
 

 

 

 
 

  

  

Effects of Plagiarism in Introductory Programming Courses  

on the Learning Outcomes 

Dieter Pawelczak 

Institute for Software Engineering, Bundeswehr University Munich, Germany. 

Abstract 

We compare two introductory programming courses and the accompanying 

programming assignments with respect to the learning outcomes and the 

relation to plagiarism. While in the first course the solutions from the 

students of their programming assignments are checked directly with a 

plagiarism detection system to prevent students from plagiarizing, plagiarism 

is not tracked in the second course. Running a post check against plagiarism 

after the course reveals a significant higher plagiarism rate with several 

exact copies. As the number of students handing in copies from fellow 

students increases, the failure rate in the final examination also rises. 

Analyzing the data does not only reveal a correlation between plagiarizing 

and inferior examination results, but also shows, that students confronted 

with a plagiarism detection system have better skills in fundamental coding 

concepts. We suppose this might be a result of the fact, that the 

implementation of a plagiarism detection system does not deter so many 

students from plagiarizing, but students are strongly motivated to run more 

modifications on their plagiarisms in order not to be caught.  

Keywords: Plagiarism; Source code plagiarism; Teaching programming;  

Automated assessment systems. 

 

 

  

5th International Conference on Higher Education Advances (HEAd’19)
Universitat Politècnica de València, València, 2019
DOI: http://dx.doi.org/10.4995/HEAd19.2019.9297

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 623



Effects of Plagiarism in Introductory Programming Courses on the Learning Outcomes 

  

  

1. Introduction 

Many undergraduate students in engineering degree programmes have difficulties with 

learning programming. The curriculum usually involves practical exercises and/ or pro-

gramming assignments in order to train programming skills, as learning programming 

requires a significant personal engagement to understand and learn to apply fundamental 

programming concepts. A student evaluation for such courses typically reflects the high 

workload required for the practical work. Unfortunaltely, a common approach to lower the 

effort is to use or adapt solutions of fellow students. Universities implement source code 

plagiarism detection systems in order to detect and prevent such frauds, compare e.g. 

Modiba et al. (2016). We were running such a system for 5 years and made experience of 

many positive aspects, but also found some draw backs, especially with respect to the social 

behavior of the students as described by Pawelczak (2018). In order to further investigate 

the effects of plagiarism, we disabled the plagiarism detection system in 2018 and 

compared the learning outcomes of the course (hereinafter called class B) with the previous 

year (refered to as class A). We communicated to the students of class B, that plagiarizing 

would not be tracked during the course. We also made clear, that our experience showed, 

that plagiarizing has a negative effect on passing the course. Nevertheless, we expected a 

higher plagiarism rate and also a weaker performance in the course examination. Running 

the plagiarism detection system after the completion of the course by comparing all 

solutions of the students with each other, revealed a significantly higher plagiarism rate. 

Furthermore, the failure rate in the examination rose by 17 %, which supports our 

assumption, that plagiarizing has a negative effect on the learning outcomes. During the 

course and while analyzing the performance of the individual students, we found other 

interesting details, which are discussed in the following chapters.  

2. Related Work 

We define source code plagiarism as discussed by Cosma and Joy (2008) as reproduction/ 

copying source-code either without making any adaptions or just providing moderate 

alternations. Students violate the academic integrity by pretending to be the author of 

another one’s work. Especially in programming courses this is a wide spread phenomenom, 

as it is very easy to copy a working solution. According to Fraser (2014) reasons for 

cheating are the lack of interest in the task, insufficient skills or time pressure. Some 

students also think, that working on the task has no benefit for them. Additionally, as 

students often work in groups, they do not see a violation, if they all hand in the same 

solution. As Joy et al. (2013) describe in their study on the students perspective on source 

code plagiarism, that universities usually implement plagiarism detection systems to deter 

students from plagiarizing. However, there is often a different understanding of what 

plagiarism means, e.g., if the lecturer provides code snippets in the lecture – are students 

624



Dieter Pawelczak 

  

  

allowed to re-use them in their programming assignments? Students also learn, that re-using 

code is a paradigm of object oriented programming. Why should their programming work 

at the university differ from the real world? Two comprehensive studies from Joy et al. 

