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ABSTRACT 

Currently, the food industry, especially the post-harvest sector, has to face the 

challenge of satisfying the growing demand for products in a market without borders, 

while complying with established quality and safety standards. Most of the conventional 

analytical techniques that ensure these standards are invasive, contaminant, time-

consuming and costly, and there is a high risk of human error. The objective of this 

doctoral thesis is to evaluate the potential of the hyperspectral imaging in the visible and 

near infrared range in combination with chemometrics for the assessment of the 

postharvest quality of fruit in a non-destructive, efficient and sustainable manner.  To this 

end, different studies are presented in which the quality of some fruits is evaluated. Due 

to their economic, strategic or social value, the selected fruits are of special importance in 

the Valencian Community, such as Persimmon 'Rojo Brillante' (Protected Designation of 

Origin Kaki Ribera del Xúquer), the pomegranate 'Mollar de Elche' (Protected Designation 

of Origin Granada Mollar de Elche), the loquat 'Algerie' (Protected Designation of Origin 

Níspero from Callosa d'en Sarrià) or different nectarine cultivars. 

First, the quality monitoring of ‘Big Top’ and ‘Magique’ nectarines was carried out 

using reflectance and transmittance images. At the same time, transmittance was 

evaluated for the detection of split pit. In addition, a classification was performed to 

distinguish the ‘Big Top’ and ‘Diamond Ray’ cultivars, which look very similar but have 

different flavour. Whereas that for the ‘Rojo Brillante’ persimmon, the hyperspectral 

imaging was studied on the one hand to monitor its maturity, and on the other hand to 

evaluate the astringency of this fruit, which must be completely eliminated before its 

commercialization. The physicochemical properties of the ‘Mollar de Elche’ pomegranate 

were evaluated by means of hyperspectral and colour imaging during its maturity using 

the information from the intact fruit and arils. Finally, this technique was used to 

characterise and identify the internal and external defects of the ‘Algerie’ loquat. 

The results obtained for the monitoring of the postharvest quality of the nectarines 

showed that both the reflectance and transmittance images are precise techniques. In the 

prediction of the IQI and RPI quality indexes, R2 values around 0.90 were obtained and in 

the discrimination according to firmness, accuracy around 95.0 % using selected 

wavelengths was obtained. Regarding the split pit detection, the use of the hyperspectral 

image in transmittance mode obtained a 93.5 % of fruits with normal bone correctly 
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classified and 100% with split pit using PLS-DA models and 7 wavelengths. The results 

obtained in the classification of 'Big Top' and 'Diamond Ray' fruits show accuracy higher 

than 96.0 % by using PLS-DA models and 14 selected wavelengths, higher than the 

obtained with colour image (56.9 %) and a trained panel (54.5 %). 

According to persimmon, the results obtained indicated that it is possible to distinguish 

between three states of maturity with an accuracy of 96.0 % using QDA models and its 

firmness was predicted obtaining a R2 value of 0.80 using PLS-R. Regarding astringency, 

two similar studies were carried out. In the first study, the fruit was classified according to 

the time of treatment with high concentrations of CO2 with a precision of around 95.0 % 

using QDA. In the second, the fruit was discriminated according to a threshold value of 

soluble tannins (0.04 %) and was determined what fruit area was better to perform this 

discrimination. Thus, an accuracy of 86.9 % was obtained using the middle area and 23 

wavelengths. 

The results obtained for the pomegranate indicated that the use of colour and 

hyperspectral images have a similar precision in the prediction of physicochemical 

properties using PLS-R and the intact fruit information. However, when the information 

from the arils was used, the hyperspectral image was more accurate. Regarding the 

discrimination by the state of maturity using PLS-DA, the hyperspectral image offered 

greater precision, of 95.0 % using the information from the intact fruit and 100 % using 

that from the arils. 

Finally, the results obtained for the ‘Algerie’ loquat indicated that the hyperspectral 

image with the XGBOOST classification method could discriminate between sound samples 

and samples with defects with accuracy of 97.5 % and between sound samples or samples 

with internal or external defects with an accuracy of 96.7 %. It was also possible to 

distinguish between the different defects with an accuracy of 95.9 %. 

Thus, it can be concluded that hyperspectral imaging combined with chemometrics can 

be an adequate tool for evaluating the quality of different fruits in postharvest. The results 

obtained could serve as a scientific basis for a future implementation of this technique in 

real lines of handling and packaging of fruits such as nectarine, persimmon, pomegranate 

or loquat. 
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RESUMEN 

Actualmente la industria alimentaria, especialmente el sector poscosecha,  tiene que 

enfrentarse al desafío de satisfacer la creciente demanda de productos en un mercado sin 

fronteras, mientras cumple con los requerimientos de calidad y seguridad establecidos por 

los reguladores. La mayoría de las técnicas analíticas convencionales que aseguran estos 

requerimientos son invasivas, contaminantes y consumen tiempo y dinero, presentando 

un alto riesgo de error humano. Por ello, el objetivo de esta tesis doctoral es evaluar una 

técnica de inspección no destructiva, como la imagen hiperespectral en el rango visible e 

infrarrojo cercano, en combinación con técnicas quimiométricas para la evaluación de la 

calidad de la fruta en poscosecha de manera eficaz y sostenible. Con este fin, se presentan 

diferentes estudios en los que se evalúa la calidad de algunas frutas que por su valor 

económico, estratégico o social, son de especial importancia en la Comunidad Valenciana 

como son el caqui ‘Rojo Brillante’ (Denominación de Origen Protegida Kaki Ribera del 

Xúquer), la granada ‘Mollar de Elche’ (Denominación de Origen Protegida Granada Mollar 

de Elche), el níspero ‘Algerie’ (Denominación de Origen Protegida Níspero de Callosa d'en 

Sarrià) o diferentes cultivares de nectarina.  

En primer lugar se llevó a cabo la monitorización de la calidad poscosecha de 

nectarinas ‘Big Top’ y ‘Magique’ usando imagen hiperespectral en reflectancia y 

transmitancia. Al mismo tiempo se evaluó la transmitancia para la detección de huesos 

abiertos. Se llevó a cabo también un estudio para distinguir los cultivares ‘Big Top’ y 

“Diamond Ray”, los cuales poseen un aspecto muy similar pero sabor diferente. En cuanto 

al caqui ‘Rojo Brillante’, la imagen hiperespectral fue estudiada por una parte para 

monitorear su madurez, y por otra parte para evaluar la astringencia de esta fruta, que 

debe ser completamente eliminada antes de su comercialización. Las propiedades físico-

químicas de la granada ‘Mollar de Elche’ fueron evaluadas usando  imagen de color e 

hiperespectral durante su madurez usando la información de la fruta intacta y de los arilos. 

Finalmente, esta técnica se usó para caracterizar e identificar los defectos internos y 

externos del níspero ‘Algerie’. 

Los resultados obtenidos para la monitorización de la calidad poscosecha de las 

nectarinas mostraron que tanto la imagen en reflectancia como en trasnmitancia son 

técnicas precisas. En la predicción de los índices de calidad IQI y RPI se obtuvieron  valores 

de R2 alrededor de 0,90 y en la discriminación por firmeza, una precisión entorno al 95 % 
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usando longitudes de onda seleccionadas. En cuanto a la detección de huesos abiertos, el 

uso de la  imagen hiperespectral en transmitancia obtuvo un 93,5 % de clasificación 

correcta de frutas con hueso normal y 100 % con hueso abierto usando modelos PLS-DA y 

7 longitudes de onda. Los resultados obtenidos en la clasificación de los cultivares ‘Big Top’ 

y ‘Diamond Ray’ mostraron una fiabilidad superior al 96,0 %  mediante el uso de modelos 

PLS-DA y 14 longitudes de onda seleccionadas, superando a la imagen de color (56,9 %) y a 

un panel entrenado (54,5 %). 

Con respecto al caqui, los resultados obtenidos indicaron que es posible distinguir 

entre tres estados de madurez con una precisión del 96,0 % usando modelos QDA y se 

predijo su firmeza obteniendo un valor de R2 de 0,80 usando PLS-R. En cuanto a la 

astringencia, se llevaron a cabo dos estudios similares en los que en el primero se 

discriminó la fruta de acuerdo al tiempo de tratamiento con altas concentraciones de CO2 

con una precisión entorno al 95,0 % usando QDA. En el segundo se discriminó la fruta de 

acuerdo a un valor de contenido en taninos (0,04 %) y se determinó qué área de la fruta 

era mejor para realizar esta discriminación. Así se obtuvo una precisión del 86,9 % usando 

la zona media y 23 longitudes de onda. 

Los resultados obtenidos para la granada indicaron que la imagen de color e 

hiperespectral poseen una precisión similar en la predicción de las propiedades 

fisicoquímicas usando PLS-R y la información de la fruta intacta. Sin embargo, cuando se 

usó la información de los arilos, la imagen hiperespectral fue más precisa. En cuanto a la 

discriminación del estado de madurez usando PLS-DA, la imagen hiperespectral ofreció 

mayor precisión, 95,0 %, usando la información de la fruta intacta y del 100 % usando la de 

los arilos.  

Finalmente, los resultados obtenidos para el níspero indicaron que la imagen 

hiperespectral junto con el método de clasificación XGBOOST pudo discriminar entre 

muestras con y sin defectos con una precisión del 97,5 % y entre muestras sin defectos o 

con defectos internos o externos con una precisión del 96,7 %. Además fue posible 

distinguir entre los diferentes defectos con una precisión del 95,9 %. 

Así se puede concluir que la imagen hiperespectral combinada con métodos 

quimiométricos puede llegar a ser una herramienta adecuada para la evaluación de la 

calidad de diferentes frutas en poscosecha. Los resultados aquí obtenidos podrían servir 

como base científica para una futura implementación de esta técnica en línea reales de 

manipulación y envasado de frutas, especialmente de nectarina, caqui, granada o níspero. 
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RESUM 

Actualment, la indústria alimentària, especialment el sector post collita, s’ha de 

enfrontar al repte de satisfer la creixent demanda de productes en un mercat sense 

fronteres, mentre compleix amb els requeriments de qualitat i seguretat establits. La 

majoria de les tècniques analítiques convencionals que asseguren aquests requeriments 

són invasives, contaminants i consumeixen temps i diners, i hi ha al seu torn un alt risc 

d'error humà. Per això, l'objectiu de la present tesi doctoral se centra en avaluar la 

capacitat d'una tècnica innovadora i no destructiva com es la imatge hiperespectral en el 

rang visible i infraroig pròxim, en combinació amb tècniques quimiomètriques, per a 

l'avaluació de la qualitat de la fruita en post collita de manera eficaç i sostenible. A aquest 

efecte, es presenten diferents estudis en els quals s'avalua la qualitat d'algunes fruites que 

pel seu valor econòmic, estratègic o social, són d'especial importància a la Comunitat 

Valenciana com són el caqui ‘Rojo Brillante’ (Denominació d'Origen Protegida Kaki Ribera 

del Xúquer), la magrana ‘Mollar de Elche’ (Denominació d'Origen Protegida Granada 

Mollar de Elche), el nispro ‘Algerie’ (Denominació d'Origen Protegida Nispro de Callosa 

d'en Sarrià) o diferents cultivares de nectarina. 

En primer lloc es va dur a terme la monitorització de la qualitat post collita de 

nectarines ‘Big Top’ i ‘Magique’ per mitjà d’imatge hiperespectral en reflectància i 

trasnmitancia. Així mateix es va avaluar la transmitància per a la detecció d'ossos oberts. 

Es va dur a terme també un estudi per distingir els cultivares ‘Big Top’ i ‘Diamond Ray’, els 

quals posseeixen un aspecte molt semblant però sabor diferent. Pel que fa al caqui ‘Rojo 

Brillante’, la imatge hiperespectral va ser estudiada d’una banda per a monitoritzar la seua 

maduresa, i per un altre costat per avaluar l'astringència d'aquesta fruita, que ha de ser 

completament eliminada abans de la seua comercialització. Les propietats fisicoquímiques 

de la magrana ‘Mollar de Elche’ van ser avaluades per la imatge de color i hiperespectral 

durant la seua maduresa usant la informació de la fruita intacta i els arils. Finalment, 

aquesta tècnica es va fer servir per caracteritzar i identificar els defectes interns i externs 

del nispro ‘Algerie’. 

Els resultats obtinguts per a la monitorització de la qualitat postcollita de les nectarines 

van mostrar que tant la imatge en reflectància com en trasnmitancia són tècniques 

precises. En la predicció dels índexs de qualitat IQI i RPI es van obtindre valors de R2 al 
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voltant de 0,90 i en la discriminació per fermesa una precisió entorn del 95,0 % utilitzant 

longituds d'ona seleccionades. Pel que fa a la detecció d'ossos oberts, l'ús de la imatge 

hiperespectral en transmitància va obtindre un 93,5 % classificació correcta de fruites amb 

os normal i 100 % amb os obert usant models PLS-DA i 7 longituds d'ona. Els resultats 

obtinguts en la classificació dels cultivares ‘Big Top’ i ‘Diamond Ray’ van mostrar una 

fiabilitat superior al 96,0 % per mitjà de l'ús de models PLS-DA i 14 longituds d'ona, 

superant a la imatge de color (56,9 %) i a un panell sensorial entrenat (54,5 %). 

Quant al caqui, els resultats obtinguts van indicar que és possible distingir entre tres 

estats de maduresa amb una precisió del 96,0 % usant models QDA i es va predir la seua 

fermesa obtenint un valor de R2 de 0,80 usant PLS-R. Pel que fa a l'astringència, es van dur 

a terme dos estudis similars en què el primer es va discriminar la fruita d'acord al temps de 

tractament amb altes concentracions de CO2 amb una precisió al voltant del 95,0 % usant 

QDA. En el segon, es va discriminar la fruita d'acord a un valor de contingut en tanins (0,04 

%) i es va determinar quina part de la fruita era millor per a realitzar aquesta discriminació. 

Així es va obtindre una precisió del 86,9 % usant la zona mitjana i 23 longituds d'ona. 

Els resultats obtinguts per la magrana van indicar que la imatge de color i 

hiperespectral posseïxen una precisió semblant a la predicció de les propietats 

fisicoquímiques usant PLS-R i la informació de la fruita intacta. No obstant això, quan es va 

usar la informació dels arils, la imatge hiperespectral va ser més precisa. Quant a la 

discriminació de l'estat de maduresa usant PLS-DA, la imatge hiperespectral va oferir 

major precisió (95,0 %) usant la informació de la fruita intacta i del 100 % usant la dels 

arils. 

Finalment, els resultats obtinguts pel nispro indiquen que la imatge hiperespectral 

juntament amb el mètode de classificació XGBOOST va poder discriminar entre mostres 

amb i sense defectes amb una precisió del 97,5 % i entre mostres sense defectes o amb 

defectes interns o externs amb una precisió del 96,7 %. A més, va ser possible distingir 

entre els diferents defectes amb una precisió del 95,9 %. 

D’aquesta manera, es pot concloure que la imatge hiperespectral combinada amb 

mètodes quimiomètriques pot arribar a ser una ferramenta adequada per a l'avaluació de 

la qualitat de diferents fruites en postcollita. Els resultats aquí obtinguts podrien servir 

com a base científica per a una futura implementació d'aquesta tècnica en línies reals de 

manipulació i envasat de fruites, especialment de nectarina, caqui, magrana o nispro.
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PREFACE 

1. Resarch freamwork of the doctoral thesis 

This doctoral thesis is the result of the research work accomplished by the author 

during the period 2015-2019, as a member of the Centro de Agroingeniería of the 

Instituto Valenciano de Investigaciones Agrarias (IVIA) with a FPI-INIA grant (CPR2014-

0082, #43), granted by the Instituto Nacional de Investigaciones y Tecnología Agraria y 

Alimentaria (INIA), partially supported by the European Regional Development Funds 

(FEDER). The thesis is part of three research projects funded by the INIA with the 

support of FEDER funds, in which I have participated: 

 Sistemas no destructivos para la determinación automática de la calidad interna 

de frutas en línea utilizando métodos ópticos e información espectral. Non-

destructive systems for the automatic determination of the internal quality of fruit 

in-line using optical methods and spectral information. (RTA2015-00078-00-00)  

 Nuevas técnicas de inspección basadas en espectrometría para la estimación de 

propiedades y determinación automática de la calidad interna y sanidad de 

productos agroalimentarios aplicadas a líneas de inspección y manipulación. Novel 

inspection techniques based on spectrometry for the estimation of properties and 

automatic determination of the internal quality and health of agri-food products 

applied to inspection and handling lines. (SPEC-DACSA) (RTA2012-00062-C04-01). 

 Nuevas técnicas de inspección interna basadas en visión por computador 

multiespectral para la estimación de propiedades y determinación automática de 

la calidad y sanidad de la producción agroalimentaria en líneas de inspección y 

manipulación  (VIS-DACSA). Novel techniques of internal inspection based on 

multispectral computer vision for the estimation of properties and automatic 

determination of the quality and health of agri-food production in inspection and 

handling lines. (RTA2012-00062-C04-03). 

 
These projects are focused on the evaluation of the potential of optical methods 

for the characterisation and inspection of the internal and external quality of the fruit 

both off-line and in real-time, in order to create automatic processes of inspection. 
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3. Structure of the doctoral thesis 

This doctoral thesis has been organized in five sections: Introduction, Objectives, 

Chapters, General Discussion and Conclusions.  

The Introduction section is focused on the discussion of the state of the recent 

research and applications of hyperspectral imaging as a valuable tool to assess the 

quality and safety of fruits and vegetables in postharvest. 

The Objectives section presents the general and specific objectives of the thesis.  

The results obtained are divided into seven Chapters as scientific publications 

presented in four sections according to the fruit studied. 

The first section is focused in the application of hyperspectral imaging to evaluate 

the quality of nectarines cv. ‘Big Top’, ‘Magique’ and ‘Diamond Ray’.  

 Chapter I studies the feasibility of hyperspectral reflectance imaging as a tool to 

assess the physicochemical properties and sensory perception of ‘Big Top’ 

and ‘Magique’ nectarines during ripening using the Ripening Index (RPI) and the 

Internal Quality Index (IQI).  

 Chapter II evaluates the capacity of hyperspectral imaging in transmittance to 

inspect the internal quality of ‘Big Top’ and ‘Magique’ nectarines. 



 

XIII 

 Chapter III evaluates the capacity of hyperspectral imaging to discriminate 

between ‘Big Top’ and ‘Diamond Ray’ nectarines which are very similar in 

appearance but different in taste. 

The second section is focused in the application of hyperspectral imaging to 

evaluate the quality of persimmon cv. ‘Rojo Brillante’, which has its own Protected 

Designation of Origin, ‘Kaki Ribera del Xúquer’.  

 Chapter IV evaluates the feasibility of hyperspectral imaging as a non-

destructive toot to predict the maturity and determine the level of astringency 

according to the time of de-astringent treatment.   

 Chapter V studies the application of hyperspectral imaging to discriminate 

astringent and deastringed fruits non-destructively using the spectral 

information of from three different areas of the fruit. 

The third section is focused in the application of hyperspectral imaging to evaluate 

the quality of pomegranate cv. ‘Mollar de Elche’, which which has its own Protected 

Designation of Origin, ‘Granada Mollar de Elche’. This section is divided in one chapter.  

 Chapter VI evaluates colour and hyperspectral imaging as a non-destructive 

method to predict the physicochemical properties and the maturity stage of 

this fruit using the spectral information of the intact fruit and arils. 

The fourth section is focused in the application of hyperspectral imaging to 

evaluate the quality of loquat cv. ‘Algerie’, which has its own Protected Designation of 

Origin, ‘Nísperos Callosa d’En Sarrià’. This section is divided in one chapter.  

 Chapter VII investigates the capacity of hyperspectral imaging to identify 

common external and internal defects in this fruit. 

 The most relevant results obtained in the different chapters are analysed together 

in the General Discussion section. Finally, the last section compiled the most relevant 

conclusions of the thesis. 
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1. Hyperspectral imaging technique 

Nowadays, the food industry has to face the challenge of satisfying the growing 

demands of consumers in a market without borders, while complying with the 

required quality and safety standards. Furthermore, to ensure these standards are 

met, most conventional techniques to assess the quality and safety of horticultural 

products employ destructive methods which are contaminating, time-consuming, 

costly and the few samples monitored are later corroborated with the whole batch. 

One of the most successful non-destructive technique for quality assessment of 

food products is the measurement of their optical properties (ElMasry and Sun, 2010). 

These optical properties are based on reflectance, transmittance, absorbance, or 

scatter of polychromatic or monochromatic radiation in the UV, VIS, NIR regions of the 

electromagnetic spectrum (Figure 1).  

 

 

Figure 1. The electromagnetic spectrum.  

 

When trained operators are employed in order to perform visual verifications, the 

decisions made by them could be affected by psychological factors such as fatigue or 

acquired habits. There is a high risk of human error in these processes, and this is one 

of the most important drawbacks that can be prevented by automated inspection 

systems based on computer vision (Cubero et al., 2011).  

Systems based on VIS light have been widely used because such systems are 

designed with the intention of imitating the human eye, on the one hand, and due to 
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the fact that they are relatively inexpensive and faster, on the other. They are 

commonly used to detect external features such as size, shape, colour or the presence 

or absence of external defects in fruits (ElMasry et al., 2012; Font et al., 2014; 

Mohammadi et al., 2015; Benalia et al., 2016), meat (Muñoz et al., 2015; Zapotoczny et 

al., 2016; Barbin et al., 2016) or fish (Dutta et al., 2016; Sture et al., 2016; Coelho et al., 

2016). However, some kinds of damage, the presence of contaminants or certain 

organoleptic characteristics cannot be seen with the naked eye, and therefore they are 

not detected by traditional cameras that only capture colour images (Nogales-Bueno et 

al., 2015a; Munera et al. 2018). In this regard, spectroscopy has been widely used to 

detect spectral features in other regions of the electromagnetic spectrum such as the 

UV, NIR or IR (Lorente et al., 2012) in food products, like meat (Alamprese et al., 2013), 

fish (Cascant et al., 2018) fruits (Lorente et al., 2015; Cortés et al., 2017), bakery (Li 

Vigni & Cocchi et al., 2013) or milk (Nuñez-Sanchez et al., 2016). This technology is 

rapid and inexpensive but in certain types of problems such as the assessment of 

samples like grains or small pieces of food, the detection of internal damage or the 

visualisation of different compounds in a sample, spatial information must be 

considered.  

With the integration of the main advantages of spectroscopy and imaging, 

hyperspectral imaging technique can simultaneously acquire spectral and spatial 

information in one system that is critical for the quality prediction of agricultural and 

food products (Wu and Sun, 2013). A hyperspectral imaging system produces a two 

dimensional spatial array of vectors which represents the spectrum at each pixel 

location. The resulting three-dimensional dataset containing the two spatial 

dimensions and one spectral dimension is known as the datacube or hypercube 

(ElMasry and Sun, 2010) (Figure 2). 
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Figure 2. Hyperspectral image (hypercube) of a nectarine discomposed in their 

monochromatic images.   

 

2. Hyperspectral imaging system 

In recent years, a large amount of progress has been made in the technology used 

in hyperspectral imaging and the price of the equipment has gradually decreased. This 

fact has allowed incorporate this technique in many laboratories devoted to 

developing different hyperspectral applications. Nevertheless, this equipment is very 

different to those systems based on VIS sensors and it is essential to consider aspects 

such as the spatial and spectral distribution of the lighting, keeping the scene focused 

through the different wavelengths, the need to work with different filters or to move 

the sample as the image is acquired, and so on.  

 

2.1 Wavelength dispersion devices 

Wavelength dispersion devices are the core component of hyperspectral imaging 

systems. Their function is to disperse broadband light into different wavelengths and 

project the dispersed light to the camera (Qin et al., 2013). Many optical and electro-

optical instruments can be used for this purpose; however, three types of technology 

are the most used nowadays: AOTF, LCTF and imaging spectrographs.  

AOTF consist of a crystal in which selected wavelengths of light are separated from 

a broadband source using acoustic waves at specific radio frequencies. Alternative 
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compression and relaxation of the crystal lattice generates density changes that 

produce refractive index variations which act as a transmission diffraction grating. 

Unlike a classical diffraction grating, AOTF only diffract one specific wavelength of light, 

so they act more as a filter than a diffraction grating (Blasco et al., 2017).  

LCTF use a stack of successively thicker, polariser birefringent liquid crystal plates 

which can generate a tuneable retardation of light transmission. Switching speed is 

limited by the relaxation time of the crystal and is of the order of 50 ms. Spectral 

resolution of LCTF is typically of the order of several nanometres (Blasco et al., 2017).  

Imaging spectrographs are based on the characteristics of the scattering of 

electromagnetic wavelengths in materials and are characterised by the fact that they 

acquire spectral data about a scene line by line using the relative movement of that 

scene with respect to the instrument. These sensors offer a good spectral resolution, 

but they do not allow the complete image to be acquired without synchronising the 

image acquisition with the movement of the sample by means of an encoder or by 

using a mirror-scan (Lorente et al., 2012).  

 

2.2 Camera 

Regarding to the area detector or camera, it should have to be sensitive within the 

working range in which the images are going to be acquired. A standard CCD is 

sensitive to about 900 nm, which can impose restrictions on the system which thus 

fails to take full advantage of the possibilities of the filters (Blasco et al., 2017). This 

type of camera has been used by Gaston et al., (2010) to detect polyphenol oxidase in 

mushrooms and Chen et al. (2015) to predict anthocyanin in grapes. For systems 

sensitive beyond 1000 nm special cameras based on InGaAs sensors with 

stabilized temperature have to be normally employed (Blasco et al., 2017).  

 

2.3 Lens 

Another point in the system is the lens. A standard lens presents a high degree of 

chromatic dispersion in the infrared region of the electromagnetic spectrum because 

of the different optical paths taken by the infrared components of the light source. 
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This is due to the variation in the refraction index of the lens depending on the 

wavelength. This means that the focus plane can vary considerably between bands 

that are separated in the spectrum (for example, between the bands corresponding to 

the visible and infrared), thus giving rise to images that are focused in some bands and 

out of focus in others (Blasco et al., 2017).  

 

2.4 Light 

A proper lighting is crucial when using this kind of sensors. It must prevent 

unwanted bright spots, while also providing high-quality homogenous scene 

illumination. Emission should be ideally enough and uniform along the working 

spectrum and have adequate spatial homogeneity. Different kinds of light sources 

have different spectral emission. For example, daylight-type fluorescent tubes rarely 

go beyond 700 nm and therefore they have to be ruled out when it comes to designing 

a system that works in NIR region (Blasco et al., 2017). In contrast, incandescent lamps 

offer a high degree/grade/level of efficiency in NIR but produce inappropriate 

directional light. In addition, it is important to observe the geometry of the object to 

be analysed. The traditional systems based on the reflection of light at 45°, can be used 

to illuminate flat objects. If used to illuminate spherical objects, like some fruits, this 

type of illumination would produce bright spots on the object and it is more suitable to 

employ a diffuser in order to maximise its reflectivity and minimise the directional 

reflections that cause the bright spots on the spherical surface (Figure 3).  

 

2.5 Sensing modes 

Depending on the objective of the analysis and the position of the detector, 

lighting and sample, there are three common sensing modes for hyperspectral 

imaging. External features are typically detected using reflectance mode, being the 

most common mode in quality and safety assessment in postharvest. In this mode, the 

detector captures the reflected light from the illuminated sample avoiding specular 

reflection (Figure 3A). Internal defects can be detected using transmittance mode, in 

which the detector is located in the opposite side of the light source and captures the 
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transmitted light through the sample (Figure 3B). If is necessary a dipper information 

into the sample and less surface effects and the influence of thickness, interactance 

mode may be selected.  In this mode, both light source and the detector are located in 

the same side of sample and parallel to each other (Nicolai et al., 2007).  

 

  

Figure 3. Example of a hyperspectral imaging system to acquire images in reflectance 

(A) and transmittance (B). 

 

 

2.6 Hardware and software 

Due to the hyperspectral image datasets size, an efficient use of hardware and 

software is required to enable fast and reliable streaming of data from camera 

detectors to disk drive storage and visualization displays. This includes, on the one 

hand, the proper selection of hardware components such as memory, processors and 

storage devices; on the other, the design and implementation of extremely efficient 

numerical algorithms ranging from simple vector and matrix operations to complex 

operations (Burger and Gowen, 2011). 
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3. Image analysis  

Previous of pre-processing of the hypercube is essential to obtain uncontaminated 

data and to warranty the correct application of any multivariate data analysis (Vidal 

and Amigo, 2012). The techniques for image pre-processing will depend on the type of 

image measured, the device used and the information expected to obtain with the 

analysis.   

The first step of image analysis is the correction of the radiance due to the 

differences in camera efficiency and the configuration of the systems. This kind of 

conditioning is called radiometric calibration, which converts the digital intensity 

values registered by the sensor to real or relative reflectance values (ElMasry & 

Nakauchi, 2016). This can be performed using equation (1) (Gat, 2000):  

 𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                                               (1) 

where ρRef(λ) is the reflectance value of the standard surface (Teflon® standard with a 

99% reflectance), R(x,y,λ) is the reflectance of the sample captured by the sensor of 

the camera, Rwhite(x,y,λ) is the reflectance captured of the standard surface to obtain 

the maximum intensity of each pixel in each wavelength, and Rblack(x,y,λ) is the 

reflectance captured without any illumination source and with the lens of the camera 

covered. 

The morphology of the horticultural products, during calibration, has to be 

considered because it can affect the scattering and reflectance patterns. Due to the 

curvature of many fruits, vegetables or grains surface, light reflected is typically not 

uniform as seen by a camera. It makes difficult to detect surface anomalies or to 

evaluate the quality of the sample surface (ElMasry & Nakauchi, 2016). To mitigate this 

problem, Tao & Wen (1999) proposed an adaptive spherical image transform and 

Gomez-Sanchis et al. (2008) a Lambertian transform. However, applying some pre-

treatments as SNV or MSC is possible to compensate the morphology effect in the 

spectra. Furthermore, other pre-treatments as smoothing or de-noising are used to 
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avoid the influence of artefacts as the instrumental noise, being Savitzky-Golay 

method one of the most accepted (Rinnan et al., 2009). 

As is known, hyperspectral images are usually composed of thousands or even 

millions of data and it requires much storage space, large transmission bandwidths and 

long transmission times (Vidal and Amigo, 2012). Therefore, the compression of the 

image is useful to retain only the needed information. Data binning can be applied in 

both spatial and spectral dimensions by replacing the original data values which fall in 

a given small interval, a bin, by a value representative of that interval (Vidal and Amigo, 

2012). For spectral reduction, variable selection using different mathematical methods 

could be an alternative. These methods are explained in ‘Chemometrics’ section. 

Another important step in the image analysis is the segmentation. This process 

divides an image in ROI. Thresholding is widely used for image segmentation because 

is useful for images containing objects against a contrasting background. Thus, all 

pixels at or above the threshold set to 1 correspond to ROI whereas all pixels set to 0 

correspond to the background. A set of morphological operations as neighbourhood 

operations or dilation and erosion may be utilized if the initial segmentation by 

thresholding is not satisfactory. Image segmentation can be also implemented by 

identifying the edge pixels located at the boundaries, due to the dramatically change in 

the grey level of those points Ngadi and Lu (2010)  

 

4. Chemometrics 

Multivariate analysis or chemometrics is a key tool in the analysis of the immense 

amount of spatial and spectral information that hyperspectral imaging offers. These 

mathematical and statistical methods are considered as a standard procedure for 

establishment of quantitative and qualitative models, allowing a reduction in the 

dimensionality of the data and retaining essential spectral information. 
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4.1 Exploratory analysis 

The first step in the analysis of the spectral data is to summarize and to visualize 

the data as well as possible and in an unsupervised way (Szymanska et al., 2015). One 

of the most known exploratory methods and widely used is PCA. This technique 

transforms the original measured variables into new uncorrelated variables called PCs 

to reduce the data dimensionality, allowing its visualization and retaining as much as 

possible the information present in the original data. Each PC is a linear combination of 

the original measured variables. This technique affords a group of orthogonal axes that 

represent the directions of greatest variance in the data. The first PC accounts for the 

maximum of the total variance, the second is uncorrelated with the first and accounts 

for the maximum of the residual variance, and so on, until the total variance is 

accounted for. The loadings are the correlation coefficients between the original 

variables and the principal components. The values that represent the samples in the 

space defined by the principal components are the component scores (Berrueta et al., 

2007).  

 

4.2 Quantitative and qualitative analysis 

The goal of using hyperspectral imaging and chemometric methods in the 

assessment of horticultural products is to create models to quantify different 

properties present in the samples or classify the samples according to these 

properties, i.e. to replace slow, expensive measurement of the property of interest, by 

a spectral feature that is cheaper or faster, but is still sufficiently accurate (Xiaobo et 

al., 2010). 

First, when generating a model, a calibration or training set of samples must 

contain many representative examples that include both common and rare types of 

the target population with known properties or class to which they belong. At the 

same time, an independent, second sampling of the target population must be carried 

out to produce a test set to be used exclusively for validating of the model. However, 

there are situations when the use of a test set to validate the calibration model is not 

possible because its sampling is difficult, expensive or limited. For this situation, the 
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viable alternative is the use of CV, but it can never substitute for proper test set 

validation (Westad and Marini, 2015). In CV, the prediction ability of the model is 

determined by developing a model with part of the data set and using another part for 

testing the model. Both, training and test sets, contain samples representative of each 

class. This procedure, consisting of model development and model testing, is repeated 

several times so that the same samples have the probability to be used as training and 

as test objects (Berrueta et al., 2007). One of the most used methods is k-fold-cross-

validation, which consists in assigning 1/k of the samples randomly to the test set. 

Numerous chemometric methods have been established in order to perform 

quantification and qualification models, however, PLS, LDA, SIMCA, SVM or ANN are 

the most used in the multivariate analyisis of horticultural products data. 

PLS-R is a widely used method for modelling the linear relationship between 

dependent variables Y or results of reference analysis and independent variables X or 

spectral data. The principle of PLS is to find the components in the input matrix X that 

describe as much as possible the relevant variations in the input variables and at the 

same time have maximal correlation with the target value in Y, given less weight to the 

variations that are irrelevant or noisy. PLS maximizes the covariance between matrices 

X and Y (Berrueta et al., 2007). On the contrary, PLS-DA aims to find the variables and 

directions in the multivariate space which discriminate the established classes in the 

calibration set. In contrast to PCA that only uses the information of matrix X, PLS-DA 

also takes into account the information in matrix Y (Berrueta et al., 2007). 

LDA is another supervised pattern recognition method, which maximizes the ratio 

between both variances compared to the within-group variance (Berrueta et al., 2007). 

It searches for a linear function of the variable in multivariate space. When the number 

of variables is larger than the number of samples, LDA cannot be used directly. In that 

case, first PCA is employed for data compression to transform the original data set 

comprising of large number of inter-correlated variables into a reduced new set of 

variables.  

SIMCA uses PCA for classification by creating confidence region around each class 

using residuals of the samples in the calibration set. The new objects are projected as a 
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member of a particular class based on their Euclidian distance which does not exceed a 

confidence limit from a particular principle component (Kumar et al., 2014). 

Other methods can be used for defining linear or non-linear separations by 

integrating non-linear functions. SVM (Cortes & Vapnik, 1995) form a set of supervised 

learning methods for classification and regression tasks. SVM classifies the data in 

high-dimensional space with a separator described by a hyperplane. This hyperplane is 

expressed in terms of a linear combination of functions parameterized by so-called 

support vectors ANN imitate the structure and functioning of the human nervous 

system, to build parallel, distributed and adaptive information-processing systems, 

able to solve large-scale complex problems such as pattern recognition, non-linear 

modelling, classification and control (Pérez-Marín et al., 2007). 

The performance of a quantitative model is usually evaluated in terms of standard 

error, RMSE and R2 of calibration, CV and prediction in which is also used the RPD 

defined as the ratio between the standard deviation of the reference data and RMSEP 

(Williams, 1987). Generally, a good model should have higher values of R2
C, R2

CV, R2
P 

and RPD and lower values of RMSEC, RMSECV and RMSEP. 

In qualitative models, confusion matrix, a form of contingency table, is used to 

show the counts of the correct and incorrect classifications from each class. Although it 

shows all of the information about the classifier's performance, more meaningful 

measures can be extracted from sensitivity, which measures the proportion of 

positives that are correctly identified, specificity, which measures the proportion of 

negatives that are correctly identified, class error and accuracy (Eq. 3, 4, 5 and 6): 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                         (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                       (4) 

𝐶𝑙𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 =  1 − (
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
)                                                          (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                               (6) 

 

where TP and TN stand for true positive and true negative, respectively, accounting for 

the samples that have been correctly assigned as belonging (TP), or not belonging (TN), 
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to a specific class. FP and FN stand for false positive and false negative, respectively, 

accounting for the samples that have been wrongly assigned as belonging (FP), or not 

belonging (FN), to a specific class (Amigo et al., 2015).   

The ROC curve is also used as a method to describe the performance of a 

classification. This curve is generated by plotting the 1-specificity versus sensitivity as X 

and Y axes, respectively. The best classification is when the coordinates of the ROC 

space are 0 and 1, representing 100% sensitivity (no false negative) and 100% also 

specificity (no false positive). The AUC integrates the sensitivity over the specificity. 

This area has a value between 0.5 and 1, where a value of 1 represents a perfect 

classification while 0.5 represents a test without discriminatory capacity. 

 

4.3 Optimal wavelength selection 

Spectral wavelengths in hyperspectral images are characterized by their large 

degree of dimensionality with collinearity and redundancy. Only the most important 

wavelengths having the great influence in prediction should be kept in the model in 

order to accelerate the process. Wavelengths selection may also be based on the 

model constructed, but variable selection is then applied uniquely as a post-processing 

step of the data.  

Often, the selection of the optimal wavelengths is performed from a fitted PLS 

model, which is optimized for some number of components using CV. Loadings can be 

used as a measure of importance to select wavelengths. For each component the 

wavelengths with a loading weight above a certain threshold in absolute value may be 

selected. A second possibility is to use the vector of regression coefficients which is a 

single measure of association between each wavelength and the response. Again, 

wavelength having small absolute value of this filter measure can be eliminated 

(Mehmood et al., 2012). 

VIP scores are calculated as a weighted sum of the squared correlations between 

the PLS components and the original variables. The weights correspond to the 

percentage variation explained by the PLS component in the model. Wavelengths with 
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a VIP score close to or greater than 1 can be considered the ones making the highest 

contribution in the PLS model (ElMasry et al., 2008).  

The iPLS, introduced by Nørgaard et al. (2000), is especially designed for 

wavelength selection, where spectra are split into smaller subintervals with equal 

distance. Then a PLS-R is fitted to each sub-interval. The sub-interval having the 

smallest prediction error is selected.  

Other methods used to select optimal wavelengths need a fitted ANN model which 

can be also combined with PLS. 

 

5. Application of hyperspectral imaging for quality assessment 

of horticultural products 

Quality is one of the major positioning tools of the producer for marketability, 

profitability and for consumer satisfaction. The ‘optimal’ quality of a product is related 

to a determined development of ripening degree, where the composition or 

combination of physical attributes and chemical components has maximum 

acceptance by consumers and producers. This section focuses on the recent 

applications of hyperspectral imaging to assess these attributes of quality in the 

horticultural products. 

 

5.1 Evaluation of maturity and physicochemical properties 

Greater knowledge of the chemical composition of fruit and vegetables can 

increase their added value. Consumers are willing to pay higher prices for products 

with an optimal maturity and health-stimulating properties such as bioactive 

compounds or antioxidant properties. In addition, the increase in exports and the 

longer distances involved mean that it becomes necessary to deliver higher quality and 

more consistent fresh products in the country of origin in order to meet the quality 

standards upon arrival at the destination. TSS, TA, pigments such as chlorophylls or 

carotenoids or ascorbic acid and TPC are the parameters that are most widely used to 

determine the maturity and the AA of fresh products. Their traditional assessment in 
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many fruit or vegetables is inefficient and incompatible with large-scale production 

and trading.  

Amodio et al. (2017) predicted TSS, individual sugars and organic acids, phenols, 

and AA of fennel heads in relation to different sheath layers and harvest times using a 

VIS-NIR and NIR system. The calibration models were developed by PLS-R and TSS, AA 

and sucrose could be predicted with satisfactory accuracy, R2 = 0.77, 0.78 and 0.77, 

respectively using VIS-NIR. In addition, they mapped the TSS from the external to the 

internal leaves and classified the fennels according to harvest time using PLS-DA, with 

a rate of non-error of 88.6%. Baiano et al., (2012) used VIS-NIR hyperspectral imaging 

for the prediction of parameters such as TSS, TA, pH and sensory characteristics of 

seven variety of table grape. Good correlations by using PLS-R were found between 

each of the quality parameters and the spectra information. Nevertheless, spectra 

information was not correlated with the sensory data, making difficult the prediction 

of the consumer liking. In the case of tomato, the most important bioactive 

compounds are lycopene and phenolic compounds. Liu et al., (2015) assessed the 

application of multispectral imaging with 19 wavelengths in UV, VIS and NIR region for 

predicting the content of these compounds in tomato. PLS, LS-SVM and BPNN were 

applied to develop quantitative models. BPNN model considerably improved the 

performance with R2 = 0.94 and 0.97, for lycopene and TPC prediction, respectively.  

According to the requirement of high quality in transoceanic shipment, Hu et al., 

(2015) investigated the use of VIS-NIR reflectance and transmittance as well as their 

combined modes, as a potential to be a non-destructive and non-contact 

measurement tool to predict blueberry mechanical properties. They used a selection 

algorithm, called random frog, to select optimal wavelengths and obtained similar 

results with full and selected spectra. Leiva-Valenzuela et al. (2013 & 2014) also used 

VIS-NIR reflectance and transmittance hyperspectral imaging to acquire images of 

blueberries in three different orientations (i.e., stem end, equator and calyx). They 

developed calibration models using PLS, coupled with iPLS for selection of 

wavelengths, to predict TSS and F, and assess the effect of fruit orientation in the 

image acquisition in order to guarantee the durability of the fruit during 

transportation. Results showed that the orientation did not have a significant effect on 
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F prediction, and hence there is no need to orient this type of fruit for hyperspectral 

imaging. Zhu et al (2016) used VIS-NIR and PLS-R to obtain the best model for 

determining the F of peach pulp, yielding prediction results with a R2 0.85. The F 

distributions for different cross sections of peach pulp were quantitatively visualized at 

the pixel level. Furthermore, the histogram revealed the existence of a wide range of F 

inside peach pulp.  

 

5.2 Discrimination of varieties 

Due the large number of different cultivars that are currently available to growers, 

fruits of the same appearance but different organoleptic properties (and hence 

different marketing values) are grown at the same time and have close harvesting 

times. This is the case of cereals such as rice or maize, different cultivars can show 

variations in size, shape, colour and constitution, which cannot be identified by the 

human eye. Kong et al., (2013) classified four cultivars of rice using NIR hyperspectral 

imaging. They used SIMCA, kNN and SVM, a novel machine learning algorithm called 

Random Forest (RF) on full spectra and on selected wavelengths. SIMCA, SVM and RF 

models showed 100 % classification rates in full spectra. The best models on optimal 

wavelengths were RF, KNN and SVM but obtained less accuracy than full spectra. 

Moreover, the price and quality of some seeds in countries like China, strongly 

depends on geographic origin, on which climate and soil conditions are crucial 

influencing factors. Huang et al., (2016) tried to identify maize seeds of different year 

using VIS-NIR. They developed models using least squares support vector machine (LS-

SVM) with 94.4% correct classification. 

