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Abstract

The aim of this Final Thesis is to accurately make use of two different techniques in control theory in order
to design and develop the automatic landing system of a generic flying wing UAV. This landing system will
focus on the study of the tracking error response of the distance between the actual position of the drone
and the desired landing trajectory, which will be determined by specifying a certain glide path angle in the
control design.

The first technique to be implemented will be based on the PID controller theory: tuning the values cor-
responding to the proportional, integrator and derivative that give the name to this method, we will be able
to reach the system stability and performance requirements. We will adapt the glide-path-coupled control
system in McLean (Bibliography cite number [21]) to the needs of our UAV, determining the gain values in
the loops in order to stabilize the system.

Then, we will study the behavior of the controller when applying different types of perturbations simu-
lating the wind effect: firstly with constant values for the wind velocity components in the longitudinal axes,
and secondly with random values, making use of the Dryden turbulence model.

For this approach we will consider a desired glide path angle of 2.5◦, the standard slope for aircrafts in
the landing phase.

The second technique will be the H infinity or gamma attenuation problem, which belongs to the family
of the so called robust controllers. This method builds a closed loop system shaped by a plant model (deter-
mined by the aircraft dynamics, actuator, weightings, and so on) and the controller. We will have to define
the inputs and outputs of the system, with the perturbations, commanded and measured variables, actuator
terms, and tracking error and performance specifications. The aim of the process is to calculate and obtain
a controller that optimizes these specifications.

For this approach we will consider a desired glide path angle of 12◦, a possible realistic landing slope for
small aircrafts like flying wing UAVs.

After obtaining the controller, we will perform a robustness analysis of the same, in order to study its
tracking performance along the landing trajectory and to identify its level of independence of the uncertain
parameters.
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Abstract

Scopul acestei teze este de a prezenta două tehnici diferite ı̂n teoria controlului pentru a proiecta s, i dezvolta
sistemul de aterizare automată a unui UAV cu configuratie aripa-zburatoare. Acest sistem de aterizare se va
concentra asupra studierii răspunsului la eroarea de urmărire a distant,ei dintre pozit, ia actuală a UAV-ului s, i
traiectoria de aterizare dorită, care va fi determinată prin specificarea unui anumit unghi al pantei de aterizare.

Prima metoda care va fi implementată este conventionala si va fi bazată pe teoria controlerului PID:
ajustarea valorilor corespunzătoare coeficientilor proportional, integrator si derivativ care dau numele acestei
metode, se pot satisface cerint,ele de stabilitate s, i performant, ă ale sistemului. S-a adaptat arhitectura de
control prezentata in McLean (Bibliografia citează numărul [21]) la nevoile UAV, determinând valorile am-
plificarilor ı̂n bucle pentru a stabiliza sistemul.

Apoi, s-a studiat comportamentul controlerului atunci când aplicăm diferite tipuri de perturbat, ii care
simulează efectul vântului: ı̂n primul rând cu valori constante pentru componentele vitezei vântului ı̂n axele
longitudinale s, i, ı̂n al doilea rând, cu valori aleatorii, folosind modelul de turbulent,a Dryden.

Pentru această abordare s-a luat ı̂n considerare un unghi dorit al pantei de aterizare de 2.5◦, panta stan-
dard pentru aeronave ı̂n faza de aterizare.

A doua tehnică va fi problema H infinit sau gamma atenuare, care apart, ine familiei as,a-numitelor metode
de control robust. Această metodă construies,te un sistem de buclă ı̂nchisă, modelat ı̂n funct, ie de asa-numitul
sistem generalizat (determinat de dinamica aeronavei, de dispozitivul de act, ionare, de ponderi etc.) s, i de con-
troler. Se definesc intrările s, i ies, irile sistemului, cu perturbatiile, variabilele comandate s, i măsurate, termenii
de act, ionare s, i erorile de urmărire s, i specificat, iile de performant, ă. Scopul proiectarii este de a determina
un controler care minimizeaza norma H-infinit a sistemului rezultant obtinut prin cuplarea controllerului la
sistemul generalizat.

Pentru această abordare vom lua ı̂n considerare un unghi dorit al pantei de aterizare de 12◦, o posibilă
pantă reală de aterizare pentru o mică aeronavă, cum ar fi UAV-urile cu configuratie aripa zburatoare.

După obt, inerea controlerului, s-a efectuat o analiză de robustet,e a acestuia, pentru a studia performantele
de urmarire a traiectoriei de aterizare sa s, i pentru a identifica nivelul său de independent, ă a parametrilor
incert, i.
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Chapter 1

Project approach

1.1 Introduction

In this project we will be dealing with two of the most present topics in the aviation environment. In first
place, the automatic landing system in aircrafts. The development of a precise and accurate system has
been a major concern in the last years and one of the most crucial aspects concerning safety and operation:
such system that allows the aircraft to autonomously land supposes a great advantage, since the aircraft
wouldn’t be so affected by the weather conditions in such a critical phase of the flight. Increasing the number
of operations, reducing the delays and route changes, or increasing safety are only some of the most direct
consequences of developing such systems.

Several categories were designed, according to the level of autonomy of the landing system; the current
trends aim to achieve the highest level for commercial flights.

In second place, UAVs. The development and production of these pilotless aircrafts has increased expo-
nentially in the last decades: from military to industrial and commercial uses, currently UAVs are utilized
in every imaginable field, given their versatility: agriculture, marketing, real state agencies, cinema, pho-
tography, topographic studies, search and rescue, as toys, are some examples. They are being developed
and studied, increasing their capabilities, and are so widely spread that international and national aviation
organizations are classifying them and legislating their use.

Since the autonomous flight nature of UAVs, it goes without saying that the implementation of control
systems is a crucial aspect in their design: this work aims to get together those two important topics, through
the development of an automatic landing sytem for a flying wing UAV.

The current state of the art is quite advanced: the landing system is one of the most crucial aspects in the
development of a UAV, and therefore we can find multiple systems already designed in the industry. Besides,
many of the automatic landing systems patents for the first drones, which were hold by the military sections,
were published, what was benefited by the new commercial UAVs.

We have as many types of landing systems as drones we can find, since the landing procedure will change
depending on the aircraft function, type and sensors used: flying wing drones will differ from multi-rotor, if
they have infrared or optical sensors, if they need to land in movement targets or in immobile runways, and
so on.

1.2 Development of the autolanding concept

Now, it is believed that it should be given a general overview of the automatic landing system importance,
development, and current situation in aviation, in order to situate the context and actuality of such systems.

7



8 1.2. Development of the autolanding concept

The advantages of automatically guiding an aircraft during its flight, with no help of the pilot, was
introduced almost one hundred years ago. The application of automatic pilots to the landing phase has
been developing for more than 70 years; indeed, the first mention to this kind of navigation technique ap-
peared the first time on 1932, when The Naylor Company (San Antonio, Texas) published one book that set
the grounds for what in the following years would became one of the main concerns in the air navigation field.

With the title of Blind Flight in theory and practice, major William C. Ocker and first lieutenant Carl
J. Crane developed the main ideas about how a flight with no use of exterior visual references (called blind
flight) could be carried out. In this book, both authors presented the navigation aids and instruments that
would be necessary for a blind flight and the training that the pilot would have to follow. In this way, the
writers wanted to join both the theoretical and practical aspects of an autoflight, pretending it to be useful
for pilots in adverse weather conditions.

(a) Stout , Holloman, and Crane, with the Fokker in 1937.
Taken from [1].

(b) Article in the New York Times on September 23, 1947,
describing the first fully automatic transatlantic flight.
Taken from [2].

Figure 1.1: Beginnings of the automatic control systems development in aviation.

The implementation of this theory would be materialized in the landing phase a few years later. Crane,
together with an Army aviator called G. V. Holloman and a civil called Raymond Stout, carried out the first
known successful demonstration of an auto-landing, the 23rd August of 1937, at Wright Field in Dayton,
Ohio. They used a Fokker C-14B that carried air navigation instruments developed by Crane (who held more
than 100 patents) [1].

Nevertheless, the U. S. government never decided to continue with the development of a fully automatic
landing system, and the project didn’t have any further continuation. It wasn’t until 1945 that another
military corporation got interested in the opportunities that the auto-land offered. After Second World
War, Great Britain took conscience of their vulnerability to air attacks. With the development of nuclear
weapons and their threaten, they decided that their military operations couldn’t be conditioned to the fre-
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quent very–low–visibility–weather conditions in the islands, so common in the Northwest part of Europe.
Anticyclones, radiation fogs, and the big amount of carbon and smoke particles in the air coming from the
coal burning heating and power generation systems leaded to long-persistence fogs that made it really difficult
to successfully complete flight operations.

Due to this, the Royal Aircraft Establishment, encouraged by the advances in radio navigation aids and
automatic pilots, formed the Blind Landing Experimental Unit (BLEU) which was in charge of the develop-
ment of a reliable automatic landing system. By 1949, around five hundred landings were done at Woodbridge
Field, in Suffolk, England, with special equipment that allowed the pilot to only take care of functions during
landing such as the operation of throttles, flaps or brakes [3]. During the next decade the auto-landing system
was improved and finally implemented on RAF aircrafts, with the help of British European Airways (BEA).

BEA was a state–owned airline corporation, established by the British government, whose routes were
focused on airports in Europe and in the UK. Problems related with disorganizations in scheduled flights,
and long indefinite periods of air traffic suspension due to bad weather, involved the airline in financial loss.
After a series of continuous accidents in the approach and landing phases due to poor visibility, the com-
pany decided to take part in any way of assuring that their pilots could land in a safe way in such weather
conditions. Since BEA was heavily involved in the improvement of the auto-land system together with the
RAF personnel, after the complete development of the auto-land and posterior implementation on the RAF
aircrafts it was added to the BEA fleet in 60’s, formed by Hawcker Siddeley Tridents. The first commercial
flight with passengers aboard in complete a fully automatic landing was the Trident 1 G-APR on 10 June
1965, in a flight from Paris to Heathrow.

Figure 1.2: Classification of the lowest authorized ILS minimumt for the precission approaches of CAT I,
CAT II, and CAT III. Taken from [6].

From now on, the auto-land would spread through all Europe, specially in those countries more affected
by adverse weather. Airlines in France, Switzerland or Finland incorporated this system to their aircrafts.
Indeed, the first aircraft to be certified to CAT III ICAO standards was the Sud Aviation Caravelle, on 28th
December 1968, an aircraft that was part of France Airlines, Swiss Air, and Finnair. It was followed by the
BEA’s Hawker Siddeley Trident on May 1972.

Nowadays, the auto-land system has been completely incorporated to the air navigation field. Actual
commercial automatic landing systems use the ILS system to adjust the lateral and vertical guidance, in
order to keep the aircraft’s track aligned with the centreline of the runway [4].
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1.3 Considerations about UAVs

In this section we will discuss the history and current situation of UAVs, given the nature of the aircraft to
be studied in this project. It will be summarized the information found concerning evolution, design, uses
and future perspectives so that the reader can have a general idea of such type of pilotless systems.

An Unmanned Aerial Vehicle (UAV), commonly known as drone, is defined by ICAO as “a pilotless air-
craft which is flown without a pilot-in-command on-board and is either remotely and fully controlled from
another place (ground, another aircraft, space) or programmed and fully autonomous” [5].

UAVs technology was developed initially for military uses and then introduced in the civil world. They
were initially designed to be unmanned weapons to be implemented in the most dangerous, difficult or dirty
operations, and it wasn’t until that their technology was fully operational and proven effective in the military
field that they were introduced for commercial and civil purposes.

For understanding UAVs in our days, we must go back to the 19th century. One of the first recorders
dates back on July 1849, during the Austrian war against Venice. A lieutenant named Franz von Uchatius
had the idea of attacking Venice with pilotless balloons loaded with explosives. The city surrounded two days
after the second attempt, although the operations wasn’t really effective since the Austrian Forces wasn’t
able to control the balloons. Many of them exploded in the air, fell down to the sea, and even stroke back
the Austrian army.

(a) Drawing of the Austrian unmanned balloons against
Venice.

(b) Drawing of the presentation of the Tesla concept for his
wireless controlled balloon.

Figure 1.3: First developed pilotless aircraft concept designs. Taken from [7].

During the U. S. Civil War of 1861, both forces (the Confederated and the United) used unmanned bal-
loons for reconnaissance missions; in the Spanish – American war of 1989, the U. S. forces incorporated a
camera to a kite, taking one of the first aerial reconnaissance photographs; a few years later, in 1900, Nikola
Tesla introduced the concept of a wireless controlled balloon.

It was during the First World War that the modern concept of UAV was built. The brightest minds of
the day were called to develop some kind of system combining wood and fabric with the ability to carry
on explosives in a 40 miles range (around 64 km). However, those first aircrafts had two main operational
problems: stabilization during flight, and launching and recovering of the airplanes. During the Interwar
Period the advances in radio-communications and aircraft engineering allowed to advance significantly to
an operational UAV system, mainly as radio–controlled portable platforms weapons. In fact, in the Second
World War both the Allies and the Axis forces used them like weapon delivery platforms, radio–controlled
gliding/flying bombs, and for anti gun practice [8].
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Figure 1.4: On 15 September 1924, radio controlled Curtiss F – 5L flown remotely during all phases of flight,
being the first aircraft in history of flight in achieving this. Taken from [8].

After the Cold War started, the U. S. Army leaded the development of UAVs. They began to be used as
Intelligence, Surveillance and Reconnaissance (ISR) systems. The main concern of the U. S. was to suppress
the spread of Communism, and one of the measurements they took was the creation of a intelligent database
to support strategic planning [8]; although during the Korean War in 1950 UAVs were used against selected
targets, continuing in a certain way with their former use in the Second World War, the rate of success of
less than the 50% made the U. S. Government stop the program. During the Cuban Missile Crisis, it was
generated the necessity of developing some kind of aircraft to image the island to confirm if the missiles had
been removed. UAVs were thought to be a good option; nevertheless, the ones that were built were not tested
yet, so and the U. S. military forces had to make use of a warcraft.

