcción arquitectónica de la sobrecarga térmica causada por los rayos solares, proporcionando sombras en el tejado o en la fachada.

3.4.5 La colocación de módulos fotovoltaicos paralelos a la envolvente del edificio sin la doble funcionalidad definida en 3.4.1, se denominará *superposición* y no se considerará integración arquitectónica. No se aceptarán, dentro del concepto de superposición, módulos horizontales.

4 Diseño

4.1 Diseño del generador fotovoltaico

4.1.1 Generalidades

- 4.1.1.1 El módulo fotovoltaico seleccionado cumplirá las especificaciones del apartado 5.2.
- 4.1.1.2 Todos los módulos que integren la instalación serán del mismo modelo, o en el caso de modelos distintos, el diseño debe garantizar totalmente la compatibilidad entre ellos y la ausencia de efectos negativos en la instalación por dicha causa.
- 4.1.1.3 En aquellos casos excepcionales en que se utilicen módulos no cualificados, deberá justificarse debidamente y aportar documentación sobre las pruebas y ensayos a los que han sido sometidos. En cualquier caso, han de cumplirse las normas vigentes de obligado cumplimiento.

4.1.2 Orientación e inclinación y sombras

4.1.2.1 La orientación e inclinación del generador fotovoltaico y las posibles sombras sobre el mismo serán tales que las pérdidas sean inferiores a los límites de la tabla I. Se considerarán tres casos: general, superposición de módulos e integración arquitectónica, según se define en el apartado 3.4. En todos los casos han de cumplirse tres condiciones: pérdidas por orientación e inclinación, pérdidas por sombreado y pérdidas totales inferiores a los límites estipulados respecto a los valores óptimos.

Tabla I

	Orientación e inclinación (OI)	Sombras (S)	Total (OI+S)
General	10%	10%	15%
Superposición	20%	15%	30%
Integración arquitectónica	40 %	20%	50%

- 4.1.2.2 Cuando, por razones justificadas, y en casos especiales en los que no se puedan instalar de acuerdo con el apartado 4.1.2.1, se evaluará la reducción en las prestaciones energéticas de la instalación, incluyéndose en la Memoria del Proyecto.
- 4.1.2.3 En todos los casos deberán evaluarse las pérdidas por orientación e inclinación del generador y sombras. En los anexos II y III se proponen métodos para el cálculo de estas pérdidas, que podrán ser utilizados para su verificación.
- 4.1.2.4 Cuando existan varias filas de módulos, el cálculo de la distancia mínima entre ellas se realizará de acuerdo al anexo III.

4.2 Diseño del sistema de monitorización

- 4.2.1 El sistema de monitorización proporcionará medidas, como mínimo, de las siguientes variables:
 - Voltaje y corriente CC a la entrada del inversor.
 - Voltaje de fase/s en la red, potencia total de salida del inversor.
 - Radiación solar en el plano de los módulos, medida con un módulo o una célula de tecnología equivalente.
 - Temperatura ambiente en la sombra.
 - Potencia reactiva de salida del inversor para instalaciones mayores de 5 kWp.
 - Temperatura de los módulos en integración arquitectónica y, siempre que sea posible, en potencias mayores de 5 kW.
- 4.2.2 Los datos se presentarán en forma de medias horarias. Los tiempos de adquisición, la precisión de las medidas y el formato de presentación se hará conforme al documento del JRC-Ispra "Guidelines for the Assessment of Photovoltaic Plants Document A", Report EUR16338 EN.
- 4.2.3 El sistema de monitorización sera fácilmente accesible para el usuario.

4.3 Integración arquitectónica

4.3.1 En el caso de pretender realizar una instalación integrada desde el punto de vista arquitectónico según lo estipulado en el punto 3.4, la Memoria de Diseño o Proyecto especificarán las condiciones de la construcción y de la instalación, y la descripción y justificación de las soluciones elegidas.

- 4.3.2 Las condiciones de la construcción se refieren al estudio de características urbanísticas, implicaciones en el diseño, actuaciones sobre la construcción, necesidad de realizar obras de reforma o ampliación, verificaciones estructurales, etc. que, desde el punto de vista del profesional competente en la edificación, requerirían su intervención.
- 4.3.3 Las condiciones de la instalación se refieren al impacto visual, la modificación de las condiciones de funcionamiento del edificio, la necesidad de habilitar nuevos espacios o ampliar el volumen construido, efectos sobre la estructura, etc.

5 Componentes y materiales

5.1 Generalidades

- 5.1.1 Como principio general se ha de asegurar, como mínimo, un grado de aislamiento eléctrico de tipo básico clase I en lo que afecta tanto a equipos (módulos e inversores), como a materiales (conductores, cajas y armarios de conexión), exceptuando el cableado de continua, que será de doble aislamiento de clase 2 y un grado de protección mínimo de IP65.
- 5.1.2 La instalación incorporará todos los elementos y características necesarios para garantizar en todo momento la calidad del suministro eléctrico.
- 5.1.3 El funcionamiento de las instalaciones fotovoltaicas no deberá provocar en la red averías, disminuciones de las condiciones de seguridad ni alteraciones superiores a las admitidas por la normativa que resulte aplicable.
- 5.1.4 Asimismo, el funcionamiento de estas instalaciones no podrá dar origen a condiciones peligrosas de trabajo para el personal de mantenimiento y explotación de la red de distribución.
- 5.1.5 Los materiales situados en intemperie se protegerán contra los agentes ambientales, en particular contra el efecto de la radiación solar y la humedad.
- 5.1.6 Se incluirán todos los elementos necesarios de seguridad y protecciones propias de las personas y de la instalación fotovoltaica, asegurando la protección frente a contactos directos e indirectos, cortocircuitos, sobrecargas, así como otros elementos y protecciones que resulten de la aplicación de la legislación vigente.
- 5.1.7 En la Memoria de Diseño o Proyecto se incluirán las fotocopias de las especificaciones técnicas proporcionadas por el fabricante de todos los componentes.
- 5.1.8 Por motivos de seguridad y operación de los equipos, los indicadores, etiquetas, etc. de los mismos estarán en castellano y además, si procede, en alguna de las lenguas españolas oficiales del lugar de la instalación.

5.2 Sistemas generadores fotovoltaicos

5.2.1 Los módulos fotovoltaicos deberán incorporar el marcado CE, según la Directiva 2006/95/CE del Parlamento Europeo y del Consejo, de 12 de diciembre de 2006, relativa a la aproximación de las legislaciones de los Estados miembros sobre el material eléctrico destinado a utilizarse con determinados límites de tensión.

Además, deberán cumplir la norma UNE-EN 61730, armonizada para la Directiva 2006/95/CE, sobre cualificación de la seguridad de módulos fotovoltaicos, y la norma UNE-EN 50380, sobre informaciones de las hojas de datos y de las placas de características para los módulos fotovoltaicos. Adicionalmente, en función de la tecnología del módulo, éste deberá satisfacer las siguientes normas:

- UNE-EN 61215: Módulos fotovoltaicos (FV) de silicio cristalino para uso terrestre.
 Cualificación del diseño y homologación.
- UNE-EN 61646: Módulos fotovoltaicos (FV) de lámina delgada para aplicaciones terrestres.
 Cualificación del diseño y aprobación de tipo.
- UNE-EN 62108. Módulos y sistemas fotovoltaicos de concentración (CPV). Cualificación del diseño y homologación.

Los módulos que se encuentren integrados en la edificación, aparte de que deben cumplir la normativa indicada anteriormente, además deberán cumplir con lo previsto en la Directiva 89/106/CEE del Consejo de 21 de diciembre de 1988 relativa a la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción.

Aquellos módulos que no puedan ser ensayados según estas normas citadas, deberán acreditar el cumplimiento de los requisitos mínimos establecidos en las mismas por otros medios, y con carácter previo a su inscripción definitiva en el registro de régimen especial dependiente del órgano competente.

Será necesario justificar la imposibilidad de ser ensayados, así como la acreditación del cumplimiento de dichos requisitos, lo que deberá ser comunicado por escrito a la Dirección General de Política Energética y Minas, quien resolverá sobre la conformidad o no de la justificación y acreditación presentadas.

- 5.2.2 El módulo fotovoltaico llevará de forma claramente visible e indeleble el modelo y nombre o logotipo del fabricante, así como una identificación individual o número de serie trazable a la fecha de fabricación.
- 5.2.3 Se utilizarán módulos que se ajusten a las características técnicas descritas a continuación.
- 5.2.3.1 Los módulos deberán llevar los diodos de derivación para evitar las posibles averías de las células y sus circuitos por sombreados parciales y tendrán un grado de protección IP65.
- 5.2.3.2 Los marcos laterales, si existen, serán de aluminio o acero inoxidable.
- 5.2.3.3 Para que un módulo resulte aceptable, su potencia máxima y corriente de cortocircuito reales referidas a condiciones estándar deberán estar comprendidas en el margen del ± 3 % de los correspondientes valores nominales de catálogo.
- 5.2.3.4 Será rechazado cualquier módulo que presente defectos de fabricación como roturas o manchas en cualquiera de sus elementos así como falta de alineación en las células o burbujas en el encapsulante.
- 5.2.4 Será deseable una alta eficiencia de las células.
- 5.2.5 La estructura del generador se conectará a tierra.

- 5.2.6 Por motivos de seguridad y para facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios (fusibles, interruptores, etc.) para la desconexión, de forma independiente y en ambos terminales, de cada una de las ramas del resto del generador.
- 5.2.7 Los módulos fotovoltaicos estarán garantizados por el fabricante durante un período mínimo de 10 años y contarán con una garantía de rendimiento durante 25 años.

5.3 Estructura soporte

- 5.3.1 Las estructuras soporte deberán cumplir las especificaciones de este apartado. En todos los casos se dará cumplimiento a lo obligado en el Código Técnico de la Edificación respecto a seguridad.
- 5.3.2 La estructura soporte de módulos ha de resistir, con los módulos instalados, las sobrecargas del viento y nieve, de acuerdo con lo indicado en el Código Técnico de la edificación y demás normativa de aplicación.
- 5.3.3 El diseño y la construcción de la estructura y el sistema de fijación de módulos, permitirá las necesarias dilataciones térmicas, sin transmitir cargas que puedan afectar a la integridad de los módulos, siguiendo las indicaciones del fabricante.
- 5.3.4 Los puntos de sujeción para el módulo fotovoltaico serán suficientes en número, teniendo en cuenta el área de apoyo y posición relativa, de forma que no se produzcan flexiones en los módulos superiores a las permitidas por el fabricante y los métodos homologados para el modelo de módulo.
- 5.3.5 El diseño de la estructura se realizará para la orientación y el ángulo de inclinación especificado para el generador fotovoltaico, teniendo en cuenta la facilidad de montaje y desmontaje, y la posible necesidad de sustituciones de elementos.
- 5.3.6 La estructura se protegerá superficialmente contra la acción de los agentes ambientales. La realización de taladros en la estructura se llevará a cabo antes de proceder, en su caso, al galvanizado o protección de la estructura.
- 5.3.7 La tornillería será realizada en acero inoxidable. En el caso de que la estructura sea galvanizada se admitirán tornillos galvanizados, exceptuando la sujeción de los módulos a la misma, que serán de acero inoxidable.
- 5.3.8 Los topes de sujeción de módulos y la propia estructura no arrojarán sombra sobre los módulos.
- 5.3.9 En el caso de instalaciones integradas en cubierta que hagan las veces de la cubierta del edificio, el diseño de la estructura y la estanquidad entre módulos se ajustará a las exigencias vigentes en materia de edificación.
- 5.3.10 Se dispondrán las estructuras soporte necesarias para montar los módulos, tanto sobre superficie plana (terraza) como integrados sobre tejado, cumpliendo lo especificado en el punto 4.1.2 sobre sombras. Se incluirán todos los accesorios y bancadas y/o anclajes.
- 5.3.11 La estructura soporte será calculada según la normativa vigente para soportar cargas extremas debidas a factores climatológicos adversos, tales como viento, nieve, etc.

- 5.3.12 Si está construida con perfiles de acero laminado conformado en frío, cumplirán las normas UNE-EN 10219-1 y UNE-EN 10219-2 para garantizar todas sus características mecánicas y de composición química.
- 5.3.13 Si es del tipo galvanizada en caliente, cumplirá las normas UNE-EN ISO 14713 (partes 1, 2 y 3) y UNE-EN ISO 10684 y los espesores cumplirán con los mínimos exigibles en la norma UNE-EN ISO 1461.
- 5.3.14 En el caso de utilizarse seguidores solares, estos incorporarán el marcado CE y cumplirán lo previsto en la Directiva 98/37/CE del Parlamento Europeo y del Consejo, de 22 de junio de 1998, relativa a la aproximación de legislaciones de los Estados miembros sobre máquinas, y su normativa de desarrollo, así como la Directiva 2006/42/CE del Parlamento Europeo y del Consejo, de 17 de mayo de 2006 relativa a las máquinas.

5.4 Inversores

- 5.4.1 Serán del tipo adecuado para la conexión a la red eléctrica, con una potencia de entrada variable para que sean capaces de extraer en todo momento la máxima potencia que el generador fotovoltaico puede proporcionar a lo largo de cada día.
- 5.4.2 Las características básicas de los inversores serán las siguientes:
 - Principio de funcionamiento: fuente de corriente.
 - Autoconmutados.
 - Seguimiento automático del punto de máxima potencia del generador.
 - No funcionarán en isla o modo aislado.

La caracterización de los inversores deberá hacerse según las normas siguientes:

- UNE-EN 62093: Componentes de acumulación, conversión y gestión de energía de sistemas fotovoltaicos. Cualificación del diseño y ensayos ambientales.
- UNE-EN 61683: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.
- IEC 62116. Testing procedure of islanding prevention measures for utility interactive photovoltaic inverters.
- 5.4.3 Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica y Compatibilidad Electromagnética (ambas serán certificadas por el fabricante), incorporando protecciones frente a:
 - Cortocircuitos en alterna.
 - Tensión de red fuera de rango.
 - Frecuencia de red fuera de rango.
 - Sobretensiones, mediante varistores o similares.
 - Perturbaciones presentes en la red como microcortes, pulsos, defectos de ciclos, ausencia y retorno de la red, etc.

Adicionalmente, han de cumplir con la Directiva 2004/108/CE del Parlamento Europeo y del Consejo, de 15 de diciembre de 2004, relativa a la aproximación de las legislaciones de los Estados miembros en materia de compatibilidad electromagnética.

- 5.4.4 Cada inversor dispondrá de las señalizaciones necesarias para su correcta operación, e incorporará los controles automáticos imprescindibles que aseguren su adecuada supervisión y manejo.
- 5.4.5 Cada inversor incorporará, al menos, los controles manuales siguientes:
 - Encendido y apagado general del inversor.
 - Conexión y desconexión del inversor a la interfaz CA.
- 5.4.6 Las características eléctricas de los inversores serán las siguientes:
- 5.4.6.1 El inversor seguirá entregando potencia a la red de forma continuada en condiciones de irradiancia solar un 10% superiores a las CEM. Además soportará picos de un 30% superior a las CEM durante períodos de hasta 10 segundos.
- 5.4.6.2 El rendimiento de potencia del inversor (cociente entre la potencia activa de salida y la potencia activa de entrada), para una potencia de salida en corriente alterna igual al 50 % y al 100 % de la potencia nominal, será como mínimo del 92 % y del 94 % respectivamente. El cálculo del rendimiento se realizará de acuerdo con la norma UNE-EN 6168: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.
- 5.4.6.3 El autoconsumo de los equipos (pérdidas en "vacío") en "stand-by" o modo nocturno deberá ser inferior al 2 % de su potencia nominal de salida.
- 5.4.6.4 El factor de potencia de la potencia generada deberá ser superior a 0,95, entre el 25 % y el 100 % de la potencia nominal.
- 5.4.6.5 A partir de potencias mayores del 10 % de su potencia nominal, el inversor deberá inyectar en red.
- 5.4.7 Los inversores tendrán un grado de protección mínima IP 20 para inversores en el interior de edificios y lugares inaccesibles, IP 30 para inversores en el interior de edificios y lugares accesibles, y de IP 65 para inversores instalados a la intemperie. En cualquier caso, se cumplirá la legislación vigente.
- 5.4.8 Los inversores estarán garantizados para operación en las siguientes condiciones ambientales: entre 0 °C y 40 °C de temperatura y entre 0 % y 85 % de humedad relativa.
- 5.4.9 Los inversores para instalaciones fotovoltaicas estarán garantizados por el fabricante durante un período mínimo de 3 años.