(2013) and Simon et al. (2018) emphasize the need for the lecturer to spend more time on 

educational work with respect to plagiarism and to use a transparent policy when pursuing 

plagiarism.  

Palazzo et al. (2010) showed the correlation between plagiarizing and the learning 

outcomes in physics education. Altough some students cheat, because they already 

accomplished the required skills, for the average students, cheating results in less effort 

spent on the course subject and typically in poorer examination performance. Their study 

confirms our experience, that it is not sufficient to inform students of the negative effects of 

cheating, as this will not reduce it. Therefore, a proper stategy to handle plagiarizing is 

required in order to reduce plagiarizing.  

As Bradley (2016) states, source codes in introductory courses provide a high natural simi-

larity, as students are taught to code with a particular coding standard, or as students might 

be required to use the same names for functions and variables for an automatic grading 

systems, or because of the use of code snippets from the text book. Bradley suggests to use 

a randomization of tasks in order to increase the differences among the students’s solutions. 

For our course, we use the tool PlagC2 for the plagiarism detection, which allows common 

code snippets to be removed. Due to the fact, that most submissions have only around 140 

lines of code the natural similarity is typically between 60 and 80 %. Common parts with 

respect to the programming assignments are taken out before the comparison, e.g. given 

function prototypes or example code snippets shown in the lecture are removed in order to 

focus on the students’ independent work.   

3. Data and Methodology 

The introductory C-programming course for first year engineering students requires 

students to submit seven programming assignments in digital form, and to pass the final 

written examination. 

3.1. Data  

The data for the analysis comes on the one hand from the submitted programming assign-

ments of the last two years and on the other hand from the examinations and the students’ 

evaluation of the course. 50 students attended class A and 51 class B. In each course, 

student feedback is requested. For both classes, the response rate was about 64 %. To 

analyse plagiarizing among students, about 350 source texts per course are available. We 

can also access the submission statistics of the automated assessment system, which tracks 

information on all submissions, e.g. time stamps, incomplete or erroneous submissions as 

well as detected plagiarism.  

625



Effects of Plagiarism in Introductory Programming Courses on the Learning Outcomes 

  

  

3.2. Plagiarism detection  

Each source code a student submits, is stored in a database. During submissions, the 

PlagC2 tool calculates the similarity of that source code with the sources in the database 

and returns the highest similarity together with the ID of the matching source code, 

compare Pawelczak (2018). The automated assignment system rejects submissions in case 

the similarity exceeds a given threshold. The students are allowed to re-submit another 

version, although the number of re-submissions is restricted. The threshold varys as the 

natural similarities are typically different depending on the programming assignment. The 

threshold is set sufficiently high in order to prevent false positives. In case the similarity 

exceeds the threshold, we blame the submitting student for plagiarizing.  

For class A the submitted source codes were directly analysed by the plagiarism detection 

system during the submission. Although the system is not able to distinguish between 

author and plagiarist, as the detection relies on the time of submission, it is very easy for the 

course instructors to find out, who plagiarized: asking questions on implementation details 

reveals very easily the cheater. In class B the submissions were only checked against 

functional correctness without plagiarism detection. For the analysis, we simulated the 

automated assessment system and fed the system with the submitted source codes from the 

students in random order and tracked the similarity using the same thresholds.  

 

Figure 1. Source codes similarity for the programming assignments of class A(a) and class B(b) 

626



Dieter Pawelczak 

  

  

4. Results and Discussion 

4.1. Code Similarity and Plagiarism  

Fig. 1 shows the calculated maximum similarity of each submitted source code exemplary 

for the programming assignments 1, 3, 5 and 6 for class A and B, respectively. For a better 

readability, not all assignments are printed in the diagrams and the similarity is listed in 

ascending order (not in the order of submission). As the data from class A already passed 

the plagiarism checks, despite some minor exceptions, the similarities are below the 

threshold. Table 1 shows the applied threshold and reveals the percentage of sources 

accused of plagiarism for both classes. As the effort increases with the later programming 

assignments, the percentage of plagiarizing increases in both classes. The average 

percentage of students plagiarizing in class A is 11.1 %, while it is 24 % higher in class B: 

on average 35.1 % of the students were caught plagiarizing with a maximum of more than 

50 % in the assignments 5 and 6. On average class B provided 3.7 exact copies per 

assignment with a maximum of 10 in assignment 5. 

