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Abstract. The main goal of this paper is to provide an approach to
solve the problem of localization in mobile robots using multi-agent sys-
tems. Usually, the robot localization problem has been solved in static
environments by the addition of the needed sensors in order to help the
robot, but this is not useful in dynamic environments where the robot
is moving through different rooms or areas. The novelty of this dynamic
scenario is that each room is composed of external devices that can enter
or exit the system in a dynamic way and report the position where the
robot is. In this way, we propose a multi-agent system using the SPADE
MAS platform to improve the location of mobile robots in dynamic sce-
narios. To do this, we are going to use some of the advantages offered by
the SPADE platform such as presence notification and subscription pro-
tocols in order to design a friendship network between sensors/devices
and the mobile robots.
keywords: Multi-Agent System, Mobile Robots, Open Systems.

1 Introduction

Current mobile robots are very complex machines which include a lot of compo-
nents that in some circumstances are difficult to synchronize. For this reason, it
is quite common for mobile robot applications that the level of complexity gets
increased due to a good coordination and/or synchronization of the different
elements for sensorization and actuation. This problem complicates the achieve-
ment of their objectives. One of the most well-known problems is the positioning
problem of a mobile robot inside a building. This is a recurrent problem, which
has been resolved with greater or lesser success in recent years.

In this paper, we employ the humanoid robot NAO1, which has been de-
veloped by Aldebaran Robotics. The robot has a coordinates system to know
its own position. The problem is that the robot is not very accurate when it
performs several movements. In such situations it is very common for the robot
to have a significant deviation between its actual position and the robot’s belief
of its position according to its sensors. Besides, when it performs several com-
plex tasks, which are composed of different movements along different rooms,
1 www.ald.softbankrobotics.com



the robot gets big mistakes due to its lack of knowledge about its real position,
as we can see in Fig 1. Our goal is to provide an agent-based framework that
gives a mobile robot, which is moving through different areas or rooms inside a
building, a flexible and dynamic way to obtain its correct position.

Fig. 1. NAO robot movement.

This location problem may appear due to two causes. The first one is due to
the type of floor used. Each material exerts a kinetic friction between the robot
and the ground and, depending of this kinetic friction, the robot movement is
more or less accurate. The second one depends on the components that the
robot employs for its movements. These components usually make little errors
that may affect the robot movement and may make it believe that it is in a
different position than the real one. This problem is even greater when a robot
is moving between different rooms with different floors, lighting, objects. The
precise adjustment of the own robot’s sensors is not possible and, therefore, the
use of external sensing devices (such as cameras) is mandatory. In this sense,
this paper proposes a multi-agent based framework using the SPADE platform2

to improve the location of the robots in dynamic scenarios using external devices
that can enter or exit the system in a dynamic way. The goal of these devices is
to help the robot for a more accurate calculation of the robot position.

The proposed approach is based on the use of multi-agent technology (MAS).
Intelligent agents offer a great opportunity to solve different types of distributed
problems. For that reason, we are going to use a Multi-Agent System (MAS)
to help the robot to know its real position when it performs several movements
inside a building. The MAS provides the distribution, dynamism and flexibility
needed to solve this problem. Besides, the proposed solution can be used to help
2 https://pypi.python.org/pypi/SPADE



any mobile robot to know their position and also to allow new devices that know
the robot position to be added or removed.

The rest of the paper is organized as follows. Section 2 describes the developed
MAS framework. Section 3 shows the experiments and the final performance
achieved using the proposed MAS. Section 4 presents a discussion in this topic.
Finally, some conclusions and future work are presented.

2 Multi-Agent System proposal

As commented before, the main contribution of this paper is to provide an agent-
based framework that allows us a flexible and dynamic way to obtain the correct
position of a mobile robot which moves through different areas or rooms inside
a building. The framework has been implemented using the SPADE platform
[2]. The use of an agent-oriented approach allowed us to obtain a flexible and
distributed solution where different sensing devices can be added or deleted in
the MAS in a transparent way. The platform follows FIPA and XMPP/Jabber
standards [2] and it is also the first platform based on XMPP instant messaging.

Agents developed in SPADE are implemented using Python, which is one
of the most used programming languages for the development of applications
for the NAO robot. Also, the SPADE platform incorporates different features
that are interesting for this work, such as: a transparent use of the publish and
subscribe event protocol following the PubSub protocol (which is supported by
the platform) and the use of presence notification that allows the system and
the different agents to know, in real-time, which agents are connected in the
platform.