For the preparation of coffee beverages there are two main species used, Arabica 

and Robusta coffee. Due to its better taste and aroma, Arabica coffee is of higher 

quality than Robusta coffee, but it is more difficult to grow, even in function of its 

lower resistance to plant diseases, and therefore it is more expensive. Calvini, Ulrici 

and Amigo, (2015) classified these species of coffee with NIR hyperspectral imaging 

and by using sparse methods, such as sPCA + kNN or sPLS-DA. They compared classical 
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classification methods with the new methods. The last ones led to the analogous or 

even better classification results, between 80 % and 90 % accuracy.  

In the production of wine, grape variety is typically determined by means of visual 

methods based on the staff experience and knowledge but it would be appropriate to 

have rapid and inexpensive analytical methods to classify grapes according to their 

variety.  Nogales-Bueno et al., (2015a) discriminated between Tempranillo, Graciano, 

Garnacha and Mazuelo grapes with the use of NIR hyperspectral imaging.  A step wise 

LDA) was developed for the data set in order to discriminate grapes according to the 

variety. As a result, 100 % of the samples were correctly classified in the internal 

validation process and 86 % in the leave-one-out CV process.  Rodríguez-Pulido et al., 

(2013) classified wine grapes by varieties according to the seeds. They used two red 

varieties (Tempranillo and Syrah) and one autochthonous white variety (Zalema) 

cultivated in two kinds of soil.  A general discriminant analysis was carried out using 

only a six selected wavelengths with PCA, and the results were compared with the 

classification obtained by using the whole spectra. Using the full NIR spectra, it was 

possible to classify 100 % of the samples according to their variety. The result using 

only six selected wavelengths was lower, 96.0 %. 

 

5.3 Evaluation of industrial properties and control of the process 

The importance of the measurement of the chemical or physical properties of raw 

materials and the correlation with the ensuing industrial processes suggests the need 

to develop rapid, accurate and non-invasive systems that can be used as a trusted 

technique to monitor and help detecting these properties. For instance, Rady et al., 

(2014) studied the potential of VIS-NIR spectroscopy and hyperspectral imaging to 

estimate internal or external constituents in two potato cultivars that are important to 

the processing industries like glucose, sucrose, specific gravity, primordial leaf count, 

and TSS. PLS-R was used to obtain the prediction models with the full spectra of slices 

and whole potato and with numerous pre-treatments. Spectroscopy method obtained 

the best correlations.  
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Kernel hardness is an important characteristic that influences the processing and 

end-use quality of maize products, and is of great importance to producers, processors 

and workers in the grain trade. Although the processes used during their 

transformation are well known, there are some factors that greatly influence 

processing and lead to repercussions in final products. In maize, for example, hardness 

is a significant factor related to losses during dry-milling, where softer kernels yield 

smaller amounts of large grits than harder kernels, and extremely hard kernels require 

more energy input and are more prone to stress cracks and breakage. For this reason, 

Williams and Kucheryavskiy (2016) used NIR hyperspectral imaging to classify maize 

kernels of three hardness categories: hard, medium and soft. Furthermore, they used 

PLS-DA to perform a pixel-wise classification (no acceptable results) and an object-wise 

classification using two methods for feature extraction — score histograms and mean 

spectra (sensitivities and specificities higher than 0.93). Serranti et al. (2013) verified 

the possibility of recognition of oat and groat before and after de-hulling. Classification 

models were built using PLS-DA and allowed to obtain a predictive accuracy near to 

100 % with a reduced set of three wavelengths in the NIR region. 

Regarding to wine, in a cellar it is really important to know the characteristics of 

grapes that are taken by the vine growers. Grape variety, maturity or phenolics 

compounds content are typically analyzed in order to determine grape quality, set 

grape price and classify grapes for the various wines produced. Nogales-Bueno et al., 

(2014) developed a non-destructive hyperspectral method for the determination of 

the principal parameters that compose technological and phenolic maturity (i.e. pH, 

TA, TSS, and TPC) in white and red grapes. In this fruit, anthocyanins are a group of the 

most crucial phenolic components of red wine grapes and are a key factor in the 

quality of the wine. Thereby, Fernandes et al., (2015) estimated anthocyanin 

concentration, TSS and pH in in whole Port wine grapes using VIS-NIR hyperspectral 

imaging and neural networks. Correlation results presented a R2 of 0.95, 0.92 and 0.73 

for anthocyanin content, TSS, pH, respectively. Chen et al., (2015) developed a model 

to measure anthocyanin content in wine grape skins using NIR hyperspectral imaging 

and applied it for predicting the phenolic maturation stage after veraison to guide 

selecting the best harvest time. In order to control the features of wines, the condition 
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of seeds is becoming an important factor for deciding the moment of harvesting by 

winemakers. Nogales-Bueno et al (2015b) also screened the extractable polyphenolic 

compounds in intact grape skin by modified PLS. The results were values of 0.82, 0.79 

and 0.82 of R2 for total phenolic, anthocyanin and flavanols, respectively. Rodíiguez-

Pulido et al., (2014) used NIR hyperspectral imaging to determine flavanols in seeds of 

red and white because these are the most representative phenolic compounds in this 

part of the berry and the phenolic maturity is decisive for the production of quality red 

wines. Calibrations were performed by PLS-R and provided R2 0.73 for total flavanol 

content and R2 0.85 for predicting flavanols extracted with a model solution. Delwiche, 

Souza and Kim (2013) tried to predict milling quality in soft red and white wheat with 

NIR hyperspectral imaging using flour yield, softness equivalent and sucrose solvent 

retention capacity as reference parameters. However, results concluded that 

hyperspectral imaging will not be sufficient so as to replace actual pilot milling 

procedures. 

The consumption of fresh ready-to-eat products and minimally processed foods 

has increased in recent years. This sector is asking for fast, cheap and objective 

techniques to evaluate the overall quality and safety of these products in order to 

obtain decision tools for implementing new packaging procedures. Diezma et al. (2013) 

and Lara et al. (2013) monitored the evolution of leafy vegetables during storage using 

VIS-NIR hyperspectral imaging and acquiring the images through packing films and 

without these. In the first study, the tests performed showed the ability in 

discriminating between different storage periods of virtual images resulting from the 

application of three analytical techniques (spectral angle mapper distance, PLS-DA and 

a nonlinear index) to the hyperspectral images combined with the wavelengths 

selected. In the second one, the effect of the variation of the transmittance of the 

plastic on the leaves spectra was removed applying radiometric correction. They didn’t 

compare the difference between the plastic covers used. Chaudhry et al. (2018) 

monitored the evolution of rocket leaves during storage by acquiring images both 

through packing films and without them.   
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5.4 Detection of physical damages and defects  

Some damage (for example, mechanical) is difficult to detect in fruits and 

vegetables at early stages until external symptoms become visible. The development 

of browning is the consequence of a series of biochemical reactions in which 

polyphenol oxidase enzymes are present, and is the major factor leading to loss of 

quality that results in a reduction in their market value. In these cases, hyperspectral 

imaging can be used to detect early damage that can be seen in spectral ranges other 

than visible or that alters the composition in such a way that it can be detected by 

spectral imaging. Baranowski et al., (2013) examined the applicability of hyperspectral 

imaging in VIS and NIR ranges for classification of apple bruising with respect to the 

time after damage of five selected cultivars. They used numerous classifiers such as 

SVM, linear logistic regression, neural networks and decision trees. Results showed 

that the best accuracy to distinguish between days after bruising for apples of all five 

cultivars was observed for the sequential minimal optimization model (99.4 %) with 

second derivative and the linear logistic regression model (97.7 %). Huang et al., (2015) 

developed an online multispectral imaging system to classify bruise in apple by using 

the wavelengths 780, 850 and 960 nm selected with PCA. The classification accuracy of 

bruises in static tests was 91.5 % but in online tests was 74.6% due to the poor quality 

of 850 and 960 nm images.  Lee et al., (2014a) investigated the extended range of NIR 

using hyperspectral imaging to detect bruises on pears. A simple F-value statistics was 

sufficient to find the optimal waveband ratio (R1074/R1016) and threshold for 

maximizing the bruise detection accuracy (92.0 %).  Lü et al., (2011) developed a VIS-

NIR hyperspectral imaging system covering the spectral region from 408 nm to 1117 

nm for the bruise detection in kiwifruit. Selecting five important wavelengths with PCA, 

they developed SVM algorithms to identify and segregate the bruised tissue from the 

normal tissue of kiwifruit with accuracy of 87.5 %. Vélez-Rivera et al., (2014) studied 

the possibility of early detecting mechanical damages in ‘Manila’ mangoes, which is a 

very soft fruit and it is therefore very susceptible to mechanical damage during 

postharvest, by identifying the spectral bands that best categorise whether a mango is 

damaged or not. They obtained 97.9 % rate of correct classification on the third day 
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after the damage had been caused using K-NN and the whole spectra and 91.4% when 

only the most discriminant bands were used. López-Maestresalas et al., (2016) 

detected blackspots in potatoes using two hyperspectral imaging setups, one ranging 

from 400 to 1000 nm, and another covering the 1000-2500 nm range. Samples were 

analysed 1, 5, 9 and 24 h after bruising. PCA, SIMCA and PLS-DA were used to build 

classifiers, being PLS-DA the best model achieving an overall correct classification rate 

above 94% for both hyperspectral setups.  

Low temperature storage is an effective way to slow these decay processes and 

maintain crop quality. However, it can also cause physiological disorders in some fruit 

and vegetables either during cold storage, at market or at home. The symptoms of this 

damage include internal browning and a dry mealy texture, together with a lack of 

taste and aroma. Simko et al. (2015) developed some indices to estimate decay and 

freezing injury in different cultivars of lettuces, based on ratios of particular 

wavelengths obtained from VIS-NIR hyperspectral imaging and chlorophyll 

fluorescence imaging with accuracy near to 97 %. Pan et al. (2016) detected cold injury 

in peaches. A multilayer perception ANN model was developed to select eight optimal 

wavelengths.   

Bruised and cold injures can depreciate the value of the fruits or can incline the 

consumer to purchase a different fruit. However, other damages must be detected 

during postharvest quality control because they prevent the fruit to be marketed or 

can be used by fungal pathogens to contaminate the fruit. Cracking is one of the main 

reasons for rejection of the fruit by retailers, and serves as a potential vector for 

pathogenic penetration and contamination of the fruit. The feasibility of hyperspectral 

fluorescence imaging to detect cuticle crack defects on cherry tomatoes was 

investigated by Cho et al. (2013). Fluorescence intensity in the area of cracked cuticle 

was significantly higher in the blue-green spectral region than that of the sound 

surfaces. ANOVA and PCA were employed to investigate optimal fluorescence 

wavebands. A pair of selected wavebands was able to detect defective cherry 

tomatoes with > 99 % accuracy. Yu et al. (2014) investigated the potential of 

hyperspectral imaging for crack identification in fresh jujube. They employed PLS-R, 

spatial PCA and spatial independent component analysis to extract characteristic 
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wavelengths, and then LS-SVM qualitative discrimination models were established 

based on characteristic wavelengths and evaluated by ROC curve. Results 

demonstrated that the PLSR–LS-SVM model was the best to finish the qualitative 

discrimination of crack features in fresh jujube with a high accuracy of 100 %.  

Zhang et al. (2015) used hyperspectral imaging combined with multivariate analysis 

and band math methods to detect common defects such as scars, insect damages, 

indentation, and spots in peaches. The overall classification accuracy of 93.3 % 

indicated that the selected wavelengths and proposed method were suitable and 

efficient for the common defect detection.  Li, Rao and Ying (2011) detected various 

common defects on oranges: insect damage, wind scarring, thrips scarring, scale 

infestation, canker spot, copper burn, phytotoxicity, heterochromatic stripe, and 

normal surface. They reduced images data to few optimal wavelengths to form 

multispectral images by using PCA method. The two-band ratio and PCA coupled with a 

simple threshold method achieved the best 93.7 % orange surface defects 

identification accuracy and no false positives. Nakariyakul and Casasent (2011) 

discriminated internally damaged almond nuts from normal ones. They used the ratios 

850/1210 nm and 1160/1335 nm, selected by sequential forward selection and SVM, 

which achieved 91.2 % accuracy.  

Moreover, this technology can be used to obtain information about the presence 

of certain substances that can be the cause of some damages related with the 

evolution of the fruit. Gaston et al., (2010) investigated the potential of VIS-NIR 

hyperspectral imaging for the prediction of polyphenol oxidase enzyme activity on 

mushroom caps, causing the browning that is the major quality loss that accounts for a 

reduction in their market value. PCR models built on raw reflectance and MSC 

reflectance data were found to be the best model approach with R2 of 0.78. In a similar 

study, Yang et al., (2015) studied the pericarp browning of lychees since this is 

regarded as the major problem of postharvest lychee. It is closely related to 

degradation of red pigments (anthocyanins) and the formation of brown coloured by-

products. They selected two sets of optimal wavelengths using SPA and stepwise 

regression algorithms. Then, they built calibration models based on spatial and spectral 

information using the radial basis function support vector regression algorithm to 
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generate a map of anthocyanin distribution. Results showed the fused model showed 

higher R2 of 0.89 and 0.87 for the training and the testing sets. 

 

6. Application of hyperspectral imaging for safety assessment of 

horticultural products 

The assessment of quality in postharvest is not only based on terms of appearance, 

flavour or nutritional value, but also they should not risk the consumers's health. They 

have no way to detect the presence of harmful substances and depend entirely on the 

responsibility of all members of the production and distribution chain. Due to 

numerous horticultural products may be consumed fresh, any pathogenic organism or 

toxic substance for human beings that can be transported on its surface constitute a 

potential hazard. This section focuses on the recent applications of hyperspectral 

imaging that proving the ability of this technology to detect the presence of harmful 

organism or substances to health. 

 

6.1 Detection of biological damage  

Insects can cause damage to fruit and significant economic losses for grower, 

processers and exporters in regions where it occurs. Haff et al., (2013) detected fruit 

fly larvae infested mango in grey scale images previously generated based on 

absorbance at particular NIR wavelengths (which are not indicated). Their algorithm 

incorporated background removal, application of a Gaussian blur, thresholding, and 

particle count analysis to identify locations of infestations. For heavily infested 

samples, the lowest overall error rate achieved was 2.0 %, with 1.0 % false positive and 

3.0 % false negative. For samples with lower infestation rates, the error rates were 

much higher, the lowest overall error being 12.3 %. Wang et al. (2011) identified the 

effective wavelengths that have the maximum discriminatory capability in jujube fruits 

affected by insect damage and created a discriminant function to identify the stem-

end/calyx-end, the sound cheek, and insect damage as well as to distinguish insect-

damaged fruits from those free of infestation. According to the results, over 98.0 % of 
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the intact jujubes and 94.0 % of the insect-infested jujubes represented in the images 

were correctly recognised, and the overall classification accuracy was about 97.0 %. 

Huang et al. (2013) detected insect-damaged green soybean using VIS-NIR 

hyperspectral transmission imaging. Four statistical image features (minimum, 

maximum, mean, and standard deviation) were extracted from the images for 

classification and given as input to a discriminant classifier. The support vector data 

description classifier achieved 100% calibration accuracy. The model achieved 97.3 % 

and 87.5 % accuracies for normal and insect-damaged samples, respectively, with a 

95.6 % overall classification accuracy, for the investigated independent test samples. 

Chelladurai et al., (2014) used soft X-ray and NIR hyperspectral imaging techniques to 

acquire images of soybeans infested by egg, larval, and pupal stages of C. maculatus 

along with uninfected and completely damaged soybeans. The LDA classifier for soft X-

ray images correctly identified more than 86.0% of uninfested soybeans and 83 % of 

soybeans infested with all developmental stages of C. maculatus except the egg stage. 

Pair-wise LDA classification models developed from NIR hyperspectral data selected 

with PCA (960 nm, 1030 nm and 1440 nm) yielded more than 86.0 % and 87.0 % 

classification accuracy for uninfected and infested seeds, respectively. Singh et al., 

(2010) identify insect-damaged wheat kernels using NIR hyperspectral and digital 

colour imaging. They used three statistical discriminant classifiers (LDA, QDA, and 

Mahalanobis) and BPNN classifier. The QDA classifier using combined NIR image 

features and top 10 features from 230 colour image features gave the highest 

classification accuracy and classified 96.3% healthy and 91 % - 100 % insect-damaged 

wheat kernels. In other cases, the presence of a few fruits affected by fungus or 

bacteria in a shipment can render the entire shipment unmarketable.  

Early detection of fungal infections in postharvest is especially important because 

only a few infected fruits can spread the infection to a whole batch during operations 

such as storage or exportation, thus causing great economic losses. Green and blue 

moulds, caused by Penicillium digitatum and Penicillium italicum, are the most 

economically important postharvest diseases of citrus in all production areas. Gómez-

Sanchís et al. (2013) detected mandarins affected by green blue mould. They used ANN 

and classification and regression trees for the segmentation and classification of 
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images. Feature selection methods were used in order to reduce the dimensionality of 

the hyperspectral images and determine the 10 most relevant. The classification trees 

showed the best results of classification, an accuracy of around 93 %. Lorente et al. 

(2013) proposed a methodology to select features in multi-class classification problems 

using the ROC curve, in order to detect rottenness in citrus fruits. They select a 

reduced set of features (wavelengths at 550, 670, 690, 720 and 950 nm, CI and 

normalised difference vegetation index) with which obtained a classification success 

rate of around 89 %. Folch-Fortuny et al., (2016) detected symptoms of diseases 

caused by Penicillium digitatum in citrus fruits using N-way PLS-DA. A double cross-

validation strategy was used to validate the discriminant models and a permutation 

testing on VIP values was used to select five bands (650, 660, 700, 750 and 760 nm) 

offering 91.0 % correct classification rate. 

Kong et al., (2014) developed calibration models based on hyperspectral imaging 

data to fast detection of peroxidase activity in tomato leaves which infected with 

Botrytis cinerea and compare the performance of different calibration models. Five 

pre-treatment methods were investigated. 21 optimal wavelengths were selected by 

genetic algorithm-PLS and used as inputs of three calibration models. The optimal 

prediction result was achieved by a new fast learning neural algorithm named extreme 

learning machine with selected wavelengths, and it obtained a R2 = 0.87. 

Wang et al., (2012) compared the spectral characteristics of good onions and 

onions affected by bacterial diseases (sour skin) in the spectral region of 950 nm – 

1650 nm to determine the optimal bands with PCA for discriminating the two classes 

and develop classification models to detect infected onions. The best classification 

approach used three parameters (maximum, contrast and homogeneity) of the log-

ratio images as the input features of SVM, which discriminated 87.1 % healthy and 

sour skin-infected onions.  

Citrus canker is also a severe disease of citrus causing enormous socioeconomic 

loses. Kim et al., (2014) detected citrus black spots symptoms or other potentially 

confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral 

angle mapper and spectral information divergence hyperspectral analysis approaches 
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were used to classify fruit samples obtaining and accuracy of 97.9 % and 97.1 % 

respectively. 

 

6.2 Detection of biological and chemical contaminants  

Foodborne illnesses result in high economic and social costs and hence, the 

interest in methods and technologies for detecting contaminating food and preventing 

foodborne illness have grown significantly in the food and agricultural industries and 

also in regulatory agencies. For instance, Lee et al., (2014b) used hyperspectral 

fluorescence imaging with UV-A excitation to detect faecal contamination on leafy 

greens. They determined two ratios with the most significant wavelengths, 

F665.6/F680.0 for Romaine lettuce which obtained a R2 of 0.98 and F660.8/F680.0 for 

baby spinach which obtained a R2 of 0.96. On the other hand, Everard et al. (2014) 

studied three techniques, i.e. UV induced fluorescence, violet induced fluorescence, 

and VIS/NIR reflectance using hyperspectral imaging in combination with multivariate 

image analysis as well for detection of faecal contamination on spinach leaves. PLS-DA 

and two band ratio analysis techniques were used to compare these techniques. High 

detection accuracy was found for the two fluorescence configurations compared to the 

VIS/NIR. Both fluorescence configurations had 100 % detection rates for faecal 

contamination up to 1:10 dilution level and violet had 99.0 % and 87.0 % detection 

rates for 1:20 and 1:30 levels, respectively. Tomato hornworm is one of the several 

types of large caterpillars that attack tomatoes in the US whose faecal matter is closely 

related with the presence of Escherichia coli and Salmonella. Yang et al., (2014) 

developed a multispectral fluorescence imaging algorithm to detect aqueous frass 

contamination on mature tomatoes. The fluorescence intensities at five wavelengths 

(515 nm, 640 nm, 664 nm, 690 nm, and 724 nm) were used to compute three simple 

ratio functions to detect frass contamination. The algorithms detected over 99 % of 

the 0.2 kg/L and 0.1 kg/L frass contamination spots and successfully differentiated 

these spots from tomato skin surfaces, stem scars, and stems.  In a previous work, 

Yang et al. (2012) worked on the development of a simple multispectral algorithm to 

detect four concentrations of aqueous faecal dilutions that was applied to apple 



INTRODUCTION 

28 
 

surfaces. The algorithm utilized the fluorescence intensities at four wavebands, 680, 

684, 720, and 780 nm, and detected more than 99.0 % of the faecal spots.   

The presence of toxigenic fungi in agricultural products is not only a loss of value, 

but concerns about food security, due to the possibility of which producing 

mycotoxins. Aflatoxins are toxic compounds produced by many species of Aspergillus, 

especially by A. flavus and A. parasiticus and fumonisins and trichothecenes by 

Fusarium spp. Cereals are the most susceptible to be contaminated with this type of 

organism. Del Fiore et al. (2010) and then Yao et al. (2013), tried to detect toxigenic 

fungi in maize kernels. The first study used VIS-NIR spectral range (400–1000 nm), and 

the results showed that hyperspectral imaging is able to rapidly discriminate from 48 h 

after inoculation with A. niger or A. flavus. In the second one, fluorescence emission 

was used to discriminate between toxigenic and untoxigenic fungi in both sides of the 

kernel when the infection was mild. The separation ability achieved between strains 

for the adjacent kernels on the germ side was 100 %.Then, they classified by healthy 

and contaminated kernel with a classification accuracy for the 100 ppb threshold on 

the germ side of 94.4 %. Recent works have studied the aflatoxin detection in this 

cereal. Kandpal et al., (2015) used three different varieties of maize (yellow, white and 

purple) which were inoculated with four different aflatoxin concentrations (10, 100, 

500 and 1000 ppm). A PLS-DA model was developed to categorize control and infected 

kernels and the highest overall classification accuracy was 96.9 % in purple variety.  

They generated a contamination map with the PLS-DA model provided the visual 

appearance of infected samples. 

Teena et al., (2014) studied the presence of Aspergillus flavus damages in date 

fruits using NIR hyperspectral imaging. Four wavelengths (1120, 1300, 1610 and 1650 

nm) were identified as the most significant to classify by using PCA. The classification 

accuracies of infected date samples were 91.0-99.0 % and 92.0-100 % while comparing 

with sterile control and untreated control, respectively in various approaches.  Atas, 

Yardimci and Temizel (2012) tried to detect aflatoxin in contaminated chili pepper by 

using UV and halogen lighting. 83.3 % accuracy rate was achieved for the under 

halogen. The most frequently selected spectral bands were 540, 550, 560, 590, 640 

and 650 nm.  UV excitation achieved 87.5 % of classification accuracy. 400 and 420 nm 
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spectral bands were selected as the most discriminative spectral bands. Hierarchical 

bottleneck backward elimination feature selection method and MLP classifier were 

used for get these results.  

Gluten is found in processed foods made from wheat, barley and rye. It produces a 

mucous inflammation and bad-absorption syndrome, which is characterised by 

inappropriate absorption of nutrients in the bowel. Treatment of patients with celiac 

disease is based mainly on them following a gluten-free diet (Munera et al., 2014). 

Oats are considered a good addition to the gluten-free diet, but it is a challenge to 

keep them segregated from other gluten-rich grains. The demands for better detection 

tools for identifying and screening oat grain by the oat-processing industry led 

Erkinbaev, Henderson and Paliwal (2017) to discriminate oats from barley, wheat, and 

rye. A procedure was developed to classify six grains (oat, dehulled oat, barley, 

dehulled barley, wheat and rye) using NIR hyperspectral imaging in the wavelength 

range of 900-1700 nm coupled with multivariate data analysis. The reflectance spectra 

were analysed using PCA and PLS-DA. Good results of de-hulled oats grain prediction 

(99.0 %) were achieved using only few selected key wavelengths (1069, 1126, 1189, 

1243, and 1413 nm).  

 

7. Importance of persimmon, pomegranate, loquat and 

nectarine 

In this doctoral thesis, persimmon, pomegranate, loquat and nectarine have been 

selected due to the special interest for the Valencian Community. This interest is 

mainly due to the fact that these fruits have a high strategic value as energizers of the 

some growing areas of this region, but also because they are, in the most cases, the 

main producers of them in Spain and in Europe, generating a high economic and social 

value. 

In the case of persimmon (Diospyros kaki L.), the biggest producer in the world 

after China is Spain. In the last twenty years, the land area devoted to cultivating this 

crop has risen from 2,000 to 18,500 ha, and production has increased from 33 to 404 

thousand tons (FAOSTAT, 2017). Part of this growth is due to the increase in the 
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production of the ‘Rojo Brillante’ cultivar in the Valencian Community. This cultivar is 

astringent at harvest and must be subjected to post-harvest treatments to remove 

astringency. This has been traditionally a handicap for the commercialization of this 

fruit since once the fruit losses the astringency by overripe, it acquires a soft jelly-like 

consistency being difficult to handle and eat. The development of the de-astringency 

methods based on high CO2 concentrations allowed removal of the astringency while 

preserving high flesh F (Arnal and Del Río, 2003), which has facilitated a rapid 

commercial expansion of this crop.  Nowadays ‘Rojo Brillante’ persimmon is one of the 

most appreciated persimmon cultivars worldwide because it good aspect, high size, 

flavour and absence of seeds. This fact was decisive for obtaining the ‘Kaki Ribera del 

Xúquer’ Protected Designation of Origin by the EU in 2001.  

Regarding to pomegranate (Punica granatum L.), this fruit is a promising source of 

bioactive phytochemicals with a wide range of biological properties related to 

protection against oxidative stress, which is related to pathologies such as 

cardiovascular or neurodegenerative diseases and cancer (Mena et al., 2011). In 

Europe, Spain is the first producer of this fruit with a total production of 76 thousand 

tons (MAPA, 2018) coming mainly from the Valencian Community (60 thousand tons) 

where the cultivar ‘Mollar de Elche’ is very appreciable for consumers and has been 

granted Protected Designation of Origin status by the EU in 2015. 

Loquat fruit (Eriobotrya japonica L.) is native from China, which is the first producing 

country in the world. Although loquat is a minor crop in Spain, this is the main loquat-

producing country in the Mediterranean region with 29 thousand tons (MAPA, 2018) 

and the main exporter in the world (Besada et al., 2017). The production is 

concentrated in Andalusia and the Valencian Community, where loquat from Callosa 

d’en Sarria has been granted Protected Designation of Origin status by the EU in 1992. 

The most important cultivar is ‘Algerie’, which accounts for more than 80 % of total 

production. The interest of this fruit lies in the fact that loquat trees are harvested 

during a short period (from mid-April to the end of April), when there is low 

competition with other fruit on the market (Ballester et al., 2018). 

Peaches and nectarines (Prunus persica L. Batsch) are, after apples, the most 

economically important fruit crop in EU (Elsadr and Sherif, 2016). The surface area of 
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the land devoted to the planting of these fruits is around 228 000 ha in 2018/19, with 

an estimation of production of 3.5 million tons of fruit (USDA, 2018). Over the last five 

years, Spain has become the largest peach and nectarine producer in EU with around 

1.4 million tons, nectarine production being 547 thousand tons (MAPA, 2018). The 

most important regions are Aragón, Cataluña and Murcia and the Valencian 

Community presents a significant increase in the production (USDA, 2018). Due to the 

importance of nectarine production, it is one of the fruits to which most effort has 

been devoted by plant breeders in recent years in order to improve agronomic 

performance, and enhanced fruit appearance and quality (Reig et al., 2013). This fact 

has resulted in a significant increase in the number of new cultivars available to fruit 

growers and nowadays, the market offers sweet, semi-sweet, balanced, acidic and 

highly acidic cultivars, of which the first two cultivars are the most widely accepted by 

consumers (Iglesias, 2012). 
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General objective  

The main objective of this doctoral thesis is to investigate the potential of 

hyperspectral imaging combined with chemometrics to be applied as a non-destructive 

postharvest tool for the evaluation of the quality of fruit such as nectarine, 

persimmon, pomegranate and loquat. 

 

Specific objectives  

1. To investigate the potential of hyperspectral reflectance imaging to predict the 

internal quality of nectarine ‘Big Top’ and ‘Magique’ by means of new ripening 

indices (RPI and IQI) through models based on PLS (Chapter I). 

o To create a tool to visualise the ripeness of each fruit by projecting the 

models on the pixels of the fruits in the images. 

o To test the performance of the indices in two cultivars with different 

physicochemical properties. 

2. To investigate the possible use of hyperspectral imaging in transmittance mode 

as a non-destructive tool to estimate ripeness in nectarines ‘Big Top’ and 

‘Magique’ and, at the same time, to detect split pit defect (Chapter II). 

3. To develop statistical predictive models capable of distinguishing cultivars of 

nectarines, ‘Big Top’ and ‘Diamond Ray’, with a very similar appearance but 

different taste (Chapter III).  

o To investigate two approaches, based on the analysis of the individual 

spectrum of each pixel and on the mean spectrum of each fruit.  

o To visualise the result over the images of nectarines.  

4. To propose a new non-destructive approach based on hyperspectral imaging 

and multivariate analysis to determine the F, ripeness state and astringency 

level of intact persimmon cv. ‘Rojo Brillante’ as alternative to the current 

destructive and/or subjective techniques (Chapter IV). 
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5. To study the application of hyperspectral imaging to predict the ST content in 

persimmon fruits cv. ‘Rojo Brillante’ in order to correctly discriminate A from 

DA persimmons using 0.04 % of ST as the threshold (Chapter V). 

o To determine which part of the fruit is the most appropriate to measure 

and obtain the ST content to be able to make this prediction. 

o  To reduce the amount of spectral information generated and to speed 

up this process. 

6. To evaluate the capability of both machine vision techniques, colour and 

hyperspectral imaging, to predict the physicochemical properties and the 

maturity stage of pomegranate fruits cv. ‘Mollar de Elche’ using the information 

of the intact fruit and arils (Chapter VI).  

7. To develop classification models to discriminate common defects of loquat cv. 

‘Algerie’ by using hyperspectral imaging combined with two robust machine 

learning techniques, RF and XGBOOST (Chapter VII).  
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Abstract 

Visible-near-infrared (450-1040 nm) hyperspectral reflectance imaging was studied 

in order to assess the internal physicochemical properties and sensory perception of 

‘Big Top’ and ‘Magique’ nectarines (Prunus persica L. Batsch var. nucipersica) (yellow 

and white-flesh cultivar, respectively) during ripening using the RPI and the IQI. 

Hyperspectral images of the intact fruits were acquired during the ripeness under 

controlled conditions, and their physicochemical properties (flesh F, TSS, TA and flesh 

colour) were analysed. IQI and RPI were used to relate the spectral information 

obtained from nectarines with the physicochemical properties and the sensory 

perception of their maturity using PLS-R with proper variable selection. Optimal results 

were obtained with R2 values higher than 0.87 for the two indices and the two 

cultivars. The ripeness of each fruit could be visualised by projecting the PLS-R models 

of the IQI on the pixels of the fruits in the images, showing great potential for further 

monitoring of the evolution of intact nectarine ripeness in industrial setups. 
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1. Introduction 

During recent years the production of nectarines (Prunus persica L. Batsch var. 

nucipersica) has increased progressively. Currently, Europe produces almost 1.5 million 

tonnes of nectarines, Spain being the second producer after Italy, with an annual 

production of over 0.5 million tonnes (Europ^ech, 2016). As the market has become 

more demanding, the improvements in nectarine production have been focused on 

fruit presentation, with special emphasis on the colour, size and shape, on the ease 

with which they can be handled, and on increasing the sensory attributes. Nowadays, 

the market offers sweet, semi-sweet, balanced, acidic and highly acidic cultivars, of 

which the first two cultivars are the most widely accepted by consumers (Iglesias, 

2012). 

As a climacteric fruit, nectarine undergoes a ‘ripening phase’ that transforms the 

mature fruit into ‘ready to eat’. This phase is associated with increased respiration and 

ethylene production, softening, loss of green colour and development of yellow or red, 

and the production of its characteristic aroma (Ritenour et al., 1997). Although to date 

no minimum quality level has been established, it is essential to understand the 

changes occurring in this fruit for its successful manipulation, transport and marketing. 

Nectarine ripeness and quality in general have been traditionally measured using the 

physical and chemical properties that best describe this progress: F, colour, TS) and/or 

TA. However, when quality is measured from the perspective of consumers, these 

parameters do not always match the consumer’s preferences (Echeverría et al., 2015). 

Available data indicate that only measuring F, TSS or TA in the flesh give no satisfactory 

minimum ripening index; those properties change from one cultivar to another and for 

a given cultivar in relation to fruit size, climatic conditions, and cultural practices 

(Crisosto, 1994). For this reason, single physicochemical parameters are not always 

satisfactory ripening estimators and could be more useful to combine them in indices 

(Crisosto, 1994). On the other hand, changes in the flesh colour are not affected by 

sunlight and, thus, can be more reliable to estimate maturity. In this context, Vásquez-

Caicedo et al. (2005) proposed a RPI for mangoes which was based on the combination 

of different properties of the fruit: F, TA and TSS; while Cortés et al (2016) proposed an 
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IQI that avoids the use of TA and introduced colour parameters such as L*, C*, and h* 

in CIELCh coordinates.  

Any index giving a comprehensive account of the quality should preferably be 

objective (a measurement) rather than subjective (an evaluation) and, ideally, non-

destructive. When destructive measurements are used, the tendency is to use as few 

samples as possible, which often results in increased lot-to-lot variability in the quality 

index. Thus, sample variability becomes a factor to consider during laboratory studies 

and/or commercial applications (Valero et al., 2007). Numerous studies have examined 

the application of non-destructive technologies for quality assessment in stone fruits. 

Sonego et al (1995) detected nectarine woolliness using NMR imaging and X-ray 

computed tomography. Later, Arana et al. (2005) estimated this property using 

mechanical impacts. Wang et al (2006) and Diezma- Iglesias et al. (2006) assessed the 

mechanical properties of peaches by the excitation dynamic characteristics also 

through mechanical impact. X-rays were also used for the detection of changes in 

internal quality in peaches by Barcelon et al., 2009, and Pereira et al. (2013) used an 

MNR spectrometer to classify plums according to sweetness. In the search for a 

method of non-destructive analysis, NIR spectroscopy is especially widespread (Cortés 

et al., 2017; Lorente et al., 2015) and has been used to classify intact peaches or 

nectarines according to their degree of ripeness or different irrigation strategies 

(Carlomagno et al., 2004; Pérez-Marín et al., 2011). The flesh colour of clingstone 

peaches was assessed by Slaughter et al. (2013) using interactance spectroscopy 

without cutting the skin. Time-resolved reflectance spectroscopy was used by Zerbini 

et al. (2006) and Tijskens et al. (2007) to obtain a model of softening and assessing 

harvest maturity of nectarines. On the other hand, colour image analysis has been 

applied for in-line verification of nectarine cultivar (Font et al., 2014) or for assessing 

quality and marketability of fresh-cut nectarines (Pace et al., 2011).  

Hyperspectral imaging is a non-destructive technology that integrates spectroscopy 

and conventional imaging to obtain both spatial and spectral information from an 

object simultaneously. The resulting spectrum for each pixel acts like a fingerprint, 

which can be used to characterise the composition of that particular pixel in the image, 

something that is not possible with conventional spectroscopy. It allows visualisation 
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of the biochemical constituents of a sample, separated into particular areas of the 

image, since regions of a sample with similar spectral properties have similar chemical 

composition (Gowen et al., 2007). VIS-NIR hyperspectral imaging has been applied as a 

powerful process analytical tool for rapid, non-destructive inspection of the internal 

and external quality attributes in fruits such as banana (Rajkumar et al., 2012), pear (Li 

et al., 2016a), persimmon (Munera et al., 2017), citrus fruits (Gómez-Sanchis et al., 

2013), grapes (Baiano et al., 2012), blueberries (Leiva-Valenzuela et al., 2013) or apples 

(Baranowski et al., 2013), as well as in pepper (Schmilovitch et al., 2014), tomato (Liu 

et al., 2015) or potato (López-Maestresalas et al., 2016). In regards to stone fruit, 

peaches are the most studied. Several studies have been performed with the aim of 

detecting different types of defects. Zhang et al. (2015) and Li et al. (2016b) detected 

common defects in skin while Pan et al. (2016) and Sun et al. (2017) used this 

technology to detect chilling injury. In nectarines, Huang et al. (2015) used this 

technology for the detection of defective features. Apart from defects, few works have 

been carried out to estimate other properties. Lu and Peng (2006) presented one of 

the first works to detect firmness in peaches using hyperspectral scattering, later, Lleó 

et al. (2011) classified peaches by maturity using multispectral indices.  

This technique offers an immense amount of spectral and spatial information for 

each sample. For this reason, chemometrics is an indispensable tool for reducing the 

dimensionality of the data, retaining essential spectral information and classifying and 

quantifying important areas of the scene (Amigo et al., 2013; Lorente et al., 2012). PCA 

is one of the chemometric methods which have been specially designed as a tool for 

obtaining an overview of the main source of variance in individual and set samples 

(Amigo et al., 2015). PLS is another method used for constructing predictive models. 

Unlike PCA, PLS is a reliable form of analysis, directed towards factor spaces that are 

associated with high variation in the responses but biased towards directions that are 

accurately predicted. PLS is widely used in hyperspectral imaging to extract and 

summarise spectral information from hyperspectral images, to reduce the high 

dimensionality of the spectral data and to overcome the problem of multi-collinearity 

(Vinzi et al., 2010).  
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The objectives of this work are: i) to investigate the potential of hyperspectral 

reflectance imaging in the VIS-NIR (450-1040 nm) to predict for the first time the 

internal quality of nectarine by means of new ripening indices (RPI and IQI) through 

models based on PLS, ii) to create a new tool to visualise the ripeness of each fruit by 

projecting the models on the pixels of the fruits in the images, and iii) to test the 

performance of the indices in two cultivars with different physicochemical properties. 

 

2. Material and methods 

2.1. Fruit samples 

In this study two cultivars of nectarine were used. ‘Big Top’, with yellow flesh, and 

‘Magique’, a white-flesh cultivar, were harvested in a commercial orchard in Lerida 

(Spain) in the commercial maturity period during the 2015 season. Fruits without any 

defects or bruises were selected and grouped in batches of 25 samples. 

Then the fruits were stored under controlled conditions (15ºC – 90 % relative 

humidity) until senescence. Due to the fact that they are different cultivars (as can be 

seen in Fig. 1), the ripening times for each of them were also different. For this reason 

both cultivars were considered separately and the analyses of ‘Big Top’ nectarines 

were performed before storage and then on the 1st, 2nd, 3rd, 5th and 8th day (150 

fruits in total), and for ‘Magique’ nectarines the analyses were performed before 

storage and then on the 2nd, 4th, 7th, 10th and 14th day (150 fruits in total). 

 

 

Figure 1. External and internal appearance of both cultivars of nectarine during 

postharvest storage. 
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2.2. Hyperspectral imaging acquisition 

The hyperspectral system (Fig. 2) was composed of an industrial camera (CoolSNAP 

ES, Photometrics, AZ, USA), coupled to two LCTF (Varispec VIS-07 and NIR-07, 

Cambridge Research & Instrumentation, Inc., MA, USA), capable of acquiring images at 

60 different wavelengths every 10 nm in the working spectral range of 450 nme1040 

nm. The system was configured to capture images of 1392 x 1040 pixels with a spatial 

resolution of 0.14 mm/pixel. To avoid problems of unfocused images due to the 

refraction of light across this wide spectral range, the focus was adjusted on the 

central band of the acquisition interval (740 nm) and the images were captured using 

lenses capable  of covering the whole spectral range without going out of focus 

(Xenoplan 1.4/23, Schneider Optics, Hauppauge, NY, USA). To optimise the dynamic 

range of the camera, prevent saturated images and correct the spectral sensitivity of 

the different elements of the system, a calibration of the integration time of each band 

was performed. For the reflectance mode, the integration time of each band was 

calibrated to capture the averaged grey level of a white reference target (Spectralon 

99%, Labsphere, Inc, NH, USA) corresponding to 90% of the dynamic range of the 

camera.  

The illumination system consisted of 12 37-watt halogen spotlights (Eurostar IR 

Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current (12 V). The 

scene was lit indirectly by means of diffuse reflection inside a hemispherical dome, 

where the fruits were introduced manually upon a fruit holder, with the stem-apex axis 

lying horizontal. The inner surface of the aluminium dome was painted white in order 

to maximise its reflectivity, and given a rough texture in order to minimise directional 

reflections, which could cause bright spots, thus providing highly homogeneous light. 

Two hyperspectral images per fruit (side A and B) were acquired in reflectance 

mode using customised software developed at IVIA. 
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2.3. Reference analysis 

In this work, RPI and IQI are calculated as shown in equations (1) and (2) and are 

used to relate the spectral information obtained from nectarines with the 

physicochemical properties and the sensory perception of their maturity. 

𝑅𝑃𝐼 = ln
100 × 𝐹 × 𝑇𝐴 

𝑇𝑆𝑆 
                                                                                                                     (1)  

𝐼𝑄𝐼 = ln
100 × 𝐹 × 𝐿∗ × 𝐻∗

𝑇𝑆𝑆 × 𝐶∗                                                                                                        (2) 

Both indices give an estimate of fruit maturity, but the advantage of IQI over RPI is 

that the first one replaces the TA measure, which is complex and time-consuming, for 

colour parameters that can be more easily obtained with a colorimeter or even a 

colour camera. All parameters listed in Equations (1) and (2) were analysed 

immediately after hyperspectral imaging acquisition. First, colour images were 

acquired to observe the external and internal (after F analysis) appearance of each 

fruit (Fig. 1). The image acquisition system consisted of a digital camera (EOS 550D, 

Canon Inc, Japan) introduced into a square inspection chamber that included a 

calibrated and uniform illumination system composed of four lamps, each containing 

two BIOLUX 18W/965 fluorescent tubes (Osram GmbH, Germany) with a colour 

temperature of 6500 K. The angle between the axis of the lens and the sources of 

illumination was approximately 45° and polarising filters were placed in front of the 

lamps and in the camera lenses to avoid direct reflections on the camera.  

The analysis of F was performed on two opposite sides of each fruit using a XT2 

Stable texturometer (MicroSystems Haslemere, UK) provided with a 6mmflat plunger. 

The crosshead speed during the puncture test was 1 mm/s. The maximum force, 

expressed in Newton (N), was registered on opposite sides of the fruits.  

Flesh colour was analysed using a MINOLTACM-700d colorimeter (Minolta Co. 