5.5 Cableado

- 5.5.1 Los positivos y negativos de cada grupo de módulos se conducirán separados y protegidos de acuerdo a la normativa vigente.
- 5.5.2 Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior del 1,5 %.
- 5.5.3 El cable deberá tener la longitud necesaria para no generar esfuerzos en los diversos elementos ni posibilidad de enganche por el tránsito normal de personas.

5.5.4 Todo el cableado de continua será de doble aislamiento y adecuado para su uso en intemperie, al aire o enterrado, de acuerdo con la norma UNE 21123.

5.6 Conexión a red

5.6.1 Todas las instalaciones de hasta 100 kW cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículos 8 y 9) sobre conexión de instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.7 Medidas

5.7.1 Todas las instalaciones cumplirán con el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.

5.8 Protecciones

- 5.8.1 Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 11) sobre protecciones en instalaciones fotovoltaicas conectadas a la red de baja tensión.
- 5.8.2 En conexiones a la red trifásicas las protecciones para la interconexión de máxima y mínima frecuencia (51 Hz y 49 Hz respectivamente) y de máxima y mínima tensión (1,1 Um y 0,85 Um respectivamente) serán para cada fase.

5.9 Puesta a tierra de las instalaciones fotovoltaicas

- 5.9.1 Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 12) sobre las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.
- 5.9.2 Cuando el aislamiento galvánico entre la red de distribución de baja tensión y el generador fotovoltaico no se realice mediante un transformador de aislamiento, se explicarán en la Memoria de Diseño o Proyecto los elementos utilizados para garantizar esta condición.
- 5.9.3 Todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectadas a una única tierra. Esta tierra será independiente de la del neutro de la empresa distribuidora, de acuerdo con el Reglamento de Baja Tensión.

5.10 Armónicos y compatibilidad electromagnética

5.10.1 Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 13) sobre armónicos y compatibilidad electromagnética en instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.11 Medidas de seguridad

5.11.1 Las centrales fotovoltaicas, independientemente de la tensión a la que estén conectadas a la red, estarán equipadas con un sistema de protecciones que garantice su desconexión en caso de un fallo en la red o fallos internos en la instalación de la propia central, de manera que no

- perturben el correcto funcionamiento de las redes a las que estén conectadas, tanto en la explotación normal como durante el incidente.
- 5.11.2 La central fotovoltaica debe evitar el funcionamiento no intencionado en isla con parte de la red de distribución, en el caso de desconexión de la red general. La protección anti-isla deberá detectar la desconexión de red en un tiempo acorde con los criterios de protección de la red de distribución a la que se conecta, o en el tiempo máximo fijado por la normativa o especificaciones técnicas correspondientes. El sistema utilizado debe funcionar correctamente en paralelo con otras centrales eléctricas con la misma o distinta tecnología, y alimentando las cargas habituales en la red, tales como motores.
- 5.11.3 Todas las centrales fotovoltaicas con una potencia mayor de 1 MW estarán dotadas de un sistema de teledesconexión y un sistema de telemedida.
 - La función del sistema de teledesconexión es actuar sobre el elemento de conexión de la central eléctrica con la red de distribución para permitir la desconexión remota de la planta en los casos en que los requisitos de seguridad así lo recomienden. Los sistemas de teledesconexión y telemedida serán compatibles con la red de distribución a la que se conecta la central fotovoltaica, pudiendo utilizarse en baja tensión los sistemas de telegestión incluidos en los equipos de medida previstos por la legislación vigente.
- 5.11.4 Las centrales fotovoltaicas deberán estar dotadas de los medios necesarios para admitir un reenganche de la red de distribución sin que se produzcan daños. Asimismo, no producirán sobretensiones que puedan causar daños en otros equipos, incluso en el transitorio de paso a isla, con cargas bajas o sin carga. Igualmente, los equipos instalados deberán cumplir los límites de emisión de perturbaciones indicados en las normas nacionales e internacionales de compatibilidad electromagnética.

6 Recepción y pruebas

- 6.1 El instalador entregará al usuario un documento-albarán en el que conste el suministro de componentes, materiales y manuales de uso y mantenimiento de la instalación. Este documento será firmado por duplicado por ambas partes, conservando cada una un ejemplar. Los manuales entregados al usuario estarán en alguna de las lenguas oficiales españolas para facilitar su correcta interpretación.
- 6.2 Antes de la puesta en servicio de todos los elementos principales (módulos, inversores, contadores) éstos deberán haber superado las pruebas de funcionamiento en fábrica, de las que se levantará oportuna acta que se adjuntará con los certificados de calidad.
- 6.3 Las pruebas a realizar por el instalador, con independencia de lo indicado con anterioridad en este PCT, serán como mínimo las siguientes:
- 6.3.1 Funcionamiento y puesta en marcha de todos los sistemas.
- 6.3.2 Pruebas de arranque y parada en distintos instantes de funcionamiento.
- 6.3.3 Pruebas de los elementos y medidas de protección, seguridad y alarma, así como su actuación, con excepción de las pruebas referidas al interruptor automático de la desconexión.
- 6.3.4 Determinación de la potencia instalada, de acuerdo con el procedimiento descrito en el anexo I.

- 6.4 Concluidas las pruebas y la puesta en marcha se pasará a la fase de la Recepción Provisional de la Instalación. No obstante, el Acta de Recepción Provisional no se firmará hasta haber comprobado que todos los sistemas y elementos que forman parte del suministro han funcionado correctamente durante un mínimo de 240 horas seguidas, sin interrupciones o paradas causadas por fallos o errores del sistema suministrado, y además se hayan cumplido los siguientes requisitos:
- 6.4.1 Entrega de toda la documentación requerida en este PCT, y como mínimo la recogida en la norma UNE-EN 62466: Sistemas fotovoltaicos conectados a red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.
- 6.4.2 Retirada de obra de todo el material sobrante.
- 6.4.3 Limpieza de las zonas ocupadas, con transporte de todos los desechos a vertedero.
- 6.5 Durante este período el suministrador será el único responsable de la operación de los sistemas suministrados, si bien deberá adiestrar al personal de operación.
- 6.6 Todos los elementos suministrados, así como la instalación en su conjunto, estarán protegidos frente a defectos de fabricación, instalación o diseño por una garantía de tres años, salvo para los módulos fotovoltaicos, para los que la garantía mínima será de 10 años contados a partir de la fecha de la firma del acta de recepción provisional.
- 6.7 No obstante, el instalador quedará obligado a la reparación de los fallos de funcionamiento que se puedan producir si se apreciase que su origen procede de defectos ocultos de diseño, construcción, materiales o montaje, comprometiéndose a subsanarlos sin cargo alguno. En cualquier caso, deberá atenerse a lo establecido en la legislación vigente en cuanto a vicios ocultos.

7 Cálculo de la producción anual esperada

- 7.1 En la Memoria se incluirán las producciones mensuales máximas teóricas en función de la irradiancia, la potencia instalada y el rendimiento de la instalación.
- 7.2 Los datos de entrada que deberá aportar el instalador son los siguientes:
- 7.2.1 $G_{dm}(0)$.

Valor medio mensual y anual de la irradiación diaria sobre superficie horizontal, en kWh/(m²·día), obtenido a partir de alguna de las siguientes fuentes:

- Agencia Estatal de Meteorología.
- Organismo autonómico oficial.
- Otras fuentes de datos de reconocida solvencia, o las expresamente señaladas por el IDAE.

7.2.2 $G_{\rm dm}(\alpha, \beta)$.

Valor medio mensual y anual de la irradiación diaria sobre el plano del generador en kWh/(m^2 ·día), obtenido a partir del anterior, y en el que se hayan descontado las pérdidas por sombreado en caso de ser éstas superiores a un 10 % anual (ver anexo III). El parámetro α representa el azimut y β la inclinación del generador, tal y como se definen en el anexo II.

7.2.3 Rendimiento energético de la instalación o "performance ratio", PR.

Eficiencia de la instalación en condiciones reales de trabajo, que tiene en cuenta:

- La dependencia de la eficiencia con la temperatura.
- La eficiencia del cableado.
- Las pérdidas por dispersión de parámetros y suciedad.
- Las pérdidas por errores en el seguimiento del punto de máxima potencia.
- La eficiencia energética del inversor.
- Otros.
- 7.2.4 La estimación de la energía inyectada se realizará de acuerdo con la siguiente ecuación:

$$E_{\rm p} = \frac{G_{\rm dm}(\alpha,\beta) P_{\rm mp} PR}{G_{\rm CEM}}$$
 kWh/día

Donde:

 $P_{\rm mp}$ = Potencia pico del generador

$$G_{\text{CEM}} = 1 \text{ kW/m}^2$$

7.3 Los datos se presentarán en una tabla con los valores medios mensuales y el promedio anual, de acuerdo con el siguiente ejemplo:

Tabla II. Generador $P_{mp} = 1$ kWp, orientado al Sur ($\alpha = 0^{\circ}$) e inclinado 35° ($\beta = 35^{\circ}$).

Mes	$G_{dm}(0)$ [kWh/(m ² ·día)]	$G_{\text{dm}}(\alpha=0^{\circ}, \beta=35^{\circ})$ [kWh/(m ² ·día)]	PR	$E_{ m p}$ (kWh/día)
Enero	1,92	3,12	0,851	2,65
Febrero	2,52	3,56	0,844	3,00
Marzo	4,22	5,27	0,801	4,26
Abril	5,39	5,68	0,802	4,55
Mayo	6,16	5,63	0,796	4,48
Junio	7,12	6,21	0,768	4,76
Julio	7,48	6,67	0,753	5,03
Agosto	6,60	6,51	0,757	4,93
Septiembre	Septiembre 5,28		0,769	4,69
Octubre 3,51		4,73	0,807	3,82
Noviembre	Noviembre 2,09		0,837	2,64
Diciembre	1,67	2,78	0,850	2,36
Promedio 4,51		4,96	0,803	3,94

8 Requerimientos técnicos del contrato de mantenimiento

8.1 Generalidades

- 8.1.1 Se realizará un contrato de mantenimiento preventivo y correctivo de al menos tres años.
- 8.1.2 El contrato de mantenimiento de la instalación incluirá todos los elementos de la misma, con las labores de mantenimiento preventivo aconsejados por los diferentes fabricantes.

8.2 Programa de mantenimiento

- 8.2.1 El objeto de este apartado es definir las condiciones generales mínimas que deben seguirse para el adecuado mantenimiento de las instalaciones de energía solar fotovoltaica conectadas a red.
- 8.2.2 Se definen dos escalones de actuación para englobar todas las operaciones necesarias durante la vida útil de la instalación para asegurar el funcionamiento, aumentar la producción y prolongar la duración de la misma:
 - Mantenimiento preventivo.
 - Mantenimiento correctivo.
- 8.2.3 Plan de mantenimiento preventivo: operaciones de inspección visual, verificación de actuaciones y otras, que aplicadas a la instalación deben permitir mantener dentro de límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la misma.
- 8.2.4 Plan de mantenimiento correctivo: todas las operaciones de sustitución necesarias para asegurar que el sistema funciona correctamente durante su vida útil. Incluye:
 - La visita a la instalación en los plazos indicados en el punto 8.3.5.2 y cada vez que el usuario lo requiera por avería grave en la misma.
 - El análisis y elaboración del presupuesto de los trabajos y reposiciones necesarias para el correcto funcionamiento de la instalación.
 - Los costes económicos del mantenimiento correctivo, con el alcance indicado, forman parte del precio anual del contrato de mantenimiento. Podrán no estar incluidas ni la mano de obra ni las reposiciones de equipos necesarias más allá del período de garantía.
- 8.2.5 El mantenimiento debe realizarse por personal técnico cualificado bajo la responsabilidad de la empresa instaladora.
- 8.2.6 El mantenimiento preventivo de la instalación incluirá, al menos, una visita (anual para el caso de instalaciones de potencia de hasta 100 kWp y semestral para el resto) en la que se realizarán las siguientes actividades:
 - Comprobación de las protecciones eléctricas.
 - Comprobación del estado de los módulos: comprobación de la situación respecto al proyecto original y verificación del estado de las conexiones.

- Comprobación del estado del inversor: funcionamiento, lámparas de señalizaciones, alarmas, etc.
- Comprobación del estado mecánico de cables y terminales (incluyendo cables de tomas de tierra y reapriete de bornas), pletinas, transformadores, ventiladores/extractores, uniones, reaprietes, limpieza.
- 8.2.7 Realización de un informe técnico de cada una de las visitas, en el que se refleje el estado de las instalaciones y las incidencias acaecidas.
- 8.2.8 Registro de las operaciones de mantenimiento realizadas en un libro de mantenimiento, en el que constará la identificación del personal de mantenimiento (nombre, titulación y autorización de la empresa).

8.3 Garantías

- 8.3.1 Ámbito general de la garantía
- 8.3.1.1 Sin perjuicio de cualquier posible reclamación a terceros, la instalación será reparada de acuerdo con estas condiciones generales si ha sufrido una avería a causa de un defecto de montaje o de cualquiera de los componentes, siempre que haya sido manipulada correctamente de acuerdo con lo establecido en el manual de instrucciones.
- 8.3.1.2 La garantía se concede a favor del comprador de la instalación, lo que deberá justificarse debidamente mediante el correspondiente certificado de garantía, con la fecha que se acredite en la certificación de la instalación.
- 8.3.2 Plazos
- 8.3.2.1 El suministrador garantizará la instalación durante un período mínimo de 3 años, para todos los materiales utilizados y el procedimiento empleado en su montaje. Para los módulos fotovoltaicos, la garantía mínima será de 10 años.
- 8.3.2.2 Si hubiera de interrumpirse la explotación del suministro debido a razones de las que es responsable el suministrador, o a reparaciones que el suministrador haya de realizar para cumplir las estipulaciones de la garantía, el plazo se prolongará por la duración total de dichas interrupciones.
- 8.3.3 Condiciones económicas
- 8.3.3.1 La garantía comprende la reparación o reposición, en su caso, de los componentes y las piezas que pudieran resultar defectuosas, así como la mano de obra empleada en la reparación o reposición durante el plazo de vigencia de la garantía.
- 8.3.3.2 Quedan expresamente incluidos todos los demás gastos, tales como tiempos de desplazamiento, medios de transporte, amortización de vehículos y herramientas, disponibilidad de otros medios y eventuales portes de recogida y devolución de los equipos para su reparación en los talleres del fabricante.
- 8.3.3.3 Asimismo, se deben incluir la mano de obra y materiales necesarios para efectuar los ajustes y eventuales reglajes del funcionamiento de la instalación.

8.3.3.4 Si en un plazo razonable el suministrador incumple las obligaciones derivadas de la garantía, el comprador de la instalación podrá, previa notificación escrita, fijar una fecha final para que dicho suministrador cumpla con sus obligaciones. Si el suministrador no cumple con sus obligaciones en dicho plazo último, el comprador de la instalación podrá, por cuenta y riesgo del suministrador, realizar por sí mismo las oportunas reparaciones, o contratar para ello a un tercero, sin perjuicio de la reclamación por daños y perjuicios en que hubiere incurrido el suministrador.

8.3.4 Anulación de la garantía

8.3.4.1 La garantía podrá anularse cuando la instalación haya sido reparada, modificada o desmontada, aunque sólo sea en parte, por personas ajenas al suministrador o a los servicios de asistencia técnica de los fabricantes no autorizados expresamente por el suministrador, salvo lo indicado en el punto 8.3.3.4.