It wasn’t until August 1964, in the Tonkin Gulf incident, that UAVs were accepted for service, when Tele-
dyne Ryan AQM – 34 were launched for reconnaissance operations in China. Besides, during the Vietnam
War, the American Forces designed one of the most sophisticated programmes of drone surveillance in the
history of flight: between 1964 and 1975 a total of 3435 reconnaissance UAV missions were launched. It was
the first war with an extensive UAV use.

Figure 1.5: 6 Pioneer Short Range (SR) UAV. Taken from [10]
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Nevertheless, in the 70’s and 80’s Israel took the technological torch from the U. S. and they started to
use and to research on unmanned vehicles against Syria and Palestine, creating the Pioneer UAV Corporation
[9]. In 1973, they used their UAVs against Egyptian missile sites and armored vehicles in the Yum Kippur
War, and in 1982 against Syrian missile emplacements [8].

However, on these days UAVs had to compete with new high–speed missiles systems, long–range bombers,
and cruise missiles, and their development ceased during a decade. It wasn’t until the First Persian Gulf
War (1990 – 1991) that they started to be taken into consideration again, due to the high effectiveness of the
Pioneer, the Israeli UAV, what made them a useful weapon in many wars, such as the Second Persian Gulf
War, Bosnia, Haiti, Somalia, Afghanistan or Pakistan [8], spreading their use all over the world.

As the technology on UAVs started to improve in the military sector, it was thought that they could be
used for other applications rather than military operations. Around 2006 the U. S. Government started to use
them for disaster relief, border surveillance and wildfire fighting, and American private companies used them
to spread pesticides on their farms [11]. Since there, the private use of UAVs has increased exponentially. In
2011, ICAO wrote the circular 328 to regulate the civil use of UAVs, and according to a Wall Street Journal
report in 2012, many U. S. universities and law enforcement companies started to be given approval by the
Federal Aviation Agency (FAA), the U. S. civil aviation regulatory organization, to fly their own drones for
private use since 2010.

UAVs are a really useful tool whose uses and applications are almost unimaginable. In 2016 the National
League of Cities (NLC) wrote a report giving some possible city uses such as rural ambulances, inspec-
tions or environmental protection and monitoring [12], but there are a huge number of other applications in
many fields such as advertising and marketing, videography and photography in homemade videos, weddings,
tourism, movies, action and sport, disaster response of search and rescue, flooding, wildfire, damage assess-
ment or deliver emergency equipment, education, insurance, meteorology, engineering, mapping, maritime,
or construction [13].

(a) H201S Spy Hawk: Flying wing commercial drone with
camera and video. Taken from [14].

(b) Phantom 4 Professional: Quadcopter commercial drone
with camera and video. Taken from [15].

Figure 1.6: Some examples of current commercial UAVs.

The FAA estimates that around 11 million commercial drones will be sold by 2020 only in the US. Only
the drones sold in 2020 are expected to be its 40%, and the great majority of them providing aerial photog-
raphy and data collection services [12]. According to Statista, “the market for commercial drones is expected
to reach 13 billion U. S. dollars by 2025. Currently the commercial UAV production for mini – UAVs is
valued at 58.4 million U. S. dollars. The global research and development budget for drones is estimated to
reach around 4 billion U. S. dollars by 2020, and Amazon, the world’s largest online retailer, is projected to
have approximately 450,000 UAVs in its delivery fleet by 2020” [16].

The future perspectives for UAVs use are really optimistic, as each day more people gets aware of the pos-
sibilities that they offer. According to Airdronecraze, there are 7 drone generations, based on the technology
used on them. Currently we are in the 6th generation, characterized for the following aspects:
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• Commercial Suitability.

• Safety and Regulatory Standards Based Design.

• Platform and Payload Adaptability.

• Automated Safety Modes.

• Intelligent Piloting Models and Full Autonomy.

• Airspace Aware.

However, this technology is always being developed, and some of the higher–end professional grade UAVs
are entering into the next UAV generation. Fully Compliant Safety, Platform and Payload Interchangeability,
Auto Action (takeoff, land, mission execution) and Full Airspace Awareness are some of the new features
that they will have [17].

1.3.1 Flying Wing UAVs

The aircraft to be studied in this project belongs to the flying wing UAVs’ group. By definition, a flying wing
aircraft is a fixed – wing aircraft with no tail assembly and no more lifting surfaces than its wings, where the
aerodynamic control and stabilization in yaw, pitch and roll is incorporated.

Some examples of current flying wing UAVs are:

(a) Parrot Disco FPV. Taken from [18].

(b) RMRC E - Flite Opterra 2M. Taken from [19].

Figure 1.7: Some examples of current commercial flying wing UAVs.

The main advantages of using this type of drones are the reduction in weight and drag, what results in
longer flight autonomy and better aerodynamic performance, when compared with the multi-copters UAVs.

Nevertheless, flying wing UAVs are quite unstable and difficult to control, given their lack of conventional
stabilizing and control surfaces.

1.4 Aim of the dissertation

In this section we will explain which is the aim of this dissertation, the objectives of the project and what it
is expected to achieve with it.

The goal that we want to reach is the accurate development of the automatic landing system for a generic
flying wing UAV, studying and controlling the position of the aircraft during the landing phase with respect
to the desired glide path trajectory.
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We will approach this control problem making use of two different techniques, coming from a conventional
and a modern background.

The conventional approach will be based on the PID controller, dating from the XIXth - XXth centuries,
and considered to be among the first developed methods in control theory. Our objective will be the design
of the pitch attitude control system by adjusting and giving values to the corresponding gains in the PID
and feedback loops. We will simulate the effect of different atmospheric wind perturbations, so we get closer
to the real flight conditions during the landing phase.

The modern approach will consist of the H infinity method (Hinf), or gamma attenuation problem. De-
veloped in the 70’s and 80’s, this technique belongs to the robust controllers’ family, and is considered to be
one of the most widely used control methods nowadays. We will define the plant model for the approach to
calculate the controller that we need for optimizing the performance specifications. Once obtained this, we
will study its level of robustness.

In order to consider the greatest number of possible scenarios, we will specify two different glide slopes:
2.5◦ for the PID, which is the standard glide slope angle followed by the majority of aircrafts in the landing
phase, and 12◦ for the Hinf method, a realistic possible glide slope angle trajectory for small size aircrafts
such as the flying wing UAV considered in this project.

1.5 Structure of the dissertation

The structure of this project consists of one single part which will be called Report. This part will be
divided in four big chapters, which are going to be divided in turn in those sections and subsections that was
thought to be necessary during the development of the project along the year.

In this way, the divisions of the Report can be presented as follows:

• Project approach It includes the introductory information and presentation of the project. It is
divided in:

– Introduction. Explanation about the actuality of the project and justification of the same.

– Development of the autolanding concept. History and development of the automatic landing
system in aviation.

– Considerations about the UAVs. History, development, and future perspectives of these pilotless
aircrafts.

– Aim of the dissertation.

– Structure of the dissertation.

• Theoretical background Here we include certain theoretical concepts necessaries for a good under-
standing of the project. It is divided in:

– Aircraft dynamics.

– Non-linear equations of motion.

– Linearization of the equations of motion.

– Obtaining of the state equations.

• Automatic Landing System. In this chapter we will present the different control methods to be
used in the developing of the autolanding system. It is divided in:

– Dynamics model of the generic flying UAV. Definition of the longitudinal dynamics to be used in
the development of the landing system.
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– Conventional architecture: PID. Explanation of the PID controller, design and implementation.
Introduction of the wind perturbations.

– Modern configuration: H infinity method. Explanation, design and implementation, robustness
analysis.

• Final conclusions. We will present the conclusions reached after studying the different results ob-
tained, and give some new ideas about improvements and possible future stages for the project. There-
fore, it is divided in:

– Conclusions, studying separately the conventional and modern approach, and them comparing
both.

– Future development.

Besides, three appendixes with the Matlab scripts created in the development of the thesis will be added,
together with the bibliography used.





Chapter 2

Theoretical background

2.1 Aircraft dynamics

2.1.1 Previous considerations

Before developing the linear models of the aircraft dynamics (for copyright reasons we won’t be able to use
the nonlinear model, which would be more accurate and precise), we have to define how we are going to
locate the aircraft in space, what we are going to measure in terms of dynamics, and how we are going to
measure it, establishing the reference origin.

First of all, we are going to define two different set of axes: the Earth Axes, fixed to a point in the Earth
surface, which we will use for determining the position of the aircraft in the air, and the Body Fixed Axes,
fixed to the aircraft, that we are going to use to measure how disturbances modify the dynamics. Finally, a
brief description will be added including the force and moment variables that will be considering for devel-
oping the aircraft dynamic model.

We will follow the references [20] and [21] in the development of the concepts in these theoretical back-
ground. The nomenclature to be used in the definition of the parameters will be the one developed by
Hopkins (1970) as far as possible, since it is the mainly one used in [20].

Earth axes

Fist of all, we will use the convention for defining earth axes, determined by a set of orthogonal vectors
(o0x0y0z0) where o0 is the origin of the set, o0x0 determines the direction pointing to the North, o0y0 deter-
mines the direction pointing to the East, and o0z0 determines the direction pointing down along the gravity
vector.

The earth axes that we will use for flight is called datum–path earth axes, and is determined by (oExEyEzE),
parallel to (o0x0y0z0) but with the difference that oExE will points towards the direction of flight of the air-
craft, and that the origin of this set oE is placed in the atmosphere so it is coincident with the origin of
the aircraft body fixed axes. This set of axes will provide the inertial reference frame for short term aircraft
motion.

17
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Figure 2.1: Convention for the Earth Axes. Taken from [20]

Aircraft Body Fixed axes

Generalized body axes The most general way of expressing those is through the set of axes (oxbybzb),
where oxbyb defines the symmetry plane of the aircraft, oxb towards the direction of flight, oyb points towards
the right wing of the plane, and ozb downwards vertically. The origin o is usually arranged so it coincides
with the center of gravity of the aircraft.

Aerodynamic, wind, or stability axes We call in this way to the set which ox axis is parallel to the
total velocity vector V0.

In the following picture we can appreciate the convention for both the generalized body axes and the
wind axes:

Figure 2.2: Moving axes system. Taken from [20]

Perturbation variables

When we describe the motion of an aircraft, we use forces, moments, linear and angular velocities and at-
titude angles resolved into components with respect to the chosen aircraft fixed axis system. Considering
initially the flight to be rectilinear (although not necessarily level), steady and not accelerated, the sum of all
forces and moments will be zero: this condition is called trimmed equilibrium. When the plane is disturbed
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from equilibrium, the consequential motion is expressed in terms of perturbation variables:

Figure 2.3: Motion variables notation. Taken from [20]

Summarizing those variables in one table:

Table 2.1: Summary of motion variables. Taken from [20]

Variable Trimmed Perturbed
Aircraft axis ox oy oz ox oy oz
Force 0 0 0 X Y Z
Moment 0 0 0 L M N
Linear Velocity Ue Ve We U V W
Angular velocity 0 0 0 p q r
Attitude 0 θe 0 φ θ ψ

The sign convention for those variables is determined by a right handed axis system: a positive rotation
around the x axis will be right wing down from the pilot point of view, a positive rotation around y axis will
be nose up, and a positive rotation around z axis will be nose to the right from the pilot point of view, too.
These rotations around the x, y and z axis are called attitude of the aircraft, and are designed by the name
of roll (φ), pitch (θ), and yaw (ψ), respectively. They expressed the angular orientation of the aircraft body
fixed axis with respect to the earth axes (the equivalent to the Euler angles).

2.2 Nonlinear equations of motion

We will assume that the aircraft is rigid, so that the distance between any point on the aircraft won’t change
in flight. We will use the body axis system previously considered, and it is assumed that the inertial frame
of reference (the Earth) doesn’t accelerate (keeps fixed in space).

Now, we will study the translation and rotation motion of our rigid aircraft; knowing the Second Law of
Newton, we express:

F =
d

dt
(mVT ) (2.1)

M =
d

dt
(H) (2.2)
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where F is the sum of all external applied forces, M is the sum of all applied torques, and H is the angular
momentum.

As we are studying the effect of the perturbation on the aircraft dynamics, we will split the applied force
and torque in both an equilibrium and perturbation component:

F = F0 + ∆F =
d

dt
m(VT ) (2.3)

M = M0 + ∆M =
d

dt
m(H) (2.4)

where F0 and M0 are the equilibrium components, and ∆F and ∆M are the component of the pertur-
bation. Now, since we are using as inertial reference system the Earth axis system, we can re-express the
former equations with respect this system as follows:

∆F =
d

dt
m(VT )E (2.5)

∆M =
d

dt
(H)E (2.6)

Since equilibrium flight, by definition, has to be unaccelerated and straight along the path, the linear
velocity vector relative to the fixed space is invariant (meaning that we will have 0 acceleration, so F0 is 0),
and the angular velocity is 0 (so M0 is 0, too). Now, we will study both the translational and rotational
motion of the aircraft independently.