Tokyo, Japan) with the standard illuminant D65 and the observer 10º. L*, C* and h* 

parameters were obtained at the CIELCh space. Then the juice of each nectarine was 

used to analyse TA and TSS compounds.  
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TA was determined using a Crison pH-Burette 24 automatic titrator (Crison, 

Barcelona, Spain) and NaOH 0.5 N, according to standard UNE34211:1981 (AENOR, 

1981). Results were expressed as % of citric acid. TSS was determined using a digital 

refractometer RFM330 þ VWR (Internacional Eurolab S.L., Barcelona, Spain) at 20 ºC 

and results were expressed as % of TSS. 

 

2.4. Image processing 

A total of 300 images of each cultivar were obtained and imported into the 

commercial software MATLAB R2015a (The MathWorks, Inc. MA, USA) to be pre-

processed using the customised toolbox, called HYPER-Tools (Amigo et al., 2015).  

The first step of the image processing consisted in the correction of the relative 

reflectance using Eq. (3) (Gat, 2000): 

𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                                                    (3) 

where ρRef(λ) is the standard reflectance of the white reference target (99% in this 

work), R(x,y,λ) is the reflectance of the fruit captured by the CCD sensor of the camera, 

Rwhite(x,y,λ) is the reflectance captured by the CCD of the white reference target, and 

Rblack(x,y,λ) is the reflectance captured by the CCD while avoiding any light source in 

order to quantify the electronic noise of the CCD.  

The corrected images were clipped and compressed to obtain images with a new 

dimension of 256 x 163 pixels and a spatial resolution of 0.56 mm/pixel in order to 

reduce the computation time. With these new dimensions, a hypercube was generated 

by joining images of a certain number of samples in the image depending on the 

calibration or prediction set. After proper removal of the background using K-means, 

SNV pre-treatment was applied to the NIR region due to the scattering effects, which 

are one of the main drawbacks of this region (Vidal and Amigo, 2012). 

Finally, the average reflectance spectrum was determined by averaging the relative 

reflectance spectra of a central square region of interest on each side of each fruit. 

Altogether, 150 average spectra representing all the nectarines of each cultivar were 
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obtained for their ripeness prediction using PLS-R models. With the model thus 

obtained, the prediction was performed on the whole surface of the nectarine. 

 

2.5. Data analysis 

After the pre-processing steps indicated in the previous section (2.5), the whole 

dataset of each cultivar was randomly partitioned into two separate folds. 68% of the 

samples (204) were used for the calibration (C) of the models and the remaining 32% 

(96) were used for independent testing or prediction. The PLS models were then used 

to predict the independent set of the samples. 

Before the quantitative analysis, PCA was performed to explore the image of 

nectarines in an unsupervised manner. In this case, the images from the calibration set 

were used with the aim of visualising the changes on the surface of each fruit during 

storage.  

PLS regressions were performed using the PLS_Toolbox (Eigenvector Research Inc., 

USA) working under MATLAB in order to correlate the spectral response and each of 

the quality indices considered (RPI and IQI). The input spectra (NIR region previously 

pre-treated using SNV) were normalised using mean-centering. A single 10-fold 

venetian blind cross-validation (i.e. splitting evenly the data into 10 sets and leaving 

each one of the sets out in each iteration of the validation procedure) was used on the 

calibration set to choose the optimal number of LVs as well as to obtain an estimate of 

the error rate of the PLS models. The accuracy of the PLS models and predictive 

capability were evaluated by the RMSE and R2 between the predicted and the 

measured values of the quality indices for calibration, CV and prediction. Furthermore, 

the RPD, defined as the ratio between the standard deviation of the reference data 

and RMSEP, was also used (Williams, 1987). 

In order to visualise the ripeness in the fruit surface of the prediction set, the index 

of each pixel within nectarine was calculated by inputting the extracted spectrum of 

the corresponding pixel into the previously established PLS model. Then the positions 

of all corresponding pixels were used to visualise the distribution of the predicted 
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value in each sample. In this case, each side of each fruit was considered a sample. All 

the steps for visualisation were implemented using the HYPER-Tools toolbox.  

ANOVA, followed by Tukey’s HSD test, was conducted to determine significant 

differences in the reference properties of the fruit during ripeness using the software 

Statgraphics (Manugistics Corp., Rockville, USA). 

 

3. Results and discussion 

3.1. Physicochemical analysis 

Table 1 summarises the means and standard deviations of the physicochemical 

properties measured on nectarine samples of each cultivar during storage. F ranged 

from 47.3 to 8.8 and 57.9 - 6.1 N for ‘Big Top’ and ‘Magique’, respectively. These 

changes are due to pectin solubilisation and degradation by enzymes acting on cell 

walls, whose activity is related to ethylene biosynthesis and action. Cellulases are 

active in the first stage of slow softening. Later, in the so-called ‘melting’ phase, the 

combined action of pectinmethylesterase and polygalacturonase resulted in a large 

decline in firmness in a few days at room temperature (Zerbini et al., 2006). F 

thresholds have been defined to describe bruising thresholds and identification of 

important ripening stages (Valero et al., 2007), finding that fruit above 35 N are 

significantly less susceptible to be bruised, between 18 N and 35 N were described as 

‘ready to buy’ and below 18 N as ‘ready to eat’. 

The TSS of the ‘Big Top’ cultivar increased from 9.8 % to 15.0 % until the last day of 

storage, when it decreased until 12.0%. In the case of ‘Magique’, TSS values were 

stable during ripening and significant differences were only found between day 0 and 

the last day of storage (10.7-11.4 %). Something similar happened for TA. Both 

cultivars maintained the same value until the last day of storage, when this parameter 

changed. According to Iglesias and Echeverría (2009), TSS below 10 % is generally 

unacceptable to consumers. But to reach good consumer acceptance (good flavour) it 

is important to achieve a minimum level of TA (which has not yet been established) 

and surpass a certain level of TSS, which the authors set at 12 %, otherwise the taste is 
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judged as lacking in flavour, insipid or flat. In this case, both cultivars achieved higher 

values than the specified minimum value of acceptability, especially ‘Big Top’. 

 

Table 1. Results of physicochemical properties of both cultivars of nectarine during 

postharvest storage. 

 Day F (N) TSS (%) TA (%) 
Flesh colour parameters 

L* h* C* 

‘B
ig

 T
o

p
’ 

0 47.3 ± 5.1 a 9.8 ± 1.2 d 0.4 ± 0.1 a 72.1 ± 1.9 a 79.2 ± 2.1 a 42.4 ± 2.4 d 

1 43.3 ± 5.3 a 10.6 ± 1.3 cd 0.4 ± 0.1 a 70.5 ± 1.8 ab 78.3 ± 2.5 a 45.2 ± 2.9 c 

2 31.4 ± 8.3 b 10.8 ± 1.4 cd 0.4 ± 0.1 a 69.2 ± 2.4 b 75.4 ± 3.4 b 44.7 ± 2.4 cd 

3 15.5 ± 4.2 c 12.7 ± 1.8 b 0.4 ± 0.1 a 65.3 ± 2.5 c 78.1 ± 2.8 a 56.0 ± 4.9 b 

5 12.5 ± 2.8 cd 15.0 ± 2.6 a 0.4 ± 0.1 a 66.3 ± 2.5 c 72.5 ± 2.3 c 46.1 ± 3.1 c 

8 8.8 ± 1.2 d 12.0 ± 1.6 bc 0.3 ± 0.1 b 62.2 ± 1.7 d 74.1 ± 1.2 bc 59.9 ± 3.8 a 

‘M
ag

iq
u

e’
 

0 57.9 ± 3.9 a 10.7 ± 0.8 b 0.5 ± 0.1 ab 72.1 ± 2.0 ab 102.1 ± 1.0 a 23.7 ± 1.5 d 

2 51.3 ± 5.2 b 10.5 ± 0.8 ab 0.5 ± 0.1 ab 73.4 ± 1.9 a 100.2 ± 2.1 b 20.5 ± 1.8 e 

4 32.7 ± 9.4 c 10.3 ± 1.0 ab 0.6 ± 0.1 a 73.1 ± 1.8 ab 98.1 ± 2.1 c 21.3 ± 1.8 e 

7 11.8 ± 3.2 d 11.3 ± 1.5 ab 0.5 ± 0.1 ab 70.9 ± 2.6 bc 91.6 ± 3.0 d 25.4 ± 1.7 c 

10 7.4 ± 1.5 e 10.8 ± 1.5 ab 0.5 ± 0.1 b 69.3 ± 3.9 c 87.9 ± 1.4 e 33.1 ± 2.7 a 

14 6.1 ± 0.9 e 11.4 ± 1.4 a 0.4 ± 0.1 c 68.9 ± 2.7 c 84.8 ± 1.2 f 27.8 ± 2.6 b 

Values are mean ± standard deviation. Different superscript letters in the same column 
and nectarine cultivar indicate significant differences between groups (p-value<0.05), 
according to Tukey's HSD test 
 

Regarding the flesh colour, ’Big Top’ nectarines are characterised by a high 

presence of yellow components or carotenoids, unlike ‘Magique’, where these are 

present in a very low proportion (Gil et al., 2002), as shown in Figure 1. Both cultivars 

obtained similar values of L* at day 0 of storage but ‘Big Top’ underwent a big 

reduction of this parameter. ‘Magique’ presented high values of h* (greenish-yellow 

above 85º) and a large reduction of this parameter. However, ‘Big Top’ presented high 

values of C* and underwent a higher increase in this value than the white-flesh 

cultivar. The loss in visual appearance is related to a reduction in lightness and 

variation of flesh colour described by those parameters (Pace et al., 2011). 
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3.2. Spectral analysis 

The pre-processed (SNV) average spectra of the calibration set of both nectarine 

cultivars on different days of postharvest storage are illustrated in Figure 2. Both 

cultivars followed the same spectral pattern.  

The difference in the VIS range was due to the colour feature of the samples over 

the entire visible colour spectral range. In this case the differences between 650 and 

700 nm belong to chlorophylls, as reported by Lleó et al. (2011) or Rajkumar et al. 

(2012). Riper fruits reflected more light because these molecules are degraded during 

ripeness. Furthermore, the ‘Magique’ cultivar obtained lower values of reflectance in 

these bands, possibly due to higher chlorophyll content than the yellow-flesh cultivar. 

Carotenoids are present in the 450-600 nm range, but in this case no large differences 

were observed.  

 

 

Figure 2. Average spectra of calibration samples of ‘Big Top’ and ‘Magique’ cultivars on 

each day of analysis. 
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Differences in the NIR region could be attributed to the chemical differences 

among nectarines at different maturity stages (Liu et al., 2015). In this case, the main 

differences were localised in the reflection valley around 950-1000 nm, primarily 

assigned to water absorption bands (Lu and Peng, 2006; Lleó et al., 2011). This valley 

was more pronounced in riper fruits because the water content increases in the flesh 

during the onset of ripening, due to cell breakage and osmotic movement of water 

from the flesh to the peel (Rajkumar et al., 2012). The ‘Magique’ cultivar presented 

more differences in water content between days of analysis than ‘Big Top’. This 

indicates that external and internal colour is not the only difference between these 

cultivars. 

 

3.3. Principal components analysis 

Results of PCA for the two cultivars are shown in Figure 3. In these figures, the 

colour of each pixel in the nectarine represents the score obtained by this pixel based 

on the colour scale at the right part of the images. The score maps were obtained by 

refolding the score vectors obtained for each factor, whereas the loadings were 

related to the spectral variability.  

In the model for ‘Big Top’, the first two PCs were necessary to explain 88.9 % of the 

variance (72.5 % and 16.4 %, respectively). However, the first PC of the ‘Magique’ 

cultivar explained 90.7% of the total variance, whereas the second PC only explained 

3.8 %. The images of the scores, the first and second PC for ‘Big Top’ and the first PC 

for ‘Magique’, seem to show an evolution of the ripening process of the fruit during 

postharvest storage. The corresponding loadings show that wavelengths between 650 

nm and 730 nm and between 940 nm and 1040 nm (especially for ‘Magique’) could be 

important for the internal quality prediction of both cultivars. As commented before, 

these zones in the spectrum belong to chlorophylls and water absorbance, 

respectively. However, predictive models need to be investigated for use in 

quantitative analyses capable of identifying nectarine ripeness. 
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Figure 3. PCA model. Score surface and loadings for PC1 and PC2 of both cultivars. 

 

 

3.4. PLS prediction of ripening indices 

Figure 4 shows the evolution of the indices IQI and RPI for each cultivar during 

storage. As expected, in both cases the values of the indices decreased as the fruit 

matures, mainly due to the progressive decrease of F and increase of TSS (Table 1). The 

IQI performed better for ’Big Top’, as it could discriminate all maturity stages 

measured. On the other hand, RPI could not properly separate all the stages for ’Big 

Top’, but behaved better for ’Magique’, which could be explained because the TA did 

not change for ’Big Top’ throughout the experiments, while it decreased slightly for 

’Magique’, and also because the changes in the flesh colour showed that luminosity 

and chroma were higher for ’Big Top’ than for ’Magique’. 
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Figure 4. Evolution of the different ripening indices during storage of ‘Big Top’ and 

‘Magique’ nectarines. Columns are mean and bars are standard deviation. Different 

letters in each nectarine cultivar set indicate significant differences between groups (p-

value<0.05), according to Tukey’s (HSD) test. 

 

PLS-R models were performed to evaluate the internal quality of nectarines with 

the spectral range of 450-1040 nm. Table 2 shows the RPI and IQI prediction results for 

‘Big Top’ and ‘Magique’ cultivars.  

 

Table 2. Prediction of RPI and IQI by using PLS-R and all wavelengths for each cultivar. 

  #W #LV R2
C RMSEC R2

CV RMSECV R2
P RMSEP RPD 

‘Big Top’ 
RPI 60 7 0.91 0.26 0.87 0.31 0.87 0.37 2.4 

IQI 60 7 0.92 0.28 0.89 0.33 0.89 0.33 3.0 

‘Magique’ 
RPI 60 6 0.95 0.24 0.93 0.27 0.91 0.35 2.9 

IQI 60 6 0.93 0.31 0.91 0.35 0.89 0.44 2.7 

W = wavelengths; LV = latent variables; C = calibration; CV = cross validation; P = 
prediction 
 

The optimal model was chosen when the number of LV yields the lowest RMSE of 

calibration and CV (RMSEC and RMSECV). When the full spectral data were correlated 

with the ripeness indices, 7 LVs were determined for ‘Big Top’ and 6 LVs were 

determined for ‘Magique’. In general, optimal predictions were obtained for both 

indices and cultivars. In ‘Big Top’, the R2 and RMSE values were 0.87 and 0.37 for RPI 

and 0.89 and 0.33 for IQI. As in the case of ‘Magique’, these values were 0.91 and 0.35 

and 0.89 and 0.44, respectively. Furthermore, according to Williams (1987), values of 

RPD between 2 and 2.5 indicate that coarse quantitative predictions are possible and a 
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value above 2.5 means good to excellent prediction accuracy. Taking these values into 

consideration, IQI was better predicted than RPI for the yellow flesh cultivar and RPI 

was somewhat better predicted than IQI for the white-flesh cultivar. 

 

3.5. Variable selection 

Due to the large amount of information contained in the hyperspectral images, 

much of which is redundant, time consuming and unsuitable for in-line inspection 

(Lorente et al., 2012), it is necessary to select the best-known wavelengths from the 

entire spectral data. The use of average spectra of the samples could significantly 

reduce the amount of data. However, the high dimensional full spectra suffered from 

co-linearity and redundancy of wavelengths, resulting in complex models and poor 

performances (Zhang et al., 2016). 

VIP scores were used to select the best variables for predicting the proposed 

indices (Figure 5).  

 

 

Figure 5. Optimal wavelength selection for prediction of the indices in both cultivars 

using VIP scores. 

 

These are calculated as a weighted sum of the squared correlations between the 

PLS components and the original variables. The weights correspond to the percentage 
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variation explained by the PLS component in the model. The number of terms in the 

sum depends on the number of PLS components found to be significant in predicting. 

Variables with a VIP score close to or greater than 1 can be considered the ones 

making the highest contribution to prediction in the PLS-R model. While for ‘Big Top’ 

the optimal wavelengths to predict both RPI and IQI were located only in the VIS 

region (670-730 nm and 760 nm), for ‘Magique’ several wavelengths in the NIR region 

(670-700 nm and 970-990 nm) were also important. 

As shown in Table 3, the PLS-R models using the optimal wavelengths maintained a 

similar performance to PLS-R models created with the full spectrum (Table 2). Likewise, 

their calibration and prediction errors do not worsen and both indices remain within 

the same range as in nectarine samples. 

 

Table 3. Prediction of RPI and IQI by using PLS-R and optimal wavelengths for each cultivar 

  #W #LV R2
C RMSEC R2

CV RMSECV R2
P RMSEP RPD 

‘Big Top’ 
RPI 8 5 0.87 0.31 0.85 0.34 0.89 0.33 2.7 

IQI 8 5 0.87 0.35 0.86 0.37 0.90 0.32 3.1 

‘Magique’ 
RPI 7 5 0.88 0.34 0.87 0.36 0.90 0.36 2.8 

IQI 7 5 0.87 0.43 0.85 0.45 0.88 0.44 2.7 

W = wavelengths; LV = latent variables; C = calibration; CV = cross validation; P = 
prediction 

 

Values of RPD indicated that IQI was the best index predicted for the yellow-flesh 

cultivar. However, similar results were obtained for IQI and RPI in ‘Magique’. The main 

differences between these two indices reside in the requirements of time and costs to 

obtain them. For this reason IQI is more suitable to be used as a standard index on an 

inspection line. In general, the prediction results using the optimal wavelengths were 

acceptable and revealed the potentiality of hyperspectral imaging as a rapid and non-

destructive method to obtain the estimation of ripeness in nectarines. 

One of the main advantages of hyperspectral imaging is being able to map the 

spatial distribution of different properties of the samples under study. In order to 

visualise the ripeness of the fruits throughout postharvest storage, the PLS-R model of 

RPI with optimum wavelengths was used to transfer the calibrated results of 
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multivariate analysis to each pixel of the image. Fig. 6 shows the predicted IQI value for 

each pixel in the nectarine according to the colour scale bar on the right side of the 

image. The colour scale ranges from red colours to show relatively high IQI values 

(lower ripeness) to blue colours to show lower IQI values indicating a higher degree of 

ripeness. This way, the difference in colour (and thus in ripeness) from sample to 

sample was easy to distinguish from the resulting images. Moreover, samples showed 

a variation of colours which indicates that ripeness in each fruit had a heterogeneous 

distribution, as also discussed Herrero-Langreo et al. (2011) for peaches. 

 

 

Figure 6. Visualisation of IQI prediction using PLS-R and optimal wavelengths for each 

cultivar of nectarine. 

 

Towards an optimal variable selection study and implementation, the proposed 

methodology could be adapted into in-line sorting equipment. Hyperspectral systems 

are still expensive, and both the acquisition of images and the processing of spectral 

and spatial information require a great computational cost. Instead, the emergence in 

the market of new multispectral cameras that use custom Bayer-like matrix filters to 



Chapter I. Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral 
reflectance imaging 
 

70 
 

capture a reduced set of 9-15 wavelengths simultaneously at high speed, will allow the 

progressive incorporation of these systems for in-line operations in the industry. This 

will entail the challenge of finding the proper setup of discrete wavelengths towards a 

fast acquisition imaging system that gives us the ideal descriptive or quantitative 

results, which will require the design and development of new experiments with more 

fruits. 

 

4. Conclusions 

This work demonstrates the capability of hyperspectral imaging to monitor the 

ripeness of two cultivars of nectarine using ripening indices. The ripening evolution 

could be observed during storage through PCA of the spectral information in a non-

supervised manner. On the other hand, PLS models produced optimal prediction for 

both cultivars of around R2 = 0.90 of RPI and IQI indices, which were obtained by 

measuring the physicochemical properties destructively. In the case of the ‘Big Top’ 

cultivar, the R2 values were 0.87 and 0.89 for RPI and IQI, respectively; while for the 

‘Magique’ cultivar these values were 0.91 and 0.89, respectively. 

However, hyperspectral systems capture a huge amount of data, most of which are 

redundant, which makes the process slow and hence it is important to obtain a 

reduced set of wavelengths that preserves the most variability of the problem. In our 

study, optimal wavelength selection was performed by means of VIP scores. A total of 

eight wavelengths in the VIS region were selected for ‘Big Top’ and seven for 

‘Magique’, but in this second case some of them were also located in the NIR region. 

The simplified models also yielded good performance in prediction with R2 values of 

around 0.90 and RPD higher than 2.5 for both indices and both cultivars. However, 

each cultivar needed a particular set of wavelengths. 

The predictions of the IQI of each individual pixel in the spectral images were used 

to create new images that allowed the ripeness distribution (ripening maps) to be 

visualised within and between fruits using the calibrated PLS model, thus facilitating 

the visual observation of the state of fruit ripening. 
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Abstract 

The internal quality of nectarines (Prunus persica L. Batsch var. nucipersica) cv. ‘Big 

Top’ (yellow flesh) and ‘Magique’ (white flesh) has been inspected using hyperspectral 

trans-mittance imaging. Hyperspectral images of intact fruits were acquired in the 

spectral rangeof 630-900 nm using transmittance mode during their ripening under 

controlled conditions. The detection of split pit disorder and classification according to 

an establishedfirmness threshold were performed using PLS-DA. The prediction of the 

IQI related to ripeness was performed using PLS-R. The most important variableswere 

selected using interval-PLS. As a result, an accuracy of 94.7 % was obtained in 

thedetection of fruits with split pit of the ‘Big Top’cultivar. Accuracies of 95.7 % and 

94.6 % were achieved in the classification of the ‘Big Top’and ‘Magique’cultivars, 

respectively, according to the F threshold. The internal quality was predicted through 

the IQI with R2 values of 0.88 and 0.86 for the two cultivars. The results obtained 

indicate the greatpotential of hyperspectral transmittance imaging for the assessment 

of the internal quality of intact nectarines. 
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1. Introduction 

Nectarine (Prunus persica L. Batsch var. nucipersica) is one of the fruits to which 

plant breeders have devoted the most effort in recent years in order to improve 

agronomic performance and enhance their appearance and quality (Iglesias & 

Echeverría, 2009; Munera et al., 2017; Reig, Alegre, Gatius & Iglesias, 2013). However, 

this effort has not resulted in an increase in consumption due to the fruit being 

harvesting too early, which means that the products often lack flavour and have 

excessive firmness, irregular quality and a lack of product identification (Iglesias & 

Echeverría, 2009; Munera et al., 2018). Therefore, a prior evaluation of quality would 

be necessary to offer consumers fruits that best match their preferences. Some of 

these preferences are related to the ripeness of the fruit when consumed. But the skin 

colour of red cultivars makes it virtually impossible to visually determine the exact 

stage of maturity. On the other hand, ripening of peaches and nectarines is related 

with changes during storage that transform a mature fruit into one that is ready to be 

eaten (Crisosto, 1994). Therefore, maturity at harvest determines the quality of fruit 

when it reaches the consumer (Jacob et al., 2006). 

Hyperspectral imaging has emerged as a potential and powerful tool for safety and 

quality inspection of agricultural products (Lorente et al., 2012). This non-destructive 

technique integrates conventional imaging and spectroscopy to obtain both spatial and 

spectral information from an object simultaneously, thus making it a useful tool for 

evaluating individual fruits, vegetables or grains (Qin, Chao, Kim, Lu, & Burks, 2013). 

Most of the hyperspectral imaging systems found in the literature have been 

implemented to capture images of the samples illuminated by appropriate lighting 

systems that make it possible to capture the light reflected by the sample. The 

differences found between the light emitted by the lamps and the radiation reflected 

by the samples allows certain attributes related to the composition or the quality to be 

estimated. Examples are found in vegetables, such as pepper (Schmilovitch et al., 

2014), tomato (Liu, Liu, Chen, Yang, & Zheng, 2015) or rocket leaves (Chaudhry et al., 

2018), cereals, like maize (Williams & Kucheryavskiy, 2016), or rice (Kong, Zhang, Liu, 

Nie, & He, 2013), and fruits such as bananas (Rajkumar, Wang, EImasry, Raghavan, & 
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Gariepy, 2012), pears (Li et al., 2016), grapes (Baiano, Terracone, Peri, & Romaniello, 

2012), strawberries (Zhang et al., 2016) or apples (Baranowski, Mazurek, & Pastuszka-

Wozniak, 2013). In the case of stone fruit, Herrero-Langreo, Lunadei, Lleó, Diezma, and 

Ruiz-Altisent (2011) assessed the ripeness of peaches by using multispectral indexes; 

Lu and Peng (2006) assessed the F of peaches; Zhu, Lin, Nie, Wu and Chen (2016) 

obtained F distribution maps inside the peach pulp. This technology was also used to 

monitor the ripeness of two cultivars of nectarines (Munera et al., 2017) and to 

discriminate between similar cultivars with precision (Munera et al., 2018). 

On the contrary, hyperspectral imaging in transmittance mode is more effective in 

detecting internal defects and concentrations in translucent materials, as is the case of 

some fruits. When a fruit is illuminated with a strong light, the incident radiation may 

be reflected, absorbed or transmitted, and the relative contribution of each 

phenomenon depends on the chemical constitution and physical parameters of the 

sample (Nicolaï et al., 2007). The transmission mode may be less susceptible to surface 

properties and hence better for detecting composition or internal disorders than the 

reflectance mode (Schaare & Fraser, 2000). When this mode is used in hyperspectral 

imaging, the camera is located on the opposite side to the light source and captures 

the light transmitted through the sample. Transmittance has already been used to 

analyse the mechanical properties of blueberries (Hu, Dong, Liu, Opara & Chen, 2015; 

Leiva-Valenzuela, Lu, & Aguilera, 2014), and to detect pits in cherries (Qin & Lu, 2005; 

Siedliska, Baranowski, Zubik & Mazurek, 2017), defects in pickling cucumbers (Cen, Lu, 

Ariana & Mendoza, 2014) and damage in soybeans (Huang, Wan, Zhang & Zhu, 2013). 

However, to our knowledge, no previous works have been undertaken to study the 

application of hyperspectral imaging in transmittance mode in stone fruit such as 

nectarines. This technique could be an interesting alternative to evaluate their 

physicochemical properties but also important disorders such as split pit (Figure 1). 

This phenomenon consists in the splitting of the pit along the suture/seam of the 

endocarp, resulting in the two halves of the endocarp being detached from each other 

inside the mesocarp. 

When this disorder happens, the fruit generally develops rot problems far more 

quickly than sound fruit, and there is a higher risk of the disease spreading more 
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rapidly from split pit fruit to other fruit during the postharvest operations of storage or 

marketing (Tani, Polidoros & Tsaftaris, 2007). 

 

 

Figure 1. Example of nectarine with split pit defect. 

 

In most cases, even in the most advanced cases, no visual symptoms of pit splitting 

or breakage can be observed, and it is only detected when the fruit is opened 

(Kritzinger, Lötze & Jooste, 2017). This can be a big problem in nectarines because it 

can affect 45 % of the fruits, depending on the cultivar and the season (IRTA, 2016). 

Therefore, non-destructive techniques such as computed tomography (Kritzinger, 

Lӧtze & Jooste, 2017), X-ray (Han, Bowers & Dodd, 1992) or, more recently, acoustic 

vibration methods (Nakano et al., 2018) have been used in an attempt to detect this 

problem in plums and peaches. 

The aim of this work is to investigate the potential use of hyperspectral imaging in 

transmittance mode as a tool for the non-destructive evaluation of the internal quality 

of two cultivars of nectarine. This quality evaluation is related to the detection of fruit 

with split pit and to the ripeness monitoring determined by two indicators, the internal 

quality index, IQI, and a firmness threshold (35 N). 
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2. Material and methods 

2.1. Fruit samples 

This study was performed in parallel to a previous work in which the ripeness of 

‘Big Top’ (yellow flesh cultivar) and ‘Magique’ (white flesh cultivar) nectarines was 

monitored using hyperspectral imaging in the reflectance mode (Munera et al., 2017). 

In this case, a total of 168 fruits of each cultivar (336 in total), ‘Big Top’ and 

‘Magique’, were harvested in a commercial orchard in Lerida (Spain) in the commercial 

maturity period and grouped in 6 batches of 28 fruits, where 5 of which were stored 

under controlled conditions (15 °C, 90 % relative humidity) until senescence. The 

image acquisition and the analyses of the ‘Big Top’ cultivar were performed before 

storage (for one set) and after the 1st, 2nd, 3rd, 5th and 8th days (for the remaining 

five sets), collecting a total of 168 mean spectra; for ‘Magique’ nectarines they were 

performed before storage (for one set) and after the 2nd, 4th, 7th, 10th and 14th days 

(for the remaining five sets), also collecting a total of 168 mean spectra. Different days 

were selected for the analyses due to different ripening speeds for each cultivar 

(Munera et al., 2017). 

Initially, all of the fruits presented a sound appearance and there were no external 

signs of split pit in any of them. The experiments to detect this disorder were carried 

out after the image acquisition. A total of 137 ‘Big Top’ fruits out of 168 (81.5 %) 

presented a normal pit and 31 (18.5 %) were identified as split pit (Figure 1). In the 

case of the ‘Magique’ cultivar, no fruit presented split pit. 

 

2.2. Hyperspectral imaging acquisition and processing 

The hyperspectral imaging system used to acquire the images in transmittance 

mode (Figure 2) was composed of an industrial camera (CoolSNAP ES, Photometrics, 

AZ, USA), coupled to two LCTF (Varispec VIS-07 and NIR-07, Cambridge Research & 

Instrumentation, Inc., MA, USA). A lens capable of maintaining the focus across the full 
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spectral range (Xenoplan 1.4/23, Schneider Optics, Hauppauge, NY, USA) was also 

used. 

The camera was configured to acquire images with a size of 1392 × 1040 pixels and 

a spatial resolution of 0.14 mm/pixel. The camera and the filters are sensitive in the 

range from 400 to 1100 nm. However, little light crosses the nectarines and the images 

appeared very dark when the time of the light exposition was limited to no more than 

10 s per wavelength in order to avoid any damage in the fruit. Therefore, a calibration 

was carried out so that the integration time was increased as much as possible while 

ensuring that the maximum intensity (saturation) was not reached for any wavelength 

in any region of the image. To avoid the low sensitivity of the sensors close to the 

edges of this range, the images were captured at every 10 nm in the working spectral 

range of 630–900 nm, resulting in 28 images obtained at different wavelengths. This is 

in accordance with Qin and Lu (2005), who selected the spectral range from 692 to 856 

nm to detect pits in cherries using transmittance. 

The fruit was placed manually in a holder with a foam foil located between the 

camera and the illumination system in which the fruit was inserted to ensure that only 

the light that was transmitted through the fruit reached the camera (Figure 2). The 

nectarines were oriented so that the pedicel was pointing downwards and directly 

illuminated by the twelve halogen spotlights (37 W) (Eurostar IR Halogen MR16. Ushio 

America, Inc., CA, USA) powered by direct current (12 V). The lamps were arranged 

equidistant from each other outside a hemispherical aluminium diffuser (Figure 2). 
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Figure 2. Hyperspectral acquisition system. 

 

In order to extract the actual response of the samples at each wavelength, while 

avoiding light-dependent intensities, a correction was applied. Several methods have 

been described to correct the effect of the spectrum of the light source in 

transmittance mode, from no correction (Siedliska et al., 2017), which is clearly wrong, 

to the use of different materials, such as opal glass, or measuring the light source 

directly with no samples (Ariana & Lu, 2008; Cogdill, Hurburgh, & Rippke, 2004). This 

last option is actually equivalent to correcting the images using the reflectance of a 

standard white reference. A correction was then performed using the image of a 

standard white reference (Spectralon 99 %, Labsphere, Inc, NH, USA) captured with a 

reduction in the integration time to prevent saturation (Gómez-Sanchis et al., 2014). 

The influence of the minimum dark current of the camera was also captured by 

switching off the lamps and placing a cap in the lens to prevent the light from getting 

inside the camera. The correction was performed using the correction in Equation (1): 

 

𝐼 =
𝐼0 − 𝐼𝑏𝑙𝑎𝑐𝑘

𝐼𝑤ℎ𝑖𝑡𝑒−𝐼𝑏𝑙𝑎𝑐𝑘
                                                                                                   (1) 
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where I0 is the raw acquired image of the fruit, Iwhite is the image of the standard white 

reference, and Iblack is the image acquired while avoiding any light source. The images 

obtained were processed using the toolbox HYPER-Tools (Mobaraki & Amigo, 2018) for 

MATLAB R2017b (The MathWorks, Inc. MA, USA).  

As Ariana and Lu (2008) pointed out, transmittance is affected by the diameter of 

the fruit, and therefore the effect of the fruit size was corrected using Equation 2: 

   𝐼𝑑  =  
𝐼 𝑥 𝑑𝑛

𝑑𝑡
                                                     (2) 

where I is the corrected image obtained previously, dn is the diameter of the individual 

fruit and dt is the average of the diameters of all the fruits of each cultivar.  

Finally, the mean transmittance spectrum was obtained by averaging the relative 

transmittance spectra without including the possible saturated pixels on the edge of 

the fruit (Figure 3). A total of 168 mean spectra representing the ‘Big Top’ fruits and 

168 mean spectra representing ‘Magique’ fruits (28 mean spectra of each cultivar in 

each day of analysis) were obtained for assessment of their internal quality by means 

of multivariate data analysis methods. In the case of ‘Big Top’ cultivar, 137 mean 

spectra corresponded to fruits with normal pit and 31 with split pit. 

 

 

 

Figure 3. Image processing to select the ROI of each type of fruit: less ripe fruit (A), 

riper fruit (B) and split pit fruit (C). Green line = limit of the ROI (analysed area); red 

pixels = saturated pixels 
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2.3. Reference quality parameters 

The determination of reference quality parameters was performed after image 

acquisition on each day of analysis in order to monitor the ripening of both cultivars of 

nectarines. The analysis of the flesh firmness (F) was performed using a texturometer 

(XT2 Stable, MicroSystems Haslemere, UK) equipped with a 6 mm flat plunger. The 

crosshead speed during the puncture test was 1 mm s−1. The maximum force, 

expressed in N, was registered on opposite sides of the fruits. The colour of the flesh 

was obtained using a colourimeter (MINOLTA CM-700D, Minolta Co. Tokyo, Japan) 

with the standard illuminant D65 and the CIE standard observer 10°. L*, C* and h* 

parameters were obtained in the CIELCh colour space. The TSS value was analysed 

from the juice of each nectarine with a digital refractometer (RFM330 + VWR, 

Internacional Eurolab S.L., Barcelona, Spain) at 20 °C and the results were expressed as 

a percentage of the TSS. The IQI was calculated using Equation (3) (Cortés et al., 2016). 

This index relates internal physicochemical properties to a sensory perception of its 

ripeness. 

𝐼𝑄𝐼 = ln
100 × 𝐹 × 𝐿∗ × ℎ∗

𝑇𝑆𝑆 × 𝐶∗                                                                                                        (3) 

The ANOVA, followed by Tukey’s Honestly Significant Difference (HSD) test was 

conducted to determine significant differences (significance defined at p-value ≤ 0.05) 

in the reference properties of the fruit during the ripening process using the software 

Statgraphics (Manugistics Corp., Rockville, USA). 

 

2.4. Multivariate analysis 

In this work, the prediction of the ripeness properties by means of the IQI was 

performed using models based on PLS-R and the discrimination between split and 

normal pit and the corresponding F was carried out by means of models based on PLS-

DA. 

PLS-R searches for a linear regression model of latent variables by projecting 

prediction variables X and response variables Y into a new latent space where the 
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covariance between these latent variables is maximised. In this work, the goal is to find 

the latent multidimensional direction in the wavelengths space that explains the 

direction of the maximum multidimensional covariance in the reference parameter 

space (Lorente et al., 2012). 

In PLS-DA the Y variable is categorical, expressing the class membership of the 

samples. It is performed in order to sharpen the separation between groups of 

observations by maximising the covariance between the wavelengths and the classes, 

such that a maximum separation among these classes is obtained (Lorente et al., 

2012). 

All models were calibrated using the mean transmittance spectra of two thirds of 

the fruit and later validated using the remaining third. For the detection of split pit, the 

mean transmittance spectra of 92 fruits with normal pit and 20 with split pit were used 

as a training set to calibrate the model, and the remaining spectra of 45 fruits with 

normal pit and 11 with split pit were used as a test set to validate the model. Both the 

fruits in the calibration and the validation sets were selected with different degrees of 

ripeness. In the case of ripeness monitoring, the models for ‘Big Top’ were calibrated 

using the mean transmittance spectrum of 92 fruits and validated using 45 (removing 

split pit fruits). The models for ‘Magique’ were calibrated using the mean spectra of 

112 fruits and validated using 56. 

All spectra were previously pre-processed using SNV to remove the scatter and 

then normalised using mean-centring (Rinnan, van den Berg, & Engelsen, 2009). A 10-

fold cross-validation was used to choose the optimal number of LVs as well as to 

obtain an estimation of the error rate of the models. The accuracy of the PLS-R models 

and predictive capability were evaluated by the R2 and the RMSE between the 

predicted and the measured values of the reference parameter for calibration, CV and 

prediction. Furthermore, the RPD, defined as the ratio between the standard deviation 

of the reference data and RMSEP, was used (Williams, 1987). The results of the PLS-DA 

models were expressed as a percentage of correct classification and total accuracy for 

calibration, CV and prediction. 
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2.4.1 Selection of optimal wavelengths 

Since hyperspectral images have a high dimensionality, which makes it almost 

impossible to develop automatic inspection systems capable of working in-line or in 

real time, it is necessary retain the most original information in a few bands, while 

preserving the greatest amount of variability and the most significant information (Du 

& Sun, 2006). The i-PLS algorithm was performed to select the optimal wavelengths in 

order to detect normal and split pit fruits, classify them according to the firmness 

threshold and predict the IQI. This is a method proposed by Nørgaard et al. (2000), in 

which the whole spectrum is split into equidistant subintervals and models are 

calculated for each of these intervals (spectral regions). This method performs a 

sequential search for the best wavelength or combination of wavelengths. It can be 

performed in either forward or reverse mode, where intervals are successively 

included or removed from the analysis, respectively. In this case, the forward i-PLS was 

applied to the training set automatically using the same number of LV as the PLS-R and 

PLS-DA models, and each interval corresponded to an individual wavelength. The 

multivariate data analysis was performed using the PLS_Toolbox (Eigenvector Research 

Inc., USA) working under MATLAB (R2017b, The MathWorks, Inc. MA, USA). 

 

3. Results and discussion 

3.1 Detection of split pit fruit   

The presence of split pit allows the light to cross through the stone fruit without 

any interference along the suture of the fruit (Figure 3-C). Therefore, the SNV pre-

treated mean spectra of both types of fruit followed a very different pattern, as Fig. 4 

shows. 

The discrimination between normal and split pit fruit was performed by means of 

PLS-DA. The model was built using all of the 28 wavelengths in the spectral range 630–

900 nm and calibrated using three LV. In the calibration of the model, a total accuracy 

of 94.6 % was obtained, 95.0 % of normal pit and 93.4 % of split pit fruits being 

classified correctly. In the prediction of the test set, a total accuracy of 93.0 % was 
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obtained, 91.3 % of normal pit and 100 % split pit being classified correctly (Table 1). 

 

 

Figure 4. Mean spectra of ‘Big Top’ fruits with normal and split pit 

 

As stated previously, no study has been performed to detect split pit using 

hyperspectral imaging. However, Qin and Lu (2005) used this technology to detect the 

presence of pits in cherries and achieved similar results, an accuracy of 96.5 %. Other 

techniques have already been used with the aim of detecting split pit disorder. Han, 

Bowers and Dodd (1992) used X-ray images and obtained a total classification accuracy 

of 95.5 % using 94 normal pit fruits, 5 cracked and 99 split pit of different cultivars of 

peach. An acoustic vibration method developed by Nakano et al. (2018) obtained a 

total classification accuracy of 97.8 % using 256 normal pit fruits and 57 split pit in the 

same cultivar and stage of ripeness. Comparing these results with hyperspectral 

transmittance imaging, it can be stated that this technology is a feasible alternative for 

the detection of split pit, especially taking into account the high accuracy in identifying 

fruits with split pit that was achieved regardless of the stage of ripeness. 

To select the optimal wavelengths, the forward i-PLS method was used. This 

method has been used previously to select the optimal wavelengths in the detection of 

early bruise on apples (Ferrari, Foca, Calvini & Ulrici, 2015) or to assess the internal 

quality of blueberries (Leiva-Valenzuela et al., 2014). Usually, the selection of these 

wavelengths would be based on the physicochemical properties of the fruit, however, 

in this case it is based on those wavelengths that transmit more or less light due to the 
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presence of normal or split pit. In this study, 7 optimal wavelengths were selected 

(630, 670, 680, 700, 740, 800 and 870 nm) which are those that present more 

differences along the transmittance mean spectrum of both types of fruit (Figure 4). 

Therefore, a new PLS-DA model was developed with these wavelengths, also calibrated 

using 3 LVs. However, the results (Table 1) were better than those obtained using the 

full spectrum for all the testing sets. Thus, the total accuracy in the calibration rose 

from 94.6 % using all the wavelengths to 97.3 % and in the classification of the test set, 

it increased from 93.0 % to 94.7 %. 

 

Table 1. Results of the detection of split and normal pit fruits of the ‘Big Top’ cultivar 

using all the selected wavelengths.  

#V #LV Class 

Calibration Cross validation Prediction 

NP SP CC (%) 
A 

(%) 
NP SP 

CC 
(%) 

A 
(%) 

NP SP 
CC 
(%) 

A 
(%) 

28 3 
NP 90 1 98.9 

98.2 
85 6 93.4 

94.6 
42 4 91.3 

93.0 
SP 1 19 95.0 1 19 95.0 0 11 100 

7 3 
NP 91 0 100 

99.1 
89 2 97.8 

97.3 
43 3 93.5 

94.7 
SP 1 19 95.0 1 19 95.0 0 11 100 

#V=number of variables; #LV=number of latent variables; NP = normal pit; SP = split pit; 
CC = correct classification; A = accuracy.  
 

3.2 Ripeness monitoring 

3.2.1 Analysis of the reference parameters and spectral information 

Figure 5 shows the evolution of the physicochemical properties measured in fruits 

of the ‘Big Top’ and ‘Magique’ cultivars throughout the experiment. 

 In the case of ‘Big Top’, these properties were measured only in fruits with a 

normal pit. The F decreased from 46.3 N to 10.1 N for ‘Big Top’ and from 57.9 N to 6.1 

N for ‘Magique’. As stated by Munera et al. (2017), these changes are due to pectin 

solubilisation and degradation by enzymes acting on the cell walls, whose activity 

results in a large decline in firmness. Valero, Crisosto, and Slaughter (2007) found that 

fruits below 35 N could be considered as ‘ready to buy’ because they are susceptible to 

damage during postharvest handling, while fruits above this firmness were less 
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susceptible to bruising but could be either mature or immature. This F threshold was 

therefore selected to classify the fruit because it indicates changes during postharvest 

ripening and the susceptibility to damage by bruising (Crisosto, Slaughter, Garner, & 

Boyd, 2001). 

 

 

Figure 5. Results of the analysis of the reference quality parameters.  