8.3.5 Lugar y tiempo de la prestación

- 8.3.5.1 Cuando el usuario detecte un defecto de funcionamiento en la instalación lo comunicará fehacientemente al suministrador. Cuando el suministrador considere que es un defecto de fabricación de algún componente, lo comunicará fehacientemente al fabricante.
- 8.3.5.2 El suministrador atenderá cualquier incidencia en el plazo máximo de una semana y la resolución de la avería se realizará en un tiempo máximo de 10 días, salvo causas de fuerza mayor debidamente justificadas.
- 8.3.5.3 Las averías de las instalaciones se repararán en su lugar de ubicación por el suministrador. Si la avería de algún componente no pudiera ser reparada en el domicilio del usuario, el componente deberá ser enviado al taller oficial designado por el fabricante por cuenta y a cargo del suministrador.
- 8.3.5.4 El suministrador realizará las reparaciones o reposiciones de piezas a la mayor brevedad posible una vez recibido el aviso de avería, pero no se responsabilizará de los perjuicios causados por la demora en dichas reparaciones siempre que sea inferior a 10 días naturales.

ANEXO I

MEDIDA DE LA POTENCIA INSTALADA DE UNA CENTRAL FOTOVOLTAICA CONECTADA A LA RED ELÉCTRICA

Medida de la potencia instalada de una central fotovoltaica conectada a la red eléctrica

1 Introducción

- 1.1 Definimos la potencia instalada en corriente alterna (CA) de una central fotovoltaica (FV) conectada a la red, como la potencia de corriente alterna a la entrada de la red eléctrica para un campo fotovoltaico con todos sus módulos en un mismo plano y que opera, sin sombras, a las condiciones estándar de medida (CEM).
- 1.2 La potencia instalada en CA de una central fotovoltaica puede obtenerse utilizando instrumentos de medida y procedimientos adecuados de corrección de unas condiciones de operación bajo unos determinados valores de irradiancia solar y temperatura a otras condiciones de operación diferentes. Cuando esto no es posible, puede estimarse la potencia instalada utilizando datos de catálogo y de la instalación, y realizando algunas medidas sencillas con una célula solar calibrada, un termómetro, un voltímetro y una pinza amperimétrica. Si tampoco se dispone de esta instrumentación, puede usarse el propio contador de energía. En este mismo orden, el error de la estimación de la potencia instalada será cada vez mayor.

2 Procedimiento de medida

- 2.1 Se describe a continuación el equipo mínimo necesario para calcular la potencia instalada:
 - 1 célula solar calibrada de tecnología equivalente.
 - 1 termómetro de temperatura ambiente.
 - 1 multímetro de corriente continua (CC) y corriente alterna (CA).
 - 1 pinza amperimétrica de CC y CA.
- 2.2 El propio inversor actuará de carga del campo fotovoltaico en el punto de máxima potencia.
- 2.3 Las medidas se realizarán en un día despejado, en un margen de \pm 2 horas alrededor del mediodía solar.
- 2.4 Se realizará la medida con el inversor encendido para que el punto de operación sea el punto de máxima potencia.
- 2.5 Se medirá con la pinza amperimétrica la intensidad de CC de entrada al inversor y con un multímetro la tensión de CC en el mismo punto. Su producto es $P_{\rm cc\ inv}$.
- 2.6 El valor así obtenido se corrige con la temperatura y la irradiancia usando las ecuaciones (2) y (3).
- 2.7 La temperatura ambiente se mide con un termómetro situado a la sombra, en una zona próxima a los módulos FV. La irradiancia se mide con la célula (CTE) situada junto a los módulos y en su mismo plano.

- 2.8 Finalmente, se corrige esta potencia con las pérdidas.
- 2.9 Ecuaciones:

$$P_{\text{cc, inv}} = P_{\text{cc, fov}} (1 - L_{\text{cab}}) \tag{1}$$

$$P_{\rm cc\ fov} = P_{\rm o} R_{\rm to\ var} [1 - g(T_{\rm c} - 25)] E / 1000$$
 (2)

$$T_c = T_{\text{amb}} + (TONC - 20)E/800$$
 (3)

 $P_{\rm cc}$ for Potencia de CC inmediatamente a la salida de los paneles FV, en W.

 $L_{\rm cab}$ Pérdidas de potencia en los cableados de CC entre los paneles FV y la entrada del inversor, incluyendo, además, las pérdidas en fusibles, conmutadores, conexionados, diodos antiparalelo si hay, etc.

E Irradiancia solar, en W/m², medida con la CTE calibrada.

g Coeficiente de temperatura de la potencia, en 1/°C.

 T_c Temperatura de las células solares, en °C.

 T_{amb} Temperatura ambiente en la sombra, en °C, medida con el termómetro.

TONC Temperatura de operación nominal del módulo.

 P_{o} Potencia nominal del generador en CEM, en W.

 $R_{\text{to, var}}$ Rendimiento, que incluye los porcentajes de pérdidas debidas a que los módulos fotovoltaicos operan, normalmente, en condiciones diferentes de las CEM.

 L_{tem} Pérdidas medias anuales por temperatura. En la ecuación (2) puede sustituirse el término $[1-g(T_c-25)]$ por $(1-L_{\text{tem}})$.

$$R_{\text{to var}} = (1 - L_{\text{pol}})(1 - L_{\text{dis}})(1 - L_{\text{ref}}) \tag{4}$$

 $L_{\rm pol}$ Pérdidas de potencia debidas al polvo sobre los módulos FV.

 $L_{\rm dis}$ Pérdidas de potencia por dispersión de parámetros entre módulos.

 $L_{\rm ref}$ Pérdidas de potencia por reflectancia angular espectral, cuando se utiliza un piranómetro como referencia de medidas. Si se utiliza una célula de tecnología equivalente (CTE), el término $L_{\rm ref}$ es cero.

- 2.10 Se indican a continuación los valores de los distintos coeficientes:
- 2.10.1 Todos los valores indicados pueden obtenerse de las medidas directas. Si no es posible realizar medidas, pueden obtenerse, parte de ellos, de los catálogos de características técnicas de los fabricantes.
- 2.10.2 Cuando no se dispone de otra información más precisa pueden usarse los valores indicados en la tabla III.

Tabla III

Parámetro	Valor estimado, media anual	Valor estimado, día despejado (*)	Ver observación
L_{cab}	0,02	0,02	(1)
g (1/°C)	-	0,0035 (**)	_
TONC (°C)	-	45	_
L_{tem}	0,08	_	(2)
$L_{ m pol}$	0,03	_	(3)
$L_{ m dis}$	0,02	0,02	_
$L_{ m ref}$	0,03	0,01	(4)

^(*) Al mediodía solar ±2 h de un día despejado. (**) Válido para silicio cristalino.

Observaciones:

(1) Las pérdidas principales de cableado pueden calcularse conociendo la sección de los cables y su longitud, por la ecuación:

$$L_{\rm cab} = R I^2 \tag{5}$$

$$R = 0.000002 L/S \tag{6}$$

R es el valor de la resistencia eléctrica de todos los cables, en ohmios.

L es la longitud de todos los cables (sumando la ida y el retorno), en cm.

S es la sección de cada cable, en cm².

Normalmente, las pérdidas en conmutadores, fusibles y diodos son muy pequeñas y no es necesario considerarlas. Las caídas en el cableado pueden ser muy importantes cuando son largos y se opera a baja tensión en CC. Las pérdidas por cableado en % suelen ser inferiores en plantas de gran potencia que en plantas de pequeña potencia. En nuestro caso, de acuerdo con las especificaciones, el valor máximo admisible para la parte CC es 1,5 %, siendo recomendable no superar el 0,5 %.

- (2) Las pérdidas por temperatura dependen de la diferencia de temperatura en los módulos y los 25 °C de las CEM, del tipo de célula y encapsulado y del viento. Si los módulos están convenientemente aireados por detrás, esta diferencia es del orden de 30 °C sobre la temperatura ambiente, para una irradiancia de 1000 W/m². Para el caso de integración de edificios donde los módulos no están separados de las paredes o tejados, esta diferencia se podrá incrementar entre 5 °C y 15 °C.
- (3) Las pérdidas por polvo en un día determinado pueden ser del 0 % al día siguiente de un día de lluvia y llegar al 8 % cuando los módulos se "ven muy sucios". Estas pérdidas dependen de la inclinación de los módulos, cercanías a carreteras, etc. Una causa importante de pérdidas ocurre cuando los módulos FV que tienen marco tienen células solares muy próximas al marco situado en la parte inferior del módulo. Otras veces son las estructuras soporte que sobresalen de los módulos y actúan como retenes del polvo.
- (4) Las pérdidas por reflectancia angular y espectral pueden despreciarse cuando se mide el campo FV al mediodía solar (±2 h) y también cuando se mide la radiación solar con una célula calibrada de tecnología equivalente (CTE) al módulo FV. Las pérdidas anuales son mayores en células con capas antirreflexivas que en células texturizadas. Son mayores en invierno que en verano. También son mayores en localidades de mayor latitud. Pueden oscilar a lo largo de un día entre 2 % y 6 %.

3 Ejemplo

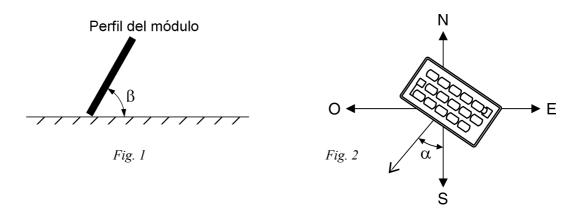
Tabla IV

Parámetro	Unidades	Valor	Comentario
TONC	°C	45	Obtenido del catálogo
E	W/m²	850	Irradiancia medida con la CTE calibrada
$T_{ m amb}$	°C	22	Temperatura ambiente en sombra
$T_{ m c}$	°C	47	Temperatura de las células $T_{c} = T_{amb} + (TONC - 20) E/800$
$P_{\text{cc, inv}}$ (850 W/m ² , 47 °C)	W	1200	Medida con pinza amperimétrica y voltímetro a la entrada del inversor
$1-g(T_{c}-25)$		0,923	$1-0,0035\times(47-25)$
$1-L_{\mathrm{cab}}$		0,98	Valor tabla
$1-L_{ m pol}$		0,97	Valor tabla
$1-L_{ m dis}$		0,98	Valor tabla
$1-L_{ m ref}$		0,97	Valor tabla
$R_{ m to,var}$		0,922	$0.97 \times 0.98 \times 0.97$
$P_{\rm cc,fov}$	W	1224,5	$P_{\rm cc, fov} = P_{\rm cc, inv} / (1 - L_{\rm cab})$
$P_{\rm o}$	W	1693	$P_{o} = \frac{P_{cc,fov} \times 1000}{R_{to,var} \left[1 - g \left(T_{c} - 25 \right) \right] E}$

Potencia total estimada del campo fotovoltaico en CEM = 1693 W.

Si, además, se admite una desviación del fabricante (por ejemplo, 5 %), se incluirá en la estimación como una pérdida.

Finalmente, y después de sumar todas las pérdidas incluyendo la desviación de la potencia de los módulos respecto de su valor nominal, se comparará la potencia así estimada con la potencia declarada del campo fotovoltaico.


ANEXO II

CÁLCULO DE LAS PÉRDIDAS POR ORIENTACIÓN E INCLINACIÓN DEL GENERADOR DISTINTA DE LA ÓPTIMA

Cálculo de las pérdidas por orientación e inclinación del generador distinta de la óptima

1 Introducción

- 1.1 El objeto de este anexo es determinar los límites en la orientación e inclinación de los módulos de acuerdo a las pérdidas máximas permisibles por este concepto en el PCT.
- 1.2 Las pérdidas por este concepto se calcularán en función de:
 - Ángulo de inclinación β, definido como el ángulo que forma la superficie de los módulos con el plano horizontal (figura 1). Su valor es 0° para módulos horizontales y 90° para verticales.
 - Ángulo de azimut α, definido como el ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del módulo y el meridiano del lugar (figura 2).
 Su valor es 0° para módulos orientados al Sur, –90° para módulos orientados al Este y +90° para módulos orientados al Oeste.

2 Procedimiento

- 2.1 Habiendo determinado el ángulo de azimut del generador, se calcularán los límites de inclinación aceptables de acuerdo a las pérdidas máximas respecto a la inclinación óptima establecidas en el PCT. Para ello se utilizará la figura 3, válida para una latitud, ϕ , de 41°, de la siguiente forma:
 - Conocido el azimut, determinamos en la figura 3 los límites para la inclinación en el caso de φ=41°. Para el caso general, las pérdidas máximas por este concepto son del 10 %; para superposición, del 20 %, y para integración arquitectónica del 40 %. Los puntos de intersección del límite de pérdidas con la recta de azimut nos proporcionan los valores de inclinación máxima y mínima.
 - Si no hay intersección entre ambas, las pérdidas son superiores a las permitidas y la instalación estará fuera de los límites. Si ambas curvas se intersectan, se obtienen los valores para latitud $\phi = 41^{\circ}$ y se corrigen de acuerdo al apartado 2.2.

2.2 Se corregirán los límites de inclinación aceptables en función de la diferencia entre la latitud del lugar en cuestión y la de 41°, de acuerdo a las siguientes fórmulas:

Inclinación máxima = Inclinación (
$$\phi = 41^{\circ}$$
) – (41° – latitud).

Inclinación mínima = Inclinación (ϕ = 41°) – (41° – latitud), siendo 0° su valor mínimo.

2.3 En casos cerca del límite, y como instrumento de verificación, se utilizará la siguiente fórmula:

Pérdidas (%) =
$$100 \times [1,2 \times 10^{-4} (\beta - \phi + 10)^2 + 3,5 \times 10^{-5} \alpha^2]$$
 para $15^{\circ} < \beta < 90^{\circ}$
Pérdidas (%) = $100 \times [1,2 \times 10^{-4} (\beta - \phi + 10)^2]$ para $\beta \le 15^{\circ}$

[Nota: α , β , ϕ se expresan en grados, siendo ϕ la latitud del lugar].

3 Ejemplo de cálculo

Supongamos que se trata de evaluar si las pérdidas por orientación e inclinación del generador están dentro de los límites permitidos para una instalación fotovoltaica en un tejado orientado 15° hacia el Oeste (azimut = $+15^{\circ}$) y con una inclinación de 40° respecto a la horizontal, para una localidad situada en el Archipiélago Canario cuya latitud es de 29° .

3.1 Conocido el azimut, cuyo valor es $+15^{\circ}$, determinamos en la figura 3 los límites para la inclinación para el caso de $\phi = 41^{\circ}$. Los puntos de intersección del límite de pérdidas del 10% (borde exterior de la región 90%-95%), máximo para el caso general, con la recta de azimut 15° nos proporcionan los valores (ver figura 4):

Inclinación máxima = 60°

Inclinación mínima = 7°

3.2 Corregimos para la latitud del lugar:

Inclinación máxima =
$$60^{\circ} - (41^{\circ} - 29^{\circ}) = 48^{\circ}$$

Inclinación mínima = $7^{\circ} - (41^{\circ} - 29^{\circ}) = -5^{\circ}$, que está fuera de rango y se toma, por lo tanto, inclinación mínima = 0° .

3.3 Por tanto, esta instalación, de inclinación 40°, cumple los requisitos de pérdidas por orientación e inclinación.

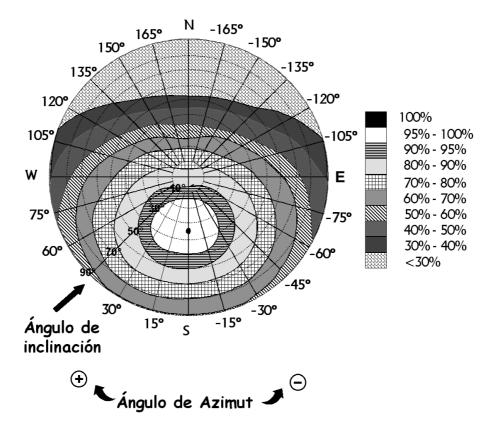


Fig. 3

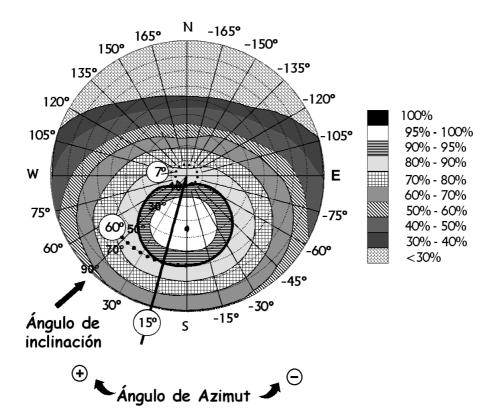


Fig. 4. Resolución del ejemplo.