2.2.1 Translational motion

If we develop the rate of change of relative to the Earth axis system, we have the following expression:

d

dt
(VT )E =

d

dt
(VT + ω × rt) =

=
d

dt
VT +

d

dt
(ω × rt) =

=
d

dt
VT +

d

dt
w × rT + ω × d

dt
rT =

=
d

dt
VT + ω × VT

(2.7)

where ω is the angular velocity of the aircraft with respect to the body fixed system. Now, expanding the
terms in expression (2.7):

VT = Ui+ V j +Wk (2.8)

ω = Pi+Qj +Rk (2.9)
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d

dt
VT = U̇ i+ V̇ j + Ẇk (2.10)

ω × VT =

∣∣∣∣∣∣
i j k
P Q R
U V W

∣∣∣∣∣∣ = (QW −RV )i+ (RRU − PW )j + (PV − UQ)k (2.11)

Getting back to the Newton’s equation, we can express in a similar way the force perturbation:

∆F = ∆Fxi+ ∆Fyj + ∆Fzk (2.12)

And the equation of the force:

∆F = m
{

(U̇ +QW −RV )i+ (V̇ +RU − PW )j + (Ẇ + PV − UQ)k
}

(2.13)

Equaling each corresponding term:

∆Fx = m
(
U̇ +QW −RY

)
(2.14)

∆Fy = m
(
V̇ +RU − PW

)
(2.15)

∆Fz = m
(
Ẇ + PV − UQ

)
(2.16)

However, it is proposed to change the notation of the perturbed force components, making it coincide
with notation in table 2.1

∆Fx ≡ ∆X

∆Fy ≡ ∆Y

∆Fz ≡ ∆Z

(2.17)

And so, we finally have our nonlinear equations for the inertial terms in the translational motion of our
aircraft as follows:

∆X = m
(
U̇ +QW −RY

)
(2.18)

∆Y = m
(
V̇ +RU − PW

)
(2.19)

∆Z = m
(
Ẇ + PV − UQ

)
(2.20)
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2.2.2 Rotational motion

Focusing now on the rotational motion of the rigid aircraft, we have to develop now the expression for the
angular momentum, which is defined as:

H = Iω (2.21)

where I is the inertia matrix, defined as:

I =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.22)

Iii denotes a moment of inertia and Iij (for i 6= j) denotes a product of inertia. However, because of
aircrafts usually are symmetrical respect to the plane XZ, Iyx = Izy = Ixy = Iyz = 0. Therefore, we can
express the vector H as:

H = Iω =

 PIxx −QIxy −RIxz
−PIyx +QIyy −RIyz
−PIzx −QIzy +RIzz

 =

 PIxx −RIxz
QIyy

−PIzx +RIzz

 =

hxhy
hz

 (2.23)

Taken the equation (2.6), we can express the moment of the forces acting on our aircraft as follows:

∆M =
d

dt
H + ω ×H (2.24)

And, making use of the transformation expressions from body axes to the Earth axis system, we can
re-express the above equation as:

∆M = I

(
d

dt
ω + ω × ω

)
(2.25)

Since the cross product of two parallel vectors is 0:

ω × ω = 0 (2.26)

The value for the rate of change with respect to time of the angular velocity is known to be, according to
the notation that is being used:

d

dt
ω = Ṗ i+ Q̇j + Ṙk (2.27)
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And, finally, the cross product of ω and H is:

ω ×H =

 i j k
P Q R
hx hy hz

 (2.28)

where hx, hy, and hz are the components of the vector H, as given in the developed expression above.

Therefore, we can express the moment of the forces acting on the aircraft as:

∆M = I

(
d

dt
ω + ω × ω

)
+ ω ×H = I

d

dt
ω + ω ×H =

=
(
IxxṖ + hyR− hzQ

)
i+
(
IyyQ̇+ hxR− hzP

)
j +

(
IzzṘ+ hyP − hxQ

)
k

(2.29)

Equaling terms, in order to make the equality above clearer:

∆Mx =
(
IxxṖ + hyR− hzQ

)
(2.30)

∆My =
(
IyyQ̇+ hxR− hzP

)
(2.31)

∆Mz =
(
IzzṘ+ hyP − hxQ

)
(2.32)

And changing to the American usage, as we did with the translation motion equation:

∆Mx = ∆L ∆My = ∆M ∆Mz = ∆N (2.33)

where L, M and N are the moments about the rolling, pitching and yawing axes, respectively.

Finally, we can express the equations for the inertial terms in the rotational motion of an aircraft as:

∆L =
(
IxxṖ + hyR− hzQ

)
(2.34)

∆M =
(
IyyQ̇+ hxR− hzP

)
(2.35)

∆N =
(
IzzṘ+ hyP − hxQ

)
(2.36)
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Which can be reduced and simplified as follows:

∆L =
(
IxxṖ + hyR− hzQ

)
=

=
(
IxxṖ − IzxṘ

)
−RQIyy −Q (PIzx −RIzz) =

= IxxṖ − IzxṖ −RQIyy −QPIzx +QRIzz =

= IxxṖ − Izx
(
PQ+ Ṙ

)
+QR (Izz − Iyy)

(2.37)

The y axis term:

∆M =
(
IyyQ̇+Rhx − Phz

)
=

=
(
−IyxṖ + IyyṘ

)
+ (Rhx − Phz) =

= IyyQ̇+R (PIxx −RIxz)− P (PIzx −RIzz) =

= IyyQ̇+ PR (Ixx − Izz)− Ixz
(
R2 − P 2)

)
(2.38)

And the z axis term:

∆N =
(
IzzṘ+ Phy −Qhx

)
=

=
(
−IzxṖ + IzzṘ

)
+ (Phy −Qhx) =

= IzzṘ− IzxṖ + PQIyy − PQIxx +QRIxz =

= IzzṘ+ Ixz

(
QR− Ṗ

)
+ PQ (Iyy − Ixx)

(2.39)

Finally, grouping expressions (2.37), (2.38) and (2.39):

∆L = IxxṖ − Izx
(
PQ+ Ṙ

)
+QR (Izz − Iyy) (2.40)

∆M = IyyQ̇+ PR (Ixx − Izz)− Ixz
(
R2 − P 2

)
(2.41)

∆N = IzzṘ+ Ixz

(
QR− Ṗ

)
+ PQ (Iyy − Ixx) (2.42)

2.2.3 Gravitational terms

In section 2.2.1 we only took into account the inertial terms acting on the aircraft. However, to increase the
accuracy of our dynamic model we have to introduce the effect of gravity over the translation motion of the
aircraft.
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This is given by the expressions:

δX = mg sin Θ (2.43)

δY = −mg cos Θ sin Φ (2.44)

δZ = −mg cos Θ cos Φ (2.45)

where δX, δY , δZ are the components of the x, y and z axes of the gravitational force, g is the value of
the gravity at the height which the aircraft is flying, and Φ and Θ are the Euler angles for the x and y body
fixed axes, respectively.

2.2.4 Final expression for the nonlinear equations of the aircraft dynamics

Once we have obtained the gravitational and inertial terms for our equations of motion, we can define our
aircraft dynamics model to be, for six degrees of freedom:

X = ∆X + δX

Y = ∆Y + δY

Z = ∆Z + δZ

L = ∆L

M = ∆M

N = ∆N

(2.46)

Expanding (2.46):

X ≡ max = m
(
U̇ +QW −RV + g sin Θ

)
Y ≡ may = m

(
V̇ +RU − PW − g cos Θ sin Φ

)
Z ≡ maz = m

(
Ẇ + PV −QU − g cos Θ cos Φ

)
L = IxxṖ − Izx

(
PQ+ Ṙ

)
+QR (Izz − Iyy)

M = IyyQ̇+ PR (Ixx − Izz)− Ixz
(
R2 − P 2)

)
N = IzzṘ+ Ixz

(
QR− Ṗ

)
+ PQ (Iyy − Ixx)

(2.47)

And we may use also the expression that relates the angular velocity components that represent the rota-
tion of the body – fixed axes with the Earth axes. Those are given as a function of the Euler angles as follows:

P = Φ̇− Ψ̇ sin Θ

Q = Θ̇ cos Φ + Ψ̇ cos Θ sin Φ

R = −Θ̇ sin Φ + Ψ̇ cos Θ cos Φ
(2.48)
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2.3 Linearization of the equations of motion

We have to keep in mind that our aim with all these equations is to establish an accurate model for the
aircraft dynamics that can be used to control our aircraft. Therefore, we are interested in know how we
can model the perturbations suffered by our aircraft from a reference point of equilibrium, i.e., how we can
control the changes in attitude and altitude of the aircraft to make it fly in the desired conditions imposed
by its controller.

Now that we have defined the dynamic model of our aircraft, we just need to decompose the variables
obtained in two terms, the equilibrium and the perturbation term, and to re-express equatio (2.47) to repre-
sent the aircraft dynamics of the perturbations.

We will decompose each variable as follows:

U ≡ U0 + u

R ≡ R0 + r

M ≡M0 +m

etc

(2.49)

where the subindex 0 indicates the trim or equilibrium term, and the lower case letter denotes the per-
turbation term, assumed to be much smaller.

Now we will determine the expressions for the perturbation terms. The procedure that is going to be
followed is simply to expand each term in equation (2.47) and obtain the equivalent expression of the per-
turbation variable. It is going to be exemplified with force X :

X = m
(
U̇ +QW −RV + g sin Θ

)
(2.50)

Expanding each variable:

X = X0 + x =

= m
(
U̇0 + u̇+ (Q0 + q) (W0 + w)− (R0 + r) (V0 + v) + g sin (Θ0 + θ)

) (2.51)

We will simplify equation (2.51) considering that the products of the perturbation terms are negligible,
that the cosine can be approximated to 1 and the sine to the values of the angle itself, and that in trim
conditions there can be no acceleration:

X = X0 + x =

= m (u̇+Q0W0 + qW0 + wQ0 −R0V0 − rV0 −R0v + g sin Θ0)
(2.52)
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In equation (2.52) the equilibrium component of force X can be easily identified to be:

X0 = m (Q0W0 −R0V0 + g sin Θ0) (2.53)

Therefore, it can be re-expressed as:

X = X0 +m (u̇+ qW0 + wQ0 − rV0 −R0v + g cos Θ0θ) (2.54)

And from here to the perturbation term of the force:

X −X0 = x = dX = m (u̇+ qW0 + wQ0 − rV0 −R0v + g cos Θ0θ) (2.55)

If we apply these steps to the rest of the force and moment terms, we will obtain the expressions repre-
sented hereunder.

First of all, regarding the translation motion:

x = dX = m (u̇+ qW0 + wQ0 − rV0 −R0v + g cos Θ0θ) (2.56)

y = dY = m (v̇ + U0r +R0u−W0p− P0w − (g cos Θ0 cos Φ0)φ+ (g cos Θ0 sin Φ0) θ) (2.57)

z = dZ = m (ẇ + V0p+ P0v − U0q −Q0u− (g cos Θ0 sin Φ0)φ+ (g sin Θ0 cos Φ0) θ) (2.58)

Secondly, regarding rotational motion:

l = dL = Ixxṗ− Izxṙ − Izx (P0q +Q0p) + (Izz − Iyy) (P0r +R0p) (2.59)

m = dM = Iyy q̇ − Ixz (2R0r − 2P0p) + (Ixx − Izz) (P0r +R0p) (2.60)

n = dN = Izz ṙ − ixz ṗ+ (Iyy − Ixx) (P0q +Q0p) + Ixz (Q0r +R0q) (2.61)

In this way, we have obtained the linear dynamic equations for six degrees of freedom, which can be used
for modeling and controlling a given aircraft.

However, we may also take into account expression (2.48), which shows the relationship between the
angular velocities with the Euler angles. Applying the same procedure, we reach the following expressions:

p = ψ̇ − Γ̇ sin Θ0 − θ
(

Γ̇ cos Θ0

)
(2.62)
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q = Θ̇ cos Φ0 − θ
(

Ψ̇ sin Φ0 sin Φ0

)
+ Ψ̇ sin Ψ0 cos Θ + φ

(
Ψ̇0 cos Φ0 cos Θ0 − Θ̇0 sin Φ0

)
(2.63)

r = Ψ̇ cos Θ0 cos Φ0 − φ
(

Ψ̇0 sin Φ0 cos Θ0 + Ψ̇0 cos Φ0

)
− Θ̇0 sin Φ0 − θ

(
Ψ̇0 cos Φ0

)
(2.64)

And we may take into account the following conditions, that will help us simplify these long equations:

• Straight flight implies Ψ̇0 = Θ̇0 = 0.

• Symmetric flight implies Ψ0 = V0 = 0.

• Flying with wing levels (zero bank angle) implies Φ0 = 0.

2.4 Simplifications of the linear equations of motion

We will consider a straight, symmetric, and wings level flight in order to simplify the equations and make it
easier for us to calculate and operate with the linear equations of motion obtained in section 2.3. Besides,
these conditions will be really important for us, since they determine the trim flight conditions of the aircraft,
the equilibrium position during flight that we want to maintain.

Therefore, during trim, we have that:

• Φ0 = 0.

• Ψ0 = V0 = 0 .

• Φ̇0 = Θ̇0 = 0.

• P0 = R0 = Q0 = 0 .

Also, we can rewrite and group equations (2.56), (2.57), (2.58), (2.59), (2.60), (2.61), (2.62), (2.63) and
(2.64) as the following expressions:

x = dX = m (u̇+W0q + g cos Θ0θ)

y = dy = m (v̇ + U0q −W0p− g cos Θ0Φ)

z = dz = m (ẇ − U0q + g sin Θ0θ)

(2.65)

Then:

l = dL = Ixxṗ− Izxṙ
m = dM = Iyy q̇

n = dN = Izz ṙ − Ixz ṗ
(2.66)

And, finally:

p = φ̇− Ψ̇ sin Θ0

q = Θ̇

r = Ψ̇ cos Θ0

(2.67)
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From this simplification, we can observe that there are some equations with similar structures; indeed,
we can separate expressions (2.65) and (2.66) in two different groups, according to these similarities:

x = dX = m (u̇+W0q + g cos Θ0θ)

z = dz = m (ẇ − U0q + g sin Θ0θ)

m = dM = Iyy q̇

(2.68)

And:

y = dy = m (v̇ + U0q −W0p− g cos Θ0Φ)

l = dL = Ixxṗ− Izxṙ
n = dN = Izz ṙ − Ixz ṗ

(2.69)

Independent variables in equations (2.68) are u, w, q, and θ, confined to the plane XBZB , so they are
said to represent the longitudinal motion of the aircraft, while independent variables in equations (2.69) are
v, p, φ and r, which represents the sideslip, rolling and yawing movement, so they are said to represent the
lateral motion of the aircraft.

We have to keep in mind that this separation is done only due to the trim conditions assumed, which had
the aim of simplify the equations of motion obtained.

2.5 Obtaining of the state equations

2.5.1 Expansion of the linear equations

Longitudinal motion

To do this expansion, we will use a Taylor series about the left-hand side of the equations of motion. For
example, taken the perturbed force in the z axis:

z =
∂Z

∂u
u+

∂Z

∂u̇
u̇+

∂Z

∂w
w +

∂Z

∂ẇ
ẇ +

∂Z

∂q
q +

∂Z

∂q̇
q̇ +

∂Z

∂δE
δE +

∂Z

∂ ˙δE
˙δE + ... (2.70)

The expansion is done with all the independent variables that we find in the expression for the longitudinal
motion, taken into account their derivatives too. We omitted the Euler angles because their contribution is
generally insignificant. The final three points indicate that we can add all those actuators that we consider
that may affect to the perturbed force z. In this case, we will take only the elevator, but we could add too
the symmetrical spoilers, flaps, or changes in thrust.