Columns are mean and bars are standard deviation. Different letters in each nectarine 
cultivar set indicate significant differences between groups (p-value<0.05), according to 
Tukey’s (HSD) test. 
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Regarding the colour of the flesh, both cultivars obtained similar L* values at the 

beginning of the experiments, but ‘Big Top’ underwent a higher reduction in this 

parameter as the fruit ripened, which is related to a reduction in the brightness 

perceived during the maturation process. In contrast, ‘Magique’ presented higher 

values of h*, starting with a green colour and eventually reaching a greenish-yellow 

colour. On the other hand, the fruits from cv. ‘Big Top’ changed from greenish yellow 

at the beginning to yellow. In the case of C*, no progressive evolution was observed in 

either cultivar, but ‘Big Top’ presented higher values, which means that the 

colouration was more intense in this cultivar. 

The TSS obtained for the ‘Big Top’ cultivar increased from 10.1 % to 15.1 % on the 

fifth day, and then dropped to 12.1 % due to over-ripeness. In the case of ‘Magique’, 

these values did not change significantly until the last day, when the fruits could be 

considered over-ripe. 

The IQI decreased during fruit ripening for both cultivars, mainly due to the 

progressive decrease in F and the colour parameters L* and h* and the increase in TSS 

(Figure 5), which is in agreement with Munera et al. (2017). As they pointed out, IQI is 

more suitable for use as a standard index on an inspection line because obtaining the 

reference parameters requires less time and costs.  

Figure 6 shows the average transmission spectra of both nectarine cultivars pre-

processed using SNV on the different days of postharvest storage. Both cultivars 

followed a similar spectral pattern during ripeness. The main differences between the 

days of analysis are observed in the region 630–750 nm for ‘Big Top’ and also 820–900 

nm for ‘Magique’. In both cultivars, as the fruits ripen more light is transmitted in the 

VIS region around 670 nm because the chlorophyll content decreases. In contrast, in 

the NIR region, the transmission of light is lower in the ripest fruits, probably because 

the effective absorption bands related to water (OH) and sugar (CH) bonds are 

relatively wide, partially covering this range (Golic, Walsh, & Lawson, 2003). 
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Figure 6. Mean spectra of the fruits of the ‘Big Top’ and ‘Magique’ cultivars on each 

day of analysis. 

 

3.2.2 Prediction of Internal Quality Index (IQI) 

With the aim of predicting the IQI and monitoring the ripeness of both cultivars, a 

PLS-R model was performed for each cultivar using all 28 wavelengths in the spectral 

range 630–900 nm. 

The optimal model was chosen when the number of LV yields the lowest RMSE for 

calibration and CV. As Table 2 shows, the calibration of the prediction models was 

performed using 9 LVs and 7 LVs for the ‘Big Top’ and ‘Magique’ cultivars, respectively. 

In ‘Big Top’, the R2 and RMSE values in the calibration were 0.88 and 0.33, and for 

‘Magique’ 0.88 and 0.44, respectively. Regarding the prediction of the test set, the R2 

and RMSE values for ‘Big Top’ were 0.89 and 0.34, and for ‘Magique’ 0.88 and 0.43, 

respectively. 
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The value of RPD was 2.7 for ‘Big Top’ and 2.8 for the ‘Magique’ cultivar. According 

to Williams (1987), RPD values between 2 and 2.5 indicate that coarse quantitative 

predictions are possible and a value above 2.5 means good to excellent prediction 

accuracy. Taking into consideration these values, IQI prediction was excellent for both 

cultivars (Table 2). 

 

Table 2. Results of prediction of IQI using all the wavelengths. 

Cultivar #LV 
Calibration Cross validation Prediction 

RPD 
R2 RMSEC R2 RMSECV R2 RMSEP 

‘Big Top’ 9 0.93 0.25 0.88 0.33 0.89 0.34 2.7 

‘Magique’ 7 0.90 0.38 0.88 0.44 0.88 0.43 2.8 

#LV = number of latent variables 

 

Munera et al. (2017) achieved an R2 of 0.89 for both cultivars to estimate the IQI 

using hyperspectral reflectance imaging on the same sets of fruits. The RMSE in the 

prediction was 0.33 and 0.44 for ‘Big Top’ and ‘Magique’, while the RPD achieved was 

3.0 and 2.7, respectively. Therefore, transmittance imaging also has a great potential 

to obtain and estimate the stage of ripeness of nectarines, but it is not greater than 

reflectance imaging. The selection of one or the other mode would therefore depend 

on the application (i.e. split pit can only be detected by transmittance). 

 

3.2.3 Classification according to firmness  

In order to discriminate the fruits using the selected F threshold (35 N) between 

‘ready to buy’ (F < 35 N) and ‘hard’ fruit (F > 35 N), a PLS-DA model was performed for 

each cultivar. The models were built using all captured wavelengths of the spectral 

range 630–900 nm. 

The model for the ‘Big Top’ cultivar was calibrated using 4 LVs, obtaining a total 

accuracy of 95.7 % in the prediction set. The correct classification of ‘ready to buy’ fruit 

was 100% while 93.1 % of ‘hard’ fruits were classified correctly. In the case of the 

‘Magique’ cultivar, the model was calibrated using 5 LVs, obtaining an overall 

classification of 94.5% which is slightly lower than for ‘Big Top’. For this cultivar, 90.9 % 
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of ‘ready to buy’ fruits and 95.7 % of ‘hard’ fruits were classified correctly. Complete 

results for all sets are described in Table 3. 

 

Table 3. Results of classification of both cultivars of nectarine by firmness using all 

wavelengths. 

Cultivar #LV Class 

Calibration Cross validation Prediction 

H RB 
CC 
(%) 

A 
(%) 

H RB 
CC 
(%) 

A 
(%) 

H RB 
CC 
(%) 

A 
(%) 

BT 4 
H 32 2 94.1 

96.7 
32 2 94.1 

94.5 
17 0 100 

95.7 
RB 1 56 98.3 3 54 94.7 2 27 93.1 

M 5 
H 35 3 92.1 

90.2 
35 3 92.1 

89.3 
22 1 95.7 

94.5 
RB 8 66 89.2 9 65 87.8 3 30 90.9 

BT = ‘Big Top’; M = ‘Magique’; #LV=number of latent variables; H = ‘hard’, RB = ‘ready 
to buy’; CC = correct classification; A = accuracy.  

 

3.2.4 Selection of the optimal wavelengths 

The i-PLS algorithm was also applied to the models created to predict both IQI and 

F. Since most of the wavelengths selected by i-PLS were common for the two quality 

indicators, only one set of wavelengths per variety was selected to estimate both. 

Therefore, 13 optimal wavelengths were used to build the models of ‘Big Top’ (630, 

640, 660–690, 710–730, 800, 810, 890 and 900 nm) and 9 for the ‘Magique’ cultivar 

(630–690, 890 and 900 nm). Despite the two cultivars analysed in this study are 

different in the colour of the flesh and in the ripeness pattern, most of selected 

wavelengths for both cultivars are located in the VIS region (630–690) nm) related to 

carotenoids, chlorophylls and other pigments responsible for fruit colour (Rajkumar et 

al., 2012). In the case water absorption, several wavelengths were select around 750 

nm (first overtone of OH) (710–730 nm) for ‘Big Top’ and others were selected at the 

beginning of the spectral valley around 970 nm (third overtone of OH) (890–900 nm) 

for both cultivars. The wavelengths selected around 850 nm (800–810 nm) are 

assigned usually to the absorption of acids and sugars (Yang et al., 2015). 

In the previous work which uses reflectance mode in the spectral range 450–1050 

nm to predict the IQI of nectarines (Munera et al., 2017), the optimal wavelengths 
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selected for ‘Big Top’ were 670–730 nm and 760 nm, and for ‘Magique’, 670–700 nm 

and 970–990 nm. Several wavelengths were the same or close for both modes, 

reflectance and transmittance. However, other wavelengths were different because 

the spectral ranges and the selection methods used were different. Furthermore, while 

in reflectance mode the penetration depth can be of few millimetres in the fruit 

obtaining the information from the external layers, in transmittance mode the 

information was obtained from the interior of the fruit. 

For the evaluation of IQI, the PLS-R models were calibrated using 8 and 5 LVs for 

‘Big Top’ and ‘Magique’, respectively (Table 4). The results obtained in the calibration 

of the model and prediction of the test set were similar to those using all the 

wavelengths for ‘Big Top’ cultivar but were improved in the case of ‘Magique’ cultivar 

(Table 2). The values of R2 of 0.91 and 0.89 and RMSE of 0.29 and 0.41 were obtained 

in the calibration (CV) of ‘Big Top’ and ‘Magique’. For the prediction of the test set, 

values were 2.7 and 3.0, respectively. 

 

Table 4. Results of prediction of IQI using the selected wavelengths. 

Cultivar #V #LV 
Calibration Cross validation Prediction 

RPD 
R2 RMSEC R2 RMSECV R2 RMSEP 

BT 13 8 0.93 0.25 0.91 0.29 0.88 0.35 2.7 

M 9 5 0.90 0.37 0.89 0.41 0.89 0.40 3.0 

BT = ‘Big Top’; M = ‘Magique’; #LV=number of latent variables; #V = number of 
variables 
 

To classify the fruit by F, the PLS-DA models created using the selected 

wavelengths were calibrated using 5 LVs for ‘Big Top’ and 2 LV for ‘Magique’ (Table 5). 

As in the case of using all the wavelengths (Table 3), the model for ‘Big Top’ 

obtained a total accuracy of 95.7 % in the prediction set. The correct classification of 

fruits as ‘ready to buy’ was 100 % while 93.1 % of ‘hard’ fruits were classified correctly. 

In the case of the ‘Magique’ cultivar, the model achieved an overall classification of 

94.6 %. For this cultivar, 90.9 % ‘ready to buy’ and 100 % ‘hard’ fruits were classified 

correctly. The results obtained using the selected set of wavelengths was very similar 
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to those obtained with all the captured wavelengths. Complete results for all sets are 

described in Table 5. 

 

Table 5. Results of classification of both cultivars of nectarine by firmness using a 

threshold and the selected set of wavelengths. 

 #V #LV Class 

Calibration Cross validation Prediction 

H RB 
CC 
(%) 

A 
(%) 

H RB 
CC 
(%) 

A 
(%) 

H RB 
CC 
(%) 

A 
(%) 

BT 13 5 
H 31 3 91.2 

94.5 
32 2 94.1 

93.4 
17 0 100 

95.7 
RB 2 55 96.5 4 53 93.0 2 27 93.1 

M 9 2 
H 37 1 97.4 

91.1 
36 2 94.7 

90.2 
23 0 100 

94.6 
RB 9 65 87.8 10 64 86.5 3 30 90.9 

BT = ‘Big Top’; M = ‘Magique’; #V=number of variables; #LV=number of latent 
variables; H = ‘hard’, RB = ‘ready to buy’; CC = correct classification; A = accuracy.  

 

3.3 Hierarchical classification 

Hierarchical classification allows recognising different classes under study in a 

single step. This approach has been successfully applied to determine the geographical 

origin of green coffee beans using spectroscopy (Giraudo et al., 2019), to classify the 

roasted coffee by cup quality using spectroscopy (Craig et al., 2018) or to identify 

defective hazelnuts using RGB image analysis (Giraudo et al., 2018). 

With the aim of obtaining the estimation of the total internal quality of the ‘Big 

Top’ nectarines at the same time, including both the detection of split pit disorder and 

the stage of ripeness, a hierarchical model of two levels was built using the PLS-DA 

models previously calibrated with the optimal wavelengths. The class of each fruit in 

the test set was predicted by introducing the mean spectrum measured into the 

hierarchical model. The result can be seen in Figure 7, which shows the fruit coloured 

in black if the mean value was assigned by the model to the split pit class, dark blue if it 

was assigned to ‘hard’ fruit with normal pit or light blue if it was assigned to the ‘ready 

to eat’ and normal pit class. 
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Figure 7. Visual verification of the hierarchical classification of the test set of ‘Big Top’ 

nectarines. 

 

The results obtained using this approach were the same as individual models 

(Tables 1 and 5). All the split pit and ‘hard’ fruits with normal pit were correctly 

classified. Three ‘ready to buy’ fruits with normal pit were classified as defective (10.3 

%) may be due to the fact that riper fruit can transmit more light than less ripe fruits, 

and two other ‘ready to buy’ fruits with normal pit were classified as ‘hard’ (6.9 %). 

These results indicate that it is possible to detect split pits and estimate the ripeness of 

the nectarines ‘Big Top’ in only one step, which makes hyperspectral imaging an even 

more practical tool for quality control of nectarines. 

 

4. Conclusions 

This paper presents a new approach for the evaluation of the internal quality of 

nectarines by means of hyperspectral imaging. The transmittance mode was evaluated 

as a potential non-destructive method to detect split pit fruits and to monitor their 

ripeness using two quality indicators. The detection of split pit fruits of the ‘Big Top’ 

cultivar using PLS-DA was successful, achieving a 100 % correct classification for split 

pit fruit and 91.3 % for normal pit using all the captured wavelengths. The ripeness of 

the ‘Big Top’ and ‘Magique’ cultivars was determined by two indicators: the ripening 

index, IQI, and an F threshold (35 N) that is based on the susceptibility to suffer 
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damage by bruising. The prediction of the IQI was performed by means of PLS-R 

models, obtaining an R2 of 0.89 and 0.88 and an RPD of 2.7 and 2.8 for the ‘Big Top’ 

and ‘Magique’ cultivars, respectively. The classification of the fruits by F was 

performed by PLS-DA, which correctly classified 95.7 % of the ‘Big Top’ fruits and 94.5 

% of the ‘Magique’ fruits. 

To reduce the huge amount of data captured by the hyperspectral imaging system, 

an optimal wavelength selection was performed by means of forward i-PLS. Thus, the 

simplified models obtained similar results to those models that used all the 

wavelengths. Finally, a hierarchical model was built to evaluate the total internal 

quality of the ‘Big Top’ cultivar in one step. The prediction was visualised on the fruit 

surface, indicating that 10.3 % of ‘ready to buy’ fruits were classified as split pit and 6.9 

% as ‘hard’. 

These results confirm the great potential of this technique to evaluate the internal 

quality of these two cultivars of nectarine, especially to detect internal defects such as 

split pit disorder. Nevertheless, this method should be tested in other cultivars and on 

a larger sample set of fruits grown in different areas and seasons before it can be 

implemented in an in-line system. Furthermore, the development of a transmission 

system must take into account the fact that, in order to detect split pit fruits, the fruit 

must be oriented such that light penetrates through the fruit from the pedicel to the 

back and the time of the light exposure must be limited in order to avoid any damage 

to the fruit. 

 

Acknowledgements 

This work has been partially funded by the Instituto Nacional de Investigación y 

Tecnología Agraria y Alimentaria de España (INIA) through research project RTA2015-

00078-00-00 with the support of European FEDER funds. Sandra Munera thanks INIA 

for the grant FPI-INIA num. 43 (CPR2014-0082), partially supported by European Union 

FSE funds. 

 



Chapter II. Use of hyperspectral transmittance imaging to evaluate the internal quality of 
nectarines 
 

100 
 

References 

Ariana, D.P. & Lu, R. (2008) Quality evaluation of pickling cucumbers using 

hyperspectral reflectance and transmittance imaging: Part I. Development of a 

prototype. Sensing and Instrumentation for Food Quality and Safety 2, 144–151. 

Baiano, A., Terracone, C., Peri, G. & Romaniello, R. (2012). Application of hyperspectral 

imaging for prediction of physico-chemical and sensory characteristics of table 

grapes. Computetrs and Electronics in Agriculture 87, 142-151. 

Baranowski, P., Mazurek, W. & Pastuszka-Wozniak, J. (2013). Supervised classification 

of bruised apples with respect to the timeafter bruising on the basis of 

hyperspectral imaging data. Postharvest Biology and Technology 86, 249- 258. 

Cen, H., Lu, R., Ariana, D.P. & Mendoza, F. (2014). Hyperspectral imaging-based 

classification and wavebands selection for internal defect detection of pickling 

cucumbers. Food Bioprocess Technology 7, 1689–1700. 

Chaudhry, M.M.M., Amodio, M.L., Baballahi, F., de Chiara, M.L.V., Amigo, J.M., Colelli, 

G. (2018). Hyperspectral imaging and multivariate accelerated shelf life testing 

(MASLT) approach for determining shelf life of rocket leaves. Journal of Food 

Engineering 238, 122-133. 

Cogdill, R., Hurburgh, C. & Rippke G. (2004). Single-kernel maize analysis by near-

infrared hyperspectral imaging. Transactions of the ASAE, 47, 311-320 

Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S. & Talens, P. (2016). A new internal 

quality index for mango and its prediction by external visible and near-infrared 

reflection spectroscopy. Postharvest Biology and Technology 118, 148-158. 

Craig, A.P., Botelho, B.G., Oliveira, L.S. & Franca, A.S. (2018). Mid infrared spectroscopy 

and chemometrics as tools for the classification of roasted coffees by cup quality. 

Food Chemistry 245, 1052–1061. 

Crisosto C.H. (1994). Stone fruit maturity indices: a descriptive review. Postharvest 

News and Information, 5, 65-68. 

Crisosto, C.H., Slaughter, D., Garner, D., & Boyd J. (2001). Stone fruit critical bruising 

thresholds. Journal of the American Pomological Society 55, 76-81  



I. NECTARINE 

 

 

101 
 

Du, C. J. & Sun, D. W. (2006). Learning techniques used in computer vision for food 

quality evaluation: A review. Journal of Food Engineering 72, 39-55. 

Giraudo, A., Grassi, S., Savorani, F., Gavoci, G., Casiraghi, E. & Geobaldo, F. (2019). 

Determination of the geographical origin of green coffee beans using NIR 

spectroscopy and multivariate data analysis. Food Control 99, 137-145. 

Giraudo, A., Calvini, R., Orlandi, G, Ulrici, A., Geobaldo, F. & Savorani, F. (2018). 

Development of an automated method for the identification of defective hazelnuts 

based on RGB image analysis and colourgrams. Food Control 94, 233-240. 

Golic, M., Walsh, K., & Lawson, P. (2003) Short-wavelength near-infrared spectra of 

sucrose, glucose, and fructose with respect to sugar concentration and 

temperature. Applied Spectroscopy, 57, 139-145 

Gómez-Sanchis, J., Lorente, D., Soria-Olivas, E., Aleixos, N., Cubero, S., & Blasco, J. 

(2014) Development of a hyperspectral computer vision system based on two 

liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits 

decay. Food and Bioprocess Technology, 7, 1047-1056. 

Han, Y.J., Bowers & S. V., Dodd, R.B. (1992). Nondestructive detection of Split-pit 

peaches. Transactions of the ASAE  35, 2063-2067. 

Herrero-Langreo, A., Lunadei, L., Lleó, L., Diezma, B. & Ruiz-Altisent, M. (2011). 

Multispectral vision for monitoring peach ripeness. Journal of Food Science 2, 178-

187 

Hu, M.H., Dong, K.L., Liu, B. L., Opara, U.L. & Chen, L. (2015) Estimating blueberry 

mechanical properties based on random frog selected hyperspectral data. 

Postharvest Biology and Technology 106, 1-10 

Huang, M., Wana, X., Zhang, M. & Zhu, Q. (2013). Detection of insect-damaged 

vegetable soybeans using hyperspectral transmittance image. Journal of Food 

Engineering 116, 45–49 

Iglesias, I. & Echeverría, G. (2009). Differential effect of cultivar and harvest date on 

nectarine colour, quality and consumer acceptance. Scientia Horticulturae 120, 41-

50. 

Institut de Recerca i Tecnologia Agroalimentàries (IRTA). (2016). XX Exposición de 

variedades de melocotón y nectarina. http://kp.eufrin.eu/   Accessed 03/11/18 



Chapter II. Use of hyperspectral transmittance imaging to evaluate the internal quality of 
nectarines 
 

102 
 

Jacob, S., Vanoli, M., Grassi, M., Rizzolo, A., Eccher Zerbini, P., Cubeddu, R., Pifferi, A., 

Spinelli, L., & Torricelli A. (2006). Changes in sugar and acid composition of 'Ambra' 

nectarines during shelf life based on non-destructive assessment of maturity by 

time-resolved reflectance spectroscopy. Journal of Fruit and Ornamental Plant 

Research, 14, 183-194  

Kong, W., Zhang, C., Liu, F., Nie, P. & He, Y. (2013). Rice seed cultivar identification 

using near-infrared hyperspectral imaging and multivariate data analysis. Sensors 

13, 8916-8927. 

Kritzinger, I., Lӧtze, E. & Jooste, M. (2017). Stone hardening and broken stones in 

Japanese plums (Prunus salicina Lindl.) evaluated by means of computed 

tomography scans. Scientia Horticulturae 221, 1–9 

Leiva-Valenzuela, G.A., Lu, R. & Aguilera, J.M. (2014). Assessment of internal quality of 

blueberries using hyperspectral transmittance and reflectance images with whole 

spectra or selected wavelengths. Innovative Food Science and Emerging 

Technologies 24, 2–13 

Li, B., Hou, B., Zhang, D., Zhou, Y., Zhao, M., Hong, R. & Huang, Y. (2016). Pears 

characteristics (soluble solids content and firmness prediction, varieties) testing 

methods based on visible-near infrared hyperspectral imaging. Optik 127, 2624-

2630. 

Liu, C., Liu, W., Chen,W., Yang, J. & Zheng, L. (2015). Feasibility in multispectral imaging 

for predicting the content of bioactive compounds in intact tomato fruit. Food 

Chemistry 173, 482-488. 

Lorente, D., Aleixos, N., Gomez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J., 

(2012). Recent advances and applications of hyperspectral imaging for fruit and 

vegetable quality assessment. Food Bioprocess and Technology 5, 1121-1142. 

Lu, R. & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. 

Biosystems Engineering 93, 161-171. 

Vidal, M. & Amigo, J.M. (2018). HYPER-Tools. A graphical user-friendly interface for 

hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems 

172, 174-187. 



I. NECTARINE 

 

 

103 
 

Munera, S., Amigo, J.M.,  Aleixos, N., Talens, P., Cubero, S. & Blasco, J. (2018). Potential 

of VIS-NIR hyperspectral imaging and chemometric methods to identify similar 

cultivars of nectarine. Food Control 86, 1-10. 

Munera, S., Amigo, J.M., Blasco, J., Cubero, S., Talens, P. & Aleixos, N. (2017). Ripeness 

monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance 

imaging. Journal of Food Engineering 214, 29-39. 

Nakano, R., Akimoto, H.,  Fukuda, F., Kawai, T., Ushijima, K., Fukamatsu, Y., Kubo, Y., 1, 

Fujii, Y., Hirano, K.,  Morinaga, K. & Sakurai, N. (2018). Nondestructive detection of 

split pit in peaches using an acoustic vibration method. The Horticulture Journal 87, 

281–287.  

Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I.K., & Lammertyn, 

J., (2007). Non-destructive measurement of fruit and vegetable quality by means of 

NIR spectroscopy: a review. Postharvest Biology and Technology 46, 99–118. 

 Nørgaard, L., Saudland, A., Wagner, J.,  Nielsen, J.P., Munck, L. & Engelsen, S.B. (2000). 

Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study 

with an Example from Near-Infrared Spectroscopy. Society for Applied Spectroscopy 

54, 413-419. 

Qin, J. & Lu, R. (2005). Detection of pits in tart cherries by hyperspectral transmission 

imaging. Transactions of the ASAE, 48, 1963-1970. 

Qin, J., Chao, K., Kim, M.S., Lu, R. & Burks, T.F. (2013). Hyperspectral and multispectral 

imaging for evaluating food safety and quality. Journal of Food Engineering 118, 

157-171. 

Rajkumar, P., Wang, N., EImasry, G., Raghavan, G.S.V. & Gariepy, Y. (2012). Studies on 

banana fruit quality and maturity stages using hyperspectral imaging. Journal of 

Food Engineering 108, 194-200. 

Reig, G., Alegre, S., Gatius, F. & Iglesias, I. (2013). Agronomical performance under 

Mediterranean climatic conditions among peach [Prunus persica (L.) Batsch] 

cultivars originated from different breeding programs. Scientia Horticulturae 150, 

267-277. 



Chapter II. Use of hyperspectral transmittance imaging to evaluate the internal quality of 
nectarines 
 

104 
 

Rinnan, Å., van den Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-

processing techniques for near-infrared spectra. Trends in Analytical Chemistry 28, 

1201-1222. 

Schaare, P.N. & Fraser, D.G. (2000) Comparison of reflectance, interactance and 

transmission modes of visible-near infrared spectroscopy for measuring internal 

properties of kiwifruit (Actinidia chinensis). Postharvest Biology and Technology 20, 

175 – 184. 

Schmilovitch, Z., Ignat, T., Alchanatis, V., Gatker, J., Ostrovsky, V. & Felfoldi, J. (2014). 

Hyperspectral imaging of intact bell peppers. Biosystems Engineering 117, 83-93. 

Siedliska, A., Baranowski, P., Zubik, M. & Mazurek, W. (2017). Detection of pits in fresh 

and frozen cherries using a hyperspectral system in transmittance mode. Journal of 

Food Engineering 215, 61-71. 

Tani, E., Polidoros, A.N., & Tsaftaris, A.S. (2007). Characterization and expression 

analysis of FRUITFULL-and SHATTER-PROOF-like genes from peach (Prunus persica) 

and their role in split-pit formation. Tree physiology, 27, 649-659. 

Valero, C., Crisosto, C.H. & Slaughter, D. (2007). Relationship between non-destructive 

firmness measurements and commercially important ripening fruit stages for 

peaches, nectarines and plums. Postharvest Biology and Technology 44, 248-253. 

Williams, P. J., & Kucheryavskiy, S. (2016). Classification of maize kernels using NIR 

hyperspectral imaging. Food Chemistry 209, 131-138. 

Williams, P.C. (1987). Variables affecting near-infrared reflectance spectroscopic 

analysis. In: Williams, P., Norris, K. (Eds.), Near-infrared Technology in the 

Agricultural and Food Industries. American Association of Cereal Chemists, St. Paul, 

MN, pp. 143-166. 

Zhang, C., Guo, C., Liu, F., Kong, W., He, Y. & Lou, B. (2016). Hyperspectral imaging 

analysis for ripeness evaluation of strawberry with support vector machine. Journal 

of Food Engineering 179, 11-18. 

Zhu, N., Lin, M., Nie, Y., Wu, D. & Chen, K. (2016). Study on the quantitative 

measurement of firmness distribution maps at the pixel level inside peach pulp. 

Computers and Electronics in Agriculture 130, 48-56. 



 

105 
 

CHAPTER III 

Potential of VIS-NIR hyperspectral imaging and chemometric 

methods to identify similar cultivars of nectarine 

Sandra Muneraa, José Manuel Amigob, Nuria Aleixosc, Pau Talensd,  Sergio 

Cuberoa and José Blascoa 

 
a Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), 

Ctra. Moncada-Náquera Km 4.5, 46113, Moncada, Valencia, Spain 

b Department of Food Sciences, Faculty of Science, University of Copenhagen, 

Rolighedsvej 30, Frederikberg C DK-1958, Denmark 

c Departamento de Ingeniería Gráfica, Universitat Politècnica de València, Camino de 

Vera, s/n, 46022 Valencia, Spain 

d Departamento de Tecnología de Alimentos, Universitat Politècnica de València, 

Camino de Vera, s/n, 46022 Valencia, Spain 

 

Food Control 86 (2018), 1-10 

 

 

 

 

 

 



 

 

106 
 

Abstract 

Product inspection is essential to ensure good quality and to avoid fraud. New 

nectarine cultivars with similar external appearance but different physicochemical 

properties may be mixed in the market, causing confusion and rejection among 

consumers, and consequently affecting sales and prices. Hyperspectral reflectance 

imaging in the range of 450-1040 nm was studied as a non-destructive method to 

differentiate two cultivars of nectarines with a very similar appearance but different 

taste. PLS-DA was used to develop a prediction model to distinguish intact fruits of the 

cultivars using pixel-wise and mean spectrum approaches, and then the model was 

projected onto the complete surface of fruits allowing visual inspection. The results 

indicated that mean spectrum of the fruit was the most accurate method, a correct 

discrimination rate of 94.0 % being achieved. Wavelength selection reduced the 

dimensionality of the hyperspectral images using the regression coefficients of the PLS-

DA model. An accuracy of 96.0% was obtained by using 14 optimal wavelengths, 

whereas colour imaging and a trained inspection panel achieved a rate of correct 

classification of only 57.0 % of the fruits. 
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1. Introduction 

The surface area of the land devoted to the planting of peaches and nectarines 

(Prunus persica L. Batsch) in the EU was around 232 000 ha in 2015/16, with a 

production of nearly 3.7 million tons of fruit. Spain is the main producer with around 

1.4 tons, which accounts for almost 40 % of the total EU peach and nectarine 

production (USDA, 2016). Due to the importance of nectarine (Prunus persica L. Batsch 

var. nucipersica) production, it is one of the fruits to which most effort has been 

devoted by plant breeders in recent years in order to improve agronomic performance, 

and enhanced fruit appearance and quality (Reig, Alegre, Gatius, & Iglesias, 2013). This 

fact has resulted in a significant increase in the number of new cultivars available to 

fruit growers. These cultivars are similar in appearance but present different sensory 

properties and therefore different acceptance by the consumer (Iglesias & Echeverría, 

2009). In this context, one of the most widely accepted and cultivated nectarine 

cultivars in Europe is ‘Big Top’ due to its presentation, size, sweet taste and low acidity 

(Echeverría, Cantín, Ortiz, Lopez, & Graell, 2015). However, a stagnation of nectarine 

consumption is occurring owing to early harvesting, which leads to flavourless fruits 

being offered with excessive F or irregular quality (Iglesias & Echeverría, 2009). These 

authors also point out the lack of an adequate identification of the product in the 

market. The mixture of sweet and acid cultivars on the shelf could lead to consumer 

rejection, which in turn might affect sales and prices. 

The internal quality assessment of stone fruits has traditionally been performed by 

destructive methods, which are contaminating, time-consuming and only a few 

samples per batch can be monitored (Pérez-Marín et al., 2011). Moreover, there is an 

important lack of classification tools for differentiating cultivars that are very similar to 

one another. There is therefore a strong need to develop non-destructive and 

instantaneous methodologies that allow the correct identification of the cultivar in the 

postharvest stage. 

Hyperspectral imaging is a computer vision technique which combines 

conventional two-dimensional digital imagery with spectroscopy to detect spectral 

features in regions of the electromagnetic spectrum such as the UV, NIR or IR (Lorente 
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et al., 2012). This technique is starting to be used as a scientific tool for quality 

assurance of a wide range of food including bakery products (Erkinbaev, Henderson & 

Paliwal, 2017; Verdú et al., 2016), meat (Feng et al., 2018; Iqbal, Sun, & Allen, 2014), or 

vegetables (López- Maestresalas et al., 2016). Fruits are of major interest for the use of 

this technology in the food industry (Keresztes, Goodarzi, & Saeys, 2016; Munera et al., 

2017). However, due to the high importance of other fruits such as citrus or apples, 

few scientific studies have been done for quality control of stone fruit quality 

assessment using hyperspectral imaging. Herrero-Langreo et al. (2011) assessed the 

ripeness of peaches by using multispectral indexes. Lu and Peng (2006) assessed the F 

of peaches and Zhu et al. (2016) obtained F distribution maps inside the peach pulp, 

while Zhang et al. (2015), Li et al. (2016), Pan et al. (2016) and Sun et al. (2017) 

detected different types of defects and injuries, including decay. Regarding nectarine, 

Huang et al. (2015) used the same technique to detect defective features and Munera 

et al. (2017) to monitor its ripeness. 

Hyperspectral imaging generates a huge amount of redundant and frequently 

highly correlated data that need to be processed (Vélez-Rivera et al., 2014). To handle 

such an amount of data and extract the useful information, it must be assisted by 

chemometric methods. These methods connect chemical measurements with the 

essential spectral information in order to classify and/or quantify important 

characteristics. PCA is one of the most popular methods commonly used both to 

reduce the dimensionality of data and to obtain an overview of all the relevant 

information in the dataset. It is an unsupervised projection method which summarises 

data by forming new independent linear combinations of the original variables (Jolliffe, 

2002). 

PLS-DA is a variant of PLS-R in which the independent variable is categorical, 

expressing the class membership of the samples. It is performed in order to sharpen 

the separation between groups of observations by maximising the covariance between 

the spectra and the independent variable such that a maximum separation among 

classes is obtained. Furthermore, it is commonly used to understand which variables 

contain the discriminating information (Lorente et al., 2012). Some examples of the 
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use of this method include the detection of decay lesions in citrus fruits (Folch-Fortuny 

et al., 2016), classification of oat kernels (Serranti et al., 2013), the classification of 

edible fennel heads based on the harvest time (Amodio et al.,, 2017), and the 

examination of aflatoxin on corn kernels (Kandpal et al., 2015). 

In this paper, we put forward a novel approach based on VIS-NIR hyperspectral 

imaging and chemometric methods to develop statistical predictive models capable of 

distinguishing cultivars of nectarines with a very similar appearance but different taste. 

Previous studies have been conducted to differentiate among nectarine cultivars using 

colour images (Font et al., 2014). However, they use fruits with clearly different 

appearance. In this work, ‘Diamond Ray’ and ‘Big Top’ cultivars have been used due to 

their similar skin and flesh appearance. Furthermore, these cultivars are grown and 

marketed at the same time and become a problem for producers when they are 

mixed, either accidentally or intentionally, in the market. 

In addition, using the spectral and spatial information provided by the 

hyperspectral images, two approaches are further investigated: the first based on the 

analysis of the individual spectrum of each pixel and the second based on the mean 

spectrum of each fruit. Finally, visualisation of the result of the classification model 

over the images of nectarines is proposed to establish a practical tool for nectarine 

classification in the packing houses. 

 

2. Material and methods 

2.1. Fruit samples 

Nectarines cv. ‘Diamond Ray’ and ‘Big Top’ were selected as reference cultivars of 

sweet and acid cultivars, respectively (Reig, Iglesias, & Echeverría, 2009), due to their 

similar skin and flesh appearance (Figure 1).  

These two cultivars are difficult to distinguish by the naked eye, which is 

problematic for producers when they are mixed in the market. 
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Figure 1. External and internal appearance of both cultivars of nectarine. 

 

Fruits were harvested in a commercial orchard in Lerida (Spain) at the commercial 

maturity stage in the summer season of 2016. A total of 125 fruits of each cultivar 

without defects or bruises were selected and stored under controlled conditions (1 ºC; 

90 % RH) in order to avoid the further ripening of either cultivar during the 

experiment. 

 

2.2. Hyperspectral image acquisition and processing 

The hyperspectral imaging system consisted of an industrial camera (CoolSNAP ES, 

Photometrics, AZ, USA), coupled to two LCTF (Varispec VIS-07 and NIR-07, Cambridge 

Research & Instrumentation, Inc., MA, USA). The camerawas configured to acquire 

images with a size of 1392 x 1040 pixels and a spatial resolution of 0.14 mm/pixel at 60 

different wavelengths every 10 nm, in the working spectral range 450-1040 nm. In 

order to avoid problems of unfocused images due to the refraction of light across this 

wide spectral range, the focus was adjusted on the central band of the acquisition 

interval (740 nm) and the images were captured using lenses capable of covering the 

whole spectral range without going out of focus (Xenoplan 1.4/23, Schneider Optics, 

Hauppauge, NY, USA). To optimise the dynamic range of the camera, prevent 

saturated images and correct the spectral sensitivity of the different elements of the 

system, a calibration of the integration time of each band was performed by capturing 
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the averaged grey level of a white reference target (Spectralon 99%, Labsphere, Inc, 

NH, USA) corresponding to 90 % of the dynamic range of the camera. 

The scene was illuminated by indirect light from twelve halogen spotlights (37 W) 

(Eurostar IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current 

(12 V) and arranged equidistant from each other inside a hemispherical aluminium 

diffuser. The inner surface of the aluminium diffuser was painted white with a rough 

texture to maximise its reflectivity, the rough texture being applied in order to 

minimise directional reflections, which could cause bright spots, thus resulting in highly 

homogeneous light. 

The fruits were introduced manually into a fruit holder, with the stem-apex axis 

lying horizontal. Two images of each fruit were acquired using customised software 

developed at IVIA. A total of 250 images of each cultivar were imported into MATLAB 

R2015a (The MathWorks, Inc. MA, USA) to be pre-processed using the customised 

toolbox HYPER-Tools (Amigo, Babamoradia, & Elcoroaristizabal, 2015). 

The image processing started with the correction of the relative reflectance by 

using equation (1) (Gat, 2000): 

𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                                                    (3) 

where ρRef(λ) is the standard reflectance of the white reference target (99% in this 

work), R(x,y,λ) is the reflectance of the fruit captured by the CCD sensor of the camera, 

Rwhite(x,y,λ) is the reflectance captured by the CCD of the white reference target, and 

Rblack(x,y,λ) is the reflectance captured by the CCD while avoiding any light source in 

order to quantify the electronic noise of the CCD.  

The images were then clipped and spatially compressed to reduce the computation 

time, and a proper removal of the backgroundwas performed using K-means 

clustering. Thus, the relative reflectance spectrum of all the pixels in each fruit image 

was extracted. 
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2.3. Colour image acquisition and processing 

Before image acquisition, the SCwas analysed to obtain the L*, a* and b* colour 

coordinates (CIELAB colour space) of each fruit, also using a colorimeter (MINOLTACM-

700d, Minolta Co. Tokyo, Japan) configured with the standard illuminant D65 and the 

observer 10 º. The skin colour was obtained as the average of the values of two 

measurements, one in the blush zone (reddish colour) and another in the ground zone 

(yellowish colour). 

The colour imaging system consisted of a digital camera (EOS 550D, Canon Inc, 

Japan) arranged inside a square inspection chamber that included a calibrated and 

uniform illumination system composed of four lamps, each containing two fluorescent 

tubes BIOLUX 18W/965 (Osram GmbH, Germany) with a colour temperature of 6500 K. 

The angle between the axis of the lens and the sources of illumination was 

approximately 45 º, and polarising filters were placed in front of the lamps and in the 

camera lenses to eliminate specular bright spots that could alter the true colour. 

The fruits were introduced manually upon a fruit holder, with the stem-apex axis 

lying horizontal. Two images were acquired for each fruit, corresponding to each of the 

two sides delimited by the suture of the fruit. Then, a total of 250 images of each 

cultivar were imported into customised software developed at IVIA (FoodImage- 

Inspector v4.0, freely available at http//www.cofilab.com, Spain) to analyse the SC and 

to obtain the percentage of the reddish and yellowish zones on the fruit. This 

segmentation was based on the Bayes theorem to assign all the pixels in the image to 

the two classes used in a previous training. The RGB colour coordinates of the acquired 

images were converted to the L*, a*, b* coordinates and then corrected using a colour 

reference target (ColorChecker Digital SG, X-Rite, MI, USA). 

 

2.4. Visual analysis with trained panel 

The panel was composed of five panellists, ages 29-50 years (three male and two 

female), with expertise in fruit quality and marketing. The panellists were trained using 

20 colour images of nectarines of the calibration set (10 from each cultivar chosen at 
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random). A total of 40 colour images of fruits of the validation set (20 from each 

cultivar chosen at random) were presented with randomised order to each panellist to 

be classified as belonging to the ‘Diamond Ray’ or ‘Big Top’ cultivar. 

 

2.5. Reference analysis 

The characterisation of the physicochemical properties of the samples using 

reference methodswas performed immediately after the acquisition of the images. F 

was registered on opposite sides of the fruits using an XT2 Stable texturometer 

(MicroSystems Haslemere, UK) equipped with a 6 mm flat plunger. The crosshead 

speed during the puncture test was 1 mm s-1. The maximum force was expressed in 

Newton (N). Immediately after SC and F measurements, a juice sample was taken from 

each fruit for TSS and TA measurements. TSS were determined using a digital 

refractometer RFM330 þ VWR (Internacional Eurolab S.L., Barcelona, Spain) at 20 ºC 

and results were expressed as percentage of TSS. TA was determined using a Crison 

pH-Burette 24 automatic titrator (Crison, Barcelona, Spain) and NaOH 0.5 N, according 

to standard UNE34211:1981 (AENOR, 1981). The results were expressed as the 

percentage of malic acid. 

The ANOVA was conducted using the software Statgraphics (Manugistics Corp., 

Rockville, USA) in order to determine significant differences in the physicochemical 

properties (F, TSS, TA and L*, a* and b* colour coordinates) between cultivars. 

 

2.6. Chemometric methods 

To identify both nectarine cultivars with high precision, two approaches were 

studied for setting up the classification models: i) including in the model the individual 

spectrum of each pixel in the nectarine image, and ii) using only the mean spectrum of 

all the pixels corresponding to each fruit. Thus, 512 828 pixel spectra were used in the 

first approach, and the mean spectra of 500 fruits were used for the second. The data 

of all the fruits of both cultivars were collected and randomly partitioned into two sets: 

two thirds of the samples were used to calibrate the models (calibration set) and for 
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cross-validation, while the remaining third was used for independent test prediction 

(validation set). 

Both the directly acquired spectrum of each pixel and that obtained as an average 

for each fruit were pre-treated using SNV in order to reduce the physical variability 

between samples due to light scatter (Rinnan, van den Berg, & Engelsen, 2009). This 

correction was performed using equation (2): 

𝑋𝑐𝑜𝑟𝑟 =  
𝑋𝑜𝑟𝑔−𝑎0

𝑎1
                                                                                                                   (2) 

where xcorr and xorg are the corrected and raw spectra, respectively, a0 is the average 

value of the sample spectrum to be corrected and a1 is the standard deviation of the 

sample spectrum. 

Later, mean centring was applied to normalise the full spectrum. Multivariate 

analyses were then performed using the PLS_Toolbox (Eigenvector Research Inc., USA) 

and the HYPER-Tools toolbox (Amigo et al., 2015) both working under MATLAB 

R2015a. 

PCA was used to explore the differences between the two cultivars using the pixel 

and mean spectra of the calibration set previously pre-processed by means of SNV and 

mean centring. Later, PLS-DA models were built to sort the fruits into one of the two 

studied cultivars. The models were also calibrated using the preprocessed pixel and 

mean spectra of the calibration set and tested using only samples of the validation or 

prediction set. 

In order to compare the performance of the hyperspectral imaging with the colour 

imaging system, a PLS model was also built using the mean value of the L*a*b* colour 

coordinates. A single 10-fold venetian blind CV was used to choose the optimal 

number of LVs as well as to obtain an estimation of the error rate of the models. All 

models were statistically validated by using the sensitivity, specificity, class error and 

accuracy (Eqs. (3)-(6)): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                         (3) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                        (4) 

𝐶𝑙𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 =  1 − (
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
)                                                                 (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                                                                          (6) 

where TP and TN stand for true positive and true negative, respectively, accounting for 

the samples that have been correctly assigned as belonging (TP), or not belonging (TN), 

to a specific class. FP and FN stand for false positive and false negative, respectively, 

accounting for the samples that have been wrongly assigned as belonging (FP), or not 

belonging (FN), to a specific class. 

The ANOVA, followed by Tukey’s HSD test was also conducted in order to 

determine significant differences in the accuracy of the models using the software 

Statgraphics. 

 

3. Results and discussion 

3.1. Cultivar characterisation 

3.1.1. Physicochemical properties 

Table 1 shows the results obtained from the reference analysis of the 

physicochemical properties. F is one of the physicochemical properties commonly used 

to assess ripeness. In this work, the measures of F obtained for both cultivars showed 

no statistical differences, which means that they were in a similar stage of ripeness. 

According to the mean value of F measured for each cultivar, these fruits were 

considered as being within the group that Valero, Crisosto and Slaughter (2007) 

described as 'ready to buy'.  