ANEXO III

CÁLCULO DE LAS PÉRDIDAS DE RADIACIÓN SOLAR POR SOMBRAS

Cálculo de las pérdidas de radiación solar por sombras

1 Objeto

El presente anexo describe un método de cálculo de las pérdidas de radiación solar que experimenta una superficie debidas a sombras circundantes. Tales pérdidas se expresan como porcentaje de la radiación solar global que incidiría sobre la mencionada superficie de no existir sombra alguna.

2 Descripción del método

El procedimiento consiste en la comparación del perfil de obstáculos que afecta a la superficie de estudio con el diagrama de trayectorias del Sol. Los pasos a seguir son los siguientes:

2.1 Obtención del perfil de obstáculos

Localización de los principales obstáculos que afectan a la superficie, en términos de sus coordenadas de posición azimut (ángulo de desviación con respecto a la dirección Sur) y elevación (ángulo de inclinación con respecto al plano horizontal). Para ello puede utilizarse un teodolito.

2.2 Representación del perfil de obstáculos

Representación del perfil de obstáculos en el diagrama de la figura 5, en el que se muestra la banda de trayectorias del Sol a lo largo de todo el año, válido para localidades de la Península Ibérica y Baleares (para las Islas Canarias el diagrama debe desplazarse 12° en sentido vertical ascendente). Dicha banda se encuentra dividida en porciones, delimitadas por las horas solares (negativas antes del mediodía solar y positivas después de éste) e identificadas por una letra y un número (A1, A2,..., D14).

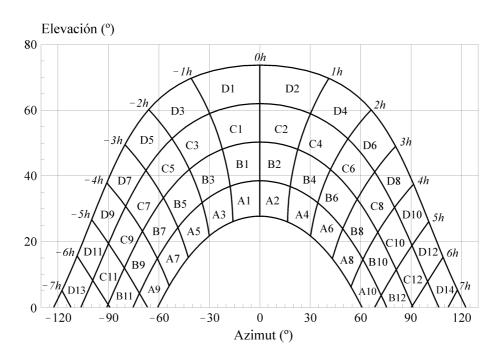


Fig. 5. Diagrama de trayectorias del Sol. [Nota: los grados de ambas escalas son sexagesimales].

2.3 Selección de la tabla de referencia para los cálculos

Cada una de las porciones de la figura 5 representa el recorrido del Sol en un cierto período de tiempo (una hora a lo largo de varios días) y tiene, por tanto, una determinada contribución a la irradiación solar global anual que incide sobre la superficie de estudio. Así, el hecho de que un obstáculo cubra una de las porciones supone una cierta pérdida de irradiación, en particular aquella que resulte interceptada por el obstáculo. Deberá escogerse como referencia para el cálculo la tabla más adecuada de entre las que se incluyen en la sección 3 de este anexo.

2.4 Cálculo final

La comparación del perfil de obstáculos con el diagrama de trayectorias del Sol permite calcular las pérdidas por sombreado de la irradiación solar global que incide sobre la superficie, a lo largo de todo el año. Para ello se han de sumar las contribuciones de aquellas porciones que resulten total o parcialmente ocultas por el perfil de obstáculos representado. En el caso de ocultación parcial se utilizará el factor de llenado (fracción oculta respecto del total de la porción) más próximo a los valores: 0,25, 0,50, 0,75 ó 1.

La sección 4 muestra un ejemplo concreto de utilización del método descrito.

3 Tablas de referencia

Las tablas incluidas en esta sección se refieren a distintas superficies caracterizadas por sus ángulos de inclinación y orientación (β y α , respectivamente). Deberá escogerse aquella que resulte más parecida a la superficie de estudio. Los números que figuran en cada casilla se corresponden con el porcentaje de irradiación solar global anual que se perdería si la porción correspondiente (véase la figura 5) resultase interceptada por un obstáculo.

Tabla V-1

$\beta = 35^{\circ}$ $\alpha = 0^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,03
11	0,00	0,01	0,12	0,44
9	0,13	0,41	0,62	1,49
7	1,00	0,95	1,27	2,76
5	1,84	1,50	1,83	3,87
3	2,70	1,88	2,21	4,67
1	3,15	2,12	2,43	5,04
2	3,17	2,12	2,33	4,99
4	2,70	1,89	2,01	4,46
6	1,79	1,51	1,65	3,63
8	0,98	0,99	1,08	2,55
10	0,11	0,42	0,52	1,33
12	0,00	0,02	0,10	0,40
14	0,00	0,00	0,00	0,02

Tabla V-2

$\beta = 0^{\circ}$ $\alpha = 0^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,18
11	0,00	0,01	0,18	1,05
9	0,05	0,32	0,70	2,23
7	0,52	0,77	1,32	3,56
5	1,11	1,26	1,85	4,66
3	1,75	1,60	2,20	5,44
1	2,10	1,81	2,40	5,78
2	2,11	1,80	2,30	5,73
4	1,75	1,61	2,00	5,19
6	1,09	1,26	1,65	4,37
8	0,51	0,82	1,11	3,28
10	0,05	0,33	0,57	1,98
12	0,00	0,02	0,15	0,96
14	0,00	0,00	0,00	0,17

Tabla V-3

$\beta = 90^{\circ}$ $\alpha = 0^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,15
11	0,00	0,01	0,02	0,15
9	0,23	0,50	0,37	0,10
7	1,66	1,06	0,93	0,78
5	2,76	1,62	1,43	1,68
3	3,83	2,00	1,77	2,36
1	4,36	2,23	1,98	2,69
2	4,40	2,23	1,91	2,66
4	3,82	2,01	1,62	2,26
6	2,68	1,62	1,30	1,58
8	1,62	1,09	0,79	0,74
10	0,19	0,49	0,32	0,10
12	0,00	0,02	0,02	0,13
14	0,00	0,00	0,00	0,13

Tabla V-4

$\beta = 35^{\circ}$ $\alpha = 30^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,10
11	0,00	0,00	0,03	0,06
9	0,02	0,10	0,19	0,56
7	0,54	0,55	0,78	1,80
5	1,32	1,12	1,40	3,06
3	2,24	1,60	1,92	4,14
1	2,89	1,98	2,31	4,87
2	3,16	2,15	2,40	5,20
4	2,93	2,08	2,23	5,02
6	2,14	1,82	2,00	4,46
8	1,33	1,36	1,48	3,54
10	0,18	0,71	0,88	2,26
12	0,00	0,06	0,32	1,17
14	0,00	0,00	0,00	0,22

Tabla V-5

$\beta = 90^{\circ}$ $\alpha = 30^{\circ}$	A	В	С	D
13	0,10	0,00	0,00	0,33
11	0,06	0,01	0,15	0,51
9	0,56	0,06	0,14	0,43
7	1,80	0,04	0,07	0,31
5	3,06	0,55	0,22	0,11
3	4,14	1,16	0,87	0,67
1	4,87	1,73	1,49	1,86
2	5,20	2,15	1,88	2,79
4	5,02	2,34	2,02	3,29
6	4,46	2,28	2,05	3,36
8	3,54	1,92	1,71	2,98
10	2,26	1,19	1,19	2,12
12	1,17	0,12	0,53	1,22
14	0,22	0,00	0,00	0,24

Tabla V-6

$\beta = 35^{\circ}$ $\alpha = 60^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,14
11	0,00	0,00	0,08	0,16
9	0,02	0,04	0,04	0,02
7	0,02	0,13	0,31	1,02
5	0,64	0,68	0,97	2,39
3	1,55	1,24	1,59	3,70
1	2,35	1,74	2,12	4,73
2	2,85	2,05	2,38	5,40
4	2,86	2,14	2,37	5,53
6	2,24	2,00	2,27	5,25
8	1,51	1,61	1,81	4,49
10	0,23	0,94	1,20	3,18
12	0,00	0,09	0,52	1,96
14	0,00	0,00	0,00	0,55

Tabla V-7

$\beta = 90^{\circ}$ $\alpha = 60^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,43
11	0,00	0,01	0,27	0,78
9	0,09	0,21	0,33	0,76
7	0,21	0,18	0,27	0,70
5	0,10	0,11	0,21	0,52
3	0,45	0,03	0,05	0,25
1	1,73	0,80	0,62	0,55
2	2,91	1,56	1,42	2,26
4	3,59	2,13	1,97	3,60
6	3,35	2,43	2,37	4,45
8	2,67	2,35	2,28	4,65
10	0,47	1,64	1,82	3,95
12	0,00	0,19	0,97	2,93
14	0,00	0,00	0,00	1,00

$\beta = 35^{\circ}$ $\alpha = -30^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,22
11	0,00	0,03	0,37	1,26
9	0,21	0,70	1,05	2,50
7	1,34	1,28	1,73	3,79
5	2,17	1,79	2,21	4,70
3	2,90	2,05	2,43	5,20
1	3,12	2,13	2,47	5,20
2	2,88	1,96	2,19	4,77
4	2,22	1,60	1,73	3,91
6	1,27	1,11	1,25	2,84
8	0,52	0,57	0,65	1,64
10	0,02	0,10	0,15	0,50
12	0,00	0,00	0,03	0,05
14	0,00	0,00	0,00	0,08

Tabla V-8

Tabla V-9

$\beta = 90^{\circ}$ $\alpha = -30^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,24
11	0,00	0,05	0,60	1,28
9	0,43	1,17	1,38	2,30
7	2,42	1,82	1,98	3,15
5	3,43	2,24	2,24	3,51
3	4,12	2,29	2,18	3,38
1	4,05	2,11	1,93	2,77
2	3,45	1,71	1,41	1,81
4	2,43	1,14	0,79	0,64
6	1,24	0,54	0,20	0,11
8	0,40	0,03	0,06	0,31
10	0,01	0,06	0,12	0,39
12	0,00	0,01	0,13	0,45
14	0,00	0,00	0,00	0,27

Tabla V-10

$\beta = 35^{\circ}$ $\alpha = -60^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,56
11	0,00	0,04	0,60	2,09
9	0,27	0,91	1,42	3,49
7	1,51	1,51	2,10	4,76
5	2,25	1,95	2,48	5,48
3	2,80	2,08	2,56	5,68
1	2,78	2,01	2,43	5,34
2	2,32	1,70	2,00	4,59
4	1,52	1,22	1,42	3,46
6	0,62	0,67	0,85	2,20
8	0,02	0,14	0,26	0,92
10	0,02	0,04	0,03	0,02
12	0,00	0,01	0,07	0,14
14	0,00	0,00	0,00	0,12

Tabla V-11

$\beta = 90^{\circ}$ $\alpha = -60^{\circ}$	A	В	С	D
13	0.00	0,00	0,00	1,01
11	0,00	0,08	1,10	3,08
9	0,55	1,60	2,11	4,28
7	2,66	2,19	2,61	4,89
5	3,36	2,37	2,56	4,61
3	3,49	2,06	2,10	3,67
1	2,81	1,52	1,44	2,22
2	1,69	0,78	0,58	0,53
4	0,44	0,03	0,05	0,24
-6	0,10	0,13	0,19	0,48
8	0,22	0,18	0,26	0,69
10	0,08	0,21	0,28	0,68
12	0,00	0,02	0,24	0,67
14	0,00	0,00	0,00	0,36

4 Ejemplo

Superficie de estudio ubicada en Madrid, inclinada 30° y orientada 10° al Sudeste. En la figura 6 se muestra el perfil de obstáculos.

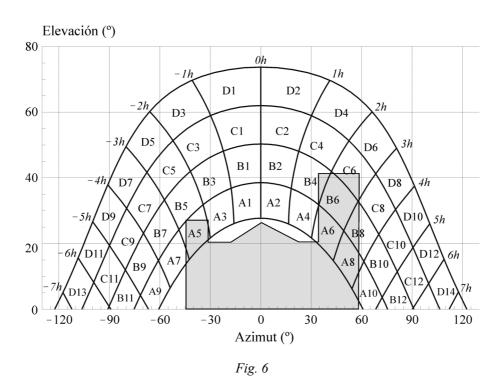


Tabla VI. Tabla de referencia.

$\beta = 35^{\circ}$ $\alpha = 0^{\circ}$	A	В	С	D
13	0,00	0,00	0,00	0,03
11	0,00	0,01	0,12	0,44
9	0,13	0,41	0,62	1,49
7	1,00	0,95	1,27	2,76
5	1,84	1,50	1,83	3,87
3	2,70	1,88	2,21	4,67
1	3,15	2,12	2,43	5,04
2	3,17	2,12	2,33	4,99
4	2,70	1,89	2,01	4,46
6	1,79	1,51	1,65	3,63
8	0,98	0,99	1,08	2,55
10	0,11	0,42	0,52	1,33
12	0,00	0,02	0,10	0,40
14	0,00	0,00	0,00	0,02

Cálculos:

Pérdidas por sombreado (% de irradiación global incidente anual) =
$$= 0.25 \times B4 + 0.5 \times A5 + 0.75 \times A6 + B6 + 0.25 \times C6 + A8 + 0.5 \times B8 + 0.25 \times A10 = \\ = 0.25 \times 1.89 + 0.5 \times 1.84 + 0.75 \times 1.79 + 1.51 + 0.25 \times 1.65 + 0.98 + 0.5 \times 0.99 + 0.25 \times 0.11 = \\ = 6.16\% \approx 6\%$$

5 Distancia mínima entre filas de módulos

La distancia *d*, medida sobre la horizontal, entre filas de módulos o entre una fila y un obstáculo de altura *h* que pueda proyectar sombras, se recomienda que sea tal que se garanticen al menos 4 horas de sol en torno al mediodía del solsticio de invierno.

En cualquier caso, d ha de ser como mínimo igual a $h \cdot k$, siendo k un factor adimensional al que, en este caso, se le asigna el valor $1/\tan(61^\circ - \text{latitud})$.

En la tabla VII pueden verse algunos valores significativos del factor k, en función de la latitud del lugar.

Tabla VII

Latitud	29°	37°	39°	41°	43°	45°
k	1,600	2,246	2,475	2,747	3,078	3,487

Asimismo, la separación entre la parte posterior de una fila y el comienzo de la siguiente no será inferior a $h \cdot k$, siendo en este caso h la diferencia de alturas entre la parte alta de una fila y la parte baja de la posterior, efectuándose todas las medidas con relación al plano que contiene las bases de los módulos.

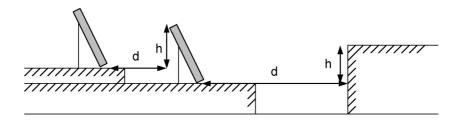
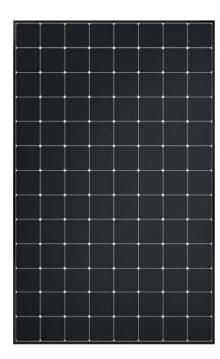


Fig. 7


Si los módulos se instalan sobre cubiertas inclinadas, en el caso de que el azimut de estos, el de la cubierta, o el de ambos, difieran del valor cero apreciablemente, el cálculo de la distancia entre filas deberá efectuarse mediante la ayuda de un programa de sombreado para casos generales suficientemente fiable, a fin de que se cumplan las condiciones requeridas.

IDAE

Instituto para la Diversificación y Ahorro de la Energía C/ Madera, 8 E - 28004 - MADRID www.idae.es

13. ANEXO

Fundamentally Different. And Better.