So, we can re-express the expression (2.68) as:
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∂X

∂u
u+

∂X

∂u̇
u̇+

∂X

∂w
w +

∂X

∂ẇ
ẇ +

∂X

∂q
q +

∂X

∂q̇
q̇ +

∂X

∂δE
δE +

∂X

∂δ̇E
˙δE =

= m (u̇+W0q + g cos Θ0θ)

∂Z

∂u
u+

∂Z

∂u̇
u̇+

∂Z

∂w
w +

∂Z

∂ẇ
ẇ +

∂Z

∂q
q +

∂Z

∂q̇
q̇ +

∂Z

∂δE
δE +

∂Z

∂δ̇E
˙δE =

= m (ẇ − U0q + g sin Θ0θ)

∂M

∂u
u+

∂M

∂u̇
u̇+

∂M

∂w
w +

∂M

∂ẇ
ẇ +

∂M

∂q
q +

∂M

∂q̇
q̇ +

∂M

∂δE
δE +

∂M

∂ ˙δE
δ̇E =

Iyy q̇

(2.71)

For simplification of the above expression, we will make use of the following notation:

1

m

∂X

∂j
= Xj

1

m

∂Z

∂j̇
= Zj̇

1

Iyy

∂M

∂j
= Mj (2.72)

where Xu, Zẇ,Mq are called stability derivatives.

So, applying the stability derivatives notation to the expression (2.71):

Xuu+Xu̇u̇+Xww +Xẇẇ +Xqq +Xq̇ q̇ +XδEδE +Xδ̇E
˙δE =

= m (u̇+W0q + g cos Θ0θ)

Zuu+ Zu̇u̇+ Zww + Zẇẇ + Zqq + Zq̇ q̇ + ZδEδE + Zδ̇E
˙δE =

= m (ẇ − U0q + g sin Θ0θ)

Muu+Mu̇u̇+Mww +Mẇẇ +Mqq +Mq̇ q̇ +MδEδE +Mδ̇E
˙δE =

Iyy q̇

(2.73)

And the Euler angles’ equation is usually added, that introduces the relationship among the angular
velocity term in expression (2.73) and the Euler angles q = Θ̇.

Lateral motion

If we apply the same procedure, we obtain the following expressions, keeping in mind that this time the
independent variables are v, r and p, and that the actuators that will contribute the most will be the rudder
and the aileron, expressed as δT and δA , respectively.
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∂Y

∂v
v +

∂Y

∂v̇
v̇ +

∂Y

∂r
r +

∂Y

∂ṙ
ṙ +

∂Y

∂p
p+

∂Y

∂ṗ
ṗ+

∂Y

∂δR
δR +

∂Y

∂δ̇R
δ̇R +

∂Y

∂δA
δA +

∂Y

∂δ̇A
δ̇A =

= m (v̇ + U0q −W0p− g cos Θ0Φ)

∂L

∂v
v +

∂L

∂v̇
v̇ +

∂L

∂r
r +

∂L

∂ṙ
ṙ +

∂L

∂p
p+

∂L

∂ṗ
ṗ+

∂L

∂δR
δR +

∂L

∂δ̇R
δ̇R +

∂L

∂δA
δA +

∂L

∂δ̇A
δ̇A =

= Ixxṗ− Izxṙ

∂N

∂v
v +

∂N

∂v̇
v̇ +

∂N

∂r
r +

∂N

∂ṙ
ṙ +

∂N

∂p
p+

∂N

∂ṗ
ṗ+

∂N

∂δR
δR +

∂N

∂δ̇R
δ̇R +

∂N

∂δA
δA +

∂N

∂δ̇A
δ̇A =

= Izzṙ − Ixz ṗ

(2.74)

And obtaining the stability derivatives such that:

1

m

∂Y

∂j
= Yj

1

Ixx

∂L

∂j̇
= Lj

1

Izz

∂N

∂j
= Nj (2.75)

We can obtain:

Yvv + Yv̇ v̇ + Yrr + Yṙ ṙ + Ypp+ Yṗṗ+ YδRδR + Yδ̇R
˙δR + YδAδA + Yδ̇A δ̇A =

= m (v̇ + U0q −W0p− g cos Θ0Φ)

Lvv + Lv̇ v̇ + Lrr + Lṙ ṙ + Lpp+ Lṗṗ+ LδRδR + Lδ̇R
˙δR + LδAδA + Lδ̇A δ̇A =

= Ixxṗ− Izxṙ

Nvv +Nv̇ v̇ +Nrr +Nṙ ṙ +Npp+Nṗṗ+NδRδR +Nδ̇R
˙δR +NδAδA +Nδ̇A δ̇A =

= Izzṙ − Ixz ṗ

(2.76)

And here again it is introduced too the Euler angles’ equation for the angular velocity terms in (2.76):
p = φ̇− Ψ̇ sin Θ0 and r = cos Θ0.

2.5.2 Equations of the longitudinal motion

In expression (2.73), we may simplify the equations without loss of generality by considering thatXu̇, Xẇ, Xq, Xq̇,
Xδ̇E

, Zu̇, Zẇ, Zq, Zq̇, Zδ̇E ,Mu̇,Mq̇,Mδ̇E
are often insignificant, and so they may be ignored.

Therefore, we have the final expression for the longitudinal motion of the aircraft for straight, symmetric
and wings level flight is:
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u̇ = Xuu+Xww −W0q − g cos Θ0θ +XδEδE

ẇ = Zuu+ Zww + U0q − g sin Θ0θ + ZδEδE

q̇ = Muu+Mww +Mẇẇ +Mqq +MδEδE

Θ̇ = q

(2.77)

In order to eliminate the dotted term in the expression, since they are not admitted in the state equation,
we substitute for ẇ and we obtain:

q̇ = Muu+Mww +MẇZuu+ Zww + U0q − g sin Θ0θ + ZδEδE +Mqq +MδEδE (2.78)

Grouping terms, we have:

q̇ = (Mu +MẇZu)u+ (Mw +MẇZw)w + (Mq +MẇU0) q − g sin Θ0θ + (ZδE +MẇMδE ) δE (2.79)

Calling:

M̃u = Mu +MẇZu

M̃w = Mw +MẇZw

M̃q = Mq +MẇU0

M̃δE = ZδE +MẇMδE

(2.80)

And substituting in (2.79), we will have this expression in an appropriate form for building the state
equation in future steps:

q̇ = M̃uu+ M̃ww + M̃qq − g sin Θ0θ + M̃δEδE (2.81)

2.5.3 Equations of lateral motion

In this case, the terms to be neglected are Yv̇, Yp, Yẇ, Yr, Yṙ, Yδ̇A , YδA , Nδ̇R , Lv̇, Lṙ, lṗ, Lδ̇A , L ˙deltaR
, Nv̇, Nṙ, Nṗ,

Nδ̇A , Nδ̇R and so we can obtain the equations for the lateral motion of the aircraft for straight, symmetric
and wings level flight:
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v̇ = Yvv − U0r +W0p+ g cos Θ0Φ + YδRδR

ṗ = Lvv + Lrr + Lpp+
Izx
Ixx

ṙ + LδRδR + LδAδA

ṙ = Nvv +Nrr +Npp+
Ixz
Izz

ṗ+NδRδR +NδAδA

φ̇ = p+
sin Θ0

cos Θ0
r = p+ r tan Θ0

Ψ̇ =
r

cos Θ0

(2.82)

In order to eliminate the dotted terms in the angular velocity terms expressions, we will design:

L
′

v = Lv + IBNv

L
′

p = Lp + IBNp

L
′

r = Lr + IBNr

L
′

δR = LδR + IBNδR

L
′

δA = LδA + IBNδA

N
′

v = Nv + IALv

N
′

p = Np + IALp

N
′

r = Nr + IALr

N
′

δR = NδR + IALδR

N
′

δA = NδA + IALδA

(2.83)

where

IB =
Izx
Ixx

IA =
Ixz
Izz

(2.84)

And in this way expression (2.82) can be re-expressed as:

v̇ = Yvv − U0r +W0p+ g cos Θ0Φ + YδRδR

ṗ = L
′

vv + L
′

rr + L
′

pp+ L
′

δRδR+ L
′

δAδA

ṙ = N
′

vv +N
′

rr +N
′

pp+N
′

δRδR+N
′

δAδA

φ̇ = p+ r tan Θ0

Ψ̇ =
r

cos Θ0

(2.85)
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2.5.4 Stability axis system

If the axis system is oriented such that W0 is 0, we would orientate the XB axis (from the body–fixed axes
system) pointing into the relative wind, so the velocity vector would be aligned such that U0 would be VT .
This orientation is called stability axis system, where the relationship:

Θ0 = γ0 + α0 (2.86)

can be found.

All perturbations are still measured in a body–fixed frame of reference. However, the alignment of the
stability axis system with the body–fixed axis changes depending on the alteration of the trim conditions.
When the aircraft is disturbed, the stability axes rotate with the airframe, and so, the XS axis may or may
not be parallel to the relative wind while the aircraft is being disturbed, as represented in the following figure:

Figure 2.4: Direction of stability axes with respect to the relative wind in a) Steady flight and b) Perturbed
flight. Taken from [21]

2.5.5 State and output equations for the longitudinal motion

We know that the state equation is expressed to be:

ẋ = Ax+Bu (2.87)

where x is the state vector, u the control vector, A the (n × n) state matrix, and B the (n × m) input
matrix.

Changing expression (2.77) to the stability axis system, we have that:
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u̇ = Xuu+Xww −W0q − g cos γ0θ +XδEδE

ẇ = Zuu+ Zww + U0q − g sin γ0θ + ZδEδE

q̇ = M̃uu+ M̃ww + M̃qq − g sin Θ0θ + M̃δEδE

θ̇ = q

(2.88)

And we can define vector x, ẋ, and u to be:

x =


u
w
q
θ

 ẋ =


u̇
ẇ
q̇

θ̇

 u = δE (2.89)

And therefore the matrices A and B can be easily obtained from expression (2.88):

A =


Xu Xw 0 −g cos γ0
Zu Zw U0 −g sin γ0
M̃u M̃w M̃q −gMẇ sin γ0
0 0 1 0

 B =


0
ZδE
M̃δE

0

 (2.90)

Finally, we can express the state equation for the longitudinal motion of an aircraft in steady, symmetric
and wings level flight as:


u̇
ẇ
q̇

θ̇

 =


Xu Xw 0 −g cos γ0
Zu Zw U0 −g sin γ0
M̃u M̃w M̃q −gMẇ sin γ0
0 0 1 0



u
w
q
θ

+


0
ZδE
M̃δE

0

 δE (2.91)

Regarding the output equation, it has to be of the form:

y = Cx+Du (2.92)

where y is the output vector, C is the (r × n) output matrix and D is the (r × m) direct matrix. Since we
will apply the aircraft dynamic equations to a control problem, we are interested in that the output vector
is the same than the state vector, i. e.:

y = Cx (2.93)
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Due to this, this expression is quite easy to determine:

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



u
w
q
θ

 (2.94)

Although the matrix C will change depending on the output variables of the problem in which we are
interested.

2.5.6 State and output equations for the lateral motion

First of all, we express equation (2.85) with respect the stability axis system:

v̇ = Yvv − U0r +W0p+ g cos γ0Φ + YδRδR

ṗ = L
′

vv + L
′

rr + L
′

pp+ L
′

δRδR + L
′

δAδA

ṙ = N
′

vv +N
′

rr +N
′

pp+N
′

δRδR +N
′

δAδA

φ̇ = p+ r tan γ0

Ψ̇ =
r

cos γ0

(2.95)

This time the vectors are:

x =


v
p
r
φ
ψ

 ẋ =


v̇
ṗ
ṙ

φ̇

ψ̇

 u =

[
δR
δA

]
(2.96)

And the matrices A and B:

A =



Yv 0 −U0 g cos γ0 0

L
′

v L
′

p L
′

r 0 0

N
′

v N
′

p N
′

r 0 0

L
′

v L
′

p L
′

r 0 0
0 1 tan γ0 0 0
0 0 sec γ0 0 0

 B =


YδR YδA
L

′

δR
L

′

δA

N
′

δR
N

′

δA
0 0
0 0

 (2.97)

And so, the state equation for the lateral motion of an aircraft, for symmetric, steady and wings level
flight, is:
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
v̇
ṗ
ṙ

φ̇

ψ̇

 =



Yv 0 −U0 g cos γ0 0

L
′

v L
′

p L
′

r 0 0

N
′

v N
′

p N
′

r 0 0

L
′

v L
′

p L
′

r 0 0
0 1 tan γ0 0 0
0 0 sec γ0 0 0




v
p
r
φ
ψ

+


YδR YδA
L

′

δR
L

′

δA

N
′

δR
N

′

δA
0 0
0 0


(
δR
δA

)
(2.98)

As for the output equation, following the same reasoning than for the longitudinal motion, we will have:

y = Cx =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



v
p
r
φ
ψ

 (2.99)

2.5.7 Final considerations

Now that we have properly determined the dynamics model of the aircraft, we will have to determine whether
the state vector is appropriate to accurately monitoring the aircraft operation that we want to control.

As we are interested in being able to measure and control not only the horizontal displacement but the
vertical motion too, since we will design the automatic landing system for the aircraft, we will modify the
vector to control (2.89) to include the angle of attack. This can be easily obtained:

tanα =
w

U0
(2.100)

which can be simplified, for small angles, to:

α =
w

U0
(2.101)

And so, from the heave velocity we obtain the angle of attack state expression:

α̇ =
ẇ

U0
=
Zu
U0
u+ Zw

w

U0
+ q − g sin γ0

U0
θ +

ZδE
U0

δE (2.102)

Changing the notation:

α̇ = Z∗uu+ Zαα+ q − g sin γ0
U0

θ + Z∗δEδE (2.103)
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Therefore, we can re-express the state equation of the longitudinal motion of the aircraft for the landing
phase obtained in equation (2.91) as:


u̇
α̇
q̇

θ̇

 =


Xu U0Xα 0 −g cos γ0
Z∗u Zα 1 g sin γ0

U0

M̃u U0M̃α M̃q −gMẇ sin γ0
0 0 1 0



u
α
q
θ

+


0
Z∗δE
M̃δE

0

 δE (2.104)

We will suppose that the alignment with the runway was already done in prior phases of the flight.