As noted above, the principal difference between these two cultivars is the flavour; 

i.e. the typical TSS values for ‘Big Top’ being higher than in ‘Diamond Ray’ and vice 

versa for TA. The measured values (Table 1) agreed with Crisosto et al. (2006), who 

found that ‘Diamond Ray’ had 0.8 % TA and 10.3 % TSS. The difference in TSS content 
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between these cultivars may be attributable to the stage of maturity, the season or the 

production area (Crisosto, 1994). Regarding the ‘Big Top’ cultivar, Giné-Bordonaba et 

al. (2014) reported results similar to those in the present study, i.e. 0.3 % TA and TSS 

between 12.2 % and 13.5 %. 

 

Table 1. Results of analysis of physicochemical properties of both cultivars of nectarine. 

Property 
‘Diamond Ray’ ‘Big Top’ 

Mean SD Mean SD 

F (N) 33.8 a 9.5 34.8 a 7.1 

TSS (%) 11.9 b 1.6 12.7 a 2.3 

TA (%) 0.7 a 0.1 0.4 b 0.1 

Skin colour 
colorimeter 

L* 36.9 a 6.6 36.5 a 6.0 

a* 27.0 a 4.2 26.2 a 3.9 

b* 13.3 a 5.1 13.4 a 4.9 

Skin colour 
imaging 

L* 28.0 a 8.6 27.0 a 8.2 

a* 44.9 a 5.4 41.0 b 5.5 

b* 27.2 a 8.8 24.8 b 8.6 

Blush zone (%) 67.0 a 21.4 66.3 a 18.4 

Ground zone (%) 33.0 a 21.4 33.7 a 18.4 

Different superscript letters in the same row indicate significant differences between 
cultivars (p-value<0.05).  SD = standard deviation; F = firmness; TA = tritratable acidity; 
TSS = total soluble solids 

 

The mean L*, a* and b* colour coordinates of the skin colour using the colorimeter 

were not statistically different between cultivars (Table 1). However, colorimeters 

measure small regions only, which can be a major limitation in applications where 

distinguishing the colours all over the sample is of interest. This means that they are 

not well suited to measuring objects with a heterogeneous colour (Gardner, 2007), 

such as nectarines of these cultivars. However, a colour camera provides images in 

which the colours of the pixels are determined individually (Cubero, Aleixos, Moltó, 

Gómez-Sanchis, & Blasco, 2011), along with their spatial distribution. The analysis of 

the colour of the nectarines using imaging enable the evaluation of the skin colour of 
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the different colour zones separately and calculation of the relative distribution 

(percentage) of reddish or yellowish colour in the whole fruit.  

Using this percentage, a mean value of the L*, a* and b* coordinates was 

calculated from the images. On average, a reddish colour was present on 67 % of the 

fruit surface and a yellowish colour on 33% in both cultivars (Table 1). Even so, the 

mean colour using imaging indicated that the a* and b* scores were statistically 

different in the two cultivars, i.e. both were higher in ‘Diamond Ray’. However, the 

differences were too small to be detected visually by the human eye, especially during 

a rapid fruit-sorting process. 

 

3.1.2. Spectral analysis 

Differences between cultivars were observed in their hyperspectral spectra (Figure 

2). The pre-processed (SNV) mean spectra of the two cultivars followed a similar 

spectral pattern but had clear differences at specific wavelengths.  

 

 

Figure 2. Mean hyperspectral image spectra of ‘Diamond Ray’ and ‘Big Top’ cultivars.  

 

In the VIS region, no apparent differences could be visualised in the range between 

400 and 600 nm where carotenoids are present. In contrast, the ‘Big Top’ cultivar had 

lower reflectance (higher absorbance) than ‘Diamond Ray’ near 680 nm, which is 

associated with chlorophylls (Rajkumar et al., 2012), suggesting a higher content of this 
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molecule. This agrees with the differences in the values of a* and b* found in the 

colour analysis (Table 1). 

In the NIR region, the absorption bands for acids and sugars are usually found 

around 800 nmand 840 nm respectively, attributable to the hydroxyl groups of these 

compounds (Malegori et al., 2017; Yang et al., 2015). However, only small differences 

are usually observable due to the water absorption bands which dominate the 

spectrum (Nicolaï et al., 2007). In this region, the main differences observed in the 

spectra were at wavelengths above 850 nm and, in particular, around 970 nm, where 

Lu and Peng (2006) described a peak associated with water absorption, which in this 

case was more pronounced in 'Magique' nectarines (Figure 2).  

 

3.2. Overview of the spectral data 

A PCA was performed in order to obtain an overview of the distribution of the 

spectral data information from the samples of both cultivars. The PCA results from the 

individual pixel spectra and the mean spectra of each fruit are shown in Figures 3 and 

4, respectively. 

 

 

Figure 3. Score image of the two first PC of the PCA model using pixel spectra of 40 
fruits of each cultivar from the calibration set.  
The percentages indicate the explained variance (87.8 % of the total variance). The 
variations in the colour in both score plots show features linked to the distribution or 
content of the biochemical constituents in each fruit and cultivar. ‘DR’=‘Diamond Ray’; 
‘BT’=‘Big Top’. 
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Forty samples of each cultivar were randomly selected to provide individual pixel 

spectra and this data was used to generate a score image plot. The first two PCs 

explained 87.8% of the total variance (76.5 % and 11.3 %, respectively). The variations 

in the colour within each fruit showed the distribution or content of the biochemical 

constituents. A possible trend was discerned in PC2, where pixels with low values (dark 

blue) were found mostly in ‘Big Top’ samples; however, there was little difference in 

individual fruit spectra of the ‘Diamond Ray’ and ‘Big Top’ cultivars.  

 

 

Figure 4. Score (top) and loadings plot (bottom) of the PCA of the mean spectra of the 

calibration set. 

 

In the PCA of the mean spectra of the calibration set, the first two PCs (Fig. 4) 

explained 93.3 % of the variance (81.4 % and 11.9 %, respectively). The ellipses for the 

two cultivars appeared distinct, but discrimination between them was not possible 

because of overlap. 



Chapter III. Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify 

similar cultivars of nectarine 

 

120 
 

Although the loadings obtained for PC1 and PC2 (Figure 4) might have offered 

information on the most important wavelengths to distinguish the cultivars, this was 

not useful because separation was not evident in the preceding plot (Figure 4). PCA 

maximises the variance in the first components, which may or may not be related to 

the segregation of the classes; this does not guarantee the class separability of data 

due to its unsupervised nature (Jolliffe, 2002). 

 

3.3. Cultivar classification using individual pixel spectrum 

A PLS-DA model was performed using the spectral range of 450-1040 nm and the 

spectrum of the individual pixels of each fruit of the calibration set. The values 

obtained for sensitivity and specificity (Table 2) indicated that the number of samples 

correctly identified as belonging to a specific cultivar, or not, was above 0.80 in the CV 

set, using five LVs. Sensitivity of 0.83 and 0.86 was determined for ‘Diamond Ray’ and 

‘Big Top’ respectively being the accuracy of classification 84.8 % and error 0.15. 

 

Table 2. Cultivar discrimination using the pixel spectrum approach. 

V=Variables; LV=Latent variables; CV=Cross validation; ’DR’=Diamond Ray’; ‘BT’=’Big 
Top’ 

 

Using the spatial data collected by the imaging system the combined results were 

applied to the calibration set. The predicted class of each pixel was obtained by 

introducing the spectrum measured for those pixels into the previously built model, 

and visualising the result. Each pixel was coloured blue if it was assigned to ‘Diamond 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

60 5 

Calibration 
‘DR’ 0.83 0.86 

0.15 84.8 
‘BT’ 0.86 0.83 

CV 
‘DR’ 0.83 0.86 

0.15 84.8 
‘BT’ 0.86 0.83 

Validation 
pixel 

‘DR’ 0.79 0.89 
0.16 83.8 

‘BT’ 0.89 0.79 

Validation 
object 

‘DR’ 0.78 0.91 
0.16 84.4 

‘BT’ 0.91 0.78 
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Ray’ or red if it was assigned to ‘Big Top’, as shown in Figure 5A. The accuracy of this 

classification was 83.8 % and error 0.16. 

To classify each fruit using this approach, the whole fruit was assigned to the class 

found in the majority of its pixels (Fig. 5B). In this case, the accuracy and the 

classification error were 84.4 % and 0.16. In both cases, ‘Big Top’ was also the best 

discriminated, with a sensitivity of about 0.90. 

 

3.4. Cultivar classification using mean fruit spectrum 

The sensitivity and specificity in the results of calibration using the mean fruit 

spectrum approach giving values above 0.90 using six LVs (Table 3). In this case, both 

cultivars were discriminated similarly and the accuracy of classification of the CV was 

93.2 % and error 0.07. 

 

Table 3. Cultivar discrimination using the mean spectrum approach. 

V=Variables; LV=Latent variables; CV=Cross validation; ’DR’=Diamond Ray’; ‘BT’=’Big 
Top’ 

 

In order to get a graphical view of the veracity of the classification obtained using 

the validation set, the class for each fruit was predicted by introducing the mean 

spectrum measured into the previously built model. The result was visualised showing 

the fruit coloured blue if the mean value was assigned by the model to ‘Diamond Ray’ 

or red if it was assigned to ‘Big Top’ (Fig. 6A). The results for the validation set were 

similar to those obtained in the calibration, showing an accuracy of 94.4 % with a 

classification error of 0.06. The ANOVA results indicated that the mean spectra model 

was significantly better than the pixel model (p < 0.05) to classify the fruits. 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

60 6 

Calibration 
‘DR’ 0.94 0.94 

0.06 93.8 
‘BT’ 0.94 0.94 

CV 
‘DR’ 0.93 0.94 

0.07 93.2 
‘BT’ 0.94 0.93 

Validation 
‘DR’ 0.94 0.94 

0.06 94.4 
‘BT’ 0.94 0.94 



Chapter III. Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify 

similar cultivars of nectarine 

 

122 
 

As Williams and Kucheryavskiy (2016) pointed out, using properly computed object 

features as the mean spectrum decreases the amount of data, leading to more stable 

classification models. Furthermore, this approach avoids classifying by pixels when 

objects from different classes contain many similar pixels and are easily miss-assigned 

to the opposite class, such as for the cultivars studied in this work. On the other hand, 

it is important to include the negative influence of the sphericity of the fruits on the 

reflectance of the light. As seen in Figure 5A, most errors occur at the borders of the 

fruit, since the centres are usually well illuminated. The pixels near the borders are 

therefore more likely to be wrongly classified, thus affecting the overall result. In 

contrast when using the mean fruit spectrum, the averaging minimises these errors. 

 

 

Figure 5. Visualisation of cultivar classification using individual pixel spectrum: A) Pixel 

classification method; B) Object classification method.  

Blue=‘Diamond Ray’; Red=‘Big Top’. 
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3.5. Selection of the optimal wavelengths 

In order to optimise the algorithms for an automatic in-line sorting system working 

at high speed, it is important to reduce the computational complexity generated by the 

huge amount of data obtained by hyperspectral imaging systems. This problem is 

commonly alleviated by techniques that retain the information in the few bands that 

reveal the most variability and therefore most significant information in the 

hyperspectral image (Du & Sun, 2006). The method used in this study was the vector of 

the regression coefficients. This measures the association between each variable and 

the response and selects variables in two steps: (i) the PLS-DA model is fitted to the 

data, and (ii) the variable selection is based on a threshold (Mehmood et al., 2012). 

Variables with a high absolute value can be selected because they make the highest 

contribution to cultivar classification and those with a small absolute value can be 

ignored. In this study, the regression coefficients were obtained from the PLS-DA 

model using the mean fruit spectrum approach, due to its higher accuracy in the 

classification of both cultivars. 

Figure 7 shows the vector of regression coefficients. Those peaks where the 

absolute value was highest were selected as important wavelengths. In the VIS region 

the selected wavelengths were at 630, 650, 680 and 720 nm while in the NIR region 

they were 750-770, 790, 810-840, 860 and 900 nm. 

 

 

Figure 7. Vector of regression coefficients of the PLS-DA model using mean spectra and 

with the optimal wavelengths selected.  
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The optimised PLS-DA model was performed using the 14 selected wavelengths as 

input (Table 4). The sensitivities and specificities in the CV were similar to the full 

model using six LV (Table 3).  

 

Table 4. Cultivar discrimination using the mean spectrum and the optimal wavelengths 

selected. 

V=Variables; LV=Latent variables; CV=Cross validation; ’DR’=Diamond Ray’; ‘BT’=’Big 
Top’ 

 

In the prediction set, using only the 14 wavelengths, the sensitivity for the two 

cultivars increased from 0.94 for both to 0.95 and 0.98, in ‘Diamond Ray’ and ‘Big Top’ 

respectively. Fig. 6 shows the results of both classifications, using the full spectrum 

(Figure 6A) and the optimal wavelengths (Figure 6B) in which more fruits were 

coloured as they should be when the wavelengths selected as the most important. 

However, the accuracy obtained, 96.3 %, was not statistically different (p > 0.05) from 

the accuracy of the full model (96.3 % and 94.4 %, respectively). 

 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

14 6 

Calibration 
‘DR’ 0.94 0.94 

0.06 93.8 
‘BT’ 0.94 0.94 

CV 
‘DR’ 0.93 0.94 

0.07 93.2 
‘BT’ 0.94 0.93 

Validation 
‘DR’ 0.95 0.98 

0.04 96.3 
‘BT’ 0.98 0.95 
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Figure 6. Visualisation of cultivar classification using mean spectrum: A) Classification 

using the full range; B) Classification using 14 optimal wavelengths. 

Blue=‘Diamond Ray’; Red= ‘Big Top’. 

 

3.6. Hyperspectral imaging vs. colour and visual analysis 

When the validation set was classified visually by the trained panel, the same 

fraction of each cultivar was identified correctly (Table 5). However, the accuracy was 

very low, i.e. 54.5 % with a classification error of 0.46. This demonstrates difficulty of 

the human eye to distinguish between the similar external appearances of these 

cultivars. 

Classification by the colour data had similar accuracy (p-value > 0.05) to that 

achieved by the trained panel (Table 5), i.e. 56.9 % accuracy and error of 0.43. This is 

especially poor in comparison with the results of the hyperspectral imaging using 14 

wavelengths, i.e. 96.3 %, error 0.04 (Table 4). 
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Table 5. Results of cultivar classification using colour imaging and a trained panel 

V=Variables; LV=Latent variables; CV=Cross validation; ’DR’=Diamond Ray’; ‘BT’=’Big 

Top’ 

 

These results are in agreement with the work carried out by Nogales-Bueno, 

Rodríguez-Pulido, Heredia, and Hernández-Hierro (2015) that used NIR hyperspectral 

and colour imaging to discriminate between four red grape cultivars. Only 52.0 % of 

the samples were correctly classified using colour imaging but this figure increased to 

86.0 % using hyperspectral imaging. Furthermore, Font et al. (2014) described an in-

line system for verification of nectarine cultivars with close harvest times using 

different colour space layers of the skin colour histogram. The success of their 

technique was 100 % in comparing fruits of three cultivars with a single cultivar for 

reference. In the same experiments, human classification achieved 86 % accuracy, 

likely attributable to the large differences in the skin colour of the cultivars tested. 

The high rate of accuracy in classification of these cultivars using hyperspectral 

imaging was important because of the external similarity of the cultivars studied. This 

makes it difficult to accurately identify the cultivars by colour features, although they 

appear very different to consumers at the table. This is a genuine problem for the 

industry. Although colour imaging is a rapid and inexpensive tool, it has lower 

discrimination power for cultivars with very similar appearance, which necessitates the 

use of more VIS wavelengths and optimal wavelengths in the NIR region. 

 

 #V #LV  Class Sensibility Specificity Error Accuracy (%) 

Colour 
imaging 
PLS-DA 

3 2 

Calibration 
‘DR’ 0.75 0.61 

0.32 68.0 
‘BT’ 0.61 0.75 

CV 
‘DR’ 0.75 0.62 

0.32 68.3 
‘BT’ 0.62 0.75 

Validation 
‘DR’ 0.65 0.49 

0.43 56.9 
‘BT’ 0.49 0.65 

Trained 
panel 

- - Validation 
‘DR’ 0.54 0.55 

0.46 54.5 
‘BT’ 0.55 0.54 
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4. Conclusions 

The capability of VIS-NIR hyperspectral imaging to discriminate very similar 

cultivars of nectarine has been demonstrated in this work. 

The classification of these two cultivars by colour imaging or by a trained panel was 

very poor, achieving an accuracy of only 56.9 % and 54.5 % respectively. However, 

hyperspectral imaging supported by chemometric methods and optimised by 

reduction of the spectral and spatial information enabled classification more 

accurately than by traditional manual or colour-based systems, and it is also faster 

than destructive methods. 

The use of the mean spectrum of the fruit as input of the predictive models 

provided classification accuracy of 94.4 %. To cope with the huge amount of data 

captured by the hyperspectral systems, the vector of the regression coefficients of a 

PLS-DA model identified 14 wavelengths which were selected as optimal, producing 

the best classification model with a classification accuracy of 96.3 %. 

This technique may have potential as a tool for rapid and non-destructive cultivar 

discrimination, allowing the selection of fruit that is better suited to the consumer's 

preferences. Nevertheless, the results of this study should be confirmed on a larger 

sample set of fruits grown in different areas and harvested at different stages of 

ripeness before they can be implemented in an in-line system. 
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Abstract 

The internal quality of intact persimmon cv. ‘Rojo Brillante’ was assessed trough 

VIS-NIR hyperspectral imaging. Fruits at three stages of commercial maturity were 

exposed to different treatments with CO2 to obtain fruit with different ripeness and 

level of astringency (ST content). Spectral and spatial information were used for 

building classification models to predict ripeness and astringency trough multivariate 

analysis techniques like LDA, QDA and SVM. Additionally, flesh F was predicted by PLS-

R. The full spectrum was used to determine the internal properties and later PCA was 

used to select optimal wavelengths (580, 680 and 1050 nm). The correct classification 

was above 92.0 % for the three classifiers in the case of ripeness and 95.0 % for QDA in 

the case of astringency. A value of R2 0.80 and a ratio of prediction deviation (RPD) of 

1.9 were obtained with the selected wavelengths for the prediction of firmness which 

demonstrated the potential of hyperspectral imaging as a non-destructive tool in the 

assessment of the F, ripeness state and astringency level of ‘Rojo Brillante’ persimmon. 
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1. Introduction 

Spain is one of the major producers of persimmon (Diospyros kaki L.) among 

European countries (Plaza et al., 2012). The principal variety grown in Spain is ‘Rojo 

Brillante’, mostly located in the region of Ribera de Xuquer Valley near Valencia (Spain) 

with more then 100.000 T per year. This cultivar is very appreciated by consumers 

because it good aspect, high size, flavour and absence of seeds. However, this cultivar 

is astringent at harvest and the fruit cannot be consumed until a high degree of over-

ripeness when allowed to rest and soften for a long period after harvest. 

This has been traditionally a handicap for the commercialization of this fruit since 

once the fruit losses the astringency by overripe, it acquires a soft jelly-like consistency 

being difficult to handle and eat. Now, some methods have been developed to 

eliminate quickly the astringency without losing the F, as exposing fruit to high CO2 

concentrations (95-100 %) during 18-24 h. This method is based on promoting 

anaerobic respiration in the fruit, giving rise to an accumulation of acetaldehyde which 

reacts with the ST that are the responsible for the astringency (Matsuo, Ito, & Ben-

Arie, 1991).  

In Figure 1 can be appreciated the differences between a persimmon naturally de-

astringed by over-ripeness and another de-astringed using a CO2 treatment. Since the 

success of the treatment was demonstrated (Besada et al., 2010; Salvador et al., 2007), 

it has been adopted by industry as the standard deastringency method, and utilized to 

give the fruit in addition a sweet taste and firm texture similar to the apple, highly 

appreciated by the consumers.  

However, the effectiveness depends on the fruit F at harvest, since maturation 

process is accompanied by a gradual decrease of firmness (Salvador et al., 2008). A 

problem is that the stage of maturity at harvest is currently determined based on the 

visual inspection of experienced growers or using colorimeters due the relationship 

between the changes in external colour and the internal changes (Salvador et al., 

2007).  
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Figure 1. Persimmon de-astringed using a CO2 treatment (left) and persimmon 

naturally de-astringed by over-ripeness (right). The first shows firm and crisp flesh 

while the second present a very soft texture. 

 

The current way to know the level of astringency in the fruit after CO2-treating is by 

destructive measurement of ST content in random fruits by means of the tannin print 

method (Matsuo & Ito, 1982) which consists of using a FeCl3-impregnated filter paper 

to obtain a print of the content and distribution of the tannins trough the reaction with 

the FeCl3 in the paper. Then, this print is visually assessed by trained workers being this 

method subjective and destructive and therefore the development of other new non-

destructive and accurate methods is needed. 

Computer vision systems have been traditionally used to create tools for the 

objective estimation of the quality of intact fruit production (Cubero et al., 2011) and 

have already been explored to assess quality of persimmon. Mohammadi et al. (2015) 

used colour information to determine the maturity of this fruit through colour analysis 

and classify the fruit into three commercial maturity stages. 

Standard computer vision systems tend to mimic the human eye and hence are 

based on sensors sensible to visible wavelengths. But to analyse internal composition it 

is necessary the use of technology sensible to non-visible wavelengths related with 

chemical compounds. This can be achieved by using hyperspectral imaging (Lorente et 

al., 2012) that is a powerful non-invasive technology that allows obtaining the spatial 

distribution of the spectral information and it is being used from recent in the internal 

quality inspection of food (Cheng & Sun 2015; Cheng, Sun, & Cheng, 2016, Cheng, Sun, 

Pu, & Liu, 2016; Gómez-Sanchis et al., 2013) or to assess some properties of fruits like 

the ripeness in apples (ElMasry et al., 2008), citrus fruits (Folch- Fortuny et al., 2016), 

pepper (Schmilovitch et al., 2014), or mango (Vélez-Rivera et al., 2014). 
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Hyperspectral imaging in persimmon has been used by Munera et al., (2017) to 

create images showing the distribution of the predicted astringency of each pixel in the 

fruit, and by Wei et al., (2014) to predict F. However, in this work, the authors claimed 

that more research is needed to include more samples as well as different regions and 

different postharvest treatments to ascertain the discrimination power of this method 

and it is therefore necessary to investigate new methods especially to discriminate 

among fruits with slightly different stages of ripeness or levels of astringency as those 

exposed to a CO2 treatment, to achieve a demand from both the industry and the 

consumers. 

This work proposes a new non-destructive approach based on VIS-NIR 

hyperspectral imaging and multivariate analysis to determine the F, ripeness state and 

astringency level of intact persimmon ‘Rojo Brillante’ as alternative to the current 

destructive and/or subjective techniques. 

 

2. Material and methods 

2.1. Fruit samples and internal quality assessments 

A total of 90 persimmon (Diospyros kaki cv. ‘Rojo Brillante’) fruit were harvested in 

L'Alcudia (Valencia, Spain) at three different stages of commercial maturity (M1, M2 

and M3) (Figure 2) corresponding to different moments of the season (early 

November, end November, and mid December). A total of 30 fruits, with apparently 

similar size and colour were collected for each maturity stage. In order to obtain three 

different levels of astringency, the fruits in each maturity stage were equally divided 

into three sets. The first set (control fruits with high astringency) consisted of fruits not 

treated, the second set (medium astringency fruits) consisted of fruits treated in closed 

containers at 20 ºC with 90% RH and 95 % of CO2 for a period of 12 h, and the 

remaining set (deastringed fruits) were fruits treated under the same conditions for 24 

h. 
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Figure 2. Images of persimmon at each maturity stage. 

 

After each treatment, all the fruits were measured using a colorimeter, a digital 

camera, and a hyperspectral imaging system. Later, flesh F of all fruits was determined 

by means of a universal testing machine (4301, Instron Engineering Corp., MA, USA) 

equipped with an 8 mmpuncture probe. The crosshead speed during the F testing was 

10 mm/min. During the test, the force increased smoothly until it drastically decreased 

when the flesh was broken and the maximum peak force was registered. Results were 

expressed as the mean of the load (in N) required for breaking the flesh of the fruit on 

the two sides after peel removal. To analyse the astringency of the fruits, they were 

sliced and frozen at -20 °C to determine ST using the Folin-Denis method (Taira, 1995), 

as described by Arnal and Del Río (2004). This method is based on the reduction of the 

Folin-Ciocalteu reagent by soluble tannins in alkaline solution. Calibration curve was 

made with gallic acid. ST were extracted by homogenization of 5 g of flesh with 25 mL 

of 80 % methanol solution. Thereafter, samples were filtered and centrifuged for 20 

min and the supernatant was reserved. More supernatant was extracted from the 

precipitant with methanol 80 % and added to the first. The supernatant was diluted in 

water at 1:7 and then Folin-Ciocalteu reagent 1 N was used to conduct the reaction. 

After 3 min 1 ml of saturated Na2CO3 was added, and the absorbance of the mixture at 

725 nm was measured by colorimetry after stand for 1 h. 

 

2.2. Colour analysis 

At harvest this fruit presents a uniform colour that ranges from bright to dark 

orange depending on the maturity being the colour a good indicative of this property 

(Salvador et al., 2007). The external colour the fruit under study was characterised 
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using two techniques. On the one hand, a colorimeter (CR-300, Konica Minolta Inc, 

Tokyo, Japan) was used to obtain the colour at three points of the equatorial part of 

the fruit. Hunter Lab colour coordinates were obtained by the average of three 

measures. On the other hand, the colour was also evaluated trough images of the two 

sides of each fruit. The image acquisition system consisted on a digital camera (EOS 

550D, Canon Inc, Japan) arranged into a squared inspection chamber that included a 

calibrated and uniform illumination system composed of eight fluorescent tubes 

(BIOLUX 18 W/965, 6500 K, OsramGmbH, Germany). The angle between the axis of the 

lens and the sources of illuminationwas approximately 45° to avoid direct reflections to 

the camera (Diago et al., 2015), but due to the spherical shape of the samples these 

reflections could not be totally avoided this way and hence cross-polarization was also 

used (ElMasry et al., 2012). 

A total of 180 images were obtained with a size of 2592 x 1944 pixels and a 

resolution of 0.11 mm/pixel. Figure 2 shows examples of images of the fruits in the 

three maturity stages. For each image, the mean RGB colour values of the pixels of the 

skin were obtained using the application Food_ColorInspector (free download at 

http://www.cofilab.com). RGB values were later converted to Hunter Lab colour space 

for analysis using the equations described in Mendoza et al. (2006) and HunterLab 

(1996) for illuminant D65 and standard observer 10º. The HunterLab coordinates were 

finally transformed to the colour attributes Hunter L, Hunter h and Hunter C 

(Hutchings, 1999). In addition, RGB values were transformed into HSI (hue, saturation, 

intensity) values and other indices were estimated such as the ratios a/b and a/L and 

the CI (CI = 1000a/Lb) (Salvador et al., 2006). 

 

2.3. Hyperspectral imaging 

Hyperspectral images of the intact persimmons in the spectral range 450-1020 nm 

were acquired using a camera (CoolSNAP ES, Photometrics, USA) coupled to two LCTF 

(Varispec VIS-07 and NIR-07, Cambridge Research & Instrumentation, Inc., MA, USA). 

The illumination system consisted of 12 halogen lights arranged equally into a domo 

inspection chamber where whole fruits were manually introduced. 



Chapter IV. Non-destructive assessment of the internal quality of intact persimmon using 
colour and VIS/NIR hyperspectral imaging 
 

142 
 

Hyperspectral images with a spatial resolution of 0.14 mm/pixel and a spectral 

resolution of 10 nm were captured in both sides of each fruit, which lead to a tagged 

database of 180 hyperspectral images. In each image, a ROI of 225 x 225 pixels in the 

central part of the fruit was selected and analysed as the average of spectrum of all 

pixels for ripeness and F analysis since these properties are quite uniformly distributed 

in the fruit. However, for the case of the astringency, the individual spectrum of each 

pixel in the ROI was included in the models due the uneven distribution in the fruit of 

ST responsible of the astringency. To obtain the relative reflectance of a pixel in the 

position (x, y) of the monochromatic wavelenght, the original reflectance was 

corrected using a dark and white reference (Spectralon 99 %, Labsphere, Inc, NH, USA) 

following the procedure described in Gat (2000). 

 

2.4. Data analysis 

ANOVA and Tukey multiple range test (Statgraphics Centurion XVI - Statpoint 

Technologies Inc., Virginia, USA) were used to show the effects of ripeness on colour 

parameters obtained with both, colorimeter and computer vision system. In this 

analysis, the three maturity stages were the observed values (Y) and the Hunter Lab 

colour coordinates captured by both the colorimeter and the vision systems were the 

predictive variables. 

Hyperspectral images consisted of 67 wavelengths and therefore the spectra 

obtained from these images were distributed in a matrix with 67 columns each 

corresponding to the reflectance value of each band where the rows represented the 

fruits. In addition, the pixels were labelled as belonging to any of the ripening stages 

(M1, M2 and M3) and treatments (HA, LA, NA) to carry out the analysis for firmness 

and astringency prediction. First step was a pre-processing of data using SNV to 

remove scatter effects from original spectral data (The Unscrambler X 10.1, CAMO 

Software, Oslo, Norway). Classification models to sort the fruit by ripeness stage and 

treatment duration (astringency level) were developed using LDA, QDA and SVM 

(Dutta et al., 2016). The difference between LDA and QDA classifier is that LDA uses 

pooled covariance to assign an unknown sample to one of the pre-defined groups 
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while QDA uses the covariance of each group instead of pooling them (Naes et al., 

2002). On the other hand, the SVM algorithm was developed based on the concept of 

hyperplane and support vectors, using a linear function kernel with C value set to 1. In 

addition, F prediction was conducted by PLS-R (Cheng et al., 2015b) using the RPD that 

was defined by Williams (1987) as the ratio of standard deviation of reference values in 

training set to the RMSEP. 

Hyperspectral systems capture a huge amount of information that is redundant 

and correlated, especially between contiguous wavelengths (Lorente et al., 2012). 

Therefore, PCA was used to know if it was possible to obtain good prediction using a 

reduced subset of bands. Four different PCA models were built, one of using the 

spectral data of the ripeness assessment and the other three PCA with data of the 

astringency assessment for each harvest. The variables wavelengths were chosen on 

the basis of the size of coefficients or loadings in the eigenvectors of the principal 

components. 

 

3. Results and discussion 

3.1. Maturity assessment 

Several differences can be observed among the spectra of the fruit in the three 

ripening stages shown in Figure 3. Fruits of M1 gave higher reflection values than the 

others in the visible region, which is in agreement with the colour analysis. An 

absorption peak was found around the bands 670-680 nm only for fruits in M1 stage 

which could be due the presence of chlorophyll in the more unripe fruit (Lleó et al., 

2011). However, the fruits in M2 stage are those which gave a higher reflection in the 

NIR region that can be due to the chemical differences among fruit at different 

ripeness. The absorption peak observed around 900-1050 nm could be assigned to 

water absorption band. This peak was higher in M3, which may be related to water 

content increases in the flesh during the onset of ripening, which in other fruits has 

been related to cell breakage and osmotic movement of water from the flesh to the 

skin. 
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Figure 3. Average spectra of control fruits in three ripeness stages  

 

The PCA model generated with the 67 wavelengths was analysed to identify the 

variables with the highest factor loadings since they reflected the importance of each 

wavelength in discriminating differences in the fruit (Wang et al., 2012). The loadings 

of the first two principal components were used for wavelength selection because 

these were responsible for 96% of the variance in the spectral data. The wavelengths 

corresponding to higher module values (peaks and valleys) at these particular principal 

components were selected as candidates for optimum wavelengths (Rodríguez-Pulido 

et al., 2013) (Figure 4). Four optimum wavelengths (450, 580, 680, and 1050 nm) were 

thus identified for discrimination purposes of different maturity stages. Wavelengths 

450 nm and 680 nm are related with the presence of beta-carotene and chlorophyll a 

respectively. On the other hand, the importance of the wavelength 580 nm can be due 

to the colour changes during ripeness since it corresponds to the yellow colour. This 

would be in accordance with the ranges of h and C values shown in Table 3. The band 

1050 nm could be related with an absorption region of water content although the 

peak is situated below 1000 nm (Lu & Peng, 2006). 
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Figure 4. PC Loadings of the PC1 and PC2 showing the selected wavelengths for 

ripeness classification of ‘Rojo Brillante’ persimmon fruits. 

 
Statistical models to classify the fruit into maturity stages were developed using 

the spectra of the full spectra and only the selected wavelengths. In order to build and 

validate the model, a 3-fold CV procedure was used (Simon, 2007). The data set of 

pixels was randomly partitioned into three disjoining subsets. The classifier 

development process was repeated three times using each two different subsets and 

the resulting classifiers used to classify the remaining test set. Finally the results of the 

three iterations were averaged. The four selected bands were used to build the models 

but also the possible combinations of three bands resulting that using only 580 nm, 

680 nm, and 1050 nm, the results were similar to those achieved using the four bands. 

Using only these three selected wavelengths the success rate of correct classification 

was slightly lower (mean value of 94.8 %) than using the full spectrum (mean value of 

98.5 %) as shown in Table 1. 
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Table 1. Ripeness classification of testing set by LDA, QDA and SVM using all and 

selected wavelengths. 

Class 
All wavelengths  Selected wavelengths 

LDA QDA SVM  LDA QDA SVM 

M1 99.5  99.8  99.1   98.6  99.3  98.4  

M2 96.8  96.2  96.0   95.5  94.1  94.7  

M3 99.0  100  99.8   83.7  93.9  94.9  

Total 98.5  98.8  98.3   92.6  95.8  96.0  

Different superscript letters in the same row indicate significant differences between 
groups (p-value<0.05), according to Tukey's test.  
 

Comparing the three classification methods, all of them achieved a good 

classification above 98 % using the all wavelengths. Moreover, using only the three 

selected wavelengths only LDA showed an important reduction in the success rate 

while the other two classifiers still remain above 95 % which is considered as a good 

result for a non-destructive technique. 

 

3.2. Firmness prediction 

Table 2 shows the F evolution with the harvesting time (ripeness).  

 

Table 2. Flesh firmness of ‘Rojo Brillante’ persimmon fruits before and after treatments 

in the three ripeness stages. 

Group M1  M2  M3  

High astringent 47.0ª ± 4.3a 29.0a ± 2.6b 25.1a ± 3.4c 

Low astringent 44.7ab ± 2.6a 30.9a ± 3.0b 25.0ª ± 4.7c 

Deastringed 40.6b ± 2.8a 31.9a ± 2.1b 21.1a ± 4.8c 

Values are the flesh F (N) ± standard deviation. Different superscript letters in the same 
column (astringency) and different subscript letters in the same row (ripening) indicate 
significant differences between groups (p-value<0.05), according to Tukey's test.  
 

A model based on PLS-R was built to know if it was possible to predict this property 

in this cultivar using the wavelengths selected in the previous study for ripeness 

assessment. For each fruit there was obtained only one global value of the flesh 
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firmness so the prediction model was built using the average values of the pixels 

selected for each fruit at the determined wavelengths of the hyperspectral images. CV 

leaving 5 % of samples for test was chosen to validate this study. This method splits 

randomly the calibration set into the training (95 %) and test (5 %), repeating the 

process 20 times. Results were achieved as the mean of the 20 repetitions. 

The R2 for the prediction of F was 0.80 and the RPD was 1.9. Viscarra-Rossel et al. 

(2006) suggested that calibration models will suffice for good quantitative application 

if RPD is larger than 1.8. The prediction results obtained was something higher than 

the minimum proposed but not as good as the prediction results of Wei et al. (2014) 

for 'Fangshi' persimmon who achieved a R2 value of 0.91. However, in their work the F 

of the fruit ranged from 25 N to 1 N with large differences among the studied classes. 

In addition, during the ripening process of this cultivar not only drastic changes in F 

happened but also the skin begins to wrinkle and lose shine clearly affecting the 

reflectance. On the contrary, in the present work, theF gave values from 47 N to 21 N 

which means that these fruits are apparently firm in all maturity stages, which is logical 

since it is treated to be consumed as firm and crispy fruit. Figure 1 highlights the visual 

differences between a soft persimmon naturally deastringed and another deastringed 

using CO2 treatment. Hence, for this fruit this prediction capability is considered as a 

good achievement taking into account the little differences between classes, especially 

between M2 and M3 classes. 

A study was also carried out to analyse the possible correlation between the colour 

analysis and the F of the samples. The characterisation of the external colour was 

carried out using the colorimeter and the camera only for the control samples of the 

three stages to avoid the influence of the treatment in colour changes (Table 3). In 

general, the L and b, Hunter Lab coordinates, decreased but there were not statistical 

differences for M2 and M3. On the contrary, the value of a increased along the three 

stages. As a consequence of the changes observed in a and b, the h decreased and the 

C slightly increased along the three stages. These differences were observed in the 

measures given by both, the colorimeter and the camera, and reflect the loss of L of 

the fruit caused by the ripening process and the changes in the fruit from yellowish-

orange to reddish-orange. 
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Table 3. Colour coordinates and attributes of the samples in the three harvests. 

Stage 
Colorimeter  Imaging 

L a b h C  L a b h C 

M1 
58.9 ± 
1.8 a 

21.7 ± 
3.3 c 

34.8 ± 
1.8 a 

60.3 ± 
4.4 a 

40.7 ± 
1.6 c 

 
43.8 ± 
1.0 a 

27.8 ± 
3.5 c 

26.0 ± 
0.5 a 

49.5 ± 
4.4 a 

36.3 ± 
2.0 c 

M2 
53.5 ± 
1.9 b 

34.5 ± 
1.8 b 

31.2 ± 
1.4 b 

46.5 ± 
4.6 b 

45.4 ± 
1.6 b 

 
33.9 ± 
2.4 b 

38.3 ± 
2.5 b 

20.5 ± 
1.4 b 

34.5 ± 
3.8 b 

42.1 ± 
1.6 b 

M3 
52.6 ± 
1.4 b 

38.4 ± 
1.7 a 

30.8 ± 
1.1 b 

39.2 ± 
1.9 c 

48.3 ± 
0.5 a 

 
34.7 ± 
2.0 b 

41.2 ± 
1.0 a 

21.0 ± 
1.1 b 

28.6 ± 
1.8 c 

43.6 ± 
1.3 a 

Values are the mean of control samples in each harvest± standard deviation. Different 
superscript letters in the same column indicate significant differences between groups 
(p-value<0.05), according to Tukey's test.  

 

The values of the colour attributes (L, h and C) of the colorimeter were higher than 

the ones obtained from the images. The higher differences were observed for the L 

values since the glossiness leads to a specular reflectance that reduces the 

contribution to the components a and b. In fact, colorimeter is very dependent on the 

scattering properties of the sample while the diffuse illumination of the vision system 

gives less dependency on the lightness of the sample than the simple illumination and 

filtering employed by the colorimeter (Trinderup et al., 2015). Despite the differences 

observed, good correlations where found between the values obtained by both 

methods (R2 of 0.87, 0.80, and 0.96 for the L, C, and h respectively). 

Linear regressions were performed between the different colour values, obtained 

with both the colorimeter and the camera, and the F. Table 4 summarises the results 

achieved for the coefficient of determination R2 for each colour component using the 

imaging system and the colorimeter, respectively.  

In general, better results are achieved with the imaging system which on the other 

hand makes sense since they integrate the colour of the whole surface of the fruit 

while colorimeter only measures in a small spot and thus increasing the variability. 

Good correlations are found in H (R2 = 0.83), G (R2 = 0.82) and h (R2 = 0.81) or using 

simple ratios like a/b (R2 = 0.83), G/R (R2 = 0.83) or a/L (R2 = 0.83). It is worthy of 
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interest that using the simple ratios measured with the imaging system could be 

obtained better correlations (R2= 0.83) than using the CI that was the index used by 

Salvador et al. (2006) to estimate the F trough a colorimeter achieving a R2 = 0.81. 

 

Table 4. Results of F prediction using the different colour components measured with 

the imaging system and colorimeter. 

 R G B H S I G/R 

R2 Imaging 0.49 0.82 0.46 0.83 0.48 0.17 0.83 

 L a b CI a/b a/L h C 

R2 Imaging 0.79 0.78 0.78 0.80 0.83 0.83 0.81 0.69 

R2 Colorimeter 0.66 0.78 0.63 0.77 0.78 0.78 0.77 0.76 

R= red, G = green, B = blue, H = hue, S = saturation, I = intensity, CI = colour index, 
h = Hunter hue, C = chroma 
 

3.3. Astringency prediction 

The results of the measurements of ST of fresh weight for all maturity stages are 

shown in Table 5. It can be observed that the tannin content decreased in a similar way 

for the three maturity stages along with the duration of the treatment. The soluble 

tannins content decreased to values close to 0.4 % in the fruits treated for 12 h to 0.03 

% in the fruits exposed for 24 h to CO2. 

 

Table 5. Soluble tannins content in ‘Rojo Brillante’ persimmon fruits before and after 

treatments in the three ripeness stages. 

Group M1  M2  M3  

High astringent 0.61a ± 0.09 0.65a ± 0.06 0.63a ± 0.07 

Low astringent 0.45b ± 0.04 0.43b ± 0.10 0.39b ± 0.06 

Non astringent 0.03c ± 0.00 0.03c ± 0.00 0.03c ± 0.00 

Mean value ± standard deviation. Different superscript letters in the same column 
indicate significant differences between groups (p-value<0.05), according to Tukey's 
test.  
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Accordingly, Besada et al. (2010) reported that the CO2-treatment applied for 12 h 

to fruit with firmness around 40 N led to a reduction of soluble tannins to values close 

0.3%. Besides, it has been widely reported that a content of soluble tannins of 0.03 % 

after the CO2-treatment is associated with a complete effectiveness of the 

deastringency process in ‘Rojo Brillante’ cultivar (Salvador et al., 2007, 2008). 

Like in ripeness classification, three PCA models were analysed to identify the 

highest factor loadings in each ripeness stage. However, no wavelength selection could 

contribute to the astringency classification. This may be because tannins are mainly 

detected in the UV in the range 190-400 nm (Boulet et al., 2016), or in the NIR (2200-

2300 nm) (Cozzolino et al., 2004). For this reason, the whole spectrum in the studied 

range (450-1020 nm) was necessary to discriminate the astringency. 

Table 6 shows the results of astringency classification using the three classifiers. In 

general, QDA obtained the best overall classification but a reduction of the 

classification rate along with the maturity was observed, especially for the astringent 

fruits (HA and LA) in the M3 stage.  

As it was shown in Table 2, a decrease of F in M1 between control and deastringed 

fruits was observed. However, in M2 and M3 there was no difference. This could be 

due because the effect of high CO2 concentrations on the cell structure could be the 

cause of the important loss of firmness observed after deastringency treatment. But 

when the more ripe samples are treated with CO2, no effect happens on flesh firmness 

because the loss of intercellular adhesion is already generalised due to the ripeness 

process (Salvador et al., 2007). Therefore, those changes detected by hyperspectral 

imaging are assigned to changes in the soluble tannins content and not to changes in 

texture. 
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Table 6. Astringency classification of test set by LDA, QDA and SVM. 