The SunPower Maxeon® Solar Cell

- Enables highest efficiency panels available ²
- Unmatched reliability ³
- Patented solid metal foundation prevents breakage and corrosion

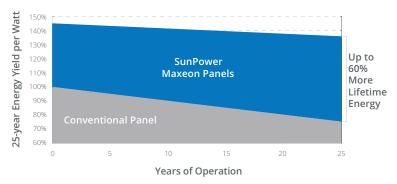
As Sustainable As Its Energy

- Ranked #1 in Silicon Valley Toxics
 Coalition Solar Scorecard ⁴
- First solar panels to achieve Cradle to Cradle Certified™ Silver recognition ⁵, pending
- Contributes to more LEED categories than conventional panels ⁶

MAXEON® 3 | 400 W

Residential Solar Panel

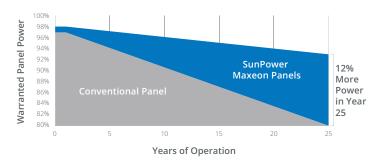
SunPower Maxeon panels combine the top efficiency, durability and warranty available in the market today, resulting in more long-term energy and savings. ^{1,2}


Maximum Power. Minimalist Design.

Industry-leading efficiency means more power and savings per available space. With fewer panels required, less is truly more.

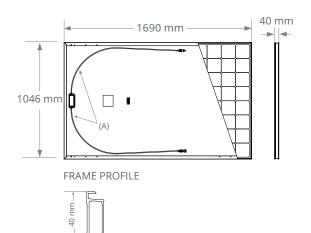
Highest Lifetime Energy and Savings

Designed to deliver 60% more energy in the same space over 25 years in real-world conditions like partial shade and high temperatures. 2



Better Reliability, Better Warranty

With more than 25 million panels deployed around the world, SunPower technology is proven to last. That's why we stand behind our panel with an exceptional 25-year Combined Power and Product Warranty, including the highest Power Warranty in solar.



MAXEON® 3 | 400 W Residential Solar Panel

Electrical Data							
SP	R-MAX3-400	SPR-MAX3-390	SPR-MAX3-370				
Nominal Power (Pnom) ⁷	400 W	390 W	370 W				
Power Tolerance	+5/0%	+5/0%	+5/0%				
Panel Efficiency	22.6%	22.1%	20.9%				
Rated Voltage (Vmpp)	65.8 V	64.5 V	61.8 V				
Rated Current (Impp)	6.08 A	6.05 A	5.99 A				
Open-Circuit Voltage (Voc)	75.6 V	75.3 V	74.7 V				
Short-Circuit Current (Isc)	6.58 A	6.55 A	6.52 A				
Max. System Voltage		1000 V IEC					
Maximum Series Fuse		15 A					
Power Temp Coef.		-0.29% / ° C					
Voltage Temp Coef.		−176.8 mV / ° C					
Current Temp Coef.		2.9 mA / ° C					

Operating Cond	dition And Mechanical Data
Temperature	−40° C to +85° C
Impact Resistance	25 mm diameter hail at 23 m/s
Solar Cells	104 Monocrystalline Maxeon Gen III
Tempered Glass	High-transmission tempered anti- reflective
Junction Box	IP-65, Stäubli (MC4), 3 bypass diodes
Weight	19 kg
Design Load	Wind: 2660 Pa, 274 kg/m² front & back Snow: 4000 Pa, 408 kg/m² front
Max. Load ¹⁰	Wind: 4000 Pa, 408 kg/m² front & back Snow: 6000 Pa, 611 kg/m² front
Frame	Class 1 black anodized (highest AAMA rating)

	Tests And Certifications
Standard Tests ⁸	IEC 61215, IEC 61730 Class 1 fire rated per UNI 9177
Quality Management Certs	ISO 9001:2015, ISO 14001:2015
EHS Compliance	RoHS (Pending), OHSAS 18001:2007, lead free, REACH SVHC-163 (Pending)
Sustainability	Cradle to Cradle Certified™ (Pending)
Ammonia Test	IEC 62716
Desert Test	10.1109/PVSC.2013.6744437
Salt Spray Test	IEC 61701 (maximum severity)
PID Test	1000 V: IEC 62804, PVEL 600 hr duration
Available Listings	TUV ⁹

A. Cable Length: 1200 mm +/-10 mm B. LONG SIDE: 32 mm SHORT SIDE: 24 mm

- 1 SunPower 400 W, 22.6% efficient, compared to a Conventional Panel on same-sized arrays (260 W, 16% efficient, approx. 1.6 m²), 7% more energy per watt (based on PVSyst pan files for avg EU climate), 0.5%/yr slower degradation rate (Jordan, et. al. "Robust PV Degradation Methodology and Application." PVSC 2018).
- 2 DNV "SunPower Shading Study," 2013. Compared to a conventional front contact panel.
- 3 #1 rank in "Fraunhofer PV Durability Initiative for Solar Modules: Part 3". PVTech Power Magazine, 2015.
- 4 SunPower is rated #1 on Silicon Valley Toxics Coalition's Solar Scorecard.
- 5 Cradle to Cradle Certified is a multi-attribute certification program that assesses products and materials for safety to human and environmental health, design for future use cycles, and sustainable manufacturing.
- 6 Maxeon2 and Maxeon3 panels additionally contribute to LEED Materials and Resources credit categories.
- 7 Standard Test Conditions (1000 W/m² irradiance, AM 1.5, 25° C). NREL calibration Standard: SOMS current, LACCS FF and Voltage.
- 8 Class C fire rating per IEC 61730.
- 9 Also certified under names SPR-XYY-XXX.
- 10 Calculated with a 1.5 Safety Factor.

Designed in USA Made in Philippines (Cells) Modules Assembled in Mexico

Visit www.sunpowercorp.co.uk for more information.

Specifications included in this datasheet are subject to change without notice.

©2019 SunPower Corporation. All rights reserved. SUNPOWER, the SUNPOWER logo and MAXEON are trademarks or registered trademarks of SunPower Corporation. Cradle to Cradle Certified $^{\text{TM}}$ is a certification mark licensed by the Cradle to Cradle Products Innovation Institute.

Please read the safety and installation guide.

UK: 0 8082818718 | Other EU: 00 800 855 81111

532418 REV A / A4_EN

Inversores Centralizados

12-250 kW

A DESTACAR

- Con transformador aislante de baja frecuencia Energía nominal plena hasta 45°C
- Pantalla táctil LCD color con funciones de registro de datos
- Apta para operar con módulos que exigen la puesta a tierra de un polo

Los inversores Sirio Centralizados permiten la conexión directa a la red de distribución de baja tensión garantizando su separación galvánica del equipo de corriente continua. El dimensionado amplio del transformador y de los demás componentes del inversor permiten una alta eficiencia de conversión y garantizan un rendimiento que se sitúa entre los más altos de los aparatos de la misma categoría.

Máxima energía y seguridad

El algoritmo de búsqueda del punto de máxima potencia (MPPT), implementado en el sistema de control de los inversores Sirio Centralizados, permite aprovechar completamente, en cualquier condición de radiación y de temperatura, el generador fotovoltaico haciendo que el equipo trabaje constantemente con un rendimiento máximo.

En el caso de ausencia de sol, el convertidor se sitúa inmediatamente en stand-by, retomando el funcionamiento normal cuando vuelve el sol; esta característica permite reducir al mínimo el autoconsumo y maximizar la producción

de energía. Todas estas características, junto con una cuidadosa selección de los componentes y de la producción con calidad garantizada, de conformidad con los estándares ISO 9001, hacen que los inversores trifásicos con transformador de la serie Sirio sean extraordinariamente eficientes y fiables, garantizando una producción de energía al máximo nivel.

Reductor de Potencia Térmica

El reductor de potencia en función de la temperatura tiende a proteger a los semi conductores del inversor del recalentamiento en el caso que se encuentren en ambientes con una temperatura por encima de la específica de la instalación o a causa de problemas de la ventilación forzada, todo ello sin bloquear al inversor. Los sistemas Centralizados Sirio garantizan un suministro de potencia nominal hasta 45°C ambiente, una vez superado este límite el inversor disminuye gradualmente la potencia emitida en la red a modo de mantener dentro del límite máximo la temperatura de los disipadores de calor. Una vez que se ha entrado en el intervalo térmico de funcionamiento normal, el inversor restablece un punto de trabajo perfecto garantizando nuevamente la transferencia máxima de potencia.

Facilidad de instalación y mantenimiento

El volumen es muy reducido. En efecto, no es necesario prever espacios laterales o posteriores en el aparato dado que se puede acceder completamente de forma frontal a la electrónica y los complementos. El funcionamiento, completamente automático, garantiza una considerable sencillez de uso y de instalación, así como una puesta en funcionamiento fácil que permite evitar errores de instalación y configuración que podrían provocar averías o reducción de la productividad del equipo.

Soluciones personalizadas

A petición, AROS puede suministrar los inversores de la serie Sirio Centralizados personalizados en función de las necesidades del cliente. Algunas de las opciones disponibles son el control integrado de aislamiento y el kit para conectar el polo a tierra (positivo o negativo) necesario con ciertos tipos de módulos fotovoltaicos.

Interfaz usuario

Los inversores Sirio Centralizados cuentan de serie con una nueva interfaz usuario compuesta por un panel LCD táctil a colores en un cómodo formato de 4.3". Los millones de colores y la cantidad de funciones posibles sirven para enriquecer la experiencia del usuario con el inversor solar. Iconos intuitivos y breves mensajes en el idioma configurado guían al usuario a través de la simple estructura de los menús permitiendo acceder a todas las funciones de consulta, configuración y mandos del inversor. En particular es posible visualizar el gráfico cotidiano de producción de energía y el valor instantáneo de potencia producida, verificar las temperaturas de los módulos y las medidas de las sondas analógicas instaladas.

La sección dedicada al archivo permite la visualización y el análisis de los datos históricos cruzando medidas a gusto (no más de dos dimensiones a la vez). Desplazando el dedo sobre la pantalla es posible visualizar los valores registrados durante los días precedentes, incluso con intervalos mensuales o anuales, los gráficos visualizados pueden ser enviados a través de correo electrónico. El almacenamiento interno permite archivar hasta 5 años de datos, y en caso necesario, también es posible eliminar los años más antiguos utilizando su correspondiente función. Los datos históricos generados por el inversor y los de la tarieta del sistema pueden guardarse dentro de una memoria USB.

El dispositivo también permite cambiar la relación €/KWh, regular el nivel de luminosidad de la pantalla, cambiar la fecha y hora del sistema, asignar una identificación y una etiqueta del sistema de pertenencia, configurar y personalizar hasta 4 sondas analógicas externas. Además permite enviar correos electrónicos (de los que es posible colocar la periocidad) con datos y gráficos de producción, y en caso de anomalías, alarmas de problemas o de ausencia de encendido.

Por último, en la sección Info a través de adecuados contadores, es posible consultar la energía total producida, las horas totales de funcionamiento, el retorno económico del sistema y otros parámetros técnicos comprendida la cantidad de memoria utilizada por los datos del historial. La interfaz gráfica se encuentra disponible en Italiano, Inglés, Francés, Español y Alemán.

Acceso vía red

Si se encuentra presente una conexión a la red local, el dispositivo pantalla táctil ofrece muchas posibilidades de comunicación. El inversor es compatible sea con el Protocoloo propietario PVSER sobre red que con MODBUS/TCO, ofreciendo de este modo una fácil conexión con cualquier BMS de gestión o de análisis de datos utilizados por la red **Ethernet**

El software de la pantalla puede ser actualizado fácilmente y en tiempo muy breve mediante versión gratuita; además, con un software freeware (VNC), es posible visualizar desde remoto sobre el ordenador dispositivo móvil la pantalla del inversor e interactuar con el mismo.

Pantalla

Pantalla táctil LCD color

Interfaz de comunicación

Ethernet, USB, 2 x RS232, 2 entradas para control remoto (desconexión y EPO del invertidor) y 3 relés de señales de estado operativo. RS485 (versión de ranura)

Protocolo

ModBUS y ModBUS/TCP

Determinal makrima corriente alterna 12 kW (cose=1) 15 kW (cose=1) 25 kW (cose=1) 33 kW (cose=1) 330 kW (cose=1)	MODELOO	SIRIO K12	SIRIO K15	SIRIO K18	SIRIO K25	SIRIO K33		
Person control of missions Render to control of the mission of Render to control of R	Potencia nominal corriente alterna	12 KVA	15 KVA	18 KVA	25 KVA	33 KVA		
Repsido continuis missima Repsido continuis missima Repsido continuis missima Repsido continuis de elercicio Repsido continuis de entrada missima Repsido complete de entrada Repsido complete Rep	Potencia máxima corriente alterna	12 KW (cosφ=1)	15 KW (cosφ=1)	18 KW (cosφ=1)	25 KW (cosφ=1)	33 KW (cosφ=1)		
Range complete de MPPT	ENTRADA							
### A Contributed on a La	Tensión continúa máxima en circuito abierto			800 Vdc				
Separación galvánica Separación de calor Separación galvánica Separación separación Separación	Rango completo de MPPT			330 ÷ 700 Vdc				
Tension de umbral para el suministro lacia la red 196	Intervalo de ejercicio			330 ÷ 700 Vdc				
National and Ripple	Corriente de entrada máxima	36 Acc	54 Acc	63 Acc	80 Acc	105 Acc		
Número de MPPT 1 1 Conectores CC SABLIDA Term. de tomillo SABLIDA Term. de tomillo Term. de tomill				390 Vdc				
Nomero de MPPT Conectores CC SALIDA SALIDA Term de tornillo SALIDA Termsón de ejerciclo Intervalo operativo Intervalo perativo Intervalo perativo Intervalo de frecuencia Intervalo de Intervalo de Intervalo de Intervalo Intervalo de Intervalo Intervalo de In	Tensión de Ripple			<1%				
Term. de tornillo	Número de entradas			1				
Tension de ejercicio 400 Vca 100 Vca 1	Número de MPPT			1				
A00 Vca A00	Conectores CC			Term. de tornillo				
ntervalo operativo	SALIDA							
### According and a máxima potencia intervalo de frecuencia configurable intervalo de frecuencia intervalo in	Tensión de ejercicio			400 Vca				
Intervalo de frecuencia 17,3 + 51,5 Hz ⁽¹⁾	ntervalo operativo			340 ÷ 460 Vca ⁽¹⁾				
A	ntervalo para la máxima potencia			340 ÷ 460 Vca				
17,3 Aca 21,7 Aca 26 Aca 36 Aca 48 Aca 20,7 Aca 26 Aca 36 Aca 48 Aca 22,4 Aca 28,1 Aca 33 Aca 46 Aca 60 Aca 20,1 Aca 22,4 Aca 28,1 Aca 33 Aca 46 Aca 60 Aca 20,1 Aca	ntervalo de frecuencia			47,5 ÷ 51,5 Hz ⁽¹⁾				
22,4 Aca 28,1 Aca 33 Aca 46 Aca 60 Aca	ntervalo de frecuencia configurable			47 ÷ 53 Hz				
Contribución a la corriente de cortocircuito 34 Aca 42 Aca 50 Aca 68 Aca 90 Aca 20istorsión armónica (THDi) 34 Aca 42 Aca 50 Aca 68 Aca 90 Aca 20istorsión armónica (THDi) 34 Aca 60.9 ind. a 0.9 cap.® (1) Transformador BF Conectores CA Term. de tornillo SISTEMA Rendimiento máximo 95,8% Sendimiento europeo 94,8% 94,9% Consumo de noche Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Si Sispiación de calor Ventilador controlado Temperatura de almacenamiento 420°C + 70°C Humedad 5 ÷ 95% sin condensación STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Enguridad Directivas Directivas Directivas Directivas 2006/95/EC, EMC Directiva: 2004/108/EC	Corriente nominal	17,3 Aca	21,7 Aca	26 Aca	36 Aca	48 Aca		
de cortocircuito 34 ACB 42 ACB 50 ACB 08 ACB 90 ACB 20 ACB	Corriente máxima	22,4 Aca	28,1 Aca	33 Aca	46 Aca	60 Aca		
Actor de potencia de 0,9 ind. a 0,9 cap. (1) Sistema Conectores CA Term. de tornillo Sistema Rendimiento máximo Rendimiento máximo Rendimiento europeo 94,8% 94,9% Consumo stand-by Consumo de noche Protecciones internas Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Femperatura de servicio -20°C + 45°C (sin reducción de potencia) Femperatura de almacenamiento -20°C + 70°C -40medad -5 + 95% sin condensación STANDARDS ENGLO ENGLOGO-6-3, ENG1000-6-2, ENG1000-3-11, ENG1000-3-12 Seguridad Directivas Directivas Directivas de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC		34 Aca	42 Aca	50 Aca	68 Aca	90 Aca		
Separación galvánica Conectores CA Term. de tornillo SISTEMA Rendimiento máximo Rendimiento europeo Portecciones internas Portecciones internas Portección funcionamiento en isla Disipación de calor Femperatura de servicio Femperatura de almacenamiento Femperatura de almacenamiento Femperatura de servicio Femperatura de Si Si Describación de Calor Femperatura de Servicio Femperatura de S	Distorsión armónica (THDi)			<3%				
Conectores CA SISTEMA Rendimiento máximo Sendimiento europeo 94,8% 94,9% Consumo stand-by Consumo de noche Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Si Detección dispersión hacia tierra Disipación de calor Femperatura de servicio Femperatura de almacenamiento Humedad 5 + 95% sin condensación Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Eseguridad EN62109-1, EN62109-2 Directivas Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	actor de potencia		d	le 0,9 ind. a 0,9 cap. ^{p.(1)}				
Selection A Sendimiento máximo 95,8% Rendimiento europeo 94,8% 94,9% Consumo stand-by 32W Consumo de noche 32W Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio -20°C ÷ 45°C (sin reducción de potencia) Temperatura de almacenamiento Humedad 5 ÷ 95% sin condensación Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Separación galvánica			Transformador BF				
Rendimiento máximo Rendimiento europeo 94,8% 94,9% Consumo stand-by Consumo de noche Protecciones internas Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Remperatura de servicio Femperatura de almacenamiento Femperatura de almacenamiento Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg	Conectores CA			Term. de tornillo				
Rendimiento europeo 94,8% 94,9% Consumo stand-by 432W Consumo de noche 432W Protecciones internas Protección funcionamiento en isla Detección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Remperatura de servicio Remperatura de almacenamiento Remperatura de almacenamiento Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Eseguridad EN62109-1, EN62109-2 Directivas Directivas Directivas Directivas de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	SISTEMA							
Consumo stand-by Consumo de noche Consumo de n	Rendimiento máximo			95,8%				
Consumo de noche Consumo de n	Rendimiento europeo		94,8%		94,	9%		
Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio Temperatura de almacenamiento Temperatura de servicio Temperatura de	Consumo stand-by			<32W				
Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Femperatura de servicio Femperatura de almacenamiento Femperatura de almacenamiento Temperatura de servicio T	Consumo de noche			<32W				
Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio Temperatura de almacenamiento Humedad Deso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Enguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Protecciones internas		Magnetotérmi	co lado CA - Seccionado	or en lado CC			
Disipación de calor Temperatura de servicio Temperatura de almacenamiento Humedad Teso Teso Teso Tendos Tendos Teso	Protección funcionamiento en isla			Si				
Temperatura de servicio Temperatura de almacenamiento Temperatura de servicio Temperatura de potencia) Temperatura de potencia de potencia) Temperatura de potencia de potenc	Detección dispersión hacia tierra			Si				
Temperatura de almacenamiento	Disipación de calor			Ventilador controlado				
Humedad 5 ÷ 95% sin condensación Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Geguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Temperatura de servicio		-20°C ÷ 4.	5°C (sin reducción de p	otencia)			
Peso 310 Kg 320 Kg 340 Kg 350 Kg 380 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Temperatura de almacenamiento			-20°C ÷ 70°C				
STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Humedad							
STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Peso	310 Kg 320 Kg 340 Kg 350 Kg 380 Kg						
Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	STANDARDS		-					
Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	EMC	EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12						
Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	 Seguridad							
	Supervisión de la red							