The use of the SPADE platform allows us to use it as a component that
connects the different agents that control sensing devices, called device agents,
with the agent that controls the robot, which is called the robot agent. The
device agents can be used to manage the different sensing devices which are
placed in the environment. Thus, each sensing device can have a different way to
obtain and calculate the position of the robot, depending on its physical sensor
component and its location algorithm. Next section describes in more detail this
kind of agent.

2.1 Device agent

The device agent has been designed as a set of different behaviors. The first one is
the Service Behavior which activates the services offered by the device and pe-
riodically publishes information about the robot position through these services
(this is done using the PubSub protocol3). Note that, the number of activated
services depend on the number of sensors that the device incorporates. That is,
a device agent can be an aggregation of different sensors available through the
3 The PubSub protocol allows agents to subscribe to events published by other agents.

Agents receive the information that another agent publishes if they are subscribed
to the event.



same device. Finally, for each offered service, the device agent also includes a
Position Calculation Behavior which calculates the robot position using the
available data of a specific sensor (camera, sonar, etc.) and its own algorithm.

For camera sensors, the calculation of the robot position is done following
an algorithm which searches the robot position in the environment, using the
OpenCV4 library. The developed algorithm depends directly on the device posi-
tion and the employed sensor. So each device agent can have a different Position
Calculation Behavior for each sensor. To ease the position calculation, the en-
vironment has been divided into fields (identified by two coordinates x and y),
which reduces drastically the number of possible positions of the robot in the
experimentation environment.

2.2 Calculating position with OpenCV

Different algorithms that detect the robot position have been developed de-
pending on the different devices that we use. In this paper, we used two types
of devices: VGA cameras and infrared cameras that detect the depth of the en-
vironment. Scenario was divided into fields where different sensing devices can
locate the robot position.

First, a vertical search is performed to detect the position x of the robot.
In this search the algorithm obtains the position in which the robot gets the
largest area. This initial part is similar in VGA and infrared cameras. Then,
the algorithm performs a horizontal search that detects the position y. This
algorithm is different in VGA and infrared cameras because Infrared cameras
perform an in-depth search and easily find the robot position. But, VGA cameras
look for the robot from the camera’s closest position to the farthest one and
stores the position in which the robot appears first, if the area that gets exceeds
a certain threshold. This threshold has been set to improve the accuracy of these
cameras. An example of the use of this algorithm is shown in Fig. 2, where the
darker lines are the x and y position that have been detected by a normal camera.

2.3 Robot agent

The robot agent also incorporates a set of different behaviors. The first one
is the Service Search Behavior which is in charge of collecting information
periodically about the different available services (offered by the available device
agents). If one service is found, the robot agent sends a subscription request to
the found service. Each subscription activates in the robot a new behavior named
Reception Information Behavior that is in charge of collecting the necessary
information in order to calculate the robot position. Finally, the robot agent
also incorporates the Movement Behavior which is responsible for moving
the robot around the environment.

Thanks to the presence notification feature of the SPADE platform, the robot
agent can know the current status of each device agent, knowing whether the
4 http://www.opencv.org/



Fig. 2. Robot positioning with VGA camera.

device agent is connected or not to the platform. Thereby, the robot agent can
modify its subscription related to this agent. This allows the robot agent to have
the subscription list always updated with the device agents that are currently
available in the environment.

2.4 Trust model

One of the problems that the robot agent can have in order to use the information
given by the device agents is the reliability of that information. Sensors can have
some percentage of error in the calculation of the robot position. Moreover, this
error can increase due to the changing conditions of the environment. According
to this, a trust model has been incorporated to the proposal. This model allows
the robot agent to assign a level of trust for each device agent, that can be
adapted during the execution of the system. Note that the robot also has a self-
trust value, because it has an internal coordinates system that is also used as a
sensor device. The problem is that this system is not very accurate and leads the
robot to make errors in its movements. The trust model on each agent is used
by the robot agent to calculate its position, as explained in the next section.

Initially, a new device agent will have the highest possible trust value. This
value can be decreased or increased depending on the information about the
robot position given by the device to the robot agent. As the robot moves, the
robot agent can adjust the trust value assigned to each device agent following
the Figure 1. Since the environment is divided in a grid, the robot agent calcu-
lates the difference between the calculated position and the position returned by
the device and adjusts the trust value depending on the difference obtained in
previous steps and the last difference obtained. On the one hand, if the difference
obtained is 0 it increases the trust value in λ when the previous difference is also
0. When the previous difference is more than 0 it increases the trust value in θ.
On the other hand, the trust value decreases θ if the current difference is 1 and
the previous is more than 0 or λ if the current difference is more than 1. Note



that the trust value can not be increased more than its maximum value (1) or
be decreased less than its minimum value (0).