Chapter 3

Automatic Landing System

In this chapter, it will be developed the automatic landing system of the UAV. Once we have the dynamics of
the aircraft to be modeled, we will have to establish which approach we will consider to control the flight of
the drone during the landing phase. We will consider two different techniques: one based on the conventional
control theory architectures and another based on the newer advances.

3.1 Dynamics model of the generic flying wing UAV

For this work we will make use of the following longitudinal dynamics model, corresponding to a generic
flying wing UAV in nominal conditions of U0 = 15m/s and h0 = 10m. This was taken from [22]:


u̇
α̇
q̇

θ̇

 =


−1.3374e− 02 1.3589e+ 00 −9.0703e+ 00 0
1.2592e− 01 −1.1151e+ 01 −1.4134e+ 00 −5.0437e+ 01

0 0 0 1
−7.2028e+ 00 1.3765e+ 03 2.6574e− 01 −3.5594e+ 01



u
α
q
θ

+


−6.4712e− 03
3.6575e− 02

0
−7.7492e+ 00

 δE
(3.1)

3.2 Conventional architecture: PID

3.2.1 Description of the method

Our first configuration will be based on the PID controller, a control loop feedback mechanism which consists
of the application of proportional, integral, and derivative gains to achieve the desired performance and to
meet the design requirements, whose theory was developed along the first decades of the XXth century.

We will follow the glide - path - coupled control system found in McLean. He makes use of a pitch attitude
control system and a pitch rate SAS inner loop to control the changes in the angle of attack. Those changes
may arise when using the elevator to drive the aircraft onto the desired glide path.

40
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Figure 3.1: McLean’s control loop for the landing phase of the aircraft. Taken from [21]

For our case, the objective of the control system depicted in figure 3.1 will be to make the drone descend
following a continuous slope of a determined angle. The geometric representation of the trajectory, for a glide
path of 2.5◦, can be seen in the following images 3.2, 3.3 and 3.4:

Figure 3.2: Glide path geometry. Taken from [21]

Figure 3.3: Aircarft below glide path geometry. Taken from [21]
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Figure 3.4: Slant range definition. Taken from [21]

Although for this first control architecture we will keep a glide path angle of 2.5◦ as specified in McLean,
we will introduce a few changes to the model. First of all, in order to make the system non-dependent of an
ILS for landing, which may reduce the application possibilities of the drone, we will suppress the glide path
receiver term included in McLean. Since we already know the drone position at each instant and the glide
path angle that we want it to follow, with those three elements it would be possible to calculate the distance
from the aircraft to the landing point, and therefore make it possible to perform an accurate automatic
guidance and control during the landing phase with no need of an ILS.

Then, we realize that the variable R, the distance from the aircraft to the runway threshold, depends upon
time. Therefore, in order to solve this problem, we will add a gain multiplying the 57.3/R term of value R.
In this way, no matter which value R takes along time, because we compensate with the next term we would
be simulating in the model a constant value of 1 m. However, in reality R would be changing according to
the real distance between the aircraft and the landing point. In this way it gets reflected in the model, but
we don’t have to calculate its value for each time period.

Finally, we will suppress the T1 and T2 terms that appears in the glide path coupled controller, since for
this case they were considered to have any remarkable effect in improving the response characteristics of the
signal.

The design process that we will have to carry out will consist of finding the unknown values for the gains
in order to stabilize the system. Besides, we will study how the control system behaves in two different sce-
narios: for the drone flying in clear sky atmospheric conditions and for the drone flying in windy atmospheric
conditions.

The Matlab scripts developed can be found on Appendix A A.1, A.2. and A.3.

3.2.2 Clear sky flight configuration

First of all, we will build our block diagram in Simulink.
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Figure 3.5: Simulink block diagram of the traditional autolanding in clear sky flight conditions. Own source.

Now, we will obtain the values for K Q , K Theta , K A and K C . In order to do so, we will solve the
different loops in the diagram; however, the values obtained will be used as starting points to know how to
stabilize the response: in some cases we will need to iterate until reaching the gain values that best define
the response that we are looking for.

We start obtaining the value for K Q solving the inner loop in the diagram.

Figure 3.6: Q state loop. Own source.

In order to do so, we will make use of the sisotool function in Matlab: with this function we are able
to see the response of the system to a unit step. We have to keep in mind that the response to be showed
with sisotool won’t be the same as in our diagram, since the input signal will be different. For K Q = −1 we
obtain the following response:
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Figure 3.7: Pitch rate response, clear sky flight. Own source.

As for the second loop, corresponding to the pitch angle state:

Figure 3.8: Pitch angle state loop. Own source.

In this case, we will need to define the values of K Theta and K A. Therefore, we will make use of the
Routh-Hurwitz stability criteria in order to solve this problem. In order to do so, we will find an equivalent
and simplified transfer function of 4th order with the most significant poles and zeros of the pitch angle closed
loop transfer function: in this way, it will be easier for us to study the sign of the Routh-Hurwitz matrix’s
major minors.

We will assign an initial value to K Theta in order to find the numerical value of K A; for K Theta = 1,
a possible solution is K A = − 3, and with these parameters we obtain a pitch angle response as follows:
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Figure 3.9: Pitch angle response, clear sky flight. Own source.

The last constant to solve will be K C, relative to the glide path controller. Since we have already defined
all the other unknowns, the strategy to design the value for K C will be based on trying with several numbers
until reaching the desiring response characteristics.

Figure 3.10: Scope situation in the diagram in order to obtain the output signal for the distance between the
desired glide slope and the actual glide slope. Own source.

If we introduce K C = 4, we obtain the following output signal for the distance between the desired glide
slope and the actual glide slope:
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Figure 3.11: Distance to the glide path response, clear sky flight. Own source.

The values designed for the controller are summarized in the following table:

Table 3.1: Controller gains for the conventional configuration of the automatic landing system. Own source.

Element Gain
K Q −1
K Theta 1
K A −3
K C 4

Now, if we change the glide angle to 7, 12 and 15◦, in order to see how the drone behavior changes when
modifying the design conditions:

Figure 3.12: Distance to the glide path response, clear sky flight, 7◦. Own source.
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Figure 3.13: Distance to the glide path response, clear sky flight, 12◦. Own source.

Figure 3.14: Distance to the glide path response, clear sky flight, 15◦. Own source.

3.2.3 Windy flight conditions

In this scenario, we will include the effect of atmospheric wind on the aircraft. We will consider two different
scenarios:

• Constant wind perturbation. We will introduce a constant wind velocity in the model.

• Random wind perturbation. This will be simulated with the Dryden wind turbulence model.

These perturbation terms would be represented in our state - space equations as:
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
v̇
ṗ
ṙ

φ̇

ψ̇

 =



Yv 0 −U0 g cos γ0 0

L
′
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′
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′

r 0 0

N
′
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′
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′

r 0 0

L
′
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′
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r 0 0
0 1 tan γ0 0 0
0 0 sec γ0 0 0




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ψ

+


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L

′
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′

δA
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′

δR
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′

δA
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0 0


[
δR
δA

]
+


Xu xα
Z∗u Z∗α
Mu Mα

0 0

[ugαg
]

(3.2)

where ug is the x component of the wind turbulence vector, and αg is obtained making use of the approx-
imation:

αg = tan
wg + w

U0
≈ wg + w

U0
(3.3)

where wg is the y component of the wind turbulence vector, w the vertical speed of the aircraft, and U0

the module of the aircraft speed in t = 0.

Constant wind effect

We need to introduce two constant inputs in the dynamics model, which will correspond to the velocity
component of the x and z axes:

Figure 3.15: Simulink block diagram of the traditional autolanding in constant wind flight conditions. Own
source.

We obtain the following responses for the pitch rate and pitch angle:
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Figure 3.16: Pitch rate track response in constant wind flight conditions. Own source

Figure 3.17: Pitch angle track response in constant wind flight conditions. Own source.

In figure 3.16 we can appreciate the effect of the perturbations , where multiple micro-oscillations appear
in the response, of bigger amplitude than the oscillations that appeared in the clear sky flight conditions
(figure 3.8).

Finally, as for the distance to the glide path:
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Figure 3.18: Distance to the glide path response in constant wind flight conditions. Own source.

Once more, if we include the responses obtained for the different designed glide angles, we obtain:

Figure 3.19: Distance to the glide path response, constant wind flight, 7◦. Own source.
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Figure 3.20: Distance to the glide path response, constant wind flight, 12◦. Own source.

Figure 3.21: Distance to the glide path response, constant wind flight, 15◦. Own source.

Random wind effect

This time, we will need to implement in our model the discrete Dryden (+q +r) block, found in the Aerospace
Blockset (Simulink Library). The q and r terms make reference to the vertical and lateral turbulence angular
rates of the perturbations, respectively.
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Figure 3.22: Simulink block diagram of the traditional autolanding in random wind flight conditions. Own
source.

We introduce the state velocity and height as input, as well as the Direction Cosine Matrix (DCM),
which gives the orientation of the wind gust with respect the aircraft. As output we have the wind tur-
bulence lineal and angular velocities, although we will only make use of the lineal one. Besides, as we can
appreciate, in spite the fact that the Dryden model gives us the 3D components of the wind velocity, we
will consider only the x and z coordinates: we are working with the longitudinal dynamics of the drone, in 2D.

We will keep the same gain values calculated in the clear sky scenario, and change only the DCM. In this
way we will be able to study the behavior of the control loop under different wind orientation scenarios.

Table 3.2: Wind gust orientations to be applied.

Name Description DCM

I1 Aircraft and wind gust x, y and z axis aligned, same sense

1 0 0
0 1 0
0 0 1


I2 Aircraft and wind gust x, y and z axis aligned, opposite sense

−1 0 0
0 −1 0
0 0 −1


I3 x axis aligned, random orientation in the y and z axis

1 0 0
0 0.1 0.8
0 −0.7 −0.2


I4 y axis aligned, random orientation in the x and z axis

 0.5 0 0.8
0 1 0
−0.4 0 −0.2


I5 z axis aligned, random orientation in the x and y axis

 0.5 0.1 0
−0.4 −0.7 0

0 0 1


I6 x, y and z axis unaligned, random orientation

−0.1 0.4 −0.3
0.5 −0.8 −0.7
0.2 −0.6 0.9


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The following images depict the x and z components of the wind velocity outputs for each one of the cases
determined in table 3.2:

(a) Wind velocity outputs for I1. (b) Wind velocity outputs for I2.

(c) Wind velocity outputs for I3. (d) Wind velocity outputs for I4.

(e) Wind velocity outputs for I5. (f) Wind velocity outputs for I6.

Figure 3.23: X and z wind gust velocity component outputs for each orientation in random wind flight
conditions. Own source.

And we obtain the following responses:
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(a) Pitch rate track response for I1. (b) Pitch rate track response for I2.

(c) Pitch rate track response for I3. (d) Pitch rate track response for I4.

(e) Pitch rate track response for I5. (f) Pitch rate track response for I6.

Figure 3.24: Pitch rate track response in random wind flight conditions. Own source.

Where it can be clearly seen the effect of the perturbation in the signal. As for the pitch angle response,
we obtain:
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(a) Pitch angle track response for I1. (b) Pitch angle track response for I2.

(c) Pitch angle track response for I3. (d) Pitch angle track response for I4.

(e) Pitch angle track response for I5. (f) Pitch angle track response for I6.

Figure 3.25: Pitch angle track response in random wind flight conditions. Own source.

And finally, as for the distance response between the actual and desired glide slope trajectory, we have:
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(a) Distance to the glide path response for I1. (b) Distance to the glide path response for I2.

(c) Distance to the glide path response for I3. (d) Distance to the glide path response for I4.

(e) Distance to the glide path response for I5. (f) Distance to the glide path response for I6.

Figure 3.26: Distance to the glide path response plots for a glide angle of 2.5◦ in random flight conditions,
I1 - I2 - I3 - I4 - I5 and I6 alignments. Own source.

To conclude, if we keep one alignment constant, we can study how the response changes when modifying
the glide angle (as already done with the previous flight configurations). If we keep the I6 alignment, we
obtain:
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Figure 3.27: Distance to the glide path response, random wind flight, 7◦. Own source.

Figure 3.28: Distance to the glide path response, random wind flight, 12◦. Own source.
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Figure 3.29: Distance to the glide path response, random wind flight, 15◦. Own source.

3.3 Modern configuration: H infinity method

3.3.1 Description of the method

The second method to be considered will be based on the newer approaches in control theory. In our case,
we will make use of the Hinf method (H infinity), also called gamma - attenuation problem. This theory
was developed in the late 1980s and at the beginning of the 1990, and consists on the determination of the
controller to achieve stabilization with a guaranteed performance. It is a really powerful tool widely used,
since it helps the designer to optimize robust performance and robust stabilization.

The process is represented as follows:

Figure 3.30: Hinf problem loop. Taken from [22].

In the input vector w we include all those exogenous inputs to be considered in the problem: reference
signals and disturbances. In the input vector u we include the manipulated variables. As for the outputs
vectors, in z we will include the error signals that we want to minimize, and in v the measured variables that
we will use to control the system.
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P is the plant model of our system, and K is the controller to be found. Both are matrices.