NOTA: Para los dibujos mecánicos y gráficos de rendimiento, consulte la pag. 63

⁽¹⁾ Estos valores pueden variar de acuerdo con las regulaciones locales.

MODELO	SIRIO K40	SIRIO K64	SIRIO K80	SIRIO K100	SIRIO K200		
Potencia nominal corriente alterna	40 KVA	64 KVA	80 KVA	100 KVA	200 KVA		
Potencia máxima corriente alterna	40 KW (cosφ=1)	64 KW (cosφ=1)	80 KW (cosφ=1)	100 KW (cosφ=1)	200 KW (cosφ=1)		
ENTRADA)				
Tensión continúa máxima en circuito abierto			800 Vdc				
Rango completo de MPPT			330 ÷ 700 Vdc				
ntervalo de ejercicio			330 ÷ 700 Vdc				
Corriente de entrada máxima	130 Acc	205 Acc	260 Acc	320 Acc	650 Acc		
ensión de umbral para el suministro nacia la red			390 Vdc				
Tensión de Ripple			<1%				
Número de entradas			1				
Número de MPPT			1				
Conectores CC	Term. de tornillo		Bu	sbar			
SALIDA							
Tensión de ejercicio			400 Vca				
ntervalo operativo			340 ÷ 460 Vca ⁽¹⁾				
ntervalo para la máxima potencia			340 ÷ 460 Vca				
ntervalo de frecuencia			47,5 ÷ 51,5 Hz ⁽¹⁾				
ntervalo de frecuencia configurable			47 ÷ 53 Hz				
Corriente nominal	58 Aca	92 Aca	115 Aca	145 Aca	289 Aca		
Corriente máxima	73 Aca	117 Aca	146 Aca	182 Aca	364 Aca		
Contributo alla corrente di cortocircuito	110 Aca	175 Aca	219 Aca	274 Aca	546 Aca		
Distorsión armónica (THDi)			<3%				
actor de potencia			de 0,9 ind. a 0,9 cap. ^{p. (3}	L)			
Separación galvánica			Transformador BF				
Conectores CA	Term. de tornillo		Bu	sbar			
SISTEMA							
Rendimiento máximo	95,8%		96,1%		96,2%		
Rendimiento europeo		95%		95,1%	95,2%		
Consumo stand-by			<32W				
Consumo de noche			<32W				
Protecciones internas		Magnetotérm	ico lado CA - Seccionad	dor en lado CC			
Protección funcionamiento en isla			Si				
Detección dispersión hacia tierra			Si				
Disipación de calor			Ventilador controlado				
Temperatura de servicio		-20°C ÷	45°C (sin reducción de	potencia)			
emperatura de almacenamiento			-20°C ÷ 70°C				
	5 ÷ 95% sin condensación						
Peso	420 Kg	600 Kg	650 Kg	720 Kg	1580 Kg		
STANDARDS			!				
EMC	EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12						
Seguridad	EN62109-1, EN62109-2						
Directivas	Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC						
Supervisión de la red			, G59/2, Real Decreto 4		CEI 0-21, CEI 0-16 A70, Real Decreto 413/2014, PO12.3		

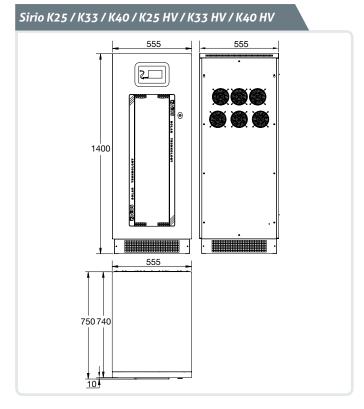
NOTA: Para los dibujos mecánicos y gráficos de rendimiento, consulte la pag. 63

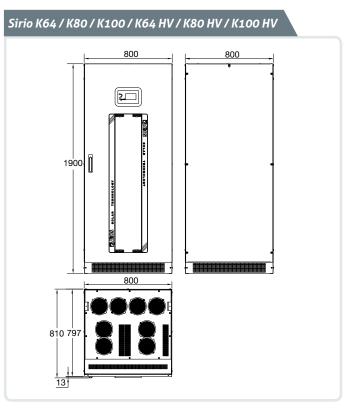
⁽¹⁾ Estos valores pueden variar de acuerdo con las regulaciones locales.

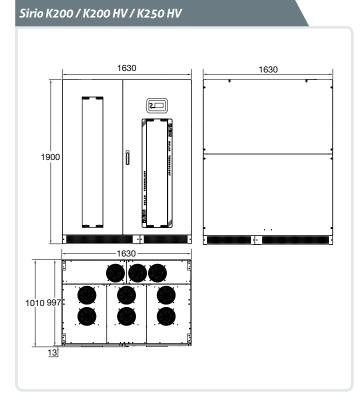
### Detends makina corriente alterna 25 KW (cosq=1) 33 KW (cosq=1) 40 KW (cosq=1) 80 KW (cosq=1)	MODELO	SIRIO K25 HV	SIRIO K33 HV	SIRIO K40 HV	SIRIO K64 HV	SIRIO K80 HV	
Entranzia de ejercicio 157 Acc 196 Acc	Potencia nominal corriente alterna	25 KVA	33 KVA	40 KVA	64 KVA	80 KVA	
Resido Continuía máxima Rago Completo de MPPT	Potencia máxima corriente alterna	25 KW (cosφ=1)	33 KW (cosφ=1)	40 KW (cosφ=1)	64 KW (cosφ=1)	80 KW (cosφ=1)	
Range complete de MPPT	ENTRADA			·		`	
Intervalo de ejercicio 450 + 760 Vist 196 Acc 157 Acc 157 Acc 196 Acc 157 Acc 157 Acc 196 Acc 157 Acc 15	Tensión continúa máxima en circuito abierto			880 Vdc			
Separación galvánica Separación	Rango completo de MPPT			450 ÷ 760 Vdc			
Ternsion de umbral para el suministro hacia la red Expipie \$10	Intervalo de ejercicio			450 ÷ 760 Vdc			
Name of de not place Salva Vel	Corriente de entrada máxima	59 Acc	79 Acc	98 Acc	157 Acc	196 Acc	
Número de MPPT 1 1 Canectores CC Term. de tornillo Busbar SALIDA Termsón de ejercicio 400 Vca Intervalo de operación 340 + 460 Vca Intervalo de operación 340 + 460 Vca Intervalo de operación 340 + 460 Vca Intervalo de frecuencia Intervalo de frecuencia configurable Corriente nominal 360 Aca 480 Aca 92 Aca 115 Aca Corriente máxima 460 Aca 60 Aca 73 Aca 117 Aca 146 Aca Corriente máxima 460 Aca 60 Aca 73 Aca 117 Aca 146 Aca Contribución a la corriente de corrocircuito 68 Aca 90 Aca 110 Aca 175 Aca 219 Aca Distorsión armónica (THDI) 39% Factor de potencia 60 Aca 73 Aca 117 Aca 146 Aca Conectores CA 170 Aca 110 Aca 175 Aca 219 Aca Distorsión armónica (THDI) 83% Rendimiento máximo 96.496 96.396 96.296 96.196 Rendimiento máximo 96.496 96.396 96.296 96.196 Rendimiento europeo 95.396 94.996 95% Consumo stand-by 532W Consumo de noche 532W Proteccione sinternas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en Isla 51 Distipación de calor Ventilador controlado Temperatura de aemscenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C (sin reducción de potencia) Temperatura de almacenamiento 1-20°C + 45°C				540 Vdc			
Numero de MPPT	Tensión de Ripple			<1%			
Term. de tornillo	Número de entradas			1			
Tension de ejercicio 400 Vca 340 + 460 Vca 100	Número de MPPT			1			
Tensión de ejercicio A00 Vca Intervalo de operación 340 + 460 Vca Intervalo de operación 340 + 460 Vca Intervalo de operación 340 + 460 Vca Intervalo de frecuencia 340 + 460 Vca Intervalo de frecuencia 340 + 460 Vca Intervalo de frecuencia A75 + 51,5 Hz Intervalo de frecuencia A75 + 53 Hz Intervalo de frecuencia A75 + 53 Hz Intervalo de frecuencia A6 Aca A8 Aca S8 Aca 92 Aca 115 Aca 146 Aca Intervalo de cortociculo A6 Aca A8 A	Conectores CC		Term. de tornillo		Bus	bar	
Intervalo de operación Intervalo para la máxima potencia Intervalo para la máxima potencia Intervalo de frecuencia configurable Corriente nominal Intervalo de frecuencia configurable Corriente nominal Intervalo de frecuencia configurable Corriente máxima Intervalo de frecuencia configurable Corriente nominal Intervalo de frecuencia configurable Corriente nominal Intervalo de frecuencia Contribución a la corriente Intervalo de Contribución de Contribuci	SALIDA						
Intervalo para la máxima potencia 340 + 460 Vca	Tensión de ejercicio			400 Vca			
Intervalo de frecuencia	Intervalo de operación			340 ÷ 460 Vca (1)			
A	Intervalo para la máxima potencia			340 ÷ 460 Vca			
Corriente nominal 36 Aca 48 Aca 58 Aca 92 Aca 115 Aca 117 Aca 146 Aca 60 Aca 73 Aca 117 Aca 146 Aca 117 Aca 117 Aca 118 Aca	ntervalo de frecuencia			47,5 ÷ 51,5 Hz ⁽¹⁾			
A6 Aca 60 Aca 73 Aca 117 Aca 146 Aca 146 Aca 110 Aca 175 Aca 117 Aca 146 Aca 110 Aca 175 Aca 119 Aca 129 Aca 110 Aca 175 Aca 1219 A	ntervalo de frecuencia configurable			47 ÷ 53 Hz			
Contribución a la corriente de cortocircuito 68 Aca 90 Aca 110 Aca 175 Aca 219	Corriente nominal	36 Aca	48 Aca	58 Aca	92 Aca	115 Aca	
de cortocircuito 68 ACB 90 ACB 110 ACB 175 ACB 219 ACB Distorsión armónica (THDi) 3 3% Separación galvánica Genetores CA Term. de tornillo Busbar SISTEMA Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by 32W Consumo de noche 3232W Consumo de noche 35i Detección funcionamiento en isla Dispación de calor Ventilador controlado Femperatura de almacenamiento 1-20°C x 45°C (sin reducción de potencia) Femperatura de almacenamiento 1-20°C x 70°C Humedad 5 x 95% sin condensación STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Eiguridad Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Corriente máxima	46 Aca	60 Aca	73 Aca	117 Aca	146 Aca	
Actor de potencia de 0,9 ind. a 0,9 cap. (1) Separación galvánica Conectores CA Term. de tornillo Busbar SISTEMA Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by Consumo de noche Acconsumo de noche Protecciones internas Detección funcionamiento en isla Detección dispersión hacia tierra Si Disipación de calor Femperatura de servicio Femperatura de servicio Femperatura de almacenamiento -20°C + 45°C (sin reducción de potencia) Femperatura de almacenamiento -20°C + 70°C -tumedad 5 ± 95% sin condensación STANDARDS EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad Directivas Directivas Directivas Directiva: 2004/108/EC		68 Aca	90 Aca	110 Aca	175 Aca	219 Aca	
Separación galvánica Conectores CA Term. de tornillo Busbar SISTEMA Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95,% Consumo stand-by Consumo de noche Protecciones internas Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Itemperatura de servicio Temperatura de almacenamiento Temperatura de almacenamiento Temperatura de almacenamiento Temperatura de Si Si Detección Si Si Detección dispersión hacia tierra Si Desipación de Calor Temperatura de Servicio Temperatura de Jamacenamiento Temperatura de Servicio Temperatura de Almacenamiento Temperatura de Almacenamie	Distorsión armónica (THDi)			<3%		,	
Term. de tornillo Busbar SISTEMA Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by 32W Consumo de noche 322W Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Disipación de calor Ventilador controlado Temperatura de servicio -20°C ÷ 45°C (sin reducción de potencia) Temperatura de almacenamiento -20°C ÷ 95% sin condensación Preso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Factor de potencia		C	de 0,9 ind. a 0,9 cap. ^{p.(1)}			
SISTEMA Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by 32W Consumo de noche 322W Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio -20°C ÷ 45°C (sin reducción de potencia) Temperatura de almacenamiento Humedad 5 ÷ 95% sin condensación Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Separación galvánica			Transformador BF			
Rendimiento máximo 96,4% 96,3% 96,2% 96,1% Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by 32W Consumo de noche 322W Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio -20°C ÷ 45°C (sin reducción de potencia) Temperatura de almacenamiento Humedad 5 ÷ 95% sin condensación Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Conectores CA		Term. de tornillo		Bus	bar	
Rendimiento europeo 95,3% 94,9% 95% Consumo stand-by < 32W Consumo de noche < 32W Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Temperatura de servicio Temperatura de almacenamiento Temperatura de almacenamiento Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directivas Directivas de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	SISTEMA						
Consumo stand-by Consumo de noche Si Consumo de noche Si Consumo de noche Consumo de noche Si Consumo de noche Consumo de noche Si Consumo de noche Si Consumo de noche Consumo de noche Si Consumo de noche Consumo de noche Si Consumo de noche Consumo de n	Rendimiento máximo	96,4%	96,3%	96,2%	96,	1%	
Consumo de noche Consumo de noche Consumo de n	Rendimiento europeo		95,3%		94,9%	95%	
Protecciones internas Magnetotérmico lado CA - Seccionador en lado CC Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Temperatura de servicio Temperatura de almacenamiento Humedad Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Consumo stand-by			<32W			
Protección funcionamiento en isla Detección dispersión hacia tierra Disipación de calor Temperatura de servicio Temperatura de almacenamiento Humedad Teso	Consumo de noche			<32W			
Detección dispersión hacia tierra Disipación de calor Ventilador controlado Temperatura de servicio Temperatura de almacenamiento Humedad Tesso Tesso	Protecciones internas		Magnetotérmi	co lado CA - Seccionado	or en lado CC		
Disipación de calor Temperatura de servicio Temperatura de almacenamiento Humedad Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Protección funcionamiento en isla			Si			
Temperatura de servicio Temperatura de almacenamiento Temperatura de almacenamiento Humedad Temperatura de almacenamiento Temperatura de servicio Temperatura de potencia) Temperatura de potencia T	Detección dispersión hacia tierra			Si			
Temperatura de almacenamiento -20°C ÷ 70°C Humedad 5 ÷ 95% sin condensación Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Disipación de calor			Ventilador controlado			
Humedad 5 ÷ 95% sin condensación Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Temperatura de servicio		-20°C ÷ 4	.5°C (sin reducción de p	otencia)		
Peso 350 Kg 380 Kg 420 Kg 600 Kg 650 Kg STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Temperatura de almacenamiento	<u> </u>					
STANDARDS EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Humedad	5 ÷ 95% sin condensación					
EMC EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12 Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Peso	 350 Kg	380 Kg	420 Kg	600 Kg	650 Kg	
Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	STANDARDS						
Seguridad EN62109-1, EN62109-2 Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	EMC	EN61000-6-3, EN61000-6-2, EN61000-3-11 FN61000-3-12					
Directivas Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC	Seguridad						
	_ 			-			
	Supervisión de la red)12.3	