Previous difference Current difference Trust modification
0 0 + λ

>0 0 + θ

0 1 None
>0 1 - θ
- >1 - λ

Table 1. Summary of the values to adjust the trust model.

2.5 Position calculation

The Movement Behavior commented in section 2.3 is responsible for the
movement of the robot around the environment depending of the information
obtained in the Reception Information Behavior. First, the agent robot
calculates the robot position following the Equation 1, that depends of the in-
formation returned by each device agent (p), the trust value of each device agent
(β) and a factor (α) that takes into account the arrival time of the returned in-
formation. This factor will be larger the less time has passed from the reception
of the information. Then, the robot only stops when the result of this calculation
matches with the desired position. If the calculated position is not the target
position, the robot will try again to move to the desired position until it reaches
the target position.

P̂{x,y} =
∑d
i=0 αi · βi · Pi{x,y}∑d

i=0 αi · βi
(1)

A general view of the above commented agents can be seen in Fig. 3. Fig-
ure also shows the exchange of messages between the two agent classes. From
a perspective of the MAS, agents are initially registered in the Agent Manage-
ment System (AMS). After this initial step, the device agent registers the offered
services in the Directory Facilitator (DF).Then, the robot agent tries to search
the available services and subscribes to them following the PubSub standard.
Finally, the device agent periodically publishes information about the robot po-
sition; the robot agent receives this information in order to determine the correct
position of the robot.

3 Experimentation

Before starting the different tests, the robot movement was verified in different
environments with different floors and we concluded that for these experiments



Fig. 3. General scheme of the proposed system.

the kinetic friction was lower in the wooden floor. Therefore, a scenario with
wooden floor was developed and was divided into fields. Then different sensing
devices where installed in the scenario to locate the robot position. Specifically,
these sensing devices were VGA cameras and infrared cameras that can detect
the depth of the environment. Besides, the OpenCV library has been used to
calculate the robot position following the algorithm explained in section 2.2.

In order to evaluate the developed system, five experiments have been de-
signed using different cameras as sensing devices. The first experiment evaluates
how the number of available devices affect in the calculation of the robot posi-
tion. To evaluate this aspect the experiment increases in each test the number
of cameras in a room. In this experiment we have employed cameras that always
know the real position of the robot without any error. In the experiment the
robot performs different routes in order to measure the error made by the robot
in its movements. The second experiment is similar to the previous experiment.
In this experiment we increase the number of cameras used in a room, but, in
this case, we use cameras with an error threshold in the calculation of the posi-
tion. The third experiment evaluates how the trust model affects in the proposed
MAS. Besides, this experiment allows us to show how the trust assigned to each
device agent is adapted during the execution of the system. The fourth and
fifth experiments analyze the results obtained when the robot is moving through
different rooms of a building in a real and in a simulated scenario.

Note that the euclidean distance was used to calculate the error in each
experiment using the field where the robot was and the field where the robot
was supposed to be. Besides, each experiment has been repeated ten times, and
both the average error obtained in each movement of the robot and the average
standard error have been calculated and showed in each figure.

3.1 First experiment using cameras without error

In this experiment, the robot performs different routes to measure the error made
using different cameras which know the real robot position (without error). Each



route is performed several times by the robot increasing the number of available
cameras in each repetition.

The first route is a simple movement where the robot tries to do a circle
(Fig. 8, path a). The results obtained can be seen in Fig. 4. As we can see,
the robot accumulates the obtained error when it moves without the help of the
cameras, achieving a maximum error value of 0.8 fields. The error is reduced until
a value of 0.5 fields when we introduce a new camera (37.5% of improvement
than without cameras). Finally, the error is completely eliminated introducing
a second camera.

Fig. 4. Circular movement results. Fig. 5. Pythagorean star movement results.

Other route used is a movement that simulates a star with 5 points, showed
in the path b of Fig. 8 (Pythagorean Star). This route contains fewer movements
than the previous route, but their movements contain higher angles which make
the robot movement harder. In Fig. 5, we can see the results of this experiment,
which are quite similar than in the previous route. The robot accumulates an
error without the help of the device agents until it achieves an error of 0.6 fields.
This error is reduced when a new camera is introduced in the system. It finally
achieves an error of 0.5 fields (16.67% of improvement than without cameras). In
this case the error has not been significantly reduced compared to the previous
route. Finally, with two cameras the error is completely eliminated.