Table 1. Results of the plagiarism detection analysis of the programming assignments 

Assignments 

In
te

g
er

 

F
lo

a
ti

n
g
 

P
o

in
t 

S
tr

in
g

s 

S
tr

u
ct

u
re

s 

A
rr

a
y

s 

L
is

ts
 

F
il

es
 

A
v

er
a

g
e 

 

1    2    3     4 5     6     7 

Threshold 84 % 88 % 84 % 83 % 82 % 81 % 88 % 84.3 % 

Average number of source lines 107 125 162 133 166 172 157 146 

Average similarity in class A 64 % 76 % 69 % 75 % 78 % 80 % 80 % 74.7 % 

Average similarity in class B 68 % 79 % 72 % 77 % 84 % 83 % 83 % 78.0 % 

Percentage of students suspected 

of plagiarizing in class A 

4 % 2 % 8 % 22 % 18 % 16 % 8 % 11.1 % 

Detected submissions  

above threshold in class B 

21 % 20 % 31 % 35 % 51 % 53 % 35 % 35.1 % 

Unmodified 1:1 submissions  

in class B 

4 3 1 2 10 2 4 3.7 

627



Effects of Plagiarism in Introductory Programming Courses on the Learning Outcomes 

  

  

4.2. Examination Results  

There are many different influences on the examination results, which makes it difficult to 

directly compare the results of two courses. Therefore, we also compared the examination 

outcome of all other subjects for both classes and found on average a difference below 2 %. 

For instance, class A performed slightly better in math and electrical science, while class B 

performed slightly better in computer science introduction. From the overall performance 

of class B, we would have expected similar examiniation results compared to class A. 

Fig. 2 shows the examination results of both classes and reveals the distinct higher failure 

rate of class B. Although the plagiarism detection system can not distinguish between 

author and plagiarist, as discussed in Section 3.2, the students in class A, that were caught 

plagiarizing reached on average only 47 % in their exams and 8 from 17 students failed. 

One student in that group had an excellent exam. Although the sources were randomly sub-

mitted for class B, the system identified 34 students plagiarizing with 24 out of them failed 

the examination (with an average of 43 %). Many students among these 24 students were 

caught plagiarizing multiple times. The system detected a total of 111 sources in class B 

with the similarity above the threshold. 

 

Figure 2. Distribution of students according to the examination results of class A & B. 

Looking closer at the key competences students acquired in the examination, it was 

obvious, that students of class A had better skills in coding common programming 

constructs, like loops or functions and knew better how to use the standard library 

functions. We assume, that students do not plagiarize less, when the plagiarism detection 

system is active, but students have to take care, not to be caught. As the system detects 

lexical changes, students have to re-write the source code, they obtained from their fellow 

students. This improves coding skills. With respect to other programming skills like 

problem solving, we did not find remarkable differences in both classes.  

0%

10%

20%

30%

40%

50%

Class A Class B

D
is

tr
ib

u
ti

o
n

 o
f 

st
u

d
e

n
ts

 

Excellent (>=90%)

Good (80%-89%)

Satisfactory(70-79%)

Sufficient (50-69%)

Failure Rate (<50%)

628



Dieter Pawelczak 

  

  

4.3. Examination Results in Other Subjects in that Semester  

We found an interesting aspect, when comparing the examination results of both classes in 

the corresponding semester: class A performed less compared to class B in physics and 

measurement technology. In the fourth course electronic components in that semester, class 

A performed slightly better. In average, class B performed 2.5 % better in the examinations 

concurrent to the programming course. If we take the programming course into account, 

class B performed 0.7 % worse. Although these tiny swings might be random, it might 

point to the fact, that course B had more time to prepare the other examinations as 

plagiarizing is less time consuming, compare Section 4.4.  