NOTA: Para los dibujos mecánicos y gráficos de rendimiento, consulte la pag. 63

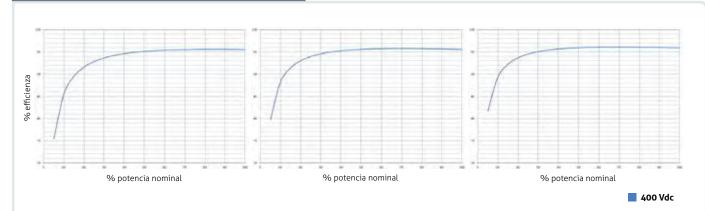
⁽¹⁾ Estos valores pueden variar de acuerdo con las regulaciones locales.

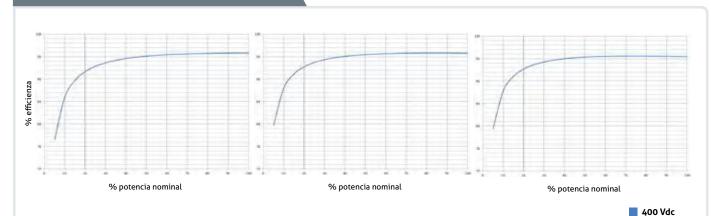

MODELO	SIRIO K100 HV	SIRIO K200 HV	SIRIO K250 HV			
Potencia nominal corriente alterna	100 KVA	200 KVA	250 KVA			
Potencia máxima corriente alterna	100 KW (cosφ=1)	200 KW (cosφ=1)	250 KW (cosφ=1)			
ENTRADA						
Tensión continúa máxima en circuito abierto		880 Vdc				
Rango completo de MPPT		450 ÷ 760 Vdc				
Intervalo de ejercicio		450 ÷ 760 Vdc				
Corriente de entrada máxima	245 Acc	500 Acc	590 Acc			
Tensión de umbral para el suministro hacia la red		540 Vdc				
Tensión de Ripple		<1%				
Número de entradas		1				
Número de MPPT		1				
Conectores CC		Busbar				
SALIDA						
Tensión de ejercicio		400 Vca				
ntervalo de operación		340 ÷ 460 Vca (1)				
ntervalo para la máxima potencia		340 ÷ 460 Vca				
ntervalo de frecuencia		47,5 ÷ 51,5 Hz ⁽¹⁾				
ntervalo de frecuencia configurable		47 ÷ 53 Hz				
Corriente nominal	145 Aca	289 Aca	361 Aca			
Corriente máxima	182 Aca	364 Aca	420 Aca			
Contribución a la corriente de cortocircuito	274 Aca	546 Aca	630 Aca			
Distorsión armónica (THDi)		<3%				
actor de potencia		de 0,9 ind. a 0,9 cap. ^{p. (1)}				
Separación galvánica		Transformador BF				
Conectores CA		Busbar				
SISTEMA						
Rendimiento máximo	96,1%	96,3	%			
Rendimiento europeo	95,1%	95,2%	95,3%			
Consumo stand-by		<32W				
Consumo de noche		<32W				
Protecciones internas	Magneto	otérmico lado CA - Seccionador en I	ado CC			
Protección funcionamiento en isla		Si				
Detección dispersión hacia tierra		Si				
Disipación de calor		Ventilador controlado				
Temperatura de servicio	-20	°C ÷ 45°C (sin reducción de potenc	ia)			
Temperatura de almacenamiento		-20°C ÷ 70°C				
Humedad	5 ÷ 95% sin condensación					
Peso	720 Kg 1580 Kg 1630 Kg					
STANDARDS						
EMC	EN61000-6-3, EN61000-6-2, EN61000-3-11, EN61000-3-12					
Seguridad	EN62109-1, EN62109-2					
Directivas	Directiva de baja tensión: 2006/95/EC, EMC Directiva: 2004/108/EC					
Supervisión de la red	ref. SIRIO K80 HV	CEI 0-16, A70, Real Decreto 413/	2014, PO12.3			


NOTA: Para los dibujos mecánicos y gráficos de rendimiento, consulte la pag. 63


⁽¹⁾ Estos valores pueden variar de acuerdo con las regulaciones locales.

INVERSORES CENTRALIZADOS

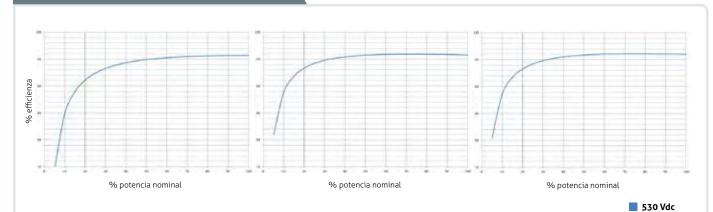

Sirio K12 / K15 / K18 555 1400 . 750 740


Sirio K12 / K15 / K18

CARACTERÍSTICAS

Color: RAL 7035 Nivel de protección: IP20 Nivel sonoro: <66dBA

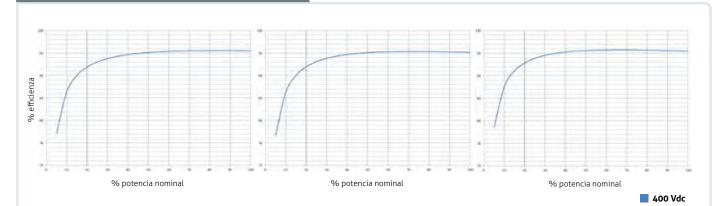
Sirio K25 / K33 / K40



CARACTERÍSTICAS

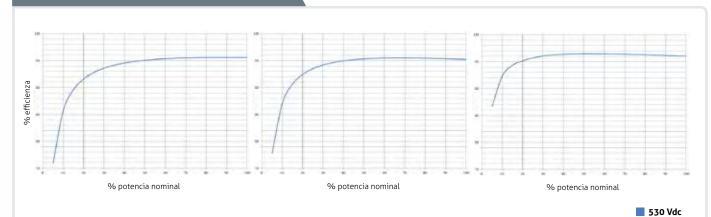
Color: RAL 7035

Nivel de protección: IP20 Nivel sonoro: <66dBA


Sirio K25 HV / K33 HV / K40 HV

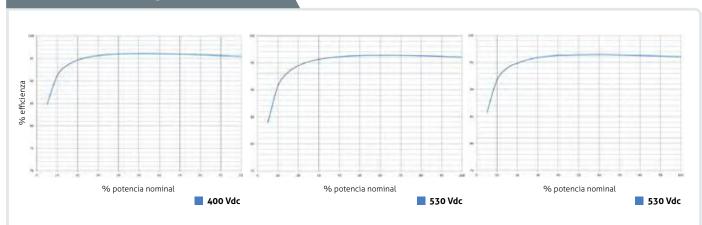
CARACTERÍSTICAS

Color: RAL 7035 Nivel de protección: IP20 Nivel sonoro: <66dBA


Sirio K64 / K80 / K100

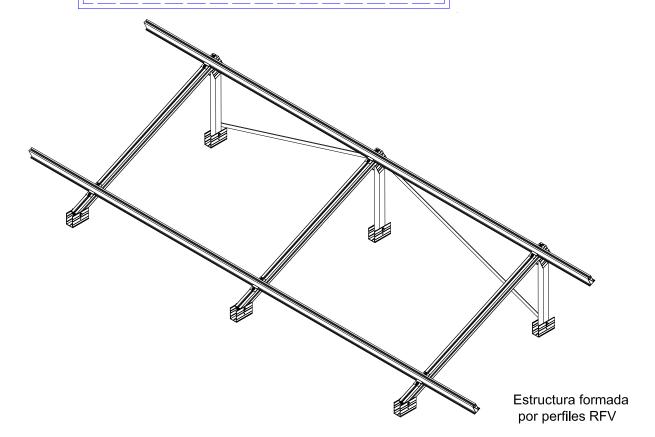
CARACTERÍSTICAS

Color: RAL 7035 Nivel de protección: IP20 Nivel sonoro: <68dBA


Sirio K64 HV / K80 HV / K100 HV

CARACTERÍSTICAS

Color: RAL 7035 Nivel de protección: IP20 Nivel sonoro: <68dBA


Sirio K200 / K200 HV / K250 HV

CARACTERÍSTICAS

Color: RAL 7035 Nivel de protección: IP20 Nivel sonoro: <72dBA

PLAZO DE ENTREGA INMEDIATO

Perfiles completamente mecanizados, embalados y listos para su montaje. Triángulo premontado.

Presor central

CARACTERÍSTICAS DEL PRESOR:

- Válido para módulos de 33 hasta 50 mm. de espesor.
- Fácil montaje.

Presor lateral

Válido para:

- Cubierta plana.
- Suelo.

Disponibilidad de tuercas antirrobo. Opción de aluminio acabado en crudo y anodizado.

Material 100% reciclable.

Cómoda instalación.

Garantía: Hasta 25 años*

*Ver condiciones especiales de garantía.

Cargas y Carasterísticas técnicas:

Peso propio paneles

Periodo retorno

121 N/m²

No está prevista ni para mantenimiento Sobrecarga de uso España 29 m/s Eurocódigo 1 Viento

Portugal 27 m/s Eurocódigo 1

10 años

Altura máxima España 5 m. / Portugal 8 m.

III. Áreas con recubrimiento regular Categoría del terreno de vegetación o edificios u obstáculos aislados con separación máxima de 20

veces la altura del obstáculo (por ejemplo, pueblos, terreno suburbano,

bosques)

Válido para España y Portugal para zona

200 N/m²

Carga de nieve

MATERIALES

Perfilería de aluminio EN AW 6005A T6.

Tornillería

Tornillería acero inoxidable A2-70

Cláusulas:

- (1) El montador de una instalación fotovoltaica debe garantizar antes del montaje que la cubierta soporta las cargas transmitidas, para su correcta instalación.
- Se deberán respetar todas las recomendaciones indicadas en los planos de montaje.
- Se debe comprobar que los puntos de anclaje para los módulos son compatibles con las especificaciones del
- (4) La cimentación, dependiendo de la disponibilidad y variabilidad del terrreno, está sujeta a cambios bajo supervisión de técnico competente.
- Distribuir los módulos para que su colocación sea simétrica a lo largo del soporte y dejando los sobrantes en los extremos.
- (6) Se deberá seguir el plan de mantenimiento que proporciona Sunfer.
- Documentos relacionados:
 - Plano de montaje.
 - Manual de montaje.
 - Reacciones y anclajes.
 - Certificado de garantía.
- (8) Nos reservamos el derecho a realizar modificaciones en el producto en cualquier momento sin aviso previo si desde nuestro punto de vista son necesarias para la mejora de la calidad. Las ilustraciones pueden ser sólo ejemplos y, por tanto, la imagen que aparece puede diferir del producto suministrado.

El presente plano es propiedad de Sunfer Estructuras S.L. queda terminantemente prohibida la cesión, reproducción total o parcial del mismo sin la autorización previa.

AFUMEX CLASS 1000 V (AS)

RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

CARACTERÍSTICAS Y ENSAYOS

IEC 60332-1-2

NO PROPAGACIÓN DEL INCENDIO EN 60332-3-24 IEC 60332-3-24

LIBRE DE HALÓGENOS EN 60754-2

BAJA OPACIDAD DE HUMOS IEC 61034-2

NULA EMISIÓN DE GASES CORROSIVOS IEC 60754-2 NFC 20453

BAJA EMISIÓN DE CALOR

REDUCIDO INFLAMADAS

RESISTENCIA A LA ABSORCIÓN DEL AGUA RESISTENCIA

CABLE FLEXIBLE

RESISTENCIA A LOS RAYOS ULTRAVIOLETA

ALTA SEGURIDAD

Gracias a la capa especial antiadherente se puede retirar la cubierta fácil y rápidamente. Un importante ahorro de tiempo de instalación.

La ausencia de talco y aceites de silicona permite un ambiente de trabajo más límpio y con menos

- Temperatura de servicio: -40 °C, +90 °C. (Cable termoestable).
- Ensayo de tensión alterna durante 5 min: 3500 V

- Prestaciones frente al fuego en la Unión Europea:
 Clase de reacción al fuego (CPR): Cca-s1b,d1,a1.
 Requerimientos de fuego: EN 50575:2014 + A1:2016.
- Clasificación respecto al fuego: EN 13501-6.
- Aplicación de los resultados: CLC/TS 50576.
- Métodos de ensayo: EN 60332-1-2; EN 50399; EN 60754-2; EN 61034-2.

Normativa de fuego también aplicable a países

que no pertenecen a la Unión Europea:

- No propagación de la llama: EN 60332-1-2; IEC 60332-1-2
- No propagación del incendio: EN 50399; EN 60332-3-24; IEC 60332-3-24.
- Libre de halógenos: EN 60754-2; EN 60754-1; IEC 60754-2; IEC 60754-1.
- Reducida emisión de gases tóxicos: EN 60754-2; NFC 20454; DEF STAN 02-713.
- Baja emisión de humos: EN 50399.
- Baja opacidad de humos: EN 61034-2; IEC 61034-2.
- Nula emisión de gases corrosivos: EN 60754-2; IEC 60754-2; NFC 20453.
- Baja emisión de calor: EN 50399.
- Reducido desprendimiento de gotas/partículas inflamadas: EN 50399.