Finally, route c from Fig. 8 was tested. In this case the robot performs a
greater number of movements. The obtained results are very similar to those
obtained in the previous routes as can be seen in Fig. 6. Without using sensing
devices, the robot accumulates an error of 1.4 fields. The error is reduced until
it reaches a value of 1.2 fields (14.29% better than without cameras) when we
introduce the first camera. Finally, the error disappears again when two cameras
are used.

3.2 Second experiment using cameras with error

The use of cameras that always know the real robot position without error is
not possible in a real scenario. Devices can produce errors in their calculations



Fig. 6. Large route results. Fig. 7. Results of the experiment with non
ideal cameras

Fig. 8. Different routes used in the experiments.

due to several reasons, such as: the sensors are not effective enough or because
different changes have been introduced in the environment that hinder sensor
effectiveness. So, we decided to perform new experiments where the number of
cameras have an associated error. As in the previous experiments, the number
of cameras is increased in each test. In this case, the number of analysed routes
has been reduced. The robot only performs the movements that simulate the
Pythagorean Star because we consider that is the route with the highest prob-
ability of error during the movements of the robot. Moreover, we used cameras
with a random error between 10% and 30% in their calculation process of the
position of the robot.

Fig. 7 shows the results obtained in this experiment. We can see the error
obtained by the robot while the number of cameras gets increased. The robot
obtains worse results when a new device agent, which has an associated error,
is introduced in the experiment. Specifically, the robot gets an error of 1.1 fields
(the robot got an error 0.6 fields without the help of the device agents). However,
the error is reduced when the number of cameras is increased until it performs
the movement without error with 4 cameras. As the cameras introduce some kind
of error, the robot does not reach the desired position in all of the intermediate
steps in many of the tests (using 4 cameras), but the final accumulated error is
low enough (only 0.2 fields).

3.3 Study of the trust model

This experiment evaluates how the trust model affects in the proposed MAS. The
robot agent assigns trust values to all the device agents following the table shown



in Figure 1. These trust values are used to calculate the robot position taking into
account that the information provided by device agents will be more important if
their trust is higher. So, a correct assignment of the trust to the different device
agents is critical. Moreover, the experiment also shows how the trust assigned
to each device agent is adapted according to changes in the environment.

The experiment has been executed using 4 cameras with an associated error
shown in Figure 9. The error of camera 4 and camera 1 are exchanged in the
movement number ten. As commented before, initially all the device agents (and
also the robot agent) have the maximum trust assigned. Note that, as explained
in section 2.4, the robot also has a self-trust value. This is because it has a
coordinates system that is used as a sensing device too. The problem is that
this system is not accurate when the robot makes mistakes in its movement, and
that is why the robot keeps a trust value also for its own coordinates system.

As can be seen in the figure, this trust is continuously decremented in the
case of cameras 4 and 3 and the robot agent. This is because they have a higher
error assigned. However, when the robot reaches the movement number ten,
their trusts begin to change, increasing the trust in the case of camera 4 until
it reaches the maximum and decrementing the trust of the camera 1 until it
reaches the minimum value.

Fig. 9. Study of the trust model. Fig. 10. Experiment with different rooms.

3.4 Fourth experiment with movements through different rooms

This experiment results can be seen in Figure 10. In this case, we want to analyse
the results obtained when the robot is moving though different rooms and some
device agents can appear or disappear. The experiment has been designed with
two rooms. The first one is a room (a) with 4 cameras with an error between
10% - 30%. The second room (b) is a less informed room with 2 cameras with an
error of 50% - 70%. We are trying to demonstrate how the robot is able to reach
the desired position on the first room in most of the cases, but its error begins to



increase when the robot enters the second room. In addition, the accumulated
error of the second room is reduced when the robot returns to the first room.
As in previous experiments, in the figure we can see the error obtained in each
movement and the standard mean error.

3.5 Fifth experiment with simulated scenario

In this experiment we moved the robot in a more complex and big scenario
to validate how the distributed sensors may collaborate to help the robot to
improve its location. This complex scenario has been simulated since we had
no resources to build it as is. The scenario is again divided into squared fields
which are ore units in the coordinates system. This scenario has also different
rooms (a living room, a kitchen, a bathroom, ...) and some sensors distributed
along the rooms (except the bathroom, for privacy reasons). These devices have
also an error between 10% - 30% when they compute the robot’s location. The
experiment has moved the robot through the scenario following the numbers in
Figure 11 in ascending order.