 Class 
Correct classification (%) 

LDA QDA SVM 

M1 

HA 95.9  99.3  97.1  

LA 92.4  94.5  94.9  

NA 93.9  97.3  93.2  

Avg 94.1  97.0  95.1  

M2 

HA 93.2 96.2  92.7  

LA 93.0  95.3  91.1  

NA 93.9  95.6  95.9  

Avg 93.4  95.7  93.2  

M3 

HA 83.7  94.3  90.0 

LA 72.0  86.0  64.5  

NA 93.4  97.3  93.4  

Avg 83.0  92.5  82.7  

Overall classification (%) 90.2 b 95.1 a 90.3 b 

Different superscript letters in the same row indicate significant differences between 
groups (p-value<0.05), according to Tukey's test. 

 

 

4. Conclusions 

In this study, VIS-NIR hyperspectral imaging were evaluated as potential non-

destructive methods to determine the flesh F,  ripeness stage and the astringency level 

of ‘Rojo Brillante’ persimmon. 

The characterisation of the colour showed that the L and b  Hunter Lab coordinates 

decreased while the value of a increased along with the maturity. As a consequence 

the h decreased and the C slightly increased along the three stages using both 

colorimeter and image methods. Good correlations were found in some colour 

parameters like H (R2 = 0.83), G (R2 = 0.82) and h (R2 = 0.81), but also using ratios like 

a/b (R2 = 0.83), G/R (R2 = 0.83) and a/L (R2 = 0.83) with the data obtained by the 

imaging system improving previous results. Moreover, better correlations were 

obtained using these ratios than using the previously proposed CI (R2 = 0.80) which 
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indicates the feasibility of images to assess the colour as a valid alternative to 

traditional and expensive colorimeters. 

Using the hyperspectral system, three wavelengths (580, 680 and 1050 nm) were 

proposed as the optimum wavelengths for the classification of the fruits into three 

ripeness stages with high accuracy, more than 94 % of all samples were well classified 

for all of the used classifiers (LDA, QDA and SVM). Moreover, these wavelengths were 

used for flesh firmness prediction and the RPD value indicated that the obtained model 

is useful for good quantitative application. Regarding the astringency, the whole 

spectrum of the fruits needed to be used to classify the fruits into three levels of 

astringency: astringent fruit, fruit with a low-medium level of astringency and non-

astringent fruit. The overall classification for the three ripeness stages was higher than 

90 % for the three classifiers and higher than 95 % for QDA. These results indicate the 

potential proposed methodology based on hyperspectral imaging as a promising non-

destructive tool to assess the internal quality of persimmon fruits destined to be de-

astringed and rapidly marketed as fresh sweet fruit. However, more research is 

needed, involving more fruits from different regions and collected in different seasons 

to ascertain the discrimination power of the proposed 
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Abstract 

Persimmon fruit cv. ‘Rojo Brillante’ is an astringent cultivar due to its content of 

soluble tannins, which are insolubilised during the ripening of the fruit. Traditionally, 

the consumption of this cultivar has only been possible when the fruit is overripe and 

the texture is soft. Postharvest treatments based on exposing fruits to high CO2 

concentrations allow astringency removal while preserving high flesh firmness. 

However, the effectiveness of this treatment is controlled by means of slow 

destructive methods. The aim of this work is to study the application of hyperspectral 

imaging in the spectral range 450-1040 nm and to discriminate A and DA fruits non-

destructively. The spectral information from three different areas of each fruit (calyx, 

middle and apex) was used to build models to predict the ST content using partial least 

squares regression. The results indicated that the model using the spectrum of the 

apex area was the most accurate. However, it was not possible to accurately predict 

fruits with very low levels of ST, especially in the case of DA fruits (42.2 %). Thus, 

classification models using partial least squares discriminant analysis were performed 

including other properties in order to discriminate between A and DA using an ST 

threshold. The most accurate models using all and the optimal wavelengths selected 

were those which focused on the middle and apex areas of the fruit, a correct 

classification rate of 87.0 % being achieved for A fruits and above 84.4 % for DA fruits. 

To date, there are only subjective and destructive analytical methods to monitor the 

effectiveness of the astringency removal treatments in persimmon. The results 

obtained in this study indicate that hyperspectral images can therefore be considered 

as an objective and non-destructive alternative in the control of this process. 
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1. Introduction 

Spain is the number one producer of persimmon fruit (Diospyros kakI L.) in Europe 

and the third largest producer in the world, after China and South Korea (FAOSTAT, 

2016). In the last twenty years, the land area devoted to cultivating this crop has risen 

from 2,000 to 14,000 ha, and production has increased from 33 to 310 thousand tons 

(FAOSTAT, 2016). Part of this growth is due to the increase in the production of the 

‘Rojo Brillante’ cultivar. This cultivar, like other persimmon cultivars, is astringent at 

harvest and must be subjected to post-harvest treatments to remove astringency. The 

development of the de-astringency methods based on high CO2 concentrations 

allowed removal of the astringency while preserving high flesh F (Arnal and Del Río, 

2003), which has facilitated a rapid commercial expansion of this crop. Nowadays ‘Rojo 

Brillante’ persimmon is one of the most appreciated persimmon cultivars worldwide.  

The conditions considered as standard for the complete elimination of astringency 

in this cultivar are 95 % CO2 for 18-24 h at 20 ºC. Under these conditions, the ST, 

responsible for astringency, are polymerised by the acetaldehyde produced to form 

insoluble compounds, which are non-astringent (Matsuo & Itoo, 1982; Taira et al., 

1997; Salvador et al., 2008). However, the treatment may not be completely effective 

when the conditions of the process are not well controlled (Arnal & Del Río, 2003). In 

addition, the effectiveness of the treatment is also severely affected by the 

physiological state of the fruit. Small changes in the cellular structure can make the 

diffusion of CO2 through the spaces difficult, the result being a low rate of anaerobic 

respiration and consequently less accumulation of acetaldehyde. This, in turn, leads to 

a lesser reduction of the ST (Salvador et al., 2007). 

To commercialise this fruit, it is necessary to guarantee the complete removal of 

the astringency, since the presence of any astringency in the fruit can cause rejection 

by the consumer that will in turn affect future sales. The control of residual astringency 

in the fruits after the treatments can be performed destructively by measuring ST in 

the fruit pulp using the Folin–Denis method (Arnal and Del Río, 2004). However, in 

addition to being destructive, this method is slow and requires specialised equipment 

and personnel. An alternative is based on the reaction of the ST with FeCl3. Tannic acid 
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complexes with ferric iron may consist of large highly coloured molecules that behave 

as colloids. Mixing them gives rise to a ferric complex that causes an intense black 

colour. The intensity of the black stain observed after impregnating a slice of the flesh 

with FeCl3 reveals the presence of ST in the fruit and its intensity depends on their 

level (Gorini & Testoni, 1988; Munera et al., 2017b). Although this method is faster and 

easier than the analytical determination of ST, it is still destructive and subjective. 

Therefore, it is necessary to search for new rapid, reliable and non-destructive 

techniques. An alternative is based on the use of optical methods. Hyperspectral 

imaging is a promising optical technique for quality inspection of agricultural and food 

products that incorporates the main advantages of spectroscopy and imaging (Lorente 

et al., 2012). Thus, hyperspectral imaging can simultaneously acquire spectral and 

spatial information. In addition, the equipment used can be sensitive to different 

regions of the electromagnetic spectrum, such as the UV or IR (Gomez-Sanchís et al., 

2014; Cortés et al., 2018). Their use has been widely studied to control the quality of 

fruit and vegetables during postharvest, for example to discriminate similar cultivars of 

nectarines with different properties (Munera et al., 2018), to discriminate gluten-free 

oats from cereals with gluten (Erkinbaev, Henderson and Paliwal, 2017), to detect 

decay lesions in citrus fruits (Folch-Fortuny et al., 2016) or mechanical damage in 

potatoes (López-Maestresalas et al., 2016). In recent years, several studies have been 

conducted to predict the content of ST or to assess the astringency in different 

varieties of persimmon fruit using spectroscopy (Zhang et al., 2013; Noypitak et al., 

2014; Altieri et al., 2017; Cortés et al., 2017) and hyperspectral imaging (Munera et al., 

2017). These works included the study of the best area of the fruit to measure the 

astringency, since the internal distribution may vary from the calyx area to the bottom. 

Most of the studies report successful prediction or classification models but they are 

not useful for precise prediction in fruits with low ST content, since they achieved 

limits of detection much higher than the minimum content of ST (0.10 %) that causes a 

sensation of astringency for most cultivars (Vidrih et al., 1994; Antoniolli et al., 2000; 

Antoniolli et al., 2003).  

In the case of ‘Rojo Brillante’, ST values above 0.06 % can produce sensory 

astringency (Besada et al., 2010). Throughout the season, fruits of this cultivar exhibit 
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high astringency at harvest time with an ST content of between 0.80 % and 0.40 % 

(Salvador et al., 2007). Only when the fruit is over-ripe (which causes the total loss of 

firmness) does the loss of sensorial astringency occur. In that moment, the ST is 

around 0.04 % (Tessmer et al., 2017). In other studies in which the de-astringency 

treatment with high CO2 concentration has been applied, an effective treatment has 

been associated with ST values of 0.01-0.03 % (Salvador et al., 2007; Salvador et al., 

2008; Besada et al., 2008).  

Hence, the main objective of this work was to study the application of 

hyperspectral imaging to predict the ST content in persimmon fruits and to 

discriminate A  from DA persimmons using 0.04 % of ST as the threshold. Moreover, in 

order to establish a practical tool for use in industry, another goal is to determine 

which part of the fruit is the most appropriate to measure, as well as to reduce the 

amount of spectral information generated and speed up this process. 

 

2. Material and methods 

2.1 Fruit samples and experimental design 

In this study, 300 persimmon fruits cv. ‘Rojo Brillante’ with similar size and no signs 

of external defects were analysed. In order to obtain fruit with different degrees of 

ripeness, 100 fruits were harvested every week over three consecutive weeks. The 

fruits were collected from an orchard in L'Alcúdia (Valencia, Spain) at commercial 

maturity. The maturity index used for harvesting was the external CI of the fruit. The CI 

commonly employed for ‘Rojo Brillante’ is CI = (1000a)/(Lb), where L, a and b are the 

colour coordinates in HunterLab colour space (Salvador et al., 2007). The average CI of 

the fruit at each harvest was 2.5, 3.9 and 9.3, respectively.  

In each harvest, three homogeneous lots of fruit were submitted to different 

treatments to obtain fruit with different levels of ST, as follows: i) de-astringency 

treatment for 24 hours (40 fruits); ii) de-astringency treatment for 12 hours (30 fruits); 

and iii) no de-astringency treatment (30 fruits). In all cases, the de-astringency 

treatment was applied under standard conditions (95 % CO2, at 20 °C, 90 % RH). 
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Hyperspectral images and the reference analyses were performed within 8 h after the 

treatment.  

 

2.2 Hyperspectral imaging acquisition 

The hyperspectral imaging system consisted of an industrial camera (CoolSNAP ES, 

Photometrics, AZ, USA) coupled to two LCTF (Varispec VIS-07 and NIR-07, Cambridge 

Research & Instrumentation, Inc., MA, USA). The camera was configured to acquire 

images with a size of 1392 × 1040 pixels and a spatial resolution of 0.14 mm/pixel. The 

working spectral range was defined between 450 nm and 1040 nm, capturing images 

every 10 nm. Thus, hypercubes with 60 images were captured. In order to avoid 

problems of unfocused images due to the refraction of light across this wide spectral 

range, the focus was adjusted on the central band of the acquisition interval (740 nm) 

and the images were captured using lenses capable of covering the whole spectral 

range without going out of focus (Xenoplan 1.4/23, Schneider Optics, Hauppauge, NY, 

USA). To optimise the dynamic range of the camera, prevent the images from 

saturated regions and correct the spectral sensitivity of the different elements of the 

system, the maximum integration time of each band was calibrated by capturing the 

averaged grey level of a white reference standard (Spectralon 99%, Labsphere, Inc, NH, 

USA), corresponding to 90 % of the dynamic range of the camera. 

The scene was illuminated using diffuse light from twelve halogen spotlights (37 W) 

(Eurostar IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current 

(12 V) and arranged equidistant from each other inside a hemispherical aluminium 

diffuser. The inner surface of the aluminium diffuser was painted white with a rough 

texture to maximise its reflectivity and minimise directional reflections, which could 

cause bright spots, the result being highly homogeneous light. 

The fruits were introduced manually into a fruit holder in three different positions 

so as to obtain images from the top part of the fruit, the side, and the bottom. In this 

study, we have referred these areas as calyx, middle and apex areas respectively 

(Figure 1). Thus, three hyperspectral images were acquired for each fruit using 

ustomised software developed at IVIA, a total of 900 images being obtained. 
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.  

Figure 1. Hyperspectral images of the three areas of persimmon fruit acquired at 710 

nm. 

2.3 Reference analysis  

The skin colour of each fruit was measured using a colorimeter (CR-300, Konica 

Minolta Inc., Tokyo, Japan). The mean value of the L, a and b colour coordinates 

(HunterLab colour space) was obtained as the average of three measurements in 

different parts of the fruit. The total colour difference (ΔE) between A and DA fruits 

was calculated by Equation (1): 

 

𝛥𝐸 =  √(𝐿𝐴 − 𝐿𝐷𝐴)2 + (𝑎𝐴 − 𝑎𝐷𝐴)2 + (𝑏𝐴 − 𝑏𝐷𝐴)2             (1) 

 

The F of the flesh was determined by means of a universal testing machine (4301, 

Instron Engineering Corp., MA, USA) equipped with an 8-mm puncture probe. The 

crosshead speed during testing was 1 mm s-1. During the test, the force increased 

smoothly until it decreased drastically when the flesh was broken, and then the 

maximum peak force was registered. The results were expressed as the load (in N) 

required to break the flesh of the fruit on both sides after peel removal. 

In order to assess the astringency of the fruits, each fruit was divided into two 

halves: one half was pressed against a 10 × 10 cm filter paper soaked in a 5 % FeCl3 

solution, which produced a dark print whose distribution and intensity gave 

information about the ST content in the pulp (Figure 2). The other half was used to 

obtain the ST content by the Folin-Denis method (Taira, 1995) based on the reduction 

of the Folin-Ciocalteu reagent by ST in alkaline solution (Arnal and Del Río, 2004). 

Taking into account the heterogeneous distribution of the tannins in the flesh (Figure 
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2), the samples for destructive analysis were taken from the lower part and near the 

apex, since the tannins take longer to be removed in this part.  

The ANOVA, followed by Tukey's HSD test, was conducted using the software 

Statgraphics (Manugistics Corp., Rockville, USA) to find significant differences in the 

results of the physicochemical analysis related to the length of the de-astringency 

treatment. The groups of samples met the following three requirements: i) the 

observations being tested are independent within and among the groups; ii) the 

groups associated with each mean in the test are normally distributed; and iii) there is 

equal within-group variance across the groups associated to each mean in the test 

(homogeneity of variance). 

 

 

Figure 2. Example of external and internal appearance of the fruit before and after de-

astringency treatment. Visualisation of the distribution of ST using the alternative 

method of foils soaked in FeCl3. A = astringent; DA = deastringed 

 

2.4 Image pre-processing  

The reflectance captured by the camera is influenced by the intensity of the 

incoming light, the sensitivity of the sensor of the camera and the sensitivity of the 

LCFT, at the different wavelengths (Geladi, 2007). Thus, there is a need to correct these 
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effects to obtain the true reflectance of the sample. This is done using a reflectance 

standard (Spectralon 99%, Labsphere, Inc, NH, USA) through Equation (2) (Gat, 2000): 

 

 𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                     (2) 

 

Where  𝜌𝑥𝑦 is the reflectance of the fruit, ρRef(λ) is the standard reflectance of the 

white reference target (99 % in this work), R(x,y,λ) is the radiance of the fruit captured 

by the CCD sensor of the camera, Rwhite(x,y,λ) is the radiance captured by the CCD of 

the white reference target, and Rblack(x,y,λ) is the radiance captured by the CCD while 

avoiding any light source in order to quantify the electronic noise of the CCD. 

The average reflectance spectrum of each area of each fruit was determined by 

averaging the relative reflectance spectra of all pixels included in the area using a 

binary mask which correctly removed the background and the leaves in the case of the 

area of the calyx.  

The average reflectance spectrum of each area of each fruit was determined by 

averaging the relative reflectance spectra of all pixels included in the fruit area. This 

process was performed using a binary mask. For this, a thresholding between the 

background and the fruit was made at the wavelength of greater contrast between 

both regions (700 nm). In this way, it was possible to remove the background of the 

image from the fruit, easily. In the case of the calyx view, this allowed to remove also 

the leaves from the analyses. Being the contrast so high, the segmentation was quite 

accurate.  

These operations were performed using HYPER-Tools (Mobaraki and Amigo, 2018) 

working under MATLAB R2017b (The MathWorks, Inc., MA, USA). 

 

2.5 Multivariate data analysis 

After the analysis of the ST content and knowing which fruit was A and DA, the 

spectra were randomly partitioned into two sets. For each area of the persimmon fruit, 

201 fruit spectra (107 A and 94 DA) were used to calibrate the models and 99 fruit 

spectra (54 A and 45 DA) were used for independent validation or test set. 
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PLS-R was used to quantify the ST content and PLS-DA was used to classify the 

fruits as A and DA according to the threshold value of 0.04 % (Tesmeer et al., 2016). A 

model using the spectral information of each area (calyx, middle and apex) was 

performed.  

Previously, the mean spectrum of each area of the persimmon fruit was filtered 

using the Savitzky-Golay smoothing filter (3-point smoothing window, second-order 

polynomial) to remove both additive and multiplicative effects, and pre-treated using 

standard normal variate to remove the scatter (Rinnan et al., 2009). Later, each 

resulting spectrum was normalised by mean centre. A 10-fold CV was used to obtain 

the optimal number of LVs as well as an estimation of the error rate of the models. The 

PLS-R models were evaluated by the R2 and the RMSE between the predicted and the 

measured value of the reference parameter for calibration, CV and prediction. 

Furthermore, the RPD, defined as the ratio between the standard deviation of the 

reference data and RMSEP, was used (Williams, 1987). The results of the PLS-DA 

models were expressed as the percentage of correct classification (percentage of A or 

DA fruits correctly classified) and total accuracy (percentage of all fruits correctly 

classified) for calibration, CV and prediction.   

In order to reduce the dimensionality of the hyperspectral images, the vector of 

regression coefficients was used. This method measures the association between each 

wavelength and the response (i.e. A and DA class) obtained by the PLS-DA model 

(Mehmood et al., 2012). The wavelengths with a high absolute value are selected, 

since they make the highest contribution to the classification, and those with a smaller 

absolute value are ignored. 

The spectral pre-processing was carried out using HYPER-Tools (Mobaraki and 

Amigo, 2018) and the PLS models were performed using MATLAB R2017b (The 

MathWorks, Inc., MA, USA). 
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3. Results and discussion 

3.1 Reference analysis  

In general, the ST content in the fruits ranged from 1.18 % (non-treated fruits) to 

0.01 % (fruit treated for 24 hours), while those fruits that were non-treated presented 

ST values from 0.37 % to 1.18 %, depending on the time of harvesting (Table 1). Thus, 

the mean value of the fruits collected in different moments was statistically different. 

The CO2 treatment for 12 hours resulted in fruits with a wide range of ST values 

between 0.66 % and 0.01 %. This meant that part of the fruits could already be 

consumed while others still needed more hours of treatment. In this case, the mean 

values of the three harvests were also statistically different. When the treatment was 

applied for 24 hours, all fruits reached an eatable stage and no statistical differences 

were found among the three times of harvesting. Using the threshold of 0.04 % for the 

ST value, a total of 161 fruits were considered as A and 139 as DA (Table 1). 

 

Table 1. ST content and quantification of A and DA fruits.  

Harvest 
Treatment 
duration 

Soluble tannins (%) 
#A #DA 

Min Mean Max 

1 

0h 0.37 0.69b 0.98 

48 52 12h 0.02 0.09e 0.33 

24h 0.01 0.02f 0.03 

2 

0h 0.45 0.61c 0.77 

53 47 12h 0.01 0.11e 0.31 

24h 0.02 0.03f 0.04 

3 

0h 0.66 0.91a 1.18 

60 40 12h 0.10 0.37d 0.66 

24h 0.02 0.03f 0.04 

Total 0.01 0.32 1.18 161 139 

Different letters indicate significant differences between groups (p-value<0.05), 
according to Tukey’s (HSD) test. Min = minimum; Max = maximum; #A = number of 
astringent fruits; #DA = number of de-astringent fruits 
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The application of a de-astringency treatment with CO2 does not usually have any 

effect on the colour in the early stages of ripeness. Only slight differences could be 

observed between A and DA fruit coordinates (Table 2). Although significant 

differences were found between L and b, they are barely perceptible to the human 

eye. According to the International Commission on Illumination (CIE), the value of ΔE 

obtained (1.9) indicates that, in general, the colour difference between the two classes 

of fruits is minimally perceptible (Mokrzycki and Tatol, 2011). 

 

Table 2. Skin colour of A and DA fruits. 

(*) indicate significant differences between groups (p-value<0.05). Min = minimum; 
Max = maximum; A = astringent; DA = deastringed; CI = colour index 
 

As in the case of the colour, CO2 treatment does not usually affect the F of the 

fruit in the early stages of ripeness. However, it does give rise to a significant degree of 

softening in the following stages. These changes in firmness are related to the changes 

that take place in the cell structure (Salvador et al., 2007). Here, the mean value of the 

F was reduced from 47.3 N in A fruits to 43.7 N in DA fruits (Table 3). 

 

Table 3. Flesh F of A and DA fruits. 

(*) indicate significant differences between groups (p-value<0.05). Min = minimum; 
Max = maximum; A = astringent; DA = deastringed;  
 

 

 L (*) a b (*) 

ΔE 

CI 

 Min Mean Max Min 
Mea

n 
Max Min 

Mea
n 

Max Min 
Mea

n 
Max 

A 56.0 62.8 67.9 1.9 11.7 25.6 32.6 37.1 41.0 
1.9 

-0.03 5.1 13.5 

DA 56.8 62.2 67.5 -2.25 13.4 30.5 32.3 36.7 41.7 -1.08 5.9 14.7 

 Flesh firmness (N) (*) 

 Min Mean Max 

A 37.4 47.3 58.9 

DA 29.9 43.7 54.5 
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3.2 Spectral analysis 

The average spectra obtained for each measured area of A and DA fruits are 

illustrated in Figure 3. The spectra of all fruits followed a similar pattern in each area. 

Slight differences were present in the VIS region around 460 nm, 550-600 nm and 650-

710 nm, where carotenoids, anthocyanins, chlorophylls and other pigments are 

responsible for fruit colour (Rajkumar et al., 2012). In the NIR region, some differences 

were found, especially in the apex area, around 750 nm, where a water absorption 

peak (OH second overtone) is observed (Siedliska et al., 2018; Williams and Norris, 

1987). Noypitak et al. (2015) indicated that phenolic compounds are located between 

940-1000 nm and the absorption peak of tannic acid is seen at 996 nm. In this case, 

slight differences were found close to these wavelengths between the A and DA 

spectra. However, it is not clear whether this corresponded to the ST content because 

a water absorption peak (third overtone of OH stretching vibration) dominates this 

part of the spectrum (Nicolaï et al., 2007). 

 

 

Figure 3. Mean pre-treated spectra of each area of astringent (A) and deastringed (DA) 

fruits. 

 

3.3 Prediction of soluble tannins content   

PLS-R models were performed to quantify the content of ST in each fruit using the 

spectral range of 450-1050 nm. Table 4 shows the results of the prediction of ST 

content obtained for the three areas of the fruit that were measured. 
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Table 4. Results of calibration and validation of the models to predict the ST content 

using hyperspectral imaging and the different areas of the fruit. 

Area #LV 
Calibration Cross validation Prediction 

R2 RMSE R2 RMSE R2 RMSE RPD 

Calyx 15 0.71 0.18 0.54 0.23 0.49 0.25 1.4 

Middle 12 0.71 0.17 0.60 0.21 0.69 0.19 1.8 

Apex 13 0.76 0.16 0.64 0.20 0.73 0.18 1.9 

#LV = number of latent variables 

 

The optimal model was chosen when the number of LV yields the lowest RMSE for 

calibration and CV. Therefore, 15 LVs were determined for the calibration of the model 

of the calyx area, 12 for the middle area model and 13 for the apex area model. The 

model using the spectra obtained from the calyx area achieved the lowest R2 (0.49) 

while the highest RMSE (0.25 %) was obtained in the test set. In contrast, the model 

built for the middle area offered better results, with an R2 of 0.69 and an RMSE of 0.19 

%, while the model obtained for the apex area achieved the highest R2 and the lowest 

RMSE of 0.73 and 0.18 %, respectively. The RPD values indicate that only the models 

that used measurements obtained in the middle and apex areas could discriminate 

between low and high ST values (RPD values between 1.5 and 2) (Nicolai et al., 2007). 

However, in all cases, the RMSE value was higher than the 0.04 % threshold, which 

means that the models were not altogether useful for accurate prediction in fruits with 

extremely low ST content. 

The scientific literature contains other studies that achieve findings similar to ours 

but using mostly spectroscopy instead of hyperspectral imaging. For example, Noypitak 

et al. (2015) used interactance mode in the evaluation of ST using different areas of 

persimmons cv. ‘Xichu’, achieving, as best result, an R2 of 0.93 and a high RMSE of 0.22 

% but using the calyx area. However, the higher R2 was probably achieved because 

most of the persimmons used had very low (0.02 %) or very high (1.6 %) tannin 

contents and only a few samples had intermediate values. In the case of ‘Rojo 

Brillante’, Cortés et al. (2017) developed models using spectra pre-treated with 

different techniques, achieving better results in terms of R2 (0.91) and RMSE, above 

0.08 %, using six measurement points distributed throughout the fruit.. In this case, 



II. PERSIMMON 

171 
 

the ST content ranged from 0.023 to 0.75 but DA fruit were 20 %, while in our case 

they represent 46 % of the fruit in the models. Moreover, most of the error is 

introduced by fruits with very low ST values. Alitieri et al. (2017) also achieved a good 

prediction result with an R2 higher than 0.98 but in the cross validation set and using 

fruits with ST content values between 0.1 % and 1.7 %, which should be considered as 

astringent in all cases from a commercial point of view.  

Figure 4 shows the prediction performance of the model using the test set and the 

data captured in the apex area. Taking into account the threshold of 0.04 %, only 77.8 

% of A fruits and 42.2 % of DA fruits were correctly predicted. These results are clearly 

low and below those expected. Thus, the direct prediction of very low values of ST 

content (such as 0.04 %) does not seem to be possible with the procedure followed. 

This is probably because the concentration of ST is correlated with other major 

biochemical constituents such as pigments, water or other soluble solids like sugars 

that can mask the detection of constituents when the content is very low (Nicolaï et 

al., 2007). For this reason, a different approach to measuring astringency other than 

the direct estimation of ST was required. PLS-DA models were then developed to 

maximise the separation between classes A and DA, not only with respect to the 

differences in ST content, but also to capture the information contained in the spectra 

related to other properties that can contribute to make each class different. 

 

 

Figure 4. Prediction of the soluble tannins content in test set fruit using the apex area. 

The red lines indicate the threshold value of 0.04 % 
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3.4 Detection of astringent and de-astringent fruits  

As in the prediction of ST content, the calyx, middle and apex areas were tested to 

distinguish A and DA fruits using PLS-DA models. The results of the classification 

models using hyperspectral imaging are presented in Table 5a.  

 

Table 5a. Results of the classifications using the calyx, middle and apex areas and all 

wavelengths. 

Area #LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 
(%) 

Acc 
(%) 

#A #DA 
CC 
(%) 

Acc 
(%) 

#A #DA 
CC 
(%) 

Acc 
(%) 

Calyx 18 
A 95 12 88.8 

89.1 
84 23 78.5 

78.1 
45 9 83.3 

80.8 
DA 10 84 89.4 21 73 77.7 10 35 77.8 

Middle 13 
A 101 7 94.4 

91.5 
96 11 89.7 

86.6 
47 7 87.0 

88.9 
DA 11 83 88.3 16 78 83.0 4 41 91.1 

Apex 18 
A 100 6 93.5 

91.0 
88 19 82.2 

82.6 
47 7 87.0 

87.9 
DA 11 83 88.3 16 78 83.0 5 40 88.9 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 
de-astringent fruits; CC = correct classification; Acc = accuracy 

 

The calibration of the calyx and apex area models was performed using 18 LVs, 

while for the middle area model only 13 LVs were necessary. Furthermore, the internal 

CV of the middle area model presented the highest precision (86.6 %), then the apex 

area (82.6 %) and the calyx area model presented the lowest results, 78.1 %. This fact 

agrees with the previous results of the quantification of ST content, where the calyx 

area was the least precise part for this purpose.  

The middle and calyx area models correctly classified more A fruits, 89.7 % and 

78.5 % than DA fruits, 83.0 % and 77.7 %, respectively. In the case of the apex area, 

more DA fruits were correctly classified: 83.0 % versus 82.2 %.  

The mean spectrum of each fruit of the test set was classified using the previously 

calibrated models. As in the calibration and CV, the model using the calyx area 

presented less precision, correctly classifying 83.3 % of A fruits and 77.8 % of DA fruits, 

and showing a total accuracy of 80.8 %. In the case of the middle and apex areas, their 
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prediction showed similar results with 87.0 % of A fruits and 91.1 % and 88.9 % DA 

fruits being classified correctly. Therefore, the total accuracy of the middle and apex 

area models, 88.9 % and 87.9 %, was higher than that of the calyx area. This fact 

agrees with the results obtained in the quantification of ST, where the calyx area was 

the least accurate area for this purpose (Table 4). 

Previous studies have been conducted to classify the fruits according to their 

astringency using spectral information. It is noteworthy that the best results in terms 

of ST prediction have been reported when values of ST content are high (Zhang et al., 

2013; Altieri et al., 2017; Cortés et al., 2017, Munera et al., 2017). In this line, Noypitak 

et al. (2015) reported on a model in which a classification accuracy of 97.1 % was 

achieved, assuming that the persimmon with a ST content lower than 0.8 % is non-

astringent. However, as mentioned in the introduction section, the threshold of ST to 

detect astringency is not established and is highly dependent not only on the cultivar 

but also on the consumer’s country of origin (Antoniolli et al., 2000; Antoniolli et al., 

2002; Yamada et al., 2002; Tessmer et al 2016). In ‘Rojo Brillante’ persimmon it has 

been widely reported that sensorial astringency loss occurs when tannin content is 

lower than 0.04 % (Salvador et al 2007; Tessmer et al 2016). This means that the 

predictive models previously reported would not be valid for this cultivar. In the 

present study the threshold applied was 0.04% to guarantee the complete non-

astringency of the fruits. Although the result of the ST predictive model might seem a 

priori unsatisfactory (42.2 % of DA fruits correctly classified), this is the first work in 

which such a low ST threshold has been established to guarantee the non-astringency 

of the fruits. The results reveal that the higher the established ST threshold is, the 

better the results provided by the predictive models are. This fact leads us to think that 

other attributes, besides the ST content, may influence the spectral response of 

persimmon.   

Salvador et al. (2007) evaluated the physiological and structural changes that 

occur after the deastringency treatment with high CO2 concentrations in persimmon 

'Rojo Brillante' at different maturity stages. Some of the reported changes may affect 

the spectral information. In this way, a decline in the TSS, measured as ºBrix, occurs 

after deastringency treatment concomitant to the drop in ST as a response to the 
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deastringency process. On the other hand, after the CO2 treatment a significant 

increase in pH is observed. This rise in the pH value is also related to the process by 

which soluble tannins, the acid components, become insoluble during the application 

of the treatment. It is noteworthy that the measurements of soluble solids in 

persimmon are related to ST, but also to sugars and acids, are located between 720 nm 

and 820 nm, phenolic compounds are between 940 nm and 1000 nm, and the tannic 

acid peaks at 996 nm. 

In addition, it must be taken into account that the cellular microstructure can have 

an important effect on the spectral response. Hence, it has been reported that the 

deastringency process causes important changes in the cell microstructure. The 

insolubilisation of tannins occurs inside the vacuoles of tannin cells, which appeared to 

be filled with an insoluble material (like a compact mass) (Salvador et al., 2007). Thus, 

depending on the level of insolubilisation during the deastringency treatment, the 

number of cells in the parenchyma containing insoluble material will be greater or 

lower. Moreover, the CO2 applied, in addition to triggering the insolubilisation of 

tannins, also brings about a progressive degradation of the parenchyma structure, 

affecting the cell walls and integrity of the cell membranes. The adhesion bonds 

between some cells are lost in certain areas and the intercellular spaces are filled with 

a soluble material. This effect becomes greater as the treatment time increases 

(Salvador et al 2007; Novillo et al., 2014). It should be noted that the declining firmness 

that occurs during the maturity process of persimmon fruit has been associated with a 

gradual loss of parenchyma structure due to degradation of the cell wall and 

membrane (Salvador et al., 2007; Tessmer et al., 2016). In the same way, the effect of 

high concentrations of CO2 on the cellular structure is related to a loss of firmness.  

These structural changes associated with both the maturity stage and the CO2 

treatment may have an important effect on the spectra, since firmness is related to the 

water content in the cells (water absorption peaks at 750 nm and 970 nm) and the 

structural status of the parenchyma. This may have an influence on the way the light 

interacts with the cells and is transmitted through the fruit and hence the spectral 

response received by the spectrometer, which allowed A fruits to be separated from 

DA fruits. 
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Regarding the colour, the treatment with CO2 did not cause any great changes in 

fruit skin for the earlier stages of fruit maturity, although small differences were 

observed in the last stage due to changes in carotenoids, anthocyanins and 

chlorophylls related to wavelengths 450–720 nm, 460 nm, 550–600 nm and 650–710 

nm (Rajkumar et al., 2012). However, since the colour has not previously been 

evaluated to detect the astringency of the 'Rojo Brillante' persimmon, a PLS-DA model 

was calibrated using the HunterLab colour coordinates L, a, b. As a result, 66.7 % of A 

and 33.6 % of DA fruits were correctly classified, showing a total precision of 52.5 % 

(Table 5b). This result indicates that traditional colour measures are not useful for the 

discrimination of A and DA fruits. However, from the results obtained using 

hyperspectral images, it is possible to present an alternative to those methods that are 

destructive, need chemical analysis, are subjective and only allow the inspection of a 

few samples per batch. 

 

Table 5b. Results of the classification of A and DA fruits using the colour information. 

#LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 
(%) 

Acc 
(%) 

#A #DA 
CC 
(%) 

Acc 
(%) 

#A #DA 
CC 
(%) 

Acc 
(%) 

2 
A 78 29 72.9 

57.2 
77 30 72.0 

58.7 
36 18 66.7 

52.5 
DA 57 37 39.4 53 41 43.6 29 16 35.6 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 

deastringed fruits; CC = correct classification; Acc = accuracy 

 

3.4.1 Selection of optimal wavelengths  

In order to reduce the complexity of the system, the number of wavelengths used 

should be reduced because a large number of wavelengths increase the acquisition 

time while it reduces the performance of classifiers (Friedman, 1994). Numerous 

techniques have been employed to deal with this issue, such as restricting the 

information to just a few bands which reveal the most variability and therefore the 

most significant information in the hyperspectral image (Du and Sun, 2006). In this 

study, the vector of the regression coefficients was used. A total of 23 optimal 
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wavelengths were selected in the vector of each area, all of them being located across 

the VIS and NIR region (Figure 5).  

 

 

Figure 5. Regression coefficients vector of the PLS-DA model of each area with the 

optimal wavelengths selected. 

 

The high number of wavelengths selected indicated that there are no specific ones 

that can be specifically linked to the tannins or other particular constituents related to 

astringency. Hyperspectral images show a high degree of collinearity and redundant 

information and this selection is probably a reduction of this information. More than 

half of the selected wavelengths for the three areas are located in the VIS region, 

which is related to the carotenoids, anthocyanins, chlorophylls and other pigments 

responsible for fruit colour, as previously commented. Several wavelengths were 

selected near the water absorption peaks, around 750 nm (first overtone of OH) and 

970 nm (third overtone of OH) (Siedliska et al., 2018; Nicolaï et al., 2007; Williams and 

Norris, 1987). Other selected wavelengths are located around 850 nm, which is 

assigned to the absorption of acids and sugars (Yang et al., 2015). As commented 

earlier, phenolic compounds are located between 940–1000 nm and the absorption 

peak of tannic acid is seen at 996 nm (Noypitak et al., 2015). Several selected 

wavelengths are located in this region but it is not clear whether this corresponded to 

the ST content or to the water absorption peak. 

The optimised classification models were built using the selected wavelengths as 

input. Results of the calibration are presented in Table 6. The models for the calyx and 

apex areas were performed using 15 and 13 LVs, while only eight LVs were necessary 
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to build the model for the middle area. In this case, the increased accuracy in CV made 

the results more similar in the calibration of the models. As in the case of the models 

built using the full spectra, the internal CV of the middle area presented the highest 

accuracy (88.1%), then the apex area with 83.1 % and the calyx area model presented 

the lowest results with only 78.6 % of total accuracy. In all cases, A fruit were detected 

better than DA fruits, which is in line with the principal aim of detecting astringent 

fruits among those that have been submitted to a CO2 treatment.  

 

Table 6. Results of the classification using calyx, middle, and apex area and optimal 

wavelengths selected. 

Area #V #LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 
(%) 

Acc 
(%) 

A DA 
CC 
(%) 

Acc 
(%) 

#A #DA 
CC 
(%) 

Acc 
(%) 

Calyx 23 15 
A 90 17 84.1 

82.6 
89 18 83.1 

78.6 
44 10 81.5 

81.8 
DA 18 76 80.9 25 69 73.4 8 37 82.2 

Middle 23 8 
A 97 10 90.7 

90.0 
96 11 89.7 

88.1 
47 7 87.0 

86.9 
DA 10 84 89.4 13 81 86.2 6 39 86.7 

Apex 23 13 
A 94 13 87.9 

86.6 
91 16 85.0 

83.1 
47 7 87.0 

85.9 
DA 14 80 85.1 18 76 80.9 7 38 84.4 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 
de-astringent fruits; CC = correct classification; Acc = accuracy 

 

As in the classification performed using all wavelengths, the class of each fruit in 

the test set was predicted by introducing the mean spectrum of the fruit into the 

previously optimised models. 

 In the case of the middle and apex areas, their prediction of A fruit showed similar 

results between areas and using all and the optimal wavelengths, resulting in a correct 

classification of 87.0 % of A fruit. However, precision was lower for both areas in DA 

fruit, with respect to the previous models, i.e. 86.7 % and 84.4 % of DA fruit. Therefore, 

the total accuracy of the middle and apex area models was 86.9 % and 85.9 %. Despite 

the reduction in precision in the classification of DA fruit using fewer wavelengths, this 

is more desirable than the contrary. If a DA fruit is classified as A, it can be treated 

again with CO2, but if an A fruit is classified as DA, this fruit goes directly to the 
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consumer. In the case of the calyx area model, 81.5 % of A and 82.2 % of DA fruit were 

classified correctly. The total accuracy was a little higher than when using all the 

wavelengths (81.8 %), although it was again the least accurate of the three areas.   

 

4. Conclusions 

The capability of VIS-NIR hyperspectral imaging to discriminate A and DA hard ‘Rojo 

Brillante’ persimmon fruits was investigated. Furthermore, as ST are heterogeneously 

distributed in the flesh of persimmon fruit, an individual study of three different areas 

of the fruit was carried out in order to find the most suitable to maximise the accuracy 

of the models.  

The prediction of ST content in the fruits was performed using PLS-R models. The 

results obtained indicated that the model using the spectra of the apex area was the 

most accurate, R2 of 0.71 with an RMSE of 0.18 and RPD 1.9. However, only 77.8% of A 

fruit and 42.2% of DA fruit were correctly classified when the threshold of 0.04 % was 

applied. Therefore, PLS-DA models were performed in order to maximise the 

separation between A and DA classes, which led to an improvement in the results. The 

most accurate models were those performed using middle and apex area spectra (88.9 

% and 87.9 %), with a correct classification of 87.0 % of A fruit and 91.1 % and 88.9 % 

of DA fruit, respectively. When the discrimination of the fruit was performed using 

colour information, the accuracy in the classification was only 66.7 % for A and 33.6 % 

for DA fruit.  

To reduce the huge amount of data captured by the hyperspectral systems, the 

vector of the regression coefficients of the PLS-DA model of each area was used to 

identify the optimal wavelengths. As when using all wavelengths, the most accurate 

models were those involving the middle and apex areas and 23 optimal wavelengths 

(86.9 % and 85.9 %), also with a correct classification of 87.0 % of A fruit and 86.7 % 

and 84.4 % of DA fruit, respectively.  

According to these results, hyperspectral imaging combined with multivariate 

analysis has a great potential as a tool for rapid and non-destructive control of 

effectiveness of the astringency removal treatment applied to persimmon ‘Rojo 
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Brillante’. Nevertheless, the results of this study need further experimentation on a 

larger set of fruits grown in different areas and harvested at different stages of 

ripeness before this could be effectively implemented in an in-line system. 
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Abstract 

Pomegranate fruit cv. ‘Mollar de Elche’ were collected at seven different harvest 

times. Colour and hyperspectral images of the intact fruit and arils were acquired at 

each harvest. Physicochemical properties such as total soluble solids, titratable acidity, 

maturity index, BrimA, internal colour, total phenolic compounds content and 

antioxidant activity were measured in the juice of each fruit. In order to relate the 

colour (L*, a*, b*) and spectral (720-1050 nm) data obtained from the images of the 

intact fruit and arils to their physicochemical properties, partial least square regression 

models were calibrated. The discrimination of the different maturity stages was carried 

out using partial least square discriminant analysis models. Similar results were 

obtained in the prediction of the physicochemical properties using the colour and 

hyperspectral images of the intact fruit. However, the predictions achieved for the 

information about the arils were higher using hyperspectral imaging. In the 

discrimination of maturity stage, the highest accuracies were obtained using 

hyperspectral imaging, where 95 % of intact fruits and 100 % of arils where correctly 

classified. These results indicate the great potential of machine vision techniques, 

especially hyperspectral imaging, for monitoring the quality of intact ‘Mollar de Elche’ 

pomegranate fruit and arils. 
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1. Introduction 

In recent times, pomegranate (Punica granatum L.) fruit has gained great importance 

because it is a source of sugars, organic acids and bioactive compounds (Opara et al., 2009), 

thus reporting positive health benefits (Viuda-Martos et al., 2010).  

In Europe, Spain is the largest producer of this fruit. About 60 % of the total production 

(65,165 t) (MAPA, 2018) is exported, ‘Wonderful’, ‘Mollar Valenciana’ and ‘Mollar de Elche’ 

being the most important cultivars (Melgarejo et al., 2010). This last cultivar has a sweet taste 

and soft seeds that make it very much appreciated by consumers and it has its own Protected 

Designation of Origin. 

The commercial quality of this fruit is based on external attributes such as size, shape and 

colour (Boussa et al., 2019). However, the colour of the skin does not always indicate its 

suitability for consumption, and internal attributes such as total soluble solids and acidity also 

have to be considered to meet market requirements (Fawole & Opara, 2013; Boussa et al., 

2019). Since pomegranate is a non-climacteric fruit, it is very important that fruits are 

harvested at their proper ripening stage to obtain their highest potential with respect to 

nutritional, functional and sensory properties (Nuncio-Jáuregui et al., 2014).  