CONSTRUCCIÓN

CONDUCTOR

Metal: cobre electrolítico recocido.

Flexibilidad: flexible, clase 5, según UNE EN 60228.

Temperatura máxima en el conductor: 90 °C en servicio permanente, 250 °C en cortocircuito.

AISLAMIENTO

Material: mezcla de polietileno reticulado (XLPE), tipo DIX3 según

Colores: marrón, negro, gris, azul, amarillo/verde según UNE 21089-1.

ELEMENTO SEPARADOR

Capa especial antiadherente.

RELLENO

Material: mezcla LSOH libre de halógenos.

Material: mezcla especial libre de halógenos tipo AFUMEX UNE 21123-4. Color: verde.

APLICACIONES

- Cable de fácil pelado especialmente adecuado para instalaciones en locales de pública concurrencia: salas de espectáculos, centros comerciales, escuelas, hospitales, edificios de oficinas, pabellones deportivos, etc.
- · En centros informáticos, aeropuertos, naves industriales, parkings, túneles ferroviarios y de carreteras, locales de difícil ventilación y/o evacuación, etc.
- En toda instalación donde el riesgo de incendio no sea despreciable: instalaciones en montaje superficial, canalizaciones verticales en edificios o sobre bandejas, etc., o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos en edificios o sobre bandejas, etc.,
- o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos de construcción.
- Líneas generales de alimentación (ITC-BT 14). Derivaciones individuales ITC-BT 15). •Instalaciones interiores o receptoras (ITC-BT 20). • Locales de pública concurrencia (ITC-BT 28). • Locales con riesgo de incendio o explosión (adecuadamente canalizado) (ITC-BT 29). • Industrias (Reglamento de Seguridad contra Incendios en los Establecimientos Industriales R.D. 2267/2004. • Edificios en general (Código técnico de la Edificación, R.D. 314/2006, art. 11).

AFUMEX CLASS 1000 V (AS)

RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 RZ1-K (AS) Designación genérica:

DATOS TÉCNICOS

NÚMERO DE CONDUCTORES x SECCIÓN	ESPESOR DE AISLAMIENTO	DIÁMETRO EXTERIOR	PESO kg/km	RESISTENCIA DEL CONDUCTOR	INTENSIDAD ADMISIBLE	INTENSIDAD ADMISIBLE ENTERRADO (3)	CAÍDA DE TEN	SIÓN V/A km (2)
mm ²	mm (1)	mm (1)	(1)	a 20 °C Ω /km	AL AIRE (2) A	A A	cos ⊕ = 1	cos ⊕ = 0,8
1 x 1.5	0,7	7	67	13,3	21	21	26,5	21,36
1 x 2,5	0,7	7,5	79	7,98	30	27	15,92	12,88
1 x 4	0,7	8	97	4,95	40	35	9,96	8,1
1 x 6	0,7	8,5	120	3,3	52	44	6,74	5,51
1 x 10	0,7	9,6	167	1,91	72	58	4	3,31
1 x 16	0,7	10,6	226	1,21	97	75	2,51	2,12
1 x 25	0,9	12,3	321	0,78	122	96	1,59	1,37
1 x 35	0,9	13,8	421	0,55	153	117	1,15	1,01
1 x 50	1	15,4	579	0,38	188	138	0,85	0,77
1 x 70	1,1	17,3	780	0,27	243	170	0,59	0,56
1 x 95	1,1	19,2	995	0,20	298	202	0,42	0,43
1 x 120	1,2	21,3	1240	0,16	350	230	0,34	0,36
1 x 150	1,4	23,4	1529	0,12	401	260	0,27	0,31
1 x 185	1,6	25,6	1826	0,10	460	291	0,22	0,26
1 x 240	1,7	28,6	2383	0,08	545	336	0,17	0,22
1 x 300	1,8	31,3	2942	0,06	630	380	0,14	0,19
1 x 400	2	36	3921	0,05		446	0,11	0,17
2 x 1.5	0,7	10	134	13,3	23	24	30,98	24,92
2 x 2,5	0,7	10,9	169	7,98	32	32	18,66	15,07
2 x 4	0,7	11,8	213	4,95	44	42	11,68	9,46
2 x 6	0,7	12,9	271	3,3	57	53	7,90	6,42
2 x 10	0,7	15,2	399	1,91	78	70	4,67	3,84
2 x 16	0,7	17,7	566	1,21	104	91	2,94	2,45
2 x 25	0,9	Consultar	Consultar	0,78	135	116	1,86	1,59
2 x 35	0,9	Consultar	Consultar	0,55	168	140	1,34	1,16
2 x 50	1	Consultar	Consultar	0,38	204	166	0,99	0,88
3 G 1.5	0,7	10,4	150	13,3	23	24	30,98	24,92
3 G 2,5	0,7	11,4	193	7,98	32	32	18,66	15,07
3 G 4	0,7	12,4	250	4,95	44	42	11,68	9,46
3 G 6	0,7	13,6	324	3,3	57	53	7,90	6,42
3 G 10	0,7	16	486	1,91	78	70	4,67	3,84
3 G 16	0,7	18,7	696	1,21	104	91	2,94	2,45
3 x 25	0,9	Consultar	Consultar	0,78	115	96	1,62	1,38
3 x 35	0,9	Consultar	Consultar	0,55	143	117	1,17	1,01
3 x 50	1	Consultar	Consultar	0,38	174	138	0,86	0,77
3 x 70	1,1	Consultar	Consultar	0,27	223	170	0,6	0,56
3 x 95	1,1	Consultar	Consultar	0,20	271	202	0,43	0,42
3 x 120	1,2	Consultar	Consultar	0,16	314	230	0,34	0,35
3 x 150	1,4	Consultar	Consultar	0,12	359	260	0,28	0,3
3 x 185	1,6	Consultar	Consultar	0,10	409	291	0,22	0,26
3 x 240	1,7	Consultar	Consultar	0,08	489	336	0,17	0,21
3 x 300	1,8	Consultar	Consultar	0,06	549	380	0,14	0,18

(1) Valores aproximados.

(2) Instalación en bandeja al aire (40 °C).

→ XLPE3 con instalación tipo F → columna 11 (1x trifásica).

→ XLPE2 con instalación tipo E → columna 12 (2x, 3G monofásica).

→ XLPE3 con instalación tipo E → columna 10b (3x, 4G, 4x, 5G trifásica).

(3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del terreno estándar de 2,5 K.m/W.

→ XLPE3 con instalación tipo Método D1/D2 (Cu) → 1x, 3x, 4G, 4x, 5G trifásica.
 → XLPE2 con instalación tipo D1/D2 (Cu) → 2x, 3G monofásica.

Según UNE-HD 60364-5-52 e IEC 60364-5-52.

AFUMEX CLASS 1000 V (AS)

RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

DATOS TÉCNICOS

NÚMERO DE CONDUCTORES x SECCIÓN	ESPESOR DE AISLAMIENTO	DIÁMETRO EXTERIOR	PESO kg/km	RESISTENCIA INTENSIDAD INTENSIDAD ADMISIBLE CAÍDA DE TENSIÓ DEL CONDUCTOR ADMISIBLE ENTERRADO (3)		ÓN V/A km (2) y (3)		
mm ²	mm	mm	Kg/KIII	a 20 °C Ω /km	AL AIRE (1) A	A A	cos ⊕ = 1	cos ⊕ = 0,8
3 x 25/16	0,9/0,7	Consultar	Consultar	0,780/1,21	115	96	1,62	1,38
3 x 35/16	0,9/0,7	Consultar	Consultar	0,554/1,21	143	117	1,17	1,01
3 x 50/25	1,0/0,9	Consultar	Consultar	0,386/0,780	174	138	0,86	0,77
3 x 70/35	1,1/0,9	Consultar	Consultar	0,272/0,554	223	170	0,6	0,56
3 x 95/50	1,1/1,0	Consultar	Consultar	0,206/0,386	271	202	0,43	0,42
3 x 120/70	1,2/1,1	Consultar	Consultar	0,161/0,272	314	230	0,34	0,35
3 x 150/70	1,4/1,1	Consultar	Consultar	0,129/0,272	359	260	0,28	0,3
3 x 185/95	1,6/1,1	Consultar	Consultar	0,106/0,206	409	291	0,22	0,26
3 x 240/120	1,7/1,2	Consultar	Consultar	0,0801/0,161	489	336	0,17	0,21
3 x 300/150	1,8/1,4	Consultar	Consultar	0,0641/0,129	549	380	0,14	0,18
4 G 1,5	0,7	11,2	173	13,3	20	21	26,94	21,67
4 G 2,5	0,7	12,3	227	7,98	28	27	16,23	13,1
4 G 4	0,7	13,4	298	4,95	38	35	10,16	8,23
4 G 6	0,7	14,7	391	3,3	49	44	6,87	5,59
4 G 10	0,7	17,5	593	1,91	68	58	4,06	3,34
4 G 16	0,7	20,4	855	1,21	91	75	2,56	2,13
4 x 25	0,9	24,3	1267	0,78	115	96	1,62	1,38
4 x 35	0,9	28,4	1792	0,55	143	117	1,17	1,01
4 x 50	1	32,5	2439	0,38	174	138	0,86	0,77
4 x 70	1,1	37,1	3359	0,27	223	170	0,6	0,56
4 x 95	1,1	41,2	4276	0,20	271	202	0,43	0,42
4 x 120	1,2	46,7	5500	0,16	314	230	0,34	0,35
4 x 150	1,4	51,8	6750	0,12	359	260	0,28	0,3
4 x 185	1,6	57,6	8172	0,10	409	291	0,22	0,26
4 x 240	1,7	64,4	10642	0,08	489	336	0,17	0,21
5 G 1,5	0,7	12	202	13,3	20	21	26,94	21,67
5 G 2,5	0,7	13,3	266	7,98	28	27	16,23	13,1
5 G 4	0,7	14,5	351	4,95	38	35	10,16	8,23
5 G 6	0,7	16	467	3,3	49	44	6,87	5,59
5 G 10	0,7	19	711	1,91	68	58	4,06	3,34
5 G 16	0,7	22,2	1028	1,21	91	75	2,56	2,13
5 G 25	0,9	26,6	1529	0,78	115	96	1,62	1,38
5 G 35	0,9	31,4	2169	0,55	143	117	1,17	1,01
5 G 50	1	35,2	2969	0,38	174	138	-	-

(1) Valores aproximados.

(2) Instalación en bandeja al aire (40 °C).

→ XLPE3 con instalación tipo F → columna 11 (1x trifásica).

→ XLPE2 con instalación tipo E → columna 12 (2x, 3G monofásica).

→ XLPE3 con instalación tipo E → columna 10b (3x, 4G, 4x, 5G trifásica).

(3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del

terreno estándar de 2,5 K.m/W.

→ XLPE3 con instalación tipo Método D1/D2 (Cu) → 1x, 3x, 4G, 4x, 5G trifásica.

→ XLPE2 con instalación tipo D1/D2 (Cu) → 2x, 3G monofásica.

Según UNE-HD 60364-5-52 e IEC 60364-5-52.

Hoja de características del LV431630 producto Características

Interruptor automático Compact NSX250F - TMD - 250 Å - 3 polos 3R

Principal

РППСІраї		
Gama	Compact	
Nombre del producto	Compact NSX	
Tipo de producto o componente	Interruptor automático	
Nombre corto del dispositivo	Compact NSX250F	
Aplicación del dispositivo	Distribución	
Número de polos	3P	
Descripción de polos protegidos	3t	
Tipo de red	AC	
Frecuencia de red	50/60 Hz	
[In] Corriente nominal	250 A en 40 °C	
[Ui] Tensión nominal de aislamiento	800 V AC 50/60 Hz	
[Uimp] Resistencia a picos de tensión	8 kV	
[Ue] Tensión nominal de empleo	690 V AC 50/60 Hz	
Capacidad de corte	F 36 kA 415 V AC	
Capacidad de corte	85 kA en 240 V AC 50/60 Hz acorde a UL 508 22 kA Icu en 525 V AC 50/60 Hz acorde a IEC 60947-2 35 kA Icu en 440 V AC 50/60 Hz acorde a IEC 60947-2 36 kA Icu en 380/415 V AC 50/60 Hz acorde a IEC 60947-2 8 kA Icu en 660/690 V AC 50/60 Hz acorde a IEC 60947-2 85 kA Icu en 220/240 V AC 50/60 Hz acorde a IEC 60947-2 35 kA en 480 V AC 50/60 Hz acorde a UL 508 30 kA Icu en 500 V AC 50/60 Hz acorde a IEC 60947-2 15 kA en 600 V AC 50/60 Hz acorde a UL 508	
[lcs] poder de corte en servicio	35 kA en 440 V AC 50/60 Hz acorde a IEC 60947-2 36 kA en 380/415 V AC 50/60 Hz acorde a IEC 60947-2 85 kA en 220/240 V AC 50/60 Hz acorde a IEC 60947-2 22 kA en 525 V AC 50/60 Hz acorde a IEC 60947-2 30 kA en 500 V AC 50/60 Hz acorde a IEC 60947-2 8 kA en 660/690 V AC 50/60 Hz acorde a IEC 60947-2	
Poder de seccionamiento	Sí acorde a EN 60947-2 Sí acorde a IEC 60947-2	
Categoría de empleo	Categoría A	

Unidad de control	TM-D
Tecnología de unidad de disparo	Térmico-magnético
Funciones de protección de unidad de control	LI
Grado de contaminación	3 acorde a IEC 60664-1

Complementario

Complementane	
Tipo de control	Maneta
Tipo de montaje	Fijo
Soporte de montaje	Placa posterior
Conexión superior	Frontal
Conexión hacia abajo	Parte frontal
Composición de los contactos auxiliares	Sin
Durabilidad mecánica	20000 ciclos
Durabilidad eléctrica	10000 ciclos 440 V In acorde a IEC 60947-2 10000 ciclos 690 V In/2 acorde a IEC 60947-2 20000 ciclos 440 V In/2 acorde a IEC 60947-2 5000 ciclos 690 V In acorde a IEC 60947-2
Paso de conexión	35 mm
Señalizaciones en local	Indicación de contacto positivo
Tipo de protección	Protección contra sobrecarga (térmica) Protección contra cortocircuitos (magnética)
Calibre de la unidad de disparo	250 A en 40 °C
Tipo de ajuste de detección a largo plazo Ir	Ajustable
Intervalo de ajuste de detección a largo plazo	0,71 x ln
Tipo de ajuste de retardo de larga duración	Fijo
[Tr] ajuste de retardo de larga duración	120400 s en 1,5 x ln 15 s en 6 x lr
Tipo de ajuste de detección de lsd de corto retardo	Ajustable
[lsd] intervalo de ajuste de detección a corto plazo	510 x ln
Tipo de ajuste de retardo de corta duración	Fijo
Altura	161 mm
Anchura	105 mm
Profundidad	86 mm
Peso del producto	2,4 kg
Código de compatibilidad	NSX250

Entorno

Categoría de sobretensión	Clase II
Clase de potección contra descargas eléctricas	Clase II
Normas	EN/IEC 60947 UL 508
Certificaciones de producto	CCC Marine EAC
Grado de protección IP	IP40 acorde a IEC 60529
Grado de protección IK	IK07 acorde a IEC 62262
Temperatura ambiente de funcionamiento	-3570 °C

Temperatura ambiente de almacenamiento	-5585 °C	
Sostenibilidad de la oferta		
Estado de oferta sostenible	Producto Green Premium	
Reglamento REACh	Declaración de REACh	
Directiva RoHS UE	Pro-active compliance (Product out of EU RoHS legal scope)	
	Declaración RoHS UE	
Comunicación ambiental	Perfil ambiental del producto	
Perfil de circularidad	☑Información de fin de vida útil	
Información Logística		
País de Origen	ES	
Garantía contractual		
Periodo de garantía	18 months	