If we suppose that our dynamics model has been linearized for a pitch angle value coincident with the
glide path, the Hinf will find the controller that makes sure that our drone follows this trajectory with
the specifications indicated, minimizing the distance between the desired glide slope and the actual UAV’s
trajectory. For this control method, we will change the glide path angle to 12, so we study more landing
trajectories scenarios. We have defined our input and output vectors to be:

w =

nwghc
ns

 (3.4)

where nwg comprises the turbulence noise terms nu, nw , hc is the commanded altitude above the glide
slope (of value 0), and ns represents the sensor noises nα, nq, nθ, nh.

z =

[
z

′

e

δ

]
(3.5)

where z
′

e is the error to minimize (errorh), and δ is the error associated to the actuator position.

v =


α+ nα
q + nq
θ + nθ
h+ nh

 (3.6)

where the measured vector will consist of the angle of attack, pitch rate, pitch angle, the height, the
aircraft altitude, and their corresponding sensor noises.

u = δc (3.7)

where δc is the actuator control input.

Now, knowing that figure 3.7 has the following state - space representation:

ẋG = AGxG +B1w +B2u

ż = C1xG +D11w +D12u

v̇ = C2xG +D21w +D22u

(3.8)

we will have to properly define the vector xG in order to determine the matricesAG, B1, B2, C1, C2, D11, D12,
D21, D22, since the plant model P is defined to be:

P =

AG B1 B2

C1 D11 D12

C2 D21 D22

 (3.9)
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which is needed for obtaining the controller K.

In such vector xG we will include the information corresponding to the longitudinal dynamics model of
the drone, the actuator model, the performance weighting model, and the wind turbulence model.

3.3.2 Models included in the plant

Longitudinal Dynamics Model We will make use of the model previously defined in section 3.1; how-
ever, we will add the altitude to the state vector, the parameter to be controlled, making use of the following
relationship:

ḣ = V0 sin γ ' V0γ = V0 (θ − α) (3.10)

In this way, our dynamics model will be:

ẋ = Ax+Bu

y = Cx
(3.11)

where:

x =


u
α
q
θ
h

 u = δ y =


α
q
θ
h

 (3.12)

Vector x represents the longitudinal states (longitudinal velocity in the x direction of the body axes, angle
of attack, pitch rate and pitch angle, as we know) including the height along the glide slope, u represents the
actuator deflection, and vector y includes those four longitudinal states that we want to measure.

Actuator Model The model associated with the actuator dynamics will be represented as follows:

ẋA = AAxA +BAuc

u = CAxA
(3.13)

where

xA = δ uc = δc u = δ (3.14)

Vector xa consists of the elevator dynamics and uc represents the elevator position command.
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Performance Weighting Model The weighting model is used to control and determine the tracking
errors and control command variables specifications. In our case, we will have to optimize the height along
the glide slope error and the actuator deflection.

ẋwp = Awpxwp +Bwpze

z
′

e = Cwpxwp +Dwpze
(3.15)

where ze can be expressed as:

ze = Czex− I1rc (3.16)

and

rc = hc Cze =
[
0 0 0 0 1

]
I1 = 1 (3.17)

where rc is the command vector.

In order to determine the weighting values we will have to iterate until reaching the output response that
we are aiming. Concerning the tracking error, we will start with the approach given in [23]:

• Time Constant: 1.0 seconds.

• Steady - State Error: 0.1 % .

• Step Response Overshoot: 10 %.

Those requirements will be used for obtaining a performance weighting function Wp of the shape:

Wp(s) =
K (s+ ω1)

(s+ ω2)
(3.18)

Making using of the Final Value Theorem and the specifications listed above, we get the necessary rela-
tionship between K,ω1 and ω2 and so we obtain a first weighting function:

Wp(s) =
0.1 (s+ 10)

(s+ 0.001)
(3.19)

As far as the control position is concerned, it can be weighted with a scalar value. We will start for
instance with Wδ = 0.1.

Finally, during the design process and the necessary changes to improve performance, it was determined
the weighting function and scalar to be:

Wp(s) =
1 (s+ 1)

(s+ 0.99)
Wδ = 0.01 (3.20)
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Wind Turbulence Model The state model associated can be written as follows:

ẋwg = Awgxwg +Bwgnwg

ywg = Cwgxwg
(3.21)

where:

xwg =

 uwgwwg1
wwg2

 nwg =

[
nu
nw

]
ywg =

[
uwg
wwg

]
(3.22)

Vector xwg comprises the longitudinal and vertical gust components of the wind turbulence, uwg and
wwg1, wwg2, vector nwg represents the noise associated, and finally ywg defines the output wind gust terms
which we are interested to measure, uwg and wwg.

We will make use once more of the Dryden turbulence model. It defines a series of expressions in or-
der to obtain the matrices of the turbulence model, which can be found in [23]. They have the following shape:

Awg =

−
V0

Lu
0 0

0 − V0

Lw
0

0 σw
1√
Lw

√
3V0

2π − V0

Lw

 Bwg =


σu

1√
Lu

√
V0

π 0

0 −V0 1
Lw

(
1− 1√

3

)
0 σw

1√
Lw

√
3V0

2π

 Cwg =

(
1 0 0
0 0 1

)

(3.23)
where:

• σu and σw indicate turbulence intensities.

• Lu and Lw indicate scale length.

These variables are already defined, and they change according to the altitude of operation. In [23] it
appears a table with the value of those parameters and different altitudes (from 20.0131 to 1500.3937 ft).
Given the nominal flight conditions of our model, we will choose the altitude that gets closer: 20.0131 ft, or
6.1 meters.

Table 3.3: Turbulence specifications for the Dryden Turbulence Model, given the nominal flight conditions
of our UAV’s dynamics. Taken from [23].

Altitude (ft) Lu (ft) Lw (ft) σu (ft/sec) σw (ft/sec)
20.0131 105.7415 10.4003 5.7385 3.9494

We will need to change the units from feet to meters, since in this work we are making use of the
international system units.

3.3.3 Plant model and results

In equation (3.9) we define the state space representation of the plant model. Once we have defined the
different elements to be included in it, we can define vector xG to be:
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xG =


x
xA
xwg
xwp

 =



u
α
q
θ
uwg
wwg
h


(3.24)

Getting the state equations of each model, and substituting those terms related among them we obtain
the following systems:

ẋ = Ax+BCAxA
ẋA = AAcA +BAuc
ẋwg = Awgxwg +Bwgnwg
ẋwp = Awpxwp +BwpCzex−Bwprc

(3.25)

z
′

e = DwpCzex+ Cwpxwp −Dwprc
δ = WδCAxA

(3.26)

v = Cx+ 0.01ns (3.27)

Expressing in matrix form, we reach:
ẋ
ẋA
ẋwg
ẋwp

 =


A BCA 0 0
0 AA0 0
0 0 Awg 0

BwpCze 0 0 Awp



x
xA
xwg
xwp

+


0 0 0
0 0 0

Bwg 0 0
0 −Bwp 0


nwghc
ns

+


0
BA
0
0

 δ (3.28)

[
z

′

e

δ

]
=

(
DwpCze 0 0 Cwp

0 WδCA 0 0

)
x
xA
xwg
xwp

+

(
0 −Dwp 0
0 0 0

)nwghc
ns

+

[
0
0

]
δ (3.29)

v =
[
C 0 0 0

] 
x
xA
xwg
xwp

+
[
0 0 0.01

] nwghc
ns

+ 0 · δ (3.30)

From expression (3.28) we will obtain matrices A,B1, B2, from expression (3.29) matrices C1, D11, D12

and from expression (3.30 )matrices C2, D21, D22. So, our plant model will be defined by:
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AG =


0 0 0
0 0 0

Bwg 0 0
0 −Bwp 0

 B1 =


0 0 0
0 0 0

Bwg 0 0
0 −Bwp 0

 B2 =


0
BA
0
0


C1 =

(
DwpCze 0 0 Cwp

0 WδCA 0 0

)
D11 =

(
0 −Dwp 0
0 0 0

)
D12 =

[
0
0

]
C2 =

[
C 0 0 0

]
D21 =

[
0 0 0.01

]
D22 = 0

(3.31)

Then, we apply the Hinf command in Matlab, obtaining the controller and closed loop state space matri-
ces. If we plot the response corresponding to the distance to the glide path obtained for the initial conditions
of θ0 = −12◦ and h0 = 7m:

Figure 3.31: Distance to the glide path response obtained with the Hinf optimization method for θ0 = −12◦

and h0 = 8m. Own source.

If we change these initial conditions of the drone with respect to the glide path trajectory, we can study
how the response changes. For instance, if we change the altitude, we obtain plots like:
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(a) Distance to the glide path response obtained with the
Hinf optimization method for θ0 = −12◦ and h0 = 30m.

(b) Distance to the glide path response obtained with the
Hinf optimization method for θ0 = −12◦ and h0 = −7m.

Figure 3.32: Distance to the glide path responses with different initial nominal height. Own source.

Now, if we change the initial attitude values of the UAV:

(a) Distance to the glide path response obtained with the
Hinf optimization method for θ0 = −25◦ and h0 = 7m.

(b) Distance to the glide path response obtained with the
Hinf optimization method for θ0 = 12◦ and h0 = 7m.

Figure 3.33: Distance to the glide path responses with different initial nominal pitch angle. Own source.

The corresponding Matlab scripts can be found on Appendix B B.1. and B.2.

3.3.4 Robustness analysis

The Hinf method belongs to the robust controller family, as already defined in section 3.3.1. This family
groups all those methods that approaches the control problem dealing with uncertainty, aiming to achieve
stability or a determined performance under different assumptions. The controller is design to work assuming
that certain parameters will be unknown but bounded in a specific range.
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Therefore, in this section we will study the level of robustness of our controller: we will change some
variables in the dynamics of our flying wing UAV and apply the controller obtained in section 3.3.3. We will
perform the robustness analysis and see how the response changes with those parameters. We can refer to
two different types of robustness: stability and performance, both studied in this analysis.

We will change the stability derivatives Mα,Mq and Zα, since they are one of the most critical and im-
portant terms in the definition of the body longitudinal dynamics: we will vary them a ±10% with respect
to the nominal value in the model. Then, we will build the plant model and connect it to the controller K,
obtain the information concerning the robustness analysis and finally plot the step response of the height
error for the different set of Mα,Mq and Zα values.

After carrying out the analysis under those conditions, we got informed that the system is robustly stable
for the modeled uncertainty:

• It can tolerate up to 217% of the modeled uncertainty (that is a variation of ±31.7% of the uncertain
elements.

• There is a destabilizing perturbation amounting to 218 % of the modeled uncertainty.

• This perturbation causes an instability at the frequency 2.46 rad/seconds.

• Sensitivity with respect to each uncertain elements is:

– 65% for Mα. Increasing Mα by 25% decreases the margin by 16%.

– 0% for Mq. Increasing Mq by 25% decreases the margin by 0%.

– 7% for Zα. Increasing Zα by 25% decreases the margin by 1.75%.

We obtain the following responses set plot for a step input signal:

Figure 3.34: Responses set for a step input signal plot of the height tracking error. Own source

The corresponding Matlab script can be found on Appendix B B.3.





Chapter 4

Conclusions and future development

4.1 Conclusions

In this project it was developed the automatic landing system for a flying wing UAV following two different
approaches: conventional and modern. It was designed the control system of the distance between the actual
position of the drone during the landing trajectory and the desired glide path; our performance requirements
consisted of achieving a stabilized signal response in a realistic settling time.

In order to develop the most accurate possible system, different landing configurations and scenarios were
considered. We studied different weather flight conditions, introducing certain kind of perturbations in the
models that simulated the wind effect, and different landing trajectories, through the change of the glide
path angle.

Now, we will comment in greater depth the results obtained for each of the approaches followed, as well
as the effect that the changes of the parameters had on the signal response. Finally, we will compare the
performance and characteristics of both designing methods.

4.1.1 Conventional approach

First of all, we will talk about the PID controller. Applying the correct gain values help to stabilize the
signal quite straightforward.

When studying how the gain values affected the signal responses, we found the following relationships
among them. As for K A:

• It must have different sign than K Theta, in order to guarantee stability.

• The higher its absolute value, the higher the oscillation amplitude in the first seconds of the pitch rate,
pitch angle and distance responses.

• The smaller its absolute value, the bigger the settling time for the pitch rate and distance responses.

As for K C, we found:

• It must have the same sign than K A, in order to guarantee stability.

• The higher its absolute value, the higher the oscillation amplitude in the first seconds of the pitch rate,
pitch angle and distance responses.

• The smaller its absolute value, the bigger the settling time for the pitch rate and distance responses.

Concerning K Q:
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• If having the same sign that K Theta, we obtain a different shape for the pitch rate and distance
response with higher settling time and bigger oscillations.

• The higher its absolute value, the higher the oscillation amplitude along the pitch rate response.

• The smaller its absolute value, higher the oscillation amplitude along the pitch rate response.

Finally, about K Theta:

• It must have different sign than K A, in order to guarantee stability.

• The higher its absolute value, the higher the oscillation amplitude along the pitch rate response.

• The smaller its absolute value, higher the oscillation amplitude along the pitch rate response.

The most critical parameters are K C and K A, since they affect strongly to the stability and signal
shape of the responses: the changes imposed by them prevailed over the effect of K Theta and K Q changes.

Before commenting separately each of the different flight configurations developed, it will be studied the
common features perceived in the responses of the three cases. First of all, it should be mentioned that the
settling time of the distance to the glide path response could be significantly improved, but we would be
reaching extremely high actuator amplitudes. This is not realistic, since the actuator has to operate within
determined limits, and so we decided to keep the responses showed in the text.

Second of all, it has to be noted the significant changes of the distance to the glide path signal when
changing the desired glide path from the designed value. For an angle of 7, 12 and 15◦ the settling time
increases to around 75 seconds (as depicted in figures 3.11, 3.16 or 3.24). Besides, we obtain oscillations of
bigger amplitude: for instance, for a glide angle of 15◦, we reach values of 170 meters above the desired path.
This let us know that we would need to adjust and redesign the gain values of the controller for each of the
new angles, for us to reach a good response.

Now, studying separately the three cases:

Clear Sky flight configuration

Focusing on the clear sky configuration without perturbations, the signal response of the difference between
the actual position of the drone and the desired glide path with a 2.5◦ slope is depicted in figure 3.11. We
can appreciate how the drone aligns with such trajectory with a tracking error of 0% and a settling time of
around 50 seconds.