The acceptability of the pomegranate fruit by consumers relies on its health benefits and 

organoleptic properties. Nevertheless, the difficult and time-consuming separation of arils 

from the rind and membranes limits the consumption of this fruit. Therefore, consumers are 

increasingly expressing a preference for packaged ready-to-eat arils and numerous studies 

have been carried out to evaluate the quality and to develop different strategies to extend the 

shelf life of this product (Esteve-Peña et al., 2016; Maghoumi et al., 2013; Martínez-Romero, 

2013; Özdemir and Gökmen, 2017; Belay et al., 2017). 

Nowadays, the quality control of pomegranate fruit is still performed by traditional 

methods. This is mainly due to the fact that both the rind and the arils are delicate and can be 

damaged by the mechanical operations of machines, but also because its production is 

relatively low and there are no machines that have been properly adapted to such tasks. 

However, scientific efforts are beginning to be made in order to create new non-destructive 

techniques for this purpose. For instance, spectroscopy has been investigated to assess the 

microbial (Adiani et al., 2018) and physicochemical (Arendse et al., 2017; Arendse et al., 2018c) 

quality in order to detect Ectomyelois ceratoniae infestation (Khodabakhshian et al., 2016; 

Jamshidi et al., 2019), and also to predict rind scald (Arendse et al., 2018b). Dielectric 

spectroscopy has been applied to study the ripeness of this fruit (Castro-Giráldez et al., 2013). 
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A luster sensor has also been employed to measure the glossiness of the rind in order to 

determine the quality of intact pomegranate fruits during postharvest storage (Czieczor et al., 

2018). Other techniques based on imaging, such as X-rays, have been investigated to quantify 

the volume of the different parts of this fruit (Salmanizadeh et al., 2014; Arendse et al., 2016a), 

and to detect blackheart disease and false codling moth (Arendse et al., 2016b). NMR was used 

to determine the effect of physiological changes induced by Alternaria and Aspergillus, and to 

detect blackheart (Zhang & McCarthy, 2012) and internal decay (Khoshroo et al., 2009). A 

computer vision system was developed to sort the arils of automated peeled fruits into 

different categories depending on the colour (good, immature or rotten arils) in real time 

(Blasco et al., 2009). This system was also able to separate raw material from the arils in the 

commercial line such as pieces of skin or internal membranes coming from the automatic 

peeling process.  

Hyperspectral imaging, which integrates both spectral and spatial information (Lorente et 

al., 2012), has been applied as a powerful analytical processing tool for rapid, non-destructive 

inspection of the internal and external quality attributes in fruits with thick rind (Arendse et al., 

2018a) such as orange (Liu et al., 2008), lime (Teerachaichayut & Ho, 2017) or banana 

(Rajkumar et al., 2012). However, only Khodabakhshian et al. (2017) have investigated the use 

of multispectral imaging to determine texture and TSS of intact pomegranate fruit. 

Accordingly, the aim of the present study was to evaluate the capability of both machine 

vision techniques – colour and hyperspectral imaging – to predict the physicochemical 

properties and the maturity stage of pomegranate fruits cv. ‘Mollar de Elche’ using the 

information about both intact fruit and arils. 

 

2. Material and methods 

2.1. Fruit samples  

A total of 210 pomegranate fruit cv. ‘Mollar de Elche’ samples were collected from 

a commercial orchard located in San Isidro (Alicante, Southern Spain). Seven harvests 

were carried out during the 2018 season, from the end of July (90 days after blooming) 

to the end of October (180 days after blooming), when the fruits were at the full 

ripeness stage. In each harvest, 30 fruits with no external damage were randomly 

collected.  
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In each harvest, all intact fruits were cleaned and weighed and the equatorial D 

was measured. Then, images of all fruits were captured as explained in the next 

section. After the analysis of the intact fruits, arils were carefully extracted by hand. A 

total of 20 arils per fruit were randomly selected and the surface moisture was 

removed by using paper towels. Then, images of the arils were acquired. The rest of 

the arils were squeezed and the juice thus obtained was used to analyse the chemical 

properties of each fruit.  

From the seven harvesting times, three different maturity stages (immature, half-

ripe and ripe) were identified according to the visual features of the intact fruit and the 

arils (Figure 1). 

 

 

Figure 1. Example of the appearance of the two opposite sides of intact fruits and arils 

at each harvest and maturity stage. 

 

2.2 Colour image acquisition and processing 

The images were captured using a colour imaging system arranged inside a square 

inspection chamber consisting of a digital camera (EOS 550D, Canon Inc, Japan) and 

eight BIOLUX 18W/965 fluorescent tubes (Osram GmbH, Germany) with a colour 

temperature of 6500 K. Polarising filters were placed in front of the lamps and on the 

camera lenses to eliminate specular bright spots that could alter the true colour.  
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The fruit samples were introduced manually upon a holder, and two images were 

acquired of opposite sides of each intact fruit and one image of the 20 arils on a black 

background. The images were processed using customised software developed at IVIA 

(FoodImage-Inspector v4.0, freely available at http//www.cofilab.com) to analyse the 

colour. First, segmentation was performed. Because of the high contrast between the 

dark background and the samples, initially a threshold seemed to be sufficient to 

separate the fruits from the background. However, in the case of the darkest fruits or 

arils, some confusion appeared at the borders and therefore a more sophisticated 

method was used. Using this application, regions of interest belonging to a particular 

class (in this case background and different colours of the samples such as white, 

reddish or greenish) were selected. Then, using the RGB coordinates of the selected 

pixels and the class they were assigned to, the software built a discriminant analysis 

model based on the Bayes theorem. This model allowed any pixel in the image to be 

classified into one of the predefined classes (background or fruit). This process is 

explained in detail in Blasco et al. (2009).  

The RGB colour coordinates obtained were converted to L*, a*, b* coordinates 

(CIELAB colour space), which offer a perception of colour closer to that of the human 

eye (Blasco et al., 2017). In addition, images of a colour reference target (ColorChecker 

Digital SG, X-Rite, MI, USA) were also captured as a colour reference. A total of 420 

mean L*, a*, b* values of the intact fruits (two opposite sides) and 210 mean L*, a*, b* 

values of arils were extracted. 

 

2.3 Hyperspectral image acquisition and processing 

 The hyperspectral imaging system was composed of an industrial camera 

(CoolSNAP ES, Photometrics, AZ, USA), coupled to a liquid crystal tuneable filter 

(Varispec NIR-07, Cambridge Research & Instrumentation, Inc., MA, USA). The camera 

was configured to acquire images with a size of 1392 × 1040 pixels and a spatial 

resolution of 0.14 mm per pixel at 34 different wavelengths every 10 nm, in the 

working spectral range of 720–1050 nm. In order to avoid problems of unfocused 

images due to the refraction of light across this wide spectral range, the focus was 
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adjusted on a central band of the acquisition interval and the images were captured 

using lenses capable of covering the entire spectral range without going out of focus 

(Xenoplan 1.4/23, Schneider Optics, Hauppauge, NY, USA). To optimise the dynamic 

range of the camera, prevent saturated images and correct the spectral sensitivity of 

the different elements of the system, a calibration of the integration time of each band 

was performed by capturing the average grey level of a white reference target 

(Spectralon 99 %, Labsphere, Inc, NH, USA) corresponding to 90 % of the dynamic 

range of the camera.  

 The scene was illuminated by indirect light from twelve halogen spotlights (37 W) 

(Eurostar IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current 

(12 V) and arranged equidistant from each other inside a hemispherical aluminium 

diffuser. The fruit samples were introduced manually into a holder. The inner surface 

of the aluminium diffuser was painted white to maximise its reflectivity and given a 

rough texture in order to minimise directional reflections, which could cause bright 

spots, the result being a highly homogeneous light.  

 For the acquisition of the colour, three images per fruit (two of the opposite sides 

of the intact fruit and one of 20 random arils) were acquired using the hyperspectral 

imaging system.  

 The image processing started with the correction of the relative reflectance by 

using equation (1) (Gat, 2000): 

 

  𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                                            (1) 

where ρRef(λ) is the standard reflectance of the white reference target (99 % in this 

work), R(x,y,λ) is the reflectance of the fruit captured by the charge-coupled device 

(CCD) sensor of the camera, Rwhite(x,y,λ) is the reflectance captured by the CCD of the 

white reference target, and Rblack(x,y,λ) is the reflectance captured by the CCD while 

avoiding any light source in order to quantify the electronic noise of the CCD.  

Later, the background was removed using the clustering based method k-means, 

carried out using the toolbox HYPER-Tools (Mobaraki & Amigo, 2018) for MATLAB 

R2017b (The MathWorks, Inc. MA, USA). This method assigns each pixel of the image 
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to the k cluster whose centre is nearest, by minimising the sum of the squared 

distances of each pixel to its corresponding centre (Amigo et al., 2008). 

The relative reflectance spectrum of all pixels of each fruit sample was finally 

extracted, resulting in a total of 420 mean spectra of the intact fruit (two opposite 

sides) and 210 mean spectra of arils.   

 

2.4 Chemical properties  

2.4.1 Total soluble solids, titratable acidity and maturity indexes 

After obtaining the juice of each fruit, the total soluble solids (TSS) were 

determined using a digital refractometer (Atago N-20, Atago, Bellevue, Wash., USA) at 

20 ºC and results were expressed as % of TSS. The TA was determined using an 877 

Titrino plus acid-base potentiometer (Metrohm AG, Herisau, Switzerland). The TA 

results were obtained using 0.1 mol L−1 NaOH and expressed as g of citric acid per L. 

The ratio TSS/TA, or MI, was calculated for each sample. Furthermore, because MI 

does not always correlate well with the perception of sweetness or sourness in the 

fruit (Jordan et al., 2001), the BrimA index was also calculated using Eq. (2): 

𝐵𝑟𝑖𝑚𝐴 = 𝑇𝑆𝑆 − 𝑘 ∗ 𝑇𝐴                                                                                                     (2) 

where k is the tongue's sensitivity index ranging from 2 to 10. According to Arendse et 

al., (2017), k value of 2 was used to avoid a negative BrimA value. 

 

2.4.2 Total polyphenolic compounds  

The content of the TPC was determined using the Folin-Ciocalteu method 

described by Singleton et al. (1999). Absorption was measured at 760 nm using a UV–

VIS Spectrophotometer (Helios Gamma model, UVG 1002E, Mercers Row, Cambridge, 

UK). Calibration curves, with a concentration range between 0 and 0.25 g gallic acid 

per L, were used for the quantification of TPC, showing a good correlation (R2 ≥ 0.996). 

TPC was expressed as g of gallic acid equivalents L-1. 
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2.4.3 Antioxidant activity  

Following Nuncio-Jáuregui et al. (2015), a methanol extract from each sample was 

prepared to analyse the antioxidant activity (AA) by mixing 1 mL juice with 10 mL of 

MeOH/water (80:20, v/v) + 1 % HCl, before sonicating at 20 °C for 15 min and then 

leaving them for 24 h at 4 °C. The extract was then sonicated again for 15 min, and 

centrifuged at 25,058 × g for 10 min. The free radical scavenging capacities were 

determined by three methods, ABTS (Re et al., 1999), DPPH radical (Brand-Williams et 

al., 1995), and FRAP (Benzie and Strain, 1996). Calibration curves, in the range 0.5 and 

5 mmol Trolox L-1, were used to quantify AA, showing a good correlation (R2 ≥ 0.998). 

The absorbance of the three methods was measured using a UV–VIS 

Spectrophotometer (Helios Gamma model, UVG 1002E, Mercers Row, Cambridge, UK), 

and the results were expressed as mmol Trolox equivalents L-1. 

 

2.4.4 Data analysis 

Finally, one-way ANOVA and multiple-range tests were used to compare the 

physicochemical parameters in each harvest and maturity stage. The method used to 

discriminate among the means (Multiple Range Test) was Tukey's procedure. 

Significance was defined at p ≤ 0.05. The groups of samples met the following three 

requirements: i) the observations being tested are independent within and among the 

groups; ii) the groups associated with each mean in the test are normally distributed; 

and iii) there is equal within-group variance across the groups associated with each 

mean in the test (homogeneity of variance). 

These analyses were performed using StatGraphics software (Manugistics, Inc., 

Rockville, USA). 

 

2.5. Chemometric methods for quantitative and qualitative analysis 

The multivariate data analysis started by partitioning the colour and spectral data 

of the intact fruit and arils randomly into two sets: two thirds of the samples (training 

set) were used to calibrate the models and for cross-validation (CV), while the 
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remaining third was used for independent test prediction (test set). In the case of the 

intact fruit, a total of 280 mean spectra were included in the training set and the other 

140 were used in the test set. For the arils, 140 mean spectra were part of the training 

set and the other 70 were in the test set. 

PCA was carried out on the colour and spectral data of the calibration set to obtain 

an overview of the main source of variance between the samples of different maturity 

stages. PCA transforms the variables of a dataset into a new set, called the principal 

components, using linear combinations of the original variables (Basha et al., 2018). 

This method is usually used for pattern recognition, classification and feature 

extraction without previous knowledge of the data. The aim of applying PCA was to 

reduce the dimensionality of the dataset, while retaining most of the variability.  

For the quantification of the properties of the samples and discrimination of their 

maturity, PLS-R and PLS-DA were used. The PLS-R method searches for a linear 

regression model of latent variables by projecting prediction variables X (colour or 

spectral data) and response variables Y (reference properties such as W, D, TSS, TA, MI, 

BrimA, AA or TPC) into a new latent space where the covariance between these latent 

variables is maximised. The goal is to find the latent multidimensional direction in the 

data space that explains the direction of the maximum multidimensional covariance in 

the reference properties space (Lorente et al., 2012). On the other hand, when the Y 

variable is categorical, PLS-DA is performed in order to sharpen the separation 

between groups of observations by maximising the covariance between the colour or 

spectral data and the classes, such that a maximum separation among these classes is 

obtained (Lorente et al., 2012).  

In order to reduce the variability among samples due to light scatter (Rinnan, van 

den Berg & Engelsen, 2009), the mean spectra of the intact fruit and arils were pre-

processed using pre-treatments such as SNV and Savitzky Golay derivative (3-point 

smoothing window, second-order polynomial). Mean centring was applied to 

normalise the full spectrum. 

The selection of the optimal number of LVs, as well as the estimation of the error 

rate of the PLS-R and PLS-DA models, were performed using a 10-fold CV on the 
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training set. In this process, the data were split evenly into 10 sets, leaving one of the 

sets out in each iteration of the validation procedure.  

The predictive capability of the PLS-R models was evaluated by the RMSE and the 

R2 between the predicted and the measured values of the quality indices for 

calibration, CV and prediction. Furthermore, RPD, defined as the ratio between the 

standard deviation of the reference data and RMSEP was also used (Williams, 1987). 

An RPD between 1.5 and 2 means that the model can discriminate between low and 

high values of the response variable. A value between 2 and 2.5 indicates that coarse 

quantitative predictions are possible, and a value between 2.5 and 3 or above 

corresponds to good and excellent prediction accuracy, respectively (Nicolaï et al., 

2007). 

The results of the PLS-DA models were expressed as a percentage of correct 

classification and total accuracy for calibration, CV and prediction. 

   

3. Results and discussion 

3.1 Physicochemical changes during maturity  

Table 1 summarises the mean and standard deviation of the physicochemical 

properties measured in the intact fruit and juice samples at each harvest and maturity 

stage.   

The physical properties of the intact fruit such as W or D are important from a 

commercial viewpoint because these attributes influence consumer preference 

(Fawole & Opara, 2013). In this case, the W increased from 237 g in the first harvest to 

456 g in the last one, while the D increased from 78.9 mm to 95.6 mm. This increase 

was more noticeable when the fruit passed from the immature to the half-ripe stage. 

The fruit usually continues growing even after the optimum harvesting time, due to 

cell expansion from uptake of water and other nutrients (Shwartz et al., 2009). 

According to the specifications of the ‘Granada Mollar de Elche’ Protected Designation 

of Origin (http://www.agroambient.gva.es/en/pc_granadamollarelche), fruits weighing 

less than 125 grams must be excluded. 
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The TSS increased from 12.0 % in the first harvest to 16.6 % in the last harvest, the 

values of the last three harvests being non-statistically different. As regards the 

physical parameters, the increase was more evident when the fruit passed from the 

immature to the half-ripe stage. This agrees with Nuncio-Jáuregui et al. (2014), who 

studied three different stages of maturity of ‘Mollar de Elche’ and obtained TSS values 

of 14.6, 15.4 and 15.9 %. According to the specifications 

(http://www.agroambient.gva.es/en/pc_granadamollarelche), this indicates that the 

minimum value of TSS in ripe fruit is 14 %. 

 

Table 1. Physicochemical properties of the pomegranate fruit at each harvest and 

maturity stage. 

 Intact fruit Juice 

Harvest / 
maturity 

stage 

W 
(g) 

D 
(mm) 

TSS 
(ºBrix) 

TA 
(g/L) 

 
MI 

BrimA 

1 237f ± 25 78.9d ± 3.1 12.0e ± 1.4 2.6a ± 0.3 4.6f ± 0.3 6.7e ± 1.0 

2 274e ± 33 82.9c ± 3.8 13.7d ± 0.9 2.5ab ± 0.1 5.5e ± 0.4 8.7d ± 0.8 

Immature 256C ± 34 80.9C ± 4.0 12.8C ± 1.4 2.6A ± 0.2 5.1C ± 0.6 7.7C ± 1.3 

3 305d ± 45 84.5c ± 3.8 14.8c ± 0.6 2.4b ± 0.2 6.2d ± 0.5 10.0c ± 0.6 

4 372c ± 40 90.8b ± 4.1 15.7b ± 0.8 2.2c ± 0.3 7.3c ± 0.8 11.4b ± 0.8 

5 423b ± 64 94.8a ± 3.9 16.4a ± 0.8 2.1cd ± 0.2 7.9b ± 0.5 12.2a ± 0.6 

Half ripe 367B ± 70 90.0B ± 5.8 15.6B ± 1.0 2.2B ± 0.3 7.1B ± 0.9 11.2B ± 0.7 

6 414b ± 59 93.3ab ± 4.1 16.2a ± 0.8 2.0d ± 0.3 8.4a ± 1.0 12.3a ± 0.7 

7 456a ± 66 95.6a ± 4.1 16.6a ± 0.8 2.0d ± 0.2 8.3a ± 0.6 12.6a ± 0.6 

Ripe 435A ± 66 94.5A ± 4.2 16.4A ± 0.8 2.0C ± 0.2 8.4A ± 0.8 12.5A ± 0.7 

Mean value ± standard deviation. Different lowercase letters in the same column 
indicates statistical difference between harvests (p-value < 0.05); different capital 
letters in the same column indicates statistical difference between maturity stages (p-
value < 0.05). W = weight; D = diameter; TA = titratable acidity; TSS = total soluble 
solids; MI = maturity index. 

 

In contrast, the tendency of TA was to decrease during maturity. In general, the 

values of TA in the maturity stages were statistically different, from 2.6 g L-1 in 

immature fruit to 2.0 g L-1 in ripe fruit. This trend agrees with Nuncio-Jáuregui et al. 

(2014), who obtained TA values of 2.5, 2.4 and 2.3 g L-1 during maturity. The 
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established minimum value of TA in the ripe fruit of this cultivar is 1.8 g L-1 and the 

maximum is 2.4 g L-1 (http://www.agroambient.gva.es/en/pc_granadamollarelche). 

The MI is commonly used to define the ‘taste’ of pomegranate fruit during 

development (Shwartz et al., 2009). The value of MI increased from 4.6 to 8.4 with no 

statistical difference between the last two harvests. As in the other parameters, the 

main changes were observed when the fruit passed from the immature to the half-ripe 

stage. The minimum value of MI in the ripe fruit of this cultivar has to be 6.0 and the 

maximum 9.0 (http://www.agroambient.gva.es/en/pc_granadamollarelche). In this 

case the value of ripe fruit was 8.4.  

As mentioned, although MI is commonly used, this ratio does not always correlate 

well with the perception of maturity. Jordan et al. (2001) proposed the BrimA index 

due to the fact that sugars and acids have opposite effects on flavour, and the tongue 

is more sensitive to acidity. In this work, BrimA was found to be more related to 

flavour than MI. The values of BrimA increased from 6.7 to 12.5, with no statistical 

differences among the three harvests, as in the case of MI. 

With regard to the bioactive compounds, Table 2 summarises the mean and 

standard deviation of the TPC content and the results of the AA measured in the juice 

samples at each harvest and maturity stage using the DPPH, ABTS and FRAP methods. 

Polyphenols have high antioxidant capacity and are also responsible for major 

organoleptic characteristics, especially colour and taste properties. For this reason, TPC 

content is an important quality parameter of pomegranate fruit. The TPC content 

measured in the juice of the fruit in this study decreased from 2.7 to 1.2 g L-1. This 

decrease was more pronounced in the fourth harvest, the immature fruit being richer 

in these compounds. Kulkarni and Aradhya (2005) also reported a 54.5 % reduction in 

TPC during the initial stage of fruit development and the decrease continued until the 

fruit was considered fully ripened. Something similar happened with AA, which is 

related to the level of TPC. The AA decreased from 8.0 to 2.5 mmol Trolox L-1 using the 

DPPH method, from 4.2 to 1.9 mmol Trolox L-1 using ABTS and from 6.4 to 3.1 mmol 

Trolox L-1 using FRAP; this decrease was more pronounced in the fourth harvest. 

However, these results are different to those obtained by Nuncio-Jáuregui et al. 

(2014), who presented TPC values of 3.7, 3.3 and 2.7 g L-1 and an AA of 7.0, 6.5 and 6.6 
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mmol Trolox L-1 using the DPPH method. As Mena et al. (2011) pointed out, the 

variation in the concentration of these parameters can vary to a large degree 

depending on factors such as growing area, weather conditions or the influence of 

processing techniques such as thinning. 

 

Table 2. Antioxidant activity and total polyphenol content of the pomegranate juice at 

each harvest and maturity stage.  

Harvest / 
maturity stage 

TPC 
(g GAE/L) 

Antioxidant activity (mM Trolox/100 ml) 

DPPH ABTS FRAP 

1 2.7a ± 0.3 8.0a ± 0.2 4.2a ± 0.7 6.4a ± 0.9 

2 2.4b ± 0.2 6.8b ± 0.4 3.8b ± 0.4 5.8b ± 0.6 

Immature 2.5A ± 0.3 7.4A ± 0.7 4.0A ± 0.6 6.1A ± 0.8 

3 2.4b ± 0.2 5.1c ± 0.7 3.9b ± 0.4 6.0b ± 0.9 

4 1.2c ± 0.1 3.3d ± 0.1 1.7c ± 0.2 3.0cd ± 0.5 

5 1.2c ± 0.1 3.1e ± 0.2 1.6e ± 0.1 2.5e ± 0.3 

Half ripe 1.6B ± 0.6 3.8B ± 1.0 2.4B ± 1.1 3.8B ± 1.7 

6 1.1c ± 0.1 2.8f ± 0.2 1.8c ± 0.2 2.8de ± 0.3 

7 1.2c ± 0.1 2.5g ± 0.2 1.9c ± 0.2 3.1c ± 0.3 

Ripe 1.2C ± 0.1 2.7C ± 0.2 1.8C ± 0.2 3.0C ± 0.4 

Mean value ± standard deviation. Different lowercase letters in the same column 
indicates statistical difference between harvests (p-value < 0.05); different capital 
letters in the same column indicates statistical difference between maturity stages (p-
value < 0.05). TPC = total polyphenolic compounds  
 
 

3.2 Colour and spectral data analysis 

Colour images of intact fruit and arils were acquired in each harvest and the L*, a* 

and b* colour coordinates were calculated. The average mean value of each colour 

parameter of the intact fruit and the arils at each maturity stage are presented in 

Figure 4. In the rind, only a* (which goes from green to red) increased during maturity 

and all values of the three maturity stages were statistically different. Therefore, the 

colour of the rind evolved from green to reddish (Figure 1), mainly due to the decrease 

in chlorophylls and carotenoids content and the increase in the synthesis of pigments 
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such as anthocyanins (Zhao et al., 2015). In the case of arils, the three coordinates 

evolved during maturity. L* and b* (which goes from blue to yellow) decreased, 

especially from the second to the third maturity stage, while a* increased greatly. 

Therefore, the colour of the arils evolved from the immature white arils to reddish 

(Figure 1) due to the synthesis of anthocyanins (Gil et al., 1995). These changes 

observed in the colour of the intact frits and arils coincide with those found in the 

study by Melgarejo et al. (1997). 

 

Figure 4. Colour coordinates of the intact fruit (left) and arils (right) at each maturity 

stage. The points in the graph are the mean value and bars are standard deviation. 

Different letters in the same parameter indicates significant differences between 

harvests (p-value<0.05), according to Tukey’s (HSD) test.  

 

The average mean reflectance spectra obtained from the hyperspectral images for 

intact fruit and arils are presented in Figure 5. The spectra showed similar trends for 

intact fruit and arils but the reflectance intensity is different in each maturity stage. 

This means that they have similar constituents but in different concentrations. In the 

case of the intact fruit, these differences in reflectance intensity were located around 

720–750 nm, close to the chlorophyll absorption peak of 680 nm, and the valley 

present in the region 960–990 nm, primarily assigned to water absorption bands. This 

valley was more pronounced in the most mature fruit because the water content 
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increases in the tissues during the onset of ripening, due to cell breakage and osmotic 

movement of water (Rajkumar et al., 2012).  

 

 

Figure 5. Mean spectra of intact fruit (left) and arils (right) at each maturity stage. 

 

In the mean spectra of the arils, the differences were more pronounced than in the 

intact fruit. These were mostly visualised between 720–800 nm, with a peak around 

920 nm and a valley between 960 and 990 nm, assigned to acids, sugars and water 

absorption (Yang et al., 2015). However, as Nicolaï (2007) pointed out, the spectra are 

dominated by the water spectrum with overtone bands of the OH-bonds at 760 nm 

and 970 nm, and sophisticated multivariate statistical techniques are needed to extract 

the useful information from these spectra. 

 

3.3 Principal component analysis 

A PCA was performed to explore the colour and spectral data of the intact fruit and 

arils and to obtain an overview of the distribution of the samples in a non-supervised 

way. Figures 6a and 6b show the score plot and loadings of the PCA using colour and 

spectral data of the intact fruit and arils. 



III. POMEGRANATE 

203 
 

Using colour data of the intact fruit, the first two PCs of the model explained 98.5 

% of the total variance (75.7 % and 22.8 %) and using the data from arils, the first and 

third PCs explained 98.6 % of the total variance (98.1 % and 0.5 %). 

In the case of the spectral data of intact fruit, the first two PCs explained 93.6 % of 

the total variance (84.7 % and 8.9 %) and the first and third PCs explained 85.4 % using 

the spectral data from arils (84.7 % and 0.7 %).   

The scores plot shows the grouping of the fruit in the three maturity stages in all 

cases. The colour data of the intact fruit shows more separation of the three maturity 

stages than the spectral data in which the half-ripe and ripe stages were overlapped. 

This was probably due to the fact that most of the changes that occur during maturity 

involve pigments that are related to visible wavelengths such as chlorophyll or 

anthocyanin, among others. The loadings suggest that a* in the first PC and L* in the 

second PC could be the most important colour parameters for the monitoring of 

maturity in the intact fruit. In the case of the spectral data, although the loadings 

obtained for PC1 and PC2 might offer information on the most important wavelengths 

to distinguish the maturity stages, this was not useful since separation was not evident 

in the score plot. 

 

 

 

Figure 6a. Principal components analysis using colour data. Score plot and loadings of 

intact fruit (left) and arils (right). 
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In the case of arils, the best separation of maturity stages was achieved by the 

spectral data because, in the model based on colour data, immature and half-ripe were 

overlapped. The corresponding loadings show that although the three colour 

parameters gave information, this was not sufficient to obtain a clear separation of 

maturity stages in the score plot. The loadings of the spectral model show that in PC1 

the region 960–1050 nm and in PC3 the wavelengths 730, 770, 850, 960 and 980 nm 

could be the most important wavelengths for the monitoring of maturity in arils. 

 

 

 

Figure 6b. Principal components analysis using spectral data. Score plot and loadings of 

intact fruit (left) and arils (right). 

 

 

Although the PCA maximises the variance in the first components, this does not 

guarantee the separability of data by classes due to its unsupervised nature (Jolliffe, 

2002). For this reason, supervised models need to be investigated for use in 

quantitative and qualitative analyses that are capable of identifying the maturity of the 

fruit and predicting their physicochemical properties. 
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3.4. Prediction of the physicochemical properties  

Table 3 and 4 show the results of the calibration and validation of the models to 

predict the physicochemical properties using colour and spectral data of the intact fruit 

and arils. 

 

Table 3. Results of the prediction of physicochemical properties using the colour data 

of the intact fruit and arils.   

 

Property #LV 
Calibration 

Cross 
Validation 

Prediction 
RPD 

R2 RMSE R2 RMSE R2 RMSE 

In
ta

ct
 f

ru
it

 

W 3 0.65 53.3 0.64 54.0 0.62 58.1 1.6 

D 3 0.67 4.09 0.66 4.14 0.64 4.49 1.6 

TSS 3 0.75 0.94 0.72 0.99 0.68 0.94 1.7 

TA 3 0.53 0.23 0.45 0.24 0.47 0.24 1.4 

MI 3 0.81 0.66 0.81 0.67 0.78 0.70 2.1 

BrimA 2 0.85 0.85 0.84 0.90 0.81 0.92 2.2 

Arils 
colour 

L* 3 0.78 5.46 0.69 6.51 0.77 5.47 2.1 

a* 3 0.86 3.95 0.83 4.42 0.85 4.05 2.6 

b* 3 0.54 1.49 0.47 1.59 0.49 1.44 1.4 

TPC 2 0.82 0.29 0.78 0.32 0.81 0.30 2.3 

DPPH 2 0.89 0.68 0.87 0.74 0.84 0.83 2.5 

ABTS 2 0.77 0.57 0.72 0.62 0.72 0.61 1.9 

FRAP 2 0.71 0.90 0.66 0.98 0.75 0.94 1.9 

A
ri

ls
 

TSS 3 0.51 1.32 0.37 1.52 0.44 1.23 1.3 

TA 2 0.41 0.25 0.37 0.26 0.37 0.26 1.3 

TSS/TA 3 0.68 0.87 0.62 0.95 0.55 1.00 1.4 

BrimA 3 0.62 1.37 0.50 1.59 0.53 1.41 1.4 

TPC 2 0.62 0.42 0.51 0.48 0.57 0.45 1.4 

DPPH 2 0.63 1.22 0.48 1.47 0.61 1.28 1.6 

ABTS 2 0.55 0.79 0.43 0.90 0.51 0.80 1.4 

FRAP 2 0.56 1.11 0.45 1.26 0.49 1.30 1.4 

#LV = numbers of latent variables; W = weight; D = equatorial diameter; TSS = total 
soluble solids; TA = titratable acidity; MI = TSS/TA; TPC = total phenolic compounds 
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Table 4. Results of the prediction of physicochemical properties using the spectral data 

of the intact fruit and arils.   

 

Property #LV 
Calibration 

Cross 
Validation 

Prediction 
RPD 

R2 RMSE R2 RMSE R2 RMSE 

In
ta

ct
 f

ru
it

 

W 9 0.75 45.0 0.71 48.7 0.67 54.2 1.7 

D 5 0.73 3.69 0.70 3.87 0.71 4.10 1.8 

TSS 6 0.80 0.84 0.77 0.90 0.71 0.89 1.8 

TA 4 0.51 0.23 0.48 0.23 0.46 0.24 1.4 

MI 8 0.82 0.64 0.80 0.68 0.71 0.81 1.8 

BrimA 6 0.88 0.78 0.86 0.84 0.85 0.79 2.6 

Arils 
colour 

L* 7 0.79 5.37 0.70 6.40 0.68 6.45 1.8 

a* 7 0.83 4.41 0.76 5.22 0.75 5.15 2.0 

b* 7 0.54 1.49 0.43 1.65 0.45 1.50 1.3 

TPC 9 0.88 0.24 0.84 0.27 0.86 0.25 2.7 

DPPH 5 0.93 0.55 0.91 0.61 0.91 0.62 3.4 

ABTS 9 0.85 0.46 0.81 0.51 0.83 0.47 1.9 

FRAP 9 0.82 0.72 0.78 0.79 0.85 0.74 2.4 

A
ri

ls
 

TSS 10 0.82 0.80 0.70 1.07 0.77 0.82 2.0 

TA 5 0.51 0.22 0.34 0.26 0.46 0.24 1.4 

TSS/TA 10 0.83 0.62 0.74 0.78 0.78 0.72 2.1 

BrimA 10 0.89 0.73 0.81 0.97 0.88 0.72 2.7 

TPC 12 0.92 0.19 0.83 0.29 0.87 0.25 2.7 

DPPH 11 0.94 0.48 0.88 0.70 0.92 0.57 3.6 

ABTS 11 0.90 0.37 0.79 0.56 0.81 0.52 2.2 

FRAP 10 0.84 0.66 0.67 0.98 0.76 0.89 2.1 

#LV = numbers of latent variables; W = weight; D = equatorial diameter; TSS = total 
soluble solids; TA = titratable acidity; MI = TSS/TA; TPC = total phenolic compounds 
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3.4.1 Weight and equatorial diameter 

The physical parameters W and D were predicted using only the information of the 

intact fruit. The models using colour data were calibrated using 3 LVs (Table 3). The R2 

of prediction (R2
P) was 0.62 and 0.64 with an RSMEP of 58.1 g and 4.49 mm for W and 

D, respectively. When W and D were correlated with the spectral data, the models 

were calibrated using 9 and 5 LVs (Table 4). The R2
P was 0.64 and 0.71, respectively, 

and the RSMEP was 54.2 g and 4.10 mm. The results of W prediction using colour and 

spectral data are in accordance with Arendse et al. (2018c), who obtained an R2 of 0.62 

in the ‘Wonderful’ cultivar using Fourier-transform near infrared diffuse reflectance 

spectroscopy.  

Although hyperspectral imaging obtained more accurate results in W and D, the 

RPD value obtained using colour data was 1.6 for both parameters, and 1.7 and 1.8 

using spectral data, respectively. These values indicated that the models can only 

discriminate the lower from the higher values of the response variable, but this is not 

sufficient, and hence they are not recommended for a quality control application. 

 

3.4.2 Total soluble solids, titratable acidity and maturity indexes  

The models to predict the organoleptic properties such as TSS and TA using the 

colour data of the intact fruit were calibrated using 3 LVs (Table 3). The R2
P obtained 

was 0.68 and 0.47 with an RSMEP of 0.94 % and 0.24 g L-1. In the case of the arils, the 

models were calibrated using 3 and 2 LVs, respectively (Table 4). The R2
P obtained was 

0.44 and 0.37 with an RSMEP of 1.23 % and 0.26 g L-1. When TSS and TA were 

correlated with the spectral data, the models using intact fruit information were 

calibrated using 6 and 4 LVs. The R2
P was 0.71 and 0.46 and the RSMEP was 0.89 % and 

0.24 g L-1. The models using the arils information were calibrated using 10 and 5 LVs, 

obtaining an R2
P of 0.77 and 0.46 and the RSMEP was 0.82 % and 0.24 g L-1, 

respectively.  

Other previously tested non-destructive techniques yielded different results in the 

prediction of these compounds in several cultivars of pomegranate. Arendse et al. 

(2017) and (2018c) used spectroscopy to predict TSS and TA of ‘Wonderful’ 
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pomegranates using the intact fruit information, obtaining an R2 of 0.78 and 0.77, 

respectively. Using the arils information they obtained an R2 of 0.88 and 0.87. 

Khodabakhshian et al. (2017) predicted the TSS of intact pomegranate fruit cv. Ashraf 

using a multispectral system and obtained an R2 of 0.94. Zhang and McCarthy (2013) 

employed NMR to assess TSS and TA in ‘Wonderful’ pomegranates, obtaining an R2 of 

0.12 and 0.54. 

In this study, the values of RPD obtained for TSS using colour data were 1.7 and 1.3, 

indicating a fair model performance using intact fruit information but a poor model 

performance using the information coming from the arils. When the spectral data 

were used, the values were 1.8 and 2.0, indicating a good model performance using 

both the intact fruit and the arils information. Thus, quantitative predictions are 

possible using hyperspectral imaging with intact fruit and arils information. For TA, the 

RPD value obtained using the intact fruit and arils information and both techniques 

was 1.4, which indicated a poor performance of the model.  

The prediction of MI and BrimA using colour data of intact fruit was performed by 

means of two models calibrated using 3 and 2 LVs, respectively (Table 3). The R2
P was 

0.78 and 0.81 and the RSMEP was 0.70 and 0.92. Using the colour data from arils, the 

two models were calibrated using 3 LVs (Table 3). The R2
P was 0.55 and 0.53 and the 

RSMEP was 1.00 and 1.41. In the case of spectral data, the R2
P of MI and BrimA using 

the intact fruit information was 0.71 and 0.85 and the RSMEP was 0.81 and 0.79 when 

the models were calibrated using 8 and 6 LVs (Table 4). Using arils information, the R2
P 

was 0.78 and 0.88 and the RSMEP was 0.72 when the models were calibrated using 10 

LVs (Table 4). Similar results were obtained by Arendse et al. (2018c) in intact 

‘Wonderful’ pomegranates, R2 of 0.78 and 0.79, and in arils, R2 of 0.82 and 0.83 

(Arendse et al., 2017). Zhang and McCarthy (2013) used nuclear magnetic resonance to 

assess MI in ‘Wonderful’ pomegranates, obtaining an R2 of 0.63. 

The values of RPD of MI and BrimA obtained using colour data were 2.1 and 2.2, 

which indicated a good model performance. However, using the information from the 

arils, the value of RPD of both indices was 1.4, which indicated a poor performance of 

the model. The values of RPD using intact fruit were 1.8 and 2.6, indicating a fair model 

performance for MI and excellent prediction accuracy for BrimA. The values obtained 
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using arils information were 2.1 for the prediction of MI, which means that it is 

possible to predict this index, and 2.7 for BrimA, indicating an excellent model 

performance.  

The PLS-R models calibrated using the colour data showed a limited potential of 

TSS, MI and BrimA prediction when the arils information was used. These results 

demonstrated greater potential of hyperspectral imaging compared to conventional 

colour imaging for predicting these properties in pomegranate fruit cv. ‘Mollar de 

Elche’ pomegranate using both intact fruit and arils information. 

 

3.4.3 Internal colour 

Regarding the internal colour, the prediction models of the colour coordinates of 

the arils, L*, a* and b*, were predicted using only the information of the intact fruit. 

The three models using colour data were calibrated using 3 LVs (Table 3). The R2
P 

obtained was 0.77, 0.85 and 0.49 and the RSMEP was 5.47, 4.05 and 1.44, respectively. 

In the case of spectral data, the models were calibrated using 7 LVs (Table 4). The R2
P 

was 0.68, 0.75 and 0.45 and the RSMEP was 6.45, 5.15 and 1.50.  

The RPD values obtained for L*, 2.6 and 2.0, indicated an excellent model 

performance using colour data and a fair model performance using spectral data. The 

values obtained for a*, 2.1 and 1.8, indicated a good model performance using colour 

data and a fair model performance using spectral data. In the case of b*, both 

techniques presented an RPD of 1.4 and 1.3, which means a poor model performance. 

Arendse et al. (2018c) predicted the a* coordinate of arils of the ‘Wonderful’ cultivar 

using spectroscopy and obtained a similar result to that of hyperspectral imaging: an R2 

of 0.71. These results showed that colour information of the rind had a better 

correlation with L* and a* of arils colour than the spectral data in the NIR region. 

 

3.4.4 Total polyphenolic compounds 

In the case of TPC, the models using the colour data of the intact fruit and arils 

were calibrated using 2 LVs (Table 3). The R2
P was 0.81 and 0.57 and the RSMEP was 

0.30 and 0.45 g L-1. Using spectral data, the model of the intact fruit and arils were 
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calibrated using 9 and 12 LVs (Table 4). The R2
P was 0.86 and 0.87 and the RSMEP was 

0.25 and 0.25 g L-1. Arendse et al. (2018c) and Arendse et al. (2017) also predicted TPC 

in intact fruit and arils using spectroscopy and obtained similar results to those 

achieved using hyperspectral imaging: an R2 of 0.83 using the intact fruit information 

and 0.87 using the arils information. 

The RPD values obtained for colour data were 2.3 and 1.4, indicating a good model 

performance using the intact fruit information but a poor model performance using 

arils information. In contrast, the spectral data models obtained a value of 2.7, 

indicating an excellent performance using both intact fruit and arils information. As in 

the case of TSS, MI and BrimA, these results demonstrated the greatest potential of 

hyperspectral imaging for predicting TPC in ‘Mollar de Elche’ pomegranate using the 

intact fruit and arils information. 

 

3.4.5 Antioxidant activity 

Antioxidant activity was predicted by correlating the values obtained by means of 

the DPPH, ABTS and FRAP methods, and colour and spectral data of the intact fruit and 

arils. The three models using the colour data of the intact fruit were calibrated using 2 

LVs and the R2
P was 0.84, 0.72 and 0.75 and the RSMEP was 0.83, 0.61 and 0.94 mmol 

Trolox L-1 (Table 3). The three models using the colour data from arils were also 

calibrated using 2 LVs but in this case the R2
P was 0.61, 0.51 and 0.49 and the RSMEP 

was 1.28, 0.80 and 1.30 mmol Trolox L-1.  

When the spectral data of the intact fruit was used, the model for DPPH was 

calibrated using 5 LVs and the models for ABTS and FRAP were calibrated with 9 LVs 

(Table 4). The R2
P was 0.91, 0.83 and 0.85 and the RSMEP was 0.62, 0.47 and 0.74 

mmol Trolox L-1. Using the arils information, the models for DPPH and ABTS were 

calibrated using 11 LVs and the model for FRAP was calibrated using 10 LVs. The R2
P 

was 0.92, 0.81 and 0.76 and the RMSEP was 0.57, 0.52 and 0.89 mmol Trolox L-1. 

The RPD values obtained for the DPPH method were 2.5 and 1.6 for colour data, 

indicating a very good model performance using the intact fruit information and fair 

model performance using the arils information. Using the spectral data, the RPD values 
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were 3.4 and 3.6, indicating an excellent model performance using spectral data of the 

intact fruit and arils. In the case of the ABTS method, the value of RPD using colour 

data was 1.9 and 1.4, which means that the model using intact fruit had a fair 

performance and a poor model performance using arils information. When spectral 

data was used, the RPD values were 1.9 and 2.2, which means that the model has a fair 

and good model performance using the intact fruit and arils information, respectively.  

The values obtained for the FRAP method using colour data were the same as with 

the ABTS method, but 2.4 and 2.1 using spectral data, indicating a good model 

performance using the spectral data of the intact fruit and arils.  

As in the case of TSS, MI, BrimA, and TPC, the PLS-R models calibrated using the 

colour data showed a limited potential of AA prediction when the arils information was 

used. 

 

3.5 Classification according maturity stage 

Tables 5 and 6 show the calibration and validation results of the models to 

discriminate the maturity stage using colour and spectral data of the intact fruit and 

arils. 

The model using the colour data of the intact fruit was calibrated using 3 LVs, 

obtaining a total accuracy of 85.7 % in the CV. In the prediction of the test set, the total 

accuracy was 84.3 %, in which 80.0 % of immature fruit, 81.7 % of half-ripe fruit and 

92.5 % of ripe fruit were correctly classified. In the case of arils, the model was 

calibrated using 2 LVs, a total accuracy of 85.7 % being obtained in the CV as when the 

data of the intact fruit were used. In the prediction of the test set, the total accuracy 

was 85.7 %, in which 85.0 % of immature fruit, 80.0 % of half-ripe fruit and 95.0 % of 

ripe fruit were correctly classified. 