Fig. 11. Simulated scenario.

We are trying to demonstrate how the robot is able to reach the desired
position in an scenario if we use external low-cost devices to help the robot
to improve its location. In Figure 12 the error obtained at each movement is
shown. We can see how the error kept low until the robot reached the movement
number 12. At this movement the robot entered the bathroom, where there are
no devices to help the robot. Then, when the robot exited this blind room, the
error was reduced again to regular values and this low error was kept until the
end of the experiment.



Another observable conclusion of this experiment is regarding the trust values
of each experiment. The system presented in this work is supposed to decrease
the trust in devices that are not providing correct enough values for the location
of the robot. The experiment has been executed using 9 devices cameras with an
error between 10% - 30% and the onboard location system of the robot. Since
the cameras error is not too high, the trust values of each device are kept high
during the robot movements (see Figure 13), while the trust of the onboard
sensor gets decreased due to its low precision.

Fig. 12. Experiment in sim-
ulated scenario with different
rooms. Fig. 13. Study of the trust model in different rooms.

4 Discussion

Several previous works have done different studies taking into account this prob-
lem. Specifically, they have focused on two approaches: the first one tries to locate
the robot position using fixed devices that know the robot position in the envi-
ronment [1,9,8]. These studies satisfy the main objective of locating the robot,
but they are oriented to a single static room. Besides, the information given by
the external devices is critical, hence the works that follow this approach do not
tolerate possible failures of these devices such as incorrect operations or changes
in the environment that difficult the detection of the robot (for example, a new
obstacle between the device and the robot). The second approach satisfies the
main objective using only onboard robot sensing [6,11]. The robot calculates its
position depending on the detected objects of the environment and its distance
from the detected objects using vision-based approaches [5,10]. This solution
may not work correctly in a dynamic environment, because the robot can not
calculate its global position when there are obstacles in the environment that are
changing their position or even new obstacles appear. However, there are some
works that add more advanced onboard sensing to the robots to make them able
to improve its location by means of probabilistic approaches [3,4]. These works
add advanced sensors like 2D laser range finders, which are not low-cost sensors
and thus are out of our goals in this work. Finally there are vision-guided works
[7] that propose a robot guidance using an external camera which allow robots



to avoid obstacles dinamically. However these works are not able of coordinating
different external cameras or sensors to improve robot localization.

Therefore, this work has proposed a hybrid approach which solves the prob-
lem of the robot positioning when it has to perform several tasks in different
rooms of a building with changing conditions as new objects, failures of external
devices, changes in the available sensorization, etc. Also, the proposed system
tolerates and fixes possible deviations committed by the external devices, either
due to an internal malfunction or due to obstacles that difficult the detection of
the robot. These new features improve the previous solutions that were presented
above.

5 Conclusions

In this paper, we have designed a MAS to help a mobile robot to know its real
position when it performs several movements in a building with several rooms.
According to this, we have proposed a new distributed, dynamic and flexible
solution that can be used to help any mobile robot and which allows anyone to
include any external device that can provide information about the robot posi-
tion. We have reached different experiments to evaluate the proposed solution.
We introduced the robot into an environment with perfectly accurate devices
which know the exact robot position in the first experiment. The robot did dif-
ferent routes and we found that results improve as more devices are introduced
into the MAS. This is because the robot agent believes to be in a consensus
between the position returned by each device agent and the desired position.

The system has been also tested using not accurate devices that introduce
some error. We tried to simulate a real environment, so we used different devices
with an error between 10% and 30% in their returned information. We found that
we can obtain the real position using four of these devices, finding an acceptable
error of 0.2 fields in most cases. Besides, the system incorporates a trust model
in order to improve the calculation of the real position. This has been evaluated
with a study of the trust assigned by the robot agent to the device agents. The
robot agent assigned more trust to device agents which are more precise and it
adapted trust values according to changes in their accuracy.

According to the proposed evaluation, the implemented MAS can help to
know the robot position in an environment with one or more rooms, with changes
in the environment and with changes in the external devices used by the robot
for the calculations of its position. Besides, this solution allows us to incorporate
different device agents and appropriately adjusts their trusts. As future work,
we want to test different types of sensing devices that the ones used in our tests.
Then, we will study how the movement error of the robot evolves as the devices
and the robot reach a consensus. Moreover, in this paper we used only one robot,
but in future work we will use a bigger team of robots that cooperate to obtain
a result that is beneficial for all.
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