Although of secondary importance, it would be worth to note the main features of the other two measured
states, the pitch rate q and the pitch angle θ. In the pitch rate response case, it can be seen some oscillations
of a really small magnitude along the signal. In the pitch angle response we can appreciate its long settling
time, if compared with the pitch rate and distance responses.

Windy flight configuration

Now, we will discuss the results obtained in windy flight conditions: as we can see in figure 3.18, the distance
difference response between the constant wind condition and the clear sky configuration is the same. This
means that the developed controller is strong enough and it is not affected by the perturbations included in
the model, since it is still able to reach the desired flight conditions required for the landing trajectory.

However, as for the random wind configuration, if we focus on figure 3.26 we can appreciate that the signal
curvature is not as smooth as the signal in the clear sky: it clearly depicts the effect of the perturbation on
the response stabilization. Nevertheless, as in the constant wind configuration case, the controller is able to
handle these perturbations and drive the UAV to the glide path.
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The effect of the perturbations can be also seen in the pitch rate response: if we compare the signal
behavior obtained in clear sky flight (figure 3.7) with the signal in random wind perturbation (for instance,
figure 3.24a, with I1 alignment), we can appreciate how the amplitude of the micro-oscillations that appeared
in the pitch rate response of the clear sky configuration increases.

Indeed, we are able to see how the amplitude of such perturbations change when changing the alignment
of the wind with respect to the UAV. For the alignment matrix I1 case, in which the wind and aircraft axes
are completely aligned, the effect of the perturbation is much bigger and the distribution is much less uniform
than for I6 case, in which the axes are complete and randomly unaligned. Matrices I2, I3, I4 and I5 cases
show the intermediate steps between one extreme and the other: figure 3.24 depicts this progressive change.

To conclude, we could state that making use of the conventional method approach we obtained a controller
that properly gets the UAV to follow the desired landing trajectory, helping to stabilize the response signal.
Besides, it is strong and reliable enough to perform such action in the presence of atmospheric perturbation,
no matter their constant or random nature.

4.1.2 Modern approach

In this section we will comment the results obtained applying the Hinf controller. The main challenge in this
method, for us to obtain accurate results, is the correct definition of the plant model. In order to meet this
requirement, for us it was necessary to include the altitude in the state vector, since the commanded input
to be introduced in the system will concern this parameter.

We can observe the distance response extracted from the closed loop system obtained with the calculated
controller in figure 3.31. The settling time is about 30 seconds, descending in 5 seconds to the desired glide
path (of 12◦, we must remind). This is a good and realistic result, given the initial conditions of flight of our
drone.

If we change the initial distance to the glide path at which the UAV is flying, the response changes: the
higher this value, the bigger the oscillation amplitude (which represents the distance below the glide trajec-
tory reached by the drone when flying downwards in the stabilization process around the desired distance
value), as we can appreciate in figure 3.32a.

If we increase the initial pitch angle at which the UAV is oriented, the tracking error increases and the
signal shape gets worse, with initial small oscillations and abrupt descents (figure 3.33a).

Now, we will discuss the robustness study performed, which had the aim of obtaining the robustness
characteristics of our system when introducing an uncertainty of ± 10% in the Mα,Mq and Zα stability
derivatives, considered to be the most critical in the longitudinal dynamics model definition.

We are given two different pieces of information: the summary of the robustness computation and the
sensitivity of the robustness margin to each uncertain parameter in the model.

Regarding the robustness computation, we are told that our system is robustly stable for the defined
uncertainties: it can cope with variations’ values three times bigger than the specified one (this is, changing
the stability derivatives up to ± 30% of the nominal value in the dynamics). Above this number, it will reach
a destabilizing point, which causes an instability of 2.46 radians/sec.

As for the sensitivity information that we are given, it was determine that the most sensitive element was
Mα (64%), followed by Zα (7%) and Mq (0%). This conclusion was reached studying how the robustness
margin decreased after increasing the three elements by 25%; it was obtained that the bigger decreased was
reached with Mα, while with Mq there was no change.

Finally, the robustness study can be seen graphically in figure 3.34, which depicts the different responses
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that we get when changing the nominal values of our stability derivatives by 10%. As it can be seen, the
output response is slightly modified by these changes: the amplitude difference between the highest changes
with respect the nominal values is smaller than 0.02 m, which actually shows the high robustness level of the
obtained controller.

4.1.3 Comparison between both approaches

When comparing between the two controllers obtained, the main difference between both kind of approaches
is clearly observed: the PID controller is the best in terms of stabilization performance and improvement,
while the Hinf method assures the robustness of the controller for both stability and performance.

If we study the responses obtained of the distance to the glide path (for instance, figures 3.11 for the PID
controller and 3.31 for the Hinf), we can appreciate the differences in the tracking error: from 0% error in
the conventional approach to some centimeters in the modern.

Concerning the robustness, for the Hinf controller it was already commented the small deviation in the
step response when changing the elements in the dynamics model, when compared with the nominal values.

However, the PID controller is not able to handle changes. We just need to see the differences between
the output responses of the different glide angles: take for instance the signal corresponding to the slope of
design 2.5◦ (figure 3.11), when compared with the signals corresponding to 7◦ (figure 3.12), 12◦ (figure 3.13)
and 15◦ (figure 3.14). Uncertainties, inaccuracies and approximations in the model would affect the quality
of the controller, making it less reliable than the one obtained following the Hinf method.

4.2 Future development

In this section we will talk about a future development of the work presented in this project, including some
possible new objectives and improvements to be done.

One of the most straightforwards aspects would be the completion of the automatic landing system mak-
ing use of the nonlinear dynamics of the drone: in this way we would obtain a more accurate controller, since
we are taking the actual model of the UAV, and not the linear approximation. In case of the conventional
approach, we are implementing the control system in Simulink, a powerful tool that perfectly allows us to
work with non-linear models in the design phase. In case of the modern approach, we are obtaining a ro-
bust controller, so the use of a more precise and accurate model of the flying wing drone would make the
controller obtained following this method extraordinarily potent, so it would be directly implemented on the
aircraft dynamics and would support the inevitable deviations and uncertainties arisen from the model study
obtaining.

Another important aspect to be taken into account would be the improvement of the McLean [21] pitch
attitude control system with the inclusion of a saturation term, simulating the actuator surface limits: this
element makes sure that the aircraft will be able to perform the control action with its available actuator
surfaces. If we don’t include the actuator deflection limits, we are in danger of designing a controller that,
when implemented on the physical system, won’t be correct, since it will stabilize the signal assuming an
actuator position that cannot be reached by the real deflection mechanism (for instance, stabilizing the re-
sponse for 30◦ when the limit is 20◦, or even worse assumptions).

Future developments could also concern the completion of the autolanding trajectory with the inclusion
of the flare stage controller. The flare stage consists of the maneuver developed by the aircraft right behind
touching the ground in which it lands tangentially to the runway. We can find some examples of how to do
it in the literature (take for instance pages 399 - 404 in McLean [21]).

Finally, we could try to implement both automatic landing systems developed in this project; first of
all, simulating the drone flight with some kind of software (such as Flight Gear, that can be connected to
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Simulink), where the behavior of the drone with each of the systems can be studied, and then physically to
the actual drone, developing and improving the system measuring directly on the aircraft.





Appendix A

A.1. Calculations

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Long i tud ina l Dynamics Model %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

A = [−1.3374 e−2, 1 .3589 , 0 , −9.07036;
1 .2592 e−1, −1.1151e1 , −5.0437e1 , −1.4134;
−7.2028 , 1 .3765 e3 , −3.5594e1 , 2 .6574 e−1;
0 , 0 , 1 , 0 ] ;

B = [−6.4712 e−3; 3 .6575 e−2; −7.7492; 0 ] ;
C = [ 0 , 1 , 0 , 0 ; 0 , 0 , 0 , 1 ; 0 , 0 , 1 , 0 ] ;
D = [ 0 ; 0 ; 0 ] ;

% Constants in the a u t o p i l o t s t r u c t u r e
U 0 = 15 ; % f l i g h t v e l o c i t y
h 0 = 10 ; % i n i t i a l he ight
R = h 0 / s ind ( 2 . 5 ) ; % DME to runway , dependent with time
I = eye ( 3 ) ; % f o r dryden input

%−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Q loop − Obtention o f K Q %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% We obta in the Trans fe r Function
[ num q , den q ] = s s 2 t f (A,B,C( 3 , : ) , 0 ) ;
H Q = t f (num q , den q ) ;

% Closed loop f o r K Q
H a = t f ( 1 0 , [ 1 1 0 ] ) ;
H cl Q = H a ∗ H Q ;
K Q = −1;
s i s o t o o l ( H cl Q , 1 , K Q, 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Theta loop − Obtention o f K Theta and K A %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

[ num t , den t ] = s s 2 t f (A,B,C( 2 , : ) , 0 ) ;
H Theta = t f ( num t , den t ) ;
H Theta R2 = ( H Theta ∗ H a )/(1 + H Q ∗ H a ∗ K Q ) ;
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% Approximate the system to one reduced
Num = [−77.49 , − 4760 , − 5 .468 e06 , − 7 .968 e07 , − 2 .55 e08 , − 1 .014 e07 ,

− 3 .119 e06 , − 9 9 4 8 ] ;

r Num = roo t s (Num) ;

r Num sign = 100∗ [−0.0002 + 0.0011 i , −0.0002 − 0 .0011 i , −0.0000 + 0.0000 i ] ;

Num Red = poly ( r Num sign ) ;

Den = [ 1 , 113 .5 , 1 .439 e05 , 9 .385 e06 , 5 .026 e09 , 9 .857 e10 , 4 .944 e11 , 3 .48 e10 ,
1 .257 e10 , 4 .103 e08 , 7 .324 e07 ] ;

r Den = roo t s (Den ) ;

r Den s ign = 100∗ [ −0.0002 + 0.0011 i , −0.0002 − 0 .0011 i , −0.0002 + 0.0011 i ,
−0.0002 − 0 .0011 i ] ;

Den Red = poly ( r Den s ign ) ;

H Theta R Reduced = t f (Num Red , Den Red ) ;

% We bu i ld the Routh − Hurwitz matrix
syms K A K Theta
[N,D] = t fda ta ( H Theta R Reduced ) ;
RH = D + K A∗K Theta∗N;

c0 = 1 ; % t ˆ4
c1 = K A∗K Theta + 2/25 ;
c2 = (K A∗K Theta )/25 + 133/5000;
c3 = (K A∗K Theta )/80 + 1/1000;
c4 = 1/6400; % t ˆ0

% Study the s i gn o f the major minors
RH1 = c0 ;
RH2 = [ c0 c2 ; c1 c3 ] ;
RH3 = [ c0 c2 c4 ; c1 c3 0 ; 0 c0 c2 ] ;

d RH1 = det (RH1) ;
d RH2 = det (RH2) ;
d RH3 = det (RH3) ;

d RH2 K = subs (d RH2 , K Theta , 1 0 ) ;
d RH3 K = subs (d RH3 , K Theta , 1 0 ) ;

KA2 = s o l v e (d RH2 K , K A ) ;
vpa (KA2, 1 0 ) ;
KA3 = s o l v e (d RH3 K , K A ) ;
vpa (KA3, 1 0 ) ;

d RH2 F = subs (d RH2 K , K A, −6);
d RH3 F = subs (d RH3 K , K A, −6);
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% The whole loop − Obtention o f K C %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

K C = 17 ; % determined studying the loop

A.2. Simulink values

%−−−−−−−−−−−−−−−−−−−%
% State Space model %
%−−−−−−−−−−−−−−−−−−−%

A = [−1.3374 e−2, 1 .3589 , 0 , −9.07036;
1 .2592 e−1, −1.1151e1 , −5.0437e1 , −1.4134;
−7.2028 , 1 .3765 e3 , −3.5594e1 , 2 .6574 e−1;
0 , 0 , 1 , 0 ] ;

B = [−6.4712 e−3; 3 .6575 e−2; −7.7492; 0 ] ;
C = [ 0 , 1 , 0 , 0 ; 0 , 0 , 0 , 1 ; 0 , 0 , 1 , 0 ] ;
D = [ 0 ; 0 ; 0 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Constants in the a u t o p i l o t a r c h i t e c t u r e %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
G S = 15 ; % in degree s : other va lue s used 2 . 5 , 12
U 0 = 15 ; % f l i g h t v e l o c i t y , m/ s
h 0 = 10 ; % i n i t i a l he ight , m
R = h 0 / s ind (G S ) ; % DME to runway , dependent with time , m
rad2deg = 180/ p i ;
U wg = 5 ; % constant wind v e l o c i t y in the x axis , m/ s
W wg = 5 ; % constant wind v e l o c i t y in the z axis , m/ s

% Wind turbu lence o r i e n t a t i o n with r e s p e c t to the drone
I1 = eye ( 3 ) ; % a l i gned
I2 = −1∗eye ( 3 ) ; % al igned , oppos i t e s ense
I3 = [ 1 , 0 , 0 ; 0 , 0 . 1 , 0 . 8 ; 0 , −0.7 , −0 .2 ] ; % a l i gned x a x i s
I4 = [ 0 . 5 , 0 , 0 . 8 ; 0 , 1 , 0 ; −0.4 , 0 , −0 .2 ] ; % a l i gned y a x i s
I5 = [ 0 . 5 , 0 . 1 , 0 ; −0.4 , −0.7 , 0 ; 0 , 0 , 1 ] ; % a l i gned z a x i s
I6 = [−0.1 , 0 . 4 , −0.3; 0 . 5 , −0.8 , −0.7; 0 . 2 , −0.6 , 0 . 9 ] ; % random