The model using the spectral data of intact fruit was calibrated using 11 LVs, 

obtaining a total accuracy of 95.0 % in the CV (Table 6). In the prediction of the test 

set, the total accuracy was also 95.0 %, in which 100 % of immature fruit, 95.0 % of 

half-ripe fruit and 90.0 % of ripe fruit were correctly classified. When the arils 

information was used, the model was calibrated using 9 LVs, obtaining a total accuracy 
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of 92.9 % in the CV. In the prediction of the test set, the total accuracy was 100 %, in 

which all fruit were correctly classified into their corresponding classes. These results 

are similar to those obtained using magnetic resonance imaging (Khoshroo et al., 

2009), but for semi-ripe, ripe and over-ripe fruit (100 %, 98.5 % and 100 %, 

respectively). 

 

Table 5. Results of classification by maturity stage using the colour data of the intact 

fruit and arils. 

 #LV Class 
Calibration Cross validation Prediction 

I HR R I HR R I HR R 

In
ta

ct
 f

ru
it

 

3 

I 71 11 0 69 12 0 32 6 0 

HR 9 100 3 11 96 5 8 49 3 

R 0 9 77 0 12 75 0 5 37 

CC (%) 88.8 83.3 96.3 86.3 80.0 93.8 80 81.7 92.5 

A (%) 88.6 85.7 84.3 

A
ri

ls
 

2 

I 38 10 0 38 11 0 17 5 0 

HR 2 46 3 2 45 3 2 24 1 

R 0 4 37 0 4 37 0 0 19 

CC (%) 95.0 75.0 92.5 95.0 75.0 92.5 85.0 80.0 95.0 

A (%) 86.4 85.7 85.7 

#LV = number of latent variables; I = immature; HR = half ripe; R = ripe; CC = correct 
classification; A = accuracy 

 

 

Although the two machine vision techniques discriminated the maturity stages of 

the intact fruit and arils with good results, hyperspectral imaging was more accurate 

than colour imaging.  

The results of this study have been confirmed only in fruit of the cultivar ‘Mollar de 

Elche’, which is a sweet cultivar of high economic importance in Spain. These 

experiments should therefore be confirmed in other cultivars and with different 

seasons. 
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Table 6. Results of classification by maturity stage using the spectral data of the intact 

fruit and arils. 

 #LV Class 
Calibration Cross validation Prediction 

I HR R I HR R I HR R 

In
ta

ct
 f

ru
it

 

11 

I 80 0 0 80 0 0 40 0 0 

HR 0 116 1 0 110 4 0 57 4 

R 0 4 79 0 10 76 0 3 36 

CC (%) 100 96.7 98.8 100 91.7 95.0 100 95.0 90.0 

A (%) 98.2 95.0 95.0 

A
ri

ls
 

9 

I 40 0 0 36 0 0 20 0 0 

HR 0 60 0 3 59 5 0 30 0 

R 0 0 40 0 1 35 0 0 20 

CC (%) 100 100 100 90.0 98.3 87.5 100 100 100 

A (%) 100 92.9 100 

#LV = number of latent variables; I = immature; HR = half ripe; R = ripe; CC = correct 
classification; A = accuracy 

 

4. Conclusions 

In this work, the potential of colour and hyperspectral imaging has been evaluated 

to monitor the quality of ‘Mollar de Elche’ intact pomegranate fruit and arils during 

maturity.  

Different maturity stages could be observed in a non-supervised way by means of 

PCA using the colour and spectral data of the intact fruit and arils. Later, PLS-R models 

were performed to predict the physicochemical properties of intact fruit and the arils 

using the colour and the spectral data (750–1050 nm). The physicochemical 

parameters that were predicted better (RPD > 2) using colour imaging were the 

maturity MI and BrimA indices, the L* and a* colour coordinates, the AA using the 

DPPH method and TPC. All of them were performed using the intact fruit information. 

When hyperspectral imaging was used in the intact fruit, the physicochemical 

parameters that were predicted better (RPD < 2) were BrimA, a* colour coordinate, 

the AA using the DPPH and FRAP methods and TPC. For the arils, all physicochemical 

parameters studied were correctly predicted (RPD > 2) except TA.   
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PLS-DA models were performed to classify the fruit according to the maturity 

stage. The models using colour data achieved an accuracy of 84.3 % and 85.7 % for 

intact fruit and arils, respectively. However, when the spectral data were used, more 

accurate models were obtained, achieving an accuracy of 95.0 % and 100 %. 

These findings demonstrate that colour imaging could be used as a potential tool 

to monitor some physicochemical properties and maturity of the intact fruit. However, 

hyperspectral imaging has demonstrated a better and greater potential in both intact 

fruit and arils. 
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Abstract 

Loquat fruit (Eriobotrya japonica L.) is susceptible to mechanical damages and 

physiological disorders. VIS-NIR hyperspectral imaging was used to discriminate 

internal and external common defects of loquat cv. ‘Algerie’. Three classifiers, PLS, RF 

and XGBOOST, and different spectral pre-processing techniques were evaluated in 

order to discriminate the sound and defect features according to three approaches. In 

the first approach, the fruit pixels were classified into two classes, sound or defect; in 

the second approach, the defects were considered as internal or external defects; and 

in the third approach each type of defect, purple spot, bruise, scars and flesh 

browning, were considered separately. The results indicated that the hyperspectral 

imaging combined with XGBOOST classifier could discriminate the pixels between 

sound and defect with an accuracy of 97.5 % and between sound or internal or 

external defect with an accuracy of 96.7 %. It was also possible to distinguish between 

the different defects with an accuracy of 95.9 %. 
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1. Introduction 

Loquat fruit (Eriobotrya japonica L.) is native from China, which is the first 

producing country in the world. Although loquat is a minor crop in Spain, this is the 

main loquat-producing country in the Mediterranean region and the main exporter in 

the world (Besada et al., 2017). The production is concentrated on the ‘Algerie’ 

cultivar, which accounts for more than 80 % of total production. Furthermore, its 

interest lies in the fact that loquat trees are harvested during a short period (from mid-

April to the end of April), when there is low competition with other fruit on the market 

(Ballester et al., 2018). 

Loquat is a very delicate fruit easily damaged by wind that allows the leaves to 

scratch the fruit favouring the appearance of rusetting. In most areas of Spain, screens 

protect the crop in order to avoid wind damage while humidity and temperature is 

controlled by irrigation (Soler et al., 2007). This fruit is also susceptible to bruising 

because of mechanical damage during harvest or postharvest handling (Cañete et al., 

2015). Regarding to physiological disorders, loquat fruit is highly sensitive to purple 

spot which is characterised by an extensive area of slightly depressed surface of purple 

colour and irregular shape that affects up to 30 % of the exposed face of the fruit. This 

disorder only affects the epidermal fruit tissue and localised fruit calcium deficiency is 

the most accepted cause (Gariglio et al., 2002). Other disorder is the browning of the 

flesh due to high temperatures before or after harvest and long periods of storage 

(Kader, 1999).  

Traditionally, quality inspection in packinghouses has been carried out by operators 

who visually assessed external features of the skin related to the quality standards of 

the market. As the decisions made by operators are affected by psychological factors 

such as fatigue or acquired habits, there is a high risk of human error in classification 

processes, and this is one of the most important drawbacks that can be prevented by 

automated inspection systems based on computer vision (Cubero et al., 2011). 

Computer vision methods based on colour cameras have been designed with the 

intention of emulating the human eye; however, hyperspectral imaging offers the 

possibility of going far beyond the capabilities of the human eye. For instance, some 
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damage or defect can be often observed in particular regions outside the visible 

spectrum, or their detection may be enhanced at certain specific wavelengths (Blasco 

et al., 2017). Hyperspectral imaging has been previously used in numerous works to 

detect physical damages or defects in pears (Lee et al., 2014), peaches (Zhang et al., 

2015), apples (Zhang et al., 2018), mangoes (Velez-Rivera et al., 2014), oranges (Li et 

al., 2011) or potatoes (López-Maestresalas et al., 2016).  Regarding to loquat fruit, only 

Yu et al. (2014) have previously used hypespectral imaging to detect other type of 

defects in loquats cv. ‘Luoyangqing’. They used PLS and the mean spectra of each 

defect to calibrate the models. In the present work, the main objective is to develop 

predictive models to discriminate the pixels corresponding to purple spot, russeting, 

bruises and flesh browning of loquat cv. ‘Algerie’ (Figure 1) by using hyperspectral 

imaging combined with two robust machine learning techniques, RF and XGBOOST. 

Furthermore, three approaches were proposed: in the first approach, the samples are 

classified into two classes, sound or defect; in the second approach the defects are 

considered as internal or external defects; and in the third approach each type of 

defect is considered separately.  

 

2. Material and methods 

2.1. Fruit samples 

In this study, loquat fruit cv. ‘Algerie’ was obtained from the quality inspection line 

of the Callosa d’en Sarrià Agricultural Cooperative (Alicante, Spain). A batch of 130 

samples composed of fruit without defects and with different defects as flesh 

browning, bruises, russeting and purple spots was selected (see representative 

samples in Figure 1).   
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Figure 1. Example of defects in ‘Algerie’ loquat fruit. Internal defects: flesh browning 

(a) and bruise (b); external defects: russeting (c) and purple spot (d); sound (e). 

 

2.2 Hyperspectral image acquisition and processing 

The system was composed of an industrial camera (CoolSNAP ES, Photometrics, AZ, 

USA), coupled to two LCTF (Varispec VIS-07 and NIR-07, Cambridge Research & 

Instrumentation, Inc., MA, USA). The camera was configured to acquire images with a 

size of 1392 x 1040 pixels and a spatial resolution of 0.14 mm/pixel at 60 different 

wavelengths every 10 nm, in the working spectral range of 450 nm − 1040 nm. In order 

to avoid problems of unfocused images due to the refraction of light across this wide 

spectral range, the focus was adjusted on the central band of the acquisition interval 

(740 nm) and the images were captured using lenses capable of covering the whole 

spectral range without going out of focus (Xenoplan 1.4/23, Schneider Optics, 

Hauppauge, NY, USA). To optimise the dynamic range of the camera, prevent 

saturated images and correct the spectral sensitivity of the different elements of the 

system, a calibration of the integration time of each band was performed capturing the 

averaged grey level of a white reference target (Spectralon 99%, Labsphere, Inc, NH, 

USA) corresponding to 90 % of the dynamic range of the camera.  

The scene was illuminated by indirect light from twelve halogen spotlights (37 W) 

(Eurostar IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current 
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(12 V) and arranged equidistant from each other inside a hemispherical aluminium 

diffuser. The samples were introduced manually onto a fruit holder. The inner surface 

of the aluminium diffuser was painted white with a rough texture to maximise its 

reflectivity in order to minimise directional reflections, and providing highly 

homogeneous light.  

The image processing started with the correction of the relative reflectance by 

using the equation (1) (Gat, 2000): 

 

 𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                                           (1) 

 

Where ρRef(λ) is the standard reflectance of the white reference target (99 % in this 

work), R(x,y,λ) is the reflectance of the fruit captured by the sensor of the camera, 

Rwhite(x,y,λ) is the reflectance the white reference target, and Rblack(x,y,λ) is the 

reflectance captured while avoiding any light source to quantify the electronic noise of 

the sensor.  

The spectral data was manually extracted from the fruit identifying the regions of 

interest (ROI) of sound and defective features. A total of 22140 pixels were selected 

(sound = 7733; purple spot = 1738; russeting = 478; bruise = 5871; browning = 6320) 

and considered as samples. 

The correction of the images and the selection of the ROIs to extract the pixel 

spectra were performed using customised software developed at IVIA (Hyperspectral 

Image Inspector, freely available at http//www.cofilab.com, Spain). 

 

2.3 Data analysis 

The data obtained from sound and defective features was randomly partitioned 

into the calibration set (15497 pixel samples) and test set (6643 pixel samples). The 

method used to this end was the Kennard-Stone algorithm (Kennard and Stone, 1969) 

which allows selecting samples with a uniform distribution over the predictor space 

using a Euclidean distance. 
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Three different classifiers were tested, PLS considered as baseline method in this 

work and two robust machine learning methods, RF and XGBOOST.  

All operations were implemented using the ‘mlr Package’ (Bischl et al., 2016) in R 

(R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org). 

PLS searches for a linear multivariate model of latent variables by projecting 

prediction variables X and response variables Y into a new latent space, where the 

covariance between these latent variables is maximised. The goal is to find the latent 

multidimensional direction in the data space that explains the direction of the 

maximum multidimensional covariance in the Y space (Lorente et al., 2012). When the 

Y variable is quantitative, PLS regression is performed (Lorente et al., 2012). When the 

Y variable is categorical, PLS discriminant analysis is performed in order to sharpen the 

separation between groups of observations by maximising the covariance between the 

X and Y, such that a maximum separation among classes is obtained (Lorente et al., 

2012).  

RF is a combination of tree predictors such that each tree depends on the values of 

a random vector sampled independently and with the same distribution for all trees in 

the forest. The generalisation error for forests converges to a limit as the number of 

trees in the forest becomes large. The generalisation error of a forest of tree classifiers 

depends on the strength of the individual trees in the forest and the correlation among 

them (Breiman, 2001). 

XGBOOST is based on Gradient Boosting (Friedman, 2001) which is an ensemble 

technique that attempts to create a strong learner from a given number of weak 

learners, i.e. models that only perform slightly better than random guessing (Schapire, 

1999). XGBoost uses a tree ensemble model, which is a set of classification and 

regression trees (CART). This type of boosting, using trees as base learners is called 

Tree Boosting. Because of one tree might not be enough to obtain good results, 

multiple CARTs can be used together and the final prediction will be the sum of each 

CART’s score (Nobre & Neves, 2019). 
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2.3.1 Optimisation of the classifiers parameters 

The selection of the proper combination of the training parameters for each 

classifier was performed by means of 200 random models using Monte Carlo method. 

The training parameters tested for PLS were the number of latent variables (from 5 to 

10), probability function of the model output (softmax and Bayesian) and method 

(kernelpls, widekernelpls, simpls and oscorepls). For RF the number of trees allowed in 

each model (from 500 to 1000) was tested, the maximum size allowed for the node of 

a tree (from 10 to 100) and the number of randomly chosen variables used to build the 

trees (from 2 to 20). And the training parameters tested for XGBOOST were the 

number of times the data are passed to the model during training (from 10 to 80), 

maximum depth of a tree allowed to control the overfitting (from 1 to 40), minimum 

number of samples of a node to be a terminal node in order to control the overfitting 

(from 1 to 20), minimum loss of information to divide a node (from 0.30 to 0.85), 

constant of pruning to avoid overfitting (from 0.001 to 0.8), degree of randomness in 

the division of the data set to build the model (0.1 to 0.9) and the ratio of variables 

chosen to build each tree (from 0.1 to 0.9). 

The calibration of the classifiers was obtained by means of a 3-fold cross validation 

with 3 repetitions in order to evaluate the robustness of the model with the division of 

the calibration set.  

 

2.3.2 Calibration of the models 

After determining the best combination of parameters for each classifier, several 

pre-processing techniques were applied to the spectra to obtain the best results in the 

three classification approaches. The techniques used were Standard Normal Variate 

(SNV), Moving Average + SNV (movav+SNV), Savitzky Golay smoothing + SNV 

(SG+SNV), first derivative + SNV (1D+SNV), second derivative + SNV (2D+SNV), Gap 

segment derivative + SNV (GapD+SNV). The raw data (RAW) was also used to build the 

models. 
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The calibration of each model with the combination of spectral pre-processing was 

obtained by means of a 3-fold cross validation with 10 repetitions in order to know 

their robustness with the division of the calibration set. 

At the end of this process, the combination of the best classifier and the best 

spectral pre-processing technique were available to predict the class of the validation 

set.  

The results of the calibration set and test set were presented in a confusion matrix. 

Due to in Approach I the classification was binary, the performance of the models was 

expressed in terms of the area under the receiver operating characteristic curve (AUC) 

and accuracy. For the Approaches II and III, the performance of the models was 

expressed in terms of accuracy. 

 

3. Results and discussion 

3.1 Spectral analysis 

The mean spectrum of the sound and the defective features are presented in 

Figure 2.  

The reflectance of the sound spectrum was higher than the defects such as scar, 

bruise and purple spot in the region of 530-930 nm as several authors stated 

previously in peaches (Zhang et al., 2015), oranges (Li et al., 2011), jujube (Wu et al., 

2016) and loquat (Yu et al., 2014). As Yu et al. (2014) pointed out, this difference might 

be attributed to the different tissue structure in pulp and skin cells. However, flesh 

browning presented a similar pattern to sound feature in this region. In VIS region, 

carotenoids (500 nm), chlorophylls (680 nm) and other pigments are present and are 

responsible of colour (Rajkumar et al., 2012). The differences between sound and 

defective features are mainly due to the degradation of these pigments. In NIR region, 

the reflection valley around 950-1030 nm, primarily assigned to water absorption (Lu 

and Peng, 2006) was more pronounced in bruise spectra because more water is free in 

the flesh due to the rupture of the cells (López-Maestresalas et al., 2016). On the 

contrary, purple spot, flesh browning and russeting presented more reflectance in this 
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region due to the difference in the tissue structure, which presented less water 

content. 

 

 

Figure 2. Mean spectra of sound and the defective features 

 

3.2 Classification of sound and defective features 

In this study, three approaches were proposed in order to detect sound and 

defective features. In the first approach the samples were classified into two classes, 

sound or defect, in the second approach, the samples of defective features were 

considered as internal or external defects, and in the third approach, each type of 

defect was considered separately.  

 

3.2.1 Approach I 

In this approach PLS, RF and XGBOOST were evaluated to calibrate the 

classification models using different spectral pre-processing techniques. Figure 3 

shows the AUC for the three classifiers and all pre-processing techniques obtained 

using a 3-fold validation. The variability in the performance of the three classifiers was 

not very high, being AUC higher than 0.85 in all cases. PLS was the method that 

presented the lower results of AUC, less than 0.95 in all cases. However, this method 



IV. LOQUAT 
 
 

233 
 

obtained the highest value of the three classifiers when 2D+SNV pre-processing was 

used. 

The two machine learning methods presented similar results being the AUC higher 

than 0.95 except using D1 and D2 + SNV. However, XGBOOST obtained, in the main 

cases, the highest values of AUC using different spectral pre-processing techniques. 

The best result was obtained using the raw data. Thus, the best combination to classify 

the samples as sound or defect was using XGBOOST and the raw data. 

 

 

Figure 3. Evolution of AUC vs. pre-processing method for PLS, RF and XGBOOST 

classifiers in the model calibration of Approach I. 

 

The results of the calibration and test of the model using the combination of 

XGBOOST and raw data are presented in Table 1. The results of calibration set showed 

a good performance, 99.9 % of sound samples and 100 % of defect samples were 

correctly classified. When the test set was introduced in the model, the performance 

was also good but the accuracy was reduced, 92.0 % of sound samples and 98.9 % of 

defect samples were correctly classified. Thus, the total accuracy was slightly reduced 

from 99.9 % to 97.5 %, being the discrimination performance of defect features higher 

than sound features. 
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Table 1. Results of calibration and test set for the Approach I using XGBOOST classifier 

and raw spectra. 

Calibration set 

Class Sound Defect Acc (%) Total Acc (%) 

Sound 6339 1 99.9 
99.9 

Defect 0 9157 100 

Test set 

Class Sound Defect Acc (%) Total Acc(%) 

Sound 1178 102 92.0 
97.5 

Defect 65 5295 98.8 

Acc = accuracy 

 

3.2.2 Approach II  

In order to reduce the time in the optimisation of the parameters of each classifier 

and according to the previous results obtained by PLS, in this approach only the two 

machine learning techniques RF and XGBOOST were evaluated.  

 

 

Figure 4. Evolution of mean accuracy vs. preprocessing technique for RF and XGBOOST 

clasiffiers in the model calibration of Approach II. 

 

Figure 4 shows the accuracy for the two classifiers for each pre-processing 

technique. Both classifiers continued presenting similar results being the accuracy 
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higher than 90.0 % except using the derivative pre-processing techniques. However, 

XGBOOST obtained in all cases the highest accuracy, being the best result obtained 

using also the raw data.   

Thus, the best combination to classify the samples as sound or external or internal 

defect was also using XGBOOST and the raw data. 

Table 2 shows the results of the calibration and validation of the model using the 

combination of XGBOOST and raw data. The results of calibration set showed also a 

good performance as Accuracy I, 100 % of sound samples, 99.9 % of external defect 

samples and 100 % of internal defect samples were correctly classified. When the test 

set was introduced in the model, the performance was also good but the accuracy was 

reduced, 95.5 % of sound samples, 93.1 % of external defect samples and 98.0 % of 

internal defect samples were correctly classified. Thus, the total accuracy was reduced 

from 99.9 % to 96.7 %. 

 

Table 2. Results of calibration and test set for the Approach II using XGBOOST classifier 

and raw spectra. 

Calibration set 

Class Sound 
External 
defect 

Internal 
defect 

Acc  
(%) 

Total Acc 
(%) 

Sound 6381 0 0 100 100 

99.9 External defect 0 1205 1 99.9 
99.9 

Internal defect 0 0 7910 100 

Test set 

Class Sound 
External 
defect 

Internal 
defect 

Acc  
(%) 

Total Acc 
(%) 

Sound 1269 0 60 95.5 95.5 

96.7 External defect 0 978 72 93.1 
97.0 

Internal defect 76 11 4177 98.0 

Acc = accuracy 

 

The discrimination performance of the internal defect pixels was higher than the 

external defect pixels. The misclassified pixels of these defective features were 
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considered as internal defect pixels. In the case of sound feature, the misclassified 

pixels were considered as internal defects.   

 

3.2.3 Approach III  

In this approach both machine learning techniques XGBOOST and RF were also 

tested to calibrate the classification models using different spectral pre-processing 

techniques.  

As figure 5 shows, the two classifiers continued presenting similar results being the 

accuracy higher than 0.90 except using the derivative pre-processing. However, 

XGBOOST obtained, one more time, the highest accuracy in all cases, being the best 

result obtained using also the raw data.   

Therefore, the best combination to classify the samples as sound, purple spot, 

bruise, russeting or flesh browning was also using XGBOOST and the raw data. 

 

 

Figure 5. Evolution of mean accuracy vs. preprocessing technique for RF and XGBOOST 

clasiffiers in the model calibration of Approach III. 

. 

Table 3 shows the results of the calibration and validation of the model using the 

combination of XGBOOST and raw data. The results of calibration set showed also a 

good performance as Accuracy I and II, more than 99.7 % of sound and defective 

features were correctly classified. When the test set was introduced in the model the 
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performance was also good but the accuracy was reduced, 95.5 % of sound samples, 

93.1 % of external defect samples and 98.0 % of internal defect samples were correctly 

classified. Thus, the total accuracy was reduced from 99.9 % to 95.9 %. 

The discrimination performance of the bruise pixels was higher than the flesh 

browning pixels. These misclassified features were mainly considered as sound pixels 

by the model. In the case of the sound feature, the misclassified pixels were 

considered as internal defects, flesh browning or bruise.  

 

Table 3. Results of calibration and test set for Approach III using XGBOOST classifier 

and raw spectra. 

Calibration set 

Class Sound 1 2 3 4 
Acc 
(%) 

Total Acc  
(%) 

Sound 6433 0 0 1 0 99.9 99.9 

99.9 

1 0 815 0 0 0 100 

99.9 
2 0 1 363 0 0 99.7 

3 0 0 0 2917 0 100 

4 0 0 0 0 4967 100 

Test set 

Class Sound 1 2 3 4 
Acc 
(%) 

Total Acc  
(%) 

Sound 1235 0 0 22 42 95.1 95.1 

95.9 

1 0 890 4 29 0 96.4 

96.1 
2 0 2 109 3 0 95.6 

3 0 62 1 2883 8 97.6 

4 80 0 0 17 1256 92.8 

1 = Purple spot; 2 = russeting; 3 = Bruise; 4 = flesh browning; Acc = accuracy 

 

3.2.4 Approach comparation 

In the three approaches, XGBOOST and the raw spectra was the best combination 

for the classification of sound and defective features. This novel classifier is started to 

be used in very different fields such as in the detection of pesticides residues in grapes 
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(Mohite et al., 2017), in pre-diabetes diagnosis (Yang et al., 2019) or in the prediction 

of the direction of stock market prices (Basak et al., 2019). 

The accuracy in the three approaches was high, being correctly discriminated more 

than 95.7 % of pixels.  

The discrimination of defective features was more accurate when the pixels were 

classified as sound or defect in Approach I, discriminating 98.8 % of defective pixels 

correctly. On the contrary, when the defective features were classified separately 

(Approach III), 96.1 % of defective features were correctly discriminated.  

In the case of sound features, the best discrimination was obtained in Approach II 

(95.5 %), when the defective features were discriminated between internal and 

external defects. Sound features were slightly worse discriminated than defective 

features in the three approaches. In the second and third approaches, it was possible 

to know that sound features were misclassified as internal defect and flesh browning 

specially and vice versa. This fact agrees with the similar pattern spectrum between 

both features (Figure 2).  

As commented before, several studies have been previously carried out using 

hyperspectral imaging and different approaches in order to detect common defects in 

fruits. Wu et al. (2016) discriminated common defects on jujube. They also evaluated 

different pre-processing techniques and the best results were those using also the raw 

data combined with Soft Independent Modelling of Class Analogy (SIMCA). The 

percentage of correct classification of intact, cracked, bruised, and insect-infested 

jujubes was above 95.0 %. Zhang et al. (2015) discriminated common defects on 

peaches and obtained an accuracy of 93.3 % when sound, artificial defects and non-

artificial defects were separated using two characteristic wavelengths at 925 nm and 

726 nm. To distinguish the stem from the non-artificial defect regions, other two 

characteristic wavelengths at 650 nm and 675 nm were used. In the case of loquat, Yu 

et al. (2014) classified the sound and seven defective features using a PLS model 

obtaining an accuracy of 95.5 % using 12 optimal wavelengths. Then, all different 

defects were considered as defective feature and 92.7 % of samples were correctly 

classified using five minimum noise fraction bands. 



IV. LOQUAT 
 
 

239 
 

The results obtained in this study using the full spectrum were good, pointing the 

way to perform a proper selection of optimal wavelengths to discriminate the sound 

and defective features and identifying the different common defects of  'Algerie' 

loquat in the fruit surface. 

 

4. Conclusions 

In this work, hyperspectral imaging combined with machine learning techniques 

has been evaluated to discriminate common defects of ‘Algerie’ loquat fruit such as 

purple spot, bruises, russeting or flesh browning. Three classifiers, PLS, RF and 

XGBOOST, and different pre-processing techniques were evaluated to discriminate the 

sound and defective features according to three approaches.  

In the three approaches, the best result was obtained using XGBOOST and the data 

without any pre-processing. In Approach I, the fruit pixels were classified as sound or 

defect with an accuracy of 97.5 %. In Approach II, the fruit pixels were classified as 

sound, internal or external defect with an accuracy of 96.7 %. And in Approach III, the 

fruit pixels were classified as sound or purple spot, scar, bruise or flesh browning with 

an accuracy of 95.9 %. 

These results indicate the potential proposed methodology based on hyperspectral 

imaging is a promising tool to assess the quality of loquat fruits. However, a proper 

selection of optimal wavelengths and the identification of the defects in the image of 

fruits are needed. These are the next steps of this work to study the feasibility of this 

technique to be implemented in line.   
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This doctoral thesis presents different off-line and laboratory scale studies with the 

aim to evaluate the capability of hyperspectral imaging for the non-destructive 

monitoring of fruit quality in postharvest.  

The first part, which corresponds to the Chapters I, II and III, studied the 

application of hyperspectral imaging in the assessment of different cultivars of 

nectarine. Previous to this thesis, several studies were performed with the aim of 

applying hyperspectral imaging in the analysis of stone fruits, detecting different types 

of defects in skin (Zhang et al., 2015; Li et al., 2016; Huang et al., 2015)  or chilling 

injury (Pan et al., 2016; Sun et al., 2017). Apart from defects, few works were carried 

out to estimate other properties. Lu and Peng (2006) presented one of the first works 

to detect firmness in peaches using hyperspectral scattering and later, Lleó et al. 

(2011) classified peaches by maturity using multispectral indices.  

In Chapter I and II, the cultivars ‘Big Top’ and ‘Magique’ were studied to monitor 

their ripeness and quality using reflectance and transmittance mode. Two indices, RPI 

and IQI, obtained by measuring the physicochemical properties destructively were 

predicted using PLS-R models. In the case of the reflectance mode, the R2 values were 

0.87 and 0.89 for RPI and IQI for ‘Big Top’, while for the ‘Magique’ cultivar these values 

were 0.91 and 0.89, respectively. Using transmittance mode only IQI was predicted 

and the R2 values were 0.89 and 0.86 for ‘Big Top’ and ‘Magique’. In both modes a 

selection of optimal wavelengths was performed and the results were similar to those 

using all wavelengths. However, each cultivar needed a particular set of wavelengths.  

In transmittance mode (Chapter II), fruit was also classified by an F threshold (35 

N), which indicates changes during postharvest ripening and the susceptibility to 

damage by bruising (Crisosto et al., 2001). As a result, around 95.0% of fruit of the two 

cultivars were correctly classified. Furthermore, the use of this mode, gave the 

possibility to detect split pit defect, which can be a big problem in nectarines because 

it can affect 45.0% of the fruit, depending on the cultivar and the season (IRTA, 2016). 

The accuracy of the PLS-DA models using all and the optimal wavelengths was higher 

than 90.0 %.  

Therefore, both modes had a great potential to obtain and estimate the stage of 

ripeness of nectarines. The selection of one or the other mode would therefore 
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depend on the application. Taking into account that split pit can only be detected by 

transmittance. 

Other application of hyperspectral imaging investigated in this doctoral thesis was 

the discrimination of nectarine cultivars with similar appearance but different taste 

(Chapter III). Previous studies were conducted to differentiate among nectarine 

cultivars using colour images (Font et al., 2014), but with clearly different appearance. 

In this case ‘Big Top’ (sweet) and ‘Diamond Ray’ (acid) cultivars were used due to their 

similar skin and flesh appearance. Hyperspectral imaging was compared with colour 

imaging and a trained panel, which achieved an accuracy of only 56.9 % and 54.5 %. 

The classification of these two cultivars by hyperspectral imaging was performed using 

two approaches based o the use of the individual spectrum of each pixel and on the 

use of mean spectrum of each fruit. In both cases the results of the PLS-DA models 

were better than the colour imaging and the trained panel, being the accuracy of mean 

spectrum approach higher than the individual spectrum, 94.4 % and 84.4 %. 

Furthermore, the use of the vector of regression coefficients of the PLS-DA model let 

to select 14 optimal wavelengths and to obtain similar results. 

The second part, which corresponds to the Chapters IV and V, studies the 

application of hyperspectral imaging in the assessment of persimmon cv. ‘Rojo 

Brillante’. In the last twenty years, the production of this fruit in Spain has increased 

from 33 to 310 thousand tons (FAOSTAT, 2016), due to the development of the de-

astringency methods based on high CO2 concentrations. These methods allow 

removing the astringency while preserving high flesh firmness (Arnal and Del Río, 

2003). Nowadays ‘Rojo Brillante’ persimmon is one of the most appreciated 

persimmon cultivars worldwide. First, in Chapter IV, three maturity stages of the fruit 

were evaluated. Models using LDA, QDA and SVM were performed to discriminate the 

three stages. All of them achieved a good classification above 98.0 % using all 

wavelengths. Using only three wavelengths selected by PCA the success rate of correct 

classification was slightly lower but QDA and SVM still remain above 95.0 %. At the 

same time, F was evaluated by hyperspectral imaging obtaining a R2 of 0.80 using the 

previous three wavelengths. This result was similar to those obtained using different 

parameters of the skin colour like H (R2 = 0.83), G (R2 = 0.82) and h (R2 = 0.81), but also 
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using ratios like a/b (R2 = 0.83), G/R (R2 = 0.83), a/L (R2 = 0.83) and CI (R2 = 0.80) which 

indicates the feasibility of colour imaging to assess the firmness of this fruit. 

Regarding to the astringency, several studies have been conducted to predict the 

content of ST or to assess the astringency in different varieties of persimmon fruit 

using spectroscopy (Zhang et al., 2013; Noypitak et al., 2014; Altieri et al., 2017; Cortés 

et al., 2017). In this doctoral thesis, two studies were performed to detect A fruit using 

hyperspectral imaging since the presence of any astringency in the fruit can cause 

rejection by the consumer that will in turn affect future sales. In Chapters IV and V, the 

fruit used presented different ripeness and was treated in closed containers at 20º C 

with 90 % of RH and 95.0 % of CO2 during 12h and 24h, and also not treated. In the 

first study the fruits were classified using LDA, QDA and SVM as high astringency, 

medium astringency and deastringed corresponding to the time of the treatment. As a 

result 95.0 % of fruits were correctly classified using QDA. In the second study, the 

classification of the fruit was performed to discriminate between A and DA using 0.04 

% of ST as threshold. Furthermore the prediction of ST was performed and the most 

appropriate area of the fruit and the optimal wavelengths were determined. In this 

case, the results obtained indicated that the PLS-R model using the spectra of the apex 

area was the most accurate, R2 of 0.71. However, only 68.7 % of fruit were correctly 

classified when the threshold of 0.04 % was applied. When the PLS-DA models were 

performed, the most accurate models were those using middle and apex area spectra 

using all wavelengths (88.9 % and 87.9 %) and also using  23 optimal wavelengths (86.9 

% and 85.9 %). 

In the third part, the application of hyperspectral imaging in the assessment of 

pomegranate cv. ‘Mollar de Elche’ was studied. This cultivar is appreciated due to its 

good source of bioactive compounds and its sweet taste and soft seed. Previously, 

others studies have used other techniques such as spectroscopy (Arendse et al., 2017; 

Arendse et al., 2018), X-rays (Salmanizadeh et al., 2014) or MNR (Zhang and McCarthy, 

2012) to assess the quality of this fruit using the intact fruit or the arils information of 

other cultivars.  In Chapter VI, the prediction of physicochemical properties and the 

maturity stage of this fruit using the intact fruit and arils information were performed 

by means of two machine vision techniques, colour and hyperspectral imaging. The 
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images of each intact fruit and their arils and the physicochemical analyses were 

performed at seven different harvests. PLS-R and PLS-DA models were calibrated to 

predict the physicochemical properties and maturity of the fruit using the colour and 

spectral data of intact fruit and arils. The physicochemical parameters better predicted 

using colour imaging and intact fruit information were the MI and BrimA indices, the L* 

and a* colour coordinates, the AA using DPPH method and the TPC. When 

hyperspectral imaging was used, the physicochemical parameters better predicted 

were BrimA, a* colour coordinate, the AA using DPPH and FRAP methods and the TPC. 

When the arils information was used, all physicochemical parameters studied were 

correctly predicted (RPD > 2) except TA.  Then, PLS-DA models were carried out to 

classify the fruit according three maturity stages delimited by the external changes and 

the moment of the commercial harvest. The models using colour data achieved an 

accuracy of 84.3 % and 85.7 % for intact fruit and arils, respectively. However, when 

the spectral data was used, more accurately models were obtained, achieving an 

accuracy of 95.0 % and 100 %. These results demonstrate that colour imaging can be 

used as interesting tool to monitor some physicochemical properties and maturity of 

the intact fruits. However, hyperspectral imaging demonstrated a great potential in 

both intact fruit and arils. 

In the last part, the application of hyperspectral imaging in the assessment of 

loquat cv. ‘Algerie’ is studied. Despite this is an important cultivar in Spain, it is very 

sensitive to mechanical damages and physiologycal dirorders such us purple spot or 

flesh browning. When those defects are unavoidable and reach the quality inspection 

lines, inspection systems based on computer vision are needed in order to avoid the 

human error in classification processes (Cubero et al., 2011). In Chapter VII, 

hyperspectral imaging combined with machine learning techniques was used to 

discriminate common defects of ‘Algerie’ loquat fruit such as purple spot, bruises, 

russeting or flesh browning. Three classifiers, PLS, RF and XGBOOST, and different pre-

processing techniques were evaluated to discriminate the sound and defective 

features according to three approaches. In the first approach, the best result was 

obtained using XGBOOST and the data without any pre-processing. The fruit pixels 

were classified as sound or defect with an accuracy of 97.5 %. In the second approach, 
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the best result was also obtained using XGBOOST and the data without any pre-

processing. The fruit pixels were classified as sound, internal or external defect with an 

accuracy of 96.7 %. In the third approach, the best result was also obtained using 

XGBOOST and the data without any pre-processing. The fruit pixels were classified as 

sound or purple spot, scar, bruise or flesh browning with an accuracy of 95.9 %. 
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Considering the planned objectives and the results obtained in this thesis, the 

following conclusions can be drawn: 

 

1. Hyperspectral imaging combined with chemometrics is capable to monitor the 

ripeness of two cultivars of nectarine using ripening indices. PLS-R models produced 

optimal prediction for both cultivars of around R2 0.90 of RPI and IQI indices. A total of 

eight wavelengths were selected for ‘Big Top’ and seven for ‘Magique’ using VIP 

scores.  The simplified models also yielded good performance in prediction with R2 

values of around 0.90 for both indices and both cultivars. The ripeness distribution 

maps facilitated the visual observation of the state of fruit ripening. 

 

2. Hyperspectral transmittance imaging may be a potential non-destructive method to 

detect split pit nectarines and to monitor their ripeness. The detection of split pit fruits 

of the ‘Big Top’ cultivar using PLS-DA was successful, achieving 100 % correct 

classification for split pit fruit and 91.3 % for normal pit using all the captured 

wavelengths. The ripeness of the ‘Big Top’ and ‘Magique’ cultivars was determined by 

two indicators: IQI and an F threshold (35 N). The prediction of the IQI was performed 

by means of PLS-R models, obtaining an R2 of 0.89 and 0.86 and an RPD of 2.7 and 2.6 

for the ‘Big Top’ and ‘Magique’ cultivars. The results achieved from estimating the IQI 

were similar to those obtained in a previous study using the reflectance mode. The 

classification of the fruits by F was performed by PLS-DA, which correctly classified 

95.7 % of the ‘Big Top’ fruits and 94.5 % of the ‘Magique’ fruits. An optimal wavelength 

selection was performed by means of forward i-PLS and the simplified models 

obtained similar results to those models that used all the wavelengths. A hierarchical 

model was built to evaluate the total internal quality of the ‘Big Top’ cultivar and the 

visualized results indicated that 10.3 % of ‘ready to buy’ fruits were classified as split 

pit and 6.9 % as ‘hard’. 

 

3. Hyperspectral imaging may have potential as a tool for rapid and non-destructive 

cultivar discrimination, allowing the selection of fruit that is better suited to the 

consumer's preferences. The classification of two cultivars of nectarine by colour 
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imaging or by a trained panel was very poor. However, hyperspectral imaging 

supported by chemometrics and optimised by reduction of the spectral and spatial 

information enabled classification more accurately. The use of the mean spectrum of 

the fruit as input of the predictive models provided classification accuracy of 94.4 %. 

To cope with the huge amount of data captured by the hyperspectral systems, the 

vector of the regression coefficients of a PLS-DA model identified 14 wavelengths 

which were selected as optimal, producing the best classification model with a 

classification accuracy of 96.3 %.  

 

4. The potential proposed methodology based on hyperspectral imaging is a promising 

non-destructive tool to assess the internal quality of persimmon fruits destined to be 

deastringed and rapidly marketed as fresh sweet fruit. The characterisation of the 

colour showed that good correlations (R2 > 0.80) were found in some colour 

parameters like H, G and h, but also using ratios like a/b, G/R and a/L which indicates 

the feasibility of images to assess the colour as a valid alternative to traditional and 

expensive colorimeters. Using hyperspectral imaging, three wavelengths (580, 680 and 

1050 nm) were proposed as the optimum wavelengths for the classification of the 

fruits into three ripeness stages with high accuracy, more than 94 % of all samples 

were well classified for all of the used classifiers (LDA, QDA and SVM). These 

wavelengths were used for flesh firmness prediction and the RPD value indicated that 

the obtained model is useful for good quantitative application. Regarding the 

astringency, the whole spectrum was needed to be used to classify the fruits into three 

levels of astringency or time of treatment: astringent fruit (0h), fruit with a low-

medium level of astringency (12 h) and non-astringent fruit (24h). The overall 

classification for the three ripeness stages was higher than 95 % for QDA classifier. 

 

5. Hyperspectral imaging combined with multivariate analysis has a great potential as a 

tool for rapid and non-destructive control of effectiveness of the astringency removal 

treatment applied to persimmon ‘Rojo Brillante’. The prediction of ST content in the 

fruits was performed using PLS-R models to determine the astringency. The results 

obtained indicated that the model using the spectra of the apex area was the most 
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accurate. However, few fruit were correctly classified when the threshold of 0.04 % 

was applied. This means that changes in colour, F and other properties have to be 

considered to discriminate them, and not only the difference in ST content. PLS-DA 

models were performed to maximise the separation between A and DA classes. The 

most accurate models were those performed using middle and apex area spectra (88.9 

% and 87.9 %). To reduce the huge amount of data captured, the vector of the 

regression coefficients of the PLS-DA model of each area was used to identify the 

optimal wavelengths. As when using all wavelengths, the most accurate models were 

those involving the middle and apex areas and 23 optimal wavelengths (86.9 % and 

85.9 %).  

 

6. Hyperspectral imaging has demonstrated a great potential in the quality monitoring 

of the intact ‘Mollar de Elche’ pomegranate fruit and arils. The physicochemical 

parameters better predicted (RPD > 2) using PLS-R and colour imaging were the MI and 

BrimA indices, the L* and a* colour coordinates, the AA using DPPH method and the 

TPC. All of them were performed using the intact fruit information. When 

hyperspectral imaging was used in the intact fruit, the physicochemical parameters 

better predicted (RPD < 2) were BrimA, a*, the AA using DPPH and FRAP methods and 

the TPC. When the arils information was used, all physicochemical parameters studied 

were correctly predicted (RPD > 2) except TA.  PLS-DA models were performed to 

classify the fruit according maturity stage. The models using colour data achieved an 

accuracy of 84.3 % and 85.7 % for intact fruit and arils, respectively. However, when 

the spectral data was used, more accurately models were obtained, achieving an 

accuracy of 95.0 % and 100 %. 

 

7. The potential proposed methodology based on hyperspectral imaging and machine 

learning techniques is a promising tool to detect common defects in ‘Algerie’ loquat 

fruit such as purple spot, bruises, russeting or flesh browning. Three classifiers, PLS, RF 

and XGBOOST, and different pre-processing techniques were evaluated to discriminate 

the sound and defective features according to three approaches. In the three 

approaches, the best result was obtained using XGBOOST and the data without any 
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pre-processing. In Approach I, the fruit pixels were classified as sound or defect with an 

accuracy of 97.5 %. In Approach II, the fruit pixels were classified as sound, internal or 

external defect with an accuracy of 96.7 %. And in Approach III, the fruit pixels were 

classified as sound or purple spot, scar, bruise or flesh browning with an accuracy of 

95.9 %. A proper selection of optimal wavelengths and the identification of the defects 

in the image of fruits are needed. These are the next steps of this work to study the 

feasibility of this technique to be implemented in real time.     
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