4.4. Course Evaluation  

Class A stated in the course evaluation with 228 hours a higher workload in average com-

pared to class B with a workload of 195 hours. Fig. 3 shows an excerpt from the evaluation 

results. We asked, which means students found helpful to solve their programming assign-

ments. There was less discussion among the students in class A: 63 % agreed, that 

discussion was helpful, while in class B 80 % agreed on that (Fig. 3, Question 1). We 

noticed, that some students in class A were not willing to share their ideas, because they 

feared, that they might be accused of plagiarizing. While 28 % of class A disagreed, that 

using code snippets or solutions from other students was helpful, in class B only 15 % 

disagreed with that. In class B a direct usage of these solutions was possible (Fig. 3, 

Question 2).  

 

Figure 3. Excerpt from the students’ evaluation of class A & class B. 

629



Effects of Plagiarism in Introductory Programming Courses on the Learning Outcomes 

  

  

Interesting is the comparison on the self-assessment of the students (Fig. 3, Questions 3 and 

4). We ask about their knowledge of programming before and after the course. In both 

classes the majority judged their knowledge before the course as below satisfactory, more 

than 80 % felt their knowledge satisfactory, good and excellent after the course. In class A, 

a much higher development can be seen: In class A some students increased their 

assessment over 3 grades, i.e. from insufficient to good or sufficient to excellent, while in 

class B the difference was two grades maximum.  

5. Conclusion and Outlook 

The use of a plagiarism detection system does not prevent students from plagarizing. It has 

a deterrent effect on some students, and as we observed, sometimes even a disquieting one. 

It also challenges smart students to outwit the system. A large group of students will still 

use solutions from other students, but they have to spend time on modifying the solutions in 

order not to be caught plagiarizing. The last aspect especially has an effect on the learning 

outcomes. Students faced with the plagiarism detection system showed a better knowledge 

of fundamental coding skills like writing loops, making code more modular (e.g. by 

outsourcing code into functions), or finding alternative solutions (e.g. by using different 

API functions).  

Plagiarism detection systems do not surpress open discussions and collaborations among 

students as the course evaluation revealed, but an effect of exclusion and reluctance is ob-

servable. As Fraser (2014) concludes, we need to establish a learner’s friendly environment, 

which allows collaboration. We still need means to deter students from plagiarizing and to 

help them to invest more in their own work. We definitely will apply the plagiarism 

detection system in the upcoming course, but we also want to reduce the effort of the 

assignments 5 & 6 by adding more voluntary tasks, to see if this results in less students 

copying their solutions.  

References 

Bradley, S. (2016). Managing plagiarism in programming assignments with blended 

assessment and randomisation. In Proc. of the 16
th

 Koli Calling Int. Conf. on Computing 

Education Research (Koli Calling '16), Koli, Finland, November 24-27, 2016, 21-30 

Cosma, G., & Joy, M. (2008). Towards a Definition of Source-Code Plagiarism. IEEE 

Trans. Education, 51 (2), 195-200. doi: 10.1109/TE.2007.906776  

Fraser, R. (2014). Collaboration, collusion and plagiarism in computer science coursework. 

Informatics in Education, 13 (2), 179-195 

Joy, M. S., Sinclair, J. E., Boyatt, R. Yau, JY-K., & Cosma, G. (2013). Student perspectives 

on source-code plagiarism. Int. Journal for Educational Integrity, 9 (1). 

630



Dieter Pawelczak 

  

  

Modiba, P., Pieterse, V., & Haskins, B. (2016). Evaluating plagiarism detection software 

for introductory programming assignments. Proc. of the Comp. Sci. Education Research 

Conf. 2016 (CSERC '16), 37-46. 

Palazzo, D. J., Lee, Y.-J., Warnakulasooriya, R., & Pritchard, D. E. (2010). Patterns, 

correlates, and reduction of homework copying. Phys. Rev. ST Phys. Educ. Res., 6 (1) 

Pawelczak, D. (2018): Benefits and drawbacks of source code plagiarism detection in 

engineering education. In Proc. of IEEE Global Engineering Education Conf. 

(EDUCON’18), Tenerife, 2018, 1048-1056. doi: 10.1109/EDUCON.2018.8363346  

Simon, Sheard, J., Morgan, M., Petersen, A.,  Settle, A., & Sinclair, J. (2018). Informing 

students about academic integrity in programming. Proc. of the 20
th

 Australasian 

Computing Education Conference (ACE '18). 113-122. doi: 10.1145/3160489.3160502  

631