%−−−−−−−−−−−−−%
% Gain va lue s %
%−−−−−−−−−−−−−%

K Q = −1;%−1;
K Theta = 1;%1;
K A = −3; %−6; −2; −3
K C = 4;%17; 10 ; 4
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A.3. Plot of the results (exemplified for some results of random
wind flight)

f i g u r e (1 )
p l o t (Q C RW( : , 2 ) ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ Pitch ra t e ( deg/ s ) ’ ) ;
t i t l e ( ’ Pitch ra t e response , random wind c o n f i g u r a t i o n − I6 alignment ’ ) ;
xl im ( [ 0 , 7 0 5 0 ] ) ;
xt = get ( gca , ’ XTick ’ ) ;
s e t ( gca , ’ XTick ’ , xt , ’ XTickLabel ’ , xt ∗1E−2);

f i g u r e (2 )
p l o t (Theta C RW ( : , 2 ) ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ Pitch ang le ( deg ) ’ ) ;
t i t l e ( ’ Pitch ang le response , random wind c o n f i g u r a t i o n − I6 alignment ’ ) ;
xl im ( [ 0 , 9 5 0 0 ] ) ;
xt = get ( gca , ’ XTick ’ ) ;
s e t ( gca , ’ XTick ’ , xt , ’ XTickLabel ’ , xt ∗1E−2);

f i g u r e (3 )
p l o t ( Reference RW ( : , 2 ) ) ;
t i t l e ( ’ Distance to the g l i d e path response , random wind c o n f i g u r a t i o n −’
’12 deg , I6 alignment ’ ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ V e r t i c a l d i s t anc e to the g l i d e path (m) ’ ) ;
hold on
p lo t (D C RW( : , 2 ) ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ V e r t i c a l d i s t anc e to g l i d e path (m) ’ ) ;
l egend ({ ’ Re ference input ’ , ’ V e r t i c a l d i s t anc e to the g l i d e path response ’ } ) ;
xl im ( [ 0 , 9 0 0 0 ] ) ;
xt = get ( gca , ’ XTick ’ ) ;
s e t ( gca , ’ XTick ’ , xt , ’ XTickLabel ’ , xt ∗1E−2);

f i g u r e (4 )
p l o t ( v e l o c i t i e s ( : , 2 ) )
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ Ve loc i ty (m/ s ) ’ ) ;
hold on
p lo t ( v e l o c i t i e s ( : , 3 ) )
l egend ({ ’ x component ’ , ’ y component ’ } ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ Ve loc i ty (m/ s ) ’ ) ;
t i t l e ( ’ Long i tud ina l components o f the s imulated random wind v e l o c i t y −’
’ I6 al ignment ’ ) ;
xl im ( [ 0 , 1 3 5 0 ] ) ;
xt = get ( gca , ’ XTick ’ ) ;
s e t ( gca , ’ XTick ’ , xt , ’ XTickLabel ’ , xt ∗1E−2);
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Appendix B

B.1. H infinity controller

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Input and output v e c t o r s in our c o n f i g u r a t i o n %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% u1 = [ n wg , h c , n s ]
% turbu lence no i s e n wg = [ n u , n w ]
% senso r no i s e n s = [ n alpha , n q , n theta , n h ]
% y1 = [ z ’ e , d e l t a ]
% e r r o r to minimize z ’ e = [ e r r o r h ]
% u2 = d e l t a c −> c o n t r o l input
% y2 = [ alpha , q , theta , h ] + n s

%−−−−−−−−−−−%
% Constants %
%−−−−−−−−−−−%

U 0 = 15 ; % m/ s
h 0 = 7 ; % m
G S = 12 ; % deg
h dot c = U 0∗ s ind (G S ) ;
feet2m = 0 . 3 0 4 8 ;
deg2rad = pi /180 ;

% Values to con s id e r when bu i l d i ng the matr ixes
n ac tua to r s = 1 ; % number o f ac tua to r s in your a/c
n minimize = 1 ; % number o f v a r i a b l e s to minimize the e r r o r

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Determination o f the Plant Model %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

A S = [−1.3374 e−2, 1 .3589 , 0 , −9.07036;
1 .2592 e−1, −1.1151e1 , −5.0437e1 , −1.4134;
−7.2028 , 1 .3765 e3 , −3.5594e1 , 2 .6574 e−1;
0 , 0 , 1 , 0 ] ;

B S = [−6.4712 e−3; 3 .6575 e−2; −7.7492; 0 ] ;

% Introduce the he ight in the dynamics s t a t e
h dot = [ 0 , −U 0∗deg2rad , 0 , U 0∗deg2rad , 0 ] ;
A = [ A S , z e ro s ( 4 , 1 ) ; h dot ] ;
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B = [ B S ; 0 ] ;
C = [ 0 , 1 , 0 , 0 , 0 ; 0 , 0 , 1 , 0 , 0 ; 0 , 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 0 , 1 ] ;

% And we obta in the p lant model :
[T, A wp , B wp , C wp , D wp ] = PlantModel (A,B,C,10 , 5 . 7385∗ feet2m , 3 . 94 94∗ feet2m ,
105.7414∗ feet2m ,10 . 4003∗ feet2m , U 0 , 1 , 0 . 9 9 , 1 , 1 , 1 ) ;

% And we c a l c u l a t e the c o n t r o l law to be used .
nmeas = 4 ; % number o f measurement outputs
ncont = 1 ; % number o f c o n t r o l inputs

[K,CL,GAM,INFO] = hin f syn (T, nmeas , ncont ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Plot the he ight t rack ing e r r o r re sponse %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Time vec to r
t = 0 : 0 . 1 : 5 0 ;
x0h=ze ro s ( 2 0 , 1 ) ; % i n i t i a l c o n d i t i o n s vec to r
x0h (5 ) = 7 ; % he ight i n i t i a l c ond i t i on
x0h (4) = 12 ; % p i t ch ang le i n i t i a l cond i t i on

G wp=ss (A wp , B wp , C wp , D wp ) ;
G wpinv=inv (G wp ) ; % to be m u l t i p l i e d so we obta in the r e a l e r r o r

% x CL = [ x T x K ] , u CL = u1 , y CL = y1
sys h = s s (CL. a ,CL. b ( : , 3 ) ,CL. c ( 1 , : ) ,CL. d ( 1 , 1 ) ) ;
epshponderat=ls im ( sys h , z e r o s (501 , 1 ) , t , x0h ) ;

% system response to p l o t
epsh=ls im ( G wpinv , epshponderat , t ) ;

% Plot and graph c o n f i g u r a t i o n
f i g u r e (1 )
Plot1 = p lo t ( t , epsh ) ;
t i t l e ( ’ Height t ra ck ing e r r o r re sponse p l o t : 12deg , 7 m’ )
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ V e r t i c a l d i s t anc e to g l i d e path (m) ’ ) ;
g r i d

B.3. Plant Model function

f unc t i on [T, A wp , B wp , C wp , D wp ] = PlantModel (A,B,C, w delta , sigma u ,
sigma w , L u , L w , V a , omega1 , omega2 ,Kp, n actuator s , n minimize )

%% Actuator model %%
A A = −w delta ∗ eye ( n ac tua to r s ) ;
B A = w delta ∗ eye ( n ac tua to r s ) ;
C A = eye ( n ac tua to r s ) ;

%% Wind turbu lence model ( Dryden Model ) %%
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% For h 0 = 20.0131 f t

A wg = [−V a/L u , 0 , 0 ;
0 , −V a/L w , 0 ;
0 , ( sigma w/ s q r t (L w ))∗ s q r t (3∗V a /(2∗ pi ) ) , −V a/L w ] ;

B wg = [ ( sigma u ∗1/ s q r t ( L u ) )∗ s q r t ( V a/ pi ) 0 ;
0 (−V a/L w)∗(1−1/ s q r t ( 3 ) ) ;
0 ( sigma w/ s q r t (L w ))∗ s q r t (3∗V a /(2∗ pi ) ) ] ;

C wg = [ 1 , 0 , 0 ; 0 , 0 , 1 ] ;

%% Weighting model %%
% We essay u n t i l having a good response . We s t a r t us ing the model in
% Belcas t ro ’ s paper , u n t i l we f i n a l l y obta in :

% Def in ing and bu i l d i n g the t r a n s f e r func t i on
syms s
H opt = Kp∗( s+omega1 )/ ( s + omega2 ) ;
[ H opt num , H opt den ] = numden( H opt ) ;
TFnum = sym2poly ( H opt num ) ;
TFden = sym2poly ( H opt den ) ;
[ awp , bwp , cwp , dwp]= t f 2 s s (TFnum, TFden ) ;

% And now the matr ixes
A wp = awp ∗ eye ( n minimize ) ;
B wp = bwp ∗ eye ( n minimize ) ;
C wp = cwp ∗ eye ( n minimize ) ;
D wp = dwp ∗ eye ( n minimize ) ;
C ze = [ 0 0 0 0 1 ] ; % change i t with the v a r i a b l e s commanded

%% Build the T matrix to be used , having the shape : %%
% T = [ Ag B1 B2
% C1 D11 D12
% C2 D21 D22 ] ;

% Need to change the z e ro s wrt the matr ixes
a = length (A) ;
b = length (A wg ) ;
c = length (A A ) ;
d = n minimize ;

% We d e f i n e the matr i ce s to determine T:

A g = [ A B∗C A ze ro s ( a , b) z e ro s ( a , d ) ;
z e r o s ( c , a ) A A ze ro s ( c , b ) z e r o s ( c , d ) ;
z e r o s (b , a ) z e r o s (b , c ) A wg ze ro s (b , d ) ;
B wp∗C ze ze ro s (d , c ) z e r o s (d , b) A wp ] ;

B 1 = [ z e ro s ( a , 2 ) z e ro s ( a , d) z e ro s ( a , 5 ) ;
z e r o s ( c , 2 ) z e r o s ( c , d ) z e ro s ( c , 5 ) ;

B wg ze ro s (b , d) z e ro s (b , 5 ) ;
z e r o s (d , 2 ) −B wp ze ro s (d , 5 ) ] ;
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B 1 = B 1 + 1e−2∗ones ( s i z e ( B 1 ) ) ;

B 2 = [ z e ro s ( a , c ) ;
B A ;

z e r o s (b , c ) ;
z e r o s (d , c ) ] ;

C 1 = [ D wp∗C ze ze ro s (d , c ) z e r o s (d , b) C wp ;
z e r o s ( c , a ) 0 .01∗C A ze ro s ( c , b ) z e r o s ( c , d ) ] ;

D 11 = [ z e ro s (d , 2 ) −D wp ze ro s (d , 5 ) ;
z e r o s ( c , 2 ) z e r o s ( c , d ) z e ro s ( c , 5 ) ] ;

D 12 = [ z e ro s ( c , c ) ;
z e r o s (d , c ) ] ;

C 2 = [C ze ro s (4 , c ) z e r o s (4 , b) z e ro s (4 , d ) ] ;

D 21 = [ z e ro s (4 , 2 ) z e r o s (4 , d ) 0 .01∗ eye ( 4 , 5 ) ] ;

D 22 = ze ro s (4 , c ) ;

T matrixForm = [ A g , B 1 , B 2 ; C 1 , D 11 , D 12 ; C 2 , D 21 , D 22 ] ;

% We convert i t i n to steady s t a t e r e p r e s e n t a t i o n
T=ss ( A g , [ B 1 B 2 ] , [ C 1 ; C 2 ] , [ D 11 D 12 ; D 21 D 22 ] ) ;
end

B.3. Robustness study

%−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Undetermined Plant Model %
%−−−−−−−−−−−−−−−−−−−−−−−−−−%

Z alpha = ure a l ( ’ Z alpha ’ ,−1.1151 e1 , ’ Percentage ’ , [−10 1 0 ] ) ;
M alpha = ure a l ( ’ M alpha ’ , 1 . 3 7 6 5 e3 , ’ Percentage ’ , [−10 1 0 ] ) ;
M q = ure a l ( ’M q’ ,−3.5594 e1 , ’ Percentage ’ , [−10 1 0 ] ) ;

A S = [−1.3374 e−2, 1 .3589 , 0 , −9.07036;
1 .2592 e−1, Z alpha , −5.0437e1 , −1.4134;
−7.2028 , M alpha , M q , 2 .6574 e−1;
0 , 0 , 1 , 0 ] ;

B S = [−6.4712 e−3; 3 .6575 e−2; −7.7492; 0 ] ;

% Introduce the he ight in the dynamics s t a t e
h dot = [ 0 , −U 0∗deg2rad , 0 , U 0∗deg2rad , 0 ] ;
A = [ A S , z e ro s ( 4 , 1 ) ; h dot ] ;
B = [ B S ; 0 ] ;
C = [ 0 , 1 , 0 , 0 , 0 ; 0 , 0 , 1 , 0 , 0 ; 0 , 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 0 , 1 ] ;

[T, A wp , B wp , C wp , D wp ] = PlantModel (A,B,C,10 , 5 . 7385∗ feet2m , 3 . 94 94∗ feet2m ,
105.7414∗ feet2m ,10 . 4003∗ feet2m , U 0 , 1 , 0 . 9 9 , 1 , 1 , 1 ) ;
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%% Inte r connec t i on o f the c o n t r o l l e r and the p lant model %%
ClosedLoop = l f t (T,K) ;

% Robustness a n a l y s i s
opt = robOptions ( ’ Display ’ , ’ on ’ , ’ S e n s i t i v i t y ’ , ’ on ’ ) ;
[ S tab i l i tyMarg in , wcu ] = robstab ( ClosedLoop , opt ) ;

%−−−−−−−−−−−−−−%
% Resu l t s p l o t %
%−−−−−−−−−−−−−−%

% Time vec to r
t = 0 : 0 . 1 : 5 0 ;

G wp=ss (A wp , B wp , C wp , D wp ) ;
G wpinv=inv (G wp ) ; % to be m u l t i p l i e d so we obta in the r e a l e r r o r

% x CL = [ x T x K ] , u CL = u1 , y CL = y1
sys h = s s ( ClosedLoop . a , ClosedLoop . b ( : , 3 ) , ClosedLoop . c ( 1 , : ) , ClosedLoop . d ( 1 , 1 ) ) ;
epsh = s e r i e s ( G wpinv , sys h ) ;
epsh nom = epsh . NominalValue ;

% Plot the s tep response o f the system
step ( epsh , ’ b ’ , epsh nom , ’ r ’ ) ;
l egend ({ ’ Deviat ion va lue s responses ’ , ’ Nominal va lue s response ’ } ) ;
x l a b e l ( ’ Time ’ ) ;
y l a b e l ( ’ Amplitude (m) ’ ) ;
t i t l e ( ’ Responses s e t f o r a s tep s i g n a l input ’ ) ;
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